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HYPERSEQUENT CALCULI FOR S5:

The methods of cut elimination

Abstract. S5 is one of the most important modal logic with nice syntactic,
semantic and algebraic properties. In spite of that, a successful (i.e. cut-free)
formalization of S5 on the ground of standard sequent calculus (SC) was
problematic and led to the invention of numerous nonstandard, generalised
forms of SC. One of the most interesting framework which was very often
used for this aim is that of hypersequent calculi (HC). The paper is a survey
of HC for S5 proposed by Pottinger, Avron, Restall, Poggiolesi, Lahav and
Kurokawa. We are particularly interested in examining different methods
which were used for proving the eliminability/admissibility of cut in these
systems and present our own variant of a system which admits relatively
simple proof of cut elimination.
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1. Introduction

The problem of providing a cut-free sequent calculus for S5 has a long
history. On the ground of standard sequent calculus it was dealt with
by Ohnishi and Matsumoto [24, 25], Sato [30], Mints [21], Fitting [12],
Takano [33] and Braüner [6]. There are also numerous nonstandard
sequent calculi offering some solution to the problem. One can men-
tion here for example: Kanger’s indexed sequent calculus [17] Belnap’s
display calculus (see an exposition in Wansing [34] or [10]), Negri’s la-
belled sequent calculus [22], Indrzejczak’s double sequent calculus [14]
or Stouppa’s nested sequent calculus [31, 32].

Received May 1, 2015. Revised August 17, 2015. Published online August 25, 2015
© 2015 by Nicolaus Copernicus University

http://dx.doi.org/10.12775/LLP.2015.018


278 Kaja Bednarska and Andrzej Indrzejczak

It seems however that the best solutions were offered on the ground of
hypersequent calculi (HC), a generalised form of ordinary sequent calculi
invented independently by Pottinger [28] and Avron [1] who developed
significantly their theory in 90s. The main idea is to define rules on
hypersequents which are (multi)sets of ordinary sequents. Despite of the
simplicity of additional machinery this kind of a proof system proved
to be very useful in providing cut-free formalizations for many nonclas-
sical logics including several many-valued, relevant, and paraconsistent
logics (see in particular: Avron [2, 3]; Baaz, Ciabattoni, and Fermüller
[8]; Metcalfe, Olivetti, and Gabbay [20]; Ciabattoni, Ramanayake, and
Wansing [10]).

Although originally HC was introduced for some modal logics (Pot-
tinger [28]), and despite the popularity of HC in proof theory for non-
classical logics, it was not frequently used in the field of modal logics.
In addition to the variety of HC for S5 which will be dealt in detail
below, one can find only one general treatment in Lahav [19] and the
case studies of some modal logics of relational frames with linear acces-
sibility relation (Indrzejczak [15, 16]), and of some other extensions of
S4 (Kurokawa [18]).

However S5 was dealt with in this framework many times with suc-
cess; at least six different systems were provided, due to Pottinger [28],
Avron [3], Restall [29], Poggiolesi [26], Lahav [19], and Kurokawa [18].
All of them are cut-free but the result is proven by means of different
methods and in some cases only sketched or even just mentioned without
proof. In particular, for Pottinger’s system no proof of cut elimination
theorem was presented so far and we will explain the reason for that.

The aim of the paper is to compare proposed solutions and to focus on
the proofs of cut elimination for these systems. In particular, we present
in detail the proof of cut elimination for Avron’s system and discuss some
of its peculiarities, namely the application of two different forms of cut
(or rather mix) rule1 Then we show in what way this difficulty (i.e., ne-
cessity of using two rules) may be overcome in other systems. Finally we
show that a slight modification of Pottinger’s rules may lead to a system
which admits relatively simple proof of cut elimination theorem. Thus
we provide in fact one more HC for S5 which may be of some interest. It

1 In what follows we will use terms ‘cut’, ‘mix’ in generic sense for covering any
version of these rules; specific cases with suitable individual names will be presented
in Section 5.
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seems that the case study we offer below may be helpfull in finding proofs
of cut elimination for other logics formalised via hypersequent calculi.

2. S5 – Basic Facts

Let us recall the basic facts concerning modal logic S5 in the stan-
dard characterization, i.e., as an axiomatic system adequate with respect
to suitable classes of relational (Kripke) frames. We will use standard
monomodal language with countable set PV of propositional variables, �
– unary modal necessity operator, and ordinary Boolean constants. One
can axiomatize S5 by adding to all (modal) instances of some system of
classical propositional logic the following schemata:

�(α → β) → (�α → �β) (K)

�α → α (T)

�α → ��α (4)

¬�α → �¬�α (5)

and closing under modus ponens and Gödel’s rule:

α α → β

β
(MP)

α

�α
(GR)

Instead of (5) one can use:

¬α → �¬�α (B)

The simplest semantical characterization of S5 may be obtained by
means of Kripke frames without accessibility relation. A model for S5 is
thus any pair M = 〈W, V 〉, where W ia a nonempty set and V : PV −→
P(W ). Satisfaction in a world w of a model M is inductively defined in
the following way:
• w �M α iff w ∈ V (α), for any α ∈ PV,
• w �M ¬α iff w 2M α,
• w �M α ∧ β iff w �M α and w �M β,
• w �W α ∨ β iff w �W α or w �M β,
• w �M α → β iff w 2M α or w �M β,
• w �M �α iff v �M α, for any v ∈ W .
A formula is S5-valid iff it is true in every world of every model.
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3. Basic Hypersequent Calculus

In this paper we define hypersequents as finite multisets of ordinary
Gentzen’s sequents. We will use the following notation:

• Γ and ∆ – for finite multisets of formulae;
• Γ ⇒ ∆ and s – for sequents;
• G and H – for hypersequents;
• G | s or s | G (resp. G | Γ ⇒ ∆ or Γ ⇒ ∆ | G) – for hypersequents

with displayed sequent s (resp. Γ ⇒ ∆);
• �Γ – for finite multisets containing all elements of Γ with added �;
• Γ� – for finite multisets of these elements of Γ which are already

preceded with �.

For example, for Γ = {�p, q,�(r ∧s)} we have Γ� = {�p,�(r ∧s)} and
�Γ = {��p,�q,��(r ∧ s)}.

The calculus HC for CPL (Classical Propositional Logic) consists of
axioms of the form α ⇒ α and the following rules:

Structural rules:

(⇒W)
G | Γ ⇒ ∆

G | Γ ⇒ ∆, α
(W ⇒)

G | Γ ⇒ ∆

G | Γ , α ⇒ ∆

(⇒C)
G | Γ ⇒ ∆, α, α

G | Γ ⇒ ∆, α
(C⇒)

G | Γ , α, α ⇒ ∆

G | Γ , α ⇒ ∆

(EC)
G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆
(EW)

G

G | Γ ⇒ ∆

The first four are internal weakening and contraction rules, whereas the
last two are external ones. In what follows we will use (IC) and (IW) as
shortcuts for applications of internal rules.

Logical rules:

(⇒∧)
G | Γ ⇒ ∆, α G | Γ ⇒ ∆, β

G | Γ ⇒ ∆, α ∧ β

(∧⇒)
G | Γ , α ⇒ ∆

G | Γ , α ∧ β ⇒ ∆

G | Γ , β ⇒ ∆

G | Γ , α ∧ β ⇒ ∆

(⇒∨)
G | Γ ⇒ ∆, β

G | Γ ⇒ ∆, α ∨ β

G | Γ ⇒ ∆, α

G | Γ ⇒ ∆, α ∨ β
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(∨⇒)
G | Γ , α ⇒ ∆ G | Γ , β ⇒ ∆

G | Γ , α ∨ β ⇒ ∆

(⇒→)
G | Γ , α ⇒ ∆, β

G | Γ ⇒ ∆, α → β

(→⇒)
G | Γ ⇒ ∆, α G | Γ , β ⇒ ∆

G | Γ , α → β ⇒ ∆

(⇒¬)
G | Γ , α ⇒ ∆

G | Γ ⇒ ∆, ¬α
(¬⇒)

G | Γ ⇒ ∆, α

G | Γ , ¬α ⇒ ∆

This set of rules is taken from Avron [3]. In particular, all logical rules
are for ∨, ∧, and → are in additive form, except (⇒→) which is multi-
plicative. It is of no special importance but it should be noted that some
of the calculi presented below use other variants of rules. In particular,
one-premiss rules for ∨ and ∧ in multiplicative form (i.e., with both
components present in the premiss) in order to provide invertibility of
all Boolean rules. We will mention these changes when necessary. Modal
rules of several systems will be introduced systematically in Section 4.

A derivation d of a hypersequent G in HC is defined in the usual way
as a tree of hypersequents with G as the root and axioms as leafs.

