1,257 research outputs found

    Semantics-based platform for context-aware and personalized robot interaction in the internet of robotic things

    Get PDF
    Robots are moving from well-controlled lab environments to the real world, where an increasing number of environments has been transformed into smart sensorized IoT spaces. Users will expect these robots to adapt to their preferences and needs, and even more so for social robots that engage in personal interactions. In this paper, we present declarative ontological models and a middleware platform for building services that generate interaction tasks for social robots in smart IoT environments. The platform implements a modular, data-driven workflow that allows developers of interaction services to determine the appropriate time, content and style of human-robot interaction tasks by reasoning on semantically enriched loT sensor data. The platform also abstracts the complexities of scheduling, planning and execution of these tasks, and can automatically adjust parameters to the personal profile and current context. We present motivational scenarios in three environments: a smart home, a smart office and a smart nursing home, detail the interfaces and executional paths in our platform and present a proof-of-concept implementation. (C) 2018 Elsevier Inc. All rights reserved

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    The Penetration of Internet of Things in Robotics: Towards a Web of Robotic Things

    Get PDF
    As the Internet of Things (IoT) penetrates different domains and application areas, it has recently entered also the world of robotics. Robotics constitutes a modern and fast-evolving technology, increasingly being used in industrial, commercial and domestic settings. IoT, together with the Web of Things (WoT) could provide many benefits to robotic systems. Some of the benefits of IoT in robotics have been discussed in related work. This paper moves one step further, studying the actual current use of IoT in robotics, through various real-world examples encountered through a bibliographic research. The paper also examines the potential ofWoT, together with robotic systems, investigating which concepts, characteristics, architectures, hardware, software and communication methods of IoT are used in existing robotic systems, which sensors and actions are incorporated in IoT-based robots, as well as in which application areas. Finally, the current application of WoT in robotics is examined and discussed

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Internet of Robotic Things Intelligent Connectivity and Platforms

    Get PDF
    The Internet of Things (IoT) and Industrial IoT (IIoT) have developed rapidly in the past few years, as both the Internet and “things” have evolved significantly. “Things” now range from simple Radio Frequency Identification (RFID) devices to smart wireless sensors, intelligent wireless sensors and actuators, robotic things, and autonomous vehicles operating in consumer, business, and industrial environments. The emergence of “intelligent things” (static or mobile) in collaborative autonomous fleets requires new architectures, connectivity paradigms, trustworthiness frameworks, and platforms for the integration of applications across different business and industrial domains. These new applications accelerate the development of autonomous system design paradigms and the proliferation of the Internet of Robotic Things (IoRT). In IoRT, collaborative robotic things can communicate with other things, learn autonomously, interact safely with the environment, humans and other things, and gain qualities like self-maintenance, self-awareness, self-healing, and fail-operational behavior. IoRT applications can make use of the individual, collaborative, and collective intelligence of robotic things, as well as information from the infrastructure and operating context to plan, implement and accomplish tasks under different environmental conditions and uncertainties. The continuous, real-time interaction with the environment makes perception, location, communication, cognition, computation, connectivity, propulsion, and integration of federated IoRT and digital platforms important components of new-generation IoRT applications. This paper reviews the taxonomy of the IoRT, emphasizing the IoRT intelligent connectivity, architectures, interoperability, and trustworthiness framework, and surveys the technologies that enable the application of the IoRT across different domains to perform missions more efficiently, productively, and completely. The aim is to provide a novel perspective on the IoRT that involves communication among robotic things and humans and highlights the convergence of several technologies and interactions between different taxonomies used in the literature.publishedVersio

    Semantic-aware Digital Twin for Metaverse: A Comprehensive Review

    Full text link
    To facilitate the deployment of digital twins in Metaverse, the paradigm with semantic awareness has been proposed as a means for enabling accurate and task-oriented information extraction with inherent intelligence. However, this framework requires all devices in the Metaverse environment to be directly linked with the semantic model to enable faithful interpretation of messages. In contrast, this article introduces the digital twin framework, considering a smart industrial application, which enables semantic communication in conjugation with the Metaverse enabling technologies. The fundamentals of this framework are demonstrated on an industrial shopfloor management use case with a digital twin so as to improve its performance through semantic communication. An overview of semantic communication, Metaverse, and digital twins is presented. Integration of these technologies with the basic architecture as well as the impact on future industrial applications is presented. In a nutshell, this article showcases how semantic awareness can be an effective candidate in the implementation of digital twins for Metaverse applications.Comment: 9 pages, 5 figures, 1 tabl

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business
    • …
    corecore