Semantics-based platform
for context-aware and personalized robot interaction
in the Internet of Robotic Things

Christof Mahieu®, Femke Ongenae?®, Femke De Backere?, Pieter Bonte?,
Filip De Turck?®, Pieter Simoens®

*IDLAB, Ghent University - imec, Technologiepark 15, 9052 Gent, Belgium

Abstract

Robots are moving from well-controlled lab environments to the real world,
where an increasing number of environments has been transformed into
smart sensorized IoT spaces. Users will expect these robots to adapt to
their preferences and needs, and even more so for social robots that engage
in personal interactions. In this paper, we present declarative ontological
models and a middleware platform for building services that generate in-
teraction tasks for social robots in smart IoT environments. The platform
implements a modular, data-driven workflow that allows developers of in-
teraction services to determine the appropriate time, content and style of
human-robot interaction tasks by reasoning on semantically enriched IoT
sensor data. The platform also abstracts the complexities of scheduling,
planning and execution of these tasks, and can automatically adjust param-
eters to the personal profile and current context. We present motivational
scenarios in three environments: a smart home, a smart office and a smart
nursing home, detail the interfaces and executional paths in our platform
and present a proof-of-concept implementation.

Keywords: Internet of Things, personalization, semantics, ontology,
context-aware systems, social robots

1. Introduction

The integration of service robots in our daily life is being envisioned
in an increasing number of environments. Service robots are defined by the

Email address: christof.mahieu@ugent.be (Christof Mahieu)

Preprint submitted to Journal of Systems and Software November 16, 2018

ISO as “robots that perform useful tasks for humans or equipment excluding
industrial automation applications” [1]. This definition spans a wide variety
of form factors, from robots assisting in a single task like vacuum cleaning, to
humanoid social companion robots. Users have high expectations in terms
of usability of service robots, wishing for robots capable of handling a wide
range of chores at home, at work, during leisure or that provide assistance
to the handicapped and elderly [2].

However, this positive attitude towards service robots is highly depen-
dent on the reliability and efficiency by which the robots execute their
tasks [2]. When it comes to social companion robots, the desired robot
behavior is highly dependent on the actual context and the personal pref-
erences. For instance, a social robot thats adapts to the emotional state of
a person leads to more enjoyable experiences [3], a domestic butler robot
should not remind one to take medicines in the presence of guests, etc. Per-
sonalization also increases usability on the longer term [4]. For example,
health conditions of people suffering from chronic diseases change over time,
a family may welcome a baby, children grow up, etc. When users perceive
the system as adapting to their changing needs, they will find it more useful
and will be more accepting towards the system [5].

These requirements for contextualization and personalization in task exe-
cution pose significant challenges to robotic controllers, especially when con-
sidering real-world environments instead of well-controlled lab conditions.
Social robots must be able to grasp the wider context, beyond the percep-
tion range of their on-board sensors. This can be realized by embedding the
robot in a smart environment and creating an Internet-of-Robotic- Things
(IoRT) [6], where knowledge on context and personal activities is captured
via pervasive sensors and wearables.

However, developers of robotic services cannot anticipate the details of
smart environments, such as the type of sensor and actuator devices, or
the actual personal preferences and context of the humans in these envi-
ronments. In this paper, we present a platform that facilitates developers
to build services according to novel declarative ontological models for gen-
erating context-aware, personalized interaction tasks. The platform allows
developers to (i) access semantically annotated data from sensors, robots
and databases and observe relevant context changes, (ii) set the type and
parameters of a human-robot interaction task according to the actual con-
text, and (iii) dispatch these tasks to the robot at the appropriate time.

The remainder of this paper is structured as follows. In Section 2 we
present motivational scenarios in three different smart environments. These
scenarios outline the envisioned type of services enabled by our platform and

highlight the scientific and technological challenges. In Section 3, we derive
the requirements for our platform. In Section 4, we present ontologies that
capture the problem domain of generating interaction tasks and that allow
to declaratively define robot intervention tasks. In Section 5, we present
the architectural details of our platform. A prototype implementation and
quality attribute evaluation results are presented in Section 6. We discuss
the limitations of our current platform and outline opportunities for future
work in Section 7. In Section 8, we position our contributions in different
strands of related work. We conclude our paper in Section 9.

2. Motivating scenarios

The aim of this research is to design a generic platform architecture
that facilitates building context-aware services that automatically generate
personalized interaction tasks for a robot deployed in a smart environment.
Below, we sketch motivating scenarios in three types of smart environments
that illustrate the scope and functionality of our platform and the services
deployed on it. Aspects of these scenarios will also be used in the remainder
of the paper to explain the internals of the platform.

2.1. Versatile helper in a smart home

The Jones family is a very busy household. They already extensively
equipped their house with several sensor appliances, and recently they bought
a humanoid robot to help with household chores. The robot interfaces with
the smart home (SH) system for better context-awareness.

SH1 - Nutrition monitoring In the evening, after a long day at work,
Mr. Jones wants to prepare a dish. His smart fridge detects that he takes out
some chicken and a portion of spinach. The robot drives to the kitchen to
advise Mr. Jones against preparing spinach since medical recommendations
are to maintain a diet with a steady intake of vitamin K when taking blood
thinners and Mr. Jones’ intake of vitamin K earlier this week was already
above average. Mr. Jones asks the robot for an alternative recipe. Given
that Mr. Jones has an evening appointment scheduled in two hours, the
robot suggests a sauté dish that can be prepared in less than half an hour
and that doesn’t require advanced cooking skills [7].

SH2 - Homework assistance Joshua, the 8-year old son asks the
robot to help him with his homework. The robot invites Joshua to do his
homework in his room instead of the living room, because Joshua’s sister
Olivia will enter in half an hour. The robot is able to track the engagement

and attention span via sensors on the body of the child [8], and changes the
role it plays accordingly, varying between a friend and a stricter tutor.

SH3 - Therapy monitoring! Olivia, 10 years old, was recently diag-
nosed with diabetes and she still needs to learn how to properly manage
her glucose level by injecting an appropriate amount of insulin. Olivia’s
connected glucose sensor readings indicate a decreasing trend in her blood
sugar level [10]. As the robot knows that Olivia is coming back from her
tennis class, it infers that this may be due to physical activity. When Olivia
enters, the robot kindly asks her how the tennis class went. As dinner will
not be ready for another hour but Olivia needs to manage her glucose level,
the robot advises her to eat an apple. Once dinner starts, the robot re-
minds Olivia to carefully count the carbs and to account for the fact that
she already had an apple as well as a physical work out.

Challenges All three interaction scenarios leverage on the interpretation
of sensor data, but each time the data is interpreted in a different knowledge
domain: nutrition, cookery, education. The content (e.g. recipe) and style
(e.g. tutor, friend) of interactions are tailored to contextual information that
is derived from static sources (e.g. calendar, recipe database) as well as from
interpretation of sensor data (e.g. person arriving at home, person starting
to cook).

2.2. Companion supporting care staff in a smart nursing home

The cultural, personal and medical background of the residents in a
smart nursing home (NH) is very diverse. In its aim to keep up with the high-
est standards of person-centric care giving, the nursing home has equipped
its residents with wearables, has installed several sensors in rooms, corridors
and common living rooms and has deployed a mobile companion robot [11].

NH1 - Activity Announcement Every morning, when Bob is sitting
in his chair waiting for breakfast, the robot enters his room to announce
a selection of today’s activities in the nursing home and to read aloud a
selection of news highlights. Usually, Bob enjoys the robot to have a more
jovial style of greeting him [12], but the robot tones down his enthusiastic
style since it detected via the bed sensors that Bob had a restless night.
In the room next door, Elisabeth prefers the robot to greet her in a for-
mal way as Mrs. Smith. Since the robot knows that Elisabeth doesn’t like
quizzes, it doesn’t announce this activity to her. Instead, it gives some up-
dates on celebrity news, a topic that wasn’t of interest at all to Bob. The

"Motivational scenario SH3 was co-created with dietitians and pediatricians [9].

robot increases the speaker volume as Elisabeth is hard hearing and sends
a temporarily mute command to the TV in the room.

NH2 - Behavioral Disturbance Management? Henri has been di-
agnosed with dementia. Over the past months, his cognitive capabilities
have steadily declined and he has started to show behavioral disturbances
typical for persons with dementia. From time to time, Henri starts wander-
ing through the NH and sometimes enters the rooms of other residents. The
wandering pattern is detected through IMU data of Henri’s wearable [14]
and the location tracking system in the nursing home. The robot is sent to
Henri to distract him and guide him back to the common living room. Once
Henri is seated, the robot starts playing his favorite Beatles song. These per-
sonal preferences were previously registered in the personal record of Henri
by the care staff.

NH3 - Visitor Information After a fall earlier this week, Elisabeth is
diagnosed with a mild concussion. As part of the treatment, the light and
sound volume in the room must be kept moderate. On Sunday, her family
visits her in her room and a sound sensor detects that the sound level in
the room is too high. The companion robot is sent to the room, where it
explains that Elisabeth needs sufficient rest and asks politely to keep the
volume down.

Challenges The companion robot is shared between multiple services
that create very diverse interaction tasks. This requires a component that
arbitrates the priority. Note that the set of services changes over time: the
service monitoring light and sound in each room is only active during the
recovery period of Elisabeth. In each of the proposed applications, the in-
teraction task is based on advanced processing algorithms from sensor data,
e.g. activity recognition, detection of wandering, sleep quality assessment,
etc. As in the smart home scenarios, all robot interactions are again com-
pletely personalized, i.e. both the content and the style (tone, volume) of
the robot’s verbal interactions are tailored to the resident at hand.

2.8. Receptionist in a smart office

SO1 - Visitor Reception An external participant to a meeting arrives
in a smart office (SO) and scans a QR-code at the entrance kiosk. Since
the local employee that organizes the meeting is stuck in traffic, a concierge
robot [15] drives to the entrance, greets the visitor by name and invites the
visitor in his native language to follow him to the meeting room. As the

*Motivational scenario NH2 was co-created with NH staff [13].

robot approaches, it detects that the visitor has broken his leg and sits in
a wheelchair [16]. Hence, the robot deviates from the company’s policy to
stimulate physical exercise and will guide the visitor towards the elevator
instead of showing him to the stairs. As the elevator arrives at the meeting
room floor, the visitor is routed to the coffee corner, because the meeting
room is still being cleaned after the previous meeting. After the cleaning
staff has left the room, the visitor is asked to follow to the meeting room
and is notified about the expected time of arrival of his host.

Challenges Realizing this scenario requires a “visitor welcoming ser-
vice” to have access to knowledge of the business policy on how visitors
should be received (identification, offer something to drink, guide to meet-
ing room). The service needs to reason on static (floor plan) and dynamic
(i.e. provided by sensors, such as room occupancy and arrival time of the
host) contextual information to determine i) that a robot should be tasked to
receive the visitor; and ii) how the robot should complete this task. For the
latter decision, personal information is taken into account as well (language,
physical condition).

3. Requirements

In this section, we set the requirements for our middleware platform.
We start by analyzing the challenges and conceptual flow that are common
to all scenarios from the previous section. Then, we discuss functional and
non-functional requirements.

3.1. Problem analysis

Realizing the application services outlined in section 2 requires combin-
ing technologies and scientific innovations from both the IoT and robotics
domain.

