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The Internet of Things (IoT) and Industrial IoT (IIoT) have developed rapidly in the

past few years, as both the Internet and “things” have evolved significantly. “Things”

now range from simple Radio Frequency Identification (RFID) devices to smart wireless

sensors, intelligent wireless sensors and actuators, robotic things, and autonomous

vehicles operating in consumer, business, and industrial environments. The emergence

of “intelligent things” (static or mobile) in collaborative autonomous fleets requires new

architectures, connectivity paradigms, trustworthiness frameworks, and platforms for the

integration of applications across different business and industrial domains. These new

applications accelerate the development of autonomous system design paradigms and

the proliferation of the Internet of Robotic Things (IoRT). In IoRT, collaborative robotic

things can communicate with other things, learn autonomously, interact safely with

the environment, humans and other things, and gain qualities like self-maintenance,

self-awareness, self-healing, and fail-operational behavior. IoRT applications can make

use of the individual, collaborative, and collective intelligence of robotic things, as

well as information from the infrastructure and operating context to plan, implement

and accomplish tasks under different environmental conditions and uncertainties. The

continuous, real-time interaction with the environment makes perception, location,

communication, cognition, computation, connectivity, propulsion, and integration of

federated IoRT and digital platforms important components of new-generation IoRT

applications. This paper reviews the taxonomy of the IoRT, emphasizing the IoRT

intelligent connectivity, architectures, interoperability, and trustworthiness framework,

and surveys the technologies that enable the application of the IoRT across different

domains to perform missions more efficiently, productively, and completely. The aim

is to provide a novel perspective on the IoRT that involves communication among

robotic things and humans and highlights the convergence of several technologies and

interactions between different taxonomies used in the literature.

Keywords: internet of robotic things, internet of things, industrial internet of things, cyber-physical systems,
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INTRODUCTION

The IoRT enables robotic things in different environments
to become active participants in various applications and
exchange/share information with other robotic things, IoT/IIoT
devices and humans. Robotic things are capable of recognizing
events and changes in their surroundings while autonomously
acting and reacting appropriately. These capabilities enable the
convergence of the real, digital, virtual, cyber attributes of robotic
things, and the creation of smart environments that make robotic
things in the energy, mobility, buildings, manufacturing, and
other sectors more intelligent.

Robotic engineering systems are deployed today in industry
and are considered vital elements for the progress of humanity
from an industrial perspective in the new digital age. As
technologies such as IIoT, AI, robotics, intelligent connectivity,
and electric mobility evolve, these systems are transformed in
industrial IoRT applications.

New developments in intelligent connectivity enable robotic
things to be connected at any time, in any place, and with
anything and anyone through different paths/networks and
services. In the future, an intelligent network infrastructure that
is dynamically enhanced and extended by edge nodes, which are
generated by interconnected robotic things, could serve as the
backbone for IoRT applications.

The IoRT combines autonomous robotic systems with the
IoT/IIoT, intelligent connectivity, distributed and federated
edge/cloud computing, Artificial Intelligence (AI), Digital
Twins (DT), Distributed Ledger Technologies (DLTs),
Virtual/Augmented Reality (VR/AR), and swarm technologies.
These technologies allow uniquely addressable intelligent
things to interact and communicate with each other over the
Internet and via other connectivity network protocols. The rapid
development and deployment of multi-radio access technologies
to allow devices and things to connect/interact at the edge of the
IoRT have generated the development of heterogeneous mobile
networks with a complex configuration that requires advanced
device management and maintenance to cope with future robotic
things (Vermesan et al., 2017a).

The convergence of IoT/IIoT, AI and robotics accelerates
IoRT applications development, which improves the contextually
aware decision-making support for resolving complex operations
and enabling machine intelligence. This trend allows the
convergence of programming systems, tools and controls, the
use of core semantic web technologies and the interaction with
robotic things to be implemented more efficiently.

Traditionally, robotics systems include a programmable
dimension that is designed for repetitive, labor-intensive
work, including sensing, and acting upon an environment
(Vermesan et al., 2017b). The emergence of AI and Machine
Learning (ML) has allowed robotic things to function using
learning algorithms and cognitive decision-making rather than
traditional programming. Combining different branches and
scientific disciplines (Figure 1) makes it possible to develop
autonomous programmable systems that combine robotics
and machine learning. The IoRT multidisciplinary nature
brings various perspectives from different disciplines and offers

interdisciplinary solutions that consider the reciprocal effects and
interactions between the multiple dimensions of next-generation
IoRT ecosystems.

This paper is intended for researchers and developers engaged
in the areas of IoT/IIoT, robotics, AI, DLTs, communication,
software technologies and is organized as follows. Section
Introduction presents the topic by providing background
information on the research and innovation in IoRT. Section
Internet of Robotic Things Taxonomy discusses the concept
and the definition of IoRT used in the paper, along with the
IoRT taxonomy. Section Enabling Technologies highlights
the technologies enabling IoRT emphasizing the challenges of
the convergence of these technologies in IoRT developments.
The IoRT 3D architectural approach is presented in section
IoRT Architectural Approach. The approach extends the
current IoRT architectures described in the literature and
introduces the evolution from centralized to decentralized
and distributed architecture. The intelligent connectivity
technologies for IoRT applications are described in section
Intelligent Connectivity. An overview of the requirements and
challenges for IoRT platforms and interoperability issues are
introduced in sections IoRT Platforms and Interoperability
in IoRT. The concept of IoRT technology and application
trustworthiness is included in section Trustworthiness in IoRT
with a description of the system properties need to assure
IoRT system dependability and end-to-end and by-design/by-
default properties/functionalities. Section IoRT Applications
introduces several examples of emerging IoRT applications,
while section Open issues and Future Directions of Research
addresses the future research challenges. The synopsis and
concluding remarks are drawn in section Summary and
Conclusions by highlighting the leading technologies driving the
IoRT developments.

INTERNET OF ROBOTIC THINGS
TAXONOMY

The next-generation Internet landscape is expanding, and with
it, the IoT/IIoT technologies and applications. IoT/IIoT devices
become intelligent, mobile, autonomous, and operate in various
environments, connect with other IoT/IIoT heterogeneous
devices and are part of different applications in various
industrial sectors and across the industries. As these technologies
reach different application sectors and due to specific use
in these domains (Vermesan et al., 2017b; Simoens et al.,
2018), the original IoT/IIoT paradigm is evolving, expanding,
and heading to significant developments in terms of research
and innovation. New terminologies and concepts such as the
Cognitive Internet of Things (Wu et al., 2014), the Internet
of Mobile Things (IoMBT), the Autonomous Internet of
Things (A-IoT), the Autonomous System of Things (ASoT),
Internet of Underwater Things (IoUT), Internet of Drone
Things (IoDT) (Nayyar et al., 2020), Internet of Nano Things
(IoNT) (Nayyar et al., 2017), the Internet of Autonomous
Things (IoAT), the Internet of Things Clouds (IoT-C), Internet
of Cloud Things (IoCT) (Saha and Dasgupta, 2018), Mobile
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FIGURE 1 | IoRT - An interdisciplinary branch of engineering and science.

Cloud Robotics, Web of Robotic Things (WoRT) (Grieco
et al., 2014), and Cloud Robotics are emerging and applied in
different applications.

IoRT is associated with technological convergence challenges
and opportunities that call for solutions to be addressed
in the future (Ray, 2016; Vermesan et al., 2017b; Simoens
et al., 2018). Various technologies are needed for ensuring the
connectivity and programmability of multiple heterogeneous
robotic things to implement cooperation/coordination
functions, system configuration, information exchange,
system dependability, and privacy. Developments in
heterogeneous IoRT processing and dynamic autonomous
systems build on decentralized architectures, parallelism and
concurrency require new concepts for integrating intelligent,
cooperative, and collaborative robotic things with other
IoT/IIoT applications. It is essential to consider dynamic
dependability, self-healing, resource self-repair, changing
resource states, configuration/reconfiguration, real-time
over-the-air (OTA) updates, device orchestration, and context-
based/context-aware IoRT systems for service implementation
and integration into the IoRT network. Furthermore, new
“cognitive” robotic devices are being integrated into other
IoT/IIoT applications and are becoming active participants in

these applications, considering the context in which they are
operating and interacting.

There is no standard definition for the “context” of IoRT
applications. In this article, the definition provided by Dey et al.
(2001) is used, stating that context represents “any information
that can be used to characterize the situation of an entity”
(e.g., a person, place, or object/thing that is identified relevant
to the interaction). Context categories include location, status,
time, identity. The location represents the geographical or spatial
place attributes, the status reflects the intrinsic features of the
elements in the context, time aligns the events and their status
change in chronological order, and the identity assigns a unique
identifier to an entity/object/thing to differentiate each entity
and context.

The IoRT concept is derived from the IoT/IIoT paradigm.
It applies to intelligent autonomous robotic things that are
part of network infrastructures, with specific capabilities
(sensing, actuation, processing, cognition, manipulation, motion,
communication, mobility, population, autonomy, etc.), which
collaborate/interact in a distributed manner to enable services
and applications in different and across industrial domains.

As the concept of IoRT is evolving and expanding, there are
many definitions proposed in the literature (Kara and Carlaw,
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FIGURE 2 | IoRT classification according to application areas.

2014; Ray, 2016; Vermesan et al., 2017b; Simoens et al., 2018).
The definition proposed by Kara and Carlaw (2014), states that
IoRT is characterized by “intelligent devices that can monitor
events, fuse sensor data from a variety of sources, use local and
distributed intelligence to determine the best course of action,”
while the definition provided by Ray (2016) focuses more on the
robotic cloud concept.

A definition of IoRT needs to combine the existing definitions
of IoT/IIoT with the terminology used in autonomous systems,
collaborative robotics, distributed processing systems, AI, DT,
edge/cloud computing, and DLTs. In this context, the definition
of the robot provided by ISO 8373 (2012), which make the
distinction between application areas of robotics (e.g., industrial
and service domains), states that a robot is a “programmed
actuated mechanism with a degree of autonomy, moving within
its environment, to perform intended tasks.” The same standard
defines the autonomy as “ability to perform intended tasks based
on current state and sensing, without human intervention.”
The IEEE 1872 (2015) standard offers a common set of term
definitions, to facilitate the knowledge transfer unambiguously
among groups of humans, robots, autonomous systems, and
other artificial systems. The standard defines the robot as “an
agentive device purposed to act in the physical world in order
to accomplish one or more tasks. . . ,” and in some instances, “the
actions of a robot might be subordinated to actions of other
agents, such as software agents (bots) or humans. A robot is
composed of suitable mechanical and electronic parts. Robots
might form social groups, where they interact to achieve a
common goal. A robot (or a group of robots) can form robotic
systems together with special environments geared to facilitate
their work.”

In this paper, the IoRT is defined as a “dynamic global
network infrastructure with self-configuring capabilities based
on standard and interoperable communication protocols where
physical and virtual (digital twins) “robotic things” have different
degrees of mobility, autonomy, perception, actuation, identities,
physical attributes, and virtual personalities, use intelligent
interfaces, perception, processing, propulsion, cognition and
connectivity, to take decisions and act based on real-time context
conditions, interact, collaborate with other “things,” virtual and
digital agents (bots) in various contexts, environments, and
seamlessly use the information network to enable advanced
secure, safe, trustworthy applications, services to achieve a
common goal.” The definition is based on the existing IoT
definition (Vermesan et al., 2011), and the terminology used
in autonomous systems, collaborative robotics, distributed
processing systems, and AI.

Following the distinction between requirements and features
of IoRT, a classification of the robotic things according to
application areas is presented in Figure 2. The application areas
presented are aligned with the description defined by ISO 8373
(2012) (e.g., industrial and service domains).

Other standards, such as ISO 10218-1 (2011) specifies
requirements and guidelines for the inherent safe design,
protective measures and information for the use of industrial
robots by describing basic hazards associated with robots and
providing requirements to eliminate, or adequately reduce, the
risks associated with these hazards. In addition, ISO 10218-
2 (2011) specifies safety requirements for the integration
of industrial robots, industrial robot systems (as defined
in ISO 10218-1), and industrial robot cell(s) by describing
the basic hazards and hazardous situations identified for
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FIGURE 3 | IoRT classification according to the physical operation.

robotic systems, and provides the requirements to eliminate
or adequately reduce the risks associated with these hazards.
The IEEE 1872.1 (2017) standard is a logical extension
to IEEE 1872 (2015) that extends the CORA ontology by
defining additional ontologies appropriate for Autonomous
Robotics (AuR). The (IEEE 1872.2, 2017) standard defines an
ontology that allows for the representation of, reasoning about,
and communication of task knowledge in the robotics and
automation domain.

The standardization activities in ISO TC184—Automation
systems and integration SC2 committee were organized under
different working groups with the following focus: WG1
addressing all definitions in ISO 8373, WG3 focusing on
industrial robot safety and WG7 addressing personal care safety.
WG8 is coordinating the work of the other working groups
within the service robotics area and determines the need for
additional standards in the non-industrial robotics sector.

ISO/TC 184/SC 2 was upgraded to ISO/TC 299 with the
title of “Robotics” in 2016. These changes over the years have
reflected the increasing and broadening standardization activities
in the field of robotics. The activities are carried on under
WG1—Vocabulary and characteristics (ISO 9787, ISO 19649,
ISO 8373), WG 2—Personal care robot safety (ISO 13482,
ISO/CD TR 23482-1, ISO/CD TR 23482-2), WG 3—Industrial
safety (ISO 10218-1, ISO 10218-2, ISO/TS15066), WG 4—
Service robots (ISO 18646-1, ISO 18646-2, ISO/DIS 18646-3),
JWG 5—Medical robot safety (IEC/TR 60601-4-1, IEC 80601-2-
77, IEC 80601-2-78), and WG6—Modularity for service robots
(ISOWD 22166-1).

The IoRT technologies and applications are developing
considering the environmental conditions and the spatial context
in which the IoRT devices are operating. Based on this
consideration, the IoRT applications are classified as presented
in Figure 3.

A different IoRT taxonomy is based on the origin of robotics
technology employed for the different applications, as presented
in Figure 4.