We extend semantical notions to hypersequents in the following way
for any model M = 〈WM, VM〉:
• w �M Γ ⇒ ∆ iff w �M

∧
Γ →

∨
∆, where

∧
Γ (resp.

∨
Γ) stands

for the conjunction (resp. disjunction) of all elements of Γ ;
• M |= s iff w �M s, for any w ∈ WM;
• M |= G iff there is s ∈ G such that M |= s.
We say that a hypersequent G is valid (in short: |= G) iff M |= G, for
any model M. Note that  as a consequence  we obtain: M 6|= s iff
there is w ∈ WM such that w 2M s; M 6|= G iff M 6|= s, for every s ∈ G;
and at the end 6|= G iff there is a model M such that M 6|= G, i.e., iff
there is M such that for every s ∈ G there is w ∈ WM such that w 2M s.

Lemma 1 (Soundness Lemma). All rules of HC are validity-preserving

in CPL.

We need also a few technical concepts:

Definition 1. The height of a derivation d (in short: h(d)) for our
purposes is defined as the number of hypersequents in the longest branch
of a tree-derivation minus one; formally:
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1. For d = α ⇒ α, h(d) = 0;

2. if d ends with s′

s
and d′ is a derivation of s′, then h(d) = h(d′) + 1;

3. if d ends with s′ s”
s

and d′, d” are derivations of s′ and s” respec-
tively, then h(d) = max(h(d′), h(d”)) + 1.

Definition 2 (Admissibility: height-preserving admissibility). A rule
R is (height-preserving) admissible in a calculus HC iff R satisfies the
following condition:

• if in HC there exist derivations of the premisses of R, then there
is a derivation of the conclusion of R that contains no application
of R (with the height at most n, where n is the maximal height of
derivations of premisses).

Definition 3 (Invertibility: height-preserving invertibility). A rule R is
invertible iff derivability of its conclusion entails dedrivability of its pre-
miss(es) (with the height at most n, where n is the height of a derivation
of the conclusion).

Note that in the set of logical rules displayed above, only the rules
(⇒∧) and (∨⇒) are not invertible.

Definition 4. The complexity of the formula is defined as the number
of logical connectives contained in it.

4. Hypersequent Calculi for S5

The number of different hypersequential calculi proposed for S5 may
seem quite surprising but we will observe a lot of similarities between
them as well. Several HC proposed for nonclassical logics, and in par-
ticular for S5, may be roughly divided into two groups: those that are
more proof-theoretically oriented and those which are more semantically
oriented on actual search of either a proof or a falsifying model.

4.1. Pottinger

The first system was stated very briefly in the half-page long abstract of
Pottinger [28] and, as far as we know, was not presented in full version.
The abstract contains rules of HC for modal logics T, S4, and S5. His
system is based on hypersequents being finite sequences of Gentzen’s
sequents (i.e., built from finite sequences of formulae) rather than finite
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multisets, and his rules are so constructed as to absorb the effect of
structural rules of weakening, contraction and permutation. In particu-
lar, axioms have general form α, Γ ⇒ ∆, α and (∧⇒) is in multiplicative
form, i.e., with all components of the conjunction in the antecedent of
the premiss (disjunction is not considered). These changes do not affect
the structure of specific modal rules and we can present them in the way
suitable for our format. Two modal rules for introduction of � are of
the form:

(�⇒P)
α,�α, Γ ⇒ ∆ | �α, Γ1 ⇒ ∆1 | . . . | �α, Γn ⇒ ∆n

�α, Γ ⇒ ∆ | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

(⇒�
P)

Γ ⇒ ∆ | Γ� ⇒ α | G

Γ ⇒ ∆,�α | G

Both rules are rather semantically oriented on actual search of either a
proof or a falsifying model and in effect are quite redundant.

For example a proof of (K) looks like this, where s is the sequent
� (α → β) ,� (α → β) ,�α,�α ⇒:

s | � (α → β) ,�α, α ⇒ β, α s | � (α → β) ,�α, α, β ⇒ β
(→⇒)

� (α → β) ,� (α → β) ,�α,�α ⇒| � (α → β) ,�α, α → β, α ⇒ β
(�⇒P)

� (α → β) ,�α,�α ⇒| � (α → β) ,�α, α ⇒ β
(�⇒P)

� (α → β) ,�α ⇒ | � (α → β) ,�α ⇒ β
(⇒�

P)
� (α → β) ,�α ⇒ �β

(⇒→)
� (α → β) ⇒ �α → �β

(⇒→)
⇒ � (α → β) → (�α → �β)

The proof of (5) looks like that:

�α ⇒ �α | �α, α ⇒
(�⇒P)

⇒ �α | �α ⇒
(⇒¬)

⇒ �α | ⇒ ¬�α
(⇒�

P)
⇒ �α,�¬�α

(¬⇒)
¬�α ⇒ �¬�α(⇒→)

⇒¬�α → �¬�α

The abstract of Pottinger does not contain any proof; the system is
only claimed to be adequate in cut-free form but it is not known if it
was proved syntactically or semantically. It is easy to prove soundness
of both rules. We demonstrate the proof for (�⇒P) as an example.



284 Kaja Bednarska and Andrzej Indrzejczak

Assume that |= α,�α, Γ ⇒ ∆ | �α, Γ1 ⇒ ∆1 | . . . | �α, Γn ⇒ ∆n

and 6|= �α, Γ ⇒ ∆ | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n. So for some model
M = 〈WM, VM〉 and w0, w1, . . . , wn ∈ W we have w0 2M �α, Γ ⇒ ∆,
w1 2M Γ1 ⇒ ∆1 , . . . , wn 2M Γn ⇒ ∆n. Hence w0 �M �α, which
implies that w �M �α and w �M α, for any w ∈ WM. But this falsifies
all sequents in the premiss and contradicts our assumption.

As for completeness it is easier to prove it semantically by Hintikka-
style argument showing how to construct a falsifying model for failed
proof construction. The structure of modal rules make them not very
suitable for constructing syntactic proof of cut elimination which we will
demonstrate in Section 5.2.

4.2. Avron

The second HC for S5 was constructed by Avron [3] and  in contrast
to Pottinger’s system  it is more proof-theoretically oriented. In fact,
Avron’s general policy in developing unified hypersequential environment
for several nonclassical logics was rather proof-theoretical2 and this ap-
plies also to his HC proposed for S5. The system is based on Ohnishi
and Matsumoto standard sequent system for S4 (see, an exposition in
Zeman [35] or Wansing [34]) and modal introduction rules are just taken
from their system but in the hypersequent shape, i.e.:

(�⇒A)
α, Γ ⇒ ∆ | G

�α, Γ ⇒ ∆ | G
(⇒�

A)
�Γ ⇒ α | G

�Γ ⇒ �α | G

Moreover, Avron introduced a special rule (MS) of modal splitting
which has combined character; it is partly structural but with displayed
multisets of modal formulae:3

(MS)
�Γ , Π ⇒ �∆, Σ | G

�Γ ⇒ �∆ | Π ⇒ Σ | G

In fact, this special rule defined for obtaining cut-free HC for S5 is so
strong that (⇒�

A) may be modified in many ways. One can strengthen

2 See e.g. [3] for an exposition of desiderata for good, semantically-independent
proof system.

3 It may be noticed that (MS) is based on the similar idea as the special rule of
Mints [21] but whereas the latter is defined for standard sequent calculus and destroys
subformula property, Avron’s rule, due to extra machinery of HC, allows for saving
subformula property.
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it and use instead a hypersequent version of suitable rule for S5, i.e., with
�∆ added in the succedent of the premise and conclusion, or weaken it by
replacing with a rule which is sound for K (i.e., with Γ in the antecedent
of the premise) or even to hypersequential version of Gödel’s rule. All
these possible substitutes are listed below:

(⇒�
S5)

�Γ ⇒ �∆, α | G

�Γ ⇒ �∆,�α | G
(⇒�

K)
Γ ⇒ α | G

�Γ ⇒ �α | G

(⇒�
G)

⇒ α | G

⇒ �α | G

Such a system strongly depends on the application of structural rules
of contraction both in internal (standard) and external version. The
proof of (5) is the following:

�α ⇒ �α(¬⇒)
�α, ¬�α ⇒

(MS)
�α ⇒ | ¬�α ⇒

(⇒¬)
⇒ ¬�α | ¬�α ⇒

(⇒�
A)

⇒ �¬�α | ¬�α ⇒
(IW) × 2

¬�α ⇒ �¬�α | ¬�α ⇒ �¬�α
(EC)

¬�α ⇒ �¬�α(⇒→)
⇒ ¬�α → �¬�α

One can also easily show that both rules of Pottinger are derivable
in Avron’s system:

α,�α, Γ ⇒ ∆ | �α, Γ1 ⇒ ∆1 | ... | �α, Γn ⇒ ∆n
(�⇒A)

