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Abstract

With various remote sensing technologies to aid Earth Observation, radar-based imaging is
one of them gaining major interests due to advances in its imaging techniques in form of syn-
thetic aperture radar (SAR) and polarimetry. The majority of radar applications focus on mon-
itoring, detecting, and classifying local or global areas of interests to support humans within
their efforts of decision-making, analysis, and interpretation of Earth’s environment.

This thesis focuses on improving the classification performance and process particularly
concerning the application of land use and land cover over polarimetric SAR (PolSAR) data.
To achieve this, three contributions are studied related to superior feature description and ad-
vanced machine-learning techniques including classifiers, principles, and data exploitation.

First, this thesis investigates the application of color features within PolSAR image classi-
fication to provide additional discrimination on top of the conventional scattering information
and texture features. The color features are extracted over the visual presentation of fully and
partially polarimetric SAR data by generation of pseudo color images. Within the experi-
ments, the obtained results demonstrated that with the addition of the considered color fea-
tures, the achieved classification performances outperformed results with common PolSAR
features alone as well as achieved higher classification accuracies compared to the traditional
combination of PolSAR and texture features.

Second, to address the large-scale learning challenge in PolSAR image classification with
the utmost efficiency, this thesis introduces the application of an adaptive and data-driven su-
pervised classification topology called Collective Network of Binary Classifiers, CNBC. This
topology incorporates active learning to support human users with the analysis and interpreta-
tion of PolSAR data focusing on collections of images, where changes or updates to the exist-
ing classifier might be required frequently due to surface, terrain, and object changes as well
as certain variations in capturing time and position. Evaluations demonstrated the capabilities
of CNBC over an extensive set of experimental results regarding the adaptation and data-
driven classification of single as well as collections of PolSAR images. The experimental re-
sults verified that the evolutionary classification topology, CNBC, did provide an efficient
solution for the problems of scalability and dynamic adaptability allowing both feature space
dimensions and the number of terrain classes in PolSAR image collections to vary dynamical-
ly.

Third, most PolSAR classification problems are undertaken by supervised machine learn-
ing, which require manually labeled ground truth data available. To reduce the manual label-
ing efforts, supervised and unsupervised learning approaches are combined into semi-



iv

supervised learning to utilize the huge amount of unlabeled data. The application of semi-
supervised learning in this thesis is motivated by ill-posed classification tasks related to the
small training size problem. Therefore, this thesis investigates how much ground truth is actu-
ally necessary for certain classification problems to achieve satisfactory results in a super-
vised and semi-supervised learning scenario. To address this, two semi-supervised approaches
are proposed by unsupervised extension of the training data and ensemble-based self-training.
The evaluations showed that significant speed-ups and improvements in classification per-
formance are achieved. In particular, for a remote sensing application such as PolSAR image
classification, it is advantageous to exploit the location-based information from the labeled
training data.

Each of the developed techniques provides its stand-alone contribution from different
viewpoints to improve land use and land cover classification. The introduction of a new fea-
ture for better discrimination is independent of the underlying classification algorithms used.
The application of the CNBC topology is applicable to various classification problems no
matter how the underlying data have been acquired, for example in case of remote sensing
data. Moreover, the semi-supervised learning approach tackles the challenge of utilizing the
unlabeled data. By combining these techniques for superior feature description and advanced
machine-learning techniques exploiting classifier topologies and data, further contributions to
polarimetric SAR image classification are made. According to the performance evaluations
conducted including visual and numerical assessments, the proposed and investigated tech-
niques showed valuable improvements and are able to aid the analysis and interpretation of
PolSAR image data. Due to the generic nature of the developed techniques, their applications
to other remote sensing data will require only minor adjustments.
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Chapter1
Introduction

n the past, capturing pictures of our planet Earth from space has fascinated people, and still
does. These days images of the earth are constantly captured and acquired, and scientific

communities use them to understand better and improve management of the earth itself and its
environment. Such images capturing the earth enable us to see the world through a wide
frame to witness large-scale phenomena with an accuracy and entirety, which could barely be
captured by human efforts on the ground. This is highly advantageous when it comes to data
acquisition around the world particularly places too remote or otherwise inaccessible. Recent
examples are monitoring man-made and natural disasters, where a single satellite image has
the potential to show the Deepwater Horizon oil spill spread in April 2010, the precise dam-
age assessment after the 2010 Haiti earthquake or the tsunami that hit Japan in March 2011,
the entire span of a hurricane or typhoon such as Typhoon Haiyan in November 2013, or help
in search of a missing airplane in March 2014.

The gathering of information about planet Earth’s physical, chemical, and biological sys-
tems falls within the discipline of Earth observation (EO). Hence, one of the core objectives
of EO is to monitor and assess the status and changes of the natural and man-made environ-
ments via remote sensing technologies. Remote sensing (RS) in a broader sense involves col-
lecting data and information about the physical world surrounding us. This is achieved by de-
tecting and measuring signals, which can be composed of radiation or particles originating
from any kind of object that is not in the close vicinity of the sensor. Such sensor can be car-
ried by various platforms for instance satellite, aircraft, spacecraft, buoy, ship, and helicopter.
The collected data are helpful for city planning, archaeological investigations, military obser-
vation, and geomorphological surveying by analyzing and comparing observations such as
vegetation rates, soil erosion, air pollution, forestry, weather, and land use.

To initiate the remote sensing process,  the first  requirement is  an energy source that illu-
minates  or  provides  electromagnetic  energy  to  the  target  of  interest.  As  the  energy  travels
from its source to the target and then to a sensor, it will interact with the atmosphere it passes
through. Once the energy reaches the target, it interacts with it depending on the properties of
the target and atmosphere. After the energy has been scattered by or emitted from the target, a
sensor is used to collect and record the electromagnetic radiation. The data recorded by the
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sensor is generally transmitted to a ground station where it is processed into images. These
processed images can then be used to extract information about the target for analysis and in-
terpretation. Usually the obtained data are available in digital form, so that the raw data can be
processed in many ways, as the end user requires. The final stage of the remote sensing pro-
cess is the application of the extracted information for better understanding, obtained new in-
formation, or solving a particular problem. The entire remote sensing process is illustrated in
Figure 1.

Remote sensing for EO can be divided into two main sensor categories, which is related to
the energy source used to illuminate the target. Passive sensors utilize an external energy
source such as the sun to emit the initial signal whereas active sensors are capable of transmit-
ting the electromagnetic energy signal itself besides being able to receive scattered electro-
magnetic radiation from targets. Common passive RS sensors are multispectral (e.g., Landsat
[9], Quick Bird [55], WorldView-1 and 2 [55], GeoEye-1 [55], Pleiades [14]) and hyperspec-
tral (e.g., AVIRIS [75], Hyperion [157], HYDICE [140], CASI [12], DAIS [145]) systems
depending on the number of different electromagnetic wavelengths captured. Widely used
active RS sensors are AIRSAR [129], EMISAR [37], E-/F-SAR [89], [90], Pi-SAR [206], and
RAMSES  [59]  as  airborne  systems;  ENVISAT-ASAR [93], ALOS-PALSAR [167], RA-
DARSAT-2 [141], TerraSAR-X [112], and COSMO-SkyMed [183] as space-borne systems.
With the advances in such remote sensing systems, particularly the amount of data available
in shorter periods of time with much higher image resolutions, gathering critical information
proved highly beneficial for interpreting and analyzing while observing the earth [142].

Figure 1 – Illustration of the remote sensing process – transmitting, receiving, processing, and
analyzing.

1.1. SYNTHETIC APERTURE RADAR

A  commonly  used  active  remote  sensing  system  is RAdio Detection And Ranging widely
known as radar.  In its  simplest  form, it  operates by broadcasting a pulse of electromagnetic
energy and if that pulse encounters an object and interacts with it, then some of that energy
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scatters back to the radar antenna. Generally, radar works within the microwave region of the
electromagnetic spectrum from P-Band (0.3 GHz) up to Ka-Band (40 GHz) [142], as illustrat-
ed in Figure 2. Radar systems have the advantage over their optical or spectral counterparts
regarding backscatter sensitivity to terrain and object characteristics (e.g., pass through tree
canopy, dry surface deposits, snow) and the ability to operate in all-weather conditions (i.e.,
pass through clouds, fog, rain, smokes) ([152], Chapter 4.1.1). Particularly, lower frequencies
are the least affected by clouds and rain compared to higher frequencies at X-Band [205]. Fur-
thermore, as an active remote sensing system, it is capable of operating day and night, as it
does not rely on the sun as an external transmitting source.

Figure 2 – Electromagnetic spectrum of microwaves used within radar.

The spatial resolution of a (real aperture) radar system is determined by, among other
things, the size of its antenna. To focus the transmitted and received energy into a sharp beam
(pulse of energy), a physically large antenna is needed which is similar for optical systems
lenses or mirror sizes as they also require large apertures to obtain high image resolution.
However, to accomplish high image resolutions using radar, such remote sensing system
would require an antenna physically larger than the one that can be practically carried by a
sensor platform, i.e., antenna lengths of several hundred meters would be needed. To over-
come this physical limitation, radar systems utilize the flight path of the platform to simulate
an extremely large antenna or aperture electronically. The distance the system covers during
its flight in synthesizing the antenna is known as the synthetic aperture. A coherent radar im-
aging system that applies the technique of synthetic aperture to generate high-resolution re-
mote sensing imagery is referred to as synthetic aperture radar (SAR).

Generally, SAR works based on the same principles as a phased array with many parallel
antenna elements. SAR simulates this phased array principle in a time-multiplex approach,
where the different positions of the antenna elements are imitated by the moving sensor plat-
form. While moving along its flight path, the SAR processor continuously stores all its re-
ceived  radar  signals  (amplitudes  and  phases)  over  a  time T for positions Pt. With the infor-
mation from Pt, it is possible to reconstruct the signal, which would have been generated by
an antenna of length v · T, with v being the platform speed. As the line of sight direction
changes along the platform flight path, synthetic aperture is produced by signal processing
which results in simulating a lengthy antenna. The size of the synthetic aperture is associated
to time T used to collect the returned radar signals, so that with a larger T higher resolution
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can be realized. The achievable resolution of a SAR sensor is related to the length of the real
antenna, yet is independent of the platform altitude. Therefore, SAR is intrinsically the only
viable and practical radar imaging technique that can achieve high spatial resolution, also
from space platforms ([152], Chapter 1.2.6).

Figure 3 – Illustration of generating synthetic aperture with a moving platform.

The idea of SAR was initially mentioned by Carl A. Wiley [214] within a Goodyear report
June 1951 and put into operation by early 1952. For the next 25 years, experiments were pri-
marily conducted using airborne SAR systems until 1978 when the SEASAT satellite carried
the first space-borne SAR [98] into orbit for Earth observation. At this time, main emphasize
was given to the obtained amplitude or intensity images while neglecting the available phase
information by SAR processors. While the amplitude data offering the fundamental infor-
mation for SAR image analysis, SEASAT-SAR provided the addition of phase and polariza-
tion information in the coherently processed complex images. Based on this additional phase
information, the technology of interferometric SAR (InSAR) [74] was established and its
main applications today are generation of digital elevation models as well as observations of
crust movement and deformation caused by earthquakes, volcanic activities, and glacier

ows.
The available information about polarization within complex SAR images led to another

technology known as polarimetric SAR (PolSAR) [208], [224]. The concept of radar polar-
imetry (Polar: polarization, Metry: measure) is to acquire, process, and analyze polarization of
transmitted and/or received electromagnetic waves. Generally, polarization refers to the orien-
tation of the plane of the electric field, as opposed to the magnetic field of the earth’s surface.
Now, radar polarization is measured as the orientation of the electric vector in the electro-
magnetic waves, which can be achieved in different modes independent from the signal wave-
length.
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Figure 4 – Combinations for polarization of electromagnetic waves in H and V basis.

In conventional imaging radar systems, waves are polarized either in horizontal (H) or ver-
tical (V) basis polarization with the lone electric vector oriented in the horizontal or vertical
direction in antenna coordinates. Polarization is generated by the antenna, which may be ad-
justed to transmit and receive in different polarization modes. For example, the horizontal
transmit and vertical receive polarization (HV) is where the electromagnetic waves of the
electric field are oriented in the horizontal plane for signal transmission, and where the verti-
cally polarized electric field of the backscattered energy is received by the radar antenna. This
results in four possible combinations for transmitting and receiving the wave’s polarization as

1. HH - for horizontal transmit and horizontal receive,
2. VV - for vertical transmit and vertical receive,
3. HV - for horizontal transmit and vertical receive, and
4. VH - for vertical transmit and horizontal receive,

as illustrated in Figure 4. HH and VV are referred to as co-polarized since transmitting and
receiving polarizations are the same, whereas HV and VH are called cross-polarized as their
transmitting and receiving polarizations are orthogonal to one another.

Now, depending on its antenna configuration, a system may support different polarization
modes when obtaining the PolSAR data. Single polarized (single-pol) data are provided in the
form of HH, VV, HV, or VH polarization mode with HH or VV being the most typical single-
pol configurations. In case of dual polarized (dual-pol) configuration, data are commonly pro-
vided in one of the three combinations HH/HV, VV/VH, or HH/VV. When a system supports
all four polarization (quad-pol) combinations, it is also called fully polarimetric. The majority
of the aforementioned airborne (AIRSAR, EMISAR, E-/F-SAR, Pi-SAR, and RAMSES) and
space-borne (ENVISAT-ASAR, ALOS-PALSAR, RADARSAT-2, TerraSAR-X, COSMO-
SkyMed) SAR systems support all four polarization modes. This is because polarimetric data
contain more information on the scattering from objects than the conventional single- and du-
al-polarization data. A review of polarimetry in the context of SAR can be found in [184].
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1.2. A BRIEF HISTORY ON SYNTHETIC APERTURE RADAR

After the conception of SAR in the earlier 1950s, the establishment of imaging radar as an
essential remote sensing tool for Earth observation happened with the launch of the SEASAT-
satellite. SEASAT-SAR was the first space-borne platform particularly targeting remote sens-
ing of oceans and sea ice able to cover wide surface area operating with a single HH polariza-
tion. Additionally, applications to general terrain discrimination and target detection could
also be considered. SEASAT-SAR operations ended after 105 days due to a massive electric
system failure, however, it is regarded as the pioneering mission demonstrating the capabili-
ties  of  SAR and imaging  radar  technology.  It  led  to  many follow-on space-borne  SAR sys-
tems such  as  NASA’s  SIR-A (HH) in  1981 and  SIR-B (HH)  in  1984 on  space  shuttles,  the
European ERS-1, 2 (VV) in 1992 and 1995, the Japanese JERS-1 (HH) [148] in 1992, and the
Canadian RADARSAT-1 (HH) [163] in 1995. Furthermore, this led to advances of dual-
polarization and fully polarimetric imaging radar as extensions of such single polarization
SAR.

Advances of polarimetric radar imaging picked up in 1985 with the first practical fully po-
larimetric airborne SAR system (AIRSAR) developed by the NASA Jet Propulsion Laborato-
ry (JPL). For over 20 years, NASA/JPL flew AIRSAR able to operate in L-, C-, and P-Bands
simultaneously making it the primary source for polarimetric radar imaging data. The availa-
bility of such data from campaigns all over the world stimulated intensive research in polari-
metric radar imaging, its related polarimetric analysis techniques, and associated applications.

In the early 1990s, PolSAR research in Europe started to rise with the support of the Euro-
pean  Space  Agency  (ESA)  resulting  in  various  airborne  PolSAR  systems.  In  particular,  the
German Aerospace Research Center built and operated Experimental SAR (E-SAR) with
quad polarization in L- and P-Band providing higher spatial resolution than AIRSAR. E-SAR
was followed by F-SAR in November 2006 providing a full modular system with X-, C-, S-,
L- and P-Band with full polarimetric capabilities in all frequencies. Other systems were
EMISAR from Denmark with quad-pol capabilities C- and L-Band with resolutions of up to
three  meters;  RAMSES  from  France  provided  various  bands  (Ka-,  X-,  C-,  S-,  L-,  P-);  the
CONVAIR 580 SAR from the Canadian Center for Remote Sensing with X-, C-, P-Band ex-
perimental SAR systems as well as the Pi-SAR from Japan with X-Band and L-Band PolSAR
sensors.

Space-borne PolSAR systems effectively started with the successful launch of the SIR-
C/X-SAR onboard Space Shuttles in April and October 1994. Even though the two missions
were relatively short in time (10 days), SIR-C acquired digital SAR images of the earth with
fully PolSAR at C-Band and L-Band, and a single polarization X-Band SAR simultaneously.
The rst space-borne fully polarimetric imaging platform was the Advanced Land Observing
Satellite (ALOS-PALSAR, Japan) in January 2006 with L-Band PolSAR sensor onboard
combined with two optical instruments. Since then various satellites have been launched
providing full polarimetric imaging capabilities. In 2007, TerraSAR-X (Germany) and RA-
DARSAT-2 (Canada) were launched in June and December, respectively. TerraSAR-X was
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later extended with TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X)
making it the only one dedicated to InSAR digital elevation model (DEM) generation. This is
used as the basis to generate WorldDEM, the global digital elevation models. Within 2007-
2010,  the  COnstellation  of  small  Satellites  for  the  Mediterranean  basin  Observation  (COS-
MO-SkyMed, Italy) launched four identical medium-sized satellites equipped with X-Band
SAR capabilities providing the opportunity to observe an area of interest several times a day.
The majority of the later space-borne systems are “sole-SAR” systems with only SAR capa-
bilities reducing their weight significantly compared to platforms combining multiple sensor
types and providing higher spatial resolutions with different imaging modes than the previous
systems.

Additional missions are being planned to deploy further SAR platforms in the future such
as Sentinel-1A [10] as the first satellite of the Copernicus programme, ALOS-2 [174], and
AstroSAR-Lite [88], which is particularly focused on extremely short revisit times (10-15 per
day) and coverage with high image resolution for the regional use in the tropics and sub-
tropics.

1.3. OBJECTIVES

Due to the development and technical advances of radar technologies over time, airborne and
space-borne systems provide sufficient data for remote sensing the earth’s environment. Ap-
plications are manifold due to the all-weather and day/night capabilities of radar such as in the
fields of geology (e.g., topography, DEM production), agriculture (e.g., crop classi cation,
soil moisture), forestry (e.g., tree biomass, height, species, plantation and deforestation, forest

re monitoring), urban, (e.g., urban structure and density, change detection), disaster (e.g.,
monitoring of damage and recovery), and oceanography, (e.g., waves-, wind-, ship-detection,
oil spill, -slick monitoring) to name a few. An extended list of applications and detailed dis-
cussions can be found in [153].

A wide majority of applications is in the areas of monitoring, detecting, and classifying lo-
cal or global regions and targets. These analyzing and interpretation tasks are generally under-
taken with the help of automatic tools to support human experts. Such tools and techniques
have been introduced from various disciplines such as signal/image processing and computa-
tional- and machine intelligence particularly machine learning. With the growing amount of
available PolSAR data due to higher resolutions and shortened revisiting cycles, this obvious-
ly becomes a large-scale learning challenge where the applied tools and techniques should be
able to process such huge amount of data efficiently and effectively. By enabling this, the gain
to support human experts in analyzing and interpreting is critical.

This starts with efficient data processing techniques for information content extraction and
description exploiting raw SAR data by polarimetric target decompositions (as covered in
Section 2.2) and image processing techniques introducing various texture descriptions for
analysis (as described in Section 2.3). Any technique able to provide better description help-
ing in discrimination to ease the analysis and interpretation in automatic ways is useful partic-
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ularly when combined with machine learning methods for classification, detection, and moni-
toring.

Such machine learning methods are especially valuable if they are capable of processing
and learning from large amount of data. Additionally, it is highly beneficial if they are able to
adapt to the task, which might exhibit significant variations in time due to the introduction of
new data provided by the human expert. Furthermore, it is advantageous if tools are able to
utilize all available data in supervised and/or unsupervised manner especially if the ground
truth cannot be checked or verified by on-site visits, as it would be too cumbersome and ex-
pensive for large repositories containing imagery from inaccessible regions.

In this thesis, the focus is particularly drawn on the introduction and investigation of ad-
vanced techniques to improve PolSAR image classification performance especially on the ap-
plication of land use and land cover (LULC). This thesis significantly contributes on PolSAR
image classification regarding the following novel aspects:

Introduction and investigation of new descriptions for information content extraction
by employing image processing techniques for better discrimination,
Application of an adaptive and data-driven classification topology for large-scale
learning to adapt to new challenges and tasks in a simple way while keeping existing
knowledge and providing support for the human expert,
Utilization of all available data using semi-supervised learning combining approaches
of supervised and unsupervised learning paradigms.

1.4. THESIS OVERVIEW

The remainder of this thesis is organized as follows. First, a general overview about SAR data
management is presented in Chapter 2 considering the necessary steps up to the analytical and
interpretation stage of the remote sensing process. The chapter starts with a brief description
of the underlying data acquisition and SAR functionalities. Particular focus is then given to
the information content extraction and processing from the raw SAR data over the scattering
matrix utilizing the full polarimetric information. Moreover, the extraction of additional tex-
ture features over a SAR image in combination with traditional SAR features for an extended
analysis procedure is described in this chapter. At the end, various SAR image data as well as
a feature extraction description of the aforementioned SAR and texture features are presented.
They are mainly utilized within the experiments of the following chapters in this thesis.

Chapter 3 proposes some novel features to the application of land use and land cover ter-
rain classification. In particular, the integration of color features extracted over pseudo color
images is presented over fully and partially polarimetric SAR data in order to improve terrain
discrimination and classification accuracy. This covers the generation of various pseudo color
images as well as describing the underlying color features. The work presented in this chapter
is based on the author’s publications, [195], [196], [198], and [200].
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Besides the novel feature integration into SAR image classification, a data-driven and
adaptive classification approach is presented in Chapter 4, where the application of Collective
Network of Binary Classifier (CNBC) topology is considered over PolSAR data. The CNBC
design allows dynamic adaptation to changes of the classification task at hand such as integra-
tion of new ground truth or feature information. Furthermore, this topology provides the ca-
pabilities to adapt to the data-driven classification over a large collection of available PolSAR
images to reduce learning and training complexities. This chapter is mainly based on the au-
thor’s original publications [108], [197], [198], [199], and [201].

Chapter 5 presents the application of the semi-supervised learning (SSL) paradigm within
land use and land cover classification over PolSAR images. The focus is on addressing ill-
posed classification where large numbers of classes are to be discriminated and the number of
training samples per class is noticeably smaller in relation to the feature dimension. With the
rather limited amount of training data available, this is also referred to the small sample size
problem, as an underlying classifier will lack discrimination and generalization capabilities.
To address this, two SSL approaches are proposed by extension of the training data and en-
semble-based self-training. Furthermore, spatial techniques exploiting the pixel neighbor-
hoods and superpixel segmentation are presented to select reliable and informative samples
from the pool of unlabeled data improving speed and accuracy of the self-training process.
The work presented in this chapter is based on the author’s publications, [194] and [202].

Due to the variety of covered subjects, introduction and experimental results along with
conclusive remarks are presented in each chapter. Conclusions of the thesis are finally drawn
in Chapter 6.

1.5. AUTHOR’S CONTRIBUTIONS

The author’s contributions to the field of land use and land cover classification over polari-
metric SAR images are collected within the Chapters 3, 4, and 5. The main contributions can
be summarized in the following points:

Application of CNBC over polarimetric SAR data, in [108] and [198].
Data-driven classification of a single polarimetric SAR image via incremental evolu-
tion, in [199].
Adaptive classification of multiple polarimetric SAR images via incremental evolu-
tion, in [197] and [201].
Integration of color features into classification of fully polarimetric SAR images, in
[196], [198], and [200].
Classification of partially polarimetric SAR images by integrating visual features, in
[195].
Semi-supervised learning of ill-posed polarimetric SAR image classification via en-
semble-based self-training, in [194] and [202].
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The initial idea of CNBC originates from Serkan Kiranyaz and Turker Ince with the latter
introducing the field of PolSAR image classification [108]. The author is responsible for im-
plementation of the graphical user interface application and parts of the feature extraction, as
well as helping with conducting the experiments and contributing parts to the writing. In pub-
lications [197], [199], and [201], design and implementation of the proposed CNBC extension
and running the experiments was performed by the author. The publications were mainly writ-
ten by the author with the help of co-authors who also provided certain parts of the text during
the review processes.

The general idea of applying color features to PolSAR images in [198] comes from Serkan
Kiranyaz and the author, who are also responsible for major parts of the writing. The remain-
ing co-authors provided parts of the text. Furthermore, The author conducted the experiments
and produced the results. For publications [195], [196], and [200], the author is responsible
for design, implementation, and performing the experiments. Moreover, the writing was un-
dertaken mainly by the author while the co-authors provided parts of the text in the review
processes.

The works in [194] and [202] were designed, implemented, and evaluated by the author.
Writing the text was done by the author with the help of the co-authors.
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Chapter2
SAR Data Management

AR  data  are  obtained  by  means  of  a  SAR  sensor  generally  mounted  to  an  airborne  or
space-borne platform. Such platform is also used to carry the energy source emitting

electromagnetic microwaves to observe a target of interest. Once the energy makes its way to
the target, it will interact with the target, the energy is scattered back, and the sensor on the
SAR platform will collect electromagnetic radiation. Now this recorded energy may be trans-
mitted to a receiving station on the earth for further data processing. However, in recent years,
a lot more processing is already undertaken on board to form the final image representation.
This image is then available to extract information about the target of interest, which can be
used to solve a particular problem.

This chapter mainly covers the basic stages how a radar system works in generating radar
imagery and briefly detail the parts commonly needed to further process and analyze. Section
2.1 outlines the steps of the radar data acquisition to obtain the radar images with their under-
lying content representation. Section 2.2 then describes the process of extracting and generat-
ing physical and geometrical information from PolSAR images we consider relevant for this
thesis. Furthermore, well-known visual descriptors such as texture features have been em-
ployed for additional information during SAR data analysis and they are presented in Section
2.3. Previous interpretation approaches and analysis techniques are covered in Section 2.4.
Within Sections 2.5 and 2.6, the PolSAR image data, polarimetric SAR- and texture features
considered in the experiments and evaluations throughout the remaining chapters are intro-
duced.

2.1. SAR IMAGE ACQUISITION AND INFORMATION CONTENT

Generally, an airborne or space-borne SAR system operates within the electromagnetic spec-
trum in a side-looking geometry, where a transmitted wave is perpendicular to the system’s

ight direction and images are obtained of a ground surface due to its backscattered wave sig-
nals ([116], Chapter 1.2). Thus, when a radar system transmits a pulse of energy to the
ground, it scatters off the ground in all directions. A part of the scattered energy is directed
back toward the radar receiver, and this part is referred to as backscatter as illustrated in Fig-

S
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ure 5. Possible spatial and temporal fluctuation due to gains and losses from a SAR system are
commonly corrected by calibration, which involves internal instrument calibration as well as
external SAR calibration using targets of known reflectivity [67].

Figure 5 – Radar and backscatter (A) transmission, (B) scatter in various directions and parts
directed and received called backscatter (C).

The received echo wave signal form a two-dimensional complex data matrix, where each
complex sample represents amplitude and phase value with its real and imaginary part, re-
spectively. Those raw data are formed into SAR images via signal processing techniques,
which can simply be understood as two separate matched filter operations along the range and
azimuth dimensions [142], ([165], Appendix D: Image Formation with Synthetic Aperture
Radar). Now a synthesized radar image contains two basic information: (1) amplitude, which
measures the magnitude of the radiation, or backscatter, received from the target; and (2)
phase, which indicates how the dielectric or geometric properties of the target can modify the
vibration state of the wave, thus causing a phase shift, ([136], Chapter 4.1.3; [152], Chapter
2.2.4). This surface re ectivity is a function of the radar system parameters, such as frequen-
cy, polarization, incidence angle of the emitted electromagnetic waves, and of the surface pa-
rameters, such as topography, local incidence angle, roughness, dielectric properties of the
medium, and moisture ([116], Chapter 1.2.5).

However, the main drawback of SAR, as an active coherent imaging system, is the pres-
ence of speckle, a signal dependent granular noise that visually degrades the appearance of
SAR images. Speckle is caused due to the presence of many elemental scatterers with a ran-
dom distribution within a pixel, as it may represent various square meters on the ground. Yet
the effect of speckle tends to weaken for very high-resolution systems, since the number of
elemental scatterers within a pixel decreases [142]. The coherent sum of the many scatterers’
amplitudes and phases results in strong fluctuations of the backscattering from pixel to pixel.
To mitigate speckle a technique known as multi-look is commonly utilized, which is basically
a non-coherent averaging of the SAR image ([152], Chapter 6.4). The number of looks, which
is the number of independent samples included in the averaging, affects the evaluation of scat-
tering mechanisms and characterizes radiometric resolution ([136], Chapter 3.13.3; [152],
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Chapter 2.3). Although multi-looking causes a degradation in the image resolution, it greatly
improves the interpretability of the SAR image. Speckle may severely diminish the perfor-
mances of automated scene analysis and information extraction techniques. Therefore, des-
peckling or speckle reduction is generally applied, however, should be carefully designed to
avoid spoiling useful information such as local mean of backscatter, point targets, linear fea-
tures, and textures [6]. Commonly, there is a trade-off between either an efficient speckle re-
duction or the preservation of image structures and texture [149].

Figure 6 – Illustration of scattering mechanism over various different terrain types and their
respective radar image appearances.

When reflected from the surface, the backscattered wave will feature different scattering
mechanics due to diversity in surface characteristics. The main differentiation comes from the
fact how the initiated waves interact with the underlying target surface and how much of the
initially transmitted wave energy is reflected back ([165], Chapter 5). The more of the initial
wave energy is reflected back to the receiver, the brighter it will appear in the generated radar
image. In case of a flat and even surface (roads, water), the incident angle of the wave equals
the angle of reflection so that the entire wave is directly reflected with a single bounce. Usual-
ly this is represented by a dark-tone in the radar image as no scatter is directed back to the ra-
dar sensor ([165], Chapters 5.3.1 and 5.7). When the wave hits a rough surface (e.g., grass,
small crops), it is refracted due to the uneven surface and only a part of the initial wave is re-
flected back. This results in a mid-tone image representation ([165], Chapter 5.3.2). On man-
made structures particularly buildings, the wave can be reflected more than once (double
bounce) due to multiple flat and horizontal surfaces. Hence, most of the initial wave energy is
scattered back, thus this generally is represented in bright-tones in the radar image ([136],
Chapter 5.4.2). Obviously, the wave can further be reflected off multiple times (forest, urban-
and city areas) either by trees and their branches or multiple buildings resulting in so-called
volume scattering ([165], Chapter 5.4). Examples of the general scatter mechanics are illus-
trated in Figure 6.
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Due to the complex nature of the surface under observation, the radar backscatter can be
seen as a mixture of scattering mechanics ([165], Chapter 5.6), where their relative contribu-
tions are subject to the underlying surface roughness and the dielectric properties of the target.
All these factors depend on radar wavelength, polarization, and incidence angle of the SAR
transmitter ([165], Chapter 8.3). Particular low incidence angles maintain the coherence of the
transmitted wave better than high incidence angles, which produce a more diffuse and less
polarized signal ([136], Chapter 5.11). This and variations, due to topography or range posi-
tion, can have influence on classification results ([116], Chapter 9.3).

The radar wavelength depends on the system and the used electromagnetic microwave fre-
quency in the P-Band (0.3 GHz) up to Ka-Band (40 GHz) range. A lower frequency will result
in a longer wavelength, which is capable of penetrating the target deeper. Due to interacting
differently with the target, it generates random mixtures of scattering mechanics, which will
result in different characteristics of a target for different microwave bands [38]. For example,
in case of canopy (see Figure 7), the wavelength, and hence, penetration properties, will result
in different possible interactions with the canopy such as surface scattering from the top, vol-
ume scattering from the inside as well as a combination of surface- and volume scattering
from the ground. The radar backscatter at high frequencies such as K- to X-Bands is dominat-
ed by surface scattering from the top, whereas lower frequencies such as L-Band and P-Bands
have relatively long penetration depth into vegetation and soil, enabling to extract information
on the interior of the targets ([136], Chapter 1.3). Hence, different bands are considered for
different applications. Figure 8 illustrates penetrations properties of different frequencies for a
variety of surfaces.

A visual example of such penetration effects is shown for X- and L-Bands in Figure 9 over
the Kojima district in Okayama, Japan. The area is mainly covered by fields with rice plants,
which were almost fully-grown with a height approximately 60–90 cm at the time of the data

Figure 7 – Example of scattering
types within tree canopy.

Figure 8 – Effects of different wavelength
regarding penetration of various targets and
surfaces.
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acquisition on 13 July 1999. Both L-Band and X-Band Pi-SAR images are decomposed into
surface-, double-, and volume scattering. The L-Band image shows strong volume scattering
for trees and bushes as the green dots as well as for the plants inside the Green houses. Double
scattering is dominant for houses alongside roads and water channels with their respective
banks. Lotus fields are a mixture of double- and volume scattering due to their respective
height  of  around  two  meters.  Rice  fields  are  characterized  by  surface  scattering  due  to  the
smaller and thinner plant size, thus, the longer wavelength penetrate them and being reflected
from the ground. In the X-Band image, the dominant backscatter is volume scattering particu-
larly  for  the  rice  and  Lotus  fields;  and  there  are  small  amounts  of  double-bounce  scattering
from roads and houses compared to the L-Band.

Figure 9 – Illustration of dominant backscattering for PiSAR L- and X-Band images. Reused
with permission from Kazuo Ouchi [153].

In addition to the amplitude measuring the strength of the radar backscatter, polarimetric
SAR (PolSAR) utilizes the polarimetry concept by measuring and interpreting the polarization
of the transmitted and received electromagnetic waves [184]. The incident wave is transmitted
with a particular polarization towards the target of interest. The wave is refracted by the tar-
get, which hereby transforms the incident wave into a scattered wave. Due to that interaction
with the target, the scattered wave changes its polarization state and degree of the incident
wave ([116], Chapter 3.1). The difference of the incident and backscattered waves contains
the interesting information about the scattering properties and, eventually, the biophysical
properties of the target itself. The transform of the incident wave into the scattered wave is
described by the complex scattering matrix [S]:

HH HVH H H

VH VVV V V

=
r t t

r t t

S SE E E
S

S SE E E
, (1)

where  and  are the transmitted,  and  are the received electric elds of correspond-
ing polarizations. [S] is independent on the polarization of the incident wave and depends only
on the physical and geometrical properties of the scatterer ([116], Chapter 3.1). The basic
scattering process is illustrated in Figure 10.
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This is by no means an exhaustive description rather than a brief overview about the under-
lying radar/SAR concepts regarding acquisition, backscattering, system properties, target
characterization, and relations among them. More comprehensive summaries and details
about microwaves, radar, SAR, and their interactions with surfaces can be found in [116],
[165], [136], [38], [152], [203] covering in depth the math and physics behind them.

Figure 10 – Illustration of the incident wave interacting with a target resulting in the scattered
wave.

2.2. POLSAR INFORMATION EXTRACTION

When acquiring data from radar systems, the effects of speckle noise and multiple scattering
from the target surface require a multivariate statistical description. Therefore, finding a way
of describing average or dominant scattering is beneficial for information extraction and tasks
such as classification.

Information extraction process for PolSAR data can generally be divided into two feature
categories.  The  first  group  belongs  to  features  extracted  directly  from the  polarimetric  SAR
data (scattering coefficients) and its unique representation as the scattering matrix [S], from
which the covariance matrix and the coherency matrix can be derived. The second group is
based on the polarimetric target decomposition theorems, which try to describe the obtained
average scattering as the sum of independent components, generally based on the covariance
or coherency matrix, and can then be used as one source for information extraction. Particu-
larly, SAR polarimetry is essential for extracting geo/bio-physical parameters for land-, snow
and ice-, ocean-, and urban applications [142].

2.2.1. Scattering Matrix

From equation (1), the scattering matrix [S] carries information generated by the interaction
with the target. With linear horizontal (H) and vertical (H) polarizations for transmitting and
receiving, [S] can be expressed as
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HH HV
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, (2)

where reciprocity theorem applies in a monostatic system configuration (i.e., using a single
antenna for both transmission and reception such as in airborne systems) yields SHV = SVH.
The diagonal elements of [S] are called copolar terms, since they relate to the same polariza-
tion for the incident and the scattered elds. The off-diagonal elements are known as cross-
polar terms,  as  they  relate  to  orthogonal  polarization  states  ([116],  Chapter  1.2.5).  The  ele-
ments of [S] consists of amplitude, |Smn|, and phase, mn, of the backscatter described as Smn =
|Smn| · exp(i mn): m,n=H,V. As the phase term is not of absolute value, it is commonly refer-
enced against the HH polarization phase. This results in the amplitudes |SHH|, |SHV|, |SVV|, and
the phases, HV and VV as the main five parameters of [S] to extract information about the
scattering targets ([136], Chapter 5.3).

Based on [S], the second order polarimetric representations of PolSAR data can be derived
in form of the polarimetric covariance matrix [ ]  or coherency matrix [ ] , where angular
brackets are the symbol used for time averaging. The resulting second order polarimetric de-
scriptors of the covariance and coherency matrices are able to better characterize distributed
scatterers and are employed to extract physical information from the observed scattering pro-
cess. Due to presence of speckle noise and random vector scattering from surface or volume,
PolSAR data are often multi-look processed by averaging n neighboring pixels. By using the
Pauli based scattering vector, , and Lexicographic scattering vector, , the multi-look coher-
ency matrix [ ]  and covariance matrix [ ]  can be written as

*

*

,

.

T

T

T k k

C
(3)

Both [ ]  and [ ]  are  3×3  Hermitian  positive  semi  definite  matrices,  and  contain  the
same information about the polarimetric scattering amplitudes, phase angles and correlations.
Anyhow, [ ]  is considered to be closer to the physical and geometrical scattering properties,
whereas [ ]  is directly related to the system measurables ([116], Chapters 3.3 and 6.1).