The robotics technologies highlighted in Figure 4 have
specific characteristics that can be integrated into the IoRT
developments and deployments. The short description of these
characteristics is provided below.

Cloud robotics is defined as a cloud-centric technology where
the “robots are connected to cloud computing infrastructure” to
get access “to distributed computing resources” with “the ability
to share training and labeling data for robot learning” (Jordan
et al., 2013; Saha and Dasgupta, 2018).

Collaborative robotics (co-bot) is defined as a technology
where the robot is designed and programmed to physically
interact with humans in a commonly used environment and
workspace (Popovic, 2013). The example applies to industrial
robots/manipulators capable of operating safely in a common
human-robot space and context.

Cognitive robotics is considered a technology that allows
enabling “a robot with intelligent behavior by providing it with
a processing architecture that will allow it to learn and reason
about how to behave in response to complex goals in a complex
world” (Liu et al., 2017).

Dew robotics technology is linked to “dew computing”
considering the tasks “extremely distributed” over many
machines, “which are heterogeneous, ad-hoc programmable, and
self-adaptive.” Dew computing does not require the use of central
nodes for implementing distributed applications. “The emphasis
is on the architecture and the use of the resources available on the
ground” (Botta et al., 2019).

Fog robotics is addressing technology that is based on robot
systems that use fog computing for processing data and services
(Gudi et al., 2019).

Networked robotics is addressing technology that includes
“multiple robots operating together coordinating and
cooperating by networked communication to accomplish a
specified task” (Kumar et al., 2008).

Smart robotics is referring to technology using “an embodied
AI system that can learn from its environment and its experience
and build on its capabilities based on that knowledge” (Murphy,
2000).

Swarm robotics is using a technology based on “an approach
to the coordination of multiple robots as a system which consists
of large numbers of mostly simple physical robots” (Tan and
Zheng, 2013).

Ubiquitous robotics is addressing the technology for
“integrating robotic technologies with technologies from the
fields of ubiquitous and pervasive computing, sensor networks,
and ambient intelligence” (Kim et al., 2007).

The essential characteristics and functional blocks of IoRT
systems for all applications and operating conditions are based
on several fundamental principles inherited from the IoT/IIoT,
robotic systems, AI, and intelligent connectivity, as described
below and illustrated in Figure 5:

• Perception and sense—the ability of the IoRT system
to sense the environment using different sensor types
(e.g., microphones, ultrasound, radar, LiDAR, cameras,
antennas) (Berger Roland Strategy Consultants, 2014), fuse
the information from the different sensors and localize itself
and other things, objects (Guo et al., 2019), humans, and
animals using GPS/GNSS signals and both local and high-
definition maps to create a semantic understanding and
local and world models. Perception information is the input
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FIGURE 4 | IoRT classification according to origin of robotics technology employed.

FIGURE 5 | IoRT functional blocks.

to analytics and AI processing, and the data collected by
perception devices must be of a form suitable to be used by
different and distinct cognitive processes at the robotic things
and applications levels.

• Processing—the function used for optimal processing of
information at the local, edge and cloud levels, more
efficient data processing algorithms (energy, speed, code
size, etc.) integrated into robotic things and across the
distributed environments.

• Cognition and intelligence—the function used for generating
information and combining that information with sensor
and contextual inputs to generate intelligence in the form of
decisions or knowledge to control the system’s operations.

• Planning—the ability to plan actions based on the mission,
fleet activities and information received from other robotic
things, humans, animals, the environment, fleet managers, etc.

• Decision and control—the function of the IoRT system
to generate a trajectory, choose a direction, act by
sensing/actuating/moving/manipulating, provide energy
management based on the task and context, diagnose and
manage faults and engage in reactive control.

• Propulsion—the ability of the IoRT system to perform tasks,
to move according to the environment (static or dynamic) of
the thing in coordinated space and to control that movement
based on the surrounding conditions—as defined by the safe
operations in the collective system and fleets—by executing the

planned trajectory using steering, body movements, braking
and body stabilization.

• Connectivity—the ability of the IoRT system to be connected
in any place, at any time, with anything and anyone using
various paths/networks and services, thereby allowing the
necessary level of autonomy and the capacity to build
and make decisions considering the collective exchange of
information among robotic things, humans, infrastructure
and other IoT/IIoT applications.

• Storage of data/information/knowledge and energy—
the function used for storing the necessary
data/information/knowledge locally (memory) and remotely
(edge, cloud, other robotic things, infrastructure) and the
energy needed for propulsion (e.g., batteries for self-charging
or as a source of pre-charged energy).

Digital transformation of society accelerates the development of
applications in which IoRT assist, improve and minimize
the load for human activities, and robotic engineering
systems support further developments to optimize in
an intelligent manner different humans-machines labor
tasks. The emergence of intelligent systems, things, and
their applications—in the form of collaborative IoRT
autonomous fleets—requires new architectures, connectivity
paradigms, and trustworthiness frameworks for the
deployment of applications across different business and
industrial domains.
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This evolution toward more advanced edge computing
and distributed machine learning is driven by several
requirements for IoRT applications: real-time performance,
reliable low-latency communication, energy efficiency,
security/privacy of data/information, cognitive and collective
collaborative behaviors.

The new IoRT applications accelerate the convergence
between the development of more autonomous and intelligent
system design paradigms and the IoT, in which collaborative
robotic things can communicate with other “things,” learn
autonomously, interact safely with the environment, humans
and other things, and gain qualities such as self-maintenance,
self-awareness, self-healing and fail-operational behavior. IoRT
applications can make use of the individual, collaborative,
and collective intelligence of robotic things, as well as
information from the infrastructure and operating context, to
plan and implement tasks in different environmental conditions,
considering uncertainties and critical situations.

IoRT applications are developing alongside advancements
in the IIoT, combining information technologies (IT) used
for data-centric computing and operational technologies
(OT) used in enterprise and industrial operations integrating
supervisory control and data acquisition (SCADA) and
programmable logic controllers (PLCs) systems, where the
industrial applications are increasingly more integrated, and new
intelligent connectivity networks are used. These applications
can include heterogeneous and distributed IoRT applications
that expose these connectivity networks to various and specific
requirements. These new intelligent connectivity networks
can deliver multiple functionalities and adaptive features
that implement components of IoRT platforms and transfer
information that meets IoRT applications’ requirements in terms
of content and context. IoRT applications can use network-
generated data, and these multiple functionalities and adaptive
features, which operate in real-time, can be dynamically initiated
near IoRT fleets where data is generated, needed, and used.

The entire digital value chain of future autonomous and
connected IoRT systems must be able to SENSE, LOCATE,
THINK, CONNECT, COLLABORATE, LEARN, and ACT as
illustrated in Figure 6.

Therefore, the autonomous systems paradigm SENSE,
LOCATE, THINK, CONNECT, COLLABORATE, LEARN,
and ACT is increasingly being adopted, which could result in
a paradigm shift in IoRT architecture, associated components,
and the whole approach toward software, hardware, algorithms
and the use of AI techniques and methods. It addresses
the cognition, computing, control, connectivity for sensing,
detection, perception, processing, decision functions so that
the IoRT devices see and interpret (intent of) the environment,
decide on and plan their own behavior, and act safely based on
their interpretations and subsequent decisions.

The “SENSE” environment perception function combines
different sensors such as cameras, radars, lidars, ultrasound
sensors that produce data that are integrated into a single
sensor fusion model. Combining different sensor technologies
compensates for individual weaknesses under the various
environmental conditions and is the only way to come to a

robust “SENSE” function. The sense functions evolve toward
distributed model-based or AI-inference processing at the sense-
node and in the central cognition, supported by edge-intelligence
for training, and for real-time environment models from the
Internet of Vehicles (IoVs). The concepts presented in this paper
extend the findings and the experience of the authors working
with electric, autonomous/automated, and connected vehicles
technologies and applications, combined with the research and
deployment of IoT/IIoT technologies across various industrial
sectors 1,2,3.

The “LOCATE” function is using high definition dynamic
maps, a common representation and encoding for 3D map data
(IEEE P2751, 2017), GPS/GNSS information, local correction
data to GNSS, RT2X, network positioning to create a semantic
understanding of the context and the relative position in the
operating environment of the robotic things.

The “CONNECT” function provides the communication
means between robotic things and everything around (RT2X),
while the “LEARN” function addresses the activities related to
training and learning of the robotic things, as result of the
experiences in various use cases and scenarios.

The “THINK” and “ACT” functions combine the
interpretation of (intentions of) the environment with the goal
of the journey, to follow a route, and path and detailed actions
toward the robotic things’ actuators. It involves deterministic
calculations assessing uncertainty and inaccuracies to minimize
the risk of accident and determine the most optimal route.

The “COLLABORATE” function is addressing the activities
with other robotic things, autonomous vehicles, animals,
environment, infrastructure (physical and digital, edge/cloud,
etc.), and humans within a shared space, or in close proximity
to produce, create, achieve shared goals, and minimize the risk
of accidents and dangerous situations. The collaborate function
incorporate one or several features such as natural or non-natural
language communication, tactile interaction, safety-rated stop
monitoring, teaching by demonstrations/examples, speed and
separation monitoring, and power/force limiting, etc.

The IoRT is built upon the collaboration of intelligent robotic
things to overcome challenges related to the system reference
architecture, design, development, deployment, integrated
devices and platforms management, business models and human
involvement. It also must consider the integration of legacy
systems and other IoT/IIoT applications.

These requirements are challenging for robotic things’
computing, control, cognition, and connectivity platforms. They
involve the introduction of service-oriented communication
and dynamic operating systems, virtualizing functions, and
distributing the functions between the IoRT platforms, the edge
and cloud functions to meet the requirements for real-time,

1AutoDrive - Advancing fail-aware, fail-safe, and fail-operational electronic
components, systems, and architectures for fully automated driving to make future
mobility safer, affordable, and end-user acceptable, Online at: https://autodrive-
project.eu
2AUTOPILOT - Automated driving progressed by Internet of Things, Online at:
https://autopilot-project.eu/
3CREATE-IoT - Cross fertilisation through alignment, synchronisation and
exchanges for IoT, Online at: www.create-iot.eu/
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FIGURE 6 | Autonomous and connected IoRT systems functions.

functional safety and security. Using dynamic control units
is allowing to add functions (e.g., updatability, upgradability,
learning, etc.) that are not available when the robotic things are
operating isolated. A survey of safety-critical advanced robots
is given in Guiochet et al. (2017) by analyzing the main issues,
research work and challenges in the field of safety-critical robots,
linking up dependability and robotics concepts.

In this context, determining the right combination of
centralized and decentralized information processing is
essential to realizing the optimal design and functionality of
IoRT applications.

ENABLING TECHNOLOGIES

The combination of robots, AI [e.g., Artificial Neural Network
(ANN),ML, DL, fuzzy logic, Particle SwarmOptimization (PSO),
or other AI methods and techniques] and IoT/IIoT increase the
IoRT capabilities to complete compound and multiple activities
autonomously. Integrated into IoRT applications, robotic things
can exchange information, collaborate with each other and
with humans, facilitating high-quality information/knowledge
exchange among them and with humans. By using ANN
(Razafimandimby et al., 2016, 2018), the authors addressed one of
the critical technologies formaintaining the connectivity between
IoRT devices and provide the desired Quality of Service (QoS).

The IoRT has its technological basis in the convergence of
multiple technologies: IoT/IIoT, autonomous robotic systems,
intelligent connectivity, distributed and federated edge/cloud
computing, AI, DTs, DLTs, VR/AR, and swarm technologies.

It provides a technological basis for the development of next-
generation IoT/IIoT technologies and the integration of these
technologies with autonomous systems.

The sections below highlight and briefly describe several
enabling IoRT technologies that are needed for the future
development of IoRT applications and services.

Internet of Things and Industrial Internet of
Things
The IoRT is based on technologies derived from the IoT/IIoT
paradigms that were developed during the last years. The
IoT/IIoT technologies and applications are described in several
published survey papers that cover different aspects of the IoT
technologies and applications (Al-Fuqaha et al., 2015; Vermesan
and Friess, 2015, 2016; Vermesan and Bacquet, 2017, 2018;
Colaković and Hadzialic, 2018; Perrone et al., 2019; Sabry et al.,
2019; Ud Din et al., 2019). The new enabling technologies for
IoRT extend the existing IoT/IIoT and bring new requirements
for the emerging IoT/IIoT technologies as emphasized in the
next subsections.

The combination of AI and IoT/IIoT, the artificial intelligence
of things (AIoT) is enabling and accelerating the developments
of IoRT applications to achieve more efficient IoRT operations,
improve humans-machines interactions and enhance data
management and analytics. AI is used at the robotic functions
and at IoT level to transform data into useful information for
improved decision-making processes, thus creating a foundation
for new services and intelligent collaboration among IoRT
devices, fleets, and applications. AI adds value through machine
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learning capabilities, and IoT adds value to AI through
connectivity, signaling, and data exchange.

The TIoT/TIIoT has started a conceptual shift from
content-oriented media to sense/act/control-based media
by implementing the real-time communication of haptic
information (i.e., sensing/touch/feel, actuation, motion, vibration
or surface, pattern/form/consistency) over the Internet, and the
technology is part of the next evolution of the tactile Internet
(TI). The principles apply to autonomous/automated and remote
driving, virtually-coupled train systems, robotic devices, such
as Unmanned Aerial Vehicles (UAVs), and other terrestrial,
maritime and aerial autonomous, intelligent and cooperative
mobility systems that have severe constraints in terms of latency,
robustness, reliability, availability, and stability control (Sharma
et al., 2019).

Internet of Things Senses (IoTS) as an extension of the
TIoT/TIIoT concept involves technology interacting with our
senses of sight, hearing, taste, smell, touch, enabled by AI,
VR/AR, intelligent connectivity, and automation. The IoTS
developments are key for the IoRT considering that the
cognitive decision-making capabilities of the devices can be
implemented by machine learning algorithms implemented into
the robotic thing or at the edge, with the IoRT devices’ memory
represented by the data collected, the maps/environmental
models, the eyes of the IoRT devices implemented by different
perception sensors (e.g., cameras, radars, LiDARs, ultrasound,
etc.), the ears represented by various microphones and IoRT
to X communication, while the reflexes/coordination and the
movements are implemented by the propulsion functions and
actuators control.