From the IoT domain, the pervasive sensing technology and data process-
ing algorithms allow overcoming the physical limitations of a social robot’s
perception range. A robot cannot observe the entire smart office, care facil-
ity or home. Also, body-mounted sensors provide biophysical data to mon-
itor and account for a user’s health condition or mood. Such biophysical
parameters are close to impossible to measure with robot-mounted sensors.

From the robotics domain, social and assistive robots provide a novel in-
teraction modality. These robots are also an actor with autonomous mobility
and actuation capabilities. The scenarios described above demonstrate the
various roles that robots can take when interacting with humans in smart

(sensorized) environments: as a companion helping to manage chronic dis-
eases (scenario SH3), as an educator explaining you new concepts or helping
with homework (SH2), as a guide navigating you through an unknown build-
ing (SO1) or as a technological tool assisting caregivers in entertaining and
looking after elderly (NH1-NH3).

Despite the diversity in application domains and services, all human-
robot interaction scenarios follow an identical conceptual data-driven work-
flow [17] transforming IoT data streams into personalized interaction tasks
for robots, as depicted in Figure 1. Interactions are triggered either directly
from events signaled by the smart environment, for instance a user starting
to cook (scenario SH1) or an elderly starting to wander (NH2); or from busi-
ness logic, e.g. for education (SH2) or building facility management (SO1).
The interactions are executed by a set of robotic and non-robotic actuators
(e.g. elevator, TV, light). Contextual and personal information is used to
determine the moment, type and parameters of interactions to be executed.
For instance, the domestic robot will educate in the ideal room (SH2), visi-
tors are routed to the coffee corner until the meeting room is vacated (SO1),
or the robot’s speaker volume are adjusted (NH3).

Realizing the flow of Figure 1 requires a complex integration of multiple
technologies and services and proper management of sensitive data. In the
IoT domain, this problem has been addressed by introducing middleware
platforms that abstract vendor-specific syntax and offer supporting services
for accessing IoT data and interoperability between applications [18]. In this
paper, an IoRT platform is presented that hides the specific configuration
of a smart environment (type of sensors and robot). Developers can use our
platform to access contextual and personal information, and combine this
information with domain-specific knowledge to determine which kind of task
should be executed and when. The low-level logic to plan specific actions
can be left to the platform.

People will likely invest in only a single robot for their smart home. Our
platform mediates between multiple services and a single robot. Extension
to multi-robot systems would require dealing with task allocation, resource
reasoning, multi-robot planning and scheduling, see e.g. existing work on
cloud-based task control [19] and constraint-based planners [20]. With this
increased functionality, the added value of social robots will increase and
help to motivate the investment cost of such a robot.

While numerous IoT platforms exist, the Internet-of-Robotic-Things is
a nascent research domain and so far, integration between the two domains
was mostly limited to focused applications, as outlined in the recent sur-
vey by Simoens et al. [21]. The IoRT vision is however grounded in past

loT Context Profile
{3 pomd —_
sty | 8=

! Personalisation

| | Contextualisation ! :
...... v oo
y} Observation 4
""" ——) | |nteraction ———l-
Q‘u‘ Domain-specific Task -
$$ business logic

=
-

-
'

Figure 1: Interaction tasks originate from IoT observations or from business logic. The
instantiation and execution of the interaction task both depend on contextual and personal
information

research efforts and associated middleware platforms integrating robots and
sensor devices have been presented mostly in the context of robot ecologies.
However, these platforms were mostly oriented towards assistive services,
whereas we focus on context and personalization to tailor the style and
modality of human-robot interaction. These platforms are further discussed
in section 8.

8.2. Functional requirements

To realize a middleware platform that supports the conceptual flow of
Figure 1, we formulate the following functional requirements:

e The system should offer a declarative northbound interface to describe the
observations and business logic that should be met to trigger a specific
interaction task. In this paper, we refer to such a submitted set of rules as
a Task Generating Service (TGS). By creating a rich declarative language,
we can hide the configuration and low-level details of the sensors and
actuators in the IoRT environment to developers of TGS. Developers only
need to focus on the what and when of an interaction task, but not on
the how.

e The system should internally convert a registered TGS into a data-driven
workflow that converts IoT sensor input to actions to be executed by
robotic and non-robotic actuators in the smart environment. Once a TGS

is submitted, the platform must start observing the relevant sensors. Ac-
tuators that are registered with our platform provide one or more actions.
Example actions include moving the robot (SH1), having the robot play
a song (NH2), sending a command to the smart home automation system
to open a door or mute the TV (NHI).

e The system should be able to interpret raw data using operational context
and application domain knowledge. The raw data provided by IoT sen-
sors has no meaning on itself. The platform will thus have to semantically
enrich the raw sensor data [22], i.e. make the properties and the device
and context in which the data was gathered explicit, possibly link this to
static information (e.g. activity schedule in the nursing home, calendar)
and reason on the derived higher-level observations to determine where
the contextual preconditions of an interaction task are fulfilled. For in-
stance, if an IR sensor detects the presence of a person, this is only useful
information if one knows whether this sensor is placed in a meeting room,
an entrance hall or the kitchen of a smart home. If the sensor is placed
in a kitchen, one needs contextual information (e.g. time of day) and
personal information (e.g. age) to accurately conclude that the detected
person is an adult who is likely to start cooking and can benefit from the
robot giving advice.

e The system should be able to schedule multiple interaction tasks over
time for a single robot. Since there can be several TGS running concur-
rently, the system will need to schedule tasks over time, accounting for
deadlines and constraints such as the robot’s battery. While the system
supports multiple non-robotic actuators, only a single robot is assumed,
as motivated in the previous section.

e The system should be able to fill in action parameters and evaluate action
filters. The way tasks are converted into actions should be adapted to the
person (personalization) and to the context (contextualization). By this
we mean both which actions are chosen to fulfill the task, as well as the
parameters of each action. For instance, the action “talk about topic”
has two parameters: the language to be used and the topic. Similarly, the
action “play music” should be avoided at night.

3.3. Non-functional requirements

Modifiability is the most important non-functional requirement for our
platform. In this paper, we refer to modifiability as the effort that is required
to alter the functionality of the designed platform to realize other scenarios in

possibly other smart environments than the scenarios and environments that
were put forth in section 2. Note that this modifability requirement must
hold at deployment time, i.e. when installed in a specific [oRT environment,
as well as at runtime, i.e. when a additional sensor is installed or when
additional Task Generation Services are deployed. An example of the latter
is described in scenario NH3 of subsection 2.2: the behavior of the system
that was deployed in the nursing home is extended with novel behavior at
runtime after a resident suffered a concussion. Specifically we consider a
deployed system to consist of two distinct parts: the system core, which
does not change no matter the scenario or the smart environment, and the
system plug-ins, listed below:

e Task Generating Services. These TGS encapsulate the most essential
business logic of the application so the set of TGS will differ between
application domains.

e (Sensor) input sources. Sensor input sources may differ between environ-
ments. When using a sensor adapter framework [23], especially one with
many commercial sensors already integrated, new sensors have no impact
on the system.

e Action Executors. It must also be possible to attach new types of actua-
tors, each bringing a set of actions.

e Action filters. These filters serve to shape a task execution strategy by
managing the dynamic availability of actions. For instance, loud actions
such as playing a song should be avoided while people are sleeping.

To evaluate the modifiability, we propose the Quality Attribute Scenarios
[24] below.

e Source of stimulus: Developer.
Stimulus: Additional TGS are declared to the platform.
Artifact: The system’s reasoning engine.
Environment: System under normal operation.
Response: The declared TGS is converted to a data flow that produces
interaction tasks.
Response measure: New TGS is operational in less than 10 seconds.
e Source of stimulus: Developer.
Stimulus: New Action Executor is added to the system.
Artifact: The system’s repository of action executors.
Environment: System under normal operation (at runtime).
Response: The actions of the new executor are listed in the Action
Repository and available for usage by the planner.

10

Response measure: A plan can include the new actions within 5 sec-
onds.
e Source of stimulus: Developer.
Stimulus: Action filter is added.
Artifact: The system’s reasoning engine.
Environment: System under normal operation.
Response: The new filter is added to the filter array.
Response measure: The new filter starts filtering actions within 10
seconds.

4. Ontological Models for Contextualization and Personalization

We have conceived three ontological design patterns that offer a vocabu-
lary for developers to declaratively define which robot interactions should be
performed based on the observed IoRT context and how these interactions
should be personalized according to the profile of the end-user.

An ontology defines the concepts within a domain, what their attributes
are and how the different concepts are linked to each other. Axioms and rules
in the ontology constrain the characteristics and possible interpretations
of the concepts and relations defined in the ontology. In the next three
subsections, we detail the three ontological models. To support the IoRT
platform, the novel concepts defined in these three models, together with
common concepts in IoRT applications are grouped in a suite of ontologies.
This suite is presented in Section 4.4.

4.1. The observation pattern: capturing context data through sensors and
linking to events & interaction strategy

This pattern captures reactive scenarios in which interaction tasks re-
sult from interesting events that are derived from the IoT sensor data. The
interaction is an immediate response to the observation or event. For in-
stance, a visitor scanned a QR code at the entrance (SO1), or an elderly
with dementia has entered a wrong room (NH2). The observation pattern
is visualized in Figure 2. The generic concepts of the pattern are shown
in white, while a specific example instantiation of the pattern based on the
NH2 scenario detailed in Section 2 is shown in gray.

The observation pattern consists of five classes, namely Observation,
Symptom, Fault, Solution and Task. An Observation is any piece of in-
formation observed by a sensor, device or robot. A Symptom models spe-
cific phenomena that are detected in the Observations by taking into ac-
count the current context and situation. Queries or axioms can then be

11

ssniot:hasSymptom ssniot:hasFault ssniot:hasSolution ssniot:requiresTask

v | v_ | v
[sosa:ObservationHssniot:Symptom]<—[ssniot:Fault](——[sshiot:Solution](—[dul:Task]

A ssniot:isSymptomOf ssniotiisFaultOf A ssniotisSolutionOf ssniotis TaskOf
;5 a isa isa isa isa
CareCobots: CareCobots: CareCobots: CareCobots: CareCobots:
RFIDTag PersonDetectedIn Wanderinglnto GuideAndSooth SendPerson [
Observation OtherPersonsRoom RestrictedAreaFault WanderingPerson NotificationTask)

Symptom Solution

CareCobots:
RobotSooth
PersonTask

Figure 2: Visualization of the ontological concepts and relationships that make up the
observation pattern. Concepts are visualized as rectangles while relationships are visual-
ized as arrows. The white concepts and solid arrows represent the pattern, while the gray
concepts and dotted arrows below the dashed line visualize an example instantiation of
the pattern. The example is based on the NH2 motivating scenario. The prefixes indicate
the namespace of the ontology module the concepts and relationships originate from (see
Section 4.4).

defined that detect undesirable combinations of Symptoms and classify them
as Faults. These detected Faults can then be coupled to Solutions that re-
solve them. Finally, a Solution can be mapped onto one or more Tasks that
need to be performed to reach this solution. As such, the various high-level
events that are detected within the IoRT environment, can easily be linked
to (robot) interactions that need to be performed. As all these concepts are
linked together by the indicated relationships, e.g. hasFault, hasSolution,
etc. It is always possible to trace the task back to the original observation
that caused it.