2.2.2. Polarimetric Target Decompositions

When investigating targets of interest, a multivariate statistical description is necessary to
compensate  for  the  effects  of  mixing  surface  and  volume scatterings.  Therefore,  finding  the
average (or dominant) scatterings is highly advantages for classification. Target decomposi-
tions try to find such average scattering as the sum of individual components, which provide a
better physical interpretation. Over the years, various polarimetric target decompositions
(TDs) have been developed [39] and there is still extensive research in developing new [5],
[7] and improved target decompositions [169] for more accurate information extraction and
terrain discrimination.
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Two theories of target decomposition (TD) can be distinguished: coherent and incoherent
target decomposition. Coherent target decomposition (CTD) theory completely characterizes
the polarized scattered waves for which the scattering matrix holds the fully polarimetric in-
formation. However, generally, the scattered wave is partially polarized and extracting geo-
physical parameters from a natural target surface with incoherent scatterers is usually of more
interest. Hence, the development of the incoherent target decomposition (ICTD) theory was
developed to represent a target-averaged matrix into a sum of single scattering matrices,
which  provides  a  better  interpretation  of  the  underlying  scattering  and  simpler  ways  of  ex-
tracting the geophysical parameters from the measured radar data [15], [58].

2.2.2.1 Coherent Target Decompositions
The CTD theorems aim to express the scattering matrix [S] measured by the radar as the com-
bination of scattering responses of coherent scatterers. So far, [S]  combines  the  entire
backscattering information and CTD algorithms treat this backscattering information based on
the mixture of the general scattering mechanisms:

1

k

i i
i

S S , (4)

where each scattering mechanism [S]i is weighted by a complex coefficient i. The main goal
is to decompose the entire backscattering information into standard target contributions
(planes, dihedral, and helices) and extract components with particular algebraic properties
such as reciprocity and symmetry.

One way to analyze coherent scatter targets is the Pauli decomposition [39], which ex-
presses [S] as the sum of the Pauli matrices,
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S S
where
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S S S

(5)

with =(SHH+SVV)/ 2, =(SHH-SVV)/ 2, = 2 SHV. Hence, by means of the Pauli decomposi-
tion, all polarimetric information in [S] can be represented by combining the intensities | |2,
| |2, and | |2, which determine the power of different types of scatterers such as single- or odd-
bounce scattering, double- or even-bounce scattering, and orthogonal polarization by volume
scattering.

The Krogager decomposition [113] exploits the fact that it is possible to uniquely decom-
pose any complex symmetric radar target scattering matrix into the physical interpretation of
three components, in this particular case a sphere, an oriented diplane, and a right or left
wound helix. In the linear orthogonal basis (H,V) for the scattering matrix, the Krogager de-
composition has the formulation as follows:

H,V
j j s

s d hs d h
S e e k S k S k S , (6)
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where ks, kd, and kh correspond to the weights of the sphere, the diplane, and the helix compo-
nents, respectively. Its main goal is to resolve different scattering characteristics independent
from the incidence angle.

2.2.2.2 Incoherent Target Decompositions
Alternatively, the ICTDs employ the second order polarimetric representations of PolSAR
data (such as covariance matrix [ ]  or coherency matrix [ ] ) to characterize distributed
scatterers taking into account the polarization state of the backscattered wave. ICTD algo-
rithms often employ algebraic approaches based on the eigenvalue and eigenvector analysis of
[ ]  or [ ]  decomposing [S] into the general scattering mechanisms single-, double-, and

volume scattering.
The phenomenological Huynen decomposition [94] represents the first attempt to use de-

composition theorems for the analysis of distributed scatterers. In its parametrization
for [ ] , it consists of nine independent parameters allowing a physical interpretation of the
target under consideration. The three elements A0, B0+B, and B0-B represent surface, double-
bounce, and volume scattering in the case of distributed targets and otherwise relate to the to-
tal scattered power from the regular (smooth, convex) parts of the scatterer, the total symmet-
ric and non-symmetric depolarized power, respectively, for pure targets.

Based on [ ] , the Cloude-Pottier decomposition [39] applies eigenanalysis such as
* * *

1 1 1 2 2 2 3 3 3[ ] T T TT e e e e e e , (7)

where  >  >  0 are real eigenvalues and the corresponding orthonormal eigenvectors
ei representing three scattering mechanisms are:

cos , sin cos ,sin sini i i
Ti i i

i i i i i ie e e e . (8)

Furthermore, Cloude and Pottier defined entropy H, a set of four angle averages, , , ,
and , and anisotropy A for the analysis of the physical information related to the scattering
characteristics of a medium as
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with n = 3 for monostatic backscatter problems ([116], Chapter 7). For a multi-look coherency
matrix, the entropy, 0 H  1 represents the randomness of a scattering medium between iso-
tropic scattering (H = 0) and fully random scattering (H = 1), while the average angle  can
be related to the target average scattering mechanisms from a single-bounce (or surface) scat-
tering  (  0),  dipole  (or  volume)  scattering  ( /4), and double-bounce scattering (

/2). Due to the basis invariance of the target decomposition, H and  are roll invariant, hence
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they do not depend on the orientation of the target in the radar line of sight. Moreover, the pa-
rameters , , , and  are practically insensitive to parameters such as surface roughness, the
moisture of vegetation cover or certain calibration artifacts ([152], Chapter 5.10.3.3). The
quality of their estimation is correlated with the local value of entropy. Additionally, infor-
mation about a target’s total backscattered power can be determined by the so-called Span
defined as

3

1
i

i
Span . (12)

Entropy H, estimate of the average angle , and the Span calculated by the above incoher-
ent target decomposition method have been commonly used as polarimetric features of a scat-
terer in many target classification schemes [4], [31], [57], [64], [110], [128], [162], [175],
[180], [225], and [232].

The Touzi decomposition [185] similar to the Cloude-Pottier’s decomposition, is also,
based on the incoherent characteristic decomposition of [ ] . For a reciprocal target, it per-
mits the representation of  [ ]  as the incoherent sum of up to three coherency matrices [T]i

representing three di erent single scatterers, each weighted by its appropriate positive real
eigenvalue i. Compared to the Cloude-Pottier decomposition, Touzi’s decomposition differ-
entiates in using a roll invariant coherent scattering model for the parametrization of the co-
herency eigenvectors in terms of their unique target characteristics. For non-interferometric
applications, the absolute target phase s can be ignored, and the coherent scatterer is unique-
ly characterized with five independent parameters, namely, s , s , , m , and m with s and

s being the polar coordinates of the symmetric scattering type; , m, and m are Huynen’s
orientation angle, helicity, and maximum amplitude parameters.

Van Zyl first considered eigenvector / eigenvalue analysis of [ ]  to describe symmetrical
natural terrain in the monostatic case [207] as

3
*
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where  and  are eigenvalues and eigenvectors, respectively. This expression represents a
three components scattering model where the rst two eigenvectors represent equivalent scat-
tering matrices that can be interpreted with single and double bounce scatterings, and the third
one corresponds to volume scattering. Furthermore, based on this eigenvalue analysis, Kim
and van Zyl introduced an estimation of (forest) biomass from PolSAR data, the so-called Ra-
dar Vegetation Index (RVI) [105] (also generally characterized by Arii, van Zyl, and Kim [8])
defined as

1 2 3

1 2 3

4 min , , 8
2

hv

hh vv hv

RVI , (14)

where the sigmas are the cross- and co-polarization radar scattering cross sections. The repre-
sentation by the eigenvalues is the general characterization of the RVI whereas in the brackets
is the alternative but more restrictive de nition [105] which is only valid for a medium with
re ection symmetry and can be expressed as RVI = 4 ·2 [8].
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Van Zyl’s decomposition of [ ]  is  also  considered  to  be  the  starting  point  for  the  so-
called model-based decompositions such as Freeman [66] and Yamaguchi [216] decomposi-
tions. The Freeman decomposition describes the covariance matrix, [ ] , as a combination of
three simple scattering mechanisms, namely, volume scatter from a cloud of randomly orient-
ed dipoles, even-bounce (double-bounce) scatter from a pair of orthogonal surfaces with dif-
ferent dielectric constants and Bragg (single-bounce) scatter from a moderately rough surface.

Freeman’s decomposition follows the same expression for  [ ]  as van Zyl, see equation
(13). The scattering powers for single-bounce, Ps, double-bounce, Pd, and volume scattering,
Pv, are estimated as

2 2 81 , 1  and
3

v
s s d d v

fP f P f P , (15)

where fs, fd, and fv correspond to the contribution of single-bounce, double-bounce, and vol-
ume scattering of [ ] ,  and  correspond to surface and double bounce scatter, respective-
ly. This composite scattering model is generally used to discriminate the polarimetric
backscatter of different natural surface cover types from naturally occurring scatterers’ partic-
ularly forest-like vegetation.

Yamaguchi et al. [216] introduced a four-component scattering model based on [ ]  (sin-
gle and double-bounce, volume and helix scattering power contributions) which extends the
three-component decomposition method introduced by Freeman. The helix scattering term is
added to address the co-pol and the cross-pol correlations, which generally appear in compli-
cated geometric scattering structures and is non-existing for natural distributed scatterer.
Hence, this term is mainly relevant for describing man-made targets in urban areas. The scat-
tering powers for Ps and Pd are equivalent to Freemans’ , i.e., see equation (15), whereas Pc is
defined and Pv is modified accordingly,
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with Im( ) being the imaginary part of a complex matrix. However, there is a drawback, as for
all model-based decompositions, in overestimating the volume scattering caused by a large
cross-polarization component. To overcome this, a rotation method of the coherency matrix
has been proposed by Yamaguchi et al. [217]. Anyhow, the discrimination of vegetation and
oriented buildings within the same volume scattering is a still existing problem, which has
been addressed to a certain degree by the extended volume scattering model [169]. The cov-
ered target decompositions are considered more relevant in this thesis and more details re-
garding them and other target decompositions can be found in [39] and [116].

2.3. TEXTURE FEATURES

The traditional PolSAR features such as the scattering coefficients and TD components are
based on the physical, geometrical, and scattering properties of targets. Generally, such Pol-
SAR features provide a description purely on a pixel-based level, which can limit discrimina-
tion for similar class types due to variations in their terrain surfaces (e.g., different forest
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types or man-made areas). More than three decades ago, Shanmugan et al. [173] evaluated
Gray-Level Co-occurrence Matrix (GLCM) features [83] for radar images and Ulaby et al.
[204] added first, second order statistics over SAR intensity images to evaluate and classify
SEASAT-SAR and SIR-A data. By employing texture features, the underlying spatial varia-
bility of a particular terrain class can be better exploited. These earlier analysis of texture as a
feature in SAR image classification concluded that “texture may, in fact, be more useful than
image tone in interpreting radar images“ [204]. Even though this was related to simple image
intensities, the general assumption is still valid, particularly for single-pol and dual-pol SAR
imagery. Therefore, exploiting pixel relations in close vicinity using texture features (e.g.,
GLCM) is highly valuable and contributes a major discrimination capability [173]. Over time,
the incorporation of textural information as an image processing method has become the most
popular feature in SAR image classification. The following sections detail texture features
considered in the experiments of the remaining chapters.

A B

C D

Figure 11 – Example of generating one gray-level co-occurrence matrix over image region in
(A) with common directional and angular pixel relationships ( , ) shown in (B). (C) shows
(A) scaled to eight levels resulting in the GLCM with (1, 0) in (D).
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2.3.1. Gray-Level Co-occurrence Matrix

An earlier statistical approach was the gray-level co-occurrence matrix (GLCM) by Haralick
[83], where the texture descriptor is gained from second order statistic. The GLCM computed
within a region of interest provides information about directional and angular pixel relation-
ships ( , ) by defining how often two gray level values gi and gj are separated via a certain
displacement d=(dx, dy). Figure 11B illustrates such common displacements and the applica-
tion of multiple displacements enables the opportunity to capture different existing texture
properties. Note, that the gray level values are scaled for lower computational complexity. A
GLCM entry corresponds to the number of occurrences of a pair of scaled gray levels separat-
ed by a displacement d=(dx, dy). Thus, an GLCM entry, M(i, j), is given as M(i, j) = |{ (r, s),
(t, v) : I(r, s) = i, I(t, v)=j }| where (r, s), (t, v)  N×N, (t, v)=(r+dx, s+dy), and |·| is the cardi-
nality of a set.

Based on the GLCM, features can be computed such as energy, entropy, contrast, and ho-
mogeneity, all of which describe the underlying texture properties. The feature vector size,
therefore,  depends  on  the  range  of  distance  vectors  and  the  amount  of  properties  calculated
from the co-occurrence matrix. The texture description power of GLCM depends on the com-
bination of selected distance vectors where too few will provide a rather poor description and
too many will increase the computational costs during feature extraction. Figure 11 shows an
example generating one gray-level co-occurrence matrix over gray levels in an image region
with common directional and angular pixel relationships (1, 0).

2.3.2. Ordinal Co-occurrence Matrix

The Ordinal Co-occurrence Matrix (OCM) [155] approach is a combination of the traditional
GLCM and ordinal descriptors (ordinal methods for texture description). However, one dif-
ference  of  OCM  compared  to  GLCM  is  the  application  of  ordinal  relationship  between  the
pixels rather than just gray level values. Another alternation is that instead of using just one
seed pixel to calculate the displacements, multiple seed pixels are able to capture more details
within a given image region, as depictured in the left side of Figure 12. This will obviously
come with an increase of computational complexity. The constructed features represent the
occurrence frequency of certain ordinal relationships such as greater, equal, smaller at differ-
ent distances d and orientations o over all the used seed points within a particular image re-
gion with an example illustrated in Figure 12 (right hand side). Hence, the theoretical feature
dimension yields to d × o × 3 as related to the number of distances d and orientations o used
to describe the three ordinal relationships. The comparison between two different OCMs can
then be done directly by summing the differences of the corresponding distance and orienta-
tion  relationship  matrices.  Even  though,  OCM  has  not  been  applied  as  much  as  GLCM  to
SAR images, it is anticipated that OCM will perform on a similar level or even better. It has
been shown that OCM outperforms GLCM in texture classification [155] particularly for
coarse textures and irregular pattern as found in man-made areas whereas they both achieve
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similar results for fine textures and highly repetitive structured pattern as in water, forest, or
other vegetation.

Figure 12 – Ordinal Co-occurrence Matrix with different seed setup to calculate displace-
ments  of  four  orientations  from  squared  seed  pixel  (left)  and  example  of  accumulation  and
updating the relationship matrix OCM10 when the seed pixels is greater than the displacement
pixel for distance d and orientation o (right).

2.3.3. Gabor Wavelets

The popular and powerful signal processing texture descriptor called Gabor filter [135] pre-
sents a multi-resolution approach and has been previously applied to SAR image classifica-
tion [101], [220], and [226]. The main idea is to process an image region by a bank of filters
at different scales and orientations (i.e., multi-channel as see in Figure 13) where filtering can
be applied in either spatial or frequency domain. An image region I(x,y) that is filtered with a
Gabor filter gmn results in its Gabor wavelet transform Wmn, which captures different frequen-
cy and orientation information about an underlying texture [135]. Wmn can be formulated as

*
1 1 1 1 1 1, , ,mn mnW x y I x y g x x y y dx dy . (17)

For each scale and orientation, the magnitude response |Wmn| is calculated as an output
from which the first and second order moments are computed as the texture features. Thus,
the feature vector is rather small and is formed per scale and orientation.

Figure 13 – Contours indicate the half-peak magnitude of the filter responses for six orienta-
tions and four scales as used for Gabor Wavelets.
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2.3.4. Multiple Local Pattern Histogram

Compared to the previous texture features, the Multilevel Local Pattern Histogram (MLPH)
[46] was developed especially to exploit the elementary properties of SAR image texture.
MLPH describes the size distributions of bright, dark, and homogenous patterns appearing in
a moving window at various intensities capturing local and global structural information. The
local information is captured within a pixel neighborhood window, applying a threshold to
determine pixels with larger, smaller, or equal intensities based on the center pixel value and
its  range  of T. This results in three binary matrices considering white as the foreground.
These matrices are processed individually resulting in sub-histograms counting the number of
foreground objects regarding their different sizes. All three sub-histogram are then concate-
nated to obtain the local pattern histogram (LPH). The original LPH dimension is related to
the dimension of a single sub-histogram, w2,  which  depends  on  the  chosen  window size w.
Thus, a histogram-combining strategy into K bins is applied to obtain a more compact repre-
sentation. Dai et al. [46] claim it is best to require that higher order bins represent a wider
range than lower-order bins as higher-order bins correspond to rarer larger pattern more diffi-
cult to discriminate by humans. Therefore, they proposed a growth rate B for the K bins. The
process of generating LPH is illustrated in Figure 14. Global information is captured by calcu-
lating the LPH multiple times for M different threshold ranges T of the local window. The fi-
nal dimension of the MLPH is M × 3 × K bins. Their evaluation of a four-class problem over
single-pol TerraSAR-X data showed that it can provide high discrimination for urban and for-
est terrain.

Figure 14 – Example of computing a Local Pattern Histogram over 7×7 pixel neighborhood
window, threshold T=3, and K=5 and B=3 for the compact histogram representation.

2.3.5. Local Binary Pattern and Edge Histogram

Another rather popular texture descriptor in computer vision and texture/image classification
is Local Binary Pattern (LBP) [150]. LBP is a rotation invariant texture feature extracted over
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an n-by-n pixel neighborhood. It works directly on pixels and their neighborhood as shown in
Figure 15(a). The neighboring pixels are then compared to the current center pixel as a
threshold obtaining a texture pattern, as shown in Figure 15 (b) and binomial factors (e.g., see
Figure 15 (c)) are multiplied by the neighboring positions greater than or equal to the center
pixel as in Figure 15 (d). Finally, the sum of the binomial factors yields the LBP value being
assigned to the center pixel. This procedure is applied to every pixel in the image resulting in
a raw 256-bin histogram, which can further be quantized to obtain a more compact representa-
tion. To acquire a rotation invariant representation, LBP values can be combined as they rep-
resent the same uniform texture pattern but in a rotated fashion. This can be achieved by cir-
cularly shifting the original texture pattern until its minimum decimal value is attained, illus-
trated in the bottom of Figure 15. This results in 36 unique rotation invariant local binary pat-
terns for a 3×3 neighborhood per pixel. One of the advantages of LBP is its simple design that
still provides a powerful descriptor for texture classification.

Similarly, to LBP, the Edge Histogram Descriptor (EHD) [134] is mainly applied to con-
tent description in image retrieval and classification tasks. As the name suggests, EHD is an
edge-based texture feature defined within the family of MPEG-7 descriptors [154]. EHD rep-
resents the spatial distribution of five types of edges, four directional edges and one non-
directional edge. In its original form, a given image is first divided into sub-images, and local
edge histograms for each of these sub-images are computed. Edges are roughly grouped into
five categories: vertical, horizontal, 45° diagonal, 135° diagonal, and isotropic (random) ap-
plying simple edge detectors over 2-by-2 image pixel blocks within each sub-image. Those
image blocks whose edge strengths exceed a certain minimum threshold are used in compu-
ting the histogram. Thus, each local histogram has five bins corresponding to the aforemen-
tioned five categories. The local histograms from the sub-images are combined to generate the
five-bin edge histogram representation of the entire image. The procedure for extracting the
EHD is illustrated in Figure 16.

Figure 15 – Computation of rotation invariant Local Binary Pattern (LBP) value over 3×3
neighborhood.
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Figure 16 – Accumulation of the Edge Histogram.

2.4. ANALYSIS, INTERPRETATION, AND ASSESSMENT

Over the past years, the most straightforward approach has been to apply the polarimetric
SAR (PolSAR) data (scattering coefficients) directly or the generated covariance / coherency
matrix as the underlying features in the PolSAR image classification process. In early ap-
proaches  the  basic  scattering  coefficient  information  of  polarimetric  data  such  as  HH,  HV,
VV over single-band data or various combinations over multi-band data have been used [2],
[30], [49], [82], [86], [115], [119], [128], [177], [190], and [192]. Due to the nature of polari-
metric data, the covariance matrix provides the complete polarimetric information in ampli-
tude and phase variance as well as correlation for all scattering elements and has been utilized
as direct feature itself [2], [29], [81], [119], [178].

Obviously, fully polarimetric (quad-pol) data provide more information regarding the tar-
get ground characteristics compared to partially polarimetric data such as dual- and single-pol,
which will result in better discrimination in terms of classifying the target under observation.
This has been investigated and proven in several studies over AIRSAR data [86], [119],
ALOS PALSAR data [128], [190], and EMISAR AgriSAR data [177]. Moreover, quad-pol
data enable the application of polarimetric target decompositions see Section 2.2.2 and [39] to
describe the average backscattering obtained by the sum of independent components, which
provide a better interpretation of the underlying scattering from the measured radar data. Var-
ious single TDs have been employed for LULC classification either alone [57], [85], [139], or
in combination with the basic scattering coefficients [72], [128], [218]. With more and more
TDs available, the investigation of multiple TDs for classification became popular in recent
years with and without combination of basic scattering coefficients [31], [45], [56], [128],
[162], [175], [180], and [232]. It can be concluded that quad-pol data are preferable when it
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comes to SAR image classification; however, it might not always be available or practical in a
SAR system to have quad-pol capabilities.

With the introduction of texture features by [173] for radar images and [204] over SAR in-
tensity images, various evaluation and classification approaches over SAR images using tex-
tural information were reported with GLCM being the dominant method [51], [64], [101],
[156], [162], [170], [186], [218], [220], and [225]. Additionally, investigations also included
Fractal features [48], [170], Wavelets and Semivariogram [48] as well as Gabor Wavelets
[101], [220] and Histogram of Gradients [220]. Dai et al. [46] proposed the Multilevel Local
Pattern  Histogram (MLPH) as  a  novel  descriptor  of  SAR images,  which  captures  local  and
global structural information while being robust to speckle noise. Furthermore, Local Primi-
tive Pattern (LPP) has been introduced for SAR image classification [11] where local primi-
tives (LPs; local homogeneous connected components) are formed using an adaptive neigh-
borhood rather than the traditional xed size window approach. The new feature considers the
LPs and their relationships with their neighboring primitives. Both features, MLPH and LPP,
demonstrated their performances by outperforming GLCM and Gabor Wavelets in their ex-
periments.

Texture has proven as a valuable resource for SAR image classification and many evalua-
tions have shown that texture features and their combination with PolSAR features helped to
achieve improved LULC classification. Particularly in the case of dual-pol ([50], [56], [114],
[124], [126],) and single-pol ([13], [54], [103], [176], [211], [213]) data, the addition of tex-
ture has been extensively applied as their PolSAR features are not as discriminative as quad-
pol data; and, therefore, extra features are needed to provide better discrimination for an en-
hanced interpretation and analysis. Even though texture is the most used additional visual fea-
ture, there is ongoing investigation in the direction of polarimetric time-frequency signatures
of scatterers for the classification of man-made targets [61] as well as applying bag-of-
features and pyramid-representation over single channel TerraSAR-X data [221].

The evaluation and assessment of the achieved classification performances and accuracies
are measured by quantitative criteria [40]. One common criterion for such an assessment in
remote sensing is the error matrix (or confusion matrix) [41], [179], which can then be used to
compute various accuracy statistics. The diagonal elements of the error matrix represent cor-
rect classification for individual terrain classes, whereas the off-diagonal elements represent
their respective classification errors. Generally, the user and producer accuracy are two wide-
ly used measures of class accuracies obtained from the error matrix. The producer’s accuracy
relates to the probability, where a certain terrain area is classified as that particular terrain
class.  On the  other  hand,  the  user’s  accuracy  denotes  the  probability  that  a  sample  pixel  la-
beled as a certain terrain class does really belong to the ground truth of this terrain class. The
user accuracy is commonly used as classification agreement or accuracy, which represent the
probability of a reference pixel from the provided ground truth being correctly classified. Be-
sides that, the kappa coefficient [166] has been used as a measurement to determine the
agreement between observed and predicted values and whether this agreement is by chance.
Hence, it provides a score how much consent there is between user and producer measures in
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the error matrix [40]. The kappa statistics have been widely applied yet there is the argument
and discussion that kappa can be misleading and the error matrix should instead be summa-
rized with two simpler parameters: quantity disagreement and allocation disagreement [160].
Over the years, there have been various discussions and recommendations regarding results
and accuracy assessments using remote sensing data [65], [40].

2.5. SAR IMAGE DATA

There are different PolSAR systems supporting various polarimetric modes. This section pro-
vides information about the SAR image data used in the experiments and evaluations
throughout the remaining chapters. Selected PolSAR images are taken from one airborne sys-
tem (NASA/Jet Propulsion Laboratory AIRSAR) [129] and three space-borne systems (Cana-
dian Space Agency RADARSAT-2 [141], TerraSAR-X [112], and COSMO-SkyMed [183]).
The  AIRSAR  system  supports  (full)  polarimetric  modes  for  C-,  L-,  and  P-Band  where  we
primarily focus on the L-Band; RADARSAT-2 works in C-Band also supporting the full po-
larimetric mode. The TerraSAR system mainly provides dual- and single-pol image data op-
erating in the X-Band yet it can also be configured to provide fully polarimetric data, which is
in an experimental stage. As for the COSMO-SkyMed system, its primary configuration pro-
vides partially polarimetric data using X-Band in form of dual-and single-pol data. All Pol-
SAR images to be used within this thesis are briefly introduced with time, location, resolution,
and their respective available ground truth data.

2.5.1. Flevoland, AIRSAR, L-Band

The four-look fully polarimetric L-Band data of Flevoland, The Netherlands, were collected
in mid-August 1989 during MAESTRO-1 Campaign with a size of 1024 × 750 pixels and a
resolution of around 12 × 6 meters in the azimuth and slant direction, respectively. This par-
ticular region has been extensively used as a test side for crop and land classification over the
past years with well-established ground truth data [223] of 15 classes as shown in Figure 17.
The incidence angles are from 20° to 44° in the near to far range. The majority of crop elds
to be classi ed are within an 18° span of incidence angles. It is expected that this small varia-
tion will not affect classification ([116], Chapter 8.8.1.2).

2.5.2. Flevoland, RADARSAT-2, C-Band

This georeferenced RADARSAT-2 fully polarimetric SAR image at ne quad-pol mode (10 ×
5 meters resolution) of Flevoland, The Netherlands, were taken in April 2008. Its format is
single look complex and the incidence angle varies around 28-30°. The selected scene is an
around 1600 × 2400 pixel sub-region, which mainly contains four terrain classes: Wood-
land/Forest, Cropland, Water, and Urban area [218] with an emphasis on natural and agricul-
tural terrain. The Pauli color-coded image and the ground truth data are shown in Figure 18.
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Figure 17 – Flevoland AIRSAR image (L-Band), Pauli color-coded image (left) and used
ground truth (right). The class legend for the ground truth is given on the top.

Figure 18 – Flevoland RADARSAT-2 image (C-Band), Pauli color-coded image (left) and
used ground truth (right). ). The class legend for the ground truth is given on the top.

2.5.3. San Francisco Bay Area

The area around the bay of San Francisco with the Golden Gate Bridge is probably one of the
most used scenes in PolSAR image classification over the past decades. It provides a good
coverage of both natural (e.g., sea, scrubs, forests) and man-made targets (e.g., buildings,
streets, parks, golf course). As no real ground truth data by on-site visits is available, we gen-
erated the ground truth data by visually inspecting radar and optical data as well as using
USGS National Land Cover Datasets (NLCD) 1992 [210] and 2006 [69]. Therefore, note that
the ground truth accuracy cannot be 100 percent guaranteed. For instance, the different man-
made classes may also cover trees (planted alongside roads or gardens of houses), thus classi-
fication is performed by considering the majority terrain type.
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Figure 19 – San Francisco Bay AIRSAR image (L-Band), Pauli color-coded image superim-
posed with areas representing the five terrain classes. The class legend for the ground truth is
given on the top.

Figure 20 – San Francisco Bay RADARSAT-2 image (C-Band), Pauli color-coded image C-
Band (left) and used ground truth (right). The class legend for the ground truth is given on the
top.

The  NASA/Jet  Propulsion  Laboratory  Airborne  SAR (AIRSAR) L-Band data  of  the  San
Francisco Bay area from 1988 is mainly used for visual evaluation. This original four-look
processed fully polarimetric SAR image has dimensions of 900 × 1024 pixels with a spatial
resolution of about 10 × 10 meters. The incident angles span from 10° to 60°, as visible in the
water regions. We defined five distinct classes for natural area (such as Water – sea, Moun-
tain – cliffs – rocks, Forest – trees, Flat Zones such as beach, grass) and Urban area (build-
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ings, streets, roads) targets with a more complex inner structure. The Pauli coded pseudo color
image superimposed with same ground truth is given in Figure 19.

The RADARSAT-2 fully polarimetric SAR image at ne quad-pol mode (single look
complex, georeferenced, and 10 × 5 meters resolution) of the San Francisco Bay was taken in
April 2008 and the selected scene is an around 1400 × 1800 pixel sub-region. The incidence
angle varies around 28-30°. We identified three major terrain classes namely water, man-
made, and vegetation with the major emphasis on man-made terrain type, which may be fur-
ther divided into Developed, High- and Low-density urban areas depending on their mixture
with other natural terrain. The Pauli coded pseudo color image and the ground truth data are
given in Figure 20.

Figure 21 – Dual-pol TerraSAR-X (X-Band) pseudo color image (left) and used ground truth
(right). The class legend for the ground truth is given on the top. (© Astrium Services / Info-
terra GmbH).

2.5.4. Dresden, TerraSAR-X

The TerraSAR-X data were taken in February 2008 over the area of Dresden in the Southeast
of Germany. It was operated in the Strip Map mode dual polarization (VH/VV) and represents
radiometrically enhanced multi-look ground range data with reduced speckle, an approximate
square resolution of 4 × 4 meters, and an incidence angle of 41 to 42°. Due to its original size
(4419 × 7154), the data are down scaled by a factor of two to reduce the computation com-
plexity. As a ground truth reference, we have used the Corine Land Cover 2006 initiative
[42], which provides a Europe-wide land classification into 44 terrain classes at its finest Lev-
el-3 as well as two higher-level categorization legends with 15 and 5 main classes. Due to the
different resolution and date of the Corine data, it has been used with the combination of opti-
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cal image data as a reference to create the ground truth manually. We applied the 15 class
Level-2 legend with the following six classes considered due to their size: Urban fabric and
Industrial as artificial/man-made surfaces, Arable Land and Pastures as agricultural areas,
Forest, and Inland Waters. A pseudo color image using the VH/VV data (see Section 3.1) and
the generated ground truth map are shown in Figure 21.

2.5.5. Po Delta, COSMO-SkyMed-X

The COSMO-SkyMed-X data were taken in September 2007 over the Po Delta region in the
Northeast of Italy. It was operated in the Strip Map HImage mode with single polarization
(HH) and represents geo-coded (without terrain correction) data with a three-meter resolution.
Due to its original size (16716 × 18308), the data are also down scaled by a factor of four to
reduce the computational complexity. To create the ground truth, we have applied the same
procedure as described for the TerraSAR-X data in the previous Section. From the 15-class
Level-2 categorization scheme, the following six major classes are used: Urban fabric as arti-
ficial/man-made surfaces, Arable Land as agricultural areas, Forest, Maritime Wetlands as
well as Inland and Marine Waters as water bodies. The HH intensity image and the generated
ground truth map are shown in Figure 22.

Figure 22 – Single-pol COSMO SkyMed (X-Band) HH intensity image (left) and used ground
truth (right). The class legend for the ground truth is given on the top. (© ASI / e-GEOS).

2.6. FEATURE VECTOR FORMATION

This section provides information about the PolSAR and texture features with respect to their
feature vector formations used within the experiments and evaluations throughout the remain-
ing chapters. For normalization purposes, all extracted features are linearly scaled into [-1, 1].

The elements of [ ]  and [ ]  are basic representations of the polarimetric SAR data di-
rectly derived from the scattering matrix [S]. The Huynen decomposition has been selected, as
it was the first approach to decompose [ ]  into independent components. Similarly, the
components of H A and the eigenvalue decomposition are chosen as this is the first eigenvec-
tor based decomposition and one of the most commonly used target decomposition in PolSAR
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image classification. As derived from the eigenvalues, RVI is an additional discrimination for
vegetation. Regarding other target decomposition components, some of them extend the exist-
ing methods by using different coherent scatterings (Touzi decomposition), different physical
interpretations of the underlying scattering (Pauli and Krogager decompositions), or they are
designed to discriminate particular terrain classes such as vegetation (Van Zyl and Freeman
decompositions) or man-made areas (Yamaguchi decomposition). A summary of the em-
ployed PolSAR features is listed in Table 1.

Table 1 – Polarimetric SAR feature vector sets used in classification experiments.

Feature set Feature
vector Dim. Description

[T11, T22, T33,
C11, |C12|, C12, |C13|, C13, C22, |C23|, C23, C33]

FV1 12 Elements from
[ ]  and [ ]

[Span, H, A, , , , , , RVI] FV2 11
Components of H A and
eigenvalue decomposition

[| |2, | |2, | |2, ks, kd, kv, s , s , , m] FV3 10
Components from

Pauli, Krogager, and Touzi
decomposition

[Ps, Pd, Pv, 2 A0 , B0 + B , B0 - B ] FV4 6 Components from Freeman
and Huynen decomposition

 Ps, Pd, Pv, Pc] FV5 7
Components from Van Zyl

and Yamaguchi decomposition

Table 2 – Texture feature vectors used in classification experiments.

Feature abbr. Feature vector Dim. Description
EHD FV6 5 Edge Histogram
LBP FV7 16 Local Binary Pattern
GW FV8 24 Gabor Wavelets

OCM FV9 36 Ordinal Co-occurrence Matrix
MLPH FV10 75 Multilevel Local Pattern Histogram

Individual PolSAR features generally have a single value per image pixel, whereas texture
features extract statistics over image regions. To obtain a feature vector per pixel, a surround-
ing pixel neighborhood is used to define a local image region over the generated intensity im-
ages. The feature extraction is performed for every pixel over its (2w+1) by (2w+1) pixel
neighborhood with w=5 as a default setting to keep the pixel neighborhood as compact as
possible. Section 2.3 describes the five texture features considered throughout this thesis. Par-
ticularly, we computed the first and second order moments over three scales and four orienta-
tions of Gabor Wavelets and the three ordinal co-occurrence matrices with three distances and
four orientations. The MLPH feature is implemented as described by Dai et al. [46] and as
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recommended an empirical parameter search was conducted resulting in the following values:
M=5, T=2.5, K=5, and B=3 over an 11×11 pixel neighborhood for evaluation in Section 3.4.
This results in a feature dimension of 75 = (5×3×5) = (M×3×K). For LBP, we quantized the
raw 256-bin histogram obtained via the 3×3 neighborhood into a 16-bin histogram whereas
MPEG-7 EHD has a fixed five-bin edge histogram. A summary of the extracted texture fea-
tures is listed in Table 2.
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Chapter3
Color Features in PolSAR Image
Classification

here have been various approaches to tackle the challenging problem of PolSAR image
classification from using few to many feature combinations, i.e., scattering matrices and

target decompositions (TDs) with the addition of texture features. However, among all these
alternatives, there is one feature that has been mostly ignored from PolSAR image classifica-
tion so far: Color. For instance, in a survey article [130] covering several techniques for im-
proving classification performance of remote sensing data, no color-based feature has been
considered. Yet, for visualization purposes, it is a common practice to generate pseudo color
images by mapping polarization matrices or TD components to the different color channels
(e.g., the Pauli color-coding in the H,V polarization basis). Even though they do obviously not
offer a natural color representation, they may provide useful information for discrimination in
terrain classification besides visualization. In particular, several approaches have focused on
better color representations of PolSAR images such as assigning same colors to the same scat-
tering information [53], [228], or investigating and comparing different scattering parameters
in various color space models for visualization [212]. Furthermore, a contourlet transform
based approach has been applied to pseudo coloring using multi-band SAR images [227].
Turner and Woodhouse have recently undertaken a slightly different yet interesting approach
where they did not use image pixels but rather icons (in form of ellipses) to represent the im-
age data so that polarimetric properties and geographic context can be visualized together
[191].

Similar to texture features, color features are frequently used in the areas of content-based
image retrieval [121] and other computer vision areas [71] such as object recognition and im-
age categorization. Yet contrary to texture, color features are usually not considered within
the classification of PolSAR images since the original PolSAR data do not indeed provide a
(natural) color image representation. Therefore, this chapter draws the focus on investigating
the potential of color features over such pseudo color images generated from fully and partial-
ly PolSAR data for the purpose of superior performance in supervised land use and land cover
(LULC) classification.

T
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The rest of the chapter is organized as follows. It first describes the generation of pseudo
color images over the fully and partially polarimetric SAR data in Section 3.1 before Section
3.2 introduces the considered color features, their content information description, and extrac-
tion over such pseudo color images. Extensive experiments and evaluations for the application
of LULC are reported over fully PolSAR images based on the author’s publications [196] and
[200] in Section 3.3 and over partially PolSAR images based on the author’s publication [195]
in Section 3.4. The chapter finishes with some conclusive remarks in Section 3.5.

3.1. DIFFERENT APPROACHES IN PSEUDO COLORING

For best visualization of the original SAR data available in their polarization matrices, they
are generally pre-processed to remove the effects of point scatterers with particular strong
backscattering. This can be achieved for example by applying a logarithmic approach or
simply set any value smaller or larger than a defined lower and upper bound by applying the
1st and 99th percentile [195] respectively. This assures that the point scatterers are eliminated;
however, other scatterers backscattering do not change significantly to affect visualization.
The pre-processed matrices are then used to generate intensity images over which texture fea-
tures are usually extracted. Furthermore, these intensity images are also considered to create
pseudo color images to extract the desired color features.

For visualization of fully polarimetric data, pseudo color images can be obtained using the
H,V polarization basis and assign the polarization matrices HH, VH, and VV directly to the
red, green, and blue image components referred to Sinclair color-coding. Another approach
uses the combinations of |HH+VV|, |HV|, and |HH-VV| to assign them to the red, green, and
blue image components, respectively. This mapping produces more human-preferable colors
and is commonly referred to as Pauli coding representation [161] or Pauli color-coding in the
H,V polarization basis, short Pauli color-coding (H,V).

Besides using the different polarization matrices, components from polarimetric target de-
compositions can also be used to generate pseudo color images for visual interpretation or
processing. For example, the Polar color-coding were the  and H components of the Cloude
eigen-decomposition are assigned to the red and green image components with the Span used
as the blue image component. The Span provides the details about the underlying scene ter-
rain whereas  and H are  for  coloring.  Figure  23  illustrates  the  Sinclair-,  Pauli-,  and  Polar
color-coding  for  the  RADARSAT-2  San  Francisco  Bay  image.  Note  that  assigning  the  TD
components  to  different  color  channel  in  case  of  the  Polar  color-coding  will  only  affect  the
visual appearance towards a redder or greener color shade mainly depending on which color
channel is assigned to Span.