�α,�α, Γ ⇒ ∆ | �α, Γ1 ⇒ ∆1 | ... | �α, Γn ⇒ ∆n
(C⇒)

�α, Γ ⇒ ∆ | �α, Γ1 ⇒ ∆1 | ... | �α, Γn ⇒ ∆n
(MS) × n

�α, Γ ⇒ ∆ | �α ⇒| Γ1 ⇒ ∆1 | ... | �α ⇒ | Γn ⇒ ∆n
(IW) × n

�α, Γ ⇒ ∆ | �α, Γ ⇒ ∆ | Γ1 ⇒ ∆1 | ... | �α, Γ ⇒ ∆ | Γn ⇒ ∆n
(EC) × n

�α, Γ ⇒ ∆ | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n

Π ⇒ ∆ | �Γ ⇒ α | G
(⇒�

A)
Π ⇒ ∆ | �Γ ⇒ �α | G

(IW)
�Γ , Π ⇒ �α, ∆ | �Γ , Π ⇒ �α, ∆ | G

(EC)
�Γ , Π ⇒ �α, ∆ | G
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Soundness of the rules is easy to demonstrate. Let us take (MS) as
an example. Assume that |= �Γ , Π ⇒ �∆, Σ | G and 6|= �Γ ⇒ �∆ |
Π ⇒ Σ | G. So there are model M = 〈WM, VM〉 and w1, w2 ∈ WM such
that w1 2M �Γ ⇒ �∆, w2 2M Π ⇒ Σ , and for every s ∈ G there is
w ∈ WM such that w 2M s. So ∀�α∈�Γ w1 � �α and ∀�β∈�∆ w1 2 �β,
which implies that it holds for each w ∈ WM, in particular for w2. But
this falsifies �Γ , Π ⇒ �∆, Σ | G, contrary to the assumption.

Avron provided both a semantic proof of completeness and a con-
structive proof of cut elimination theorem but in a very sketchy way. In
Section 5.1 we provide a detailed presentation of it.

4.3. Restall

G. Restall [29] proposed HC for S5 which is based on his system of
proofnets for this logic. It is in a sense the simplest solution to the
problem of providing cut-free system for S5. Essentially the system
applies two rules for introduction of �:

(�⇒R)
α, Γ ⇒ ∆ | G

�α ⇒ | Γ ⇒ ∆ | G
(⇒�

G)
⇒ α | G

⇒ �α | G

Soundness of these rules is easy to demonstrate; let us take (�⇒R)
as an example.

Assume that |= α, Γ ⇒ ∆ | G and 6|= �α ⇒ | Γ ⇒ ∆ | G. So there
are model M = 〈WM, VM〉 and w1, w2 ∈ WM such that w1 �M �α,
w2 2M Γ ⇒ ∆, and for every s ∈ G there is w ∈ WM such that w 2M s.
Hence w2 �M α, which falsifies the premiss. But this is contrary to
assumption.

Additionaly, Restall’s system differs in the selection of structural
rules. Both (IC) rules are primitive but instead of (EC) he applies
the special rule of merge and both external and internal weakening are
combined into a pair of rules:

(Merge)
Γ ⇒ ∆ | Σ ⇒ Π | G

Γ , Σ ⇒ ∆, Π | G

(⇒WE)
G

⇒ α | G
(WE⇒)

G

α ⇒ | G

It is clear that his special weakening rules allow for derivability of
usual (IW) and (EW) rules with the help of (Merge), also (EC) is deriv-
able by means of (Merge) and (IC). On the other hand Restall’s weak-
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ening rules are just special instances of (EC) and (Merge) is derivable by
(IW) and (EC). Hence one can add Restall’s modal rules to our basic
HC without changes to obtain an adequate system for S5. Below we
display proofs of (K) and (5) in his system:

α ⇒ α β ⇒ β
(→⇒)

α → β, α ⇒ β
(�⇒R)

� (α → β) ⇒ | α ⇒ β
(�⇒R)

� (α → β) ⇒ | �α ⇒ | ⇒ β
(⇒�

G)
� (α → β) ⇒ | �α ⇒ | ⇒ �β

(Merge)
� (α → β) ⇒ | �α ⇒ �β

(⇒→)
� (α → β) ⇒ | ⇒ �α → �β

(Merge)
� (α → β) ⇒ �α → �β

(⇒→)
⇒ � (α → β) → �α → �β

α ⇒ α(�⇒R)
�α ⇒ | ⇒ α

(⇒�
G)

�α ⇒ | ⇒ �α
(⇒¬)

⇒ ¬�α | ⇒ �α
(⇒�

G)
⇒ �¬�α | ⇒ �α

(¬⇒)
⇒ �¬�α | ¬�α ⇒

(Merge)
¬�α ⇒ �¬�α(⇒→)

⇒ ¬�α → �¬�α

One can notice that (Merge) is a very handy rule for constructing
more compact proofs as it combines applications of (IW) and (EC); the
reader should for example prove again (5) or (B) in Avron’s system but
using Restall’s structural rules instead.

(⇒�
G) is just Gödel’s rule in hypersequential form and we noticed

before that it is sufficient also for Avron’s system. As for Restall’s
(�⇒R) it looks like an extremaly simplified version of (MS) combined
with Avron’s (�⇒A) hence we can look at Restall’s system as a dras-
tic simplification of Avron’s system keeping only the minimal resources
necessary for adequate characterization of S5. Moreover, Restall’s rules
are better behaving from the standpoint of proving cut elimination. We
will focus on these matters in Section 5.2.

Restall provided also a variant of his system in the spirit of Kleene’s
solution for constructive semantic proof of completeness. In case of rules
for Boolean constants it comprises in repeating principal formulae in
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premises; in case of modals we must repeat the whole sequents which
yields the following rules:

(�⇒R∗

)
�α, Π ⇒ Σ | α, Γ ⇒ ∆ | G

�α, Π ⇒ Σ | Γ ⇒ ∆ | G

(⇒�
R∗

)
Γ ⇒ ∆,�α | ⇒ α | G

Γ ⇒ ∆,�α | G

Note that in this form both rules exhibit rather a semantical character
in contrast to original ones.

4.4. Poggiolesi

Poggiolesi [26] cut-free HS for S5 is more oriented on actual proof/model-
search and her rules are modelled on the behaviour of modal constants
in Kripke frames with universal relation of accessibility. Hence instead
of structural rules the stress is put on logical rules and the system is fully
logical (similarly as Pottinger’s system) in having only logical rules as
primitive. In fact, she needs structural rules like (Merge) for providing
a syntactical proof of cut-elimination; but these are not primitive but
admissible, in contrast to Restall’s system. The price for that is that she
needs two rules for introducing � in the antecedent. One of the rules
for introducing � in the antecedent is just (�⇒R∗

); the remaining two
rules are:

(�⇒P∗

)
α,�α, Γ ⇒ ∆ | G

�α, Γ ⇒ ∆ | G
(⇒�

P∗

)
Γ ⇒ ∆ | ⇒ α | G

Γ ⇒ ∆,�α | G

The rule (�⇒P∗

) is a variant of suitable Avron’s rule but with �α

saved in the antecedent of the premise for absorbing the effect of contrac-
tion. The rule (⇒�

P∗

) is like (⇒�
R∗

) but with no repetition of �α in the
premiss. It is evident from the shape of rules that semantical process of
creating new worlds (via (⇒�

P∗

)) and their saturation with necessary
formulae taken from other worlds is separated and admits systematic
model construction.4 There are also some minor changes in the basic
HC for CPL. As we mentioned there are no primitive structural rules,
axioms are of the form Γ , p ⇒ p, ∆ | G and one-premiss rules for ∧ and
∨ are multiplicative in order to satisfy invertibility of all logical rules.

4 Similar idea was applied, e.g. in Indrzejczak [14] where instead of hyperse-
quents a double sequents apparatus was applied to obtain cut-free system for S5; see
Poggiolesi [27] for discussion of possible translations of several solutions.
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The proof of (5) looks like that:

⇒| α ⇒ α | �α ⇒
(�⇒R∗

)
⇒ | ⇒ α | �α ⇒

(⇒�
P∗

)
⇒ �α | �α ⇒

(⇒¬)
⇒ �α | ⇒ ¬�α

(⇒�
P∗

)
⇒ �α,�¬�α

(¬⇒)
¬�α ⇒ �¬�α(⇒→)

⇒¬�α → �¬�α

The comparison with Restall’s system, particularly in his second vari-
ant is very instructive. At first one can suspect that Restall’s rules are
insufficient but this is not true. One can derive (�⇒P∗

) in his system in
the following way:

α,�α, Γ ⇒ ∆ | G
(�⇒R)

�α ⇒ | �α, Γ ⇒ ∆ | G
(Merge)

�α,�α, Γ ⇒ ∆ | G
(C⇒)

�α, Γ ⇒ ∆ | G

This may lead to the question if Poggiolesi’s system is not redundant.
No, it is not since it has no structural rules as primitive. Her system in
the most direct way encodes semantical features of S5 in terms of syn-
tactical rules for modals. Moreover, despite of its semantical motivation,
it allows for very elegant syntactic proof of admissibility of cut along the
lines of Dragalin’s proof. We will sketch it in Section 5.2.