The remote transmission via the Internet of the senses
and the combination of the information from GPS sensors,
accelerometers to measure motion, which way is up, gyroscopes
to determine a twist and identify the orientation of the IoRT
devices, ultrasonic sensors to detect objects in proximity, support
operating the IoRT devices and creating the content and context
for IoRT applications. The fusion of senses can support the IoRT
functions and the simulation of different scenarios using virtual
reality to replicate the physical movements in the real world
and using ultrasonic technology to continuously provide distance
measurement in three-dimensional space.

The tactile IoT/IIoT enables the real-time remote control
and physical (haptic) experiences, and TIoT/TIIoT capabilities
support the creation of a spatial safety zone that can interact
with other nearby objects connected to robotic things that are
part of IoRT applications. The safety zone concept applied to
mobile robotic devices in IoRT applications allows the protection
of other robotic devices, humans, animals, objects co-existing
and operating in the same spatial environment. Robotic things
have the capability to detect safety-critical situations, analyse
the situations and decide how to react in real-time to avoid
injuries, accidents, and warn other objects, robotic devices, and
humans of imminent hazardous/risky/threatening situations.
In production environments, occupational safety improves as
production machines or robotic devices (static or mobile) can
detect and avoid injuring people or colliding with other robotic
devices in their proximity or surrounding area.

TIoT/TIIoT is believed to make it possible to create “avatar”
collectives spanning different application domains and, therefore,
cover heterogeneous robotic platforms (Haddadin et al., 2019).
The developments of tactile robots enable the seamless
interaction with heterogeneous systems like industrial assembly
lines, service robots, automated medical units, employing robotic
technology (IEEE P2730, 2019) deep sea, and space exploration
units with further research focusing on robotics, multimodal
teleoperation, wearable technology, distributed computing, or
network technology.

Autonomous Robotic Systems
Autonomous robotic systems are an essential enabling
technology for developing the capabilities of individual
IoRT devices, integrate them into platforms and allowing the
creation of collaborative fleets of heterogenous IoRT devices for
various applications. Autonomous robotic systems are expected
to operate more seamlessly within the humans’ environments
and to achieve this they must integrate technologies providing
senses (e.g., sight, hearing, taste, smell, touch) that human beings
use. In this context, the IoRT devices can better operate with
humans (e.g., humans-machines interfaces), and humans can
better interact with the digital, virtual, and cyber worlds.

Enabling technologies for IoRT include both symbolic and
sensory-based robot control and learning in the context of
autonomous systems. The biological inspirations, including the
social characteristics of insects and animals as part of the design
of multi-robot systems, are key for IoRT developments in order
to use local control rules of various biological societies (e.g.,
ants, bees, and birds) to the development of similar behaviors in
cooperative IoRT systems.

The autonomous robotic systems technologies relevant to
IoRT refers to architectures, localization/mapping/exploration,
object transport and manipulation, motion coordination,
reconfigurable robots, and distributed learning. The autonomous
robotic systems technologies used in IoRT applications include
reconfigurable robotic systems, multi-robotic things motion
planning, traffic control and movement in IoRT formations and
architectures for multi-robot cooperation.

Autonomous robotic systems as part of TIoT/TIIoT and
IoTS require the integration of technologies that mimic the
feeling of embodiment on passive touch, touched by oneself
(self-touch) or by another human or robotic thing (e.g.,
affective social/interpersonal touch), to provide interfaces that
approximate the capabilities of human skin (Beckerle et al., 2018).
Tactile feedback technologies are key for assistive robotic devices
used in various IoRT applications.

Intelligent Connectivity
Connectivity for IoRT is largely focusing on wireless
communication technologies. The term intelligent connectivity
is used considering the interactions and combinations of wireless
technologies (e.g., cellular 5G and beyond, or other wireless
technologies), IoT/IIoT and AI techniques and methods.

Developing robotic things with robust and resilient
wireless/cellular communication is key for IoRT applications.
The communication channels used by IoRT applications could be
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wired or wireless, cellular, optical, sound, voice, images/videos.
The communication networks can be based on any of a variety
of protocols, such as TCP, UDP, 802.15.1, 802.15.4, 802.11 or
4G/LTE/5G, and beyond.

For mission and safety-critical IoRT applications where
latency, reliability, and throughput are key requirements,
centralized processing is substituted with edge-distributed
processing, including analytics at the edge based on AI
techniques andmethods. Edge-distributed processing uses multi-
access edge and fog computing technologies, and intelligent
connectivity provided by wireless and cellular communication
(4G/5G and beyond). This concept allows IoRT applications
to process information locally and apply AI algorithms to
the collected data using local learning, which scales down
the demand to transfer large amounts of information to the
cloud, store data locally, and reduce the overload of the
connectivity links.

Intelligent connectivity networks can facilitate energy-
efficient and high-performance information transfer and
processing. Furthermore, edge network intelligent infrastructure
can be implemented using Neural Networks (NNs), ML, and
other AI techniques, to provide decentralized data analytics,
automated network management, and the sharing of contexts
and knowledge for IoRT or other IoT/IIoT applications. The
cognitive capabilities of IoRT devices, combined with the
cognitive capabilities embedded in connectivity networks,
can perform functions embedded within the network
infrastructure to supplement IoRT platforms’ capabilities.
In this scenario, knowledge generated by the intelligent
connectivity network and by robotic devices can be used by the
network itself, as well as in IoRT or other applications outside of
the network.

Distributed and Federated Edge/Cloud
Computing
The edge computing technology is suitable to deal with the
complexity of IoRT technologies using distributed AI models
at the edge for offloading Deep Learning (DL) computation (Li
et al., 2018; Nikouei et al., 2018; Ren et al., 2018; Han et al., 2019)
from end robotic things devices to edge and cloud as illustrated
in Figure 7.

Edge computing is enhancing the IoRT, accelerating
the development of high-performance IoRT devices using
AI/ML techniques and embedded security for addressing
edge processing. Edge computing provides mechanisms for
distributing data and computing at the edge, which makes
IoRT applications much more resilient to malicious and
no malicious events. Distributed deployment models are
expected to address more efficient connectivity and latency
challenges, bandwidth constraints and higher processing
power and storage embedded at the edge of the network.
Using the edge computing layer of the IoRT architecture
efficiently, it is possible to move most of the data traffic and
processing closest to the end-user applications and devices that
generate and consume data. The use of IoRT edge capabilities
and diverse edge systems, centralized cloud services will

enhance the functionalities of cloud technology to provide,
manage and update software and services on edge IoRT
devices. Centralized cloud services could become hubs in
coordinating and federating operations across highly distributed
edge robotic things and in aggregating and archiving data
from the edge or intermediate gateways and servers. The
centralized cloud services for intelligent IoRT applications will
be used as robust and additional scalable machine learning
and sophisticated processing capabilities linked to traditional
back-office processing.

Artificial Intelligence
The field of AI is pivotal for the developments of IoRT.
The AI algorithms are enhancing the capabilities of the
specific robotic things. The AI technologies are applied to
optimize the sensor fusion capabilities of the IoRT devices
(e.g., cameras for sensing the sight, chemical sensors for
identifying the smell and taste, and microphones for hearing,
pressure sensors to detect touch/pressure) and extract patterns
from data to improve the cognition and decision-making
processes. AI techniques and methods are implemented
in the different layers of the IoRT platforms to provide
analytics and insights and optimize the functions of the
individual robotic things, and their collaborative behaviors as
a fleet.

Convolutional Neural Networks (CNNs), is a type of
Deep Neural Networks (DNNs), used to analyse and extract
visual features from images. The techniques are designed for
partitioning, and de-noising monitored signals to increase
the performance of the recognition function by achieving
high detection rates of quality variations or potential faults
(Liang et al., 2019). The move from central computation
to edge/fog nodes, allows IoRT applications to deal with
extremely large data sets. This approach is also used in
the case of efficient manufacturing inspection systems by
combining AI techniques with processing at the edge by
adapting a CNNs model to the fog computing environment
that significantly improves its computing efficiency for an
inspection model, that can indicate the defect type and its degree
(Li et al., 2018).

At the robotic thing level, perception devices, such as
cameras, are used for video capture, video data compression,
video image pre-processing, and segmentation. Collaboratively
training a context and scenery-aware adaptation model with
the information received from different video capture devices
allows for better object recognition accuracy. In order to
balance the offload of the DL computation to IoRT devices,
edge servers or cloud, an optimal offloading strategy must
be determined. This needs to consider the trade-offs among
critical metrics such as network condition, video compression,
data rates/usage, power consumption, processing delay, frame
rate, and processing accuracy of analytics. At the edge level,
many distributed edge robotic thing devices can cooperate
in providing better services. Edge computing federation and
distribution of functions for compressing the DL model at
the edge layer can improve the overall performance of the
system. The cloud can assure the integration of DL models
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FIGURE 7 | Distributed and collaborative AI approach across device-network edge-cloud layers.

between the edge computing layer and update the parameters
of the distributed DL models on edge devices (Ren et al.,
2018). In the case where the edge infrastructure is unable to
provide a reliable service with required quality (e.g., detecting
objects/patterns with low confidence), the computing power
and global knowledge in the cloud infrastructure can be
used for processing /assisting the edge nodes in updating
DL models.

Digital Twins
The digital twin (DT) approach can be applied to IoRT devices
and applications as a virtual representation of a robotic device
across its lifecycle using real-time information received from
physical IoRT devices to construct an optimal digital model,
which can be used to simulate the physical IoRT device and,
along with other devices, offer insights into application scenarios,
optimization, performance and potential issues in real-time. As
IoRT cognitive capabilities are based on AI techniques and
algorithms, learning, and reasoning processes must be connected
to the digital twin. In this context, the digital twin evolves
and increase its capabilities, acting like a real, physical robotic
device (Hoebert et al., 2019) and an interface for human-robot
interaction (Pairet et al., 2019). Virtual simulations using the
IoRT digital twins can support detecting new issues, testing new
settings, identifying, and comparing different use cases, analyzing
different operational and behavioral solutions, and creating
various scenarios in a virtual, digital, or cyber environment.

Considering that the operations implemented by the digital
twin could also be performed by the physical robotic device in
specific conditions, twins can be designed to provide feedback
as the IoRT application is refined, or an IoRT device twin can

be used as an advanced “avatar” prototype of itself before the
physical “thing” is built.

Developments in AI, IoT, and connectivity technology
(Alsamhi et al., 2019b) are enabling the IoRT applications
to improve energy efficiency and reduce power consumption,
thereby leading to lower costs and lower latency. All these
support faster decisionmaking and seamless connectivity leading
to more accurate insights. The robotic things digital twins
support the simulation of more optimal “mission” scenarios
and improved dependability (e.g., security, safety, availability,
connectability, resilience, reliability, maintainability, privacy)
which in turn leads to more trust.

Distributed Ledger Technologies
A distributed ledger is a database distributed across various
locations (or network nodes) and any change to the databases
requires authentication by multiple instances (e.g., majority
consensus) that increase the security test. This is creating shared
accountability in the network, and the authority is shared
between the different network actors (nodes).

DLTs are intertwined with IoT platforms and used to provide
efficient data management in terms of security, privacy, and
safety (Papageorgiou et al., 2020).

The blockchain refers to a DLTs solution where data from
different transactions is linked, hashed, and organized per unit,
one block at the time and each block is cryptographically
“sealed.” The unique seal is the start of the next block of
transactions that creates the blockchain structure. Examples of
DLTs that are classified as blockchains’ applications are Bitcoin,
Ethereum, Neo, Stellar, Hyperledger, etc. In this context, the
blockchain is the mechanism that allows the implementations
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to work, and the implementations are applications that use
blockchain. The main characteristics of blockchains are the
decentralized architecture, “trustless” system properties, the
existence of consensus mechanisms, the maintenance of the
history of transactions and the insurance of immutability.

The integration of hyperconnectivity, IoT/IIoT, AI, DLTs
blockchains (Lopes and Alexandre, 2019; Lopes et al., 2019) and
edge computing requires the next generation IoRT technologies
to address these challenges. The description of the proper
business models (Vermesan et al., 2016) and governance
frameworks to support data/information flow across IoRT
autonomous systems, the identification of liability in case of
any issues and the understanding of the means to overcome the
technical fragmentation in the IoRT are critical for the adoption
of IoRT applications.

The blockchain (Ferrer et al., 2018) integrated into IoRT
allows AI-based edge and cloud intelligence solutions for robotic
things to be securely upgraded and enhanced through training,
machine to machine learning and updated in real-time with new
and improved skills.

Virtual and Augmented Reality
Increased cognitive capabilities at the edge of IoRT applications
allows the integration of immersive technologies (i.e., VR and
AR) into human-robotic device interfaces, as well as interactions
between robotic devices and the interfaces of IoRT platform
systems. Cognitive capabilities based on new AI algorithms
have prompted the need to increase the trustworthiness of
IoRT systems by strengthening end-to-end security, electronic
identities, services, and portable data/knowledge security.
The transition from centralized to future distributed IoRT
architectures requires concepts that address scalability, end-to-
end dependability, privacy, and intelligent connectivity. The
use of edge computing and software virtualization of functions
and rule-based policy implementation requires a good flow of
data and sharing of information and knowledge between IoRT
applications/services running at the edge or in the cloud while
ensuring the integrity and privacy of data.

VR/AR can be used in IoRT applications for learning,
navigation and support functions (Vermesan et al., 2017b).
While VR simulates environments, AR superimposes computer-
generated information onto the real world, ensuring spatial and
temporal synchronization between the digital information and
physical world and enabling real-time interaction (Craig, 2013;
Vermesan et al., 2017b).

AR tools allow IoRT designers to build up and create complex
planning scenarios for robotic things in real-time by using the
“digital twins” of robotic things. Unlike VR environments, this
eliminates the need to model the dynamics of both the robotic
thing and the physical environment. The AR framework builds
a model of the physical world that serves as the reference for
training and validating algorithms related to perception, motion
planning, and control. For example, AR can be used to evaluate a
robotic thing’s capability to plan a safe path to a target location in
a real outdoor scenario while the planning scenery is augmented
dynamically by virtual objects (Gianni et al., 2014; Vermesan
et al., 2017b).