We illustrate this pattern using the NH2 scenario. Every time the wear-
able of an elderly is located by a receiver in the nursing home, a RFIDTag
Observation is registered. Out of the context it is derived that the re-
ceiver that made this RFIDTagObservation is located in a room that does
not belong to this elderly. As such a PersonDetectedInOtherPersonsRoom
Symptom is derived. As the person who lives in this room is not present and
this elderly has a history of wandering into this room, a WanderingInto
RestrictedAreaFault is derived. The defined solution for these types of
faults is a GuideAndSoothWanderingPersonSolution, which means that
the elderly should be lead to a safe area and should be soothed such that
he might stop wandering. This solution triggers two tasks at first, namely a
SendPersonNotificationTask to notify a nurse of what was detected and
which solution is being undertaken by the robot and a RobotSoothPerson

12

Task to trigger the robot to guide the elderly into the common room and
sooth him/her.

4.2. The personalization pattern: capturing profile and context data to per-
sonalize the (robotic) interactions

The concepts of this pattern can be used to declaratively define how the
type, style and content of robot interactions must be adapted to the profile
and preferences of a person. The personalization pattern is visualized in
Figure 3 with the generic concepts in white and example instantiations for
the NH2 scenario in gray.

The personalization pattern allows to associate each Person with a
Profile. This Profile is split up into a BasicProfile and a RiskProfile.
The first models administrative, biological, psychological, and sociological
information. Our current ontology restricts the sociological profile to nation-
ality and spoken language but can be extended in the future to capture other
notions of a user’s culture and hence become “culturally competent” [12].
Capturing cultural knowledge is the subject of ongoing work, e.g. in the CA-
RESSES project [25], and once such models become established, they may
help to adapt the robot’s way of interacting (gestures, choice of phrases,
etc.) to the user’s cultural identity. The RiskProfile is defined by classifi-
cation axioms and rules. This allows a reasoner to automatically obtain the
risk profile of a person by reasoning on the information in the basic profile.

A Person is also correlated with his or her Preferences, e.g., Language
Preference or MusicalPreference. On the one hand, these preferences
can be explicitly stated. On the other hand, these preferences can be de-
rived through reasoning on the profile information. Finally, the Preferred
Interactions can be specified, which indicate which mode of interaction
a person prefers. These interaction are then linked through the requires
Action relationship to the specific Actions which can be performed by
robots, devices and people and which satisfy the specified preferred interac-
tion mode.

Each Task is associated with one or more Actions that fulfill its re-
quirements. An Action can be associated with Parameters, which can be
chosen based on the specified preferences. This is indicated through the
influencedBy relationship. Finally, the PersonalizationRequest concept
models a request to personalize a particular Task or Action.

To explain the application of the personalization pattern, Figure 3 visu-
alizes an example instantiation of the pattern for the NH2 scenario where
the robot sooths a wandering elderly after first guiding the elderly out of the
wrong room. Previously, the care staff has entered profile information about

13

| vcard:Male | | | - | carecobots: l a:Mothertongue k.. carecobots:
Lisa HE2 m.patlent- Belgian L H isa Du.tch

g is a

veard: jlsa_isa g Soali
[ppa:Nationality ppa:apoken ppaLanguage |
A T H - — g Preference Jis a

dbo:The_Beatles

pa:hasPreferred

Isa.,

v v .
[ppa:Biological][ppa:Psychological][ppa:SocioIogicaI]

.| ppa:Musical

RiskProfile Preference

ppa:Medical]
Profile Profile Profile

—_—

ppa:Risk ppa:hasPrefe-

ppa:Basic
Profile ppa:Preference renceDegree

Profile

xsd:

ppa:hasPreference isa integer.

ppa:Preferred
Interaction

prinfluencedBy

isa
pr:PreferredRobot
Interactions

" . ————— - - — — -

‘ - sa [pr:GreetAction] [ppa:Language] isa s ;1 -
carecobots: I 2 - isa - = carecobots:
SoothPersonTask [pr:SoothPersonAction]< ----- [pr:PlaySongAction][dbo:Song]l Musicallnteractions

Figure 3: Visualization of the ontological concepts and relationships that make up the
personalization pattern. Concepts are visualized as rectangles while relationships are
visualized as arrows. The white concepts and solid arrows represent the pattern, while the
gray concepts and dotted arrows below the dashed line visualize an example instantiation
of the pattern. The example is based on the NH2 motivating scenario. The prefixes
indicate the namespace of the ontology module the concepts and relationships originate
from (see Section 4.4).

all residents in the system, i.e., administrative, e.g. date of birth, biological,
e.g. Sex, psychological, e.g. Impatient, and sociological information, e.g.,
Nationality and SpokenLanguage. The staff also indicated which of the
residents prefer MusicalInteractions with the robot, and which are their
MusicalPreferences. This MusicalPreference is defined by linking to in-
formation contained in DBPedia about MusicalArtists, e.g. The Beatles,
and Songs, e.g., Let it be.

By querying and reasoning on the semantic information, i.e. following
and interpreting the links, the SoothPersonTask is personalized in two ways.

First, there are several robot interactions possible to sooth a person.
Based on the fact that Musicallnteractions are specified as preferred
mode of interaction for the person in our example, we can derive that a
PlaySongAction is an appropriate SoothingAction. To enforce this, the

14

following semantic rule is specified in the domain-specific ontology:

hasProfile(7x,?y) A PreferredRobotInteractions(?7y) A
MusicalInteractions(?y) A isAssociatedWith(?7t, 7x) A
requiresAction(?t, 7a) A SoothPersonAction(?7a)

— PlaySongAction(?a)

Second, the selected PlaySongAction is linked via the parameterizedBy
relation to the parameter Song. This parameter is then in turn related
to the MusicalPreference concept through the influencedBy property.
The specific song can then be chosen based on the MusicalPreference
defined for this person, e.g., in this case a song by The Beatles should be
played. Additional application-specific algorithms can decide how to use
this information, e.g. to randomly pick a song of the discography or to just
go with one of the preferred songs, e.g. ‘Let it be’.

4.3. The opportunity pattern: capturing context data to determine windows
of opportunity

Next to the data-driven tasks that are derived directly from the incom-
ing sensor data and captured by the observation pattern, a second type of
tasks are interactions tasks that are desirable during a certain window of
opportunity. Examples in our motivational scenarios are: the robot that
needs to help a child with his homework (SH2) or the companion robot that
needs to read today’s activities aloud (NH1). The start of the window is
typically a fixed moment in time, e.g., when the child gets home from school
or when the elderly has woken up, whereas the end of the window can be
more flexible.

These windows of opportunity depend on particular ContextualPrecon-
ditions that should ideally be fulfilled in order to be able to perform the
task. The opportunity pattern was created to model these contextual de-
pendencies and is shown in Figure 4, along with its relations to the two
previous patterns. We adopt the context categorization proposed by Zainol,
et al. [26]. It discerns between three types of context, i.e. Extrinsic,
Interface and Intrinsic Context. The first refers to information derived
from the physical world or environment. This information is often derived
directly from sensors through observations, i.e., by using the observation pat-
tern described in Section 4.1. Intrinsic Context denotes the attributes of
a user or an agent, i.e., profile information, preferences and emotional state.

15

context:forTask

context:
OpportunityRequest

sshiot:
Solution J ssniot:requiresTask !

dul:Task

context:hasPreconditions

ssniot:has
. context: Contextual
Solution .
Preconditions
ssniot: Fault : i task:
iothasFaul requires
ssniot:hasFault . — —)
isa_[context: Extrinsic context: Intrinsic context: Interface Action
. Context Context Context
ssniot: Symptom
isa isa
Symptom | | |
. a:Emotional |
[sosa: Observation [ppa:Profile][PP State] [ppa:Preference] dul:Action
taskiexecutes
ppa:hasProfile ppa:hasPreference

dul:P
ppa:hasEmotionalState Lrerson

isa

carecobots:
InformAbout
DailySchedule

................ Isa
PersonlsOutOfBed Calm SittingInChair
Figure 4: Visualization of the ontological concepts and relationships that make up the
opportunity pattern. Concepts are visualized as rectangles while relationships are visual-
ized as arrows. The white concepts and solid arrows represent the pattern, while the gray
concepts and dotted arrows below the dashed line visualize an example instantiation of
the pattern. The example is based on the NH1 motivating scenario. The prefixes indicate

the namespace of the ontology module the concepts and relationships originate from (see
Section 4.4).

This information is often directly provided by the user or derived from static
data sources, i.e., by using the personalization pattern described in the pre-
vious section. Finally, the Interface Context refers to activities that the
users are performing within the environment. This context thus forms the
connection between the Intrinsic and Extrinsic Context. This division
in context types allows to prioritize between context conditions that should
be fulfilled in order to perform the task.

An example of the opportunity pattern based on the NH1 motivating
scenario is visualized in Figure 4. The robot needs to find a window of
opportunity to perform the task of reading today’s activities to an elderly.
The following ContextualPreconditions need to be fulfilled. First, the
elderly needs to be out of bed, which is a Symptom derived based on obser-
vations from sensors by the observation pattern and is thus an instantia-
tion of an ExtrinsicContext precondition. Second, the person needs to be
Calm, which is an example of an IntrinsicContext precondition. Third,
the elderly is SittingInChair, which is an InterfaceContext precondi-
tion. When the deadline for the action to be performed is drawing close, the

16

TIoRT platform can use this division of preconditions to prioritize which one
is more important to be fulfilled, while still performing the action within the
time frame. For example, to read the daily activities, it is more important
that the person is awake and out of bed (extrinsic) than the fact that he/she
is currently not busy performing a task (interface) or calm (intrinsic).

4.4. The IoRT ontology

Core IORT Ontology Domain Ontology
Role Person Physical Personalized
SAREFloT SSNIloT General Localization

Figure 5: The different modules of the IoRT Ontology.

The IoRT ontology, available online?, captures all concepts that are rel-
evant for personalized, context-aware task generation. To ensure that the
ontologies and patterns capture all the information and (implicit) knowledge
and processes that the domain experts use on a daily basis, an intricate co-
design process was set up with various stakeholders within representative
application domains of the IoRT platform. In these workshops, domain ex-
perts needed to play out scenarios and resolve problems as if they were the
intelligent IoRT platform. The information and knowledge they used to de-
cide which actions to perform were captured in decision trees. The nodes
in the decision trees formed the concepts and relationships for the ontology,
while their structure was translated to rules and axioms. Concepts, rela-
tionships and structures that often re-occurred across different application
domains and workshops, gave rise to the construction of the patterns and
the concepts included in them. The adopted co-design process is detailed in
Ongenae, et al. [27].

Instead of conceiving the ontology as one monolithic model, the IoRT
ontology actually consists of a suite of ontological models that can be in-

3https://github.com/IBCNServices/Accio-Ontology/tree/gh-pages

17

corporated in IoRT applications depending on the required knowledge. The
models are interlinked to each other by defining relationships between their
respective concepts. By designing the ontology in a modular fashion, re-use
is facilitated and (domain-specific) extensions can be easily achieved. An
overview of the various modules is shown in Figure 5. The modules were
devised by first making a distinction between the IoRT core and domain-
specific ontologies.