One may consider if we can avoid apparent inelegancy of having two
rules for introduction of (� into antecedent in the system. It seems that
using Pottinger’s rule (�⇒P) which combines the features of both Pog-
giolesi’s rules may work. Unfortunately if we make this change the proof
of height-preserving admissibility of (Merge) fails. Hence we must have
(Merge) (or (EC)) as primitive rule(s), similarly as in Restall’s system.

4.5. Lahav

Lahav [19] presents a general method for generating hypersequent rules
from some frame conditions. His basic system for K is defined on se-
quents built from sets so contraction is implicit but both (IW) and (EW)
are primitive. The only modal rule is:

(⇒ �
K)

G | Γ ⇒ α

G | �Γ ⇒ �α
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In particular, his solution for S5 is based on the addition of the
following rule encoding the property of universality:

(U)
Γ , Π ⇒ ∆ | G

Λ,�Π ⇒ Σ | Γ ,�Ξ ⇒ ∆ | G

One can prove (5) in the following way:

α ⇒ α(U)
�α ⇒ | ⇒ α

(⇒¬)
⇒ ¬�α | ⇒ α

(⇒ �
K)

⇒ ¬�α | ⇒ �α
(⇒ �

K)
⇒ �¬�α | ⇒ �α

(¬ ⇒)
⇒ �¬�α | ¬�α ⇒

(IW)
¬�α ⇒ �¬�α | ¬�α ⇒ �¬�α

(EC)
¬�α ⇒ �¬�α(⇒→)

⇒ ¬�α → �¬�α

There is no syntactic proof of cut admisibility; all adequacy proofs
are semantical. Closer inspection shows that Lahav’s specific rule for S5

may be seen as a (weaker) variant of (MS) with additional deletion of
� in elements of Π in the premiss. In fact (U) may be easily derived in
Avron’s system:

Γ , Π ⇒ ∆ | G
(� ⇒)

Γ ,�Π ⇒ ∆ | G
(MS)

�Π ⇒ | Γ ⇒ ∆ | G
(IW)

Λ,�Π ⇒ Σ | Γ ,�Ξ ⇒ ∆ | G

To derive Avron’s rules in Lahav’s system we need to use cut, which
is interpreted by the author as showing that his system is in a sense
stronger as it implies the admissibility of cut in Avron’s calculus. Note
that the qualification of this rule as a weaker version of (MS) is not
connected with the lack of � in front of elements of Π in the premiss
but with the fact that only boxed formulae from the antecedent (of one
of the sequent in the conclusion) are put in the antecedent of the premiss
(without boxes however). In the next subsection we will explain what
advantages follow from such modification.
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4.6. Kurokawa

Recently a paper [18] of Kurokawa shows HC for some extensions of S4

including S5. His basic system is then exactly like Avron’s calculus but
instead of (MS) he is using its weaker version:

(MSK)
�Γ , Π ⇒ Σ | G

�Γ ⇒ | Π ⇒ Σ | G

In contrast to Lahav’s rule (U) we can observe immediately in what
sense it is a weaker version of (MS). One should check again the proof of
(5) in Avron’s system to see that the omission of boxed formulae in the
succedent of the premiss and (one of the) conclusion sequent makes no
harm. Below we put a proof of (B) to show that such a solution works:

α ⇒ α(� ⇒)
�α ⇒ α(¬⇒)
�α, ¬α ⇒

(MSK)
�α ⇒ | ¬α ⇒

(⇒¬)
⇒ ¬�α | ¬α ⇒

(⇒�
A)

⇒ �¬�α | ¬α ⇒
IW × 2

¬α ⇒ �¬�α | ¬α ⇒ �¬�α
(EC)

¬α ⇒ �¬�α(⇒→)
⇒ ¬α → �¬�α

Kurokawa proves eliminability of cut for his system using a general
method of cut elimination for HC proposed first in Metcalfe, Olivetti,
and Gabbay [20] for fuzzy logics and applied in Ciabattoni, Metcalfe, and
Montagna [9] and in Indrzejczak [16] to some modal logics. In the next
section we will explain in what way the modification of (MS) makes HC
for S5 better behaving with respect to syntactic proofs of cut elimination.

Summing up our observations one may notice that there are two kinds
of HC systems for S5. An approach of Pottinger, characteristic also
for Restall’s and Poggiolesi’s system consists in providing special modal
rules introducing � just for S5 on the basis of HC for CPL. On the
other hand, the approach of Avron, characteristic also for Kurokawa and
Lahav, builds the system for S5 by means of a special quasi-structural
rule added to HC system which is already equipped with for modal
rules introducing � adequate for S4 or even K. In general, Pottinger’s
approach is semantically oriented and Avron’s approach is syntactically
oriented, but one should note that Restal’s system has also syntactical
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character, whereas Lahav’s characteristic rule is obtained by means of
translation from semantical condition.

5. Cut Elimination

A lot of different methods for proving cut elimination/admissibility in
the framework of HC was offered so far. Some syntactical proofs of cut
admissibility (elimination) for HC are performed by means of suitable
technique for tracing the cut-formula through a proof (see e.g. the “his-
tory technique” of Avron [1] or the “decoration technique” of Baaz and
Ciabattoni [7]); these were not applied to HC for S5 and we will not
discuss them below.

Another strategy is based on the application of a special multicut
version suitable for hypersequents (see e.g. Avron [2]). We will present
in detail the version from Avron [3] in Section 5.1.

An original proof of cut elimination for hypersequent formalization of
S5 was provided by Poggiolesi [27] which is based on Dragalin’s method
(as presented e.g. in Negri and von Plato [22]) and avoids both solu-
tions. It requires (mostly) invertible rules which makes possible to avoid
contraction as a primitive rule.

Very general and elegant method of proving cut elimination in the
presence of contraction for numerous fuzzy logics was presented in Met-
calfe, Olivetti, and Gabbay [20]. The method is in some sense a half-way
between original Gentzen’s proof of cut elimination and proofs based on
global transformations of derivations like in Curry [11]. In contrast to
Gentzen’s proof we eliminate cut rule, not multicut (or Mix) being its
generalization absorbing contraction. But the proof is strongly based
on the predefined notion of “substitutivity” of rules where the result of
multiple applications of cut is absorbed. The adaptation of this method
of proving cut elimination to extensions of t-norm logic MTL and related
fuzzy logics with truth stresser modalities was provided by Ciabattoni,
Metcalfe and Montagna [9]. This proof is particularly important since
it deals with rules which are not “substitutive” in the sense of [20] and
modal rules of Kurokawa are also of this kind which makes possible an
application of this strategy to his system for S5.

In order for easier comparison of different strategies let us distinguish
between different forms of cut encountered in the framework of HC. The
most direct adaptation of a standard (multiplicative) cut is (H-Cut):
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(H-Cut)
G | Γ ⇒ ∆, α H | α, Σ ⇒ Π

G | H | Γ , Σ ⇒ ∆, Π

As is well known in order to deal with the application of contraction,
Gentzen introduced instead a rule Mix which allows for cutting all occur-
rences of suitable formula in one step. Its hypersequential counterpart
is (H-Mix):

(H-Mix)
G | Γ ⇒ ∆, [α]λ H | [α]µ, Σ ⇒ Π

G | H | Γ , Σ ⇒ ∆, Π

where λ and µ are used to denote the number of occurrences of ϕ. We
tacitly assume that there is no other occurrences of ϕ in ∆ and Σ .

Similarly as in the standard sequent calculus both rules are equivalent
in the presence of weakening and contraction, we thus have:

Lemma 2. G is provable in HC with (H-Cut) iff G is provable in HC
with (H-Mix).

One can also consider a hypersequent version of Multicut rule which
allows for cutting more then one occurrence of some formula but, in
contrast to Mix, not necessarily all. Clearly this version is also equivalent
to the version with (H-Cut).

In HC we can have also rules like (EC) or (Merge) as primitive which
introduces additional complications. In order to deal with them Avron
introduced yet more general version of (H-Mix), which we call here (SH-
Mix) (‘S’ for strong):

(SH-Mix)

G | Γ1 ⇒ ∆1 , [α]λ1 | ... | Γn ⇒ ∆n , [α]λn H | [α]µ1 , Σ1 ⇒ Π1 | ... | [α]µk , Σk ⇒ Πk

G | H | Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk

In this way we can cut not only multiple occurrences of a formula in
one sequent of a premise but in many sequents in one step. If we do not
require deletion of [α] in all sequents we can call it (SH-Multicut).