The integration of the capabilities offered by AR, VR, DT,
AI, systems to visualize virtual 3D models of the real world
evolving into smart and interactive environments related to the
context of things for physical objects of IoRT augmentation.
The IoRT augmentation comprises of methods, techniques and
technologies that are applied to improve the sensing, action,
or cognitive abilities of IoRT devices. The concept expands to
humans by providing an interactive digital extension of human
capabilities (e.g., replication, supplementation) by using IoRT
sensing and actuation technologies, AI, fusion and fission of
information, AR, VR, and digital twins (Kuts et al., 2019a) to
improve human productivity and capabilities.

Swarm Technologies
The swarm technologies and swarm robotics (Dorigo et al., 2014)
are focusing on the study of how intelligent systems comprising
of multiple autonomous robots are used to perform collective
tasks. Swarm robotics (Tan and Zheng, 2013) technologies are
merging with the IoRT developments featuring self-organizing
characteristics formulti-robot systems with high redundancy and
requiring scalability, flexibility, and robustness.

The swarm technologies address algorithms to flock, disperse,
aggregate, forage, and follow trails by applying the dynamics of
ecosystems found in nature for the development of multi-robot
teams that demonstrate emergent cooperation as a result of acting
on predefined interests and goals.

The swarm technologies are used for IoRT applications that
exchange information and create collaborative networks among
various fleets of IoRT devices, with the fleets of robotic swarms
characterized by their robustness to failure and scalability, due to
the simple and distributed nature of their coordination (Ferrer,
2016).

Platforms Technologies
The IoRT platforms main functions are to facilitate
communication, data flow, device management for IoRT
devices and enable the collaboration between IoRT devices
within and across different platforms with the aim to build
various IoRT applications using the IoRT platforms frameworks.

IoRT platforms technologies need to provide flexibility
(capability to deploy IoRT devices in different contexts),
usability (capability to make the user experience easy including
humans-machines interactions) and productivity (enabling
service creation to improve efficiency, but also enabling new
service developments).

The IoRT platforms enable IoRT applications to connect
robotic things, devices, applications, and people to data at the
edge, cloud, and control centers.

The IoRT platforms architectures allow robotic things, locally
embedded and/or distributed intelligence, and smart networks
to interact and exhibit smart behavior and ultimately create
open and sustainable marketplaces for large-scale complex and
heterogeneous IoT applications and services. In this respect,
IoRT platforms technologies need to support heterogeneous
IoRT devices, address data ownership and the implications for
security and privacy, provide data processing and data sharing
capabilities (Mineraud et al., 2016), offer various tools and SDKs
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to application developers, assure the completeness of an IoT
ecosystem, and the availability of specific IoRT marketplaces.

An overview of different IoRT enabling technologies with
references to the relevant work and contributions is given in
Table 1.

IORT ARCHITECTURAL APPROACH

IoRT is a relatively new field, and several attempts have been
made (Ray, 2016; Batth et al., 2018; Yousif, 2018) to provide
an IoRT architecture. These approaches are built on the IoT
reference architectures developed many years ago and focusing
only on one-dimensional layered architectural view.

In this section, we present a 3D layered reference architecture
of the IoRT, mapped onto the proposed 3D reference architecture
for IoT/IIoT (Figure 8). The architecture is used as a source of
information about the overall framework of IoRT technologies
and applications that guides and constrains the instantiations
of multiple solutions that are implemented in various IoRT
use cases.

The architecture consists of a 3D representation of the
key components of IoT/IIoT applications from the perspective
of the eight domains layers, eight cross-functions and eight
system properties. Different applications may require different
components in the architecture depending on their requirements
and specifications.

The 3D layered reference architecture of the IoRT supports the
definitions in the early design phases of common data models,
communication standards, exchange formats, common IoRT
SW/HW building blocks and define reusable assets and models.

The IoRT reference architecture includes generic architecture
patterns and layers, as well as the edge computing features and
specific characteristics of IoT/IIoT architectures (as defined in
IEEE P2413, 2019). The physical layer is represented by various
sensors and actuators, IoT/IIoT, IoRT, and other intelligent
autonomous devices. The IoRT devices are intelligent agents that
can communicate and collaborate with each other and establish a
multi-robotic system that offers new services through distributed
actions. The network layer includes components that utilize
a variety of protocols to communicate and control processes
involving multiple robotic things. The layer can include routers,
controllers and gateways to provide the required connectivity.
The layered architecture patterns are mapped to the IoRT
to provide an overall view of the different layers (physical
to business) of IoT/IIoT systems, including two additional
dimensions: cross-cutting functions and system properties.

Increasing the level of trustworthiness in IoRT systems
requires addressing the end-to-end dependability of IoRT
applications (e.g., safety, security, reliability, resilience,
availability, connectability, and maintainability). In this context,
the layered architecture presented (Vermesan et al., 2018) is used
to capture the system properties and cross-cutting functions
of a 3D IoRT-layered architecture (Figure 8). The architecture
was proposed after investigating and analyzing different
reference architectures concepts [e.g., Reference Architectural
Model Industrie 4.0 (RAMI 4.0), Industrial Internet Reference

Architecture (IIRA), Reference Architecture Model Edge
Computing (RAMEC)], to understand the underlying elements,
functions and definition, what they are used for, the goals,
objectives, characteristics, key features, and properties. The goal
was to determine common patterns for defining the architectural
views, domains, functions, properties for the IoRT reference
architecture. The key components of the existing reference
architectures were compared with the definition of the functional
and non-functional requirements and the specific characteristics
defined by different IoRT use cases.

IoRT applications need to use new techniques provided by
DLTs, swarm logic and AI to produce dynamically complex
behavior, independently, or collectively, to respond and adapt
to hacking, threats and cyber-attacks. Security by-design and
distributed end-to-end solutions are needed to enhance the
ability of IoRT technologies to deal with various cyber scenarios.
The 3D layered reference architecture of the IoRT by introducing
the system properties and cross-cutting functions views allows
the implementations of IoRT applications using DLTs and AI
methods and techniques at different layers of the architecture.

As IoRT applications’ topologies address different
requirements and industrial sectors (Jain and Doriya, 2019),
security configurations and strategies have to be scalable
and adapted to the specific context and environment where
the IoRT devices are operating. Furthermore, performing
routine over-the-air security updates of heterogeneous robotic
devices that operate at the edge is key to keeping the whole
application secure. IoRT dynamic device-orchestration
techniques and security updates are essential as IoRT edge
devices are vulnerable and can function as entry points for
cyber-attacks, which are difficult to track, trace, isolate and,
consequently they quickly spread throughout an entire IoRT or
IoT/IIoT ecosystem.

The normal, safe, and secure functioning of IoRT applications
relies on end-to-end protection at all IoRT architectural layers,
as well as a platform’s functions, from robotic devices to
communications, edge, storage, services and applications.
To be considered dependable, robotic devices must exhibit
a high level of robustness/resilience against a wide range
of various types of harmful attacks, including software,
hardware, connectivity, and physical tampering, which
enables the implementation/deployment of trustworthy
IoRT technologies, solutions and applications. The 3D layered
architecture allows integrating all these elements into the
IoRT applications.

The 3D architecture is generic and offers a representation
that can include different IoT/IIoT applications across
different sector domains and is well-suited to IoRT
technologies. The architecture includes the function-
by-design concept with end-to-end functions addressed
across the eight layers. This allows one to address various
applications, including different IoT platforms and
processing at the edge, fog and cloud, as well as device
management, capabilities (including command/control
of devices) and the inclusion of various gateways
for implementation of different functions across the
eight layers.
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TABLE 1 | Overview of different works involving approaches for IoRT enabling technologies.

Enabling technology Work Topic Findings

Internet of Things and

Industrial Internet of

Things

Vermesan and

Bacquet, 2018

Next-generation IoT

distributed intelligence

at the edge and human

machine-to-machine

cooperation.

IoT/IIoT continues to evolve with new technologies and applications, embedding ubiquitous

hyperconnectivity (5G and beyond), edge computing, distributed ledger technologies (DLTs)

and artificial intelligence (AI). Next-generation Tactile IoT/IIoT builds a real-time interactive

system between the human and the machine and introduces a new evolution in

human-machine (H2M) communication. Tactile IoT/IIoT enables the transfer of physical

“senses” (e.g., sense/touch, actuation, hepatic actions, etc.) in real-time form remotely and

introduces a new paradigm shift to the skill-based/knowledge-based networks instead of

content-based networks.

Colaković and

Hadzialic, 2018

Internet of Things

review of technologies,

challenges, and

research issues

There is a need for a modeling methodology to select the corresponding model of IoT and

computing systems integration. There is a lack of mathematical formulation and evaluation

methods which include multiple metrics. The authors identified the necessity to propose a

comprehensive IoT model which include all possible architectures, technologies, and

integration possibilities. In this context, the requirement for a quantitative method of evaluating

IoT system performances has to be used for selecting the corresponding integration model and

technologies as well as for creating performance-based profiles of IoT applications.

Ud Din et al., 2019 Internet of Things

technologies and

challenges

Investigated the IoT enabled technologies in terms of smart cities, heterogeneous IoT, fog

computing, data mining, WSN-based data-centric IoT, cellular communication,

context-awareness, virtualization, and real-time analytics.

Sharma et al.,

2019

Tactile Internet View on wireless Tactile Internet (TI) along with a thorough review of the existing state-of-the-art,

to identify and analyse the involved technical issues, to highlight potential solutions and to

propose future research directions. Main technical requirements in this regard include ultra-low

latency, ultra-high reliability, very high data-rate, energy efficiency, spectral efficiency, and

network throughput. Three main paradigms of TI, are identified: haptic communications,

wireless AR/VR and autonomous, intelligent and cooperative mobility systems.

Haddadin et al.,

2019

Tactile robots and

Tactile Internet

The combination of rich tactile feedback with state-of-the-art robotics, technology, and

algorithms is providing the potential of immersive connection to human operators via smart

wearables and virtual reality/augmented reality devices, effectively creating real-world avatars.

The paper address the ways to seamlessly interact with heterogeneous systems such as

industrial assembly lines, service robots, automated medical units and evaluates the potentials

and enabling technologies together with foreseeable application domains in the framework of

the Tactile Internet.

Afanasyev et al.,

2019a

Internet of Robotic

Things architecture and

components

The paper provides an overview, an analysis and presents the challenges of possible solutions

for the IoRT, discussing the issues of the IoRT architecture, the integration of smart spaces and

robotic applications. The authors describe the integration of robotics technologies in IoT

scenarios. Future research topics related to IoRT are identified as the requirements engineering

and formal processes, modeling, security, and process reconfiguration techniques applied to

multi-robot systems.

Autonomous robotic

systems

Seminara et al.,

2019

Active haptic

perception in robots

The paper provides a reasoned, principled perspective on the connections between different

taxonomies used in the robotics and human haptic. New-generation robots are increasingly

equipped with more sensing components, and consequently, they are (to some extent) able to

deal with highly complex and dynamic real-world tasks. Research in robotics can contribute to

the design of novel human-like robotic hands, considering the transition from task-based to

structure-based design. The advancements are both cognitive and physical in nature, based

on efficient data representation, real-time processing, and embedded networking.

Liu, 2019 IoT and robotics in

intelligent

manufacturing

The author examines how the merger of robotic and IoT technologies can advance intelligent

manufacturing, thus enabling the creation of new, potentially disruptive services. IoRT shall

advance beyond the terms of “Robot-enhanced IoT” or “IoT-aided robot”. Advance the

ecosystems of cloud, IoT agents and robots that integrates both to promote the development

of intelligent manufacturing.

Batth et al., 2018 Intelligent robotics,

concept, architecture,

applications and

technologies

The authors highlight a concept of architecture, which plays a significant role in the design of

multi-role robotic systems for IoRT. The paper presents technologies behind IoRT, applications

of IoRT and existing robotic systems based on humanoid, mobile, flying, and swarm envisaged

for future IoRT systems.

Alsamhi et al.,

2019a

The convergence of

Machine Learning (ML)

and robotics

communication

The paper addresses the convergence of ML and communication for collaborative assemblies

of robots operating in the space, on the ground and in underwater environments.

Improvements in swarm robotics applications are proposed based on addressing the issues

like preventing collisions, keeping connectivity between robots, maintaining the communication

quality, and ensuring collaboration between robots.
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Beckerle et al.,

2018

Touch for embodiment

in assistive robotics

The paper addresses the integration of objects into one’s bodily self-representation, as a key

aspect of human self-consciousness and cognition that can be extended toward robots is

argued as being crucial for assistive technologies aiming at restoring, extending, or simulating

sensorimotor functions. High-density and large surface sensing and stimulation are required to

foster the embodiment of such assistive devices. Versatile and realistic tactile feedback

covering the different facets of touch will enhance the usability and the user experience of

assistive robots. Advanced robotic touch technology embedded into robotic artefacts will likely

be the main tool to enforce a real synergy with users.

Nikouei et al.,

2018

Edge computing and

implementation of

Harr-Cascade and

HOG feature extraction

and SVM classifier, and

a lightweight

Convolutional Neural

Network (L-CNN) for

human detection

Performing computation near the source and destination, edge computing is promising to

address the challenges in many delay-sensitive applications, like real-time human surveillance.

Leveraging the ubiquitously connected cameras and smart mobile devices, it enables video

analytics at the edge. Human object detection algorithms, namely Haar Cascaded object

detector and HOG+SVM human detector, in the context of edge computing, are evaluated.

The algorithms are implemented on an edge device, and the experimental results have verified

that the proposed L-CNN algorithm has met the design goals.

Intelligent connectivity Qi and Ma, 2018 Vehicular Edge

Computing via Deep

Reinforcement

Learning

A knowledge-driven (KD) service offloading decision framework, which provides the optimal

policy directly from the environment, is presented. The framework supports the pre-training at

the edge computing node and is continually learning online when the vehicular service is

executed so that it can adapt to the environment changes and learns the policies that are

sensitive to experiences. The simulation results show that KD service offloading decision

converges quickly, adapts to different conditions, and outperforms the greedy offloading

decision algorithm.