Regarding dual-pol SAR data, the two different polarization matrices can also be used to
generate pseudo color imagery directly. There are two main composites of the available polar-
izations, A and B. They are commonly combined as |A|, |A-B|, |B| or |B|, |B-A|, |A| and the
compositions are hereby referred to RGB1 and RGB2, respectively. Figure 24 illustrates com-
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positions RGB1 and RGB2 for the TerraSAR-X Dresden image with VH as A and VV as B
along with the respective intensity image from the Span.

Figure 23 – Visualization of pseudo color-coding with Sinclair and Pauli in the H,V polariza-
tion basis, and Polar using components of the eigenvalue decomposition.

Figure 24 – Visualization of pseudo color-coding for dual-pol TerraSAR-X data (© Astrium
Services / Infoterra GmbH).

As for single-pol SAR data, generating pseudo color images similarly as for quad-pol or
dual-pol data is not possible since there is only one intensity image from the single polariza-
tion mode. Therefore, to form a pseudo color image from single-pol SAR data, the most
straightforward way is to either map the intensity values based on a color scale (i.e., via a
lookup table) or transform the intensity values into a color space ([73], Chapter 6.3). One of
the most commonly applied color scales to colorize gray-scale intensity images is the so-
called rainbow or JET map, which reflects the color transition from blue to red. On the other
hand, Zhou and Zhang [228] transformed the intensity values of single-pol SAR data into the
Hue-Saturation-Intensity (HSI) color space, so generating a pseudo color image for better vis-
ualization.  In  particular,  this  method tries  to  maximize  the  number  of  just  noticeable  differ-
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ences (JNDs) among colors while maintaining a natural order. It uses the HSI color space as it
is a good approximation for the human vision system due the Intensity component being in-
dependent of the color information as well as the Hue and Saturation components are in close
relation to the perceptive method of humans. Hence, for an 8-bit intensity SAR image, a pixel
value is denoted by g(x,y) within the range [0, 255]. The adopted pseudo color coding method
is then described as follows:

   , ,

 2 , / 255 ,

, , , 127
   ,

255 , , , 127

I g x y

H g x y

k g x y g x y
S

k g x y g x y

(18)

with k being a factor for varying Saturation and is empirically set to k=1.5 as it produced the
visually most pleasing images. For displaying and processing, the generated pseudo color im-
age is transformed into the RGB color space. Figure 25 illustrates the HH intensity image as
well as the pseudo color images generated by using JET map and transformation to HSI color
space based on [228] for the single-pol COSMO-SkyMed image.

Figure 25 – Visualization of pseudo color-coding for single-pol COSMO-SkyMed data with
HSI by Zhou et al. [228] (© ASI / e-GEOS).

3.2. COLOR FEATURE EXTRACTION

As mentioned before color features are commonly used in areas of content-based image re-
trieval and computer vision. A general set of color features is defined as a part of the MPEG-7
standard [154] formally called Multimedia Content Description Interface. The main idea be-
hind the MPEG-7 is to represent information about the multimedia content (e.g., image, au-
dio, video), but not the content itself (i.e., “bits about bits”). The application of color features
follows the same concept as the texture features exploiting statistical properties and relation-
ship within a pixel window over color images. Four color features are considered and detailed
next, in particular Hue-Saturation-Value/Intensity (HSV) color histogram, the MPEG-7 Dom-
inant  Color  Descriptor  (DCD),  the  MPEG-7  Color  Structure  Descriptor  (CSD),  and  the
MPEG-7 Color Layout Descriptor (CLD).
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3.2.1. Color Histogram

Color histogram [181] is one of the most basic and widely known features in image pro-
cessing. Albeit its simplicity, a histogram is powerful in describing major differences and it
has been applied over intensity channels of HH, HV, and VV [218] or Span [84] in PolSAR
image classification application. Generally, a histogram is a representation of the intensity
distribution within an image region usually extracted over each color space component sepa-
rately. Due to its large amount of information, the different color components are normally
quantized to reduce the amount of color levels from millions to thousands or even to just hun-
dreds and perhaps less, so as to make the descriptor representation more compact. We use the
HSV color space [134] due to its component partitioning and its similarity to the Human Vis-
ual System. The top right hand side of Figure 26 illustrates the content description for the his-
togram representation for a simple four-color image.

Figure 26 – Accumulation of the Color Histogram and Dominant Color Descriptor.

3.2.2. Dominant Color Descriptor

The MPEG-7 Dominant Color Descriptor (DCD) [134] extracts the most representative colors
of a particular color space within an image region where colors are dynamically clustered us-
ing  the  generalized  Lloyd  algorithm  [125]  (i.e.,  by  color  distortion  and  area  until  a  certain
number of clusters are obtained). Moreover, it is consistent with the Human Visual System as
it  mainly perceives prominent colors and discards the rest.  Due to this fact,  it  is  possible to
represent the color content of an image region sufficiently by a few dominant colors. The bot-
tom right hand side of Figure 26 illustrates the content description for the dominant color rep-
resentation for a simple four-color image.

There are various other approaches to determine the dominate colors in an image region,
which provide a better color clustering yet with the burden of larger computational costs as
co-authored in [109]. For a general evaluation, the standard MPEG-7 implementation has
been chosen due to its simplicity and low computational complexity.
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3.2.3. Color Structure Descriptor

Compared to the previous two color descriptors, the MPEG-7 Color Structure Descriptor
(CSD) [134] further takes into account the possible relationships among colors with its gen-
eral idea to describe the local structure in an image region using a sliding 8×8 structure ele-
ment. CSD is denoted by a histogram where each bin represents the number of structuring el-
ements in the image region containing one or more pixels with a particular color. The opera-
tion is illustrated in the Figure 27, where in its current position three colors are present in the
structuring element and the CSD histogram is updated accordingly. Commonly the image re-
gion is first transformed and quantized into the hue-min-max-difference (HMMD) color space
[134] to reduce the number of colors before the structuring element is applied.

Figure 27 – Accumulation of the Color Structure Histogram.

3.2.4. Color Layout Descriptor

The  MPEG-7  Color  Layout  Descriptor  (CLD)  [134]  is  also  designed  to  capture  the  spatial
color distribution in an image region using the YCrCb color space. As illustrated in Figure 28,
it has a compact representation consisting of four stages: image partitioning, representative
color detection, Discrete Cosine Transform (DCT) application, and nonlinear quantization. In
the first stage, an image region is divided into 8×8 blocks, and then a representative color is
selected for each block usually by its average color. In the third stage, an 8×8 DCT is applied
to the individual color components. A few low-frequency coefficients are selected using zig-
zag scanning and quantized to form a CLD, with a default recommendation including six Y
coefficients, and three Cr and Cb coefficients each.

Figure 28 – Extraction process of the Color Layout Descriptor.

3.2.5. Feature Extraction

As for the texture feature extraction, to obtain a description per pixel, the same approach with
the surrounding pixel neighborhood is used to define a small image region over the generated
pseudo color images in Section 3.1. The feature extraction is then performed for every image
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pixel over its (2w+1) by (2w+1) pixel neighborhood with the same default setting w=5 to keep
the pixel neighborhood as compact as possible.

As for the color features themselves, the HSV histogram is quantized into 6×2×2 bins for
the Hue, Saturation, and Value component, respectively, the used Dominant Color Descriptor
considers the three color components and the weight of the most dominant color to obtain a
fixed feature dimension. Regarding the color structure feature (CSD), the final histogram can
be quantized into various sizes where we opt for the smallest feature dimension of 32 due to
the rather small image region the feature is extracted from, and the color layout descriptor is
fixed to a dimension of 12 as described in Section 3.2.4. A summary of the previously de-
scribed color features is listed in Table 3, as employed in the different experiments.

Table 3 – Color feature vector combinations used in classification experiments.

Feature abbr. Feature vector Dim. Description
DCD FV11 4 Dominant Color Descriptor
HSV FV12 24 Hue, Saturation, Value histogram
CSD FV13 32 Color Structure Descriptor
CLD FV14 12 Color Layout Descriptor

3.3. COLOR OVER FULLY POLARIMETRIC SAR DATA

This evaluation focuses on investigating the potential of the color features as described in the
previous Section 3.2 for their performance in supervised fully PolSAR image classification.
The main objective here is to extract these powerful color features from one pseudo color-
coded image, in particular the Pauli color-coding in the H,V polarization basis, and to evalu-
ate their discrimination power with several combinations of PolSAR and texture features. Ex-
tensive experiments are provided over three fully PolSAR images from an airborne (AIR-
SAR) and a space-borne (RADARSAT-2) system taking into account two different band
spectra, C and L. Two well-known classifiers, Support Vector Machines [43] and Random
Forest [19] are employed, both of which are becoming more popular in this field, to test and
evaluate the role of color features over the classification performance.

The rest of this evaluation is organized as follows. The experimental setup introduces the
classifier topologies, the different PolSAR image data, the polarimetric SAR-, and image pro-
cessing features. After that, classification results and evaluations are provided over the differ-
ent combinations of PolSAR, texture, and color features. At the end, different pseudo color-
coding methods for fully PolSAR images are investigated with their effect on classification
performances over the texture and color features.

3.3.1. Classifiers

In the past, various machine-learning approaches have been utilized for SAR image classifica-
tion. During the last two decades, one of the most commonly used approaches is the Maxi-
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mum Likelihood Classifier and its variants, e.g., [2], [57], [86], [110], [119], [128], [170],
[178], and [204]. However, in recent years the focus is drawn to the applications of Support
Vector Machines (SVM) [43] and Random Forest (RF) [19].

SVM is one of the most commonly used classifiers when it comes to classification of SAR
data and is widely applied to various remote sensing applications [143]. It has been recently
becoming even more popular for numerous SAR image classification applications, e.g., [31],
[46], [175], [220], [226], [232]. Since SVM is a binary classifier by nature, there are two main
topology approaches to adapt it to a multiclass classification problem: pairwise classification
[111], also known as the One-versus-One (OvO) approach, and the One-versus-All (OvA)
method [91]. Further, tree classifiers including RF are also frequently applied to SAR image
classification problems as in [72], [162], [176], [220], and [232]. Similar to the SVM, RF is
also a binary classifier, which makes it necessary to use either an OvO or OvA topology, to
perform multiclass classification.

Table 4 – The four classifier combinations employed within the fully polarimetric SAR image
color feature evaluation.

Classifier abbreviation Description

OvA_RF One-versus-All using RF

OvA_SVM One-versus-All using SVM

OvO_RF One-versus-One using RF

OvO_SVM One-versus-One using SVM

These experiments focus mainly on SVM and RF due to their recent popularity applying
the two topologies, OvO and OvA. Since each topology has its advantages and shortcomings,
both are considered for individual classification performance analysis. As a result, Table 4
lists the four classifier combinations used within the experiments. In order to determine the
best classifier configuration (i.e., kernel and kernel parameters), a sequential search over a
range of configurations is performed during the training stage with respect to a training vali-
dation set and the best configuration found will be used for classification and performance
evaluations.

For the SVM implementation, we employed the libSVM library [27] and in order to find
out the best SVM configuration (kernel and kernel parameters), an exhaustive search is con-
ducted for the best kernel type among the linear (LIN), polynomial (POL), radial basis func-
tion (RBF) and sigmoid kernel (SIG). In addition, the individual parameters are optimized as
well, i.e., the respectable penalty parameter, C (2n; n=0,...,3) and parameter (2-n; n=0,...,3), if
applicable to the kernel type (e.g., for POL and RBF). Even though this will merely provide a
coarse parameter search, it is definitely better than just keeping the default settings C=20 and
=0.01. Overall, 40 different kernel and parameter configurations are checked for the best

possible configuration, in particular 4 LIN for C, 16 POL for C and , 16 RBF for C and , and
4 SIG for C.



45

As for the RF classifier, we employed Breiman’s implementation [19], where the best
number of trees within the forest is searched from 50 to 100 in steps of 10. In each tree, a
splitting decision is made per node based on a randomly sampled number of input features.
This number is commonly determined by the square root of the total input features, N . A

further step is added in-between N  and all features Nin, N +  N , which is slightly
larger than half the size of Nin. Thus, for each forest size, the random split in each tree is op-
timized between N  and N + N .

It  is  worth  mentioning  here  that  all  configurations  are  enumerated  with  a  hash  function,
which ranks them with respect to their complexity, e.g., associating higher hash indices to an
individual RF with a higher complexity. This means that while sequentially searching for the
best parameters / configurations for any classifier type, it will always favor less complex con-
figurations as long as they realize one of the lowest validation errors during training. Note that
it is not the main goal to tweak and achieve the best possible classification accuracies for each
individual classifier - rather to illustrate the effects of additional features and input sizes of the
different classifiers.

During the experiments, the classification tasks conducted over the selected PolSAR imag-
es are considered as uni-class where one sample can only belong to one particular class, so
that  during  the  training  phase  each  positive  sample  of  an  individual  class  can  be  used  as  a
negative sample for all others. Yet if there are numerous classes, an unbalanced numbers of
positive and negative samples per class may cause a bias problem in OvA. To address this
problem of handling unbalanced training data, the concept of positive-to-negative ratio (PNR)
as described in Section 4.2.2.4 is applied in this evaluation using PNR equal to 10 for all clas-
sifiers.

3.3.2. Polarimetric SAR Images

This evaluation uses the three fully PolSAR images as described in Section 2.5 namely Flevo-
land, AIRSAR, L-Band, Flevoland, RADARSAT-2, C-Band, and San Francisco, RADAR-
SAT-2,  C-Band.  With  this  setup,  it  can  be  demonstrated  how  effective  the  additional  color
features are over a variety of polarimetric SAR images in terms of the system (AIRSAR,
RADARSAT-2), the operative band (C, L), and the underlying classification problem (e.g.,
number of classes, main terrain types). Table 5 provides a summary of the used fully polari-
metric image data for this setup with their different locations, sensors, and bands.

With the available ground truth, the following procedure is adapted to generate the training
and testing sets for each PolSAR image. The training sets contain approximately 100 pixels
per class for the lower resolution AIRSAR image and approximately 500 pixels per class for
the larger RADARSAT-2 images. The testing sets have either 50000 pixels per class or the
entire class ground truth if its size is smaller than 50000. Main reason for this is to keep a
training-to-testing ratio between 1:100 and 1:120 for all PolSAR images and to assure that the
training and testing sets are of similar sizes for the individual PolSAR images. Furthermore,
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the training data were split into 50 percent for training and 50 percent for validation of the
classifier parameters; and Table 6 summaries the training and testing data per PolSAR image
as well as the abbreviations used for the remainder of this chapter.

All PolSAR images are speckle filtered using the suggested filter by Lee [117] with a 5×5
window before any feature is extracted. Many methods have been considered for speckle re-
duction [226], [228] with emphasize on detail preservation such as polarimetric signatures,
texture, image structures, and prevention of loss in spatial resolution [228]. The speckle filter
by Lee [109] might not be the best compared to the state-of-the-art in polarimetric SAR
speckle filtering. However, it has been widely used and shown good performance regarding
speckle reduction and detail preservation [118], [47]. This will have an influence on classifi-
cation [26], [109] such as homogenous regions due to the speckle reduction and forest or ur-
ban areas due to the filter’s capability of preserving texture and line structures. As speckle
filtering is outside the thesis scope, the filter by Lee [117] is considered as the main speckle
reduction method whenever applied to SAR image data in this thesis.

Table 5 – Overview of image data used within the fully polarimetric SAR image color feature
evaluation.

Name System Band Date Dimensions Incident angle
Flevoland AIRSAR L Aug 1989 1024×750 20-44°
Flevoland RADARSAT-2 C Apr 2008 1639×2393 30°

San Francisco RADARSAT-2 C Apr 2008 1426×1876 30°

Table  6  –  Fully  polarimetric  SAR image  data  with  their  train  and  test  sets  for  color  feature
evaluation.

Name No. classes Train size Test size Ratio Test/Train Abbr.
Flevoland 15 1793 208186 116 Flevo_L
Flevoland 4 2000 200000 100 Flevo_C

San Francisco 5 2500 250000 100 SFBay_C

3.3.3. Feature Sets

The PolSAR features from Section 2.6, namely FV1 - FV5, are combined into six different
PolSAR feature sets (FS) as listed in Table 7. They include basic scattering information in
form of covariance and coherency matrices as FS1, commonly used components of H A and
eigenvalue decomposition as FS2, and several coherent and incoherent target decompositions
as FS4, as well as combinations of these. Additionally, each PolSAR feature set is also com-
bined with three sets of visual features based on the texture features from Section 2.6, namely
FV6 to FV9, and the color features from Section 3.2.5, namely FV11 to FV13, extracted over
the pseudo color image generated by Pauli color-coding (H,V). These features are further
joined to form a set of color features (FV11+FV12+FV13), C, and a set of textural features
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(FV6+FV7+FV8+FV9), T, see bottom of Table 7, so that each FSx will be augmented by color
(FS ), texture (FS ), and color + texture (FS ). Thus, this will result in 24 feature set combi-
nations with various sizes ranging from 11 dimensions for the smallest (|FS2|) and 187 dimen-
sions for the largest (|FS |). The symbol FS  is introduced to abbreviate different groups of
feature set combinations such as FS  for the color combinations of all six different PolSAR
feature sets and FS  when referring to all combinations and extensions of the PolSAR feature
set FS6. With this setup of feature set combinations, we can investigate the influence of color
and texture as an addition to different selections of PolSAR features.

Regarding the feature dimensions, note that when the number of (representative) training
samples is relatively small with respect to the number of features, the well-known problem of
the “curse of dimensionality” (i.e., the Hughes phenomenon) occurs. This results in the risk of
overfitting of the training data and can lead to poor generalization capabilities of the classifier.
Generally, neither RF nor SVM topologies have a serious “curse of dimensionality” problem
for features of few hundred dimensions. Particularly SVMs with RBF kernel can theoretically
learn in infinite dimensions providing that the training dataset size is infinite too. Under the
light of this, the investigation on “curse of dimensionality” over the classification perfor-
mance is beyond the scope of this evaluation, as there are excellent research works [35] in the
literature.

Table 7 – Combinations of PolSAR and image processing feature vectors used in the fully po-
larimetric SAR image color feature classification experiments.

Feature set Feature vector Dim. Description

FS1 FV1 12 Elements from [ ]  and [ ]

FS2 FV2 11 Components of H A and eigenvalue decompo-
sition, RVI

FS3 FV1 + FV2 23 Combination of FS1 and FS2

FS4 FV3 + FV4 + FV5 23
Components from target decompositions

(Pauli, Krogager, Touzi, Freeman,
Huynen, Van Zyl, and Yamaguchi)

FS5
FV2 + FV3

+ FV4 + FV5
34 Combination of FS2 and FS4

FS6
FV1 + FV2 + FV3

+ FV4 + FV5
46 Combination of FS3 and FS4

C FV11 + FV12 + FV13 60 Extracted color features

T
FV6 + FV7

+ FV8 + FV9
81 Extracted texture features
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3.3.4. Initial Experimental Results

This section will first cover general observations related to the six PolSAR feature sets and
the three PolSAR images before going in depth analysis for each of the individual classifica-
tion experiments performed.

All the presented results for a different classifier, feature set, and image combination, are
average values obtained over 12 runs per combination applying the trimmed mean leaving out
the minimum and maximum values to reduce the effects of “extreme” outliers. Firstly, the av-
erage classification accuracies for the six different PolSAR feature sets (and their respected
texture and color combinations) over all classifiers and images are shown in Figure 29 to pro-
vide an assessment of utilizing texture and color features in combination with the different
PolSAR features. As anticipated, the minimal FS1 benefits highly from texture and color in-
formation with large gains of 6% and 15% because of the small discrimination power with
just [ ]  and [ ]  elements. This can also be seen for all the other feature sets FS2 to FS6,
where with the application of more discriminative PolSAR features in form of target decom-
positions, the classification accuracies can be increased on the average by around 10 point,
from 77 to 87 percent. Texture features help to improve by an extra one percent on the aver-
age and the color features can boost that to an additional 3% to 5% on the average, to over
90% compared to the PolSAR features. It can be observed that the presence of texture features
in FS  have a marginal influence on the classification accuracies compared the color features
alone, FS . Anyhow, we can also see that overall differences among the feature combinations
for FS , FS , FS , and FS  are not significant, which probably demonstrates why the Cloude-
Pottier decomposition (FS2) has been used so extensively. The drop for FS3 compared to FS2

comes from the addition of FS1 and its rather low classification performance. The features of
FS2 are not able to compensate this negative effect.
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Figure 29 – Average classification accuracies for the six different feature sets over all classifi-
ers  and  datasets  for  the  fully  polarimetric  SAR  image  color  feature  experiments.  (Blue  de-
scribes the base line accuracies of the PolSAR FS and green is the improvement with the ad-
ditional texture and/or color features).
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Secondly, the average classification accuracy for the three different PolSAR images over
all classifiers and feature sets are presented in Figure 30. It can be observed that for all three
images used in these experiments, color features provide an increase in the classification ac-
curacy from around 4% up to 9%.

Considering Flevo_L, the classification accuracy drops (almost -3%) with the addition of
the textural information to FSx and the differences between FS  and FS  are marginal. The
reason for this is that the texture information has a rather minimal effect on the classification
accuracies probably due to the lower resolution of the data and the majority of classes are ag-
riculture fields with no individual prominent texture features.

For the Flevo_C image, the texture features provide some contribution to the classification
accuracy and we will see later in the more detailed analysis for this image that primarily the
Urban class  accounts  for  this  gain,  whereas  with  the  color  features  a  gain  of  2.5%  -  5.5%
compared to FS  / FS  can be achieved. Note that the classification results with the combina-
tion of color and texture is pretty much the same as the one with color alone.

3.
8%

3.
7%

3.
1%

5.
5% 5.
8%

4.
0%

8.
5% 9.

5%

0.75

0.80

0.85

0.90

0.95

1.00

FS FS_T FS_C FS_CT FS FS_T FS_C FS_CT FS FS_T FS_C FS_CT

Flevo_L Flevo_C SFBay_C

base add

Figure 30 – Average classification accuracies for the three different datasets over all classifi-
ers and feature sets for the fully polarimetric SAR image color feature experiments. (Blue de-
scribes the base line accuracies of the PolSAR FS and green is the improvement with the ad-
ditional texture and/or color features).

As for the third image, SFBay_C, the addition of texture features provides a contribution of
about four percent to the overall classification accuracy. On the other hand, the addition of the
color features increases the accuracy by 4.5% / 8.5% compared to FS  / FS . Thus, whenever
the color features are utilized, the contribution of the additional texture features becomes in
general less significant, only a one percent improvement for all tested images.

Based on these observations, we will now have a deeper analysis for each of the individual
PolSAR images regarding the different feature sets and how they affect individual classes.
The classification accuracies for the images and their classes are visualized via box plots. We
have chosen them as an effective way for representing graphically a large amount of numeri-
cal data. They depict five values, namely the least observation (in this case, it is the minimum
accuracy), lower quartile (25%), median, upper quartile (75%), and the highest observation
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(maximum accuracy). As observed in the previous results (Figure 29), all feature sets besides
FS  show similar behavior and tendencies with the additional color and texture features.
Therefore, all box plots for an individual image are generated over all classifier runs for a par-
ticular feature set (e.g., FS  to FS ) applying some basic outlier removal for the extreme cases
where a particular classifier run performs significantly different from the others. This mainly
removed outliers from the bottom end of the accuracy range.

The main observation for the Flevo_L image  in  Figure  31  is  the  loss  of  accuracy  for  the
FS  feature sets for individual classifiers. The performance of SVM seems to be varying with
respect to the multiclass topology, i.e., the OvA_SVM shows heavy drops for each FS ; and
the performance of OvO_SVM drops to or below the median and being among the lowest ac-
curacies for the majority of FS . It can be observed that three out of four classifiers perfor-
mances are severely affected by texture especially for FS , FS , and FS , which include FV1

(i.e., [ ]  and [ ]  elements) and cannot provide good discrimination in this classification
task. This is probably because SVM work on the entire feature set and, obviously, the texture
has quite a negative effect particularly on the large number of classes (15) in this image. Note
that OvA_RF is the most invariant to FS  as  RF  employs  random  feature  selection  within
each ensemble decision tree, hence, not suffering from the lower discrimination of FV1 and
the texture features. However, we can observe that RF is quite affected by the OvO multiclass
topology due to its pairwise classification. In this case, OvA_RF performs significantly better
than its OvO counterpart as well as the two SVM classifiers.
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Figure 31 – Average classification accuracies for the four classifier topologies per feature set
over Flevo_L image in the color feature experiments (gray bar represents the median value).

The effect of the texture and color features can be closely investigated in Figure 32, which
displays the results for the single and combined texture and color features per class for Fle-
vo_L. We can observe that overall the texture features perform rather poorly, where Water,
Forest, Potatoes, and Building are exceptions in the sense that texture features obtain results
three to four times better than the other classes. Furthermore, we see that the single GW and
OCM feature achieved best results and are the main contributor to the combined texture fea-
ture for these four classes. For the other classes, texture feature discrimination does virtually



51

not exist, so that they cannot provide any significant additional discrimination when combin-
ing with the extracted PolSAR features in this Flevo_L classification task. Regarding the color
features, results look more positive with single and combined color features able to obtain bet-
ter results and in this particular case outperform their texture counterparts, which is also re-
flected in the results when combined with the PolSAR features.
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Figure 32 – Classification accuracies for the Flevo_L classes  over  the  single  and  combined
texture and color features.

Overall, the introduction of the texture features has either an insignificant or rather nega-
tive effect, which is also visible in the box plots for FS  in Figure 33. The lower quartile
(25%) and upper quartile (75%) rectangles are far larger indicating a higher variation in accu-
racies compared to the more compact representations for the other feature sets (also see Fig-
ure 33). As discussed earlier, this is probably due to the larger number of classes, majority of
which being agriculture fields, thus no significant texture difference exists among them. Fur-
thermore, such a low-resolution SAR image may not allow for major textural discriminations
and moreover, the applied speckle filtering may further degrade the texture information.
Therefore, such a degraded and somewhat similar texture information among most of the
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classes rather introduce “confusion” and makes it difficult to learn individual class patterns
when the majority of features are quite similar and noisy for many classes as seen in Figure
32. Recall that the texture features have an overall dimension of 81 compared to the PolSAR
features having dimensions between 10 and 40 for different FS ; hence, texture will have a
rather dominating influence. RF can better cope with this effect than SVM as a few features
are randomly selected within each tree in the forest, which in turn, will negate the influence of
the large texture feature dimension. Yet, the differences for FS  and FS  are not as signifi-
cant as for FS  besides some variations with respect to whisker ranges. This means that the
color features carry the main discrimination information and can cancel out negative effects
from the texture features.

Figure 33 – Classification accuracies for the Flevo_L classes with FSx (left), FST
x (right) in

top row and FSC
x (left), FSCT

x (right) in bottom row for the color feature experiments. The box
plots show 25 and 75 percentile as the blue rectangle, the red line indicates the median, and
the whiskers represent the min. and max. values, respectively.

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

T vs. SAR C vs. SAR C vs. CT CT vs. T

Figure 34 – Differences in classification accuracies comparing the influence of texture and
color features per class in the Flevo_L image.
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A better visualization of the feature differences is illustrated in Figure 34, which shows
classification accuracy gains/losses per terrain class. Only for the Building class, texture
makes a noticeable yet marginal positive impact (1%). For the other 14 classes, 12 of them
suffer in accuracy with the addition of texture features due to the absence of strong textural
pattern to provide significant discrimination. For the addition of color features, two classes
gain around one percent accuracy and the majority of eight classes gain between 2% and 4%.
The Highest impact is observed for classes Grass, Rapeseed, and Wheat B, which gain more
than 6% in accuracy compared to just PolSAR features (FSx).

Figure 35 – Classification results for the Flevo_L image for FS3 over OvO_SVM. Left col-
umn is the classified PolSAR image, the middle column is the classified image overlaid with
the ground truth, and the right column shows the difference to the ground truth with the color
indicating what the ground truth should have been. Circles mark degradation (red) and im-
provement (green). First row shows results for FS3, the second row FST

3 ,  the third row FSC
3 ,

and the last row FSCT
3 .
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Figure 35 presents visual classification results for the Flevo_L image showing the differ-
ences of just PolSAR features (FS3) versus its augmented feature sets with texture, color, and
texture + color, respectively, for the OvO_SVM classifier. For the FS case, the larger drops
for Beet and Bare_Soil class are visible, whereas for the classes with drops of two percent or
lower, differences are not as perceptible. It is noticeable that the forest area on the small is-
land is slightly better classified as for FS3, particular around the borders. As for FS , visual
differences to FS  and FS are apparent in particular for the classes, which have shown larger
numerical improvements in Figure 34.
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Figure 36 – Average classification accuracies for the four classifiers per feature set over Fle-
vo_C image in the color feature experiments (gray bar represents the median value).

Compared to the Flevo_L image, it can be noticed for the average classification accuracies
of the Flevo_C image in Figure 36 that texture features have a more positive impact, as no
severe drops exist for FS  and they rather improve the classification accuracies compared to
FSx. Yet, the color features in FS are able to provide a better discrimination to improve clas-
sification results further. With the combination of texture and color features, it can be noted
that both RF classifiers can actually increase their classification accuracies from FS  to FS
whereas SVM either drop (FS  to FS ) or stay around level (FS , FS ) with their respec-
tive FS results.

As observed in Figure 36, texture features provide additional discrimination power to im-
prove classification accuracies with particularly Water and Urban obtaining good results with
texture features alone as well as for Forest even though not quite as good as for the previous
two terrain classes as illustrated in Figure 37. On the contrary, the Cropland class  does  not
seem to  carry  any  dominant  texture  patterns;  however,  the  color  features  seem to  provide  a
better discrimination for this terrain class.

From the box plot in Figure 38, one can notice that the different box plot shapes and values
are close together and the minimum and maximum values are not too far off the main quartile
body, thus there is not too much variance within the different classifiers. When investigating
the effect of particular feature sets for individual classes, it is revealed that the increase of FS
accuracy in Figure 36 appears primarily from the Urban class with an improvement around
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9.5% and this is actually the only one that significantly gains from the texture features due to
the unique patterns of roads and buildings. This can also be seen when visually inspecting the
image  where  the  majority  of  classes  do  not  really  have  a  strong  texture  pattern  besides  the
Urban class. Even though reasonable results with texture features can also be obtained for
Forest (60% as seen in Figure 37); they do not seem to add as much additional discrimination
to the FSx. The same observation can be made for Cropland over the color features with FS
similar to FS and marginal improvements for FSx, which already achieves high classification
accuracy. Forest and Urban are the classes that highly benefit from the additional color fea-
tures with 5% and 10% accuracy gains compared to PolSAR features only, where FS  and
FS  perform equally  for  the Urban class. Note further that additional color and texture fea-
tures have no effect on the classification accuracy of Water. The PolSAR features already
provide the highest possible discrimination against the other classes due to its dominant sur-
face scattering.
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Figure 37 – Classification accuracies for the Flevo_C classes  over  the  single  and  combined
texture and color features.
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Figure 38 – Classification accuracies for the Flevo_C classes and differences in classification
accuracy comparing the influence of texture and color features per class in the color feature
experiments. The box plots show 25 and 75 percentile as the blue rectangle, the red line indi-
cates the median, and whiskers representing the min. and max. values, respectively, with ac-
curacies on the primary axis on the left. The gray bars indicate the feature accuracy differ-
ences with the secondary axis on the right.
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Figure 39 – Classification results for the Flevo_C image for FS2 over OvA_RF. The left col-
umn is the classified PolSAR image, the middle column is the classified image overlaid with
the ground truth, and the right column shows the difference to the ground truth with the color
indicating what it should have been. Circles mark degradation (red) and improvement (green).
First row shows results for FS2, second row FST

2 , third row FSC
2 , and last row FSCT

2 .
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Figure 40 – Average classification accuracies for the four classifiers per feature set over
SFBay_C image in the color feature experiments (gray bar represents the median value).

Figure 39 presents visual classification results for the Flevo_C image showing the differ-
ences of PolSAR features alone (FS2) versus its augmented feature sets for the OvA_RF clas-
sifier with texture, color, and texture + color, respectively. For the FS case, the numerical
improvements in the Urban areas are also noticeable visually. However, in the classified im-
age it tends to overestimate the Urban area as well as misclassifies edges between Forest and
Water or other flat areas most probably due to feature extraction over the pixel neighborhood.
It also misclassifies some water regions as visible in the bottom right part. On the contrary,
using FS  provides correct classification for those water regions and does not suffer from the
Forest/Water borders. The improvements of the numerical classification performance for FS
are visible, too. Moreover, for this feature set Forest and Cropland areas in the bottom left
and right of the image are classified closer to the ground truth than for FS2 and FS .

Over the results for the SFBay_C data, it can be noticed that the behavior of the classifiers,
as illustrated in Figure 40, is different compared to the two previous images. The texture fea-
tures provide good discrimination improving the FSx accuracies by 2-3% compared to FS2-6

and 9% compared to FS1,  whereas  the  color  features  are  able  to  provide  an  additional  im-
provement of 3-4% and 10% compared to FS  to FS  and FS , respectively. Moreover, for
this particular image, the texture features are able to provide, though small, additional dis-
crimination when combined with the color features. These tendencies are visible for all classi-
fiers as observed distinctively for the two Flevoland images.

The OvA versions of RF and SVM perform at the top level;  however,  the OvO topology
classifiers perform on a just slightly lower level within a maximum margin 4% difference for
FS  and 1% to 3% for the others, where OvO_RF accounts for the majority of the larger 4%
gaps. However, there is a drop (-3.5%) of OvO_RF using FS2. The main reason is that RF per-
forms a random feature selection during training and this particular case selecting just a few
feature elements from the already small feature dimension of size 11. Furthermore, in the
OvO approach, this is done for each of the 10 binary classification pairs to discriminate the
terrain classes.
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Figure 41 – Classification accuracies for the SFBay_C classes and differences in classification
accuracy comparing the influence of texture and color features per class in the color feature
experiments. The box plots show 25 and 75 percentile as the blue rectangle, the red line indi-
cates the median, and whiskers representing the min. and max. values, respectively, with ac-
curacies on the primary axis on the left. The gray bars indicate the feature accuracy differ-
ences with the secondary axis on the right.
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Figure 42 – Classification accuracies for the SFBay_C classes over single and combined tex-
ture and color features.

The classification accuracy of the Water class stays constant (Figure 41) due to its unique
single-bounce backscattering discrimination, whereas the other classes are scatter mixtures of
double-bounce and volume scattering. For other classes, the texture features have a low con-
tribution on High Urban and Vegetation classes with around 2% and larger influence with 3%
and 6% for Low Urban and Developed, respectively. However, even though the overall classi-
fication accuracy gain of the man-made terrain classes is minimal (Figure 41), the effect of
the texture features is still visible with regard to the box plot shapes showing more variance
within FS  than FS  due to the larger quartile body. Anyhow, the color features have varying
contributions from lower 2% for Vegetation, to significant higher 7% for Developed, and 10%
for the two urban classes, High Urban and Low Urban. Evidently even though the man-made
terrain classes have textural patterns (roads and buildings), as visible in the results of the sin-
gle texture features in Figure 42, differences among these classes are not discriminated
enough by the texture features as they are by the color features.
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Figure 43 – Classification results for the SFBay_C image for FS5 over OvA_SVM. The left
column is the classified PolSAR image, the middle column is the classified image overlaid
with the ground truth, and the right column shows the difference to the ground truth with the
color indicating what it should have been. Circles mark degradation (red) and improvement
(green). The first row shows results for FS5, the second row FST

5 , the third row FSC
5 , and the

last row FSCT
5 .
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This is further visible in Figure 43, which presents visual classification results for the
SFBay_C image for the OvA_SVM classifier showing the differences of PolSAR features
(FS5) versus its augmented feature sets with texture, color, and texture + color, respectively.
In the FS case, it is capable of providing better results of the Water region around the bridge
on the right hand side of the image. In addition, the improvements in the classification of the
Developed and of the Low Urban areas are visually noticeable compared to FS5 in the graph
of Figure 41. However, only parts of the Low Urban areas on the left side of the image show
better classification results whereas the area in the bottom right corner is only slightly affect-
ed. On the other hand, the classifier with FS  achieves better performance for all larger Low
Urban areas as well as the Developed and High Urban regions on the right hand side.

Overall, when evaluating individual classes in all PolSAR image datasets, Water was the
least affected by the addition of texture or color features due to the aforementioned reasons.
Forest or main tree-like Vegetation benefited from color more with around 2% to 5% whereas
with texture it is around 1% to 3%. In this regard, man-made terrain classes such as Urban
areas profit the most due to their underlying surface characteristics, so that for the Flevo_C
and SFBay_C images, they could gain up to 10% reaching or exceeding 90% level in classifi-
cation accuracy.

Generally, it is evident that with the additional color features higher classification accura-
cies can be obtained. When a certain texture pattern is present within the classes, the texture
features can enhance the classification accuracies; however, vice versa is also possible that
when none of the classes have significant textural pattern, the texture features may rather blur
or degrade the discrimination, which in turn will cause degradations in the classification per-
formance. On the average, over all experiments, the color features outperformed the texture
features in terms of classification accuracy improvements in all PolSAR feature combinations.

3.3.5. Performance Evaluation with Different Pseudo Color Images

After this first color feature evaluation using the Pauli color-coding (H,V), this section evalu-
ates now additional pseudo color images for fully PolSAR data as described in Section 3.1.
The experimental setup is similar to the initial extensive evaluation with regard to data, classi-
fiers, and features. Comparative evaluations are performed over the two RADARSAT-2 im-
ages San Francisco (Section 2.5.3) and Flevoland (Section 2.5.2) with their focus on man-
made/urban and vegetation/crop classification, respectively. Approximately 500 pixels per
class for training and 50000 pixels for testing have been selected. What is more, the training
data were kept as 50 percent for training and 50 percent for validating the classifier parame-
ters.