Note that in case of these rules the situation is a bit different with
respect to their strength; we have:

Lemma 3. If G is provable in HC with (SH-Mix), then G is provable in

HC with (H-Cut).

Proof. In order to simulate an application of (SH-Mix) with (H-Cut)
it is enough to apply successively (IW), (EC), and (IC) to each premise.
This way from the left premiss G | Γ1 ⇒ ∆1 , [α]λ1 | . . . | Γn ⇒ ∆n, [α]λn
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we obtain G | Γ1 , . . . , Γn ⇒ ∆1 , . . . ∆n, α, and similarly for the right
premiss. From these hypersequents the result of the application of (SH-
Mix) follows by (H-Cut). ⊣

However, not every application of (H-Cut) may be simulated by (SH-
Mix). In order to have equal strength of rules we must rather use (SH-
Multicut) since in this case (H-Cut) is just a special case of it and we
obtain:

Lemma 4. G is provable in HC with (H-Cut) iff G is provable in HC

with (SH-Multicut).

Let us notice that from the proof of cut elimination in Kurokawa’s
system yet another rule (or rather a pair of rules) may be extracted
which we call (WH-Mix) (‘W’ for weak):

(WH-Mix)

G | Γ ⇒ ∆, α H | [α]µ1 , Σ1 ⇒ Π1 | . . . | [α]µk , Σk ⇒ Πk

G | H | Γµ1 , Σ1 ⇒ Π1 , ∆µ1 | . . . | Γµk , Σk ⇒ Πk, ∆µk

G | Γ1 ⇒ ∆1 , [α]λ1 | . . . | Γn ⇒ ∆n, [α]λn H | α, Σ ⇒ Π

G | H | Σλ1 , Γ1 ⇒ ∆1 , Π λ1 | . . . | Σλn , Γn ⇒ ∆n, Π λn

and again in the version which does not require deletion of [α] in all
sequents of one of the premisses we can call it (WH-Multicut). The
relations between these rules and (H-Cut) are the same as in case of
(SH-Mix) and (SH-Multicut).

Because of the defficiences of different versions of Mix stated above,
in what follows we prefer to use corresponding Multicut rules which are
strictly equivalent to ordinary cut. We start with a detailed presentation
of Avron’s proof.

5.1. Avron’s proof

The most interesting point with Avron’s rules is that despite the gener-
alization of (H-Mix) to (SH-Mix) to deal with (EC) he was still unable
to prove syntactic proof of cut elimination. Let us look at the following
figure:

G | Γ ,�Π ⇒ ∆,�Σ ,�α
(MS)

G | Γ ⇒ ∆ | �Π ⇒ �Σ ,�α H | �α, Λ ⇒ Θ
(SH−Multicut)

G | H | Γ ⇒ ∆ | �Π , Λ ⇒ �Σ , Θ
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where we assume that Λ and Θ consist of nonmodal formulae and that
�α does not belong to ∆. If we want to reduce the height of (SH-
Multicut) we obtain:

G | Γ ,�Π ⇒ ∆,�Σ ,�α H | �α, Λ ⇒ Θ
(SH−Multicut)

G | H | Γ ,�Π , Λ ⇒ ∆,�Σ , Θ
(MS)

G | H | Γ , Λ ⇒ ∆, Θ | �Π ⇒ �Σ

From the last hypersequent we have no way to obtain the last se-
quent of the original proof. In order to deal with the problem Avron
restricted the application of (SH-Mix) (or rather (SH-Multicut)) to non-
modal formulae and introduced one more special form of mix for cutting
boxed formulae which we call (BSH-Mix) (resp. (BSH-Multicut)) (‘B’
for boxed):

(BSH-Multicut)

G | Γ1 ⇒ ∆1 , [�α]λ1 | ... | Γn ⇒ ∆n , [�α]λn H | [�α]µ1 , Σ1 ⇒ Π1 | ... | [�α]µk , Σk ⇒ Πk

G | H | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

As we can observe the additional rule follows rather the schema of (WH-
Mix) or (WH-Multicut) in keeping sequents from premisses still isolated.
However one can easilly check that this rule is sound only for S5 hence
it cannot be used in general as an admissible form of cut for HC.

Strictly speaking, Avron did not introduce (BSH-Mix) (or even (SH-
Mix)) as special rules but rather demonstrate the admissibility of (H-
Cut) by means of more general theorem where both forms of Mix are
involved in the induction hypothesis. However it seems to be most
transparent to define a special HC calculus with both rules explicitly
formulated. We follow in this respect the form of presentation of HC for
Gödel logics in Baaz, Ciabattoni and Fermüller [8].

Let us call HC2S5 a system of Avron with both forms of Multicut,
i.e. (SH-Multicut) and (BSH-Multicut), whereas the system of Avron
with nonrestricted applications of (SH-Multicut) is called just HCS5.
For brevity we will use names (SHM) and (BSHM) in proof figures. We
will show:

Theorem 1. G is provable in HCS5 iff G is provable in HC2S5.

Proof. From left to right it is enough to show that any application of
(SH-Multicut) with modal formula as cut-formula may be simulated by
(BSH-Multicut). It works like that, where ∗ is (BSH-Multicut):
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G | Γ1 ⇒ ∆1 , [�α]λ1 | . . . | Γn ⇒ ∆n, [�α]λn H | [�α]µ1 , Σ1 ⇒ Π1 | . . . | [�α]µk , Σk ⇒ Πk
∗

G | H | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n | Σ1 ⇒ Π1 | . . . | Σk ⇒ Πk
IW, EC

G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

From right to left it is sufficient to show that every application of
(BSH-Multicut) may be simulated by (SH-Multicut). It looks like that:

G | Γ1 ⇒ ∆1 , [�α]λ1 | ... | Γn ⇒ ∆n, [�α]λn

(MS)
G | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | ⇒ [�α]λ1 | ... | ⇒ [�α]λn

(†)

(‡)
(SHM)

G | H | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n | ⇒ | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
(IW)

G | H | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
(EC)

G | H | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

where (†)
(‡) is:

H | [�α]µ1 , Σ1 ⇒ Π1 | . . . | [�α]µk , Σk ⇒ Πk
(MS) × n

H | [�α]µ1 ⇒ | . . . | [�α]µk ⇒ | Σ1 ⇒ Π1 | . . . | Σk ⇒ Πk

⊣

In proofs of cut elimination dealing with Mix usually a subsidiary
induction is on the rank of a Mix, a parameter introduced by Gentzen in
his original proof. Avron is not very precise in his original presentation
but he claims that the proof is by induction on the height. In fact
it was shown by Girard [13] how to provide such a proof for ordinary
sequent calculus with Mix hence below we will adapt this method to HC.
It has the advantage that rank is a more complicated measure already
for ordinary SC and its adaptation to hypersequent calculi encounters
further difficulties whereas such a measure like height is generally simple.
Hence we provide the proof of admissibility of cut by induction on the
complexity of cut-formula and the height of the premisses of applied
Multicut.

Theorem 2. Cut admissibility holds for HC2S5, and hence HCS5.

The proof is by induction on the complexity of cut-formula α and the
sum of heights of proofs of both premisses of (SH-Multicut) (or (BSH-
Multicut)). We divide it into three main parts:
1. at least one premiss is an axiom;
2. in at least one premiss all occurrences of cut-formula are parametric;
3. in both premisses cut-formula is principal.
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Ad 1. If at least one premiss is an axiom, we have two situations:
(a) α is nonmodal:

α ⇒ α [α]
λ1 , Γ1 ⇒ ∆1 | . . . | [α]λn , Γn ⇒ ∆n | H

(SHM)
α, Γ1 ..., Γn, ⇒ ∆1 , ..., ∆n | H

and the conclusion follows from the right premiss by (IW), (EC), (IC).
(b) When α = �β:

�β ⇒ �β [�β]
λ1 , Γ1 ⇒ ∆1 | ... | [�β]λn , Γn ⇒ ∆n | H

(BSHM)
�β ⇒| Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | H

and the conclusion follows from the right premiss by n applications of
(MS) followed by (EC) and (IC). Cases of axiomatic right premisses are
dual.

Ad 2. If in at least one premiss all occurrences of α are parametric,
then we apply reduction on the height of this premiss. Below we consider
some cases as examples.