Razafimandimby

et al., 2018

ANN, connectivity and

IoRT

Intelligent techniques used to allow IoRT robots for provisioning desired QoS and reducing

energy consumption are investigated. Motion control strategies which maintain global

connectivity between IoRT robots to the desired QoS level using an IoT-based approach and a

distributed trained ANN neural network controller are presented. Focus on capturing the

trade-off between network coverage and communication quality expressed as RSSI level using

the proposed algorithms allows the whole IoRT robot network converges to the desired

distance, and hence the desired communication quality.

Sharma et al.,

2019

5G and beyond

systems for achieving

ultra-high latency

(about or less than

1ms) and ultra-high

reliability

Potential enabling technologies across physical, Medium Access Control (MAC) and network

layers are identified. Haptic communications demand for some specific requirements in terms

of symmetric resource allocation in both the uplink and downlink, joint resource allocation in

both the downlink and uplink, the consideration of bounded delay and guaranteeing the

minimum rate throughout the haptic session. Challenges, (e.g., communicating kinesthetic

information between the master and slave ends in a teleoperation system that requires a high

packet transmission rate of about 1,000 or more haptic data packets per second), leading to

an inefficient data communication due to the depletion of the network resources are identified

for the effective design and operation of teleoperation systems.

Tan and Hu, 2018 Communication and

computing design in

vehicular networks

Vehicular networks are based on advanced communication technologies and data collection

techniques to improve safety, enhance efficiency, and decrease traffic congestions in mobility

systems. The resource allocation policy is designed by considering the vehicle’s mobility and

the hard service deadline constraint. A deep reinforcement learning with the multi-time scale

framework is used to address the vehicular networks operational requirements, and a

mobility-aware reward estimation for the large timescale model is proposed to mitigate the

complexity due to the large action space.

Distributed and

Federated Edge/Cloud

computing

Han et al., 2019 The convergence of

edge computing and

Deep

Learning (DL)

Edge computing is gradually being combined with AI, benefiting each other in terms of the

realization of edge intelligence and the intelligent edge. Edge intelligence is expected to push

DL computations from the cloud to the edge as much as possible, thus enabling various

distributed, low-latency and reliable, intelligent services. Considering the multiple constraints for

networking, communication, computing power, and energy consumption, edge computing

architectures are optimized to achieve the best performance of DL training and inference. As

the computing power of the edge increases, edge intelligence becomes common, and

intelligent edge plays an important supporting role to improve the performance of edge

intelligence.
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Li et al., 2018 Fog computing and

Deep Learning (DL) for

industrial applications

A system design based on the concept of fog computing to offload the computation from the

central server to the fog nodes to deal with extremely large data is presented. The use of a

convolutional neural network model to the fog computing environment, to improve the

computing efficiency and work out an inspection model, that can simultaneously indicate the

defect type and its degree is described.

Capra et al., 2019 Edge computing and

IoT

An overview of the main techniques to design hardware platforms able to cope with IoT

requirements, by exploiting the edge computing paradigm is presented. Hardware

architectures of typical IoT devices are discussed, and low-power techniques are evaluated.

The algorithms for computer vision, speech recognition require high computing power and, a

substantial amount of energy. The future research should address the optimization of the AI

algorithms to meet the hardware and energy constraints dictated by the IoT platforms. Moving

AI at the edge and using edge computing will optimize the IoT applications.

Gudi et al., 2019 Fog robotics Robots are limited by their own capabilities and, utilize cloud robotics to enhance their

dexterity. This requires the sharing of information (e.g., maps, images, computing and

processing resources, etc.). Transferring large amounts of data increase the bandwidth and the

network congestion at backhaul and fronthaul systems resulting in high latency. Fog robotics

can act as a solution by solving the problems of cloud robotics. The experimental results show

that fog robotics reduces latency significantly compared to cloud robotics.

Jain and Doriya,

2019

Security and cloud

robotics

The authors review various security aspects confining more on the security details related to

cloud robotics with security flaws as being major concerns that can affect the cloud robotics.

Cloud computing suffers from various type of vulnerabilities like network-based attacks, data

storage based attacks, virtualization based attacks that are sensitive to operating system-level

attacks. These elements affect robotics that can be exposed to attacks such as the denial of

service and dictionary attacks, etc. Focus on security methods and techniques that can be

applied to cloud robotics to make it more safe and secure.

Lopes et al., 2019 Robots, AI, blockchain The paper proposes an architecture that uses blockchain as a ledger and smart-contract

technology for robotic control by using external parties, Oracles, to process data. The concept

allows to register events in a secure way, use smart contracts to control robots and interface

with external AI algorithms for image analysis. The proposed architecture is modular and can be

used in multiple contexts such as in manufacturing, network control, robot control, and is easy

to integrate, adapt, maintain, and extend to new domains. Integration of AI with blockchain has

benefits for swarm robotics and robotic hardware by using the global information within robotic

swarms in a secure and validated way and a faster way to change the behavior of the network,

which will ultimately lead to higher productivity and easier maintenance.

Khelifi et al., 2019 Deep Learning at the

edge

Applicability of merging deep learning (DL) models (e.g., convolutional neural network (CNN),

recurrent neural network (RNN), and reinforcement learning (RL), etc.), with IoT and

information-centric networking for Internet architecture, combined with the edge computing

concept is presented. A CNN model can be used in the IoT area to exploit data reliably from a

complex environment, while RL and RNN are integrated into IoT, which can be used to take the

multi-modality of data in real-time applications.

Wan et al., 2020 Cognitive computing

and wireless

communications on the

edge

Perception capabilities of mobile healthcare robots based on special sensors and AI

techniques are described. Promising solutions may arise from several state-of-the-art deep

learning algorithms, including Convolutional Neural Network (CNN), and Generative Adversarial

Network (GAN). Open research issues include intelligent communications, ground-breaking

biosensors, cutting-edge AI, and state-of-the-art deep learning algorithms.

Digital twins Malik and Bilberg,

2019

Digital twins of

human-robot

collaboration in

production

A digital twin framework to support the design, build and control of human-machine

cooperation is presented. Computer simulations are used to develop a digital counterpart of a

human-robot collaborative work environment for assembly work. The digital model is extended

for real-time communication with the physical system for performance optimization on a

system level using a cloud-based service with real-time performance metrics, optimization

analytics and alerts for a robot, continuously updating the digital twin.

Kousi et al., 2019 Digital twin for

adaptation of robots’

behavior in robotic

assembly lines

The use of digital world modeling techniques in hybrid production systems for enabling system

reconfiguration through a shared environment and process perception is described. The paper

proposes a digital world model infrastructure with three main functionalities: (a) Virtual

representation of the shop floor, combining multiple sensor data, and CAD models [e.g., the

digital shop floor is rendered in the 3D environment exploiting the capabilities provided by

Robot Operating System (ROS) framework], (b) Semantic representation of the world through

the implementation of a unified data model for representing the geometrical and the workload

state, (c) Dynamic update of the digital twin based on real-time sensor and resource data

coming from the actual shop floor. The communication and integration layer among the

physical and the virtual agents are realized on top of the ROS framework. Future research
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requires the integration of the DT with: (a) the physical robotic set up to validate its performance

and (b) high-level decision-making mechanisms allowing the reconfiguration of the system at

shop floor level through task re-allocation based on the real-time production needs (new

product variants etc.).

Kuts et al., 2019b Digital twin control and

simulation of the

industrial robotic cell

using virtual reality

The authors propose to create an Industrial Digital Twin (IDT) – as a digital copy of the real

manufacturing system, which can be controlled and programmed in real-time directly from the

computer application model of the industrial robot. The paper provides a precise model of the

robot and the developing software package to control and program it directly from VR. Future

research is needed to address the development of a modular approach and the optimization of

synchronization framework between virtual and real-world, including the model optimization of

the robot digital twin.

Distributed ledger

technologies

Ferrer, 2016 Blockchain and robotic

swarm systems

The combination of blockchain with distributed systems, such as robotic swarm systems, can

provide the capabilities to make robotic swarm operations more secure, autonomous, and

flexible. Security, decision making, behavior differentiation, and business models for swarm

robotic systems are described by providing use case scenarios. Robots may be able to function

in diverse and changing environments if their operation corresponds to different blockchain

ledgers that use different parameters, without any change in their control algorithms.

Lopes and

Alexandre, 2019

Blockchain integration

with robotics and AI

Different methods and platforms that leverage the power of blockchain into robotic systems to

improve AI services, or to solve problems that are present in the major blockchains, which can

lead to the ability to create robotic systems with increased capabilities and security are

described. Blockchain can help to automate processes with the support of smart-contracts

and enable systems to have improved security and more traceable processes. Blockchain

introduces a way to trust the data, trust other participants, and to conduct internal and external

changes by having certified information regarding the whole system.

Afanasyev et al.,

2019b

Blockchains for

multi-agent robotic

systems

The blockchain could play a significant role in multi-agent system applications. The analysis

allowed the authors to identify groups of tasks for blockchain-based multi-agent robotic

systems, which are proposed for classification. Future open issues include the development of

a conceptual model of information support groups of robots during the task performance, work

on a consensus protocol for a group interaction verification before launching a task based on

the information from a distributed ledger, validation method for task performance and

development of multi-agent system architecture.

Gianni et al., 2014 Augmented reality

environment and

mobile robots

The authors introduce a development tool for constructing, in real-time, complex planning

scenarios for robots, eliminating the need to model the dynamics of both the robot and the real

environment as it would be required by whole simulation environments. The AR framework is

used for evaluating the capability of the robot to plan safe paths to goal locations in real outdoor

scenarios, while the planning scene dynamically changes, being augmented by virtual objects.

Malik et al., 2020 Virtual reality in

manufacturing and

human-robot

workspace

Technological development in virtual reality for the design of human-centered production

systems requires a unified framework to integrate human-robot simulation with VR. The

simulation as an event-driven simulation is used in estimating the human-robot cycle times,

developing process-plans, layout optimization, and robot control programs. The simulation is

utilized in VR to interact with the production equipment and particularly with the robots.

Makhataeva and

Varol, 2020

Augmented reality for

robotics to enhance the

perception

Four categories are analyzed: (1) Medical robotics: Robot-Assisted surgery (RAS), prosthetics,

rehabilitation, and training systems; (2) Motion planning and control: trajectory generation,

robot programming, simulation, and manipulation; (3) Human-robot interaction (HRI):

teleoperation, collaborative interfaces, wearable robots, haptic interfaces, brain-computer

interfaces (BCIs), and gaming; (4) Multi-agent systems: use of visual feedback to remotely

control drones, robot swarms, and robots with a shared workspace.

Tan and Zheng,

2013

Swarm robotics Swarm robotic algorithms are presented, including cooperative control mechanisms in swarm

robotics for flocking, navigating, and searching applications. Challenges are identified in how

can the cooperative schemes inspired from the nature swarms integrate with the limited

sensing and computing abilities for a desired swarm level behavior, in developing mathematical

models to describe the swarm robotics system and predict the system behaviors at both

individual and swarm level and in developing new architectures and strategies for integrating

swarm robotics systems.

Chamanbaz et al.,

2017

Swarm technologies for

multi-robot systems

The authors present the design of integrated hardware and software tools, enabling a wide

range of multi-robot systems to collectively operate in a distributed manner. Future research

directions include swarm algorithms in the software library, simulation techniques for collective

behaviors prior to implementation onto the platforms. Swarm-enabling technology is

seamlessly used with different mobile robots to facilitate studies of heterogeneous swarming.
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Schranz et al.,

2020

Swarm robotics

applications

The paper analyses swarm behaviors and categorize these behaviors into the spatial

organization, navigation, decision making, and miscellaneous. The taxonomy is then applied to

categorize several existing swarm robotic applications from research and industrial domains

and give a comprehensive overview of research platforms that can be used for testing and

evaluating swarm behavior, systems that are already on the market, and projects that target a

specific market. Swarm behavior emerging from local interactions is hard to predict, and a

proof of its eligibility for applications in an industrial context is difficult to provide. Existing

communication architectures do not match requirements for swarm communication, which

often leads to a system with centralized communication infrastructure. Testing swarms for real

industrial applications is an issue since deployment in a production environment is typically too

risky, and simulations of a target system may not be sufficiently accurate.

Platforms technologies Bröring et al.,

2018

IoT platforms

interoperability

The authors describe the interoperability issues in the IoT platforms and ecosystems covering

the interoperability aspects, challenges and approaches that cope with interoperability in the

current existing IoT platforms and introduce insights regarding the future of interoperability by

presenting possible solutions, and a possible IoT interoperability platform architecture. Layered

approaches for interoperability allow the stakeholders or platform operators to select the best

mechanism for interoperation. Management of such options provides coordination between

layers, enhances cooperative solutions (e.g., gateways and network) and enables security

management.

Mahieu et al.,

2019

Semantics-based

platform robot

interaction in IoRT

A platform approach based on a modular, data-driven workflow that allows developers of

interacting services to determine the appropriate time, content and style of human-robot

interaction tasks by reasoning on semantically enriched IoT sensor data is proposed in this

paper. The platform abstracts the complexities of scheduling, planning and execution of these

tasks, and can automatically adjust parameters to the personal profile and current context.

Sabri et al., 2018 Semantic framework

and IoRT

A semantic framework is proposed for context-aware IoRT systems to support the

development of applications for monitoring and managing IoRT systems using a knowledge

representation framework, called SmartRules, for context modeling. SmartRules as a

production rules language enables reactive reasoning based on the closed world and unique

name assumptions, allowing the generation of actions based on contextual information

represented in a dedicated ontology language, called µ-Concept. An operational platform,

centered on the notion of a manageable object (MO), is proposed to abstract the access to any

physical or virtual device, which can communicate through the Internet. An integrated

methodology and tools are proposed for guiding the development and deployment of

context-aware semantic IoRT systems, and for defining context semantics and creating

context management rules.

The 3D architecture also provides an optimized view of stream
processing across the eight layers, enabling evaluation of the rules
and functions for analyzing information streams.

By including elements such as intelligence, dependability,
manageability, integrability, composability, and interoperability
in the system properties view, they can be specified and
implemented across the layers. For example, the intelligence
system property can define machine learning components across
layers for predictive algorithms to be executed on historical IoRT
data, enabling predictive maintenance functions. Furthermore,
information transformation across the eight layers and the
aggregation of the IoT data stream can be specified for
different applications, including protocol transformation, and
interoperability interfaces.