For these two particular PolSAR images, the previous results have shown that they are not
critically depending on the used classifier topology. Hence, only the pairwise multiclass SVM
(OvO_SVM) is considered due to the increasing popularity of SVM in SAR image classifica-
tion applying the same optimization procedure as before (see previous Section) to determine
the best SVM configuration in case of kernel and its parameters.
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Regarding the texture features, we use the same four features as in the previous Section
with  Local  Binary  Pattern  (LBP),  the  MPEG-7  Edge  Histogram  Descriptor  (EHD),  Gabor
Wavelets (GW), the Ordinal Co-occurrence Matrix (OCM) as a GLCM extension as described
in Section 2.3 and 0. Similarly, for the extraction of the color features, we again use the HSV
(Hue,  Saturation,  Value)  color  histogram,  the  MPEG-7  Dominant  Color  Descriptor  (DCD),
the MPEG-7 Color Structure Descriptor (CSD), and additionally the MPEG-7 Color Layout
Descriptor (CLD) as describe in Section 3.2. Moreover, the individual texture and color fea-
tures are merged in to a combined texture, T, and combined color, C, feature set, respectively,
summarized in Table 8. The combined feature sets are referred to as FST, FSC, and FSCT.

Table 8 – Texture and color feature vector combinations applied for evaluation of different
pseudo color image images.

Feature
combination

Feature vector Dim. Description

T FV6 + FV7 + FV8 + FV9 81 Combined extracted texture features

C FV11 + FV12 + FV13 + FV14 72 Combined extracted color features

Table 9 – Extracted feature vectors and combinations with their respective dimensions as con-
sidered for evaluation of different pseudo color image images.

H A LBP EHD GW OCM DCD HSV CSD CLD FST FSC FSCT

11 16 5 24 36 4 24 32 12 81 72 153

Figure 44 – Samples of different pseudo color and intensity images considered for evaluation.
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We further extract features based on the H A decomposition in form of entropy H, anisot-
ropy A, the average angles averages  , , , , the three eigenvalues, RVI, and Span for com-
parison and augmentation as it is one of the most considered target decomposition for fully
polarimetric data. These are also the same features as previously used in FV2. The individual
dimensions of all used features are provided in Table 9. Note that speckle filtering is applied
as previously before any feature is extracted.

Our focus is on the evaluation of the texture and color features when extracted over differ-
ent pseudo color representations considering three different pseudo color-coding approaches
as described in Section 3.1 namely the Sinclair color-coding, the Pauli color-coding, and the
Polar color-coding. An example of these pseudo color-coding is illustrated in Figure 44 for
two PolSAR images. Additionally, the single intensity image representation of the Span is
used defined as the total scattered power in a polarimetric radar system. Note that the texture
features are extracted over the intensity representation of the Span and pseudo color images as
obtained by I = 0.2989·R + 0.5870·G + 0.1140·B. I is equivalent to the luminance component
Y of the YIQ / YCrCb color space defined in the NSTC / PAL color TV systems, respectively.
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Figure 45 – Average classification results over different pseudo color images on Flevo_C.
Dashed line is the classification accuracy achieved with H A based features.

All the presented results are average classification accuracies obtained over 16 runs com-
puting the trimmed mean leaving out the minimum and maximum classification accuracies to
reduce the effects of outliers. The general observations of the extracted visual features over
the particular Pauli pseudo color image have been shown in the previous evaluation. There-
fore, the focus lies on the different pseudo color images and their effect on SAR image terrain
classification.  The  classification  results  include  the  results  over  the Span image  mainly  for
comparison reasons to evaluate how effective the color features work over intensity images.

We shall start with the evaluation over the Flevo_C image. As previously observed, texture
feature performances are quite diverse in terms of classification accuracies. With respect to
the different pseudo color images, classification results shown in Figure 45 are pretty much
level for EHD and GW, yet there is a minor gap among accuracies with the GW feature when
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extracted over the Polar and Span images compared to the other two. This accuracy gap sig-
nificant increases for extracted features LBP and OCM. The reason is that both of them work
directly with underlying intensity values whereas EHD and GW apply edge filtering with
thresholds and multi-scale filtering, respectively, before extracting details about possible tex-
ture pattern. This will reduce difference among intensity values and affect discrimination ca-
pabilities.
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Figure 46 – Individual terrain classification results over different pseudo color images on Fle-
vo_C. Dashed line is the classification accuracy achieved with H A based features.

Classification results in Figure 46 for the color features over all pseudo color images are
around 90 percent or higher. Results achieved over Pauli and Polar images are, however,
slightly better than the one with the Sinclair image due to the different pseudo color genera-
tion. It is anticipated that accuracies obtained with Span image are lower caused by its gray
level intensity nature, which will lack discrimination in color space conversions within the
applied color features. However, it is an interesting observation that results achieved with the
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combined color features, FSC, over Span image are significantly better than its counterpart
FST, which is related to the particular terrain classes in this classification setup.

When evaluating the individual class results as presented Figure 46, we can see that classi-
fication results using the texture features over Polar and Span images are among the highest
particularly for natural surfaces such as Water, Forest, and Cropland.  This  is  related  to  the
image generation as the Polar image contains the Span image as its blue component, which in
this case will carry the main distinguishable texture patterns compared to  and H. Moreover,
accuracies with FST over the Pauli image result in the lowest performances for these natural
terrains with accuracies over the Sinclair images being just slightly better. On the contrary,
highest accuracies are achieved for Urban over the Pauli image when using the texture fea-
tures. This is related to the combination of polarization matrices in the pseudo color images.

In case of color features over the individual classes (see Figure 46), the different pseudo
color images do not affect the accuracy for Water. This is expected, as there are clear visual
differences to the other classes in all images, which result from the different backscattering
characteristics for Water compared to the other surface classes. For the Forest areas, the dif-
ferent pseudo color images do not significantly affect the classification accuracies using the
features  HSV,  CSD,  and  CLD.  We  can  observe  that  the  best  results  can  be  achieved  using
CSD and CLD as both of them include color relationships within their feature description so
as encoding possible underlying texture patterns. The noticeable drop in accuracies over the
Polar DCD feature results from the fact that only the single largest color cluster is used to de-
scribe the pixel neighborhoods. This does create potential mismatches between Forest and
Urban as they both might be represented with similar colors (see Figure 44) due to the DCD’s
underlying color clustering and merging. The same problem arises with Urban and Cropland
for DCD when extracted over the Sinclair image. Similarly, to the texture feature observation,
the best classification results for Urban are obtained with color features over the Pauli image
as it provides the clearest color difference among the classes. Within the results for the Urban
class, the accuracy for the CLD feature over the Span image is significant lower than for the
other color features. This is caused by CLD’s color averaging for each processed block over
an image region. The average intensity value is not representative enough for this particular
class. As in the next step of CLD, DCT is performed over the color components individually
and cutting its high frequency elements, this further results in loss of pattern information for
discriminating Urban areas. For the Cropland class, accuracies over Pauli and Polar images
are best as they provide the best color discrimination to the other classes; and CSD and CLD
results over all pseudo color images are higher due to their integration of color relationships.

Overall, in this particular classification setup, the attained performances among the three
generated pseudo color images do not have any significant differences. There are minor gaps
for the Sinclair image results with its rather simple assignment of polarization matrices. Yet
performances over Pauli and Polar images seem on average more stable for the different ter-
rain classes as their pseudo color image generations use combinations of the available polari-
zation matrices or even employing TD components.
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Figure 47 – Average classification results over different pseudo color images on SFBay_C.
Dashed line is the classification accuracy achieved with H A based features.
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Figure 48 – Individual terrain classification results over different pseudo color images on
SFBay_C. Dashed line is the classification accuracy achieved with H A based features.
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Evaluating the classification results for the SFBay_C data with its more man-made / urban
terrain classes (see Figure 47) shows that the general observations related to the texture fea-
ture are similar to the Flevo_C data. We can see a similar accuracy gap for the Polar and Span
images, which has slightly increased for the individual texture features compared to Flevo_C.
Considering the color features, the main difference to Flevo_C is the 5-6% better results
achieved over the Pauli and Sinclair images. Moreover, color features extracted over the Span
images result on average in worse a classification performance in this classification setup.

When evaluating the individual class results as presented Figure 48, we can see that classi-
fication results for Water using the texture features show no significant differences among the
pseudo color images. Similarly, texture feature results for Vegetation match observations
made for the natural surfaces in the Flevo_C data. Likewise, accuracies obtained with the col-
or features are almost equivalent beside a minor 1-2% increase over the Polar image related
to Vegetation’s darker color compared to the other classes reducing potential mismatches.

As for the main terrain surfaces of man-made areas in this PolSAR image, High Urban and
Developed accuracies for texture features shared the same behavior as seen for Vegetation fa-
voring Polar and Span image results whereas Low Urban results do not show such differences
for the pseudo color images. This means that for the other two man-made classes, the Pauli
and Sinclair images do seem to lose underlying information related to texture pattern due to
that fact that both of them are generated using polarization matrices. On the other hand, the
Pauli and Sinclair images generate different visual color representations for the various man-
made regions making it easier for the color features to provide distinctive descriptions. Hence,
their obtained results using the color features are significantly better than for the Polar image.
However, for the Polar image, the DCD feature lacks discrimination power compared to the
other color features as CSD, CLD include color relationships, and HSV carries more infor-
mation within its histogram representation. Compared to other classes, the color features ex-
tracted over the Span image fail to provide any comparative results for Developed as its inten-
sity values are similar to Low Urban. This shows that color is a main discriminator for Devel-
oped. Related to the FST and FSC Span results over Flevo_C, High Urban is the only class
where we can observe the similar results again. This is probably regarded to the classification
setup and data, where the terrain classes have strong texture pattern characteristics.

Overall, in this particular classification setup, the attained performances among the three
generated pseudo color images do show significant differences in differentiating various ur-
ban areas. There are major gaps on these urban areas for the Pauli and Sinclair image results
using color features due to their unique visual color representation. Differences to results over
the Polar image are as high as 10%.

3.4. COLOR OVER PARTIALLY POLARIMETRIC SAR DATA

After the promising classification results for fully polarimetric SAR images, the focus is di-
rected to investigating the potential of color features when applied in supervised classification
over partially PolSAR images. The main difference now is that the full polarimetric infor-
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mation is not available, as obviously in dual-pol data there are only two of the four possible
polarization combinations whereas in single-pol SAR data just one polarization matrix is
available. Therefore, the generation of the necessary pseudo color image is different from the
fully polarimetric data as described in Section 3.1. The main objective here is to investigate
color features from pseudo color-coded images generated from two partially PolSAR images
one from the TerraSAR-X and the other on from the COSMO-SkyMed system.

The rest of this evaluation is organized as follows. The experimental setup presents the
PolSAR image data, and the polarimetric SAR and image processing features before the clas-
sification results over combinations of PolSAR, texture, and color features are evaluated.

3.4.1. Image Data

This particular evaluation investigates the dual-pol TerraSAR-X data and the single-pol
COSMO-SkyMed data with their ground truth as described in Sections 2.5.4 and 2.5.5, re-
spectively. The COSMO-SkyMed image is been speckle filtered whereas the TerraSAR-X is
kept as is due to its radiometrically enhanced multi-look ground range processing already re-
duces speckle. Table 10 provides a brief summary of the two PolSAR images.

With the generated ground truth, the following procedure is adapted to create the training
and testing sets for the PolSAR images. The train dataset of the TerraSAR-X image contains
approximately 1000 pixels per class; and the test dataset has around 100000 pixels per class.
As for the COSMO-SkyMed image, the selected ground truth consists of around 2000 pixels
per class for training and 100000 pixels per class for testing. The training dataset size is dou-
bled due to the larger image size and its single-pol nature. What is more, the training datasets
were split into 50 percent training and 50 percent validation for optimizing the classifier pa-
rameters; and Table 11 provides a summary of the train and test dataset used per PolSAR im-
age.

Table 10 – Overview of image data used within color feature experiments over partially polar-
imetric SAR images.

Name System Mode Date Dimensions Incident angle
Dresden TerraSAR-X Dual Feb 2008 2209×3577 41°

Po Delta COSMO-SkyMed Single Sep 2007 4642×3156 30°

Table 11 – Partially polarimetric SAR image data with their train and test sets for color fea-
ture evaluation.

Name No. classes Train size Test size Ratio Test/Train Abbr.
Dresden 6 6000 600000 100 TSX

Po Delta 6 12000 600000 50 CSK
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3.4.2. Features and Classifier

The used color features are the same features as in the previous Section 3.3.5 with HSV (Hue,
Saturation, Value) color histogram, the MPEG-7 Dominant Color Descriptor (DCD), the
MPEG-7 Color Structure Descriptor (CSD), and the MPEG-7 Color Layout Descriptor (CLD)
as describe in Section 3.2. As for the extraction of the texture features, the Local Binary Pat-
tern  (LBP)  and  the  MPEG-7  Edge  Histogram  Descriptor  (EHD)  are  not  considered  due  to
their rather poor performances over the fully PolSAR images; and it is not expected to change
for partially PolSAR images. As a replacement, the proposed SAR texture feature Multilevel
Local Pattern Histogram (MLPH) is added, as it had been used over single-pol SAR images.

Table 12 – Texture and color feature vectors and combinations used in the partially polarimet-
ric SAR image color feature classification experiments.

Feature set Feature vector Dim. Description
GW FV1 24 Gabor Wavelets

OCM FV2 36 Ordinal Co-occurrence Matrix

MLPH FV3 75 Multilevel Local Pattern Histogram

DCD FV4 4 Dominant Color Descriptor

HSV FV5 24 Hue, Saturation, Value histogram

CSD FV6 32 Color Structure Descriptor

CLD FV7 12 Color Layout Descriptor

FST FV1 + FV2 + FV3 135 Combined texture features

FSC FV4 + FV5 +
FV6 + FV7

72 Combined color features

FSCT FST + FSC 208 Combined texture and color features

SAR + FSX FST / FSC / FSCT -
Combine visual feature sets with

respective PolSAR features

FS VH FST + VV FST 272
Combined texture features extracted over VH

and VV, baseline feature set for dual-pol image

Besides extracting the individual visual feature vectors, the individual texture and color
features are combined to generate one texture feature set, FST, one color feature set, FSC, and
one feature set containing all visual features, FSCT. Furthermore, these three feature sets are
combined with the respective PolSAR feature for the dual-pol and single-pol data using the
abbreviation SAR + FSX. Table 12 summarizes the extracted features, their combinations, and
dimensions.

For the dual-pol SAR image, color features are extracted over the RGB2 pseudo color rep-
resentation (detailed in Section 3.1) as it is expected that similar results can be achieved for
the different visualization RGB1 and its reversed combination of the VH and VV data, which
contents the same underlying information. The texture features are extracted over the intensity
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representation of the Span and RGB2 as obtained by I = 0.2989·R + 0.5870·G + 0.1140·B. I is
equivalent to the luminance component Y of the YIQ / YCrCb color space used in the NSTC /
PAL color TV systems, respectively. Due to the dual polarization (VH/VV), generally texture
features are extracted separately for each polarization matrix (e.g., FST over VH and FST over
VV). They are then concatenated and combined with the dual PolSAR (VH/VV) features to
form the final feature vector (FS ) mainly for comparison. Over the single-pol SAR image,
the texture features are extracted over the intensity representation of the HH polarization ma-
trix, and the color features are extracted over the HSI pseudo color representation of the HH
intensity image as detailed in Section 3.1. Similar to the dual-pol data, the combination of the
single HH PolSAR feature and the FST from its intensity image representation is used as the
main feature set for comparison.

Our focus is to investigate the contribution of individual visual features, especially color,
to the classification outcome and thus to perform comparative evaluations against well-known
PolSAR and texture features employing the pairwise multiclass SVM (OvO_SVM) applying
the same optimization procedure as before to determine the best SVM configuration in case of
kernel and its parameters.

3.4.3. Experimental Results

We will discuss observations related to the two different polarimetric modes: dual-pol and
single-pol, firstly presenting some general classification performances before going in depth
analysis for each individual PolSAR image. All the presented results are average classification
accuracies obtained over 16 runs computing the trimmed mean leaving out the minimum and
maximum classification accuracies to reduce the effects of outliers. As introduced in Section
3.4.2 and Table 12, the respective feature set abbreviations are used to refer to the different
feature sets in the text.

The dual-pol TerraSAR-X image results providing average classification accuracies for in-
dividual visual features and their combinations are presented in Figure 49. As for the perfor-
mance evaluations of the texture features, GW and MLPH achieve around the same classifica-
tion accuracies whereas OCM reaches around 5% better results. The combined texture fea-
tures, FST, extracted over the image RGB2 has the highest accuracies even though the classifi-
cation performance differences to the corresponding feature over Span are minor. OCM and
FST have quite similar classification performances, as OCM seem to provide the main contri-
bution in this texture combination. When joining FST with the dual PolSAR (VH/VV) feature,
significant improvements can be achieved with 5% - 6% showing the additional contribution
of the two PolSAR features. The two percent gap between the performance over the RGB2
and Span image probably results from the two different image compositions where RGB2 and
the dual PolSAR (VH/VV) feature seem to provide a little more diversity between each other.
RGB2 incorporates both VH and VV polarization matrices information in the different color
components and Span represents the total power over VH and VV as an intensity representa-
tions. In Figure 49 it is observable that a slightly lower classification performance of -3% is



70

achieved by extracting the texture features over the RGB2 color image compared to the base-
line feature set, FS , which, however, has twice the feature dimension. This is due to the ex-
traction of FST over both VH and VV polarization matrices separately.

As for the color features, the main observation is the performance of the individual color
features achieving higher accuracies compared to the best individual texture feature, OCM.
Similarly, to the texture features, the combination of all color features, FSC, results in an equal
performance as the single best color features, CSD and HSV. Additionally, the color features
DCD and CLD are not able to provide the same level of discrimination due to their more
compact and lower feature dimensions. Furthermore, color features CSD, HSV, and FSC yield
an accuracy gain of up to 2% compared to the FS  performance. With the addition of FST, a
further improvement of 1.5% can be achieved exceeding the baseline results up to 3.5% with
lower overall feature dimensionalities, particularly as using the combination of FS  with FSC

will result in similar performances.
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Figure 49 – Average classification accuracies using the individual features and feature combi-
nations over the dual-pol TerraSAR-X image. The dashed line is the result for the feature
combination (FSBL

D ) of dual PolSAR (VH/VV) plus FST over VH and FST over VV.

Figures 50 to 52 illustrate the classification results for the individual terrain classes. It is
evident that for the Urban class in Figure 50, the dual PolSAR feature alone provides a poor
discrimination since it cannot describe the underlying pattern of urban areas with buildings,
roads,  and  urban  vegetation  due  to  its  pixel-based  nature.  With  the  addition  of  texture  fea-
tures, the average classification accuracy is raised to 65 percent due to the fact that the texture
features can better describe the typical pattern of urban areas, particularly OCM with is multi-
ple seeds. It can be observed that all feature sets, which include texture, have a similar level of
classification  accuracy.  Note  further  that  the  overall  dimensions  of  these  feature  sets  (135-
208) are smaller than the baseline feature set dimension (272). Overall, performance of color
features reaches similar levels compared to the texture features, yet the additional contribution
seems minor for the classification of the urban terrain type.
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Since the terrain of the Industrial class has a similar pattern as the Urban class, comparable
observations and conclusions for the dual PolSAR (VH/VV) and texture features can be
made. We can observe that the achieved classification accuracies using the color features,
CSD, HSV, and FSC, are just slightly below the performance of the texture features, FST. In
case of the DCD feature, classification accuracies are quite low because the DCD suffers from
the larger variety of colors to cluster and when picking the largest cluster it might not be the
best representation for this class characteristic. Hence, there is generally a lot of misclassifica-
tion with the Urban class. Again, texture features provide major discrimination already so the
color features can only provide minor improvements to the performance level achieved with
the texture features.
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Figure 50 – Average classification accuracies using the individual features and combinations
for the terrain types, Urban and Industrial, over the dual-pol TerraSAR-X image. The dashed
line is the result for the feature combination (FSBL

D ) of dual PolSAR (VH/VV) plus FST over
VH and FST over VV.

The water bodies, InWater, are classified with a (nearly) 100 percent accuracy for most of
the feature sets including the two PolSAR features, as surface scattering, textural pattern or
color significantly differs from the other classes.

For the Forest class, an observation from Figure 51 is that classification accuracies using
the GW or MLPH feature drop significantly compared to the other classes due to misclassifi-
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cations with the classes Urban, Pastures, and Arable Land. The main reason is that all these
classes are represented by similar intensity values particular for the Span image. As GW relies
on first and second order moments and MLPH employs thresholds as an initial step, they both
lack the discrimination capabilities compared to OCM. Furthermore, employing the OCM fea-
ture over the Span image, classification accuracies are considerably lower than the corre-
sponding ones over the RGB2 image due to similar Span intensity values with Arable Land,
which affects the co-occurrences within the different distances and directions. Note also that
this is the only class, where the results obtained with the texture feature extracted over RGB2
and Span images are significantly outperformed by the baseline feature set results, which is
also the main reason for the 3% drop observed in the average classification accuracies. This is
because the baseline feature set includes texture features extracted over both VH and VV po-
larizations, which seems to provide better discrimination for such a terrain class. When using
the single and combined color features, better classification accuracies can be achieved due to
clear color discrimination present for the Forest regions (see Sections 2.5.4 and 3.1).
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Figure 51 – Average classification accuracies using the individual features and combinations
for the terrain types, Water and Forest, over the dual-pol TerraSAR-X image. The dashed line
is the result for the feature combination (FSBL

D ) of dual SAR (VH/VV) plus FST over VH and
FST over VV.

For the Pastures class, the first observation from Figure 52 is that the classification accura-
cies with texture features over the RGB2 images drop substantially compared to performances
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over the Span image. Contrary to the texture feature results for the Forest class, the total pow-
er represented by the Span seems to provide better discrimination for the texture features over
Pastures regions. However, when combining PolSAR features with FST extracted over RGB2,
it seems that the dual PolSAR feature can provide additional diversity, so that this combina-
tion is able to achieve similar results that the PolSAR + FST extracted over Span. Besides the
single texture features and FST, all color feature sets perform on a rather similar classification
level.  This  implies  that  the  applied  color  features,  single  and  their  combinations,  provide  a
good discrimination to the other five classes, whereas the texture features have lower discrim-
ination abilities for this terrain class when extracted over the intensity representation of the
RGB2 image. Finally, it is observed that by using the color features similar or better classifi-
cation accuracies up to 7% can be achieved compared to the baseline feature set results.
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Figure 52 – Average classification accuracies using the individual features and combinations
for the terrain types, Pastures and Arable Land, over the dual-pol TerraSAR-X image. The
dashed line is the result for the feature combination (FSBL

D ) of dual PolSAR (VH/VV) plus
FST over VH and FST over VV.

For the regions of Arable Land, as shown in Figure 52 using the single and combined color
features extracted over the RGB2 image, better classification accuracies can be achieved due
to distinguishable color differences, particularly compared to the texture features, which
achieve slightly higher performance than the dual PolSAR features results. However, in their
combination the two different components PolSAR + FST provide good diversity to achieve
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10% accuracy gains than results using FST. As for Pastures, single color features can provide
higher discrimination than the baseline features resulting in up to 7% higher accuracies.

Figure 53 – Classi cation results for the dual-pol TerraSAR-X image. Left column is the
classi ed SAR image, the middle column is the classi ed image overlaid with the ground
truth, and the right the difference to six-class ground truth to the middle column, respectively,
and with the color indicating what the ground truth should have been. Circles mark degrada-
tions (red) and improvements (green).
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Figure 53 presents the visual differences of the classification results using the feature sets:
texture features (FST), color features (FSC)  and  color  +  texture  feature  sets  (FSCT) over the
RGB2 image. Note that in all three cases, the water terrain types are classified correctly; how-
ever, Urban and Industrial areas are misclassified, as shown in the bottom part of the images,
and an even larger Forest area is misclassified as Urban. An important observation for the
classification results using the FST features is that significant amount of misclassifications are
evident among the classes, Forest, Pastures, and Arable Land, that can be easily identifiable
in the third column, when overlaid with the ground truth. Regarding these three classes, dif-
ferent color feature combinations provide improved classification results as marked with the
green circles. Nonetheless, they seem to overestimate Urban regions slightly as marked with
the red circles. The classification results over RGB2 image using the color and texture feature
sets are almost identical to the results using FSC with the exception that the texture features
provide better classification accuracy for the Urban areas. Moreover, with the addition of the
dual SAR features, further yet small visual improvements can be observed for Urban.

For the dual-pol TerraSAR-X data, the application of texture features carries a high amount
of discrimination especially for man-made terrain classes. The applied MLPH features ex-
tracted over the respective intensity representation of the Span and the RGB2 pseudo color
image  can  provide  comparable  classification  results  to  GW  and  OCM  yet  was  not  able  to
achieve (significantly) higher discrimination in this classification setup. Nevertheless, the
combination of the three single features is quite effective. That being said, for the terrain clas-
ses Forest, Pastures, and Arable Land, the color features are able to provide similar or better
discrimination particularly DCD and CLD with their feature dimensions of 4 and 12, respec-
tively, when compared to the larger dimensions of the texture features. The main confusion
between Urban and Industrial, observable in visual classification results, is expected has both
have similar characteristics, which are not 100 percent distinguishable by the applied texture
and color features.

About evaluations for the single-pol COSMO-SkyMed image, the top of Figure 54 pro-
vides average classification accuracies for the individual visual features and combinations
over the HSI pseudo color image. Observations are that the results with OCM features are bet-
ter than for MLPH and GW as seen for the dual-pol TerraSAR-X image. Once again this
demonstrates particularly OCM has certain superiority for the purpose of SAR image classifi-
cation. The individual color features extracted over the HSI pseudo color image achieve com-
parable results to the combined texture features as well as the single best texture feature,
yielding up to 7% accuracy gains. Classification accuracies can be improved up to 2% by us-
ing the HSV, CSD, and the combined color features, FSC, compared to the baseline feature
sets. The addition of either the single PolSAR feature or the combined texture feature, FST, to
FSC provides a mere one percent accuracy gain, where in the case of the texture augmentation
with the expense of higher feature dimensions from 136 to 209.

Regarding the results for the individual classes as illustrated in Figures 54 and 55, first ob-
servation for Urban is that the OCM texture feature is able to provide the best discrimination
resulting in the highest texture classification accuracies and is the main contributor for the FST
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results. Using the majority of feature sets yields in a similar level of classification accuracies
particularly using the combined feature sets, FSC and FSCT, does not add any further discrimi-
nation power compared to the single color features, which accuracies already match the base-
line performance. For this class, color features provide only minor contributions in compari-
son to the texture features.
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Figure 54 – (top) Average classification results for the individual features and combinations
for the single-pol COSMO-SkyMed image. (bottom) Classification results for the individual
features and combinations for Urban and Forest for the single-pol COSMO-SkyMed image.

Considering Forest, the classification performance using single color features are better
than using the GW and OCM texture features, where the performance gap can be around 10%
in terms of accuracy, and equal or slightly better than results obtain with the extracted MLPH
feature, which is the main contributor to the FST results. As for Urban, color features can only
match the texture feature performance but not excel it, which is related to the high average
classification accuracy achieved by the features, as Urban and Forest are quite distinguishable
from the other terrain classes (see Section 3.1).

As for the agricultural class, Arable Land, the classification performance for the texture
features highly benefits from the single feature combination and augmentation with the HH
PolSAR feature as illustrated in Figure 55 compared to the other terrain classes where these
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combinations reach similar performances as the single best texture feature for this image. This
means that all three individual texture features can provide different levels of diversity, which
is required to achieve better results when combining single features. The classification per-
formance using CSD and combined color features is around 3.5% higher than using texture
features. When using the combined color features, FSC,  with  HH and texture,  classification
accuracy improvements of 6% are achieved. This shows that additional discrimination infor-
mation for this terrain class can be obtained by extracting color features over a pseudo colored
intensity image.
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Figure 55 – Classification results for the individual features and combinations for Arable
Land, InWater, Wetland, and MaWater for the single-pol COSMO-SkyMed image.

For the inland water class, InWater, a similar performance level (around 75 percent) is ob-
served in Figure 55 by the majority of features. The performance level by using neither single
nor combined color features can exceed the corresponding result using SAR+FST. Therefore,
for this class, color features do not have any significant contribution on the classification ac-
curacies.

As for the Wetland class in the bottom of Figure 55, varying classification accuracies are
obtained using different feature sets, which results from the confusion with MaWater as both
are maritime water classes, yet with a visual difference. Using of either the following features
or feature sets, HSV, OCM, FSC, SAR+FSC, FST, and SAR+FST will result in a similar classi-
fication accuracy of about 50 percent for this terrain class despite entirely different feature
dimensions. However, when all features are used together the classification accuracy is im-
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proved about 7% compared to the classification over individual visual features. This means
that each individual feature still provides a different level of discrimination not evident from
their respective single results.

For the marine water class, MaWater,  a  classification  accuracy  of  72  percent  is  obtained
using the single HH PolSAR feature. The combination with texture features does result in a
10% drop in classification accuracy due to larger feature dimension of FST, so that the single
HH features appears as an outlier. As for the single color features, they are able to achieve
similar or better classification accuracies yet their combination, FSC, will perform almost 10%
worse than their two best single features. This is related particularly to CLD and its lack of
discrimination between MaWater and Wetland, where its accuracy is 10% lower than for the
other  single  color  features  so  that  it  tends  to  classify  either  of  the  two classes  as MaWater.
Even though the color features achieve higher classification accuracies than the texture fea-
tures, they are not able to exceed the performance of the single HH PolSAR feature. However,
both texture and color features are able to provide some sort of discrimination between the
two maritime water classes MaWater and Wetland whereas the single HH PolSAR features
fails in classifying Wetland. This can be anticipated, as both classes will share a similar
backscattering characteristic.

Figure 56 presents the classification results showing the visual differences of the texture
features (FST), Color (FSC) over HSI as well as HSI color + texture feature sets (FSCT). Note
that using all three feature sets, the regions of InWater class are mainly misclassified due to
the presence of the thinner river arms, while the classification results for the main Urban re-
gions are intact. For the results using the texture feature set, there is a major confusion among
the different water classes InWater, MaWater, and Wetlands as well as Forest and Arable
Land. Furthermore, several Arable Land areas are misclassified as Urban particularly along
their boundaries; and large water regions are misclassified as Forest. Note that when using the
SAR and color feature sets together over the HSI pseudo color image, the classification of the
water regions is improved noticeably with fewer noisy occurrences over MaWater on the
right, Wetland, and fewer misclassifications of MaWater as InWater or Forest. Whenever tex-
ture features are used along with SAR and color feature sets, more misclassifications are ob-
served for the Wetland terrains and vice versa for the Urban areas, which is an expected out-
come due to the unique pattern of this terrain class.

Overall, for this single-pol COSMO-SkyMed PolSAR image, classification results for the
Urban, Forest, and Arable Land regions are high using texture and color features as their ter-
rain characteristics are different to the water bodies. Among the water bodies, the color fea-
tures are able to provide additional discrimination for an improved classification. However,
similar to the dual-pol TerraSAR-X image, for Arable Land the color features seem to provide
better discrimination than the applied texture features as they will not have strong texture pat-
tern. There is anticipated confusion among the three water classes where InWater represented
by river and river arms most probably benefits from window based feature extraction due to
the river banks.
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Figure 56 – Classi cation results for the single-pol COSMO-SkyMed image. Left column is
the classi ed SAR image, the middle column is the classi ed image overlaid with the ground
truth, and the right the difference to six-class ground truth to the middle column, respectively,
and with the color indicating what the ground truth should have been. Circles mark degrada-
tions (red) and improvements (green).

3.5. SUMMARY

This chapter introduced a new group of features to improve PolSAR LULC classification. In
particular, the application of color features is addressed with their respective description and
extraction over the generated pseudo color images for fully and partially PolSAR data. For
fully polarimetric SAR data, the generation of pseudo color images is straightforward due to
the full polarimetric information available in the scattering matrix [S].  The  first  evaluation
was done over the pseudo color image in Pauli polarization basis (H,V) commonly used for
visualization of PolSAR data.
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The experimental results demonstrated that with the addition of the color features, all clas-
sifiers outperformed the results with common PolSAR features alone as well as achieved
higher classification accuracies compared to the traditional feature combination of PolSAR
and texture features. We can conclude that the tested color features extracted over the pseudo
color image in the Pauli H,V basis provide further improvements in terms of class discrimina-
tion when compared to their texture counterparts. Texture features may still provide valuable
discrimination and, as for the color features, the gains and losses achieved will vary with the
PolSAR image classification problem. In the experiments, we have observed that the applica-
tion of the color features to fully polarimetric SAR image classification can provide notewor-
thy improvements in particular, man-made, foliage, and tree-type dominated vegetation ter-
rain classes highly benefited from the additional color features.

The  experiment  and  evaluations  were  extended  to  investigate  the  effects  of  pseudo color
images generated by different combinations of polarization matrices and/or target decomposi-
tion components. Experiments validated that individual visual color features alone are able to
provide high discrimination particularly over pseudo color images generated using the polari-
zation matrices. It could also be observed that the color features do work over intensity imag-
es yet obviously not as effectively as over color images. However, they were still able to pro-
vide comparable results in relation to results with the applied texture features, which might be
related to particular terrain classes in certain classification setups.

Compared  to  fully  PolSAR  data,  the  generation  of  pseudo  color  images  to  extract  color
features is different for partially PolSAR image data as not the full polarimetric information is
available to apply similar approaches. For dual-pol images, combinations of the two polariza-
tion matrices assigned to the RGB color components provide a similar straightforward option
to obtain such pseudo color images. However, this is obviously not possible considering sin-
gle-pol images or one intensity channel. Thus, in such cases, an intensity to color conversion
is usually applied.

In the experiment and evaluation of dual-pol and single-pol PolSAR images, color features
yield noteworthy improvements, in particular the classification accuracies over the agricultur-
al, forestry, and vegetation terrains are improved. Especially the extracted HSV and CSD col-
or features were able to provide the highest discrimination over various terrain types. Over the
dual-pol image, similar or better results may be achieved by extracting texture and/or color
features from a single pseudo color image reducing the overall feature dimension rather than
processing the two polarization matrices individually. As for the single-pol image, it is not
expected that color features based on a color transformed intensity image will significantly
outperform traditional texture features yet it could be observed that such color features can
provide additional discrimination for classification of such image data.

Generally, for all color feature experiments regardless of the PolSAR data, we observed
that additional texture features contribute to the classification performance and, as for the col-
or features, the performance gains and losses they caused vary according to the terrain types
and the SAR images over which they are extracted.
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Chapter4
Data-Driven and Adaptive Classi-
fication of PolSAR Images

wide majority of remote sensing applications is in the areas of monitoring, detection,
and classification of local or global regions and targets. Such analysis and interpretation

tasks are generally performed with the help of automatic tools to support human experts and
such tools have been introduced from various disciplines such as signal and image processing
as well as computational- and machine learning domains. With the growing amount of availa-
ble very high-resolution PolSAR image data nowadays, this obviously becomes a large-scale
learning challenge, where such huge amount of data should be processed, analyzed, and in
turn managed efficiently and effectively. By enabling this, the objective is to minimize the
manual labor while achieving a highly accurate classification performance for human experts
to analyze and interpret the data with utmost efficiency. The application of such methods is
especially valuable if they are capable of processing and learning from large amount of data.
Additionally, it is highly beneficial if they are able to adapt to the task at hand, which might
change due to the introduction and availability of new data provided by the human expert.

The rest of the chapter is organized as follows. The next section briefly introduces the area
of machine learning and its principles. To address the large-scale learning problem over the
PolSAR data, Section 4.2 proposes the application of an adaptive and data-driven classifica-
tion framework, namely Collective Network of Binary Classifier, as co-authored and pub-
lished in [108]. The section presents CNBCs topology and design to adapt to the dynamic
changes of the classification task at hand such as the integration of new ground truth data or
features. Furthermore, this framework provides the capabilities to adapt to the data-driven
classification  of  single  PolSAR images  as  demonstrated  in  Section  4.3  as  well  as  over  Pol-
SAR image collections as presented in Section 4.4 based on the author’s publications [108],
[199] and [197], [201], respectively.

A
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4.1. THE PRINCIPLES OF MACHINE LEARNING

Machine learning concerns the design and study of systems that can learn from data. A more
general definition of machine learning is given by Mitchell [182] where “a computer program
is said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E.” In
the field of remote sensing SAR data, the task could be terrain or LULC classification within
a SAR image, the experience would be the SAR data with the terrain class labels, and the per-
formance is measured by the classification accuracy.

When designing such learning machines, the main objectives are to extract and generalize
the predictions learned from underlying properties of the training data. Generally, the proba-
bility distribution of the provided training data is unknown so that learning machines try to
model the distribution from the training data. If successful, such a generalized model enables
accurate predictions over the unseen (test) data.

Machine learning distinguishes two main principles: unsupervised and supervised learning.
In this context, supervision is provided as the prior information in form of class membership
values (labels) to the given training data. This has its advantages and drawbacks for both
learning principles, which are detailed next.

4.1.1. Unsupervised Learning

Learning is called unsupervised (UL) if no supervision takes place so that the data are given
without any corresponding class labels. Hence, unsupervised approaches try to discover and
model hidden structures in the data based on the underlying data properties or characteristics.
Common approaches are blind source separation, self-organized maps and adaptive resonance
theory, and data clustering. The latter is probably the most commonly known approach in un-
supervised learning [60], [76].

There are various clustering methodologies exploiting different properties of the given data
[60], [76]. Approaches are, for instance, density-based, hierarchical, centroid-based, and dis-
tribution-based clustering with the last two being the most widely used methods. As their
names suggest, a centroid-based approach tries to find representative centers that best describe
subsets of the data by minimizing the distance from the potential cluster centers to the data.
The found cluster centroids represent the “learned” model. The most popular clustering algo-
rithm is k-means [132] with numerous variations such as k-medoids [102] (centroid is mem-
ber of the data) and fuzzy c-means [16] (allowing fuzzy cluster assignment). On the other
hand, a distribution-based approach tries to define clusters where the corresponding data share
the same underlying distribution. The most prominent method is (Gaussian) mixture models
[138] using the expectation maximization method [52] to optimize iteratively a fixed number
of (Gaussian) distributions to fit the data.

As mentioned before, unsupervised learning has the drawback that no prior information as
class labels is available. On one hand, this is an advantage, as it does not require collecting
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such ground truth information, which can be cumbersome. On the other hand, unsupervised
methods do not generally perform as well as supervised approaches due to the lack of such
ground truth information.