The core ontologies model general information of interest to all appli-
cations built upon the IoRT platform, regardless of the use case domain.
Adding too many axioms to the core ontologies that constrain the possi-
ble interpretations of concepts was especially avoided, unless there was very
wide agreement about the constraint amongst the stakeholders involved in
the co-creation process. This facilitates cross-domain applicability of the
core ontologies and allows easy extension without contradicting with the
knowledge already contained in these ontologies. The various core mod-
ules are also aligned to Dolce Ultralight upper ontology? to support broad
semantic interoperability to other domain-specific ontologies.

Domain ontologies contain knowledge specific to a particular domain
(e.g. office or medical), such as the specific profile information of a person
relevant within a particular domain (e.g. medical parameters and diagno-
sis), robotic actions only of interest in a particular domain (e.g. soothing a
person), etc. All concepts in the domain-specific ontologies are always sub-
classes of concepts in the core ontologies. Relationships to the information
captured in the core ontologies are also defined. New domain ontologies can
thus easily be defined by extending the core ontologies. The domain-specific
ontologies can easily import and extend a specific core module instead of
importing the whole suite of IoRT ontologies. This facilitates re-use and
allows application components to only use a subset of the suite of IoRT
ontologies to perform the domain-specific reasoning. A smaller, focused on-
tology is also easier to interpret and extend with new concepts, relations
and definitions.

The modules were further refined by identifying the different categories
of knowledge within the core, e.g., devices, people and robotics. A module
was created for each. The domain-specific ontologies are made ad hoc for
particular use case domains.

The modules are linked to each other using the OWL import mechanism.

“http://www.ontologydesignpatterns.org/ont/dul/DUL. owl

18

Mapping languages, such as RML?, can easily be used to enrich the available
and incoming data with semantic information.

This modularization process resulted in the following core ontologies

(the prefixes of the namespaces of these ontologies are mentioned between
brackets):

General (general) This ontology models generally re-usable concepts,
e.g. IDs, names, priorities and statuses. It imports and extends the OWL
Time® W3C recommended ontology to represent temporal information.
SSNIoT (ssniot) The W3C Semantic Sensor Network (SSN)7 ontology
describes in a general way sensors and their observations, the involved pro-
cedures, the studied features of interest, the samples used to do so, and
the observed properties, as well as actuators. Our SSNIoT ontology ex-
tends SSN with the observation pattern explained in Section 4.1. We also
modeled sensors, actuators, observations and properties which commonly
occur in smart environments, e.g., motion, door, presence, environmental
(humidity, temperature, light intensity) and sound sensors.

SAREFIoT (sarefiot): This ontology imports and extends the Smart
Appliances REFerence® standardized ontology. SAREF is a shared model
of consensus that facilitates the matching of existing assets (standards,
protocols, data models, etc.) in the smart appliances domain. Again this
ontology was extended with devices, objects, device & appliance functions
and device states & properties that are prevalent within the [oRT domain,
e.g., televisions or interaction screens.

Localization (local) This ontology models localization information, both
from a conceptual (e.g. floors, buildings, rooms and hallways) as well as
a geospatial viewpoint (e.g. geometries, surfaces, points and arcs). It
imports the GeoSPARQL? ontology to model the latter and link it to
conceptual entities to describe their geometry.

PhysicalAsset (asset) This ontology captures physical objects in daily
environment, such as items, furniture and vehicles.

PersonProfile (ppa) This ontology builds further upon the ontology
mapping of the vcard specification (RFC6350)!° and the W3C Organi-

Shttp://rml.io/

Shttps://www.w3.org/TR/owl-time/
"https://www.w3.org/TR/vocab-ssn/
®https://sites.google.com/site/smartappliancesproject/ontologies/

reference-ontology

“http://www.opengeospatial . org/standards/geosparql
Yhttps://wuw.w3.org/TR/vcard-rdf/

19

zation ontology'! to model people, their relationships to each other, the
organizations they work for or are connected with and their profile in-
formation. These models were extended with the personalization pattern
introduced in Section 4.2. Our ontology also contains concepts and rela-
tionships that allow to model the (trust) relationship between two people,
e.g. personal, colleague, therapeutic or family.

RoleCompetence (rolcomp) This ontology associates e ach person
with his or her roles and competences. A role is defined as a collec-
tion of needed competences. This allows reasoning about capabilities and
abilities of people in order to assign tasks.

Context (context) The context ontology mainly models correlations
between concepts of the above ontologies, e.g. it associates devices and
people with their location, devices and items with their owners and peo-
ple with the events they participate in. It also contains the opportunity
pattern explained in Section 4.3.

Task (task) This ontology imports the OWL-S Process ontology'? to
model processes with their associated pre- & post-conditions, input, out-
put and effects. A task is introduced as a sub-concept of an OWL-S
Process. The task can be a potential one or an actual one. The latter
is further split up into planned & unplanned tasks. Several relation-
ships to correlate people with tasks are also defined, e.g., executedBy or
assignedTo. Tasks can also define which (robotic) capabilities or compe-
tences are required to execute it.

PersonalizedRobotics (pr) This ontology builds upon the KnowRob
ontology suite'® to model robots, their capabilities and the action they
perform. It was extended with concepts and relations to model the affin-
ity of a person towards robots (e.g. neutral, agressive, positive), robot
interaction scenarios that occur within an IoRT environment (e.g. play-
ing music, telling a story, guiding a person, helping with homework) and
the possible reactions people can have to them. Relations to correlate the
robotic systems to all the concepts introduced in the previous ontologies,
e.g. sensors, items and tasks, were also introduced.

"https://wuw.w3.org/TR/vocab-org/
Phttps://www.w3.org/Submission/0WL-S/
3http://www.knowrob.org/ontologies

20

5. Implementation

5.1. Platform components

The architecture of our platform is shown in Figure 6. The platform is
conceived as a middleware onto which declared Task Generation Services
are deployed.

IActionExecutor

<<component>> E <<component>> E ! <<component>> E—IL@—<<component>> E'

| .
DPS TGS (Task Action Executor
| () Management

ITaskAcceptor
|
|
|
|
IDataStream |
|
|
|
<<component>> E IReasoner |
Reasoning |
Service |
Q :
|
|
|
|
|
|
|
|

(MASSIF) N

IActionFilter

<<component>> E O)

Action Filter

<<component>> El

Action
Repository

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
|
Q IAvailableActions
|
|
|
|
|

Figure 6: Component diagram of our middleware platform.

The dashed vertical lines in Figure 6 demarcate which components are
responsible for task generation, task management and task execution respec-
tively.

The semantic Reasoning Service supports all ontological reasoning. It
provides the declarative interface in terms of the IoRT ontology that was
introduced in section 4.4. The Reasoning Service takes as input data streams
that are produced by Data Processing Services (DPS). These DPS transform
sensor data to higher-level information. For instance, a localization DPS
may combine readings from a wearable with the information from a presence
sensor to provide an accurate location of a resident in a nursing home.

Task Generation Services use semantic reasoning and these enriched data
streams to submit interaction tasks to the Task Management component.
The task is scheduled and a planner generates a list of actions to be executed
by robotic and non-robotic Action Executors. The planner avails of an
Available Action Repository, which filters the set of actions that is available
in the current context.

In the next sections, we provide more details on each of the three parts
in Figure 6. Task generation is detailed in section 5.2, task management and

21

the available action repository are detailed in section 5.3 and we conclude
with a discussion on the action executors in section 5.4.

5.2. Definition and deployment of a semantic Task Generation Service

Developers of TGS first instantiate one or more of the ontological pat-
terns discussed in Section 4. To register a semantic service, the developer
must provide the following information:

1. The parts of the IoRT ontology that will be used by the service. By
limiting the size of the model employed in the service, more performant
semantic reasoning can be performed.

2. Filter rules that indicate the type of semantically enriched data that
should be used as input for the TGS. These filter rules can range from
simple indications of ontological concepts to intricate axioms. For
example, if the service wants to receive all the observed RFID tags by
the system as input, it registers a filter rule consisting of one concept,
i.e., RFIDTagObservation. An example of a more complicated filter
rule indicating that a TGS is interested in all data observed in the
rooms of the elderly is shown in Listing 1.

3. The application logic of the TGS, defined by SPARQL Queries. An
example instantiation of the observation pattern for the NH2 scenario
is given in Appendix A.2.

Observation and (ObservedBy some (hasLocation some Room))

Listing 1: Example of a rule that filters all observation coming from a particular
room

The implementation required for the services is minimized by providing
a GUI to register the above information to the platform. A screenshot of
the GUI can be found in Appendix A.

By employing this methodology, domain experts and analysts can focus
on defining the background knowledge and specifics of the context and use
case domain that the IoRT Platform is being deployed in by instantiating
the ontology design patterns. The developers of the services can then use
these specifications as input to define the task generation services in an easy
fashion. As such, an effective separation of operational logic and domain
knowledge is achieved. In the following section, we discuss the operational
logic of the platform to set up a registered TGS.

22

5.2.1. Modular data-driven workflow for TGS

To execute the registered TGS, the IoRT platform first needs to seman-
tically enrich data and then perform semantic reasoning on it. Both static
data stored in repositories as well as sensor data must be transformed to
semantic data that adheres to the concepts in the IoRT ontology.

For static knowledge, the Stardog' graph database is integrated. This
graph database uses the created IoRT ontology as model and contains profile
information of the users, information about the deployed sensors and devices,
and descriptions of the available robots. Using RML', we create mappings
that automatically transform the data in existing databases to semantic data
adhering to the IoRT ontology.

To easily integrate, interact with and discover the multiple sensors and
non-robotic actuators in the environment, the IoT sensor integration plat-
form DYAMAND!6 [23] is used. A plug-in for the DYAMAND platform
was written that maps the internal model of DYAMAND on the SSN ontol-
ogy. This enables a standardized representation of the data outputted by
DYAMAND in JSON-LD format.

We use the MASSIF platform (ModulAr, Service, Semantlc & Flexible)
Platform [28] to realize scalable semantic reasoning on this enriched data.
MASSIF allows the development & deployment of modular semantic rea-
soning services which collaborate in order to allow scalable & performant
semantic reasoning on the enriched data. The heart of MASSIF is the Se-
mantic Communication Bus (SCB) that facilitates data dissemination and
coordination between the various semantic reasoning services. The principle
is illustrated in Figure 7.

MASSIF constructs a semantic service from the SPARQL queries de-
clared by the developer. This service automatically contains the indicated
modules of the IoRT ontology and loads all the available background knowl-
edge that pertains to these ontologies from the Stardog graph database. The
provided filter rules are registered on the SCB. The semantically enriched
data is picked up by MASSIF and pushed towards the SCB. The SCB will
then perform semantic reasoning to decide whether the data fulfills any of
the registered filter rules. When a match is found, the data is forwarded to
the services that have registered this rule. When new data is forwarded to
a service by the SCB, the defined SPARQL queries are executed. By pro-

Ypttp: //www.stardog. com/
Bhttp://rml.io/
https://dyamand.ilabt.imec.be/public

23

PersonalizationRequest PersonalizationRequest

AND some forTask AND some OpportunityRequest
PresenceObservation RoboticSolution RoboticSolution Task forAction Action isfulfilled False
Construct p Acti

referred ction i

SolutionToPerson Robot Task Staff At Personali- Opportunity

Wanderinglnto Assignment Notification Selection Jation Identification
OtherPersonRoom Service Service Service Service Service

Service

Iy

RobotSooth SendPerson
PersonTask NotificationTask

PlaySongAction Opportunity
hasParameter Request
dbpedia:Hey_|ude isfulfilled True

GuideAndSooth
WanderingPerson
Solution

PlaySongAction

|
OpportunityRequest | Action
isfulfilled True JaSk

Output
Service

Figure 7: Illustration of how the MASSIF Platform and design patterns are exploited to
easily create personalized robot interactions. The light blue squares represent services.
Above the services, their filter rules are denoted. Below an example output is shown.

cessing one published event at a time, the performance of the SCB can be
guaranteed and it also allows duplication and scalability of the SCB. More-
over, the MASSIF Platform also contains several algorithms to optimize the
reasoning performance in the individual semantic services. A service is also
able to push its conclusions back on the SCB. As such, collaboration between
the services can be realized through loose coupling.