Moving From Centralized to Decentralized
and Distributed IoRT Architectures
The mobile robotic things devices that are part of the
IoRT have an operating time which is proportional to the
activity type (e.g., static sensing, high-speed propulsion, heavy-
duty manipulation, etc.), battery size/capacity, the number of

tasks performed per activity cycle, data rate and volume of
exchanged data/information with other robotic things, humans,
and infrastructure.

The transfer of large data sets to a central cloud represents
a very energy-consuming operation, and new computational
paradigms are used and implemented for IoRT applications.

In future IoRT applications, the computation is not entirely
performed in the cloud, and new orchestration methods are
developed for distributing the power load among the nodes of
the IoRT system, compress data, or transmit only the processed
data (the so-called “smart data” to reduce the transmitted
power requirements).

In this context, the 3D layered reference architecture
of the IoRT divided into eight vertical layers can address
the decentralized and distributed topology for future
IoRT applications.

IoRT applications operate fleets of robotic things that
are based on a set of cooperative rules that the individual
IoRT devices have to follow, so they can perform the tasks
in a distributed manner without centralized controls, which
allows for scalable, flexible, and dynamic implementation
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FIGURE 8 | 3D reference IoT/IIoT architecture applied to IoRT.

architectures. This ensures that the autonomous functions of
the IoRT devices are active, even if communication with the
central unit for federating information is interrupted for a
short time.

The transition from centralized to decentralized topologies
for IoRT applications is presented in Figure 9. In the edge
computing framework, part of the processing is moved closer
to data collection sources (e.g., robotic things, IoT/IIoT devices,
etc.), and, only after first processing, collected data is sent to the
cloud (Capra et al., 2019).

For a wider range of application scenarios, including Internet
of Vehicles (IoVs) and IoRT, a wider range of intelligent services
are still bounded due to several factors (Han et al., 2019):

• Cost: training and inference of Deep Learning (DL) models as
part of AI techniques in the cloud requires devices to transfer
large data sets to the cloud, thus using power and a large
amount of network bandwidth.

• Latency: transmitting, processing the data, and using the
services provided by the cloud applications cause significant
transmission delays. For real-time, safety-critical scenarios,
autonomous/automated vehicles cannot allow hundreds of
millisecond delays that are caused by many cloud processing
tasks (Khelifi et al., 2019).

• Reliability: wireless communications and backbone networks
are the critical infrastructures on which cloud computing relies
for providing reliable, robust, and resilient services. In the case
of industrial manufacturing, IoRT, IoVs scenarios, intelligent
services must be ultra-reliable and provide the required
information and functions even when network connections
are lost.

• Privacy: the information required for DL, ML, and other AI
techniques involves a lot of private information. Privacy issues
are critical to different sectors in which the IoRT devices
operate and interact with other IoT/IIoT devices and humans.

In the context of IoVs, the move from a centralized to a
decentralized solution is also applied to learning. A Knowledge-
Driven (KD) service offloading decision framework for
IoVs is proposed by Qi and Ma (2018) for providing
the “optimal policy directly from the environment” by
formulating the offloading decision as a long-term planning
issue of the multi-task in service and exploring deep
reinforcement learning to reach the optimal solution. The
proposed framework “supports the pre-training at the edge
computing node and continuous online learning when
the IoVs’ service is executed so that it can adapt to the
environmental changes and learn the policy that applies”
(Qi and Ma, 2018).

Moving from centralized to decentralized and distributed
intelligent IoRT edge poses many challenges in the future.
The open questions that still need solutions are how to
optimally identify the services that are provided at the
edge and in the cloud, how to enable in real-time the
orchestration and exchange of information between the
edge and the cloud, both for operations and learning, how
to enable the intelligent collaborations and networking
among the edge devices for implementing distributed
architectures, and what computations should be embedded
at the nodes at the edge and in the robotic things. In this
context, the 3D layered IoRT reference architecture allows
the partitioning of the functions of the IoRT system into
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FIGURE 9 | Transition from centralized to decentralized and distributed topology for IoRT applications.

different layers, platforms, cloud/edge providing a clear view
where the different functional HW/SW, communication,
processing, analytics components are implemented in the
3D stack.

INTELLIGENT CONNECTIVITY

IoRT applications rely on robust, resilient, and reliable
connectivity networks, and the intelligent connectivity
infrastructure needs to function as a continuum and
interoperable network that can support heterogeneous devices
with different intelligence capabilities and connectivity needs,
depending on the application. Connectivity infrastructure
needs to be flexible and adapt to the environmental context’s
requirements and planned/unplanned events and scenarios.

AI techniques, such as ML, are used as efficient tools to
address the issues experienced in 5G wireless communications
(e.g., caching, computing, and communication processes) for
obtaining the operational requirements and “the cost efficiency
of the vehicular networks” (Tan and Hu, 2018).

Wireless and cellular communication networks need to assure
predictable/guaranteed latency to allow new connectivity, which
has become the enabler for next-generation IoRT intelligent
services. IoRT devices can use, for exchanging information and
direct communication, peer-to-peer, and/or broadcast systems.

Today’s 4G cellular technology provides latency performance
around 80–100ms, while the new 5G technology will provide
1–10ms latency because it uses new modulation schemes
for network slicing capabilities, wireless access, automated
network application lifecycle management, software-defined
networking (SDN), and network function virtualization (NFV).
Edge and cloud-optimized distributed network applications
(Figure 10) are supported to address strict energy efficiency
constraints requirements to cover large outdoor spaces, deep
indoor/underground environments, or mobile things moving
at high speeds. The figure illustrates the partitioning of
different processing components for IoRT applications and the
distribution of the functions between the edge and cloud. The

illustration is mapping on the first four layers of the 3D layered
IoRT reference architecture.

The requirements for mission and safety-critical IoRT
applications are focused on latency, reliability and throughput,
which are addressed by the 5G network’s architecture and new
functionalities. However, as 5G network implementation is based
on software, risks related to security flaws are increasing, and they
depend on the architectural layer in which they are implemented.
In this context, IoRT connectivity management and platforms
orchestration will play a critical role in addressing the security
of IoRT applications in the future.

IoRT applications are addressing massive and critical
segments of 5G capabilities. For safety-critical IoRT, Ultra-
Reliable Low-Latency Communications (URLLC) architecture
and radio are required. Mission-critical IoRT applications will
benefit from the new 5G core network architecture, as well as
from enhancements in the radio. The capabilities of 5G networks
are built upon 4G Long-Term Evolution (LTE) networks, along
with NarrowBand-IoT (NB-IoT) and LTE category M1 (LTE-
M or LTE for Machines). The new, advanced functions for
security, automation, and management functions on radios
and 5G core networks fit the ultra-reliability requirements
for safety- and mission-critical IoRT solutions. Considering
that IoRT use cases and applications are diversifying along
with IIoT, consumer IoT, and enterprise IoT applications,
connectivity across vertical domains will be ensured by mobile
cellular and enhanced wireless technologies. The new 5G NR
in unlicensed spectrum (NR-U) is important for future IoRT
applications as the cellular connectivity and of 5G is brought
to unlicensed spectrum. NR-U supports both license-assisted
and standalone use of unlicensed spectrum and can deliver
improved coverage capacity, mobility, reliability, and precise
timing. For time-sensitive, safety-critical IoRT applications it is
important to emphasize that 5G can be integrated with time-
sensitive networking (TSN), providing deterministic services
over IEEE standard 802.3 Ethernet wired networks, delivering
low-latency packet transport, low packet delay variation and low
packet loss.
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FIGURE 10 | Edge and cloud optimized distributed network topology for IoRT connectivity.

The next-generation Internet is evolving, and although the
characteristics have been defined, there is no defined architecture
for it. The next-generation Internet must be human-centric, and
this foundation creates different requirements for any Internet
system to be more adaptive to humans and human-machine
interactions than to technology.

IoRT applications’ connectivity technologies need further
development to meet the high demands for ultra-high reliability,
very low-latency, high-bandwidth signal quality, and data rates.
These elements are required for safety inmany IoRT applications,
depending on the context in which the IoRT technologies
are applied. In this context, safety and mission-critical IoRT
capabilities will not be widely available before 2025–2030.

IoRT applications must consider the interference among
different small cells, and the radiation as the density of
5G cells deployed is increasing. At the same time, different
network management models must be developed to control
roaming, considering the coexistence of various cells, radio
access technologies and devices. For areas that are remote
or difficult to access, satellite communications are a future
radio-access technique for IoRT applications operating in
remote environments.

A trade-off between the criticality of the IoRT application, the
radio access technique, edge and cloud processing, and cost must
be made to minimize latency.

The deployment of 5G networks and beyond requires the
densification of the mobile network, which increases the number
connections to the core network, entailing the implementation
of cloud utilization mechanisms to maximize efficiency (e.g.,
latency, security, energy efficiency, accessibility). The cloud
utilization mechanisms combine SDN and NFV techniques
to ensure network flexibility, integrate new applications
dynamically, and appropriately configure network resources

(e.g., sharing edge-cloud computing resources, orchestration
edge-cloud computing resources, splitting data traffic, enforcing
security rules, implementing QoS parameters, and ensuring
mobility). In this context, the important challenges are (1)
designing system and network architectures to easily support
efficient and diverse services, (2) achieving ultra-low latency
communications with distributed edge computations, (3)
defining and managing edge/fog systems, and (4) migrating the
Internet edge to computation-enabled intelligent robotic devices
at the edge.

IoRT devices are connected via different categories of wireless
technologies: short to mid-range wireless (e.g., Bluetooth,
Bluetooth mesh, and other mesh networking such as Wi-
Fi mesh, ZigBee, Thread/6LoWPAN, etc.), long-range wireless
[e.g., mobile/cellular and Low-Power Wide-Area Networking
(LPWAN)], and satellites. Expanding IoRT applications will
require extending the spectrum in the 10–100 GHz range and
unlicensed bands and technologies, such as WiGig or 802.11ax,
to deploy IoRT technologies. IoRT connectivity technology
classes can be further divided into short-range and wide-area
connectivity segments, with the former enabled by unlicensed
radio technologies (e.g., LoRa, Sigfox, On-Ramp Wireless,
NWave/Weightless SIG, 802.11 Wi-Fi/Wi-Fi Aware, Bluetooth,
ZigBee, 6LowPAN, Z-Wave, EnOcean, Thread, and wireless M-
Bus), and the simultaneous use of multiple industrial, scientific
and medical (ISM) radio bands (i.e., 169/433/868/915 MHz,
2.4, 5.8, and 60 GHz). The load of different networks differs;
some models use the unbalanced load of the ad-hoc network
from a core network standpoint, while others use network-based
solutions to balance the topology. The network requirements to
be supported are based on a combination between an optimal ad-
hoc network topology, the use of monitoring information, and
the notification of appropriate actions (Vermesan et al., 2018).
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Using intelligent robotic devices reduces the amount of data
needed to be transferred to the cloud for filtering, processing,
aggregation, allowing more functions and processing capabilities
to be integrated into IoRT devices and gateways closer to
the edge, eliminating the need for extra communication and
reducing latency while optimizing the processing of information
and communication. Various edge computing paradigms are
used for IoRT applications. They are classified as edge
computing, fog computing, andMobile Edge Computing (MEC).
MEC is part of the 5G architecture, enables an open Radio
Access Network (RAN), and is capable of hosting third-party
applications, functions, services, and content at the edge of
the network. In edge computing, the intelligence and power
of the edge processing unit are defined by programmable
automation controllers, with each edge device operating
independently and defining what information can be stored
locally and what information is transferred to the cloud for
more analysis.

IoRT applications are expected to require more network
intelligence residing closer to the robotic devices by using edge,
fog, MEC-distributed architectures, and cloud/edge federated
solutions, considering that information is generated and used
locally. Developing edge computing technologies for IoRT
requires addressing the issues of unreliable and intermittent
information transfer via wireless and mobile cellular networks,
efficient distribution of computing processing and analytics, the
orchestration and management of data storage and processing,
interfacing/orchestration between edge and cloud computing to
ensure scalable services, and finally, reliable, robust, and resilient
mechanisms to secure IoRT applications. The different edge
computing models require distributed architectures that support
the various exchange of information and communication
protocols for broad use in consumer/business/industrial
domains. To implement this, “it needs to provide peer-to-peer
networking, edge-device collaboration (e.g., self-organization,
self-awareness and self-healing), distributed queries across data
stored in edge devices, as well as in the cloud and temporary
storage locations, distributed data management (e.g., for
defining where, what, when and how long, in relation to data
storage) and information governance (e.g., information quality,
discovery, usability, privacy and security)” (Vermesan et al.,
2018).

Multi-access edge computing performs an important role
in IoRT functionality as reliable low-latency processing and
information transfer is required for most IoRT use cases.
Processing information created within the network and by
robotic devices at the edge is enabling computations to be
performed on distributed device nodes rather than in a
centralized cloud environment reducing the overall latency and
improving the overall IoRT system performance.

In addition, for IoRT applications, edge intelligence is moving
from the cloud to the robotic things with more DL, ML, and
other AI-based computation transferred from the cloud to the
edge thereby assuring different distributed, low-latency and
reliable, intelligent services. The advantages of decentralizing and
distributing the architecture for DL techniques can include the
following elements (Kang et al., 2017; Han et al., 2019):

• DL services are deployed at the edge close to service requests,
and cloud processing is used when additional computing is
required, reducing the latency and cost of transferring data to
the cloud for analytics.

• The raw information needed for DL services is stored locally
on the edge devices, robotic things, edge infrastructure and not
in the cloud, ensuring faster access and better data protection.

• The decentralized architecture could provide more reliable
and efficient real-time DL computation.

• IoRT devices are using smart data and application scenarios
that edge computing can promote the ubiquitous application
of DL and support providing AI for each robotic thing, person
and application everywhere.

• The use of various, diversified and valuable DL services for
IoRT devices can expand the value of edge computing and
accelerate its acceptance, deployment, and growth.