4.1.2. Supervised Learning

Within supervised learning (SL), the main objective is to infer a function from labeled train-
ing data. The training data generally consist of the data itself and the corresponding ground
truth information indicating class memberships. The obtained inferred function is then used to
predict class memberships from newly unseen data. Hence, the goal of a supervised learning
algorithm is to be able to best generalize the underlying function from the training data.

While trying to infer the function or model that best fits the data, the bias-variance tradeoff
([17], Chapter 9) is a central problem in supervised learning and generalization. Intuitively,
we try to find a model which best fits the data and at the same time generalizes well to unseen
data. Models can have high bias, meaning they make inaccurate assumptions of the functions
that can be learned (e.g., linear classifiers), as they have not enough flexibility, hence, the
model is too “simple” to represent the relevant characteristics of the data. This is considered
underfitting. Alternatively, models can have high variance, meaning they can learn various
forms of complex functions, therefore, being too sensitive to the training samples and fitting
irrelevant characteristics including noise in the training data. This is usually the case for com-
plex algorithms with too many parameters, as they might tend to memorize the training exam-
ples without generalizing well resulting in overfitting. To achieve good performance on newly
unseen data, an algorithm seeks to find a good tradeoff between bias and variance.

The bias-variance tradeoff is related to the number of available training data, the input fea-
ture dimensions, and noise within the features and training data. With regard to the size of the
training data, if the underlying function is simple then a small amount of data will be suffi-
cient to learn it. If, on the other hand, the function is complex then more data are necessary to
be able to infer the true function. Additionally, the input feature dimension can also affect the
learning algorithm. Especially when the input feature dimension is huge, yet only a few ele-
ments are actually relevant to model the true function. Thus, the presence of the irrelevant fea-
tures makes it difficult for the learning algorithm to find the relevant features to learn the un-
derlying function. Practically, feature selection [20], [79], [127], or dimension reduction [209]
algorithms are used prior to applying a supervised learning algorithm. In the event of noisy
training data, the learning algorithm should not try to find a function perfectly matching all
training data as it would result in overfitting.

Overfitting is a general problem of single classifier systems. In the case of supervised
learning, combining multiple classifiers to a committee or ensemble has shown to improve
classification performance over single classifier systems [58], [158]. Typically, ensemble
learning tries to improve generalization by combining multiple learners, therefore, reducing
the chance of overfitting.
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4.1.3. Active Learning

In machine learning, having enough data for a proper learning is not the main issue. Having
the corresponding ground truth information to apply supervised learning is the challenge as
generally the majority of the available data are unlabeled. Labeling huge amounts of data is
tedious and time consuming. Therefore, reducing such labeling efforts and utilizing unlabeled
data to improve the learner’s classification performance is highly beneficial. One option in
supervised learning is the so-called active learning (AL) [44].

AL starts with a supervised learning process by training a classifier over the initial training
data. After obtaining the initial classification results, the idea is to provide the most confusing
samples (e.g., samples close to or on a decision boundary among classes) to a human expert to
obtain their class labels. The advantage is that these newly labeled samples can now be inte-
grated into the learning process helping the classifier to find a better-generalized model of the
data. Hence, it is beneficial to select examples among the most confusing samples, which will
provide the best additional information into the learning process [189].

With active learning, data are actively labeled during the ongoing learning process, which
comes with an obvious drawback. The human expert has to be available during this learning
process to provide the ground truth information for the new samples, which might not always
be practical or feasible option at all.

4.1.4. Semi-Supervised Learning

Active learning provides an iterative and interactive option to improve the learner’s classi-
fication performance by incorporating previously unlabeled data to reduce significant training
errors. To benefit from the unlabeled data without the human interaction, the interest in semi-
supervised learning (SSL) has increased because it can combine supervised and unsupervised
learning approaches. The general notion behind SSL is to start from a set of labeled data and
then to utilize the large amount of unlabeled data to improve the initial learner [171]. There-
fore, the crucial part in this process is, contrary to AL, the automatic selection of reliable
training data among the unlabeled data so as to provide new training data to the ongoing
learning process. The selection can be performed by several approaches such as unsupervised
clustering methods [3], [80], self-training [231] where one initial learner iteratively selects the
most confident samples to add them to the training set, or co-training [231] where two learn-
ers either work on different feature spaces or are completely different altogether and add new
training samples to one another. Figure 57 illustrates the relation of typical supervised learn-
ing (SL) to SSL, which might encapsulate an UL approach preceding a SL process or a self-
training method over a SL process.

To aid the selection of reliable new training data for SSL, several assumptions ([28], Chap-
ter 1.2) are generally exploited where the first two are the most commonly used. Firstly, there
is the local smoothness / consistency assumption, where nearby points are more likely to have
the same label. This is the same assumption any SL algorithm exploits to learn from the train-
ing data and generalize a model or function applicable to any unseen data provided in the fu-
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ture. Typically, this is performed in the feature space; however, it can also be applied spatially
over the neighborhood of each image pixel. Secondly, the global cluster assumption exploit-
ing the fact that points sharing the same structure, hence, would fall into the same cluster are
likely to have the same label so that those unlabeled samples which are highly similar to a la-
beled sample should share its label. This includes approaches based on the low-density sepa-
ration assumption where in many clustering methods the cluster centers are considered of
high-density zones so that the decision boundaries should lie within regions of lower density.
In this case, rather than to find the high-density sample regions directly, the focus lies in find-
ing such low-density regions to best draw decision boundaries among clusters. As another as-
sumption, the fitting constraint implies that a “good” classifier should not deviate too much
from its initial label assignments during a learning process.

Figure 57 – Semi-supervised learning approaches with a typical supervised learning process.

4.1.5. Incremental Learning

A special form of supervised learning is incremental learning where the training data are not
entirely available when the initial learning process starts. The training data might be acquired
over time in sub sequential batches. Therefore, incremental learning approaches utilize the
information in the newly presented data without forgetting their previously learned models
and ideally do not re-use the previous training data. If all of these circumstances are fulfilled,
such learning method is capable of incremental learning. Active Learning and Semi-
Supervised Learning can also be seen as special incremental learning approaches since new
training data become available sequentially.

A practical approach for learning from new data may involve discarding the existing clas-
sifier, and retraining a new one from scratch using all available data, previous and new. This,
however, results in losing all previous acquired information so-called catastrophic forgetting
[68]. Even though past knowledge could be restored due to the addition of the previous origi-
nal training data, a serious drawback may still occur as the data might be lost, corrupted, or
unavailable. Moreover, considering all available training data (new and previous) within eve-
ry incremental training step will obviously result in an increase in computational complexity
during retraining due to the growing amount of training data.
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To avoid retraining a new classifier from scratch, an incremental learning process should
be able to update the existing classifier and capable of adapting to the necessary structural
changes. This can be the case if the newly available data change the existing classification
problem by introducing previously unknown classes. However, an incremental algorithm
should result in the same model after receiving n observations in multiple steps, as the com-
mon (batch-based) fundamental classifier does for the n observations; otherwise it might be an
online algorithm, which is not incremental [168].

4.2. APPLICATION OF COLLECTIVE NETWORK OF BINARY
CLASSIFIERS

For the classification of PolSAR images, several conventional approaches were proposed such
as Maximum Likelihood Classifier and its variants, e.g., [2], [57], [86], [110], [119], [128],
[170], [178], [204], [219], various types of Artificial Neural Networks [23], [29], [30], [49],
[56], [70], [81], [82], [85], [95], [131], [175], [192], Support Vector Machines [31], [46],
[175], [220], [226], [232], variations of Decision Trees and Random Forest [72], [162], [176],
[220], [232], and unconventional approaches such as AdaBoost [72], [139], Multi-Modal
Markov Aspect Model [218], Object Oriented Image Classification [45], and Conditional
Random Fields [180]. While the focus is on supervised classification techniques, there are al-
so recent unsupervised learning works that incorporate spatial proximity [63] or a spatial con-
text model [223] beside the initial statistical modeling and segmentation to improve clustering
and classification. The inclusion of such a spatial model may result in visually smoother and
cleaner classification compared to simpler clustering techniques or pixel-based classification
approaches on PolSAR images mainly due to the presence of speckle noise.

The application of supervised techniques with non-linear operators such as Artificial Neu-
ral Networks (ANNs) is quite popular, yet designing an optimal ANN for the problem at hand
is a crucial and challenging task. For instance, an ANN with no or too few hidden nodes may
not differentiate among complex patterns, instead leading to only a linear estimation of such –
possibly non-linear – problem. In contrast, if the ANN has too many nodes/layers, it might be
affected severely by the noise in the data due to over-parametrization, which eventually leads
to a poor generalization or training. On such complex networks, proper training may be infea-
sible and/or highly time-consuming. The optimal number of hidden nodes/layers may depend
on the input/output dimensions, training and test data sizes, more importantly the characteris-
tics of the problem. In those works where a single (fixed) classifier is  used, the overall  per-
formance directly depends on the choice of that classifier and its parameters. Furthermore, the
feature set and the number of classes are usually kept as limited as possible not to cause the
aforementioned feasibility problems on the training process due to the increased complexity
and the well-known “curse of dimensionality” phenomenon. For this purpose, it is common to
select only a certain subset of features while discarding the others or to apply feature dimen-
sion reduction techniques [209].
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As most approaches apply a supervised training scheme, some of those support the meth-
odology of incremental training. This means classifiers such as RBFs [151] and SVMs [97]
are able to adapt their earlier decision-making capabilities using new training samples without
suffering from catastrophic forgetting. However, besides the incremental training capabilities
another important point is to make the actual structure of the classifier more scalable so as to
adapt to possible dynamic changes such as new features, classes or (modified) ground truth
that  can  be  introduced  to  improve  the  classification  accuracy  at  any  time.  It  is  obvious  that
static and fixed-structured classifiers cannot scale to such changes without discarding the ex-
isting classifier and retraining a new one from scratch using the ground truth accumulated so
far.

An earlier ensemble of classifier type of approach, Learn++ [159], incorporates an ensem-
ble of weak learners, which can perform incremental learning of new classes, however, albeit
at a steep cost, i.e., learning new classes requires an increasingly large number of underlying
learners for each new class to be learned. A modified version, the Learn++.NC [144], was de-
signed to address this drawback more efficiently with a voting mechanism. The Resource Al-
locating Network with Long-Term Memory (RAN-LTM) [151] can avoid this problem by
using a single RBF network, which can be incrementally trained by so-called “memory items”
stored in a long-term memory. These items are selected from training samples while generat-
ing the network and are later combined with newly given training samples to suppress forget-
ting of the previous knowledge. However, RAN-LTM has a fixed output structure and thus, is
not able to accommodate a varying number of classes. For the incremental learning problem
when new classes are dynamically introduced, some hierarchical techniques [78], [97] have
been proposed. They separate a single class from the previous classes within each hierarchical
step, which builds up on its previous step. One major drawback of this approach is paralleliza-
tion since the addition of N new classes will result in N steps of adding one class at a time.
Furthermore, this does not support the possible removal of an existing class and hence re-
quires retraining of the entire classifier structure. None of the ensemble of classier methods
proposed so far can support feature scalability and thus a new feature extraction will eventual-
ly make the current classifier ensemble obsolete and require a complete re-design and re-
training.

In order to address these limitations and drawbacks, we adopt a global framework struc-
ture, which is designed to seek for optimal classifier architecture for each distinct class type
and feature set while utilizing a large set of features within. Specifically, we aim for the fol-
lowing objectives

I. Class Scalability: Support for varying number of classes. Any class can dynamically
be inserted into the framework without requiring a full-scale set-up and re-evolution.

II. Feature Scalability: Support for varying number of features. Any feature can be dy-
namically integrated into the framework without requiring a complete re-design.

III. Evolutionary Search: Seeking for the optimum network architecture among a collec-
tion of configurations (the so-called Architecture Space, AS).
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IV. Evolutionary Update in the AS: Keeping only the best individual configuration in the
AS among indefinite number of evolution runs.

V. High efficiency for the evolution (or training) process: Using as compact and simple
classifiers as possible in the AS.

VI. Online (incremental) Evolution: Continuous online/incremental training (or evolution)
sessions can be performed to improve the classification accuracy.

VII. Parallel processing: Classifiers can be evolved using several processors working in
parallel in local or cluster environment.

Our goal is to achieve these objectives for a database (i.e., collection) of similar PolSAR
images. For this, the Collective Network of Binary Classifier (CNBC) [106] is adapted as a
PolSAR image classification framework, which can adjust its structure to any change in the
database by means of incremental evolution sessions. During these sessions, each classifier in
the framework structure evolves to improve their classification accuracy. In short the CNBC,
if properly evolved, shall learn the significance (or the discrimination power) of each feature
and its individual components. The framework is developed over a dedicated application with
a user-interface (UI) where the user can define new classes, or update the existing ones, while
specifying the ground truth data over a given PolSAR image.

4.2.1. Collective Network of Binary Classifiers – The Topology

In order to accomplish the aforementioned objectives, the most important arguments for a da-
ta-driven and adaptive classification framework are its easy scalability and extendibility in the
input and output dimensions of the underlying classification problem. Therefore, CNBCs
adapts the concept of “divide and conquer” ([18], Chapter 7]) splitting a massive learning
problem into many smaller tasks, which are easier and faster to solve. CNBC applies this con-
cept in two levels. Firstly, the overall topology follows the One-versus-All (OvA) approach
where a multiclass problems is divided into multiple binary classification problems. In this
particular case, binary classification is considered per class, therefore, separating the individ-
ual class decisions from one another. This allows adding and removing classes providing the
desired class scalability as stated by objective I. Secondly, for each individual class within the
OvA approach, a decision is made by adapting the concept of stacked generalization [215],
which provides the flexibility of the second objective: feature scalability. Additionally, by ac-
complishing these two objectives, the parallel processing objective  can  be  fulfilled  in  a
straightforward manner. Figure 58 presents the overall topology of the CNBC framework il-
lustrating the “divide and conquer” concept in the two levels, per class and per feature.

4.2.1.1 Network of Binary Classifier (NBC)
An individual class decision is provided by a network of binary classifiers (NBC). An NBC
corresponds to a unique class and shall contain varying number of binary classifiers (BCs) in
the input layer. Each BC performs binary classification discriminating the class of this partic-
ular NBC with a unique feature (or sub-feature) based on their representative feature vector
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(FV). Therefore, whenever a new feature is integrated, its corresponding BC will be created,
evolved, and inserted into each NBC, yet keeping each of the other BCs “as is”. On the other
hand, whenever an existing feature is removed, its corresponding BC is simply removed from
each  NBC  in  the  system.  In  this  way,  scalability  with  respect  to  any  number  of  features  is
achieved and the overall system can avoid re-evolving from scratch. Similar to the stacked
generalization, each NBC has a fuser BC in the output layer, which collects and fuses the bi-
nary outputs of all BCs in the input layer and generates a single binary output, indicating the
relevancy of each feature to the NBC’s corresponding class. Due to the OvA approach, when-
ever the user defines a new class, a new NBC can simply be created (and evolved) without
requiring any need for change or update on the other already existing NBCs. This way the
overall system dynamically adapts to user demands for varying number of classes.

Figure 58 – Topology of the CNBC framework with C classes and N features (FVs).

4.2.1.2 Evolutionary Binary Classifier (BC)
Binary classification over the employed (sub-) features in each NBC is done over a set of evo-
lutionary Binary Classifiers (BCs), where each BC shall learn in time the significance of indi-
vidual feature components for the discrimination of its class. The main motivation of the evo-
lutionary component is to avoid a static approach with the classifier configuration being fixed
for all features. Therefore, each BC is optimally chosen within a pre-defined set of classifier
configurations, called architecture space.  The  optimality  therein  can  be  set  with  a  user-
defined criterion. Two common ANN types, the Multi-Layer Perceptron (MLP) and the Radi-
al Basis Function (RBF) network are mainly considered as BCs. Besides the exhaustive
search with numerous runs of backpropagation (BP), the recently proposed multi-dimensional
Particle Swarm Optimization (MD-PSO) [107] is employed as the primary evolutionary tech-
nique. Note that any other classifier types such as Support Vector Machine and Random For-
est can also be used within this framework as the BC type. However, to utilize the full frame-
work potential, they should be able to support the principle of incremental learning.
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As shown in Figure 58, due to the applied “divide and conquer” concept, it prevents the
need of using complex classifiers within the BCs as the performance of both training and evo-
lution processes degrades significantly as the complexity rises due to the “curse of dimension-
ality”. A major benefit of this approach with respect to efficient training and evolution process
is that the configurations in the architecture space can be kept as compact as possible avoiding
unfeasibly large storage and training time requirements. This is a significant advantage espe-
cially for the training methods performing local search, such as BP, for ANNs since the
amount of deceiving local minima is significantly lower in the error space for simple and
compact architectures. Furthermore, when BP is applied exhaustively, the probability of find-
ing the optimum solution is significantly increased.

4.2.2. Initial Training and Evolution

In general, CNBC applies the supervised learning principle with the required training dataset1

given by individual feature vectors (FVs) and their corresponding ground truth as target class
vectors (CVs). The training and evolution of the entire CNBC is always performed in an evo-
lution session for  each  NBC  individually  with  a  two-phase  operation.  In  the  first  phase  for
each NBC, there are a varying number of evolutionary Binary Classifiers (BCs) in its input
layer, depending on the number of features employed using their FVs and CVs.  During  the
second phase, the individual BC outputs are merged by the fuser BC to obtain the final NBC
class  decision.  Each  classifier  (BC)  in  the  CNBC body is  subject  to evolution, which is de-
fined by seeking the best (optimal) configurations of the underlying classifier to improve the
overall classification accuracy of the CNBC.

4.2.2.1 Evolutionary Update in the BCs
Recall that each BC performs binary classification over a single (sub-) feature. Rather than
limiting the BC to one specific configuration of a particular binary classifier,  we employ an
architecture space (AS), which can be defined over any type of binary classifier with any con-
figuration properties such as number of hidden layers and number of neurons per hidden layer
for ANNs. Therefore, rather than simply training one single configuration in every BC, the
optimal configuration is sought among a collection of configurations in the defined AS by a
search called evolutionary update. For any applied evolution technique, e.g., MD-PSO, in or-
der to improve the probability of convergence to the global optimum, several evolutionary
runs are performed within an evolutionary update where NR is the number of runs and NC is
the number of configurations in the AS. For each evolutionary run, the objective is to find the
best configuration within the AS with respect to a pre-defined criterion (e.g., train-
ing/validation mean squared error (MSE) or classification error, CE). Note that along with the
best classifier, all other configurations in the AS are also subject to evolutionary update and,
hence, they are continuously (re-) trained with each evolutionary run. Thus, during this ongo-

1 As a common term, “train(ing) dataset” is used to refer to the dataset over which the CNBC is evolved.
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ing process between two consecutive evolutionary runs, any classifier configuration can re-
place the current best one in the AS if it surpasses the pre-defined criterion.

Figure 59 demonstrates an evolutionary update over a sample ANN AS containing five
MLP configurations. The tables in Figure 59 show the training MSE, as the criterion to select
the optimal configuration at each run. The best evolutionary runs for each configuration are
highlighted and the best configuration in each run is marked with ‘*’. Note that at the end of
the three runs, the overall best network with MSE = 0.10 has the configuration 15×2×2 and,
hence,  is  used  as  the  classifier  for  any  classification  task  until  any  other  configuration  sur-
passes it in a next evolutionary run during an evolutionary update. In this way, each BC con-
figuration in the AS may evolve to a better state, which is the main purpose of this evolution-
ary update mechanism.

Feature + Class
Vectors

FV

0.22
0.13

AS
15×2

15×1×2
15×2×2
15×3×2
15×4×2

Configuration

0.24
0.13
0.12*
0.19
0.19

0.22
0.21
0.10*
0.20
0.21

0.25
0.16
0.18
0.14
0.12*

Run #1 Run #3Run #2
15×2

15×1×2
15×2×2
15×3×2
15×4×2

Configuration

0.10
0.14
0.12

15×2×2

FV

CV

CV

BC

Figure 59 – Evolutionary update in a sample architecture space for MLP configuration arrays
Rmin={15,1,2} and Rmax={15,4,2} where NR = 3 and NC = 5. The best runs for each configura-
tion are highlighted and the best configuration in each run is marked with a ‘*’.

4.2.2.2 Phase 1: Evolving the BCs
The training and evolution process of each BC in an NBC is performed within the current ar-
chitecture space (AS) to find the best (optimal) BC configuration with respect to a given crite-
rion. In this first phase, the BCs of each NBC are evolved given an input set of FVs and a target
CV as illustrated in Figure 60. Recall that each CV is  associated  with  a  unique  NBC and the
fuser is not needed in this phase. Once an evolution session is over, the AS of each BC is then
recorded and can be used for potential (incremental) evolution sessions in the future. Due to
applying the evolutionary update rule as described in the previous Section 4.2.2.1, we achieve
the desired objectives III and IV.

4.2.2.3 Phase 2: Evolving the Fuser BC
Recall that each evolution process may contain several runs (e.g., 5 to 10) and according to
the aforementioned evolutionary update rule, the best configuration achieved will be used as
the classifier. Hence, once the evolution process is completed for all BCs in the input layer
(Phase 1), the best BC configurations are used to propagate all FVs of the items in the training
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dataset to compose the FV for the fuser BC from their output CVs, to evolve the fuser BC in
the second phase. Apart from the difference in the generation of the FVs, the evolutionary
method (and update) of the fuser BC is the same as any other BC has in the input layer. In this
phase, the fuser BC learns the significance of each individual BC (and its feature) for the dis-
crimination of that particular class. This can be viewed as the adaptation of the entire feature
space to discriminate a specific class in a large dataset. In other words, a crucial way of apply-
ing an efficient feature selection scheme as some FVs may be quite discriminative for some
classes whereas others may not and the fuser, if properly evolved and trained, can weigh each
BC (with its FV), accordingly. In this way, the usage of each feature (and its BC) shall opti-
mally be fused according to their discrimination power for each class.

Figure 60 – Illustration of the phase 1: evolution session over BCs’ architecture spaces in each
NBC as the evolution of the BCs with the feature (FV) and class (CV) vectors.

Figure 61 – Illustration of the phase 2: evolution session over BCs’ architecture spaces in each
NBC as the evolution of the fuser BCs with the actual BC outputs and the class vectors (CVs)
are shown.
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4.2.2.4 Handling Unbalanced Training Data
Due to the applied OvA approach, a common assumption to generate the individual training
sets for each class (NBC) is that a positive sample of one class can be used as a negative sam-
ple  for  all  others.  Yet  if  the  user  defines  many classes,  the unbalanced numbers  of  positive
and negative samples per class, may cause a bias problem. For every positive sample, there
will be numerous negative samples, which may bias the classifier. To prevent this, a negative
sample selection is performed in such a way that for each positive sample, the number of neg-
ative samples (per positive sample) will be limited according to a pre-determined positive-to-
negative ratio (PNR). Selection of the negative samples is performed with respect to the clos-
est proximity to the positive sample so that the classifier can be evolved by discriminating
those negative samples (from the positive sample) that have the highest potential for the false
positive. An example on a toy classification problem is presented in Figure 62. Therefore, if
properly trained, the classifier can draw the “best possible” boundary between the positive
and (PNR number of) negative samples, which shall in turn improve the classification accura-
cy.

Figure 62 – Toy example of negative sample selection for Class A against three other classes
using positive-to-negative ratio (PNR).

4.2.3. Incremental Evolution

To  accomplish  the  objective  VI  –  Online  Evolution,  the  CNBC  framework  is  designed  for
continuous incremental evolution sessions where each session may further improve the classi-
fication  performance  of  each  NBC  using  the  advantage  of  the  evolutionary  updates  for  the
underlying BCs. Bear in mind that CNBC and its NBCs with their BCs are evolved and only
the particular configurations within the architecture space undergo (re-) training.
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In incremental evolution sessions, the main difference between the initial and the subse-
quent evolution sessions is the initialization of the process. The former uses random initializa-
tion  for  the  underlying  BC  configurations  (e.g.,  weights  of  ANNs)  whereas  the  latter  starts
from the last AS parameters of each classifier in each BC as a starting point for the evolution-
ary update. Note, all configurations in the AS of a BC will be trained with the new ground
truth data; and the training dataset used for the incremental evolution sessions may be differ-
ent from the previous ones. Thus, before the evolutionary update takes place it compares the
performance of the last recorded and the current (after the last evolutionary run) BC over the
current training dataset. As a result, any BC configuration, which surpasses the previous best
configuration, may emerge and thus be used afterwards for the classification task.

The evolution of an existing CNBC is three-fold and can be performed by
incremental evolution sessions on top of the existing NBCs when new ground truth
data are available for them (the existing classes),
the  initial  evolution  session  when  a  new  class  is  introduced  and  its  NBC  has  just
been created,
updating / adapting evolution sessions when new features are introduced into an ex-
isting CNBC.

4.2.3.1 New Training Samples
As mentioned in Section 4.1.5, training data do not necessarily be completely available when
initiating the training process. For the case an existing CNBC is given a new batch of training
data including additional samples for a known class NBC, the following procedure is applied
to verify if the existing NBCs require an update by retraining their underlying BCs. Note that
in this case, the topology of the existing CNBC stays untouched.

The main idea is to check if the current NBCs are able to classify the new data correctly. If
so then no update is necessary. Otherwise, incremental evolution is performed to improve
those NBCs using the previous and new training data.

4.2.3.2 New Classes
Let  us  consider  a  training  batch  that  contains  samples  related  to  an  unknown  class.  In  this
case, the CNBC requires a new NBC in the existing topology to learn and hence discriminate
the new class. Additionally, this might further require incremental evolution sessions over

NBCVerify (S)
For NBCc  CNBC do:

o Separate sample set S into positive S+
c and negative S-

c samples

o Classify S+
c  with NBCc

o Classify S-
c  with NBCc

o If NBCc fails to classify majority of either subset correctly
 mark NBCc for updating

End loop.
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some of the existing NBCs if the new data cannot be classified correctly by them (validated
by NBCVerify) as described in the previous Section. The NBCs for the new classes are ob-
viously due for evolution without such verification. Figure 63 illustrates an example where an
existing CNBC with three classes (blue) is updated to four classes by the addition of one new
NBC (red). This is straightforward due to the adopted “divide and conquer” paradigm.

Figure 63 – Incremental evolution of the CNBC topology where training samples include new
class ground truth.

4.2.3.3 New Features
In case of integrating new features to an existing CNBC body, it is more a topology update
rather than an incremental learning process. For each new feature, one new BC is inserted into
the  input  layer  of  every  NBC as  shown in  Figure  64.  The  sample  CNBC (four  classes,  two
features) from now becomes a CNBC with four classes and four features. Then each new BC
is subject to an initial evolution using the evolutionary update rule. Due to these changes in
the input layer of an NBC, the fuser BC in each NBC has to be updated to accommodate the
changes as detailed in Section 4.2.2.3.

Figure 64 – Incremental evolution introducing new features to an existing CNBC topology.
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4.2.4. Classification

In order to obtain the intermediate and final CNBC classification output, we apply a dedicated
class selection technique using 1-of-n encoding scheme in all BCs and NBCs, therefore, their
respective output layer size is always two. Let CVc,1 and CVc,2 be the first and second output
of the cth class vector (CV). The class selection in 1-of-n encoding scheme can simply be per-
formed by comparing the individual outputs, e.g., say a positive output if CVc,2 > CVc,1, and
vice versa for negative. This is also true for the fuser BC, the output of which makes the out-
put of its NBC. FVs of each dataset item are fed to each NBC in the CNBC. Each FV is prop-
agated through its corresponding BC in the input layer of the NBC. The outputs of these BCs
are then fed to the fuser BC of each NBC to generate all CVs. The class selection block as for
example shown in Figure 64 collects them and selects the positive class(es) of the CNBC as
the overall outcome. This selection scheme, first of all, differs with respect to the dataset class
type, where the dataset can be called as uni-class, if an item in the dataset can belong to only
one class, otherwise called as multiclass. Therefore, in a uni-class dataset there must be only
one class, the c*, selected as the positive outcome whereas in a multiclass dataset, there can be
one or more NBCs, {c*}, with a positive outcome. In the class selection scheme the winner-
takes-all strategy is utilized. Assume without loss of generality that a CV of {0, 1} or {-1, 1}
corresponds to a positive outcome where CVc,2 – CVc,1 is maximum. Therefore, in uni-class
datasets, the positive class index, c*, (“the winner”) is determined as follows:

*
,2 ,1[ 0 , 1 ]

arg m ax c cc C
c C V C V . (19)

In this way the erroneous cases (false negatives and false positives) where no or more than
one NBC exists with a positive outcome can be properly handled. However, for multiclass
datasets the winner-takes-all strategy can only be applied when no NBC yields a positive out-
come, CVc,2 CVc,1 c [0, C-1].  Otherwise,  for a set  of FVs belonging to a dataset  item,
multiple NBCs with positive outcome may indicate multiple true-positives, which makes fur-
ther pruning inapplicable. As a result, for a multiclass dataset the (set of) positive class indi-
ces, {c*}, is selected as follows:

,2 ,1 ,2 ,1
*

,2 ,1

arg max if
{ }   0, 1 .

arg else

c c c cc

c c

CV CV CV CV
c c C

CV CV
(20)

4.2.5. Experimental Evaluation

As a starting point for the experimental evaluation of CNBC, the same experimental setup of
the previous color feature evaluation in Section 3.3 is used. Therefore, details regarding the
classifiers, PolSAR images, and feature sets are similar as referred to in Sections 3.3.1 to
3.3.3. Here, changes and modifications made to the previous setup are described.

As for the classifiers, the combinations of multiclass topologies OvA and OvO with classi-
fiers RF and SVM are extended by CNBC and feed-forward Artificial Neural Networks
(ANNs),  specifically  Multi-Layer  Perceptrons  (MLP),  as  they  are  still  a  frequent  choice  as
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classifiers within SAR LULC classification [4], [23], [29], [30], [49], [70], [104], [175].
Whenever MLPs are chosen as binary classifiers (BCs) within the CNBC, two different train-
ing/evolution methods are used namely the traditional backpropagation algorithm (BP) and
the multi-dimensional particle swarm optimization (MD-PSO) as applied to evolutionary arti-
ficial neural networks (EANN) [107]. This allows evaluating the CNBC topology and applica-
tion of different classifiers as underlying BCs with the previously obtained results in Section
3.3.4. As a summary, Table 4 lists the nine classification combinations used within the exper-
iments.

Table 13 – Classifiers employed within the CNBC experimental setup.

Classifier abbreviation Description
CNBC_MLP_BP CNBC using MLP trained with BP

CNBC_MLP_PSO CNBC using MLP evolved with MD-PSO
CNBC_RF CNBC using RF

CNBC_SVM CNBC using SVM
OvA_RF One-versus-All using RF

OvA_SVM One-versus-All using SVM
OvO_RF One-versus-One using RF

OvO_SVM One-versus-One using SVM
sANN_MLP_BP MLP trained with BP

Within CNBC, the application of the EANN finds the weights of an ANN and simultane-
ously seeks for the optimal configuration in the architecture space. We shall also adapt similar
strategies for all other used classifiers. This means, for classifiers such as SVM and RF, a se-
quential search over a pre-defined architecture space with multiple (parameter) configurations
is performed and the best one will be used for testing the classification performance.

Whenever MLPs are considered as BCs within the CNBC, the predefined architecture
space includes the single layer network [Nin×Nout] and 11 MLPs from [Nin×{5-15}×Nout]. For
the standalone MLP, the architecture space consists of the single layer network [Nin×Nout], 11
one-layer perceptrons [Nin×{10-20}×Nout], and 66 two-layer perceptrons [Nin×{10-20}×{5-
10}×Nout].  This  is  a  large  extension  compared  to  the  CNBC,  however,  necessary  due  to  the
more complex in- and outputs. For training, BP parameters are set as follows: the learning pa-
rameter is =0.005, the iteration number is set to 1000, and as the activation function, the typ-
ical hyperbolic tangent is employed. MD-PSO parameters are set empirically as follows:
swarm size is 100, Vmax=0.2, VDmax=10 and the termination criteria are 1000 iterations and
cutoff error c=10-4.

As in the color experiments’ setup in Section 3.3.1, the same procedures are used to opti-
mize the SVM’s kernel type and respectable parameters, and similarly, search for the optimal
number of trees within RF and feature split per tree. It is worth mentioning here that all con-
figurations in an architecture space are enumerated with a hash function, which ranks the con-
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figurations with respect to their complexity, e.g., associates higher hash indices to an individ-
ual  ANN or  RF with  a  higher  complexity.  This  means  that  while  sequentially  searching  for
the best parameters / configurations for any classifier type, it will always favor less complex
configurations as long as a similar performance level is achieved.

Table 14 – Different feature set combinations of PolSAR and image processing features con-
sidered for CNBC classification experiments.

Feature set Feature vector Dim. Description

FS1 FV1 12 Elements from [ ]  and [ ]

FS3 FV1 + FV2 23 Combination of FS1 plus components of H A
and eigenvalue decomposition, RVI

FS6
FV1 + FV2 + FV3

+ FV4 + FV5
46

Combination of FS3 plus components from
target decompositions

FS
FV1-5 + FV6 + FV7

+ FV8 + FV9
127

Combination of FS6 plus
extracted texture features

  FS
FV1-9 + FV11

+ FV12 + FV13
187 Combination of FS  plus

extracted color features

The same features are applied as in the previous color experiments in Section 3.3. Howev-
er, the feature sets are generated in such a manner that a previously used feature set is aug-
mented with a new FV. Therefore, adding new FVs will systematically increase the feature set
dimension. The generated feature sets (FSs), their included feature vectors, and total dimen-
sions are listed in Table 14. The standalone MLP, OvO, and OvA topologies will take the en-
tire feature set directly as the input. For the CNBC, the FS is split into predefined sub-
features, namely the feature vectors, FVn, as given in Section 2.6 and 3.2.5, and summarized
in Table 14. Therefore, FS1, FS6, and FS  will generate one BC, five BCs, and 12 BCs, re-
spectively. Note that as for the color experiments, the texture and color features are extracted
over the Pauli color-coding (H,V) representation. Furthermore, a positive-to-negative ratio,
PNR = 10, is used for negative sample selection for all classifiers, if necessary.

The classification results for the nine applied classifiers over the three PolSAR images
(Flevo_L, Flevo_C, and SFBay_C) are presented in Figure 65; and results for Flevo_L are
evaluated first before moving to the two RADARSAT-2 images.

The Flevo_L image is evaluated separately as it is a more complex classification task with
its 15 classes. As a general observation, it is anticipated that classification results for the indi-
vidual classifiers increase (3-8%) with the integration of new features such as H A in FS3 or
components from various target decompositions in FS6.  Yet  the  improvements  from  FS3 to
FS6 are smaller (2.5%) compared to the H A addition (6%). However, the average difference
in classification accuracies between FS1 and FS6 is 7.5%. This is related to the target decom-



99

positions components in FS3 and FS6 as they generally try to provide similar kinds of discrim-
ination properties regarding the basic scattering mechanics.
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Figure 65 – Classification results of nine different classifiers for an increasing feature set over
Flevo_L, Flevo_C, and SFBay_C. See Table 13 for classifier abbreviations.

After augmenting FS6 with texture features, we can notice a significant drop in classifica-
tion  accuracies  for  OvA_SVM  (down  to  FS1 result),  and  sANN,  OvO_RF,  OvO_SVM  (all
down to FS3 their results). The reason for these performance drops is that all of these classifi-
ers use the entire FS as a single input. As discussed earlier in Section 3.3.4, this is probably
due to the larger number of classes, majority of which being agriculture fields, thus no signifi-
cant texture difference exists among them. Furthermore, such a low-resolution SAR image
may not allow for major textural discriminations and the applied speckle filtering may further
degrade the texture information. Therefore, such a degraded and fairly similar texture infor-
mation among most of the classes rather introduce a “confusion” and makes it difficult to
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learn individual class patterns when the majority of features are quite similar and noisy for
many classes. Recall that the texture features have an overall dimension of 81 compared to the
PolSAR features having a dimension of 46 for FS6; hence, texture features will have a rather
dominating influence. RF can better cope with this effect than SVM as little numbers of fea-
tures are randomly selected within each tree in the forest, which in turn, will negate the influ-
ence of the large texture feature dimension. However, we can observe that RF is quite affected
by the OvO multiclass topology due to its pairwise classification. Similarly, it can be noticed
that the results using CNBC are not affected or only by minor drops due to the applied “divide
and conquer” concepts to the features per class. In case of CNBC using MLP with BP (CNBC
MLP_BP), the classification accuracies even increases with the integration of texture features.
This MLP performance is below the median for FS3 and the lowest for FS6 with 2% shy of the
median accuracy. With the integration of texture features, CNBC MLP_BP is able to achieve
the same accuracy as the median in FS6. While other classifiers drop because texture features
do not provide additional discrimination to FS6, the CNBC MLP_BP combination can benefit
from the texture features yet just achieving the same classification accuracy most other classi-
fiers obtained with just FS6.

As previously observed by the color experimental results in Section 3.3.4, color features
are able to provide an additional level of discrimination in this classification task of Flevo_L,
increasing the median results by 3% compared to FS6. All OvA, OvO, and CNBC type classi-
fiers  provide  the  best  classification  results  exceeding  their  FS6 and FS results, only the
standalone MLP exhibits a classification accuracy below 89 percent with FS6, i.e., a drop by
1% due to the increased feature set dimension.

Evaluations and observations regarding images Flevo_C and SFBay_C show only minor
differences among topologies and used classifiers for the various feature set augmentations.
The main reason is that both of them are simpler classification tasks with four and five classes
of major terrain categories. In case of Flevo_C, results using FS3 and FS6 are pretty much the
same due to the simpler four-class problem and the target decompositions in FS6 do not yield
more diversity among the features. Here, classes have unique texture pattern so that the tex-
ture features contribute discrimination among classes as previously observed, when adding
the color features, all classifiers perform on similar level, achieving 4% higher accuracies than
with FS3 and FS6. It can be noticed that CNBC results are at the low end of the accuracy range
performing slightly lower (1%) than OvA due to the employed feature splitting per class. This
is particularly the case for results obtained with CNBC and RF combination for this classifica-
tion task. Recall that CNBC adopts a “divide and conquer” approach (assigning individual
feature vectors to each binary classifier) and on top of that, RF employs its random feature
selection over these individual feature vectors. By just selecting randomly a few feature ele-
ments  from the  individual  FVs,  there  will  be  loss  of  information  as  the  FV elements  can  be
closely related with each other. The same effect can be observed for the addition of the texture
features to FS6. The difference can be seen when picking the random features from the entire
feature set, as for OvA with RF, where no feature set division occurs, yet providing the high-
est accuracy among all classifiers. For the SFBay_C image, we can notice less diversity
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among the classifiers so that most of them perform on a similar level. Overall, the same ob-
servations as for Flevo_C can be made when adding texture and color due to the small num-
ber of terrain classes, which are quite distinct.