Besides the application-specific TGS, our IoRT platform comes with four
generic services that also communicate over the SCB:

e PreferredActionSelectionService: This service takes as input a
PersonalizationRequest for a particular Task. This request can for
example be sent by the Available Action Repository as explained in
Section 5.3.2. The SPARQL query that makes up the business logic of
the PreferredActionSelectionService is shown in Appendix A.3.
This SPARQL query triggers reasoning over the instantiations of the
personalization pattern by the developers, as explained in Section 4.2.
The reasoning selects the most appropriate action to fulfill a particular
task based on the current context and profile of the person for whom
the task is executed and returns it as result of the service.

e ActionPersonalization: This service also takes a Personalization
Request as input, but for a particular Action. It uses a similar

24

SPARQL query to personalize the parameters of the action accord-
ing to specified instantiations of the personalization pattern. As a
result, the service outputs an Action with personalized parameters.

e OpportunityIdentificationService: This service takes as input an
OpportunityRequest, which is not fulfilled yet. It analyzes the con-
textual preconditions of the task that is associated with this request
as specified in the opportunity pattern instantiated by the developers.
As a result, it registers filter rules with the SCB that indicate that the
service is interested in this context. Each time, new context arrives in
the service, a SPARQL query is executed to derive whether the con-
textual dependencies of the task have been fulfilled. When this is the
case, an OpportunityRequest is outputted, which has been fulfilled.

e OutputService: This service takes as input all the generated Actions
and fulfilled OpportunityRequests, and submits a task to the Task
Management part of our platform in the JSON format detailed in
Section 5.3.1.

5.2.2. Instantiations for the Smart Nursing Home motivational scenario

To illustrate how TGS, MASSIF and the design patterns can be used to
easily create tasks based on the observed context, consider the smart nursing
home NH2 use case outlined in Section 2.2. The resulting services are shown
in Figure 7.

To execute the example observation pattern specified in Figure 2, the
user first creates a TGS ConstructSolutionToPersonWanderingIntoOther
PersonRoomService which is interested in presence (e.g. the RFID tag
being worn by the elderly) information registered in the rooms of elderly,
as expressed by filter rule 1. The SPARQL query for this TGS is shown
in Appendix A.2. By performing semantic reasoning on the incoming ob-
servations and the designed pattern, the service automatically derives that
a WanderingInto RestrictedAreaFault has occurred, because an elderly
has wandered into the room of another elderly. The service outputs a
GuideAndSoothWandering PersonSolution to resolve the situation. By
studying the defined pattern, the developer creates two additional services to
create the tasks that achieve this solution, i.e., RobotTaskAssignmentService
and StaffNotificationService.

As explained previously, two generic services were created, i.e. Preferred
ActionSelectionService and ActionPersonalizationService to trigger
the reasoning over the instantiations of the personalization pattern by
the developers. If we consider that the PersonalizationRequest pertains

25

to a SoothPersonTask and the personalization pattern example specified
in Figure 3 is used, it can be derived that these two services will result in
the generation of a PlaySongAction with as parameter a Beatles Song, e.g.,
Hey Jude.

5.8. Task Management

In this section, we detail how the platform handles the execution and
monitoring of interaction tasks. The main responsibility of the Task Man-
agement is to transform these tasks into a set of personalized actions to be
executed by the Action Executors, the southbound interface of our platform
that will be described in section 5.4. Since IoRT environments are dynamic
due to the presence of humans, our platform includes the necessary measures
for replanning and updating a list of available actions.

5.83.1. Task description

Tasks are received in JSON format that is produced either directly by a
non-semantic TGS or indirectly from a semantic TGS of which the output
is converted by the semantic OutputService. An example JSON object is
shown in Appendix B.1.

The Task JSON object has only two mandatory fields: a task ID and
a goal state (list of predicates) to be reached. The goal state is pro-
vided in Problem Domain Definition Language (PDDL), a popular domain-
independent logic-based formalism [29]. The goal must be defined in terms
of the predicates provided at design time. These predicates are specific to
the scenario. This concept is explained in more detail in section 5.3.4. Op-
tional fields depend on the nature of the task and may include a start time
before which the task should not be executed, a deadline or a priority. By
allowing TGS to submit tasks with a start time in the future, the scheduler
is able to better forecast the demand for the robotic actuators and schedule
battery charging cycles accordingly.

A TGS can update the task objects it created. This is typically the
case when tasks are generated according to the opportunity pattern of Sec-
tion 4.3. The TGS may use historical knowledge to initially submit a task
with the expected (future) start time of the window of opportunity. This
start time may be revised, even multiple times, as new information becomes
available. During the window of opportunity the priority may be gradually
increased as time elapses to ensure the task gets executed.

26

5.83.2. Personalized actions with dynamic availability

Each Action Executor announces to the platform a JSON with the set
of actions that it can execute. This message contains a PDDL-formatted
definition of its parameters, pre-conditions and results. A PDDL example
of an action is shown in Listing 6.

Besides the description in PDDL syntax, needed by the planner, the
announcement message also contains information about the functional and
personalization parameters. This information binds the names of the pa-
rameters to their ontological concepts which is required in order to do the
action personalization as well as action filtering. Personalization parameters
are parameters that change the behavior of the action but do not affect the
preconditions and effects of the action. Examples are the specific song to be
played by a PlayMusicAction (see Listing 6), the recipe to propose to the
user who wants to prepare food or the language in which to greet a visitor.

The Available Action Repository (AAR) listens to the actions that are
announced by the Action Executors. When contacted by the planner, the
AAR will provide a filtered list of available actions in a given context. This
is achieved through an array of filters. Third party filter plug-ins are also
supported here.

{ "ActionName":"PlayMusicAction",

"PDDL": "...",
"PersonalizationParameters": {
"song" : {
"URI": "http://dbpedia.org/resource/Song",
"doc": "Optional documentation useful for debugging"},

"language" : {
"URI":"http://dbpedia.org/ontology/language"},

"soundLevel" : {
"URI":"http://www.w3.0org/2001/XMLSchema#integer"}

1},
"FunctionalParameters": {
"Patient" : {
"URI" : "http://dbpedia.org/ontology/person",
}
}
}

Listing 2: Example of the JSON string used to announce the PlayMusicAction. The
PDDL field has been omitted for brevity but a full example can be found in Appendix
B.2.

27

5.3.8. Scheduler

The scheduler orchestrates the allocation of resources over time to max-
imize the number of tasks successfully completed, weighted according to the
task priorities.

The received tasks are first sorted according to their priority and for
each task the planner (discussed in the next section) is contacted to pro-
duce a tentative plan that allows to make an estimate of the task duration.
Then, earliest deadline first (EDF) with task priorities scheduling is applied,
with backfilling of tasks where possible. The scheduler component can be
easily configured with other strategies to include more advanced scheduling
approaches.

If a task cannot be scheduled, the scheduler will notify the corresponding
Task Generation Service, which may decide to cancel the task and submit
an alternative task.

5.83.4. Planner

The planner uses a modified version of Fast Downward [30]. Like any
typical PDDL based planner it requires a domain and problem, both PDDL
files, which describe the world, the actions and the goal. The current planner
supports PDDL 2.2 level 1 and various parts of higher versions. The set of
PDDL predicates, types and objects are defined at design time. Actions are
also defined at design time but are disabled unless an Action Executor is
available to execute it.

A PDDL based planner has a declarative model of the world defined by
predicates. By chaining actions together it is possible to realize the requested
goal while meeting the preconditions of each of the preceding actions. When
a planning request is made the Available Action Repository (AAR) is queried
for a list of available actions. Combining the resulting action list with the
relevant domain knowledge and with the goal string received from the TGS,
the domain and problem PDDL files are generated. Using these files the
planner is able to generate a plan which is outputted as an ordered list of
actions.

Since the personalization parameters of the action definition have no
effect on the planning process, we are still able to use highly optimized
planners proposed in other research. The planner, which ignores the per-
sonalization parameters, produces a plan in the form of an ordered list of
actions which is then passed to the semantic Action Personalization Service.

In order to be able to provide timing estimates for tentative plans, which
are often requested by the scheduler, a simple timing estimation component
is built into the planner service. This timing component can provide a

28

timing estimate for a parameterized action (e.g. (MOVE ROBOT KITCHEN
HALL)). It does this by consulting the history of executed actions. If this
action, with these parameters, has been executed before it will return the
average historical execution time. If the action has been executed but with
different parameters the average execution time of this action across all
parameters is returned. Otherwise a default value is returned. This simple
implementation allows for progressively better timing estimates. We leave
it as future work to implement a more advanced duration estimator that
accounts for up-to-date context information.

5.8.5. Action Dispatcher

The Action list produced by the planner is sent to an action dispatcher
that calls the appropriate action executor modules while traversing it. In
a dynamic environment, it is likely that the assumptions made at planning
time are no longer valid at execution time, especially for plan of multiple
long actions. For instance, by the time a robot arrives at the room of a
nursing home resident, the resident may have entered the bathroom or left
his room. Moreover, actions may fail during their execution.

The main responsibility of the Action Dispatcher is thus to monitor task
progress and trigger a replanning if needed. If an action is completed, the
dispatcher will check if the preconditions of the next action in the list are
all fulfilled and if not, stop the plan and trigger a replanning. In case an
action fails, the dispatcher might retry the action or mark the action as
failed. The dispatcher contacts the AAR to temporarily remove the failed
action from the available action pool and then requests a replan from the
planning service. Since the offending action is not in the list of available
actions we are guaranteed that it will not be in the plan. If no plan can be
found the platform will inform the TGS about that the task failed.

5.83.6. Sequence diagrams

In this section we will demonstrate the interaction between the platform
components using a concrete example. We will use the NH1 and NH2 sce-
narios described in section 2.2, where a companion robot is used to announce
activities to the elderly of a nursing home and to sooth a person with de-
mentia who is exhibiting a behavioral disturbance. We assume two separate
TGS are deployed, for generating announcement and soothing tasks respec-
tively. Two Action Executors are connected to our platform: one to send
messages to the nurse’s pager, and one for the social robot.