(a) Let the last rule be (EC) in the left premiss. Assume that α is
nonmodal:

G | Γ1 ⇒ ∆1 , [α]λ1 | . . . | Γn ⇒ ∆n, [α]λn | Γn ⇒ ∆n, [α]λn

(EC)
G | Γ1 ⇒ ∆1 , [α]

λ1 | . . . | Γn ⇒ ∆n, [α]
λn (⋆)

(SHM)
G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

where
(⋆) is H | [α]µ1 , Σ1 ⇒ Π1 | . . . | [α]µk , Σk ⇒ Πk.

We reduce the height on the left obtaining:

G | Γ1 ⇒ ∆1 , [α]
λ1 | . . . | Γn ⇒ ∆n, [α]

λn | Γn ⇒ ∆n, [α]
λn (⋆)

(SHM)
G | H | Γ1 , . . . , Γn, Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, ∆n, Π1 , . . . , Πk

(IC)
G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

If α is modal, then we apply (BSHM) and after transformation we
must use (EC) instead.

(b) Let us consider (MS) with α not modal:

G | �Γ , Γ1 ⇒ �∆, ∆1 , [α]
λ1 | . . . | Γn ⇒ ∆n, [α]

λn

(MS)
G | �Γ ⇒ �∆ | Γ1 ⇒ ∆1 , [α]λ1 | . . . | Γn ⇒ ∆n, [α]λn (⋆)

(SHM)
G | H | �Γ ⇒ �∆ | Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk

which after transformation looks like that:
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G | �Γ , Γ1 ⇒ �∆, ∆1 , [α]
λ1 | . . . | Γn ⇒ ∆n, [α]

λn (⋆)
(SHM)

G | H | �Γ , Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ �∆, ∆1 , . . . , ∆n, Π1 , . . . , Πk
(MS)

G | H | �Γ ⇒ �∆ | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

If cut-formula is modal:

G | �Γ , Γ1 ⇒ �∆, ∆1 , [�α]λ1 | ... | Γn ⇒ ∆n, [�α]λn

(MS)
G | �Γ ⇒ �∆, [�α]λ1 | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n , [�α]λn (⋆⋆)

(BSHM)
G | H | �Γ ⇒ �∆ | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

where

(⋆⋆) is H | [�α]µ1 , Σ1 ⇒ Π1 | . . . | [�α]µk , Σk ⇒ Πk.

and after transformation:

G | �Γ , Γ1 ⇒ �∆, ∆1 , [�α]λ1 | ... | Γn ⇒ ∆n, [�α]λn (⋆⋆)
(BSHM)

G | H | �Γ , Γ1 ⇒ �∆, ∆1 | ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
(MS)

G | H | �Γ ⇒ �∆ | Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

In the case of other structural and logical rules transformations are
similar and require no more than a permutation of respective rule with
(SHM) or (BSHM). For illustration we consider the situation when the
main formula is modal.

(c) Consider the application of (� ⇒) on the left with α non-modal:

G | β, Γ1 ⇒ ∆1 , [α]λ1 | . . . | Γn ⇒ ∆n, [α]λn

(� ⇒)
G | �β, Γ1 ⇒ ∆1 , [α]

λ1 | . . . | Γn ⇒ ∆n, [α]
λn (⋆)

(SHM)
G | H | �β, Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

which transforms to:

G | β, Γ1 ⇒ ∆1 , [α]λ1 | . . . | Γn ⇒ ∆n, [α]λn (⋆)
(SHM)

G | H | β, Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk
(� ⇒)

G | H | �β, Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒, ∆1 , . . . , ∆n, Π1 , . . . , Πk

in case α is modal the only difference is that (BSHM) is applied.

(d) Consider the application of (⇒�). If it is performed on the
left, then the active sequent belongs just to the context G, since the
succedent must contain only the main formula. Hence we consider the
situation with the rule applied on the right and with cut-formula being
some modal formula in the antecedent of active sequent:
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(⋆⋆⋆)

H | [�α]µ1 ,�Σ1 ⇒ β | . . . | [�α]µk , Σk ⇒ Πk
(⇒�)

H | [�α]µ1 ,�Σ1 ⇒ �β | . . . | [�α]µk , Σk ⇒ Πk
(BSHM)

G | H | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n | �Σ1 ⇒ �β | . . . | Σk ⇒ Πk

where

(⋆⋆⋆) is G | Γ1 ⇒ ∆1 , [�α]λ1 | . . . | Γn ⇒ ∆n, [�α]λn

which after transformation looks like this:

(⋆⋆⋆) H | [�α]µ1 ,�Σ1 ⇒ β | . . . | [�α]µk , Σk ⇒ Πk
(BSHM)

G | H | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n | �Σ1 ⇒ β | . . . | Σk ⇒ Πk
(⇒�)

G | H | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n | �Σ1 ⇒ �β | . . . | Σk ⇒ Πk

Ad 3. The hardest cases appear if the premises of (SHM) or (BSHM)
were introduced by logical rule and the main formula in both premises
is cut-formula. We consider four cases as examples:

(a) The cut-formula α = ¬β

G | Γ1 , β ⇒ ∆1 , [α]
λ1−1

| . . . | Γn ⇒ ∆n, [α]
λn

(⇒¬)
G | Γ1 ⇒ ∆1 , [α]

λ1 | . . . | Γn ⇒ ∆n, [α]
λn

(∗)

(∗∗)
(SHM)

G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

where
(∗) is H | [α]µ1−1, Σ1 ⇒ β, Π1 | . . . | [α]µk , Σk ⇒ Πk ,

(∗∗) is H | [α]µ1α, Σ1 ⇒ Π1 | . . . | [α]µk , Σk ⇒ Πk

Now we perform two applications of (SHM) of lower height obtaining
two proofs dl and dr.

dl has the form:

(SHM)

G | Γ1 , β ⇒ ∆1 , [α]λ1−1 | ... | Γn ⇒ ∆n , [α]λn H | [α]µ1 α, Σ1 ⇒ Π1 | ... | [α]µk , Σk ⇒ Πk

G | H | Γ1 , ..., Γn , β, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk

dr has the form:
(SHM)

G | Γ1 ⇒ ∆1 , [α]λ1 | ... | Γn ⇒ ∆n , [α]λn H | [α]µ1−1, Σ1 ⇒ β, Π1 | ... | [α]µk , Σk ⇒ Πk

G | H | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , β, Π1 , ..., Πk

The last Multicut is made on the formula β with lower complexity
than α. In all cases when considered is a formula with lower complexity
it is necessary to distinguish the cases in which it is modal or not.

The first case, β is not modal formula: see (I) on page 301. The sec-
ond case, β is modal formula: see (II) on page 301. This way the original
application of (SHM) is replaced with three new ones; the first and the
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second with (SHM) of lower height, and the third of lower complexity
which means that all are eliminable by induction hypotheses.

(b) The cut-formula α = β ∧ γ: Our application of (SHM) is of the
form:

dl dr(SHM)
G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

where branch dl has the form (III) on page 301 and branch dr has the
form:

H | [α]µ1−1
, β, Σ1 ⇒ Π1 | ... | [α]µk , Σk ⇒ Πk

H | [α]µ1 , Σ1 ⇒ Π1 | ... | [α]µk , Σk ⇒ Πk

Again first we perform (SHM) twice, both of lower height, obtaining
two new proofs: the branch dl1 has the form (IV) on page 301 and the
branch dr1 has the form (V) on page 301.

Now we must cut out β. First, for the case when it is not modal see
(VI) on page 302. Second, for the case when the mix formula is modal
see (VII) on page 302.

(c) The cut-formula α = β → γ. Our application of (SHM) is of the
form:

dl dr(SHM)
G | H | Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk

where the branch dl has the form:

G | Γ1 , β ⇒ γ, ∆1 , [α]
λ1−1

| ... | Γn ⇒ ∆n, [α]
λn

G | Γ1 ⇒ ∆1 , [α]
λ1 | ... | Γn ⇒ ∆n, [α]

λn

and the branch dr has the form (VIII) on page 302.
Now we must perform first three cross-cuts reducing height.
The branch dl1 has the form (IX) on page 302. The branch dr1

has the form (X) on page 302. The branch dr2 has the form (XI) on
page 303.

Now we must cut out all appearances of β and γ taking into account
if they are modal or not.

First, for the case when both formulas β and γ are not modal see
(XII) on page 303. Second, for the case when β is modal and γ not see
(XIII) on page 303.

Proof for modal γ and not modal β is analogical, as well as the last
case when both formulas are modal.