IORT PLATFORMS

An IoRT platform can be defined as an intelligent application
layer that connects robotic things to network infrastructure
and abstract applications to robotic things, enabling
communication, information flow, device management,
and various functionalities in order to support the development
and deployment of intelligent applications and services. The
IoRT platforms provide flexibility (the ability to deploy things
in different contexts), scalability, usability (the ability to make
users’ experience easier), interoperability, integrability, and
different degrees of intelligence, with the overall aim to build
IoRT applications within a framework that allows applications
to connect IoRT devices, applications and people to information
and control centers (Vermesan et al., 2017b).

Different types of IoRT platforms have emerged, and
the functionality of these platforms covers the digital value
chain of an end-to-end IoRT system, from sensors/actuators,
processing hardware, connectivity, edge computing, storage,
cloud, and applications. The connectivity platforms are used
to connect edge devices, process information at the edge and
program devices to make decisions in real-time. The significant
advantages are increased security, interoperability, scalability,
and manageability, which are achieved through advanced
information management and analytics from an endpoint to
edge infrastructure.

IoRT software platforms (e.g., HW/SW robot platforms,
IoT/IIoT/DLT platforms, and AI platforms) integrate
heterogeneous sensors/actuators, as well as various
communication protocols with abstract complexities, and
support developers with simple Application Programming
Interfaces (APIs) to communicate with IoRT devices over
a connectivity network. IoRT platforms include functional
components for information collection, processing, storage,
and analytics, managing complex information and event
integration, protocol conversions, connectivity issues, and device
management and orchestration. The platforms provide a frame
of reference for categorizing the capabilities of technologies that
are needed to deliver connected robotic device functionalities,
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operations, assets and integration into other platforms (e.g.,
enterprise platforms).

IoRT platforms provide the components used for the
implementation of the IoRT-layered architecture and include the
following elements (Gluhak et al., 2016; Vermesan et al., 2018):

• Physical IoRT devices and resources are abstracted into virtual
entities and representations, which allows interoperability
based on consistent access to heterogeneous IoRT edge devices
and their resources via multiple communication protocols.

• Virtualization facilitates service look-up mechanisms that link
the physical network’s edge and provide virtualization services
for different IoRT functions.

• The data management framework enables collected data from
IoRT devices to be stored, cached and queried, and data fusion
and eventmanagement to be performed for IoRT devices while
considering scalability and manageability.

• The semantic representation (Honti and Abonyi, 2019) allows
the modeling and administration of semantic knowledge from
different IoRT devices and platforms.

• The security and policy framework implements the federated
identity management for authentication, authorization
policies, the access control mechanisms, and facilitates the
exchange and coordination among several IoRT platforms.

• The networking framework enables connectivity within
and among IoRT and IoT/IIoT platforms, ensuring
the instruments for self-management (i.e., monitoring,
configuration, healing, optimization, and protection) through
cognitive algorithms.

• Open interfaces are a set of open APIs that support IoRT
applications and facilitate platform extension by allowing the
interaction with other platforms, and the development of
cross-platform tools for API on top of the platform.

• Data analytics utility provide real-time event analytics
and a self-service rule engine to support developers to
define rules, as well as querying, reporting, and data
visualization functionalities.

• ML data analytics involves a set of complex ML algorithms for
real-time cognition and decision-making.

• Development tools, and standardized software
development kits (SDKs) provided to accelerate the rapid
development of IoRT applications that can be adopted by
different applications.

The development of AI methods and techniques that enhance
robotic device capabilities are implemented on edge for
autonomous/augmented/assisted intelligent functions as
illustrated in Figure 11.

This approach requires IoRT platforms to be able to deal
with distributed intelligence (i.e., AI on edge and in the cloud)
and move from a centralized intelligence architecture (i.e., AI in
the cloud).

• Information flow and exchange across the layers of the IoRT
architecture involve information acquisition, information
transmission/collection, processing, storage, filtering,
analysis/analytics, integration, discovery, usage, exposure
(openness), and monetization (Vermesan et al., 2017b):

• Information acquisition involves the gathering and formatting
IoRT information before it is passed through different
channels/pipelines for ingestion and processing. Information
acquisition is challenging for IoRT device due to the various
channels used and the need to a proper orchestration of the
information fusion at the device, edge, and cloud level.

• Information transmission/ingestion involves the connectivity
channels and pipelines used for transmitting IoT information
and the ingestion of information to enable the reliable
operation of IoRT platforms with various file formats and
network connections while considering information volume,
data rates, and network neutrality.

• Information processing addresses the processing and fusion
of IoRT information from different sources (e.g., sensors,
actuators, processes, and virtual devices), and transformation
of this information into formats that allow reuse or facilitate
immediate action based on real-time events and interactions.

• Information storage addresses the techniques of distributed
IoT information storage in which the chosen format or
database technology is determined by the type of application
safety- mission-critical and the nature of other stages in the
information value chain (e.g., analysis, analytics, and the
nature of applications). For IoRT applications, it is required
that the information is stored and managed in a scalable
manner that satisfies the needs of the application that requires
fast access to raw or processed information.

• Information filtering uses the active management of IoRT
information over the information lifecycle to ensure
that information quality requirements are met and, the
information can be used across different industrial sectors.
IoRT data filtering processes include, among others, content
creation, selection, classification, transformation, validation,
and preservation.

• Information analysis/analytics addresses every layer of the
IoRT architecture and every step in the information value
chain. This allows the generation of new insights and actions
based on IoRT information from different sources, used
across applications. Data analysis transforms raw information
into smart insights that can be used in decision-making, as
well as for domain-specific purposes. Through exploration
and modeling, relevant “smart” data is extracted, and useful
“invisible” information with high potential from an IoRT
application perspective can be synthesized and extracted.

• Information integration blends a variety of IoRT information
sources to provide new insights. It is an important element of
any IoRT application.

• Information discovery addresses localization and
identification of IoRT information sources, services and
evaluation of these sources’ attributes, relevance, quality,
integrity, security, privacy, cost, coverage, etc.

• Information usage addresses IoRT knowledge-driven
applications that need access to IoRT information, methods
of analyzing the information, and the development tools
and IoRT platforms needed to integrate information analysis
into various IoRT applications and use cases. The efficient
usage of IoRT information enhances the effectiveness of
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FIGURE 11 | Capabilities implemented at the edge for autonomous/augmented/assisted intelligent functions.

decision-making by, reducing costs, increasing the added
value, and offering portability across applications.

• Information exposure (data sharing) addresses exposure of
IoRT information to other IoRT applications, enabling co-
creation of value from IoT/IIoT/IoRT information obtained
from different heterogeneous edge and platform sources.

Commercial IoRT Platforms
The IoRT platform market represents a new segment
characterized by a complex landscape building in many
cases on existing IoT/IIoT platforms. The IoRT applications
cover various sectors and, require platforms that offer solutions
at the intersection of IT and OT, including dependable,
interoperable, and scalable features for integrating heterogenous
IoRT devices and fleets operating across different platforms.
In this context, the emergence of several blockchain platforms
that can enhance the features of IoRT platforms brings
challenges for IoRT applications related to the solutions and
the interoperability characteristics provided considering the
multitude of blockchain platforms custom-made for specific
purposes, (e.g., public, private, or consortium), that ads an
overhead to manage workflows.

Amazon Web Service RoboMaker (AWS RoboMaker) is an
example of a commercial proprietary IoRT platform that provides
the features, micro-services to be used for data processing,
storage, orchestration of the deployment and operations of
fleets of IoRT devices [e.g., autonomous mobile robots (AMR),
autonomous ground vehicle (AGV), etc.] used for commercial
logistics and consumer cleaning, delivery, and companionship.
The platform offers the capabilities to combine the integration of
technologies at the robot level (e.g., image recognition, sensing,
artificial intelligence, machine learning, reinforcement learning,

connectivity, etc.) enabled by a Robot Operating System (ROS)
with the ability to navigate, communicate, comprehend, stream
data, learn, and collaborate at the platform level with other
robotic things. AWS RoboMaker is a proprietary cloud-based
solution that provides the tools to simulate, test, and securely
deploy robotic applications at scale, providing an integrated
development environment (IDE), fleet management capabilities,
ROS extensions, and integration with different Amazon and
AWS services.

Other examples of companies that are providing commercial
platforms for managing fleets of robots are Format, Freedom
Robotics, InOrbit, Roco, KUKA (e.g., Navigation and Mobile
platforms), OTTO Material Movement Platform, BrainOS,
TIAGo Base. The platforms offer cloud-based centralized
solutions to build, test, deploy, automate the operations of fleets
of robotic things, providing secure services, remote operations,
local network access for offline operations and limited integration
with other IoRT systems.

The new IoRT ecosystems developments will be influenced
in the near future by robot developers that move up in
the value chain and become solution providers, IoT/IIoT and
cloud platform providers focused on HW/SW, connectivity
solutions and large computing infrastructures service providers
such as Microsoft Azure, Amazon Web Services (AWS), and
Google Cloud.

INTEROPERABILITY IN IoRT

IoRT platforms are used to support and manage the development
and operation of IoRT applications and services by providing
a set of components with the specific functionalities needed to
run and orchestrate IoRT applications. IoRT platforms allow
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developers and service providers to build on a set of components
and building blocks that are common and repeatable across
different IoRT applications and services, supporting achieving
an economy of scale and reducing the overall time and costs
required to deliver an IoRT-enabled solution. A lack of platform
interoperability gives rise to considerable technological and
economic disadvantages, such as the difficulty of plugging non-
interoperable IoRT devices into heterogeneous IoRT platforms
or developing IoT applications exploiting multiple platforms,
stagnation of IoRT technology adoption on large-scale, slow user
acceptance of IoRT technology, vertical silos in IoRT ecosystems
and markets, increased costs, scarce reusability of technical
solutions, and user dissatisfaction (Bröring et al., 2017, 2018;
Schmid et al., 2017; Mahieu et al., 2019). The interoperability
levels addressed by IoRT technologies are illustrated in Figure 12.

The integration and interaction of heterogenous IoRT
systems, require addressing the complex interoperability
challenges to facilitate the creation of cross-domain services
with seamless movement of physical things and the information
that they exchange, store and process. Today, the lack of stable
IoRT implementations, a variety of available concepts for
implementation, lack of common data formats, data models
and the lack of a common IoRT reference architecture, limit
IoRT systems interoperability. Another challenge is the lack of
a common framework for verification, validation, testing, and
certification of different IoRT implementations based on agreed
performance requirements.

The interoperability testing practices require various vendors,
developers, and service providers to participate in developing and
supporting such common frameworks.

Improving interoperability is critical to the success of IoRT
applications and enabling the use of interoperability frameworks
while federating and connecting several platforms to scale up
IoRT applications is key to further developments.

Interoperability testing of solutions and standards to achieve
different types of interoperability for heterogeneous and complex
systems is a challenge. This is mainly because testing the
IoRT solutions involves various stakeholders (e.g., HW/SW
vendors, platforms providers, developers, integrators, and service
providers) that need to participate several times in face-to-
face meetings (e.g., plug tests, to validate their implementation
against existing standards). The process is labor-intensive and
involves extensive testing activities. Interoperability testing
needs to be automated to support the rapid development of
interoperable solutions (Noura et al., 2019). In the case of
IoRT, new concepts need to be developed, including the virtual
validation of autonomous systems and scenarios for collaborative
robotic devices.

IoRT platforms provide a diverse set of functional components
implemented in the different architectural layers that contribute
to the realization of the IoRT service patterns described in the
previous section.

The functional components of typical IoRT platforms are
briefly described below:

• Robotic device management and orchestration ensure that
robotic devices work properly with the IoRT platform and

are up to date with the latest firmware/software and security
patches. IoRT platforms offer device registration/discovery,
device directory/catalog services with capability descriptions,
device status monitoring, and tools for over-the-air updating
of the devices’ firmware and application software. Intelligent
robotic devices can update their functions while charging
or parking.

• Processing and action management are functions that operate
on top of IoRT information streams received from different
IoRT devices. This allows for mapping of low-level perception
events to higher-level events through logical constructs or/and
rules and linking these to new events or action commands to
IoRT devices. They can include functions for sensor fusion
based on input from the perception sensors of different
IoRT devices.

• Information storage is a critical service of IoRT platforms.
It aggregates information originating from robotic
devices for online or offline processing and other state
information that may be related to the devices, including
learning/training. Depending on the architecture, edge/cloud
storage technologies are used to achieve scalability.
Distributed memory and storage are important elements of
training/learning algorithms used by different IoRT functions.

• The analytics component includes a collection of tools
that enables the extraction of insights from data and the
performance of more complex data processing at the edge or
in the cloud. These tools range from specific data mining or
ML/DL techniques to more AI-based specialized algorithms
for different application domains. Offline techniques are used
for databases of historical data. Online/offline techniques
enable online stream processing across incoming information
streams from IoRT devices. IoRT platforms can offer third
parties the ability to integrate analytics components.

• External interfaces are APIs used to develop applications and
services on top of platform functions. This category also
includes development tools or wrappers that can be integrated
into other enterprise backend systems.

The full stack of layers covered by the IoRT functional
components is illustrated in Figure 13. The illustration shows the
case of IoRT applications that cover five layers of the 3D layered
IoRT reference architecture.

Extensive techniques and methods for addressing
IoT platforms’ interoperability that can apply to IoRT
platforms are presented in Bröring et al. (2017, 2018).
The work covers the interoperability aspects, challenges
and approaches that deal with interoperability in existing
IoRT platforms and presenting insights regarding future
challenges for IoT/IIoT/IoRT platforms’ interoperability,
achievable solutions, and a potential IoRT interoperability
platform architecture.

TRUSTWORTHINESS IN IoRT

In IoRT applications, the intelligent robotic things devices
are enforced with the computation, cognition, learning and
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FIGURE 12 | Interoperability levels addressed for IoRT technologies.

FIGURE 13 | Stack of layers covered by the IoRT functional components.

connectivity capabilities. In this context, it is important to
address how the computations (e.g., information analytics,
security, AI, machine learning and blockchain), are seamlessly
embedded into the edge infrastructure and robotic things, and
how they are enabled to be efficient, trustworthy and accountable

when performing safely and reliably, different tasks and operating
in different environments.