Activity announcement. The sleep sensors in Bob’s mattress not only mea-
sure his sleep quality, they also detect when he wakes up. The sensors

29

publish the event and it is picked up by the TGS for activity announce-
ment. Upon receiving this event the TGS will publish the Announce task
(see Listing 5). The platform then executes the sequence diagram of Fig-
ure 8. The task is submitted with a deadline of 7.20 AM, ten minutes before
breakfast. The scheduler requests a tentative plan (steps 2-8 in Figure 8).
When the scheduled execution time approaches the scheduler will ask the
planner for a plan that is up-to-date with the current context (steps 11-17).
It will then push this plan to the dispatcher which will execute it by calling
the appropriate (robotic) Action Executor (steps 18 and 19).

Updating the plan. While the robot is moving to the elderly person’s room, it
is detected that he moves into the bathroom. For obvious privacy reasons the
robot is not allowed in the bathroom so the moveToPersonInRoom action
can no longer be completed. The fall-back strategy has been set to early fail
so the task is marked as failed. The accompanying sequence diagram can
be seen in Figure 9.

5.4. Action Ezecutors

The southbound interfaces of our platform are the Action Exrecutors,
which encapsulate lower-level control logic. The Action Executors are re-
sponsible for managing and executing actions. They announce the actions
they support to the platform using the format of Listing 2. Upon request
of the dispatcher they can start or stop an action. Typically an Action Ex-
ecutor manages actions for a single actuator, but multiple executors may
exist for one actuator. Since synchronization is done by the dispatcher this
is not a problem. The executors can be added and removed at runtime so
an executor going down does not crash the system.

There are no restrictions on the granularity of the actions provided by
an Action Executor. However we tend towards coarser actions since this
reduces the computational cost of the planner. Examples of actions are:
move to a location, announce activities, assist with homework... Once an
action is started control of the actuator is handed over to the action execu-
tor which is responsible for execution. When an action is finished, either
because it completed or because it failed, its progress is communicated to
the Dispatcher, which can then respond appropriately.

There is an Action Executor wrapped around DYAMAND to send com-
mands to non-robotic actuators (light, door). We have also developed Ac-
tion Executors for the Pepper and Nao robot. These Action Executors send
commands to the robot’s on-board NaoQi stack. The Action Executor for
navigation actions internally uses ROS. These robotic actuators run on the

30

Activities Scheduler Planner AAR Action Dispatcher Robot

Announcer Personalizer Executor
(T(ISS) T , T - I :
1: Push | : | | |
: task I Request | 3:Get | |
| tentative : available : :
plan | actions | |
- i !
|
|
<————- |
4: | |
|
|
|
|
|
|

o
3
-
>

I
I
I
I
I
. :
' |
' |
' |
' |
' |
' |
' |
' |
' |
' |
i & < 4 l
| L—————— | 7: | |
: T I I I
[I I I
| 9: Schedule | | |
I Zl I I I I
: T I I I I
| | | 10: Start Announce task | |
! ; : 11 R t Pl I > :
. Reques an
| e T T I
| 12: Get | | |
! available | [|
| actions : : :
' | |
: I I
I I
: I I
| 14: Plan ! !
: 15: Personalize plan | :
T
I 16: I
: <————= T————= |
17 I
! e [T—————- > |
! I I I I
' | | | |
: | | | loop |
| : : : 18: Do action
! I I I
19:
' | 20 | | <———9——
! I C I 1
! <——————- T—————— q=————== === [
: T I I I I
I

I I I I -

Figure 8: Sequence diagram depicting the control flow from the moment a Task is pushed
until it has finished executing.

31

Person
Tracking
(DPS)

10: Person
moves to
bathroom

————

Activities Scheduler Planner AAR Action Dispatcher Robot
Announcer Personalizer Executor
i) T T T T T T
| : : 1: Start Announce task : : :
h
: | 2: Request Plan :
T T
: 3:Get | | |
| available | | |
| actions | ! !
| | | |
| |
! | |
! | |
: | |
| 5: Plan : :
: 6: Personalize plan | :
1
: <——-——- L |
: ! 8: 9: Move 1 !
——————— T : |
! i | |
: | | |
| | |
: : : : 11: Person location updated
! | | | .
: : : : 12: Cancel
! I I I
! I I I 13
: | I | i
I 15: Task J'_ 14: Task failed L
I failed i [FTTT T
] I I
| |
| |
T | |
| | |
| | |
16: Push | | |
‘announce : : :
| | |
| |
| |
| |
| |
| |
| |

ﬁ.

Figure 9: Sequence diagram depicting the control flow in case one of the Action fails. The
Task fall back strategy has been set to early fail.

32

robot and their coarser definition leaves sufficient autonomy at the robot to
ensure (physical) safety and privacy.

6. Evaluation

In this section, we detail a prototype we have built and evaluate the
Quality Attribute Scenarios.

6.1. Prototype

We have deployed the platform in the imec HomeLab, a two-story house
(600m?) with technical corridors in every room to flexibly install sensors and
an open home automation system'”. A demo implementation is realized
for visitors of the HomeLab, of the NH3 scenario where noise and light
levels must be kept low in one room of the smart home. When the light in
the patient’s room is turned on, the monitoring TGS submits a task to be
executed by a Pepper robot. The intervention task makes the robot enter
the room to educate the patient and his possible visitors. Some screenshots
of the demo can be seen in Figure 10. Full videos can be found online'®.

Figure 11 shows the different technologies and platform components that
are involved in this proof-of-concept.

Grove sound E _ 1GS:
sensor o Concussion service
Grove light &-
sensor m J; 1oRT platform
Light control —0- | E || Action Executor:
(Velbus) 7™ = | |light 4 MASSIF
Door pump l _ o - Qction Executor: —
control oor as

¢ Management
X ALDEBARAN {_ Action Executor:
;’;pper \} ‘ Pepper executor §€ kafka.

Figure 11: Different components and technologies used for the proof-of-concept.

"https://www.imec-int.com/nl/homelab
¥ https://goo.gl/Kn9hkx and https://goo.gl/zHsqIN

33

(a) Robot driving to the (b) Robot entering the (c) Robot explaining light
patient’s room room sensitivity to the patient

Figure 10: Robot responding to light trigger in concussed patient’s room. (The require-
ment that the person should be in the room has been disabled for the purpose of this
video.)

6.2. FEvaluation of Quality Attribute Scenarios

In section 3.3 we put forward three quality attribute scenarios that we
wanted to achieve as part of our non-functional requirements. The response
measure of each scenarios was measured and the results are shown in Table 1.
All evaluations were done using a laptop with an Intel(R) Core(TM) i5-
5300U CPU running at 2.30GHz with 8GB RAM running Linux Ubuntu
16.04 LTS.

In order to measure the time for a TGS to become operational we mea-
sured the time between a TGS being booted, it being deployed on the MAS-
SIF Platform and being accepted by the scheduler. The deployment of the
TGS on the MASSIF Platform mostly depends on the time it takes to reg-
ister the filter rules on the SCB. In the measurement we did not include the
time needed for this registration as this heavily depends on the complex-
ity of the filter rule, the amount of filter rules already present in the SCB
and the size of the ontology used by the SCB. This was already thoroughly
evaluated in previous research [31], which has shown that in most realistic
scenarios this time is under 1 second.

To measure the time for a new Action Executor to be available we mea-
sured the time it took between the service being booted and all the new

34

actions being available in the system. The used service was not connected
to a robot or any other system to able to fairly asses the time till acceptance.
5 runs were deemed sufficient since the variance on the acceptance times was
very low (0.025).

To measure the time required for an Action Filter to become operational
we again isolate the service boot time from the loading of the semantic
services in the reasoning engine for the same reasons as for the TGS. The
average boot time was 1.91 seconds. 10 runs were used to establish the
average instead of the 5 for the previous QAS since the variance was much
higher (2.88).

QAS Response measure Target Actual

Adding TGS TGS operational 10 sec 1.18 sec
Adding Action Executor New actions available 5 sec 1.38 sec
Adding Action Filter Filter operational 10 sec 1.91 sec

Table 1: Evaluation of all Quality Attribute Scenarios put forth in section 3.3

7. Platform limitations

7.1. Other considerations

In this section, we discuss several other non-functional requirements that
are important in an IoRT environment, but are currently not included in our
platform architecture. We nevertheless propose several tactics that could be
used to realize these requirements.

e Privacy, security and trust Privacy, security and trust are key require-
ments for any IoT platform [32, 33], yet the inclusion of robots in the IoT
brings novel aspects to all three requirements. With respect to privacy,
this novelty arises from the robot mobility and from the personal and con-
textual data stored in the platform. First, the robot mobility expands the
potential spatial coverage of sensors to any location in a smart environ-
ment. In particular, the robot’s camera and microphone may collect sen-
sitive rich data. Second, adequate personalization and contextualization,
the key goals of our work, can only be achieved if the services deployed on
top of our platform have access to private information related to medical

35

history, activities, routines and preferences. Traditional privacy preserva-
tion mechanisms such as anonymization or delayed access to sensor data
are not compatible with our goals. Instead, a user-friendly authoring tool
for configuring data access control policies might be needed [34], that is
able to translate these user-specified policy into a machine-readable for-
mat for the platform [35].

With respect to security, the main novelty arises from how robots increase
the attack vector of IoT platforms: a malicious partner could hijack ser-
vices or robots, in steering them to gather additional information (e.g. is
a person at home) or, worse, deliberately cause physical harm. Therefore,
appropriate mechanisms must be put in place to prevent unauthorized
intrusion, e.g. by using authentication and role-based permissions.
These privacy preservation and security mechanisms should foster trust of
users in our platform. Trust is nevertheless a multi-faceted attribute, so
the trust of users in our platform is also impacted by other non-functional
requirements discussed in this section, such as safety or timeliness.
Safety In the envisioned interaction scenarios, robots act freely in the en-
vironment and not in caged environments. Physical actuation may cause
harm to users, but there is also an inherent uncertainty on the human
course of action. While the platform may perform a check on the type
of interaction tasks assigned to the robot, the strongest safety guarantee
can only be provided by autonomous control logic on the robot itself. For
this reason, but also for latency reasons, our platform must not be able to
directly control robots. Instead, the robot should have sufficient auton-
omy to determine the best course of action. Fast on-robot sensor-actuator
loops will prevent potential harm to users, e.g. by immediately stopping
the robot or by reducing the speed of actuation. These control loops are
already available on mobile robots.

Timeliness A delayed or instead too early interaction by the robot will
negatively impact the user experience. The logic to determine time win-
dows of appropriate context is the responsibility of the TGS and not of
the platform. However, the platform should be designed in such a way
that it introduces as least technical restrictions to this timeliness as pos-
sible. The platform, which requires an intensive and near real-time pro-
cessing of sensor data streams, should be deployed close to the sources
of the data, i.e. at the edge of the network on devices such as an IoT
gateway. This deployment pattern is known in literature under various
names, such as cloudlets [36], fog computing [37] or edge computing [38].
By deploying the platform close to the user, we also enable sending actions
from the platform to be executed by the robot. Note that following this

36

model of cloudlet-based deployment might also help in protecting sensi-
tive data [39], e.g. information on medical issues or on the presence in a
home.

8. Related work

The integration of robots with smart environments has mostly been
studied in the context of Ambient Assisted Living. The Ubiquitous Net-
work Robot Platform [40] serves as a middleware between applications and
robotic devices. It focuses on robotic applications that span multiple areas.
The platform includes a user attribute registry that can be queried by the
platform services.