(d) The cut-formula α = �β. Our application of (BSHM) looks like
as (XIV) on page 303.
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(I)

dr dl(SHM)
G | G | H | H | Γ1 , Γ1 , . . . , Γn, Γn, Σ1 , Σ1 , . . . , Σk , Σk ⇒ ∆1 , ∆1 , . . . , ∆n, ∆nΠ1 , Π1 , . . . , ΠkΠk

(EC), (IC)
G | H | Γ1 , . . . , Γn, Σ1 , . . .Σk , ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

(II)

dl dr
(BSHM)

G | G | H | H | Γ1 , . . . , Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk | Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk
(EC)

G | H | Γ1 , . . . , Γn , Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

(III)

G | Γ1 ⇒ ∆1 , [α]
λ1−1

, β | . . . | Γn ⇒ ∆n, [α]
λn G | Γ1 ⇒ ∆1 , [α]

λ1−1
, γ | . . . | Γn ⇒ ∆n, [α]

λn

G | Γ1 ⇒ ∆1 , [α]
λ

| . . . | Γn ⇒ ∆n, [α]
λn

(IV)

G | Γ1 ⇒ ∆1 , [α]λ1−1
, β | . . . | Γn ⇒ ∆n, [α]λn H | [α]µ1 , Σ1 ⇒ Π1 | . . . | [α]µk , Σk ⇒ Πk

(SHM)
G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk , β

(V)

G | Γ1 ⇒ ∆1 , [α]
λ

| ... | Γn ⇒ ∆n, [α]
λn H | [α]

µ1−1
, β, Σ1 ⇒ Π1 | ... | [α]

µk , Σk ⇒ Πk
(SHM)

G | H | β, Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk
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(VI)

dl1 dr1
(SHM)

G | G | H | H | Γ1 , Γ1 , . . . , Γn, Γn, Σ1 , Σ1 , . . . , Σk , Σk ⇒ ∆1 , ∆1 , . . . , ∆n, ∆n, Π1 , Π1 , . . . , Πk, Πk
(EC), (IC)

G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

(VII)

dl1 dr1
(BSHM)

G | G | H | H | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk | Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk
(EC)

G | H | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk

(VIII)

H | [α]
µ1−1

, Σ1 ⇒ Π1 , β | . . . | [α]
µk , Σk ⇒ Πk H | γ, [α]

µ1−1
, Σ1 ⇒ Π1 , | . . . | [α]

µk , Σk ⇒ Πk

H | [α]
µ1 , Σ1 ⇒ Π1 , , | . . . | [α]

µk , Σk ⇒ Πk

(IX)

G | Γ1 , β ⇒ γ, ∆1 , [α]λ1−1 | . . . | Γn ⇒ ∆n, [α]λn H | [α]µ1 , Σ1 ⇒ Π1 , | . . . | [α]µk , Σk ⇒ Πk
(SHM)

G | H | Γ1 , . . . , Γn, Σ1 , . . . , Σk , β ⇒ γ, ∆1 , . . . , ∆n, Π1 , . . . , Πk

(X)

G | Γ1 ⇒ ∆1 , [α]
λ1 | ... | Γn ⇒ ∆n, [α]

λn H | [α]
µ1−1

, Σ1 ⇒ Π1 , β | ... | [α]
µk Σk ⇒ Πk

(SHM)
G | H | G | H | Γ1 , ..., Γn, Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n, Π1 , ..., Πk, β



H
y

p
e
r

s
e
q

u
e
n

t
c

a
l
c

u
l
i

f
o

r
S

5
303

(XI)

G | Γ1 ⇒ ∆1 , [α]
λ1 | . . . | Γn ⇒ ∆n, [α]

λn H | γ, [α]
µ1−1

, Σ1 ⇒ Π1 | . . . | [α]
µk , Σk ⇒ Πk

(SHM)
G | H | γ, Γ1 , . . . , Γn, Σ1 , . . . , Σk ⇒ ∆1 , . . . , ∆n, Π1 , . . . , Πk

(XII)

dr1 dl1
(SHM)

G | G | H | H | Γ1 , Γ1 , ..., Γn, Γn , Σ1 , Σ1 , ..., Σk, Σk ⇒ γ, ∆1 , ∆1 , ..., ∆n , ∆n , Π1 , Π1 , ..., Πk, Πk
(IC), (EC)

G | H | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ γ, ∆1 , ..., ∆n , Π1 , ..., Πk dr2
(SHM)

G | G | H | H | Γ1 , Γ1 , ..., Γn, Γn , Σ1 , Σ1 , ..., Σk, Σk ⇒ ∆1 , ∆1 , ..., ∆n , ∆n , Π1 , Π1 , ..., Πk, Πk
(IC), (EC)

G | H | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk

(XIII)

dl1 dr1
(BSHM)

G | G | H | H | Γ1 , ..., Γn , Σ1 , ..., Σk , ⇒ γ, ∆1 , ..., ∆n , Π1 , ..., Πk | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk ,
EC, IW

G | H | Γ1, ..., Γn, Σ1 , ..., Σk, ⇒ γ, ∆1 , ..., ∆n , Π1 , ..., Πk dr2
(SHM)

G | G | H | H | Γ1 , Γ1 , ..., Γn, Γn , Σ1 , Σ1 , ..., Σk , Σk ⇒ ∆1 , ∆1 , ..., ∆n , ∆n , Π1 , Π1 , ..., Πk , Πk

IC, EC
G | H | Γ1 , ..., Γn , Σ1 , ..., Σk ⇒ ∆1 , ..., ∆n , Π1 , ..., Πk

(XIV)

G | �Γ1 ⇒ β | ... | Γn ⇒ ∆n, [α]
λn

(⇒�)
G | �Γ1 ⇒ α | ... | Γn ⇒ ∆n, [α]

λn

H | [α]
µ1−1

, β, Σ1 ⇒ Π1 | ... | [α]
µk , Σk ⇒ Πk

(� ⇒)
H | [α]

µ1 , Σ1 ⇒ Π1 | [α]
µk , Σk ⇒ Πk

(BSHM)
G | H | �Γ1 ⇒| ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
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Again we start with cross-cuts of reduced height. dl1 has the form
(XV) on page 305 and dr1 has the form (XVI) on page 305.

Now we cut out β. For the case when β is not modal see (XVII) on
page 305. For the case when β is modal see (XVIII) on page 305.

5.2. Pottinger’s system revisited

The original proof of Avron for his system is rather involved; it requires
strong form of Multicut and, moreover, in two forms which leads to
multiplication of subcases to consider. One may ask: (a) if it is not
possible to deal with only one version of cut; (b) if it is not possible to
obtain a proof showing directly elimination or admissibility of (H-Cut)?
In fact three such proofs were offered which we will comment on briefly.

As for reduction of the system to having only one rule the key point
is that the reduction step for (SHM) fails because (MS) is introducing
boxed formula on both sides of the new sequent in the conclusion (see
e.g. from the beginning of Section 5.1). But one can easily notice that
in order to prove (5) or (B) we do not need so strong form of (MS). In
Kurokawa [18] (and similarly in Lahav [19]) a weaker version is used
which operates only on the antecedent. For a system with such a rule a
special (BSHM) is not required. Original proof of Kurokawa is performed
for (WH-Mix) according to the lines of the proof from [9].

Restall [29] provided a proof which applies the global strategy of
elimination of cuts in the proof, introduced by Curry [11] and refined by
Belnap [5] in the context of display calculus. In general such proofs are
based on the ‘big’ transformation of the whole parts of proofs instead of
local ‘small’ reductions. The solution of Restall is based on the fact that
all rules of the system (including modal ones and (Merge)) are regular
in the sense of allowing unrestricted permutation with cuts performed
on parametric formulae. It is an elegant solution but shown in a very
sketchy way which leaves some essential points of necessary transfor-
mations open. It seems however that the application of Curry’s solution
based on inductive definition of the set of ancestors of respective sequent
may be adapted here.

Poggiolesi [27] proposed a proof based on Dragalin’s strategy which is
of local character. In her system (Merge) is height-preserving admissible
which simplifies further steps in essential way. We do not enter into
details since the proof is described in [27] in an exact way, so we only
sketch it. First of all Poggiolesi must prove that axioms in atomic form
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(XV)

G | �Γ1 ⇒ β | ... | Γn ⇒ ∆n, [α]λn H | [α]µ1 , Σ1 ⇒ Π1 | ... | [α]µk , Σk ⇒ Πk
(BSHM)

G | H | �Γ1 ⇒ β | ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

(XVI)

G | �Γ1 ⇒ α | ... | Γn ⇒ ∆n, [α]
λn H | [α]

µ1−1
, β, Σ1 ⇒ Π1 | ... | [α]

µk , Σk ⇒ Πk
(BSHM)

G | H | �Γ1 ⇒ | ... | Γn ⇒ ∆n | β, Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

(XVII)

dl1 dr1
(SHM)

G | H | G | H | �Γ1 ⇒ | �Γ1 , Σ1 ⇒ Π1 | ... | Γn ⇒ ∆n | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk | Σk ⇒ Πk
(MS)

G | H | G | H | �Γ1 ⇒ | �Γ1 ⇒| Σ1 ⇒ Π1 | ... | Γn ⇒ ∆n | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk | Σk ⇒ Πk
(EC)

G | H | �Γ1 ⇒| ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

(XVIII)

dl1 dr1
(BSHM)

G | H | G | H | �Γ1 ⇒ | �Γ1 ⇒| ... | Γn ⇒ ∆n | Γn ⇒ ∆n | Σ1 ⇒ Π1 | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk | Σk ⇒ Πk
(EC)

G | H | �Γ1 ⇒| ... | Γn ⇒ ∆n | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
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may be generalised to arbitrary formula α on both sides. The next step is
the proof that (Merge) is height-preserving admissible. From this follows
height-preserving admissibility of (IW) and (EW) and height-preserving
invertibility of logical rules. The additional machinery of admissible tools
allows for smooth proof of (H-Cut).