4.3. CLASSIFICATION OF SINGLE POLSAR IMAGES

As for the application of CNBC, we demonstrate classification experiments over a single Pol-
SAR image focusing on two use cases. The first case is sample-based incremental training
where erroneous classification results are corrected after visual inspection, and the second
case is class-based incremental training where new training data include unknown terrain
classes. In both cases, the application of active learning is one scenario how the new training
data are obtained. After visual inspection of the initial classification results, a user provides
new training samples for the erroneous regions over the existing terrain classes. In the class-
based case, this further includes the addition of new classes due to newly made observation or
gained terrain knowledge. These two use cases are simulated in experiments over the San
Francisco Bay (SFBay) AIRSAR image, which was preprocessed using speckle filtering as
recommended by Lee et al. [117] over a 5×5 window.

4.3.1. Sample-Based Incremental Training

The focus is on the properties of the CNBC framework so that the used features are not re-
garded critical especially since visual classification results are considered. A traditional set of
features is chosen consisting of elements from [ ]  and [ ]  combined with components of
H A and eigenvalue decomposition. Additionally, three complex correlation coefficients ( 12,

13, 23) between scattering matrix terms are derived. This results in a feature set of 28 dimen-
sions with three sub-feature vectors (FVs):

FV1 = [T11, T22, T33, C11, |C12|, C12, |C13|, C13, C22, |C23|, C23, C33],

FV2 = [Span, H, A, , , , , , , ],

FV3 = [| 12|, 12, | 13|, 13, | 23|, 23].

The CNBC created and evolved contains five NBCs, which is equivalent to the number of
the five pre-defined classes for AIRSAR SFBay image. Recall  that  each NBC in the CNBC
contains a certain number of BCs in the input layer, which is equivalent to the number of FVs.
Therefore, each NBC has four BCs, i.e., three in the input layer for the applied feature vectors
+ one fuser BC to merge the feature BC outputs. Thus, a total of 4×5=20 classifiers are indi-
vidually evolved using the major ANN type, MLP with MD-PSO and exhaustive BP [107] as
the two classifier and evolution types (CETs) presented in Table 15. Furthermore, note that
for each BC, its input size Nin is determined by the size of its FVn, i.e., 12, 10, and 6 for the
input layer BCs of all NBCs and naturally, 3×2 = 6 for all fuser BCs.
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Table 15 – Classifier and Evolution Types (CETs) used within the CNBC experiments over a
single PolSAR image.

CET-1 CET-2

MLP trained with Exhaustive BP MLP trained with MD-PSO

Table 16 – The architecture space, of size NC = 17, used for MLPs with one Single Layer and
16 Multi-Layer Perceptrons (one hidden layer) considered within CNBC for experiments over
a single PolSAR image.

No. Configuration No. Configuration No. Configuration

0 Nin × 2 4 Nin × 4 × 2 13 Nin × 13 × 2

1 Nin × 1 × 2 5 Nin × 5 × 2 14 Nin × 14 × 2

2 Nin × 2 × 2 … ...... 15 Nin × 15 × 2

3 Nin × 3 × 2 12 Nin × 12 × 2 16 Nin × 16 × 2

Positive-to-negative ratio with PNR = 10 is used for negative sample selection for all BCs.
The evolution (and training) parameters and internal settings of the BCs are as follows: For
MD-PSO, the termination criteria are the combination of the maximum number of iterations
allowed (iterNo = 1000) and the cut-off error ( c = 10-4). Other parameters were empirically
set as the swarm size, S = 100, Vmax = xmax/5 = 0.2, and VDmax = 10, respectively. For MLP,
the learning parameters are set as  = 0.002 and iteration number as 1500 for BP applying the

typical activation function: hyperbolic tangent tanh( )
x x

x x

e ex
e e

.

The MLP architecture space includes the simple configurations with the following range
arrays: Rmin={|FVn|,1,2} and Rmax={|FVn|,16,2}, which indicate that besides the single layer
perceptron (SLP), all MLPs have only a single hidden layer, Lmax=2, with no more than 16
hidden neurons. Table 16 lists all MLP configurations in the predefined architecture space
(AS). Finally, for both training methods, the exhaustive BP and MD-PSO, NR = 10 independ-
ent runs are performed. Note that for exhaustive BP, this corresponds to 10 runs for each con-
figuration in the AS.

The training dataset contains only ~1000 pixels, which corresponds to merely ~0.1 percent
of the entire PolSAR image; and its accuracy cannot be 100 percent guaranteed. For instance,
due to the low resolution, when selecting training patches it might happen accidently that pix-
els are assigned erroneously caused by their proximity (e.g., patch of grass in forest might not
be clearly recognizable visually). The Urban areas  may  also  cover  trees  (planted  alongside
roads or gardens of houses). We can at best assume that the majority of those points belong to
the  terrain  they  are  assigned  to  as  in  the Urban case some training samples might fall onto
pixels with more grass or tree-like characteristics. Thus, classification is performed over the
majority terrain type.

For the SFBay AIRSAR image, the training ground truth data and the classification results
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with the two CETs are shown in Figure 66. From the figure can be seen that both CETs
achieved quite similar classification results, yet the CET-1 (MLPs trained with exhaustive BP)
classification can be considered a little noisy or fractured compared to the other. However,
both CETs in general managed to draw major boundaries between distinct terrains, such as
Sea – Beach, Urban – Forest, Sea – Urban, as anticipated.

Figure 66 – San Francisco Bay AIRSAR image overlaid with training data (left) and CNBC
classification results from the two CETs.

Figure 67 – The visual evaluation of the San Francisco Bay AIRSAR image classification re-
sult with an aerial photo taken from [193].
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Figure 68 – Classification results from two distinct CNBC evolutions. The second (incremen-
tal) evolution corrects most of the misclassification errors.

Since the ground truth is not entirely available, we, therefore, evaluate the classification re-
sults  visually  using  the  output  from CET-1, and aerial photo snapshots taken from [193].
Some parts are purposefully enlarged for enhanced visual clarity and compared with the CET-
1 classification result, as shown in Figure 67. It is visible that some large terrains, such as the
bridge, the stadium, and the island or even some small areas such as the lighthouse and its is-
land are all classified correctly. Nevertheless, the classification is not pixel accurate as some
deformations are visible over some known geometrical constructions such as the bridge and
the stadium. Note that SAR data are quite noisy and speckle filtering was initially performed,
thus, accurate pixel-based classification is not expected in this particular case.

We shall show a sample utilization of the incremental evolution of the CNBC and evaluate
its performance gain. We used the same experimental setup as before and only changed the
initially training, which now contains around 150 points, approximately 30 points per terrain
class. The BCs, having the same AS as before, are first evolved with exhaustive BP (CET-1).
Then the user updates the training data with only 28 new entries (15 to Water, 10 to Flat
Zones, and 3 to Mountain) over the erroneous zones and performs a new incremental evolu-
tion session with MD-PSO using 500 iterations and 5 runs. Recall that MD-PSO swarm was
not fully randomized this time [107], instead, it learns from the  previous  experience  of  the
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CNBC while using the new training data. Figure 68 shows classification results of the initial
and incremental evolution by which the CNBC is able to correct the majority of classification
errors.  An  important  observation  worth  mentioning  here  is  that  the  classification  result  ob-
tained by the training data with only 178 points is just slightly worse than the one obtained
with ~1000 points (see Figure 66). This shows that the CNBC can scale quite well with the
size of the training data as long as it does not lack discriminative features.

4.3.2. Class- and Feature-Based Incremental Training

This section demonstrates the scenarios of class- and feature-based incremental training using
the experimental setup with CET-1.

The first three-step class-based experimental setup is as follows. In the first step, a CNBC
is created and evolved for three major terrain classes (Water, Urban, and Forest). Then, in
step two, the Flat Zone terrain class is added and finally the Mountain terrain class is inserted
in  the  third  step.  After  each  step  the  CNBC is  incrementally  evolved  with  the  new training
data available, which is also verified over the existing NBCs, i.e., whether the new data ex-
ceed a classification error of five percent based on procedures in Sections 4.2.3.2 and 4.2.3.1.
If this is the case for a particular NBC then it will be subject to an incremental evolution; oth-
erwise, it will be kept as is. Table 17 summarizes the classes used in each step with their
number  of  class  training  samples  and  the  classification  error  obtained before the upcoming
incremental evolution process.

Table 17 – Incremental CNBC evolutions with the addition of new classes over the San Fran-
cisco Bay AIRSAR image (Orange denotes incremental evolution necessary, and green no
changes).

Step Terrain class No. of training
samples Classification error during verification

1
Water
Urban
Forest

171
195
180

2 +Flat Zone 221
Water: 151 (68%)
Urban: 46 (21%)
Forest: 24 (11%)

3 +Mountain 188

Water: 9 (4.8%)
Urban: 0 (   0%)
Forest: 95 (50.5%)

Flat Zone: 84 (44.7%)
955

It can be seen that adding the Flat Zone class in step two required an incremental evolution
for all NBCs (classes) whereas for the Mountain class addition in the third step NBCs for the
Water and Urban class were kept untouched. Classification results of the incrementally
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evolved CNBC over the SFBay image are shown in Figure 69 A, B, and C for three, four, and
five classes, respectively.

Figure 69 – Classification results of incrementally evolving one CNBC over the San Francis-
co Bay AIRSAR image starting with a three-class problem (A) and adding new ground truth
classes in two additional steps (B) and (C).

Now let us consider two classification setups using MLP [225] and Optimization of Polar-
imetric Contrast Enhancement (OPCE) [222] over the same SFBay AIRSAR image. The MLP
is applied over a 600 × 600 speckle filtered sub image version using initially a 19 dimensional
feature vector (H A + Span and four GLCM features over T11, T22, T33), which has been re-
duced to 10 dimension by Principal Component Analysis. The MLP configuration has one
single hidden layer with 10 nodes, 10 inputs, 3 outputs: Water, Urban, Vegetation, and is
trained with approximately 30 000 samples using resilient backpropagation with 100 epochs.
OPCE is applied over a 700 × 900 unfiltered sub image using three features namely T11, T22,
and H. They considered a four-class problem Water, Urban, Forest (or woods) and quasi-
natural (equivalent of Flat Zone class in our definition) training with approximately 17 000
samples. Images, training sets used, and classification results for both approaches are shown
in Figure 70. The two 600 × 600 and 700 × 900 sub-images with their individual training are-
as are referred to as scenarios S1 and S2, respectively.

CNBC is applied to both scenarios yet to reduce computational complexity the training sets
are sub-sampled by around 10 and 3 for S1 and S2, respectively. This is done due to their
number of classes and different number of originally provided training areas. Furthermore, the
GLCM features were not extracted and only the PolSAR-based features are used. As for the
CNBC configuration, the setup CET-1 is trained with 500 epochs and initial classification re-
sults are shown for the sub-images and the full image in Figure 70, right hand side.

Due  to  their  setups,  the  two  scenario  classification  results  show  differences  (left  part  of
Figure 71) mainly in the top-right region and coastal areas related to the achieved pixel accu-
racy based on the given training data. The differences in S1 are probably related to the addi-
tional GLCM features used by the MLP, where one could argue that in case of the coastal re-
gions they are more beneficial as for the top-right region.
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Figure 70 – Comparison of three classifiers (MLP [225], OPCE [222], and CNBC) over the
San Francisco AIRSAR image.

Figure 71 – Example of evolving initial CNBC results from two different tasks. Top row
shows CNBC evolution  by  addition  of  a  new class,  bottom row shows CNBC evolution  by
addition of new features.

As we have the information available from S2, we know that these coastal regions are re-
lated to quasi-natural (i.e., Flat Zone) terrain. Therefore, the existing CNBC in S1 can be in-
crementally trained with the quasi-natural training data from S2. With adding this new class,
the existing NBCs undergo verification with the new training data. The Urban class NBC fails
this verification and needs to be updated using the new training data. On the other hand, the
NBC related to Water and Vegetation stay untouched. This is confirmed by visual inspections
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as the new Flat Zone class is primarily classified as Urban. In case of S2, the misclassifica-
tions will relate to the rather small number of features. Hence, we can extend the existing
three-dimensional feature set by adding HaA + Span features as used in S1. This requires the
evolution of one additional BC as well as updating the fuser BC.

The classification maps of the CNBC with the changes made to both scenarios are illustrat-
ed in Figure 71 (right hand side). Note that the previous misclassifications are corrected by
employing active learning and adapting the existing CNBCs to the changes accordingly. In
the last column of the figure, the same class legend is applied to both scenarios for better
comparison. It can be observed that both scenarios achieve similar classification results,
which are expected as now they both solve the same four-class problem with similar feature
sets.

4.4. CLASSIFICATION OF POLSAR DATASETS

Our main goal with the application of CNBC is the classification of a database of similar Pol-
SAR images. For creation of such datasets, we consider collections of PolSAR images ac-
quired by the same system. These PolSAR images are alike in the sense that they share similar
land cover having a majority of common terrain classes. However, images may still have dif-
ferent  number  of  classes,  where  class  definitions  may come in  time from the  user.  Further-
more, certain terrain classes may have changed (absent or present) due to location or temporal
differences among PolSAR images.

Classify

Upd
ate

(2,3)

Figure 72 – Block diagram of overall classification process for multiple PolSAR images in
three stages: 1. Feature extraction (red), 2. (incremental) CNBC evolution (green), and 3.
Classification (blue).

The overall process is divided into three main stages. Firstly, there is the extraction of both
common PolSAR and visual features from the provided PolSAR images. Secondly, CNBC is
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used to evolve and classify an initial set of PolSAR images. Thirdly, incremental evolution is
performed by CNBC with its adaptive and data-driven feature and class scalability, whenever
a user provides ground truth for additional terrain classes appearing in new PolSAR images
introduced later on. A block diagram of the overall process is shown in Figure 72. From the
diagram is apparent that incremental evolution of the classification scheme utilizes active
learning to use user feedback and interaction to provide new ground truth data or features to
improve classification accuracy, if desired.

Two experimental setups are evaluated with the first one for visual demonstration of the
process using CNBC and the second setup provides numerical evaluation. Both experiments
are done over two different PolSAR image datasets from the NASA/Jet Propulsion Laborato-
ry (JPL) Airborne SAR (AIRSAR) in L-Band obtained from the NASA AIRSAR website
[147].

4.4.1. Visual Evaluation

In the image database for visual demonstration, eight different PolSAR images from three dif-
ferent regions are used namely Freiburg, Germany (two images), Oberpfaffenhofen (OPH),
Germany (three images), and Wicomico, Maryland, USA (three image). The original four-
look fully polarimetric SAR images, having a dimension of 1024 × 1279 pixels, provide cov-
erage of four main terrain classes Forest, Fields, Urban/Man-Made, and Water where not all
classes are present in all images or are not clearly distinguishable for a user. All images were
pre-processed using speckle filtering by Lee et al. [117] over a 5×5 window.

As in the previous Section 4.3.1, the same feature set is chosen consisting of elements from
[ ]  and [ ]  combined with components of H A and eigenvalue decomposition as well as

the three complex correlation coefficients ( 12, 13, 23) between scattering matrix terms. This
results in a total feature set of 28 dimensions with the same three sub-feature vectors (FV1,
FV2, FV3) as in Section 4.3.1.

One CNBC is incrementally evolved starting with two classes (Forest, Fields) and gradual-
ly introduced more classes, in this case Urban and Water, respectively, as they appear on the
other images. Due to the three FVs, each NBC has four BCs (three feature BCs in the input
layer + one fuser BC); and Multi-Layer Perceptrons (MLPs) are used as the BCs that are indi-
vidually evolved using exhaustive backpropagation (BP) [107] minimizing the training classi-
fication error. For the repetitive BP training of each network in the AS, the first step of an in-
cremental evolution will simply be the initialization of the weights and biases with the param-
eters retrieved from the last record of the AS of that particular BC [107]. Considering this as
the initial point, and using the current training dataset with the target labels, the BP algorithm
can then perform its gradient descent in the error space. Furthermore, note the input layer size
of each BC is determined by the dimension of its FVn, i.e., 12, 10, and 6 for the input layer
BCs of all NBCs, and naturally, 3×2 = 6 for the fuser BCs.

The BP parameters and internal settings of the MLPs were as follows: the learning parame-
ter for BP is  = 0.002, the iteration number is 1000, and the activation function is the hyper-
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bolic tangent. The MLP AS includes the simple configurations within the following range ar-
rays: Rmin={|FVn|,8,2} and Rmax={|FVn|,16,2}, which indicate that besides the single layer per-
ceptron, all MLPs have only one hidden layer with 8 to 16 hidden neurons. Finally, seeking
for the optimal configuration, 10 independent BP runs were performed for each configuration
in the AS and the best one was selected. On the training samples the negative sample selection
with PNR=10 is applied, if necessary, as described in Section 4.2.2.4.

Table 18 lists the images in the order they are used along with their different properties
such as present terrain classes. The initial evolution starts with two classes on Wicomico1 us-
ing 900 and 495 training samples for Forest and Fields, respectively. After the initial evolu-
tion, other PolSAR images (Wicomico2 and Freiburg1) are classified until severe misclassifi-
cation is encountered such as Urban regions in Freiburg1. After providing new training sam-
ples (360) for the Urban regions, the CNBC is evolved with the newly introduced Urban class
and the NBC for Forest class is incrementally evolved since it failed the verification test on
the new training samples due to the fact that the Urban regions overlapped mostly with Forest
regions. For the NBC of the Fields class an incremental evolution operation was not necessary
in this step. Classification using the CNBC evolved thus far over Freiburg2 and Wicomico3
presents good results, yet for OPH1, it obviously misclassified water bodies as Fields since a
Water class has not yet been known by the existing CNBC. During the initial evolution of the
NBC created for the Water class using 360 pixels as the training dataset, the existing NBC for
the Fields class had to undergo another incremental evolution operation since it failed the ver-
ification test for the Water class.  The resultant CNBC over the next PolSAR image, OPH2,
classified most regions quite accurately but some misclassification occurred over the Water
regions, so performing incremental evolutions for the NBCs that belong to both Water and
Fields classes. The final CNBC classified the PolSAR image OPH3 accurately requiring no
further incremental evolutions. Note that this process is mainly automated besides providing
new training data per image, whenever required.

Table 18 – List of AIRSAR images and their properties within the CNBC experiment over
multiple PolSAR images.

Process
order Dataset name Date acquired Terrain classes present

1 Wicomico1 02.06.1995 Forest, Fields
2 Wicomico2 02.06.1995 Forest, Fields
3 Freiburg1 15.06.1991 Forest, Fields, Urban
4 Freiburg2 16.07.1991 Forest, Fields, Urban
5 Wicomico3 02.06.1995 Forest, Fields, Urban
6 OPH1 12.07.1991 Forest, Fields, Urban, Water
7 OPH2 12.07.1991 Forest, Fields, Urban, Water
8 OPH3 12.07.1991 Forest, Fields, Urban, Water
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Figure 73 – Evolution steps for multiple AIRSAR images where red arrows indicates an in-
cremental evolution operation with new class(es), and green arrows indicates that the CNBC
is kept “as is”.
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Table 19 – Overview of CNBC evolution steps with new data (the numbers indicate posi-
tive/negative training from all previous classes samples) over multiple PolSAR images (Red
indicates the insertion of a new class, orange denotes incremental evolution necessary, and
green no changes).

Class
Initial

Evolution
(Wicomico1)

Incremental
Evolution adding

class Urban
(Freiburg1)

Incremental
Evolution adding

class Water
(OPH1)

Incremental
Evolution refining

class Water
(OPH2)

Forest 900/495 900 / 855
Fields 495/900 495 / 2115 495 / 2250
Urban 360 / 1395
Water 360 / 1755 135 / 1350

Table 19 summaries the incremental evolution steps with the involved classes and their
corresponding positive and negative training samples; and Figure 73 illustrates the processing
steps with the PolSAR images and their corresponding classification results visually. In this
experiment, since new training samples are only provided for the new classes, for (incremen-
tal) evolutions samples from the existing classes had to be used as well. It is also worth men-
tioning that the incremental evolutions of the NBC for the Water class have been performed
over training datasets obtained from three and four different PolSAR images.

4.4.2. Numerical Evaluation

In the second experiment, the PolSAR image database contains images over the areas of San
Francisco, Long Beach, and San Diego, California, USA. As detailed in Table 20, four medi-
um to high-resolution PolSAR images were obtained, slant to ground range processed, speck-
le filtered [117], and then divided into equally sized non-overlapping sub-images (divided
along the y-axis see Figure 74) where eight of them are selected to create a collection of Pol-
SAR images for the experiment.

Table 20 – Data from NASA/JPL AIRSAR used for creating PolSAR image collection.

Name
Date

acquired
AIRSAR

Process ID
Ground

resolution
No. of

used sub-images

San Francisco 04/1995 cm5440 3584×4430 2

Long Beach 1 10/1998 cm5460 3432×5291 2

Long Beach 2 11/1998 cm5513 3368×6559 2

San Diego 11/1998 cm5489 3640×6644 2



113

Figure 74 – Demonstration of splitting image into several sub-images for generating PolSAR
image collection.

To evaluate the classification accuracy numerically, rather than manually identifying and
labeling possible terrain classes we utilized the USGS National Land Cover Dataset (NLCD)
1992 [87] and 2001 [69] as an approximation for the ground truth data. Unfortunately, the
NLCDs are not directly applicable, thus the following pre-processing steps were performed to
map the NLCD to the AIRSAR images. First, the NLCDs from 1992 and 2001 have different
number of terrain classes defined. NLCD from 1992 has 21 and NLCD 2001 includes 19 clas-
ses, which also differ in naming and labeling conventions. Since the NLCDs and AIRSAR
images have different acquisition dates, only the unchanged areas from NLCD 1992 to 2001
are used as ground truth data with the underlying assumption that if the specified terrain class
has not changed from year 1992 to 2001, it has not changed in the years between 1995 and
1998, as shown in Figure 75. To do so, the NLCDs is reduced to four major terrain classes
from the  NLCD 92 Land Cover  Class  Definitions  [87]  resulting  in Water, Developed/Man-
Made/Urban, Forest, and Grasslands.  The reason for such a selection scheme is to map the
ground truth data to the AIRSAR images by warping (nearest neighbor approach) using 40-50
manual ground control points. To minimize the amount of false mapping, we have chosen
those classes, which occupy at least five percent area of the eight selected sub-images so that
when partitioning the training and test samples the influence of warping errors is reduced. The
same approach was chosen to select the classes in each sub-image for partitioning between
training and test datasets employing 200 pixels for training and 5000 pixels for testing per
class in each sub-image. Table 21 lists the five sub-images used for incremental evolution in
sequentially order with their corresponding training/test classes. For the evaluation in the test
dataset, all eight sub-images with their test classes are given in Table 22.
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Figure 75 – Ground truth generation for a collection of SAR images. Obtaining ground truth
data (C) from NLCD 1992 (A) and NLCD 2001 (B) illustrated over the area of San Diego.

Table 21 – Training images in sequence applied to incremental CNBC evolution for PolSAR
image collection experiments. The bold classes denote introduction of a new class.

Name Abbr.
sub-

image
index

Training terrain classes
Training /
Validation

size

San Francisco SF_Q3 3 Developed, Water 400 / 10000

San Francisco SF_Q4 4 Developed, Water, Grasslands, Forest 400 / 20000

Long Beach 1 LB1_Q2 2 Developed, Water, Grasslands 600 / 15000

Long Beach 2 LB2_Q2 2
Water / (Developed, Water) – contains two
major classes and only training samples for

Water are provided
200 / 10000

San Diego SD_Q2 2 Water / (Developed, Water, Grasslands) 200 / 15000

Total 1800 / 70000

Table 22 – Test images and their class information used for evaluation of final CNBC classi-
fier for PolSAR image collection experiments. The highlighted rows denote images not con-
sidered during training stage.

Name Abbr.
sub-

image
index

Test terrain classes Test size

San Francisco SF_Q3 3 All 20000

SanFrancisco SF_Q4 4 All 20000

Long Beach 1 LB1_Q2 2 Developed, Water, Grasslands 15000

Long Beach 1 LB1_Q1 1 Developed, Water, Grasslands 15000

Long Beach 2 LB2_Q2 2 Developed, Water 10000

Long Beach 2 LB2_Q2 1 All 20000

San Diego SD_Q2 2 Developed, Water, Grasslands 15000

San Diego SD_Q5 5 Developed, Water, Grasslands 15000

Total 130000
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Table 23 – Different sets of PolSAR, texture, and color feature vectors employed in training
CNBC over a PolSAR image collection.

Feature set Feature vectors Dimension

FS1 FV1 3

FS2 FS1 + FV2 + FV3 23

FS3 FS2 + FV4 + FV5 36

FS4 FS3 + FV6 +…+ FV9 + FV11 +…+ FV13 177

The incremental evolution process is applied as follows. One initial CNBC is created from
the first PolSAR image SF_Q3 in the training dataset. After that, each one of the other Pol-
SAR images in the training dataset is incrementally evolved to adapt the CBNC to changes
(i.e.,  new  classes,  new  training  samples)  introduced  with  the  new  PolSAR  image.  After  all
images have been considered for evolution (SF_Q3  SF_Q4  LB1_Q2  LB2_Q2
SD_Q2), the final CNBC can then be used to classify all images in the test dataset.

In order to evaluate the performance gain/loss that can be obtained by using different set of
features, as enumerated in Table 23, four different feature sets (based on the different feature
vector, FVn, as described in Section 3) over two classification schemes are considered for this
classification evaluation. Differences to previous feature vectors are that FV1 represents a bare
minimum of information containing only the three diagonal elements of [ ] , and FV2 is the
same as in Section 4.3.1 excluding RVI. Note that texture and color features (FV6 to FV13) are
extracted over a local 11×11 pixels window of the pseudo color images generated by assign-
ing T11, T22, and T33 to the R, G, and B components, respectively. Due to working with differ-
ent number of images, besides normalizing the features to [-1, 1], we further apply histogram
equalization to the feature vectors as a pre-processing step to overcome the contrast difference
among the images due to different capturing times and possible incident angles.

The classification accuracies of the CNBC are evaluated against traditional MLPs and
RBFs over incremental evolutions. The CNBCs created and evolved over the different AIR-
SAR images contain the number of NBCs, which is equivalent to the number of pre-defined
classes C (i.e., training classes per sub-image, see Table 21). Each NBC may have minimum
of one (e.g.,  for FS1) and up to 12 BCs (e.g., 11 in the input layer + one fuser BC for FS4).
Thus, a total of C×1 (FS1) to C×12 (FS4) BCs are individually evolved over the architecture
spaces  of  two  major  ANN  types  (MLP  and  RBF)  using  the  MD-PSO  as  the  evolutionary
technique, referred as MLP_PSO and RBF_PSO.

The evolution parameters and internal settings of the BCs are as follows: MD-PSO uses the
termination criteria as the combination of the maximum number of iterations allowed (iterNo
= 500) and the cut-off error c=10-3. Other parameters were empirically set as the swarm size,
S = 100, Vmax = 0.2 (velocity), and VDmax = 10 (dimension), respectively. Both MLP and RBF
architecture spaces use the simple configurations with the following range arrays: Rmin =
(|FVn|,5,2) and Rmax = (|FVn|,15,2). Finally, NR = 5 runs are performed for MD-PSO.
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Table 24 – Overview of incremental evolution steps with new data over the different training
images and feature sets for PolSAR image collection experiments. (Red indicates the insertion
of a new class, orange denotes incremental evolution is necessary, and green indicates no
changes).

Initial Evolu-
tion (SF_Q3)

Incremental
Evolution

adding class
Grassland and

Forest
(SF_Q4)

Incremental
Evolution

refining class
Developed,

Water, Grass-
lands

(LB1_Q2)

Incremental
Evolution

refining class
Water

(LB2_Q2)

Incremental
Evolution
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As  for  the  comparison,  the  two  well-known  feed-forward  ANN  classifiers:  Multi-Layer
Perceptron (sMLP) and Radial Basis Function networks (sRBF) are selected despite the fact
that they can only be applicable to static classification problems with fixed input and output
dimensions. Since optimal BC configurations within each NBC are searched by the underly-
ing  evolutionary  search  method  (MD-PSO),  in  order  to  provide  a  fair  comparison,  the  best
possible classifier architectures and/or parameters are also searched for sMLP and sRBF. For
sMLP, this means that the best possible network configuration is searched within an architec-
ture space encapsulating several MLPs with one and two hidden layers, where the first hidden
layer may range from 10-20, and the second hidden layer from 5-10 neurons. This results in
50 configurations in the sMLP AS. For sRBF, a range from 10-50 neurons is employed for the
single hidden layer. For both ANN types, sMLP and sRBF, MD-PSO is applied as the under-
lying training function, which searches for the best configuration within the predefined AS as
well as the optimum network parameters (connections, weights, and biases) for each of the
configurations.

The computational complexity in terms of incremental evolutions for each of the training
images per feature set and classification scheme are shown in Table 24. Whenever new train-
ing data arrive, the ANNs, sMLP and sRBF, will become obsolete and a new classifier needs
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to be created and re-trained from scratch to accommodate to the changes. For CNBC, recall
that  it  will  adapt  its  structure  to  the  new  training  data  by  simply  including  a  new  NBC  for
each new class (Grasslands and Forest in SF_Q4). Furthermore, the existing NBCs will un-
dergo a verification test (see Section 4.2.3.1) to validate if they are capable of classifying the
new training data with a required accuracy (i.e., classification accuracy greater 95 percent).

For SF_Q4, the class NBC for Water fails with the new training data of classes Grasslands
and Forest for both CNBCs whereas for MLP_PSO, the Developed class NBC also fails the
verification for all feature sets. For LB1_Q2, LB2_Q2, and SD_Q2 no new classes are intro-
duced but due to classification errors, especially on the class Water, new training data are
provided to overcome these errors. This resulted in major incremental evolution for all classes
of LB1_Q2, whereas the Forest class NBC for CNBC MLP_PSO in LB2_Q2 and Developed
and Forest class NBCs for CNBC RBF_PSO/MLP_PSO in LB2_Q2 and SD_Q2 were kept
untouched.

For the SF_Q3 and SF_Q4, as both subimages are obtained from the same image data, the
main differences in classification results come from the changes in terrain class numbers. In
case of LB1_Q2, the big performance drop is due to differences in capturing times (see Table
20) and possible incident angles. This will result in different backscattering characteristics of
the underlying terrain, and recall that only a simple method (histogram equalization) is ap-
plied to overcome this. The performance over LB2_Q2 is mainly due to the two-class prob-
lem, where the applied features make the difference as Water can be easily distinguished due
to its dominant surface scattering. Whereas for SD_Q2, the accuracy drops are mainly related
to capturing times and terrain changes, as it is fairly urban dominated.

Moreover, with increasing number of features classification accuracies are improved as an-
ticipated, particularly the addition of target decompositions to the basic FS1 provide signifi-
cant discrimination improvements. This is expected as classifiers using FS1 do perform poorer
since there are only three features, which are not enough to discriminate the classes properly.
Furthermore, classification results achieved using FS2 and  FS3 are  rather  similar  due  to  the
used target decomposition components as also observed in previous evaluations 3.3.4. Classi-
fication differences over the training images are illustrated in Figure 76 with the two CNBCs
benefiting from FS4 whereas both standalone ANNs did not gain from the additional features.
This is most probably due to the limited AS applied and the larger dimension of FS4 (177).
Major differences can be noticed in Table 25 whenever the underlying classification task or
newly provided data change (e.g., SF_Q4, LB1_Q2).

After the incremental evolution over the last training image, SD_Q2, the final CNBC is
evaluated by its classification performance, shown in Table 26, over the ground truth data of
the eight PolSAR images in the test dataset as listed in Table 22. It can be observed that using
more features usually improves the classification accuracy. However, the classifier perfor-
mance of the standalone ANNs (sMLP and sRBF) suffers when the feature dimension exceeds
a certain limit that is basically the well-known “curse of dimensionality” phenomenon for
such static classifiers. For smaller feature sets, sMLP and sRBF can perform equally or even
better than CNBC.
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Table 25 – Classification accuracies after incremental evolution over each of the training im-
ages for PolSAR image collection experiments. Differences for MLP and RBF inside CNBC
regarding their incremental evolutions are highlighted according to Table 24.

SF_Q3 (2 classes) SF_Q4 (4 classes)

FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.996 0.996 0.996 0.996 0.698 0.809 0.825 0.844

RBF_PSO 0.994 0.995 0.996 0.997 0.677 0.805 0.812 0.841

A
N

N sMLP 0.995 0.996 0.989 0.990 0.688 0.820 0.811 0.744

sRBF 0.995 0.996 0.996 0.996 0.671 0.792 0.769 0.743

LB1_Q2 (3 classes) LB2_Q2 (2 classes)

FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.591 0.642 0.640 0.651 0.557 0.873 0.838 0.889

RBF_PSO 0.530 0.631 0.636 0.659 0.385 0.855 0.854 0.866

A
N

N sMLP 0.587 0.645 0.636 0.640 0.525 0.821 0.817 0.792

sRBF 0.617 0.641 0.638 0.601 0.465 0.908 0.809 0.886

SD_Q2 (3 classes)

FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.474 0.569 0.579 0.628

RBF_PSO 0.464 0.527 0.529 0.671

A
N

N sMLP 0.494 0.568 0.599 0.600

sRBF 0.496 0.563 0.556 0.537
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Figure 76 – Classification accuracies averaged over the five training AIRSAR images for the
four different feature sets.

However, the performance drops for sMLP and sRBF are more severe than observed over
the training stages in Table 25. This is most probably due to the dimensions of FS4 and the
architecture space. Additionally, combining the training data of the different images might not
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be sufficient to handle the differences in capturing times and incident angles and their result-
ing differences in backscattering characteristics.

Figure 77 shows the average classification accuracies over the eight test images based on
the four different feature sets. It is visible that all four classifiers have a boost (15-20%) from
FS1 to FS2 and a further, even though marginal increase, with FS3. This small increase is
probably related to the addition of FV4 and FV5, which provide similar features (incoherent
decomposition) as FV3.  It  also shows that from FS3 to FS4 the classification performance of
both  sMLP  and  sRBF,  drop  7%  and  9%,  respectively  whereas  both  CNBC  variants,
MLP_PSO and RBF_PSO, can further improve their classification performances (by ~2% and
~3%).

Table 26 – Classification performances over the test dataset at the end of the five (incremen-
tal) evolution sessions for the PolSAR image collection experiments.

SF_Q3 (2 classes) SF_Q4 (4 classes)

FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.690 0.788 0.784 0.669 0.643 0.811 0.809 0.829

RBF_PSO 0.672 0.767 0.789 0.678 0.599 0.759 0.796 0.828

A
N

N sMLP 0.688 0.761 0.754 0.658 0.664 0.784 0.787 0.762

sRBF 0.682 0.655 0.727 0.496 0.639 0.625 0.711 0.454

LB1_Q2 (3 classes) LB1_Q1 (3 classes)

FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.724 0.832 0.840 0.857 0.527 0.594 0.601 0.600

RBF_PSO 0.579 0.818 0.820 0.848 0.457 0.618 0.619 0.624

A
N

N sMLP 0.729 0.813 0.854 0.724 0.596 0.614 0.675 0.543

sRBF 0.695 0.803 0.763 0.751 0.562 0.622 0.595 0.538

LB2_Q2 (2 classes) LB2_Q1 (4 classes)

FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.572 0.861 0.839 0.895 0.389 0.543 0.557 0.641

RBF_PSO 0.414 0.882 0.855 0.888 0.333 0.555 0.590 0.654

A
N

N sMLP 0.591 0.844 0.825 0.762 0.432 0.574 0.570 0.573

sRBF 0.629 0.910 0.820 0.890 0.383 0.536 0.577 0.469

SD_Q2 (3 classes) SD_Q5 (3 classes)

FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

C
N

B
C MLP_PSO 0.474 0.569 0.579 0.628 0.572 0.610 0.615 0.691

RBF_PSO 0.464 0.527 0.529 0.671 0.511 0.624 0.636 0.663

A
N

N sMLP 0.494 0.568 0.599 0.600 0.584 0.641 0.720 0.616

sRBF 0.496 0.563 0.556 0.537 0.564 0.582 0.612 0.550
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Thus, in this scenario of classifying a collection of PolSAR images, the application of a da-
ta-driven and adaptive topology is advantageous as changes in number of classes and features
can be accommodated easier rather than completely re-designing and optimizing the entire
classifier each time changes occur.
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0.75
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CNBC MLP CNBC RBF sMLP sRBF

Figure 77 – Classification accuracies averaged over the eight test AIRSAR images for the
four different feature sets.

4.5. SUMMARY

To address the challenge of larger-scale PolSAR image classification, we considered a da-
ta-driven and adaptive classification approach. To achieve this, the Collective Network of Bi-
nary Classifier framework is adapted with the primary objectives of maximizing efficiency
and accuracy. The proposed framework mainly adopts a “divide and conquer” type of ap-
proach, so as to efficiently handle indefinite number of PolSAR features and terrain classes,
which is otherwise a difficult, if not infeasible, problem for a single classifier due to the well-
known “curse of dimensionality” phenomenon. In the CNBC framework approach, compact
classifiers, which can be evolved and trained in a much more efficient way than a single but
complex classifier, are conveniently considered in a predefined architecture (configuration)
space, in which the optimal classifier for the classification problem at hand can be sought us-
ing evolutionary techniques such as MD-PSO. At any given time, this allows creating a dedi-
cated binary classifier (BC) for discriminating a certain terrain type from the others with the
use of a single feature. Each incremental evolution session learns from the current best classi-
fier and can improve it further, possibly with another configuration in the architecture space.
Moreover, with each incremental evolution, new classes and features (such as previously pro-
posed color features) can also be introduced which signals CNBC to adjust to such change. In
this way, the CNBC can dynamically adapt itself to a classification problem while striving for
maximizing classification accuracy.