Rashid et al. [41] introduced PEIS, a distributed middleware to real-
ize an ecological view of the robot-environment relationship: robots, sensor
motes and smart objects are seen as parts of the same system in which
communication is realized via a shared tuple-space. The PEIS middleware
was a cornerstone of the Rubicon and Robot-Era projects [42, 43], which
pursued an ecology vision. In this vision, complex functionality is achieved
by composing simple devices such as robots, sensor and effector nodes and
purely computing nodes. In the Rubicon project, a three-layer system to
control such an ecology is presented. The learning layer converts raw data
into meaningful events, which are fed into a cognitive layer that sets goals
for the ecology. The control layer is responsible for planning and execution
the actions to reach these goals. In this way, the ecology was made adaptive
to user preferences, e.g. it learned to have a robot clean the kitchen only
after the user left it to start watching TV. These developments and insights
were advanced in the Robot-Era project, including services in non-domestic
environments. For instance, to coordinate the actions between multiple
robots for shopping delivery and garbage collection. Our work shares some
of the ideas, such as the combination of symbolic Al with data-driven ma-
chine learning algorithms and the need to have smart spaces cooperate with
robots to execute tasks. One important differentiator is that we focus on
interaction, where personalization and context are requisites for efficient and
socially acceptable human-robot interaction. Also, our platform is conceived
upfront for extensibility with services from 3rd party services. This extensi-
bility is e.g. provided by using ontologically encoded knowledge that allows
integration of domain-specific knowledge with more generic knowledge.

Other works have focused on how IoT information can be integrated
into robotic planners and controllers. For instance, Cirillo et al. [44] use
information from smart, sensor-rich environments to forecast the plan, or a

37

set of plans, that a human is expected to perform. The robot adjusts its
own plan to achieve its goals while respecting a set of interaction constraints,
such as safety conditions, comfort conditions or task related conditions. For
instance, these constraints may impose that the robot should never operate
in the same room where the human is expected to be.

All the above works focus on the structural decomposition of functional
tasks, e.g. to fetch an object or to clean up, or on limited interactions such
as alerts, e.g. to take medicines. Our work instead provides support for
semantic reasoning, which provides a flexible approach to include domain
knowledge, contextual information and personal preferences when develop-
ing services. The use of semantics also ensures interoperability in many
application domains.

Another strand of related work uses ontologies to allow robots to reason
on their relationship with the environments and the objects in that environ-
ment. Seydoux et al. [45] proposes the IoT-O ontology containing a vocabu-
lary to describe connected devices and their relation with the environment.
The Semantic Sensor Network (SSN) ontology is extended with a novel
Semantic Actuator Network to realize a Monitor-Actuator-Plan-Execution
control loop on the robot. The use of ontologies as knowledge base un-
derpinning a deliberative architecture for social interaction in human-robot
collaboration scenarios was presented by [46]. Spatial relations and affor-
dances for the whole scene are continuously computed and used to update
the knowledge base.

The ontological pattern for contextual opportunities, presented in sec-
tion 4.3, requires programmers to write explicit rules on contextual oppor-
tunities. Grosinger et al. [47] present an alternative approach that auto-
matically deduces opportunities. The proposed system aims to maintain an
equilibrium by pro-actively seeking for action schemes that can be executed
to bring the system in a desirable state. While the advantage of the Equilib-
rium Maintenance Loop is that it can model and detect opportunities in a
very sophisticated manner, it is however challenging to construct, maintain
and extend to new use cases and contexts because it requires hand-coded
specification of desired and undesired states and of state transitions. The
advantage of our ontological approach is that it offers a simplified approach
to model contextual opportunities and their dependencies on specific con-
text parameters. This approach can easily be extended to new use cases and
contexts. However, it does offer a less intricate manner to detect and predict
these opportunities. Nevertheless, both approaches are complementary and
provide an interesting avenue for future work.

38

9. Conclusion

To foster the adoption of social robots in our daily life, the timing, con-
tent and execution of their interactions should be constantly adjusted to
our evolving preferences, needs and context. Using ontologic models, our
platform allows developers to set-up data flows where robot interactions are
triggered when a specific event is observed, or to define contextual opportu-
nity windows in which an interaction should occur. The platform, using a
message-driven microservice architecture, abstracts service developers from
the complexity of scheduling, planning and execution.

A first area for future work is on the security and privacy aspects. Cur-
rently, there are no checks on which services subscribe to which topics. A
related aspect is liability. As robots operate in the physical world, personal
integrity needs to be taken into account when sending commands. Second,
we will study more advanced techniques for multi-robot planning, resource
reasoning and more advanced techniques for correctly estimating the timing
duration of tasks.

Nevertheless, this platform provides a first step towards the integration
of IoT and robotic technologies to create more enjoyable and more efficient
human-robot interactions.

Acknowledgements

The research leading to these results was partially funded by the imec.ICON
WONDER, imec.ICON ROBO-CURE and the ACTHINGS High Impact

Initiative.

Appendix A. Semantic Service Definitions

Appendixz A.1. GUI

Figure A.12 shows the GUI that was created to allow developers to easily
input the required information to create a new TGS, i.e., its name in the
GENERAL tab, the filter rules in the INPUT tab, the SPARQL queries in
the QUERIES tab and the used ontologies in the ONTOLOGY tab.

Appendiz A.2. SPARQL Query for the observation pattern in the smart
nursing home NH2 scenario

Listing 3 shows the application logic of the semantic service that gener-
ates a solution to guide and sooth an elderly in response to the observation
of the RFID tag of this elderly in the room of an other person.

39

GENERAL INPUT

Add Queries

efine the logic of your newly created service.

PREFIX rdf: <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http:/fwww.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http:/www.w3.0rg/2000/01/rdf-schema#>
PREFIX xsd: <http:/iwww.w3.0rg/2001/XMLSchema#>
PREFIX ssniot: <http://IBCNServices/SSNiot.owl#>
PREFIX ssn: <http://IBCNServices/ontologies/ssn#>
PREFIX dul:<http://IBCNServices/ontologies/DUL.owlé#>
CONSTRUCT{?detectedPerson dul:hasLocation ?location}
WHERE { 7observation rdf:type ssniot:BLEObservation.
“?observation ssn:observationResult ?senorOutput.

Add Query!

MORE INFO

Figure A.12: User interface provided by the MASSIF Platform to create services

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema>

PREFIX ssniot: <http://IBCNServices/SSNiot.owl#>

PREFIX carecobots: <http://IBCNServices/ontologies/CareCoBots.owl#>
CONSTRUCT{

ssniot:Event rdf:type carecobots:GuideAndSoothWanderingPersonSolution.
carecobots:GuideAndSoothWanderingPersonSolution ssniot:isSolutionfor ?fault.
}

WHERE{

?observation ssniot:hasSymptom ?symptom.

?symptom ssniot:hasFault ?fault.

?fault rdf:type carecobots:WanderingIntoRestricted AreaFault.

}

Listing 3: Example of a SPARQL query that makes up the application logic of a TGS.
For conciseness the IRIs ‘http://IBCNServices.github.io/Accio-Ontology/’ have been
shortened to ‘http://IBCNServices/’.

40

Appendiz A.3. SPARQL Query for the PreferredActionSelectionService

Listing 4 shows the application logic of the generic semantic service that
outputs the most appropriate action based on a personalization request for
a particular task. The choice is based on the instantiations of the personal-
ization pattern as provided by the developers.

PREFIX rdf: <http://www.w3.0org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http://www.w3.0org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema >
PREFIX profile: <http://IBCNServices/PersonProfileAccio.owl# >
PREFIX task: <http://IBCNServices/ontologies/TaskAccio.owl#>
PREFIX robotics: <http://IBCNServices/PersonalizedRobotics.owl#>
CONSTRUCT{

?actionPref task:isActionFor ?task.

}

WHERE{

?request rdf:type profile:PersonalizationRequest.

?request task:forTask 7task.

7task task:requiresAction ?actionGeneral.

?task task:executedOn ?person.

?person profile:hasPreference ?interactions.

?interactions rdf:type robotics:PreferredRobotInteractions.
7interactions task:requiresAction 7actionPref.

?actionPref rdf:type 7actionGeneral.

}

Listing 4: SPARQL query that implements the business logic of the PreferredAc-
tionSelectionService. For conciseness the IRIs ‘http://IBCNServices.github.io/Accio-
Ontology/’ have been shortened to ‘http://IBCNServices/’.

41

Appendix B. Task Management

Appendiz B.1. JSON object for a time-constrained task

{
"ID" : "ActivitiesAnnouncer_S003_37",
"Goal" : "(activities_announced Bob_Smith_0001)",
"StartTime" : "2017-08-12T06:26:23",
"Deadline" : "2017-08-12T07:20:00",
"Priority" : 4
}

Listing 5: JSON object for a time-constrained task.

42

Appendiz B.2. Action description in PDDL

C

>

~

)]

Move
Moves the robot from one waypoint to the other.

@Param robot: The robot to move.

@Param from-waypoint: The current location of the robot.
@Param to-waypoint: The destination location of the robot.
:action move

:parameters
(?robot - Robot
?from-waypoint - Location
?to-waypoint - Location)
:precondition
(and

(robot-at-location ?robot ?from-waypoint)
(can-move 7from-waypoint ?7to-waypoint))

:effect
(and

(robot-at-location ?robot ?to-waypoint)
(not (robot-at-location ?robot ?from-waypoint))

; now in the same room as people in the room you just entered
(forall (?person - person)
(when (person-at-location ?person ?7to-waypoint)
(robot-in-same-room-as ?robot ?person)

)

; now no longer in same room as people in room you just left
(forall (?person - person)
(when (person-at-location ?person 7from-waypoint)
(and
(not (robot-in-same-room-as ?robot ?person))
(not (robot-near-person ?robot ?person))
)
)

Listing 6: Example of an Action description in PDDL syntax

43

Appendix C. Technologies

Element Technology Version
Message broker Apache Kafka 2.11-1.1.0
Reasoner MASSIF n.a.
Planner Fast Downward n.a.
Sensor interface DYAMAND 0.12.0
Actuator interface DYAMAND 0.12.0
Robot Aldebaran Pepper 1.8a
Robot software NaoQi 2.5.5
Light sensor Grove Light sensor 1.0
Sound sensor Grove Sound sensor n.a

Table C.2: Technology overview for used for the prototype implementation described in
section 6.

Element URL

Apache Kafka https://www.apache.org/dist/kafka/1.1.0/
RELEASE_NOTES.html

MASSIF https://github.com/IBCNServices/MASSIF

IORT ontology https://github.com/IBCNServices/
Accio-Ontology/tree/gh-pages

Fast Downward http://www.fast-downward.org/
Aldebaran Pepper http://doc.aldebaran.com/2-5/home_pepper.html
Grove sensors http://wiki.seeedstudio.com/Grove/

Table C.3: URLSs for the various components used to build the prototype.

44

References

1]

2]

ISO Standard, 8373:2012, Robots and robotic devices — Vocabulary
(2012).

Q. Xu, J. S. L. Ng, O. Y. Tan, Z. Huang, Needs and attitudes of singa-
poreans towards home service robots: a multi-generational perspective,
Universal Access in the Information Society 14 (2015) 477-486.

A. Pereira, 1. Leite, S. Mascarenhas, C. Martinho, A. Paiva, Using
empathy to improve human-robot relationships, in: M. H. Lamers,
F. J. Verbeek (Eds.), Human-Robot Personal Relationships, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 130-138.