The price for having fully logical system (i.e., with no structural
primitive rules) which admits a simple proof of (H-Cut) admissibility
is certain inelegancy in having two rules for box introduction in the
antecedent. One can easily note that it is not redundant by observing
that in Restall’s system we cannot prove (T) without using (Merge) hence
this rule must be primitive. On the contrary, in Poggiolesi’s system the
presence of a special rule corresponding to (T) makes (Merge) redundant.

This leads to the next question: is it possible to provide such a system
that only one rule for (� ⇒) will be enough but (EC) (or (Merge)) will
be redundant. One can think of Pottinger’s system but this requires
some reformulation of rules. Instead of (⇒ �

P) we will use Poggiolesi’s
rule (⇒ �

P∗

), and instead of (� ⇒P) we will use the following rule:

(�⇒P)
α,�α, Γ ⇒ ∆ | α, Γ1 ⇒ ∆1 | . . . | α, Γn ⇒ ∆n

�α, Γ ⇒ ∆ | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

We will point out below why these changes are necessary. It is evident
that the proposed rule combines both Poggiolesi’s rules. In order to be
able to follow her proof as closely as possible we also take as a basis
Poggiolesi’s system, i.e., generalised atomic axioms and all invertible
inference rules for Boolean connectives. Both (IW) and (EW) rules,
as well as (EC) are not required as primitive but we cannot get rid
of (IC). Because of that we will provide a proof of admissibility of
(H-Mix) not (H-Cut) as in Poggiolesi. Also, in order to prove height-
preserving invertibility of logical rules (which in turn is necessary for
proving admissibility of (EC)) we need a generalised form of internal
contraction:

Γ , Γ ⇒ ∆, ∆ | G

Γ ⇒ ∆ | G

One can easily check that for this system, called HCS5P, we obtain
usual preliminary results: the generalization of axioms, height-preserving
admissibility of (IW) and (EW), and height-preserving invertibility of all
logical rules except (⇒ �

P∗

). By straightforward induction on the height
of the derivation of the premiss we obtain:
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Lemma 5. (IW) and (EW) are height-preserving admissible in HCS5P.

Lemma 6. All logical rules except (⇒ �
P∗

) are height-preserving invert-

ible in HCS5P.

Proof. By straightforward induction on the height of the derivation of
the premisses. The general form of (IC) which allows for contraction
of many different formulas in one sequent in one step is necessary for
the case when the last rule was obtained by (IC) in order to save the
same height in transformed proof. The case of (� ⇒P ) goes by height-
preserving application of (IW). ⊣

Having all that we can prove:

Lemma 7. (EC) is admissible in HCS5P

The proof is by induction on the height of the derivation and it is
similar as in Poggiolesi [27]. The only reason why we cannot prove the
stronger result, namely that it is height-preserving admissible is con-
nected with the case of (⇒ �

P∗

) as the last rule applied. The situation
is like that:

G | Γ ⇒ ∆,�α | Γ ⇒ ∆ | ⇒ α n − 1

G | Γ ⇒ ∆,�α | Γ ⇒ ∆,�α n

On the right we indicated the height of respective lines in the proof.
By the height-preserving admissibility of (IW), induction hypothesis,
(⇒ �

P∗

) and (IC) we obtain:

G | Γ ⇒ ∆,�α | Γ ⇒ ∆,�α | ⇒ α n − 1

G | Γ ⇒ ∆,�α | ⇒ α n − 1

G | Γ ⇒ ∆,�α,�α n

G | Γ ⇒ ∆,�α n + 1

Here we can see that (IC) is necessary and because in the system it
is primitive the height of the last line is n + 1 not n. One could think
that we should first prove height-preserving admissibility of (IC) instead
of having it as primitive. Unfortunately it is not possible because in
order to do that we must apply (EC), hence either (IC) or (EC) must be
primitive in such a system and we have chosen the former since it admits
simpler form of Mix. This example also shows that height-preserving
invertibility of (⇒ �

P∗

) is not required for the proof of this lemma, in
contrast to cases of Boolean rules where height-preserving invertibility
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of respective rules is necessary. Let us illustrate this point with the case
of (⇒∨) as the last applied rule:

G | Γ ⇒ ∆, α ∨ β | Γ ⇒ ∆, α, β n − 1

G | Γ ⇒ ∆, α ∨ β | Γ ⇒ ∆, α ∨ β n

this is transformed into:

G | Γ ⇒ ∆, α, β | Γ ⇒ ∆, α, β n − 1

G | Γ ⇒ ∆, α, β n − 1

G | Γ ⇒ ∆, α ∨ β n

where the first line is by height-preserving invertibility of (⇒∨) and
the second by the induction hypothesis. In case of (⇒∨) being not
height-preserving invertible we would be unable to apply the induction
hypothesis so even simple invertibility is not enough here.

Now we are ready to prove the admissibility of (H-Mix).

Theorem 3. (H-Mix) is admissible in HCS5P.

The proof is similar to the proof provided for Avron’s system but sim-
pler since there is only one rule and we are dealing with only one sequent
at a time. The cases of one premiss being an axiom or with Mix-formula
being parametric are straightforward. As for the cases where in both
premises one occurrence of Mix-formula is principal the only difference
is connected with the change of one-premiss rules for connectives into
multiplicative form. We leave it to the reader. The essentially different
point is:

G | Γ ⇒ ∆, [�α]
λ

| ⇒ α

G | Γ ⇒ ∆, [�α]λ+1

[�α]µ , α, Σ1 ⇒ Π1 | ... | α, Σn ⇒ Πn

[�α]µ , Σ1 ⇒ Π1 | ... | Σn ⇒ Πn
(H-Mix)

G | Γ , Σ1 ⇒ ∆, Π1 | ... | Σn ⇒ Πn

First we must perform two cross-cuts on �α reducing the height in
both cases:

G | Γ ⇒ ∆, [�α]λ+1 [�α]µ , α, Σ1 ⇒ Π1 | ... | α, Σn ⇒ Πn
(H-Mix)

G | α, Γ , Σ1 ⇒ ∆, Π1 | ... | α, Σn ⇒ Πn

G | Γ ⇒ ∆, [�α]λ | ⇒ α [�α]µ , Σ1 ⇒ Π1 | ... | Σn ⇒ Πn
(H-Mix)

G | Γ , Σ1 ⇒ ∆, Π1 | ... | Σn ⇒ Πn | ⇒ α

Note that if λ = 0 the second proof is not required.
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Now, either α ∈ Σi for all i ≤ n or not. In the first case we obtain
the result by n applications of (IC) on α in every sequent. Otherwise
we must apply (H−Mix) on α to both hypersequents derived above (or
if λ = 0 to the left premise of the original Mix). E.g. let α 6∈ Σ1. Then
we have:

(H−Mix)

G | Γ , Σ1 ⇒ ∆, Π1 | ... | Σn ⇒ Πn | ⇒ α G | α, Γ , Σ1 ⇒ ∆, Π1 | ... | α, Σn ⇒ Πn

G | G | Γ , Σ1 ⇒ ∆, Π1 | Γ , Σ1 ⇒ ∆, Π1 | ... | Σn ⇒ Πn | α, Σn ⇒ Πn

We repeat (H-Mix) on this sequent again with the left premise or the
conclusion of the previous (H-Mix) systematically to all cases where α 6∈
Σi. Since we are cutting α all Mixes are eliminable by induction on the
complexity. Finally by (EC) we obtain the desired result.

By the way one may notice why the original Pottinger’s rules do not
work for such a proof. First as for (⇒ �

P) in case some boxed formulae
are in Γ we will have Γ� ⇒ α instead of ⇒ α and this sequent when
mixed with some α, Σi ⇒ Πi yields Γ�, Σi ⇒ Πi. and there seems to be
no way to get rid of Γ� in any such case to obtain the desired result.
Second, in (� ⇒P) we have �α instead of α added to every Σi ⇒ Πi

and it is impossible to perform a reduction on cut-formula complexity
in the series of steps described above.

Acknowledgements. Authors would like to thank the reviewer for valu-
able remarks.
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