141 research outputs found

    Graph Based Reduction of Program Verification Conditions

    Get PDF
    Increasing the automaticity of proofs in deductive verification of C programs is a challenging task. When applied to industrial C programs known heuristics to generate simpler verification conditions are not efficient enough. This is mainly due to their size and a high number of irrelevant hypotheses. This work presents a strategy to reduce program verification conditions by selecting their relevant hypotheses. The relevance of a hypothesis is determined by the combination of a syntactic analysis and two graph traversals. The first graph is labeled by constants and the second one by the predicates in the axioms. The approach is applied on a benchmark arising in industrial program verification

    Formal mechanization of device interactions with a process algebra

    Get PDF
    The principle emphasis is to develop a methodology to formally verify correct synchronization communication of devices in a composed hardware system. Previous system integration efforts have focused on vertical integration of one layer on top of another. This task examines 'horizontal' integration of peer devices. To formally reason about communication, we mechanize a process algebra in the Higher Order Logic (HOL) theorem proving system. Using this formalization we show how four types of device interactions can be represented and verified to behave as specified. The report also describes the specification of a system consisting of an AVM-1 microprocessor and a memory management unit which were verified in previous work. A proof of correct communication is presented, and the extensions to the system specification to add a direct memory device are discussed

    Verification-based software-fault detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this work new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    Verification-based Software-fault Detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this dissertation new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Hypersequent Calculi for S5: The Methods of Cut Elimination

    Get PDF
    S5 is one of the most important modal logic with nice syntactic, semantic and algebraic properties. In spite of that, a successful (i.e. cut-free) formalization of S5 on the ground of standard sequent calculus (SC) was problematic and led to the invention of numerous nonstandard, generalized forms of SC. One of the most interesting framework which was very often used for this aim is that of hypersequent calculi (HC). The paper is a survey of HC for S5 proposed by Pottinger, Avron, Restall, Poggiolesi, Lahav and Kurokawa. We are particularly interested in examining different methods which were used for proving the eliminability/admissibility of cut in these systems and present our own variant of a system which admits relatively simple proof of cut elimination

    Dynamic Logic for an Intermediate Language: Verification, Interaction and Refinement

    Get PDF
    This thesis is about ensuring that software behaves as it is supposed to behave. More precisely, it is concerned with the deductive verification of the compliance of software implementations with their formal specification. Two successful ideas in program verification are integrated into a new approach: dynamic logic and intermediate verification language. The well-established technique of refinement is used to decompose the difficult task of program verification into two easier tasks
    • …
    corecore