The current approach used by cloud robotics and AI is
strongly related to the availability and elaboration of large
amounts of data that is available in the cloud. This approach
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relies on huge quantities of data that are transferred to the
cloud with significant energy that is necessary to run the
super-computers that process these data and information. The
development of the IoRT applications requires a paradigm
shift from centralized processing in the cloud to decentralized,
federated cloud-edge processing and, in the future, to distributed
processing, cognition, and connectivity at the edge.

The distributed approach could allow processing, cognition
and learning to be done at the edge of the cloud, particularly near
the sensing and actuation devices that are close to the user. For
IoT/IIoT robotic things equipped with voice-activated systems, a
significant part of the processing can be done around the sensor,
with voice recognition at the level of the robotic thing keeping
the data under control, reducing the energy consumption for
connectivity and elaboration—while also improving resilience
against network failures—and assuring that the elaboration is
more accurate for the specific IoRT application’s needs. In
this way, the IoRT can evolve into an intelligent networked
infrastructure of collaborative, artificially intelligent robotic
things that interact and collaborate with humans and their
natural intelligence.

The requirements for IoRT open platforms to ensure
capabilities are accessible across different industrial sectors
and to other autonomous systems implies addressing
the implementation of a reliable, secure and trustworthy
development framework that safeguards that globally-connected,
open and interoperable environments can be created by using
industry-driven, standards-based solutions.

In this context, the trustworthiness of IoRT technologies
and applications are directly connected to the concept of
dependability. Assuring dependability is providing the basis for
trust in IoRT technologies. The dependability components are
illustrated in Figure 14.

The trustworthiness of IoRT technologies and applications is
key to the adoption of the technology, and many ethical issues
must be addressed along the way to develop these technologies.
As IoRT applications interact, cooperate and collaborate with
humans, addressing ethical issues, such as cognitive biases that
affect the algorithms that are used for data mining, interpretation
and the decisions of the robotic things, is critical to advancing
the development of human-centered IoRT technologies. The new
generation of IoRT systems and the underlying AI methods and
techniques will need to apply concepts of machine-to-machine
and human-to-machine orchestration; otherwise, they are bound
to either fail in their scope or experience severe threats to
their usage.

IoRT APPLICATIONS

The IoRT enables the transition to a digital, hyperconnected
society in which every “thing” can sense its surroundings
and environment, exchange information, provide feedback,
or initiate actions. This is implemented using sensing,
processing, cognitive, connectivity, and AI analytics
processes at the edge of the network integrated as
part of a distributed architecture. In this context, the

main benefits of IoRT systems are connected to the
network effects that arise when different heterogeneous
autonomous systems are integrated, fleets of IoRT devices are
interacting and used in different application areas to provide
new services.

The novelty of the concept of IoRT extends to multiple
application areas that demonstrate the convergence of various
technologies integrating collaborative, heterogeneous intelligent
robotic things, and autonomous devices into a distributed
reference architecture of knowledge-centered platforms that
operate over a computing continuum from edge to cloud and to
high-performance computing infrastructure.

IoRT uses the convergence of IoT/IIoT technologies and
robotics to enhance robotic capabilities, enabling the aggregation
of advanced IoT/IIoT functionalities into novel applications
and the development of new business models that increase the
investment opportunities. AI techniques enable IoRT cognitive
systems to be integrated with IoT/IIoT applications to create
optimized solutions and fleet-based services and applications.

There are numerous applications for IoRT fleets, and the
major benefit of digitalization is the ability to analyse and
optimizemachine performance in real-time, using data generated
by embedded sensors. An example of an application for the
IoRT fleets is the concept of self-maintenance of the fleet based
on the real-time information, using predictive maintenance
models, digital simulation, and identification of trends to provide
maintenance information based on actual usage and wear
characteristics of the IoRT devices. Companies such as ABB have
already developed and deployed solutions like Fleet Assessment
to benchmark the connected robots, provide preventive care and
condition monitoring/diagnostics.

The IoRT applications integrate different types of devices
such as collaborative robotic things mobile robotic things
(e.g., automated guided vehicles—AGVs), lightweight mobile
platforms, used as fleets in warehouses and distribution
centers, manufacturing intralogistics, agriculture, and specific
environments in logistics in hospitals or retail.

The fleets of robotic things (service and humanoid robots)
are used for logistics and delivery as well as for moving objects,
such as boxes, pallets, or tools, in industrial settings between
machinery, transfer points, or storage areas.

The IoRT applications are expanding in the field of
professional service robotic things, personal service healthcare,
defense, rescue, security, logistics, construction, agriculture,
professional cleaning, inspection, and maintenance, domestic,
entertainment and leisure.

The current pandemic crisis has shown the need to accelerate
the developments of IoRT technologies and applications for
deploying fleets of robotic things for healthcare assistants,
logistics, delivery of goods using autonomous robotic things.

IoRT technologies and applications can be deployed in various
industries including healthcare, defence, security, agriculture,
forestry, logistics, construction, professional cleaning, domestic,
and entertainment.

An overview of application areas for IoRT is given in Grieco
et al. (2014), Vermesan et al. (2017b) Duckett et al. (2018),
Zachiotis et al. (2018), Ramdani et al. (2019), Tractica (2019),

Frontiers in Robotics and AI | www.frontiersin.org 27 September 2020 | Volume 7 | Article 104

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Vermesan et al. IoRT Intelligent Connectivity and Platforms

FIGURE 14 | Dependability components for assuring IoRT trustworthiness.

Sitaramanjaneya et al. (2019), Guizzo (2020), and Galar et al.
(2020).

Many IoRT applications are at early stages with different
companies and research groups testing various solutions as IoRT
deployments could provide many advantages such as reduced
costs of services, speed, reduction in pollution, etc.

The acceptance of IoRT technologies and applications
depend on the features provided concerning enhanced usability,
delivery of accurate and high-quality services, reliability, reduced
operational costs, safety, and machine errors.

The high upfront investment, the concerns for human safety
could limit the IoRT market growth in the short term. The
lack of common standardization and regulation framework,
lack of interoperability, rules for the coexistence of IoRT fleets
in different environments or public urban areas, congestion,
the potential for theft, injury, and blocking access to other
mobility means are seen as obstacles to the adoption of the IoRT
technologies, and new solutions are expected to properly address
these issues.

Humans—Robotics Things Interaction and
Collaboration
The deployments of IoRT fleets in industrial sectors to replace,
assist and support humans to perform different tasks require
the development of new methods and techniques for humans—
robotics things interaction and collaboration in conditions and
environments where humans and robotics things are sharing
the same workspace, and they are co-workers collaborating
to accomplish different tasks in industrial environments. An
overview of human-robot interaction systems that can utilize the
capabilities of both humans and robots is presented in Hentout
et al. (2019). The article presents a literature review of major
works on human-robot interactions in industrial collaborative
robots, conducted during 2008 and 2017 and proposes a
classification of the content of these works into several categories
and sub-categories.

Makris et al. (2018) and Michalos (2017) presented several
IoT and industrial robotics case studies and challenges related to
humans and robotics things interactions with the example from
different implementation scenarios.

Müller et al. (2017) proposed a classification for the different
ways in which humans and robotic things can create a
collaborative environment through coexistence (e.g., the human
operators and robotic things are in the same environment and
do not interact with each other), synchronized (e.g., the human
operators and robotic things work in the same workspace, at
different time slots), cooperation (e.g., the human operators and
robotic things work in the same workspace/environment at the
same time slot, each focusing on separate tasks), collaboration
(e.g., the human operators and the robotic things must work
on a task together with immediate consequences of the actions
of one on the other, by using specific sensors/actuators and
vision systems).

An extensive literature review and overview of collaborative
robotics toward manufacturing applications are given in
Matheson et al. (2019) with focus on human-robot collaboration
and the related standards and modes of operation. The authors
conclude that human-robot collaboration is a new frontier for
robotics, and the human-robot synergy represents an important
factor in the industry for improving production in terms of
performances and flexibility. To successfully deploy the robotic
systems in industrial sectors, they must be proved safe for human
operators, easy/intuitive to use, and simple to set up.

OPEN ISSUES AND FUTURE DIRECTIONS
OF RESEARCH

This section addresses several open research and innovation
issues and provides recommendations for future research
guidelines and directions on different topics related to IoRT
technologies and applications.

The IoRT technologies need to address the different
requirements in terms of low-latency, high-reliability, system’s
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robustness/stability/resilience, and the heterogeneity of the
robotic things in different applications and industrial sectors.
In this context, several connectivity technologies are available,
and IoRT applications need to utilize multiple paths for
the connectivity between the robotic things, infrastructure,
edge/cloud platforms to avoid the single point of failure. One
future research area is enhancing the reliability and robustness of
IoRT applications communication over heterogeneous wireless
cellular networks and the development of multi-channel links
including different types of communication media (e.g., RF,
wireless, optical, sound, voice, etc.). The integration of new beam
steering active structure array as part of the IoRT devices and
infrastructure and suitable multi-frequency, multi-protocols for
IoRT applications to achieve the ultra-low latency with ultra-high
reliability are important future research areas.

The IoRT applications need to deal with heterogeneous
devices, platforms and address themanagement of heterogeneous
resources including computing, network, storage, and the
orchestration between cloud and edge platforms.

The energy efficiency, processing, computational and real-
time analytics efficiency of IoRT edge devices, energy-efficient
task offloading and intelligent service response time of other
IoRT devices and agents, need to be addressed by developing new
techniques for collaborative edge-cloud processing and provide
dynamic management of network/resource slices, dynamic
device management together with the required confinement
across different IoRT devices and different complex applications.

More research is needed to understand and find solutions
for addressing the trade-offs between the storage vs. link
load, memory vs. data rate, capacity vs. latency in IoRT
mobile edge, and cloud computing platforms by analyzing
the different communication protocols characteristics, location,
environmental conditions, wireless link parameters and their
impact on end-to-end latency and reliability.

This opens for more work on the dynamic resource allocation
across different communication networks (He et al., 2018) by
addressing the optimal use of processing resources (processor
speed, memory size, computation rate/power), connectivity
resources (access bandwidth, fronthaul, backhaul, transmit
power, antennas, energy efficiency, power, etc.), memory
resources (storage) and learning resources (e.g., AI training
and inference).

The use of AR/VR technology for IoRT applications requires
new ways of addressing the optimization of the transmission of
AR/VR over the dynamic wireless channels for real-time high
data-rate and low-latency IoRT applications and how to improve
compression, data analytics and processing to support IoRT
devices to take better decisions in real-time.

Another open research area is related to online processing
of haptic feedback for real-time interactions of IoRT devices,
in-field processing to reduce ingress information transfers, and
support of processing-intensive AI computation and training at
the tactile IoRT edge device that performs safety and mission-
critical manipulation and movement tasks. New more efficient
ML/deep learning algorithms that implement predictive and
extrapolative/interpolative ML solutions are needed for the IoRT
devices that operate at the edge of the network to improve

the reliability and stability of haptic communications and to
enable higher precision and robustness between IoRT tactile
edge devices.

Due to the nature of IoRT deployments, the IoRT technologies
and applications are prone to security threats that can affect
the safe operation of IoRT devices and services. New research
is needed to develop secure-by-design and end-to-end security
concepts across all the IoRT architectural layers (IoRT devices,
connectivity, storage, platforms, etc.). The cybersecurity research
priorities for IoRT technologies include communications,
authentication techniques, authorization methods, cryptography
algorithms, privacy-by-design/by-default, security open-source
industrial robotics frameworks, libraries, and tools.

IoRT technology presents a huge challenge to standardization
and legal bodies that requires a new approach to standardization,
certification, and legislation within a common global policy
framework consistent with the standardization work in
different enabling technologies domains. The future IoRT
standardization activities need to focus on technical standards
that address interoperability, functionality and safety aspects
of IoRT technologies and applications, based on the needs
of industry, regulators, users, in areas such as data format
for information exchange between IoRT devices/platforms,
security, privacy, validation, testing certification of IoRTs,
covering physical/virtual validation, reliability, functional safety,
fail-operational, emergency operation of IoRTs, perception of
the IoRT’s devices external environment, human IoRT devices
interfaces, human factors and ethical aspects.

SUMMARY AND CONCLUSIONS

Next-generation IoRT embeds more sensing, actuation,
cognition, computation, and connectivity components, and they
can deal with highly complex and dynamic real-world tasks
while cooperating, exchanging information, and collaborating
with other robotic things, IoT/IIoT devices and humans.

In this article, we elaborated on the latest concepts
related to IoRT, emphasizing the IoRT intelligent connectivity,
architectures, interoperability, and trustworthiness framework,
and surveying the technologies that enable the application of the
IoRT across different domains.

IoRT enabling technologies are summarized into several
categories such as IoT/IIoT technologies, autonomous robotic
systems, intelligent connectivity, distributed and federated
edge/cloud computing, AI, digital twins, DLTs, virtual and
augmented reality, swarm and platforms technologies.

The article gives an overview of the IoRT taxonomy, its
developments and the emergent architectures and challenges for
the integration of intelligent systems and things into applications
for collaborative autonomous systems, which require the
convergence of technologies such as IoT/IIoT, robotics, AI,
intelligent connectivity and trustworthiness frameworks for the
deployment of IoRT solutions.

IoRT technologies and applications have developed in the
last few years, but as identified in this paper, there are many
challenges to be addressed due to convergence of technologies,
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the existence of different architectures, different underlying
robotics technologies that are used, heterogeneity of IoRT
devices, various centralized cloud solutions that need to federate
to emerging edge infrastructure.

Enabling IoRT interoperability frameworks for connecting
several platforms requires solutions that are realistic and scalable
to multiple IoRT and data platforms with the possibility to plug
and play dynamically new IoRT platforms when a new IoRT
application is integrated. The interoperability should be made
available regardless of the underlying IoT/IIoT/IoRT, robotics
technologies and platforms used.

The connectivity is still a challenge when using multiple
communication protocols (e.g., wireless, cellular, and optical) for
connecting the IoRT devices. The latency, reliability, robustness
security (e.g., authentication, identification, encryption, integrity,
etc.) are critical for IoRT applications with new techniques
emerging for device management, edge-cloud orchestration, and
over-the-air software updates.
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