The two main benefits for this learning approach are, on one hand, computational com-
plexity with changes in the underlying classification task and, on the other hand, due to the
employed topology and “divide and conquer” concept. Thus, the application of numerous fea-
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tures may lead to an improved classification performance addressing the “curse of dimension-
ality” phenomenon. However, for smaller number of features, it is expected that classification
accuracies will be slightly in favor of static methods without dividing the feature sets. The
capabilities of CNBC are demonstrated over an extensive set of experimental results regard-
ing the adaptation and data-driven classification of single as well as collections of PolSAR
images. This revealed that with the ongoing incremental evolutions, a generic CNBC can be
created that can adapt itself according to the PolSAR image and classes presented over time.
Compared to static classifiers such as standalone feed-forward ANNs, creation and extension
of an existing classifier is beneficial in terms of classification accuracy and time without dis-
carding existing knowledge and past training efforts. Additionally, while static ANNs and
other regular classifiers may suffer from the “curse of dimensionality” phenomenon without
an accompanying feature selection or dimension reduction technique, CNBC addresses this
with its “divide and conquer” strategy.

Our experimental results demonstrated that the evolutionary classifier framework, CNBC,
provides an efficient solution for the problems of scalability and dynamic adaptability by al-
lowing both feature space dimensions and the number of terrain classes in PolSAR image col-
lections to vary dynamically. Whenever the CNBC is evolved in batch mode, it can compete
and even surpass other static classifiers especially when the feature space dimension increas-
es. This is an expected outcome since the CNBC framework can take advantage of any visual
feature as long as it has the discrimination power for only one or few classes. Moreover, ex-
periments  over  collections  of  different  NASA/JPL  AIRSAR  images  showed  that  once  the
CNBC achieves a certain level of maturity, it can classify new PolSAR images with similar
terrain classes requiring no or only minimal incremental evolutions.





123

Chapter5
Semi-Supervised Learning in Ill-
posed PolSAR Image Classifica-
tion

achine learning approaches are commonly used for classification of remote sensing
data in various applications. Generally, supervised learning (SL) approaches are able

to achieve better results than unsupervised learning (UL) methods due to incorporating prior
knowledge in the form of ground truth data. Yet at the same time, this can be considered a
drawback since SL requires labeled training data from a human expert, which can be time
consuming and error prone manual labor. Even though this is probably the situation for the
majority of fields SL is applied to, it is a particularly difficult process for classification of re-
mote sensing image. The reason is that on-site surveys are ideally conducted to the locations
from which the remote sensing data have been acquired, especially keeping in mind that SL
benefits from larger number of labeled data during training. With a rather limited amount of
training data available, the classification task easily becomes ill-posed due to the small sample
size problem, where the number of training samples is noticeably smaller compared to the fea-
ture dimension. Due to this, the underlying classifier will lack discrimination and generaliza-
tion capabilities. This becomes evident when the classification problems are of complex na-
ture such as multiclass classification tasks where the number of classes might be equal or
higher than the dimensions of the employed features.

To utilize the vast amount of unlabeled data while avoiding the human interaction as in ac-
tive learning, the interest over semi-supervised learning (SSL) approaches has increased since
it can, if properly applied, combine supervised and unsupervised learning approaches. The
overall idea behind SSL is to start from a set of labeled data and then utilize the large amount
of unlabeled data to improve the initial learner. Therefore, the crucial part in this process is
the automatic selection of reliable and informative training samples from the unlabeled data.
As mentioned in Section 4.1.4, common concepts explore unsupervised learning, self-training
by single classifier, and co-training by multiple classifiers. In addition, several assumptions

M
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are generally exploited such as local smoothness / consistency assumption, global cluster as-
sumption and low-density separation as well as the fitting constraint.

In the area of remote sensing image classification, SSL has recently attracted a lot of atten-
tion. Two decades ago, the early investigations showed how unlabeled samples could be bene-
ficial for classification applications [172]. In this work, Shahshahani and Landgrebe studied
techniques to address the small sample size problem by using unlabeled observations and their
potential advantages in enhanced statistic estimation. Their main conclusion was that more
information  could  be  obtained  and  utilized  with  the  additional  unlabeled  samples.  Based  on
these observations, a self-learning and self-improving adaptive classifier [96] using generative
learning was proposed to mitigate the small sample size problem that can severely affect the
recognition accuracy of classifiers. To accomplish this in [96], they iteratively utilized a
weighted mixture of labeled and semi-labeled samples.

Following these pioneer works, there have been various SSL approaches over remote sens-
ing image data, for instance generative learning as semi-supervised versions of a spatially
adaptive mixture-of-Gaussians model were proposed in [99] and [100]. Another approach us-
es graph-based methods, which rely upon the construction of a graph representation [77],
where vertices are the labeled and unlabeled samples and edges represent the similarity
among samples in the dataset including, for example, contextual information via composite
kernels [25]. Furthermore, this graph-based approach was also employed within self-training,
where the graph is used to assure reliability of newly added training examples [32], [122].
However, the general issue of graph-based methods is that the label propagation relies on the
inversion of a large matrix with a size equivalent of the total number of labeled and unlabeled
pixels, which limits their application for remote sensing applications.

One of the most basic semi-supervised learning approaches is to use the output of an unsu-
pervised learning method as the input of a supervised learning approach. This has been ap-
plied to SAR images where an unsupervised clustering approach named Deterministic An-
nealing was used as the training input for a Multi-Layer Perceptron [80]. This type of com-
bined approach has also been applied to other classifier types such as Support Vector Ma-
chines (SVMs) using the output of the fuzzy C-means (FCM) clustering, which was further
extended by Markov Random Fields exploiting contextual information from multiple SVM-
FCM classification maps [3]. A similar approach to the combination of supervised and unsu-
pervised learning algorithms is the application of cluster kernels [187], [188] employing
SVM, where so-called bagged kernels encode the similarity between unlabeled samples ob-
tained via multiple runs of unsupervised k-means clustering.

Furthermore, SVM has been used within the context of self-training, where a binary trans-
ductive SVM has been adapted in a one-against-all topology [22]. Besides that, one-class
SVM has been applied to detect pixels belonging to one of the classes in the image and reject
the others [146]. Yet another semi-supervised SVM approach utilizes the so-called context-
pattern in a form of 4- or 8-connected pixel neighborhoods to identify possible misleading
initial  training  labels  [21].  Besides  its  popularity,  the  application  of  SVMs  in  the  semi-
supervised learning context has some shortcomings such as particularly high computational
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complexity,  utilization  of  a  non-convex  cost  function,  and  the  usage  of  multiclass  SVMs.
These shortcomings have been addressed by using a semi-supervised logistic regression algo-
rithm [62] and by replacing the SVMs with an artificial neural network [164] offering much
better scalability than SVM-based methods.

The focus within this chapter is the challenge of ill-posed PolSAR image classification due
to the small sample size problem. Therefore, first an evaluation of traditional supervised
learning methods is conducted in Section 5.1 over polarimetric SAR images with respect to
their classification performances for various training set sizes. In particular, attention is con-
centrated on rather small training data sizes per class as authored in [194]. After that, the ap-
plication of semi-supervised learning using an ensemble learning approach is presented in
Section 5.2 based on the author’s publication [202]. This includes two basic unsupervised ap-
proaches by enlarging the initial labeled training set as well as an ensemble-based self-
training method. Particularly, different strategies within the ensemble self-training are pro-
posed on how to select reliable candidates from the pool of unlabeled samples to speed-up the
learning process and to improve the classification performance of the underlying classifier
ensemble.

5.1. CLASSIFIER EVALUATIONS OVER DIFFERENT TRAINING
SET SIZES

One common expectation is that supervised learning will perform better with larger amounts
of training data. Yet how small can the training data actually be and still achieve satisfactory
generalization and classification results?

With this in mind, four commonly applied classifier approaches to PolSAR images are as-
sessed namely k-Nearest Neighbor, Artificial Neural Networks, Support Vector Machine, and
Decision Tree classifiers. Nine different variations of them are studied over two fully polari-
metric SAR images from the Flevoland region corresponding to an easier and more challeng-
ing LULC classification problem with 4 and 15 terrain classes, respectively. Classification
performances are evaluated over different training set sizes from up to five percent going
down to mere 0.25-0.1‰ using features from the H A decomposition as described in Section
2.1.

5.1.1. Experimental Setup

This evaluation uses the two fully PolSAR images as described in Section 2.5 namely Flevo-
land,  AIRSAR,  L-Band  and  Flevoland,  RADARSAT-2,  C-Band  as  a  complex  and  simple
classification task, respectively. The underlying ground truth information used during the ex-
periments is presented in Table 27. Both images are speckle filtered [117] with a 5×5 window
before extracting feature corresponding to FV2 as described in Section 2.6 consisting of en-
tropy H, anisotropy A, the average angles averages  , , , , the three eigenvalues, Span,
and RVI. These features are the components of H A and eigenvalue decomposition and com-
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monly used as features in PolSAR image classification. Furthermore, in the evaluation in Sec-
tion 3.3.4 related to the color features, this feature combination demonstrated superior per-
formances compared to the covariance matrix and various other target decomposition.

Table 27 – Polarimetric SAR image data and their ground truth for experiments regarding
classifier evaluation using different training set sizes.

Name No. classes Test size Abbr.
Flevoland 15 208186 Flevo_L
Flevoland 4 200000 Flevo_C

Table 28 – Predefine sets for finding the best classifier configurations for training set size
evaluations. ([N] number of nodes, [T] number of trees).

Classifier abbr. Classifier configuration parameter range
KNN k=2n+1; n=0,…,6
ELM [N] = 12, 25, 50n; n=1,…,10
MLP 1 hidden layer: [N] = 11n; n=1,…,4
RF [T]=50n; n=1,…,4 / split=3,4,5,6,7

SVM1 (linear kernel) C (2n; n=0,...,8)
SVM2 (polynomial d=3) C (2n; n=0,...,8), (2-n; n=0,…,-8)
SVM3 (Gaussian) C (2n; n=0,...,8), (2-n; n=0,...,-8)

As for the training set sizes, seven different variations are chosen with the smaller and me-
dium  sized  training  sets  (TSs)  TS1-TS4 (0.1‰, 0.25‰, 0.5‰, and 0.1%) will be evaluated
with respect to their classification performances. The larger ones TS5-TS7 (0.5%,  1%,  and
5%) on the other hand, can be regarded more challenging considering the computational per-
formances as classification accuracies are expected to be high. In both PolSAR images, the
same amount of labeled data are used so that the total number of pixels in the training sets are
around 20, 50, 100, 200, 1000, 2000, and 10000 randomly drawn. Every individual combina-
tion of classifiers and training sets are run 100 times using MATLAB  (R2010b, The Math-
Works Inc.) on an Intel Corel2 Quad Q9400 @ 2.66GHz with 3GB RAM running Microsoft
Windows XP operating system.

Regarding the nine different classifier variations, they include the k-Nearest Neighbor
(KNN), Multi-Layer Perceptron (MLP1), Support Vector Machine (pairwise multiclass SVM 2

with linear, polynomial, and RBF kernel), basic Extreme Learning Machine (ELM 3) [92], a
CART Decision Tree (DT), and Random Forest (RF 4) that is basically an ensemble of DTs.
For each classifier, the best possible parameters, configuration, or architecture is sought,
which achieve the highest classification accuracies from a predefined range as shown in Table

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3 http://www.ntu.edu.sg/home/egbhuang/ELM_Codes.html
4 http://code.google.com/p/randomforest-matlab/
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28. For the two MLP classifiers, two MATLAB  in-built backpropagation training functions
are considered namely traingd (gradient descent MLP1) and trainscg (scaled conju-
gate gradient MLP2) with their default settings and 100 epochs.

5.1.2. Experimental Results

We start with the Flevo_C RADARSAT-2 image as the easier classification problem due to
its clearer distinctions of the underlying four terrain classes with representing classification
accuracies in Figure 78 and computational complexity evaluations in Table 29. Generally,
higher classification accuracies are expected with more training data and better generalization
capabilities among all classifiers can thus be achieved at the price of higher computational
complexity. However, over just four terrain classes, all classifiers besides DT and MLP1
achieved 85-88 percent classification performance using TS2 with only 50 training samples in
total (~12 samples per class). This 3% margin among the classifiers even shrinks for the other
larger training sets yielding higher classification accuracies over TS5. On this performance
level, increasing the size of the training set only provides insignificant gains on the classifica-
tion performance. Furthermore, when comparing TS3 and TS4 as well  as TS4 and TS5, their
difference in classification performance over all classifiers is rather marginal with ~1.1% es-
pecially with TS4 and TS5 being 2x and 5x larger than TS3 and TS4, respectively. However,
the differences in their respective training and testing complexities are negligible regarding
the real execution times in seconds. Anyhow, providing labels for 5x larger TS can be signifi-
cant. The main noticeable difference is that TS1 is with only five samples per class. RF,
SVM1, and SVM3 achieve the highest accuracies of ~ 85 percent, whereas others suffer from
the limited number of samples in TS1-2. The achieved classification performances among the
classifiers will eventually level out for training sets larger than TS3.

T1 T2 T3 T4 T5 T6 T7
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Figure  78  –  Average  classification  accuracies  for  seven  different  training  set  sizes  over  the
Flevo_C RADARSAT-2 image.
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Table 29 – Average training and testing times in seconds for seven different training set sizes
over the Flevo_C RADARSAT-2 image. Best performing configurations are in parentheses.

T
R

A
IN

IN
G

SE
T

S

KNN ELM DT RF SVM1 SVM2 SVM3 MLP1 MLP2

TS1 (0.10‰)
<0.01

(3)
<0.01
(12)

0.01 0.01 <0.01 <0.01 <0.01
0.66
(33)

0.44
(11)

TS2 (0.25‰)
<0.01

(7)
<0.01
(12)

0.01 0.02 <0.01 <0.01 <0.01
0.78
(44)

0.47
(11)

TS3 (0.50‰)
<0.01

(7)
<0.01
(12)

0.01 0.03 <0.01 <0.01 0.01
0.86
(44)

0.57
(22)

TS4 (0.10%)
<0.01

(9)
0.01
(50)

0.01 0.05 0.01 0.01 0.01
1.01
(44)

0.72
(22)

TS5 (0.50%)
<0.01
(13)

0.02
(50)

0.01 0.27 0.36 0.10 0.16
2.17
(44)

2.94
(44)

TS6 (1.00%)
<0.01
(13)

0.11
(100)

0.02 0.61 1.85 0.31 0.60
3.87
(44)

7.66
(44)

TS7 (5.00%)
<0.01
(13)

2.02
(400)

0.07 4.26 18.68 6.07 12.50
15.76
(44)

64.99
(44)

T
E

ST
SE

T
S

TS1 (0.10‰) 0.79 0.22 0.08 1.53 0.27 0.30 0.53 0.56 0.34

TS2 (0.25‰) 1.23 0.23 0.08 1.64 0.38 0.51 1.00 0.66 0.34

TS3 (0.50‰) 1.60 0.23 0.08 1.75 0.51 0.71 1.49 0.67 0.46

TS4 (0.10%) 2.53 0.62 0.08 1.92 0.72 1.04 1.75 0.67 0.46

TS5 (0.50%) 8.28 0.62 0.08 2.51 1.95 3.24 5.15 0.69 0.72

TS6 (1.00%) 14.19 1.10 0.08 2.84 3.42 5.45 8.94 0.67 0.69

TS7 (5.00%) 57.06 3.69 0.08 3.73 17.25 23.31 36.65 0.65 0.67

KNN, the simplest classifier among all, achieves a comparable classification performance
yet its computational complexity over the test set is still dependent on the amount of training
data. DT performs below average among all classifiers for all TSs as a weaker classifier, how-
ever, its performance can be boosted when it is used within an ensemble topology such as RF,
which generally perform better than a single classifier  system  [58],  [158].  In  this  case,  RF
with 200 trees and three feature splits is employed for all TSs. RF, SVM1, and SVM3 achieve
the highest performances among all TSs while RF is marginally better for TS1-3 by 0.4%,
which is an expected outcome as they are among the most common classifier choices in Pol-
SAR image classification applications. Superiority of RF is due to being an ensemble classifi-
er of DTs, which is reflected in the training and testing times compared to a single DT. SVM2
matches the performance of RF, SVM1, and SVM3 for TS4-7 while having the least training
times  among  the  SVMs,  yet  suffers  slightly  for  TS1-3 probably due to the fixed polynomial
degree. SVMs aim for separation in a kernel space so that the applied kernel as well as the
number of training samples influence the training time (kernel mapping + finding support
vectors). Similar to KNN, the number of support vectors will eventually dictate the complexity
during classification phase. Therefore, RF significantly outperforms SVM1 and SVM3 in train-
ing and testing complexity for TS6-7 as more support vectors are generated for them.
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For ANN classifiers, the ELM achieves 1-3% better classification accuracies with signifi-
cantly faster training time compared to the MLP2. However, ELM testing complexity can be
substantially  slower  (2-6 times) depending on its number of hidden nodes while the time
complexity  of  the  MLPs  is  consistently  below  one  second  over  the  test  set.  For  the  MLPs,
there is a considerable difference between the two training functions where MLP2 outper-
forms MLP1. The inferior performance of MLP1 for TS6-7 is probably due to either over-
training or the network configuration might be too limited. This is also visible in the best per-
forming architecture with MLP2 achieving higher accuracies with simpler networks particu-
larly for the smaller TSs, yet it still has the highest complexity during training. Some observa-
tions can be made for ELM and KNN, when more neighboring samples are included into the
decision-making. The reason is again the simplicity of the four-class problem, where the clas-
sifier complexity scales well to the number of training samples.

As for the Flevo_L AIRSAR image, the classification task is more complex as there are 15
LULC classes present with the classification performances and complexities shown in Figure
79 and Table 30, respectively. Results for MLP1 are  omitted  from  Figure  79  as  they  were
around 10% of accuracies for all TSs. Such a low performance is probably due to the local
minima entrapment of the gradient descent algorithm. The remaining classifiers show larger
variations between minimum and maximum classification accuracies achieved particularly for
TS2-5 with gaps of 23%, 17%, 13%, and 8%, respectively.

Similar to the Flevo_C image, it is observed that with larger TSs better overall classifica-
tion performances are achieved where the gap shrinks to 6-4% among the classifier results for
the larger TS with DT, KNN, ELM, and MLP2 particularly benefiting from the larger TS size.
RF achieves 78 percent accuracy on TS2 outperforming the second best classifiers by 7% due
to its ensemble nature with 100 trees and feature split of 7 which is related to the larger num-
ber of classes. Yet, SVMs reduce this gap by half with two times the size of TS2 in TS3. For
the applied kernels in the SVMs, they all perform rather constant for the smaller TSs and only
a 1-2% difference can be observed for SVM1, which is probably related to its linear kernel,
which is not sufficient to separate the larger amount of training data for all class pairs in the
mapped kernel space.

Compared to the Flevo_C image, it can be observed for Flevo_L that ELM, MLP2, and
KNN resulted in larger networks and smaller numbers of nearest neighbors to accommodate
the larger number of terrain classes. Training and testing complexity for KNN is the same as
for the Flevo_C images as number of training and testing samples are approximately the
same. This is similar for ELM as it is mainly related to the number of nodes in the hidden lay-
er and number of training samples. As expected, the complexity of training MLP2 obviously
increased as hidden layer and, of course, output layer sizes changed.

For the SVMs, computational complexities of the training process are lower particularly
for TS5-7 compared to the four-class problem, which might be related to the smaller number of
training samples per class. This makes it easier in the pairwise multiclass SVM approach to
solve the optimization problem even though the larger numbers of classes result in more bina-
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ry classifiers. Yet for this reason, testing complexity increases due to a larger numbers of
overall support vectors that need to be compared against the test samples.
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Figure 79 – Average classification accuracies for six different training set sizes over the Fle-
vo_L AIRSAR image.

Table 30 – Average training and testing times in seconds for six different training set sizes
over the Flevo_L AIRSAR image. Best performing configuration are in parentheses.
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KNN ELM DT RF SVM1 SVM2 SVM3 MLP1 MLP2

TS2 (0.25‰)
<0.01

(1)
<0.01
(25)

0.01 0.02 0.01 0.01 0.02
0.88
(44)

0.68
(44)

TS3 (0.50‰)
<0.01

(1)
0.01
(50)

0.01 0.03 0.02 0.02 0.02
1.01
(44)

0.92
(44)

TS4 (0.10%)
<0.01

(3)
0.01
(50)

0.01 0.06 0.03 0.04 0.04
1.3
(33)

1.77
(44)

TS5 (0.50%)
<0.01

(5)
0.29
(400)

0.01 0.27 0.24 0.21 0.26
3.07
(33)

12.25
(44)

TS6 (1.00%)
<0.01

(5)
0.47
(400)

0.02 0.30 0.53 0.47 0.68
5.72
(33)

36.61
(44)

TS7 (5.00%)
<0.01

(5)
2.11
(400)

0.08 3.82 8.48 4.69 8.52
30.15
(44)

426.82
(44)

T
E
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SE

T
S

TS2 (0.25‰) 0.44 0.45 0.18 1.49 1.40 1.55 2.08 0.85 0.87

TS3 (0.50‰) 0.75 0.63 0.18 1.50 2.05 2.34 3.27 0.84 0.87

TS4 (0.10%) 2.48 0.69 0.17 1.53 2.68 3.02 4.55 0.73 0.88

TS5 (0.50%) 7.78 4.09 0.18 1.71 5.08 6.42 10.53 0.72 0.86

TS6 (1.00%) 13.85 4.13 0.17 0.99 10.80 10.10 21.01 0.71 0.86

TS7 (5.00%) 59.73 4.07 0.17 2.16 30.96 39.04 49.79 0.82 0.87
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Overall, SVMs and RF are able to outperform other classifiers when it comes to small
training data sizes. Particularly the ensemble approach, RF, performs best with regard to clas-
sification accuracies and computational complexity.

5.2. SMALL TRAINING SIZE PROBLEM AND SEMI-SUPERVISED
LEARNING BY ENSEMBLE OF CLASSIFIERS

In the case of supervised learning, combining multiple classifiers to a committee or ensemble
has demonstrated to improve classification performance over single classifier systems [158]
and its effectiveness has also been shown for remote sensing data [58]. Generally, ensemble
learning tries to improve generalization by combining multiple learners, whereas semi-
supervised learning attempts to achieve strong generalization by exploiting the unlabeled data.
Hence, fusing these two learning paradigms, even stronger learning systems can be generated
by leveraging unlabeled data and classifier combination [230]. Zhou and Li proposed the Tri-
training approach [229], which can be seen an extension of the co-training algorithms, where
three classifiers are used and when two of them agree on a label of an unlabeled sample while
the third disagrees; then, under a certain condition, the two classifiers will label this unlabeled
sample for the training of the third classifier. Later, Tri-training was extended to Co-forest
[123] including more base classifiers adopting the “majority teaches minority” strategy. Addi-
tionally, semi-supervised boosting methods have been proposed such as Assemble [15], which
labels unlabeled data by the current ensemble and iteratively combines semi-labeled samples
with the original labeled set to train a new base learner which is then added to the ensemble.
The more generic SemiBoost [133] combines classifier confidence and pairwise similarity to
guide the selection of unlabeled examples. Bagging and boosting based ensemble approaches
became popular within SSL, particularly self-training, with a general outline illustrated in Ta-
ble 31; however, they are not as often applied to remote sensing data as for other areas.

Table 31 – General outline of SSL bagging ensemble approach.

The general ensemble-based outline as given in Table 31 was utilized by an approach
named Semi-labeled Sample Driven Bagging using Multi-Layer Perceptron [33] and k-
Nearest Neighbor [34] classifiers over multispectral data. Furthermore, ensembles have been
applied to the concept of unsupervised learning where the Cluster-based ENsemble Algorithm

 Start with an empty ensemble =

 Train a base learner h0 with labeled data and add h0 to 0

 For each iteration t=1 N:
 Compute confidence and semi-labels for unlabeled samples using

existing ensemble t-1

 Select semi-labeled samples based on a confidence threshold
 Train new base learner ht with labeled and semi-labeled samples

Add ht to ensemble t = t-1 ht
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[36] applies Mixture of Gaussians (MoG) and support cluster machine to attack the quality
problems of the training samples. In this case, the ensemble technique is used to find the best
number of components going from coarse to ne to generate different sets of MoG. A self-
trained ensemble with semi-supervised SVM has been proposed in [137] for pixel-based clas-
sification where fuzzy C-Means clustering is employed to obtain confidence measures for un-
labeled  samples,  which  are  then  used  in  an  ensemble  of  SVMs.  Here,  each  SVM  classifier
starts with a different training set, which might be difficult within a small sample size prob-
lem when the initial labeled training data cannot be divided into multiple partitions.

There have been quite many SSL investigations over spectral-based remote sensing data
where only a few particularly focused on ill-posed classification of the small sample size
problem, which makes the selection of the initial training dataset more critical [24]. However,
SSL has not yet been studied in such a high scale that PolSAR data reside particularly when it
comes to the evaluation of the classification performance. In this section, the main questions
addressed are:

1) How small can the initial training dataset be to achieve still good results, with and with-
out SSL?

2) While applying SSL initially with small size training data, is it possible to reach similar
accuracies to a SL approach that is trained over a significantly larger dataset regardless from
the number of iterations or unlabeled samples?

With these two questions in mind, focus is on three main investigations regarding the small
sample size problem over PolSAR data. Firstly, before applying self-training two unsuper-
vised approaches are considered to enlarge the initial user-annotated training data as an initial
stage of the SL. Secondly, a bagging ensemble approach is investigated combining the ad-
vantages of a multi-classifier system with semi-supervised learning. Thirdly, different strate-
gies within the self-training procedure are studied on how to select from the pool of unlabeled
samples to speed-up the learning process and also to improve both generalization and classifi-
cation performance.

5.2.1. SSL Ensemble-Driven Approach

In general, semi-supervised learning approaches employing ensemble classifiers are straight-
forward and proven effective. We adopt the bagging ensemble approach similar to Chi and
Bruzzone [33], [34] as the underlying supervised learning approach since such systems are
generally classifier independent and advantageous against SVM and graph-based methods
regarding memory requirements especially for larger data.

The general outline of a bagging ensemble approach is presented in Table 31. The first
step, a base learner h is trained with labeled training dataset, L, and added to the ensemble .
At step t, the unlabeled data, U, is classified and as a result, semi-labels based on confidence
values from t-1 are obtained. As in [33] and [34], a subset SLt from U is then extracted, con-
taining the pixels that are (randomly) selected from the unlabeled samples over the entire im-
age for a better spatial distribution. The pixels should have a confidence score above a certain
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level (e.g., 85 percent for the multi-layer perceptron, MLP) and a total number of twice the
amount of labeled samples is selected. Then a new base learner h is trained using L and SLt,
with h added to t, i.e., t = t-1 + h(L, SLt). This is an iterative process until a predefined
number (such as 20) of classifiers in  is  reached.  They  employed  k-Nearest  Neighbor  and
MLPs as the base learners and penalized the unlabeled samples in step t using the confidence
values obtained from the previous ensemble t-1. This is done so the semi-labels selected
among the unlabeled samples do not have the same influence during training as the labeled
samples.  For  the  k-Nearest  Neighbor,  the  penalty  is  applied  when the  nearest  neighbors  are
compared while classifying a sample, whereas in case of Multi-Layer Perceptrons, they modi-
fied the mean squared error cost function instead.

Table 32 – The outline of the adapted semi-supervised bagging ensemble approach, where red
highlights the modifications made to the general approach.

The aforementioned general bagging ensemble approach within a self-training process is
executed and extended in this semi-supervised learning setup. Particularly, three modifica-
tions as highlighted in Table 32 are proposed to improve the classification accuracy and to
reduce the number of self-training iterations required. Figure 80 illustrates the four-stage it-
erative SSL approach with each stage and contribution detailed in the following subsections.

Figure 80 – Flowchart illustrating the four-stage SSL approach.

 Start with an empty ensemble =
[1. Extend initial training data using spatial consistency assumption around
the labeled data]

 Train a base learner h0 with labeled data and add h0 to 0

[2. Use a small ensemble as the base learner itself]
 For each iteration t=1 N:

 Compute confidence and semi-labels for unlabeled samples using
existing ensemble t-1

[3. Select unlabeled samples only from a certain search neighbor-
hood]

 Select semi-labeled samples based on the search neighborhood
and confidence threshold
[Modify search neighborhood based on growing criterion]

 Train a new base learner ht with labeled and semi-labeled samples
 Add ht to the ensemble t = t-1  ht
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5.2.1.1 Init: Labeled training data
The initial labeled training dataset is critical for semi-supervised learning techniques [24]. To
validate this, the used training sets Ti are generated in the following manner. Training set T1

has exactly one (i=1) labeled sample per class. In the Flevoland AIRSAR image (Section
2.5.1) are 15 terrain classes (nC=15), so that T1 has  a  total  size  of  15.  Furthermore,  10  in-
stances of T1 are randomly generated. Now the instances of training set T2 are created by ran-
domly adding a new and different labeled training sample to each of the 10 instances of T1 so
that T1  T2 for all instances. Every instance of T2 now includes two (i=2) labeled samples
per class. This process continues up to i=10 so that T1  T2  …  T9  T10 until 100 training
datasets with sizes from 15 to 150 are generated.

5.2.1.2 Pre-stage
As a pre-stage, unsupervised clustering is employed to tackle the small training set problem,
which is a regular starting point in a SSL scenario. The main idea is that any option that is
able to extend the training set accurately would be highly beneficial since a better generaliza-
tion and hence a superior classification performance can be achieved over a larger training set
as also observed in the evaluations of Section 5.1. Here straightforward approach is to use the
contextual information within the pixel neighborhood of the labeled samples and assign the
same label to the neighbors. By employing this contextual information in form of the 4- or 8-
connected neighbors, local spatial smoothness and consistency among the image pixels is ex-
ploited. This way the initial training set can be easily enlarged by 4- or 8-times with a high
probability of the semi-labeled neighbors having the correct label. To further increase the
number of training samples, a dense over-segmentation of an image is computed applying a
superpixel [120] segmentation approach. This segments the image into small homogenous
regions, the so-called superpixels [120], respecting local image boundaries, while limiting un-
der-segmentation through a compactness constraint. Again, this is a spatial smoothness and
consistency among pixel intensities. Compared to the connected neighbors approach, this may
properly extend the initial training set by an order of magnitude depending on the average size
of the obtained superpixels. However, the outcome will be parameter dependent with respect
to the size and compactness of the superpixel algorithm, which might also affect the accuracy
of the semi-labels.

During this pre-stage, each Ti is enlarged by the 8-connected neighbors around each la-
beled pixel (NNi, i.e., see left side of Figure 81) and by the pixels belonging to the same su-
perpixel as the labeled pixels (SPi). For the superpixel segmentation, TurboPixels algorithm
[120] is employed with the (maximum) number of superpixels set to 8000, which is empirical-
ly determined to get compact and homogeneous superpixels. With this parameter setting, the
algorithm will produce 7434 super pixels with an average size of around 103 pixels with the
outcome shown in Figure 81 on the right side. As an alternative approach, a more recent algo-
rithm [1] could also be used instead where one just needs to specify the desired superpixel
size and its compactness rather than the number of superpixels. Note that the choice of the
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superpixel algorithm is not critical for this study. Figure 82 shows an example of the extended
training sets NNi and SPi on an instance of T5 over a selected area.
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Figure 81 – The contextual 8-connected pixel neighborhood (left) and (right) the result of the
applied superpixel algorithm (Turbopixels [120]) over Flevoland AIRSAR image.

Figure 82 – Example of the different training sets over a selected area (red box) based on con-
textual information (NN) and superpixel (SP) extensions.

5.2.1.3 Ensemble-based Self-Training
Within this self-training process, a bagging ensemble is employed as the underlying super-
vised learning approach, which relies on a base classifier. It is commonly known that employ-
ing a strong classifier is advantageous for any supervised learning. Therefore, the fact can be
exploited that combining multiple classifiers to a committee or ensemble has shown to im-
prove classification performance over single classifier systems [158]. As a base classifier
within the self-training stage, a rather weak classifier is employed specifically a Decision Tree
(DT) algorithm [19] due to its simplicity and parameter independence. Additionally, Random
Forest (RF) [19] is used as a multi-classifier system of DTs in order to obtain diversity due to
its employed feature splitting. Since the overall approach is already based on an ensemble of
classifiers, RF will only include three DTs to keep computational complexity low.

Due to its simplicity, the employed DT algorithm provides binary class decisions dc for an
individual sample as dc=1 if class c is chosen, otherwise dc=0. As an ensemble,  RF uses the
individual DT class decisions to provide its final class predictions via majority voting [158]:
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1 1
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c jj n
D d , (21)

where nC is the number of classes and M is the number of classifiers, in this case M=3. Math-
ematically, this approach can also be applied to DT with M=1. Now during the self-training,
the class confidence values of ensemble , at iteration t, is the combination of all individual
ensemble member predictions Dc via the mean rule [158]:
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As for the iterative self-training procedure, a confidence threshold, THR, shall be used for
the class confidence values, where THR indicates the minimum class confidence value a sam-
ple should have assigned by the previous ensemble classifier to select it from the unlabeled
samples. On one hand, if THR is too high, limited or no new information is introduced into
the learning process, which results in no or limited learning during each self-training iteration.
On the other hand, with THR too low, there is a risk of introducing too many erroneous semi-
labeled samples to the classifiers. This whole approach is contrary to active learning, where
samples with confusing class membership values are selected (i.e., samples lying on or close
to  the  decision  boundary)  since  a  human  expert  will  provide  a  correct  label.  Within  self-
training, one has to weigh the risk of adding new information and classifier’s confidence.
Moreover, related to the small sample size investigation, when selecting the number of unla-
beled samples, NSL, the same number as originally labeled training samples is considered per
class during self-training iterations. This guarantees that the number of labeled samples is al-
ways equal or greater than the added semi-labeled samples; and it is not biased towards possi-
ble erroneous semi-labeled samples particularly during the earlier self-training iterations. Ac-
cordingly, the following procedure is adapted:

1. If no unlabeled sample has a class membership value higher than THR then no unla-
beled samples are selected for that particular class.

2. If  the  number  of  unlabeled  samples  with  a  class  membership  value  equal  or  higher
than THR is less than NSL, all of them are selected. Hence, NSL is the maximum num-
ber than can be selected per class from the unlabeled samples.

3. Otherwise, NSL number of samples is selected among the unlabeled samples with class
membership values higher than THR.

The semi-labeled samples are randomly selected with uniform distribution among the sam-
ples fulfilling the criterion of confidence values higher than THR. The reason for random se-
lection is twofold: By selecting samples from the top of the class confidence values, we would
only select samples that we can already classify correctly. Alternatively selecting samples
with class confidence values slightly higher than THR, there is obviously a higher chance of
adding new information into the learning process yet also a higher probability of introducing
erroneous samples. However, making errors in earlier stages of the self-training process may
cause accumulation of errors over time. Random selection among the unlabeled samples com-
bines the advantages of selecting samples with different class confidence values while reduce
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the risks of the two aforementioned selection scenarios. Moreover, the random selection will
add certain diversity among the samples that can enhance the learning process. Note, that it is
also a common practice to include other measures, such as clustering samples in feature space
or determine diversity among samples to avoid the selection of redundant samples. However,
this has not been considered to avoid the high computational complexity and large memory
requirements.

Both labeled and semi-labeled samples are treated equally during the training. Such a
treatment is acceptable since the class confidence value threshold is kept reasonably high;
however, when the semi-labeling is wrong even with a high confidence value then nothing
can indeed be done to cure this. On the other hand, the ensemble approach can still compen-
sate for few erratic individual classifiers when some semi-labeled samples are introduced with
wrong semi-labels. Moreover, base learners can be applied “as is” without any need of modi-
fication to make up the erroneous semi-labeling. Overall, we have chosen 50 iterations during
the self-training procedure as one of the objectives is to investigate the effects of how many
iterations and classifiers (i.e., how many unlabeled samples) can be added to the ensemble
while still providing additional information to the learning process compared to predefined
numbers such as 17 and 25 in [33] and [34], respectively.

5.2.1.4 Selection of New Training Samples
In any self-training approach, a significant improvement over the classification performance
can usually be achieved only by selecting a reliable set of new training samples from the large
pool  of  unlabeled  samples.  Therefore,  rather  than  selecting  them  from  the  entire  image  ex-
cluding the ground truth, the search neighborhood can be limited to the vicinity of the provid-
ed labeled samples. This neighborhood exploits a spatial smoothness constraint at the begin-
ning and the area of which can be increased with each iteration. In the proposed approach the
how and where are discussed to select unlabeled samples in the following way.

The how is usually measured by the (class) confidence values provided by the classifier,
i.e., computing the confidence score of each sample belonging to a particular class. Via a con-
fidence threshold (THR) applied to the class confidence values it can be determined which
unlabeled  samples  should  be  selected  among  the  unlabeled  data.  The  rule  of  thumb  is  that
samples above a certain class confidence value are selected to ensure not adding and accumu-
lating too much error as previously discussed.

The where indicates the search for the location to select new training data after applying
the confidence threshold, THR = 0.8. This is usually performed over all available unlabeled
samples to exploit information presented in the entire data or image. This is a valid approach;
however, due to the large amount of unlabeled samples, the selection of the most reliable can-
didates becomes more difficult especially when we want to add new information to the (self-
training) learning process. Due to nature of remote sensing data, the spatial location in the
close vicinity of the provided labeled data can be exploited rather than performing some fea-
ture clustering methods with unknown distance metrics, both of which can create further un-
certainties or erroneous training data selections in the process.
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Thus, the main idea is to grow the search neighborhood with the notion that the provided
labeled data are correct exploiting the smoothness and consistency assumptions while focus-
ing the selection process among the unlabeled data within vicinity of the labeled data. This
search strategy has the advantage that the initial classifier may find such unlabeled data that
do not necessarily have the highest class confidence values but are able to provide more di-
versity among the training samples. Especially at the beginning of the self-training process,
we try to increase the size of the training set with reliable and informative semi-labeled sam-
ples. Therefore, two options are considered: 1) the search neighborhood is limited to the vi-
cinity around all labeled samples to determine those semi-labeled samples among the unla-
beled samples per class - NHL. This can be seen as a localized version of selecting from the
entire image. In addition, 2) setting the search neighborhood around the labeled samples of a
particular class to determine the semi-labeled samples per class - NHC. The search area of
those two strategies can iteratively grow with the number of SSL iterations to cover the entire
image eventually.