I. Leite, C. Martinho, A. Paiva, Social robots for long-term interaction:
A survey, International Journal of Social Robotics 5 (2013) 291-308.

M. Heerink, B. Krose, V. Evers, B. Wielinga, Assessing acceptance
of assistive social agent technology by older adults: the almere model,
International Journal of Social Robotics 2 (2010) 361-375.

O. Vermesan, A. Broring, E. Tragos, M. Serrano, D. Bacciu, S. Chessa,
C. Gallicchio, A. Micheli, M. Dragone, A. Saffiotti, et al., Internet of
robotic things: converging sensing/actuating, hypoconnectivity, artifi-
cial intelligence and iot platforms, in: O. Vermesan, J. Bacquet (Eds.),
Cognitive hyperconnected digital transformation: internet of things in-
telligence evolution, River Publishers, Gistrup, Denmark, 2017, pp. 97—
155.

G. Milliez, R. Lallement, M. Fiore, R. Alami, Using human knowl-
edge awareness to adapt collaborative plan generation, explanation and
monitoring, in: The Eleventh ACM/IEEE International Conference on
Human Robot Interaction, HRI 16, IEEE Press, Piscataway, NJ, USA,
2016, pp. 43-50.

I. Leite, R. Henriques, C. Martinho, A. Paiva, Sensors in the wild:
Exploring electrodermal activity in child-robot interaction, in: Pro-
ceedings of the 8th ACM/IEEE International Conference on Human-
robot Interaction, HRI ’13, IEEE Press, Piscataway, NJ, USA, 2013,
pp. 41-48.

Robo-Cure. Social robots, connected devices and artificial intelligence
to improve healthcare, 2017. Online. https://www.imec-int.com/

45

[14]

[15]

cache/pdfs/en/what-we-offer/research-portfolio/robo-cure.
pdf Last-accessed on 2018-03-29.

M. A. Al-Taee, W. Al-Nuaimy, Z. J. Muhsin, A. Al-Ataby, Robot
assistant in management of diabetes in children based on the internet
of things, IEEE Internet of Things Journal 4 (2017) 437-445.

T. T. Tran, T. Vaquero, G. Nejat, J. C. Beck, Robots in retirement
homes: Applying off-the-shelf planning and scheduling to a team of

assistive robots, Journal of Artificial Intelligence Research 58 (2017)
523-590.

B. Bruno, N. Y. Chong, H. Kamide, S. Kanoria, J. Lee, Y. Lim, A. K.
Pandey, C. Papadopoulos, I. Papadopoulos, F. Pecora, A. Saffiotti,
A. Sgorbissa, Paving the way for culturally competent robots: A po-
sition paper, in: 2017 26th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pp. 553-560.

F. Ongenae, F. De Backere, J. Nelis, S. De Pestel, C. Mahieu, S. El-
prama, C. Jewell, A. Jacobs, P. Simoens, F. De Turck, Personalized
robot interactions to intercept behavioral disturbances of people with
dementia, in: 15th International Semantic Web Conference, ISWC,
2016, pp. 1-4.

B. Chikhaoui, B. Ye, A. Mihailidis, Ensemble learning-based algorithms
for aggressive and agitated behavior recognition, in: C. R. Garcia,
P. Caballero-Gil, M. Burmester, A. Quesada-Arencibia (Eds.), Ubiqui-
tous Computing and Ambient Intelligence, Springer International Pub-
lishing, Cham, 2016, pp. 9-20.

Y. Akimoto, E. Sato-Shimokawara, Y. Fujimoto, T. Yamaguchi, Ap-
proach function study for concierge-type robot by model-based develop-
ment with user model for human-centred design, ROBOMECH Journal
3 (2016) 26.

C. R. Huang, P. C. Chung, K. W. Lin, S. C. Tseng, Wheelchair detec-
tion using cascaded decision tree, IEEE Transactions on Information
Technology in Biomedicine 14 (2010) 292-300.

M. Shields, Control- versus data-driven workflows, in: 1. J. Taylor,
E. Deelman, D. B. Gannon, M. Shields (Eds.), Workflows for e-Science:
Scientific Workflows for Grids, Springer, London, 2007, pp. 167-173.

46

18]

[19]

[20]

M. A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke, Middleware
for internet of things: A survey, IEEE Internet of Things Journal 3
(2016) 70-95.

R. Janssen, R. van de Molengraft, H. Bruyninckx, M. Steinbuch, Cloud
based centralized task control for human domain multi-robot opera-
tions, Intelligent Service Robotics 9 (2016) 63-77.

F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg, A. Saffiotti, A constraint-
based approach for proactive, context-aware human support, Journal
of Ambient Intelligence and Smart Environments 4 (2012) 347-367.

P. Simoens, M. Dragone, A. Saffiotti, The internet of robotic things: A
review of concept, added value and applications, International Journal
of Advanced Robotic Systems 15 (2018) 1-11.

P. Barnaghi, W. Wang, C. Henson, K. Taylor, Semantics for the internet
of things: Early progress and back to the future, Int. J. Semant. Web
Inf. Syst. 8 (2012) 1-21.

J. Nelis, T. Verschueren, D. Verslype, C. Develder, Dyamand: Dy-
namic, adaptive management of networks and devices, in: Proceedings
of the 2012 IEEE 37th Conference on Local Computer Networks (LCN
2012), LCN ’12, IEEE Computer Society, Washington, DC, USA, 2012,
pp. 192-195.

L. Bass, P. Clements, R. Kazman, Software architecture in practice,
3rd edition, Pearson Education, 2012.

B. Bruno, N. Y. Chong, H. Kamide, S. Kanoria, J. Lee, Y. Lim, A. K.
Pandey, C. Papadopoulos, 1. Papadopoulos, F. Pecora, et al., The
caresses eu-japan project: making assistive robots culturally competent,
in: Ambient Assisted Living, Italian Forum, ForltAAL, Genova, Italy,
2017.

Z. Zainol, K. Nakata, Generic context ontology modelling: A review
and framework, in: 2010 2nd International Conference on Computer
Technology and Development, pp. 126—-130.

F. Ongenae, P. Duysburgh, N. Sulmon, M. Verstraete, L. Bleumers,
S. De Zutter, S. Verstichel, A. Ackaert, A. Jacobs, F. De Turck, An
ontology co-design method for the co-creation of a continuous care on-
tology, Applied Ontology 9 (2014) 27-64.

47

28]

[35]

P. Bonte, F. Ongenae, F. De Backere, J. Schaballie, D. Arndt, S. Ver-
stichel, E. Mannens, R. Van de Walle, F. De Turck, The massif plat-
form: a modular and semantic platform for the development of flexible
iot services, Knowledge and Information Systems 51 (2017) 89-126.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, D. Wilkins, PDDL-the planning domain definition language,
1998.

M. Helmert, The fast downward planning system, J. Artif. Int. Res. 26
(2006) 191-246.

F. Ongenae, J. Famaey, S. Verstichel, S. D. Zutter, S. Latré, A. Ackaert,
P. Verhoeve, F. D. Turck, Ambient-aware continuous care through se-

mantic context dissemination, BMC Medical Informatics and Decision
Making 14 (2014) 97.

S. Sicari, A. Rizzardi, L. Grieco, A. Coen-Porisini, Security, privacy
and trust in internet of things: The road ahead, Computer Networks
76 (2015) 146 — 164.

Z. Yan, P. Zhang, A. V. Vasilakos, A survey on trust management for
internet of things, Journal of Network and Computer Applications 42
(2014) 120 — 134.

R. W. Reeder, C.-M. Karat, J. Karat, C. Brodie, Usability challenges
in security and privacy policy-authoring interfaces, in: C. Baranauskas,
P. Palanque, J. Abascal, S. D. J. Barbosa (Eds.), Human-Computer In-
teraction — INTERACT 2007, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2007, pp. 141-155.

D. Garcia, M. B. F. Toledo, M. A. M. Capretz, D. S. Allison, G. S. Blair,
P. Grace, C. Flores, Towards a base ontology for privacy protection in
service-oriented architecture, in: 2009 IEEE International Conference
on Service-Oriented Computing and Applications (SOCA), pp. 1-8.

M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-
based cloudlets in mobile computing, IEEE Pervasive Computing 8
(2009) 14-23.

F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: A platform
for internet of things and analytics, in: N. Bessis, C. Dobre (Eds.), Big
Data and Internet of Things: A Roadmap for Smart Environments,
Springer International Publishing, Cham, 2014, pp. 169-186.

48

[38]

[39]

[40]

[41]

[42]

W. Shi, S. Dustdar, The promise of edge computing, Computer 49
(2016) 78-81.

N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, B. Amos, Privacy
mediators: Helping iot cross the chasm, in: Proceedings of the 17th In-
ternational Workshop on Mobile Computing Systems and Applications,
HotMobile 16, ACM, New York, NY, USA, 2016, pp. 39-44.

S. Nishio, K. Kamei, N. Hagita, Ubiquitous network robot platform
for realizing integrated robotic applications, in: S. Lee, H. Cho, K.-
J. Yoon, J. Lee (Eds.), Intelligent Autonomous Systems 12: Volume
1 Proceedings of the 12th International Conference IAS-12, held June
26-29, 2012, Jeju Island, Korea, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, pp. 477-484.

J. Rashid, M. Broxvall, A. Saffiotti, A middleware to integrate robots,
simple devices and everyday objects into an ambient ecology, Pervasive
and Mobile Computing 8 (2012) 522 — 541. Special Issue on Ambient
Ecologies.

F. Cavallo, R. Limosani, A. Manzi, M. Bonaccorsi, R. Esposito,
M. Di Rocco, F. Pecora, G. Teti, A. Saffiotti, P. Dario, Development of
a socially believable multi-robot solution from town to home, Cognitive
Computation 6 (2014) 954-967.

G. Amato, D. Bacciu, M. Broxvall, S. Chessa, S. Coleman, M. Di Rocco,
M. Dragone, C. Gallicchio, C. Gennaro, H. Lozano, T. M. McGinnity,
A. Micheli, A. K. Ray, A. Renteria, A. Saffiotti, D. Swords, C. Vairo,
P. Vance, Robotic ubiquitous cognitive ecology for smart homes, Jour-
nal of Intelligent & Robotic Systems 80 (2015) 57-81.

M. Cirillo, L. Karlsson, A. Saffiotti, Human-aware planning for robots
embedded in ambient ecologies, Pervasive and Mobile Computing 8
(2012) 542 — 561. Special Issue on Ambient Ecologies.

N. Seydoux, K. Drira, N. Hernandez, T. Monteil, Iot-o, a core-domain
iot ontology to represent connected devices networks, in: E. Blomqvist,
P. Ciancarini, F. Poggi, F. Vitali (Eds.), Knowledge Engineering and
Knowledge Management, Springer International Publishing, Cham,
2016, pp. 561-576.

49

[46] S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, R. Alami, Artificial
cognition for social humanrobot interaction: An implementation, Arti-
ficial Intelligence 247 (2017) 45 — 69. Special Issue on AT and Robotics.

[47] J. Grosinger, F. Pecora, A. Saffiotti, Making robots proactive through
equilibrium maintenance, in: Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAT’16, AAAI
Press, 2016, pp. 3375-3381.

50