To choose unlabeled samples, three strategies according are considered and evaluated with
regard  to  THR  and  NSL.  Firstly,  the  basic  strategy  uses  all  unlabeled  samples  for  selection
(full). The other two strategies exploit, as mentioned above, the spatial location of the labeled
data so that the unlabeled samples are limited by the neighborhood of the labeled samples
(NHL)  or by the labeled samples of a particular class (NHC).  Two different methods are ap-
plied to generate NHL and NHC. The first applies an initial circular pixel neighborhood with
radius rad growing around each labeled sample. Its radius is gradually increased by radInc
pixels in self-training iteration t based on the equation: NHt = rad + (t · radInc). The second
method utilizes the available superpixel segmentation with the following idea: instead of
growing the search neighborhood by a radInc, it now grows by merging adjacent superpixels
to the previous neighborhood starting from the superpixel belonging to the labeled samples. In
the end, NHL and NHC actually cover the same area with the difference that NHC is further
separated into the individual classes. Synthetic examples of NHL and NHC of the initial search
neighborhoods are shown in Figure 83 with rad=10 and radInc=1 due to the limited resolu-
tion of the test image. Furthermore, using the superpixel approach as demonstrated in Figure
84, the neighborhood grows quite rapidly, therefore, reaching the equivalent of full within
around t=10 ST iterations. Accordingly, an option is considered where the superpixel-based
search neighborhood only grows per n-th ST iteration to limit the exponential growth. How-
ever, utilizing superpixels could be seen more generic without having to “tweak” parameters
rad and radInc of the circular growing search neighborhood.

Within  the  evaluation,  the  effects  of  circular  NHL and  NHC are investigated considering
four combinations of rad 10 and 20 with radInc of 1 and 2, namely 10_1, 10_2, 20_1, and
20_2. For the superpixel NHL and NHC, two tests are conducted, where besides growing the
search neighborhood with each ST iteration, the SP search neighborhoods is only updated
every 2nd (odd) iteration.
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Figure 83 – Examples of the different initial search neighborhoods for the unlabeled sample
selection over the selected image area. The colors for NHC indicate the class label.

Figure 84 – Examples of the growing process for the circular- and superpixel-based search
over the selected image area. The colors for NHC indicate the class label. The darker shades of
gray indicate the growth in the ST iterations with black areas not considered for selection at
all.

5.2.2. Experimental Results

In the following experiments, the main questions are:

1) Can a SSL method starting with a limited training set, Ti, manage to reach a similar
performance of a classifier trained over a larger training set?,

2) How does self-training over Ti measure compared to the SSL approaches by enlarging
the training set in an unsupervised manner using NN and SP?,

3) What is the influence of search neighborhoods full versus NHL versus NHC and the re-
lation of number of unlabeled versus labeled samples over such search neighbor-
hoods?

To find answers to these questions, the experimental setup is similar to Section 5.1.1, ex-
tracting the same 11 dimensional feature vector as described in Section 2.6 - FV2 = [Span, H,
A, , , , , , RVI] over the Flevoland AIRSAR image.

Before presenting the classification results over the initial training sets, Ti, using self-
training with the bagging ensemble approach, we shall first investigate the effects of the con-
fidence threshold, the different search neighborhoods and the number of unlabeled samples
selected. Furthermore, we shall evaluate and compare the performances of the enlarged train-
ing sets via the unsupervised SSL approaches, NN, and superpixels, SP. Along with numerical
performance evaluations represented as average classification accuracies over the 10 instance
for the different training sets size Ti; we shall also present visual classification results.
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For evaluation of the effects with respect to the confidence threshold THR, a basic setup is
used with the three search neighborhoods, full, circular NHL, and circular NHc employing DT
and RF within the ensemble based self-training. Three values are used for THR: 0.7, 0.8, and
0.9. Individual results are shown in Figure 85 as average classification accuracies achieved
over  the  smaller  and  larger  sized  training  sets.  Using  RF,  the  different  THRs  perform  on  a
similar level and differences among search neighborhoods with minor variations in the final
classification accuracies, due to being a stronger classifier providing better class predictions
over smaller training sets. However, the weaker classifier DT is more affected by the choice
of THR as one probably would expect. The main observation is that the THR has an effect on
the final classification performance with respect to the underlying search neighborhood. The
DT performance regarding THR seems to be proportional to the size of the used search neigh-
borhood. With a smaller THR is seems beneficial to have a smaller search neighborhood,
whereas with higher THR the size of the search neighborhood does not seem to have major
effects as performances vary just within a small margin. This is expected as the weaker learn-
er DT is not able to learn and generalize too well from such tiny to small training sets. Due to
these observations and as the overall classification performances for the different THRs aver-
age out over the different search neighborhoods, so that for the remainder of the experiments
THR is equal to 0.8.
          DT 1-5           DT 6-10           RF 1-5           RF 6-10

THR                 0.7                 0.8                 0.9

Figure 85 – Illustrating the effect of different confidence threshold (THR) values as average
classification accuracies over the three search neighborhoods using DT and RF as base learn-
ers within self-training.

Regarding the evaluation of the different search neighborhoods (SNHs), the overall differ-
ences in total gain after 50 iterations of ST is minimal with all SNHs reaching similar classifi-
cation results (Figure 86) and ST improvements (Figure 87) for different Ti. We can see that
especially with the small Ti (T1-T5) larger ST improvements (30-40%) can be obtained com-
pared to their initial lower classification accuracies indicating that there are large potentials
for improvements. It is also anticipated that the ST improvements with the larger Ti (T6-T10)
are no longer that significant (only around 10-15%) as their initial classification accuracies are
already around 60-70 percent due to larger training data. In general, differences among the
SNHs full, NHL,  and NHC are observed as expected. Applying NHL results in slightly better
classification performances than using full since NHL is a smaller subset of full whereas NHC

limits the SNH for one class to the spatial proximity of its particular labeled samples. The per-
formance difference between full and NHL disappears for the larger sets, T5-10, since NHL suf-
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fers from the same problem, i.e., no or limited amount of new information is available due to
larger number of labeled samples.

Figure 86 – Classification accuracies for different training sets Ti using  the  three  selection
methods for the unlabeled samples over the four circular combinations and two superpixel
methods using Random Forest as base learner in the ensemble self-training.

For the circular NHL and NHC, the initial size rad and the incremental expansion by radInc
seems to have marginal effects since in either case the SNH area will not significantly change
per  iteration.  Overall,  the  four  different  combinations  result  in  rather  similar  outcomes  with
marginal variations due to the random sample selection. Based on the made observations, the
influence of parameters rad and radInc are related to the resolution of the used AIRSAR im-
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age. Considering the two SP growing methods, in both cases results using NHL are similar to
full due to the fast rate the SP SNH grows. However, main differences can be observed for
NHC. Firstly, both methods results are below the ones obtained by circular growing, and, in
either case, no ST improvements for larger Ti are achieved after 10 iterations. Hence, within
the first 10 iterations, the best ST performances are achieved. Thus, afterwards no further
benefits of adding new samples can be made with NHC since the SNH area is the same size as
full.

Figure 87 – Improvements of self-training per 10th iteration for different training sets Ti using
the 3 selection methods for the unlabeled samples over the four circular combinations and two
superpixel methods using Random Forest as base learner in the ensemble self-training.

10

20

SP
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For the main classification performance evaluations, the NHC approach is used for the cir-
cular combination with rad=10 and radInc=1. This mimics a slower growth while the super-
pixel approach will grow much faster while expanding the SNH every odd ST iteration. For
the remainder of this evaluation, two SNH approaches are abbreviated with NHo for the circu-
lar and NHsp for the superpixel methods.

Next, the effect of the number of unlabeled samples that are added per ST iteration is in-
vestigated. Due to small sample number per class, the same amount of unlabeled samples with
regard to the number of labeled samples per class is considered for initial pixel training sets
Ti. This avoids the possible bias towards erroneous semi-labeled samples particularly during
the earlier self-training iterations. Thus, we evaluated the effect of adding different number of
unlabeled samples per ST iteration for enlarging Ti with NN and SP to see if they would able
to handle such bias. For this, multiples (xL) of labeled samples per class are considered,
namely x1, x2, x4, and x6 that can potentially added in numbers of unlabeled samples. This
means, for example, that in case of x4, unlabeled data size is up to four times the number of
originally labeled samples per class. Thus, with i=2, this results in eight possible candidates if
their confidence scores are higher than THR.

Figure 88 – Influence of number of unlabeled samples added per self-training iteration using
the  class-based  SNH in  a  circular  (NHo) and superpixel-based (NHsp) growing approach for
the two enlarged training sets NNi and SPi.

Figure 88 demonstrates the differences of search neighborhoods (NHo and NHsp) and num-
ber of xL combinations with respect to the best classification result achieved among all com-
binations. The general observation confirms the expected result, that is, adding more unla-
beled samples than the initially labeled samples will bias the learning process towards the un-
labeled samples particularly in case of the smaller training sets, i.e., T1-5, as shown in the plot
for Decision Tree (DT) over NNi using SNH mode, full. However, this effect is reduced for
T6-10 due to the relatively larger size of the initial training data. When using NHsp, it shows the
same behavior for different xL combinations as it will reach the area of full since the search

DT 1-5 DT 6-10

RF 1-5 RF 6-10
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process quickly suffers from the same issues. Yet note that the effects are not as severe since
the SNH still has to grow within the first ST iterations, which reduces the chance of the weak
DT learner to add erroneous or uninformative samples during the first ST iterations. Applying
NHo appears to provide best results with x4 combination being a trade-off to x2 and x6 as a
balance between the number of labeled and unlabeled samples. Yet classification accuracy
differences among them are rather small, within one percent. For the larger training sets of
NN6-10 using NHo, there seems to be no benefit of adding more unlabeled samples due to larg-
er number of labeled samples that are already available and providing initial classification ac-
curacy level higher than 70 percent. In that regard, performance differences for x4 and x6 to
x1 and x2 combinations are negligible. Concerning the superpixel enlarged initial training
sets, results using SNHs, full and NHsp seem to follow similar behavior for different xL com-
binations. However, classification accuracies are achieved within a one percent range due to
the larger training set sizes and this makes it easier to compensate for larger number of unla-
beled samples. In case of SPi, the number of unlabeled samples does not significantly affect
the results, as the labeled data size during the initial training iterations is so large that only
minor ST improvements can be made.

Regarding the evaluation using Random Forest (RF), we can observe similar behavior for
the different training sizes. As for DT with NNi using the SNH mode as full, more unlabeled
samples result in higher probabilities of selecting erroneous or uninformative samples due to
the larger SNH. For NHsp, due to the homogeneous superpixels, the size of unlabeled samples
has a marginal effect because the additional samples over the same superpixel area will have a
rather similar feature structure especially with a stronger classifier that is capable of providing
higher confidence scores. Nonetheless, we can observe that for NHo the opposite effect is vis-
ible, where more samples can now make a significant influence. One of the reasons is that the
circular NH grows with respect to the spatial distance to a labeled sample location - not as in
case of superpixels by sample homogeneity. More important than this is the fact that with
NHo the SNH grows slower so that not all similar samples are added within the same ST itera-
tion. The addition of similar samples is spread over time and many ST iterations. For the en-
largement of Ti by superpixels as for DT, similar observations can be made for NN6-10 and SP,
where the effect of the unlabeled samples is reduced with higher number of labeled samples.

After  these  two  initial  evaluations,  the  classification  performances  of  Ti and  their  corre-
sponding self-training (ST) improvements for search neighborhoods full, NHo,  and NHsp are
presented in Figures 89 and 90. Using DT as the base classifier, we can observe that similar
levels of classification accuracies can be achieved using self-training over T1,  T2,  and  T3

compared to the initial results of T4, T7, and T10, respectively. Similarly, when using RF with
the sets T1 and T2 employing self-training, classification results comparable to T5 and T10 can
be realized. This is not surprising because a stronger base classifier such as RF can achieve
higher classification accuracies particularly for small training sets such as T1 and  T2 as ob-
served in the previous Section 5.1. This will eventually result in better label predictions of the
unlabeled samples in the first ST iterations. Note that for both base classifiers, the classifica-
tion accuracies achieved by self-training are similar to the ones obtained with its SL counter-
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part while using 3-5 times less amount of manually labeled data. Such a crucial reduction on
the manually labeled data for training is indeed a noteworthy accomplishment of the ST ap-
proach; however, further investigations shall be carried out to evaluate different options and
to maximize the gain.

Evaluating  the  three  different  methods  on how and where to pick the unlabeled samples
from, we can observe clear differences for the two base classifiers employed. For the weaker
classifier DT in Figure 89, the full search neighborhood provides slightly better or similar re-
sults than NHo and NHsp for T1 and T2, whereas for the larger sets, T3-10, NHo and NHsp yield
in higher accuracies. The reason lies in the fact that DT, as a rather weak learner is not capa-
ble of learning from such small sample sizes with one and two labeled samples per class. For
T1, note that DT still benefits from new samples during the iterations, t=40 and t=50. Howev-
er, ST improvements of 18-22% are achieved due to the extremely low initial classification
accuracies on the labeled samples while the overall classification accuracies being below
50%.

Decision Tree

Figure 89 – Top row: Classification accuracies for different training sets, Ti using the three
selection methods for the unlabeled samples. Dashed lines show results for enlarging Ti with
NN and superpixel (SP). Bottom row: Improvements of self-training (ST) per 10th iteration for
the Decision Tree base learner.

As for the larger sets, T3-10, the larger training data size results in a greater search neigh-
borhood while increasing the number of possible unlabeled candidates within NHo and NHsp.
Yet the number of these candidates is still significantly smaller than the one for full, and this
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yields a higher chance to semi-labeled samples with lower class confidence values providing
more diversity but in the same time, higher risk of erroneous semi-labeling. Yet, performance
differences observed among different search neighborhoods are minimal, i.e., using NHo pro-
vides a mere ~2% higher classification accuracies. As for RF in Figure 90, classification per-
formances over T1-4 using NHo are the highest among all other alternatives. This is related to
the stronger classifier that has superior learning capabilities with less number of samples so
that the smaller search neighborhood of NHo and NHsp becomes beneficial in providing fur-
ther diverse samples into the learning process. Both base classifiers indeed benefit from se-
lecting samples closer to the initially labeled samples while having a stronger classifier with a
better learning ability is obviously more advantageous.

Random Forest

Figure 90 – Top row: Classification accuracies for different training sets, Ti using the three
selection methods for the unlabeled samples. Dashed lines show results for enlarging T i with
NN and superpixel (SP). Bottom row: Improvements of self-training (ST) per 10th iteration for
the Random Forest base learner.

Furthermore, when looking into results of the self-training iterations in Figures 89 and 90,
we can observe that using NHo and NHsp can yield further improvements particularly during
the earlier iterations (i.e., t=10). With the full search neighborhood, a minimum number of 20-
30 iterations are needed to achieve the same results or for a larger Ti, similar accuracies can-
not be achieved even after 50 iterations when using DT as the base classifier. The same be-
havior can also be observed for RF, where results obtained after 10 iterations applying NHo

and NHsp outperform accuracies achieved after 50 iterations applying full as the search neigh-
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borhood. Note further that performing self-training over these initial training sets achieves
similar or better results than using NNi or SPi, respectively. This is because the neighborhood,
full, can result in larger numbers of unlabeled samples with high classifier confidence scores
that are greater than THR. Hence, there is a greater chance for the highly accurate semi-
labeled samples to be selected; however, this yields adding no or less new information into
the self-training process. In case of NHo and NHsp, the number of possible unlabeled samples
as new candidates is limited, therefore, giving a higher chance of adding more diversity due to
the samples with a lower confidence score. When using NHsp, the best performance is
achieved within the first 10 iterations, after that its SNH area grows beyond full. Since the
classification accuracy with NHsp after 10 iterations is already better than the one achieved
with full using 50 iterations, no further benefits of adding new samples can be observed with
NHsp.

As each training set  Ti consists of 10 different instances,  the crucial  effect  of the starting
samples for the two smallest sets T1 and T2 is illustrated in Figure 91 over the first 20 ST iter-
ations. The plots show that for various instances DT struggles with the small number of la-
beled samples to achieve improvements via ST. As mentioned earlier, the initial labeled sam-
ples are critical to determine the success of applying SSL particularly for such a weaker learn-
er as DT. It  can be noticed that using RF (as a mini-ensemble of three DTs) overcomes this
problem and significant improvements are achieved within the first 10 ST iterations. Further-
more, as T1 is a subset of T2, it can be seen that the one additional sample per class has a posi-
tive influence yet will not always overcome the weakness of the first sample or might even
have a negative effect.

DT with T1 DT with T2 RF with T1 RF with T2

Figure 91 – Classification accuracies of the 10 instances of training sets T1 and T2 over 20 it-
erations of self-training for the two base learners Decision Tree (DT) and Random Forest
(RF).
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When enlarging Ti to NNi, the initial classification performance is improved as illustrated
in Figure 92, which is anticipated due to the availability of more samples. As the ground truth
is available, it could be verified that 96.3 percent of the NNi samples are correctly labeled
whereas the majority of the remaining 3.7% is unknown since no ground truth is available on
those areas. Even though, it is expected that NN1 and T9 results are not comparable because
the NN1 samples will have a similar feature structure providing less diversity among the sam-
ples compared to the labeled nine samples in T9. This is also observable for the NN2-4 results
as they are not able to match the initial classification accuracy of T10 besides NN2-4 being sig-
nificantly larger.

The initial classification improvements on the average are ~18% and ~10% for NN1-5 and
NN6-10, respectively. Note that employing self-training is still able to provide an increase in
the classification accuracy over all NNi yet the improvements are getting insignificant as the
initial accuracies are higher (see Figures 92 and 93). At the end, this results in classification
performance employing NHo/NHsp being just marginally better by 0.5% for DT and ~2.5% for
RF, on the average than using full.

Decision Tree

Figure 92 – Top row: Classification accuracies for different training sets, NNi, using the three
selection methods for the unlabeled samples. Dashed lines show results for enlarging Ti su-
perpixel (SP). Bottom row: Improvements of self-training per 10th iteration for the Decision
Tree base learner.

When DT is used as the base classifier (Figure 92), the main performance difference com-
pared  to  the  results  with  Ti is  that  NNi is highly beneficial for labeled training set with i=2
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when improving the final classification accuracy by 6-7%. Similar observation can be made
for RF (Figure 93) trained over the NN1 where an accuracy improvement of around 6% is vis-
ible for the search neighborhood full compared to their T1 results. However, employing NHo

and NHsp over both training sets T1 and NN1, the difference shrinks to 2%. For training sets
larger than T3, the performance difference between the application of Ti and NNi is minimal.
The reason for this is that both NNi and NHo/NHsp enhance the initial training set Ti based on
the same idea: by selecting unlabeled samples from the close neighborhood of the provided
labeled samples.

Random Forest

Figure 93 – Top row: Classification accuracies for different training sets, NNi, using the three
selection methods for the unlabeled samples. Dashed lines show results for enlarging Ti su-
perpixel (SP). Bottom row: Improvements of self-training per 10th iteration  for  the  Random
Forest base learner.

Similar observations and comparative evaluations between NNi and the enlarged training
sets SPi via superpixels can be made. As visible in the plots given in Figures 94 and 95, the
classification accuracy over the SP1 can be improved by 15% and 11% for DT and RF, re-
spectively, compared to NN1 whereas performance differences for the other training set sizes
are getting less. Similar to NNi, such improvements occur because of significantly larger
training set size for self-training, i.e., around 100 semi-labelings per labeled pixel. However,
when verified with the ground truth, it can be noted that the accuracy of the correctly labeled
superpixel samples SPi is lower than the one for NN (around 10%), yet there are still at least
86 of 100 samples with the correct labels whereas the other 14% are mainly unknown. It is
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obvious that the significantly larger number of samples compensates the relative drop in the
semi-labeling accuracy. Moreover, the superpixel method already covers most potential can-
didates within the vicinity of the initially labeled samples and thus reduces the effect of NHo

and NHsp. When the search strategies full is employed the amount of new information is quite
limited and note that it is now further reduced due to the larger diversity already introduced
by the larger training data. Hence, this significantly reduces any potential performance gain.
The same effect can also be observed for the larger Ti or NNi training sets. This means that an
upper bound of classification accuracy can be achieved by employing different sized training
sets enlarged by connecting neighbors or superpixels.

Decision Tree

Figure 94 – Top row: Classification accuracies for different training sets, SPi using the three selection
methods for the unlabeled samples. Bottom row: Improvements of self-training (ST) per 10th iteration
for the Decision Tree base learner.

Over both neighborhood approaches NHo and NHsp of the proposed self-training method,
comparative evaluations are performed among the three training set types. Figure 96 presents
the  plots  that  sum  up  the  differences  of  the  classification  accuracies  obtained  by  individual
NNi and  SPi approaches with respect to their initial training set, Ti.  When using  DT as  the
base classifier, the neighborhood superpixel approach contributes by at least 5% to the classi-
fication  accuracy  for  the  most  of  the  training  sample  sizes  used  whereas  the  highest  gain  is
achieved when the two smallest training sets are enlarged by their 8-connected neighbors.
When using RF as the base classifier, improvements are observed for all sets over the search
neighborhood full where accuracy differences over NNi and SPi are around 2% and 6%, re-
spectively. It can be observed that when exploiting the closer spatial neighborhood of labeled
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samples via NHo, neither the 8-neighbor contextual information approach nor the superpixels
approach leads to any significant performance improvement due to aforementioned reasons.

Random Forest

Figure 95 – Top row: Classification accuracies for different training sets, SPi using the three selection
methods for the unlabeled samples. Bottom row: Improvements of self-training (ST) per 10th iteration
for the Random Forest base learner.

Along with the numerical evaluations, visual classification results are presented from the
initial to the final classification output. Figure 98 illustrates the sample classification maps
using RF as the base classifier within the bagging ensemble approach. In the figure, visual
comparison can be made regarding the effects of search neighborhoods, full and NHo, over the
classification  performance  and  the  top  row  shows  the  initial  results  over  an  instance  of  T2.
The images displaying the difference to ground truth show the major misclassification of a
particular class while white indicating correct labels. Thus, larger white areas represent a bet-
ter match with the ground truth. The green circles for the classification results annotated with
the ST iteration number 10 in row two indicate the classification difference between the two
search neighborhoods, full and NHo, compared to the initial results from the labeled samples
in the first row. In particular, this row shows the difference between the classification perfor-
mances achieved using two neighborhood approaches, NHo and full both visually and numeri-
cally. For the following rows, the green and red circles indicate higher improvements or deg-
radations, respectively, compared to the corresponding previous row. Overall, it is visible
from the figure that major improvements after 10 iterations are achieved by applying NHo and
during the rest of the 20 iterations, only minor improvements are observed. As observed in the
final numerical classification results, the application of the neighborhood approach, full,
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yields an improvement for the major areas after 20 iterations, yet does not achieve better re-
sults.

Decision Tree

Random Forest

Figure 96 – The plots of classification accuracy differences of final self-training results com-
paring NNi and SPi to Ti for the two base learners.

For visual and numerical comparisons of the different SSL approaches, Figure 99 shows
results for the initial Ti, NNi, SPi, Ti in self-training, and initial T10 training sets. The first four
are based on an instance of T2 while T10 is chosen based on the numerical results for RF. It is
worth noting that the visual classification results achieved by RF with SL over the set T10 and
with SSL by self-training over T2 applying NHo are quite similar. The green circles mark the
best classification performance in a particular area among all classification results. The com-
parison shows that the classification over T2 with the application of SSL employing NHo pro-
duces the best classification map. This is a significant accomplishment achieved by SSL along
with a classifier initially trained with a small-sized training set particularly when compared to
the classifier trained over the set T10 and thus having five times more user-labeled samples to
form the training set. In this example, the visual results favor NN2 over SP2; however, this is
vice versa when numerical results are compared. This is related to the particular T2 instance
and the corresponding superpixels. This shows that the starting point can be particularly criti-
cal for SSL especially when small sample sized training sets are used for the initial training.

Finally, a brief comparison is made against various supervised classifiers as evaluated in
the previous Section 5.1 over different training set sizes 52, 104, 208, and 1041 samples,
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which correspond to 0.25‰, 0.5‰, 1%, and 5% of the 208 000 pixel ground truth, respective-
ly. All classifier parameters were optimized for the best classification performance (see Sec-
tion 5.1.1). Their classification accuracies are averaged over 100 runs using H A features and
shown in  Table  33.  As  an  additional  comparison,  the  classification  results  using  the  covari-
ance matrix [C]  are added to Table 33.

Table 33 – Results using the covariance matrix [C]  and H A features with supervised classifiers.

DT ELM MLP KNN

[C] H A [C] H A [C] H A [C] H A
52 0.42 0.55 0.31 0.62 0.23 0.57 0.48 0.66

104 0.53 0.66 0.53 0.71 0.28 0.67 0.54 0.73
208 0.60 0.73 0.63 0.78 0.35 0.75 0.59 0.77
1041 0.68 0.82 0.75 0.86 0.50 0.88 0.69 0.86

RF SVM (linear) SVM (polynomial) SVM (rbf)
52 0.63 0.78 0.54 0.72 0.53 0.71 0.54 0.72

104 0.70 0.83 0.63 0.79 0.61 0.79 0.62 0.80
208 0.75 0.86 0.70 0.84 0.68 0.83 0.67 0.85
1041 0.81 0.90 0.80 0.90 0.75 0.90 0.75 0.91

Figure 97 – Classification accuracy plots for comparison of SL versus the proposed SSL self-
training approach using traditional SL classifiers.

Our previous experiments and evaluations have shown that SSL and ST using small-
labeled data are able to achieve similar classification performances compared to supervised
learning with larger labeled training sets using the same underlying classifier. The same ob-
servation can be made for typical classifiers such as KNN, MLP, and SVMs as illustrated in
Figure  97.  The  most  interesting  fact  is  that  training  sets  with  six  or  more  samples  per  class
using superpixels to enlarge the initial labeled training data combined with the ensemble-
based self-training is able to achieve comparable classification performances with various SL
methods using as high as 1000 labeled samples.
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5.3. SUMMARY

In this chapter, different approaches of semi-supervised learning over polarimetric SAR data
were investigated with the focus drawn on the small sample size problem. Unsupervised
methods such as contextual information (i.e., connected neighbors) or clustering/segmentation
approaches (i.e., superpixels) to enlarge the initial labeled training set have shown promising
results to address the small sample size problem in the right direction. Additionally, the em-
ployed self-training using an ensemble-based approach has proven beneficial especially in
cases when it can achieve similar classification performances over small training sets com-
pared to the classification results of the same classifiers trained over significantly larger train-
ing sets in a supervised manner.

Furthermore, it has been principally shown that different strategies on how to select relia-
ble candidates from a large set of unlabeled samples can speed-up and improve the classifica-
tion performance. In particular, for a remote sensing application such as polarimetric SAR
image classification, it is advantageous to exploit the location-based information from the la-
beled training data. The choice of the applied confidence threshold can be critical particularly
for weaker classifiers, where an adaptive approach can be applied starting with larger values
and slowly decreasing it over time. However, we could observe that this approach alone can-
not guarantee to achieve a classification performance that is beyond a certain level since the
initial smaller training set sizes are critical. Nevertheless, in accordance with the number of
base classifiers in the ensemble approach, it will still help to decrease the number of semi-
supervised learning iterations by achieving similar or even better results when compared to
common supervised learning approaches over different training set sizes.
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Chapter6
Conclusions

nalysis and interpretation of remote sensing data has been and will continue to be a ma-
jor  challenge  within  Earth  Observation.  Yet  these  observation  activities  do  require  an

efficient remote sensing process starting with data acquisition, data storage, and data pro-
cessing. With such data management, analysis and interpretation applications of observing
and monitoring the earth’s environment require accurate information extraction and efficient
computational intelligence procedures. However, there is no global approach to address in-
formation extraction and machine learning applications partly due to various types and
sources of remote sensing data each having own challenges in the process.

One remote sensing technique to aid Earth Observation is radar-based imaging gaining ma-
jor interests due to advances in its imaging techniques. These are particularly synthetic aper-
ture radar (SAR) and polarimetry with SAR providing the capability of high-resolution radar
imaging and polarimetry introducing unique characteristics of the obtained scattering infor-
mation. This resulted in an increase of such radar imaging platforms providing significantly
more data. Additionally, as the underlying radar technology is capable of acquiring images in
all-weather conditions as well as during day and night, it provides an increasing interest in
various applications within the areas of geology, agriculture, forestry, urban, oceanography,
military, and disaster management.

The majority of these applications are related to observation, detection, and classification to
support humans within their efforts of monitoring and decision-making with respect to Earth’s
environment. In the process of analysis and interpretation, they commonly apply computa-
tional- and machine-learning techniques. With the increasing amount of data available, this
does become also a large-scale learning and classification challenge due to the constantly on-
going process of acquiring new data. This thesis addressed this challenge by improving the
classification process with special focus on land use and land cover applications using polari-
metric SAR data. To achieve this, main contributions are made in superior feature extraction
and advanced machine-learning techniques in form of classifier topologies, principles, and
data exploitation.

For SAR image classification, the integration of texture features from the image-processing
field was first considered decades ago and provided extra discrimination among classes. Since

A
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then, texture features played a significant role in the analysis and interpretation stages of the
SAR classification process.

Therefore, the introduction of new visual descriptors (i.e., color features) was investigated
for polarimetric SAR land use and land cover classification. The evaluations demonstrated
that color features provided additional discrimination among terrain classes on top of the con-
ventional scattering information and texture features. For partially PolSAR image data the
generation of pseudo color images to extract color features is different because the full polar-
imetric information is not available to apply mapping of the polarization matrices to the indi-
vidual RGB components. For dual-pol images, combinations of the two polarization matrices
assigned to the RGB color components provide a similar straightforward option to obtain such
pseudo color images. However, this is obviously not possible considering single-pol or one
intensity channel images. Therefore, this thesis considered the mapping of intensity values
based on a color scale or transforming the intensity values into a color space to remedy this
drawback.

Experiments over fully and partially polarimetric SAR images demonstrated that with the
integration of the color features, significant improvements can be achieved over the classifica-
tion performances either with the common PolSAR features alone or also the combination of
PolSAR and texture features. With the color features used during all classification experi-
ments and regardless from the PolSAR data,  it  was observed that additional texture features
contributed to the classification performance. Yet in comparison, the performance gains and
losses caused by the texture features vary according to the terrain types and the SAR data over
which they were extracted.

We have particularly observed that the application of the considered color features can pro-
vide noteworthy improvements in man-made, foliage, and tree-type dominated vegetation ter-
rain classes for fully PolSAR images as well as agricultural, forestry, and vegetation terrains
for the partially PolSAR images. In addition to this, experiments validated that individual col-
or features alone are able to provide a high discrimination mainly considering pseudo color
images generated using the fully available polarization matrices. Furthermore, it could be ob-
served that the color features work over intensity images yet obviously not as effectively as
over color images. However, they were still able to provide comparable results in relation to
results with the applied texture features, which might be related to specific terrain classes in
certain classification setups. Moreover, similar or better results may be achieved regarding the
dual-pol image by extracting texture and/or color features from a single pseudo color image
reducing the overall feature dimension rather than processing the two available polarization
matrices individually. As for the single-pol image, it is not anticipated that the considered
color features extracted over a color transformed intensity image will significantly outperform
traditional texture features yet we could observe that such color features were able to provide
additional discrimination for classification of such data.

To address the large-scale learning challenge with the ever-growing amount of PolSAR da-
ta, a scalable and data-driven supervised classification framework, called Collective Network
of Binary Classifiers (CNBC) was adapted with the primary objectives of maximizing learn-
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ing efficiency and classification accuracy. This framework incorporates the active learning
principle to support human users regarding the analysis and interpretation of polarimetric
SAR data with particular focus on collections of images. When processing such image collec-
tions in a classification scenario, changes or updates to the existing classifier might be re-
quired frequently due to surface, terrain, and object changes as well as variations in capturing
time and position.

The CNBC framework mainly adopts a “divide and conquer” type of approach, so as to ef-
ficiently handle indefinite number of PolSAR features and terrain classes, which may other-
wise be a difficult, if not infeasible, problem for a single classifier due to the well-known
“curse of dimensionality” phenomenon. Within the CNBC approach, compact classifiers,
which can be evolved in a much more efficient way than a single but complex classifier, are
conveniently considered in a predefined architecture (configuration) space, in which the opti-
mal classifier for the current classification problem can be sought using evolutionary tech-
niques. At any given time, this allows creating a dedicated binary classifier (BC) for discrimi-
nating a certain terrain type from the others with the use of a single feature. Each incremental
evolution session learns from the current best classifier and can improve it further, possibly
with another configuration in the architecture space. Moreover, with each incremental evolu-
tion, new classes and features (such as previously proposed color features) can also be intro-
duced which signals CNBC to adapt dynamically to such changes.

The capabilities of CNBC have been demonstrated over an extensive set of experimental
results regarding the adaptation and data-driven classification of single as well as collections
of PolSAR images. This revealed that with the ongoing incremental evolutions, a generic
CNBC can be created that adapted itself according to the PolSAR image and classes presented
to it over time. Compared to static classifiers such as ANN, building up on and extending an
existing classifier is beneficial in terms of classification accuracy and time without discarding
the existing knowledge and recreating a new classifier from scratch. Additionally, while static
and regular classifiers may suffer from the “curse of dimensionality” phenomenon without an
accompanying feature selection or dimension reduction technique, CNBC addresses this well
with its “divide and conquer” strategy. The experimental results verified that the CNBC pro-
vided an efficient solution for the problems of scalability and dynamic adaptability allowing
both feature space dimensions and the number of terrain classes in PolSAR image collections
to vary dynamically. Whenever the CNBC is evolved in batch mode, it can compete and even
surpass other static classifiers especially when the feature space dimension increases. This is
an expected outcome since the CNBC framework can take advantage of any visual feature as
long as it has the discrimination power for only one or few classes.

As most classification problems are addressed by supervised machine learning, they gener-
ally outperform their unsupervised counterparts. However, the performance of any supervised
learning is limited to the availability of labeled data. To benefit from the unlabeled data, su-
pervised and unsupervised learning principles are combined into semi-supervised learning
approaches. Hence, the application of semi-supervised learning is motivated by ill-posed clas-
sification tasks particularly the small training size problem. To address this, two semi-
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supervised approaches were proposed based on unsupervised extension of the training data
and ensemble-based self-training. The considered unsupervised methods such as contextual
information (i.e., connected neighbors) or clustering/segmentation approaches (i.e., superpix-
els) to enlarge the initial training data have shown promising results to address the small sam-
ple size problem. Additionally, the employed self-training using an ensemble-based approach
has proven beneficial especially in cases when it is able to achieve similar classification per-
formances over small training sets compared to the results achieved with supervised classifi-
ers trained over significantly larger training sets.

Furthermore, it has principally been shown that different strategies on how to select reliable
candidates from a large set of unlabeled samples can speed-up and improve the classification
performance. In particular, for a remote sensing application such as polarimetric SAR image
classification, it is advantageous to exploit the location-based information from the labeled
training data. However, we have also observed that this approach alone cannot guarantee to
achieve a classification performance that is beyond a certain level since the initial smaller
training set sizes are critical. Nevertheless, in accordance with the number of base classifiers
in the ensemble approach, it will still help to decrease the number of semi-supervised learning
iterations by attaining similar or even better results when compared to common supervised
learning approaches over different training set sizes. We can foresee that there is an imminent
need to investigate further different strategies to select unlabeled samples reliably including
measures for sample diversity as well as to consider semi-supervised learning within the ap-
plication of domain adaptation and transfer learning.

Demand for high-level classification increases to achieve fine-grain categorization of the
earth terrain and surface for fine-detail land use and land cover (LULC) differentiation such
as various types of crop, forest, water, and urban areas. The advances made in polarimetric
SAR are important steps towards this direction, particularly very-high-resolution imaging ra-
dars achieving resolutions closer to the optical counterparts. Lower resolution imagery will
lack the necessary detail needed to discriminate the fine-grain categorization desired. Moreo-
ver, polarimetric SAR alone might not be enough to achieve such high-level LULC differenti-
ation, as for similar surface types the backscattering differences will significantly decrease
and may not even be distinguishable. Therefore, combination and fusion with other SAR data
such as interferometry or even from other remote sensing sources such as optical, spectral, or
lidar will be highly beneficial.

By applying very-high-resolution data to accomplish fine-grain classification, the main
question will be if the traditional SAR features in form of backscattering coefficients and tar-
get decompositions as well as texture and color are still applicable. Generally, to achieve this,
features are need that are able to describe and discriminate characteristics among classes.
With an increasing amount of classes with fine-detail differences, the traditional hand-made
features might not be sufficient. Hence, the automatic extraction and unsupervised learning of
features will become relevant in the future. The possible applications of Feature- and Deep
Learning are to be explored, which are currently considered as the state-of-the-art in computer
vision and image classification such as coarse- and fine-grain object categorization. This in-
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cludes further investigation if color features are suitable for fine grain classification for differ-
ent crop, forest, water, and urban types.

The concept of fusing different features has been demonstrated by CNBC. Furthermore,
the CNBC topology is generally capable of handling large number of classes, yet some adap-
tation to fine-grain categorization is probably required. This could be achieve in a hierarchical
process by first differentiate LULC classes as best as possible among all and in a second stage
find tune among the most confusing ones. Adding new classes and features is expected to
work, as long as there is at least one feature good enough to distinguish new class from the
others.

Other potential extensions and future works related to the proposed techniques within this
thesis relate to feature transformation and domain adaptation for the classification of image
collections by further improving generalization capabilities and classification performances.
Moreover, other forms of learning principles such as online learning can be considered within
the application of CNBC. In addition, color features and the classification topology presented
in Chapter 4 and 5, respectively, can be applied and investigated with other remote sensing
data such as multi- and hyperspectral data.

The techniques proposed and investigated within this thesis have shown valuable contribu-
tions to the field of land use and land cover polarimetric SAR image classification. There is
still a lot of potential for further research to reduce the amount of manual labor regarding im-
provements with respect to analysis and interpretation of polarimetric SAR and other remote
sensing data. Such contributions are essential in support of Earth Observation and to enhance
the understanding and management of the earth itself and its environment.
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