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Dynamische Logik für eine
Zwischensprache
Verifikation, Interaktion und Verfeinerung

(Deutsche Zusammenfassung)

Computerisierte Systeme spielen in unserem Alltag eine immer wichtigere Rolle.
Viele werden dabei in Bereichen eingesetzt, in denen ihr korrektes Verhalten von
höchster Bedeutung ist, z. B. im Bereich von Medizintechnik oder der Flug- oder
Automobiltechnologie. Immer häufiger werden dabei sicherheitskritische Entschei-
dungen automatisch von Softwaresystemen getroffen. Wenn diese fehlerhaft sind, so
kann das fatale Auswirkungen haben, finanzieller Natur, oder gar Schaden an Leib
und Leben von Menschen bedeuten.

Diese Arbeit beschäftigt sich damit, sicherzustellen, dass Software sich so verhält,
wie sie sich verhalten soll. Präziser gesagt beschäftigt sie sich mit der deduktiven
funktionalen Verifikation von Software-Implementierungen in Hinblick auf ihre
formale Spezifikation.

Formale Methoden sind eine Alternative zum Durchführen von Softwaretests,
wenn es darum geht, die funktionale Sicherheit von Systemen sicherzustellen. Die
Methoden, die als ”formal“ klassifiziert werden können, decken dabei eine große
Bandbreite von Ansätzen und Werkzeugen ab. Diese unterscheiden sich im Abstrak-
tionsgrad, mit dem sie ein System beschreiben und auf ihm operieren und in der
Stärke der Aussagen, die sie treffen. Die Stärken reichen von leichtgewichtiger Un-
terstützung bei der Suche nach Fehlern (Bugs) bis hin zur Verifikation vollständig
funktionaler Spezifikationen. Je stärker die von einer Analyse gemachten Aussa-
gen jedoch sind, desto mehr Expertise, Zeit und Aufwand muss in ihre Verifikation
investiert werden.

Diese Arbeit hält sich dabei im Bereich der Verifikation vollständiger funktionaler
Spezifikationen auf. Dies ist ein aufwändiger schwergewichtiger formaler Ansatz;
dennoch ist das Ziel, eine Verifikation auf der Ebene des implementierten Program-
mes zu bewerkstelligen und nicht (alleine) auf einer Abstraktion von ihm. Damit
vereinigt der untersuchte Verifikationsansatz Schwierigkeiten aus zwei Gebieten: zum
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einen die Probleme der Verifikation auf Implementierungsebene und zum anderen
die der hohen Genauigkeit der Spezifikation.

Um mit dieser hohen Komplexität besser umgehen zu können, schlägt diese Ar-
beit vor, die Aufgabe der Verifikation mittels der zwei Werkzeuge Interaktion und
Verfeinerung zu bändigen:

Interaktion Im Gegensatz zu leichtgewichtigen Ansätzen, für die es charakteristisch
ist, dass sie in relativ großem Rahmen mit relativ geringem Aufwand anwend-
bar sind, ist die volle funktionale Verifikation signifikant aufwändiger und
benötigt einen erfahrenen Benutzer.

In dieser Arbeit wird ein interaktives Verifikationswerkzeug vorgestellt, mit
dem in den Verifikationsprozess Einblick gewonnen werden kann und das dem
Benutzer des Systems erlaubt, mit dem System hauptsächlich in Begriffen des
ursprünglichen zu verifizierenden Programmes zu interagieren. Mittels inter-
aktiven Eingreifens kann die automatische Komponente des Systems geleitet
werden, bis sie schließlich den Bewies selbständig zu Ende führen kann.

Verfeinerung Volle funktionale Verifikation auf der Ebene von Implementierungen
vereinigt zwei an sich schwere Aufgaben in einer. Wir schlagen eine Methodik
vor, diesen schweren Auftrag in zwei jeweils leichtere zu unterteilen und dann
die etablierte Technik der Verfeinerung zu benutzen, um aus der abstrakteren
Beschreibung die Implementierung formal abzuleiten.

Es gibt funktionale Korrektheitsaussagen, die am besten direkt auf der Imple-
mentierung beschrieben und dort leicht gezeigt werden können, und es gibt
Korrektheitsaussagen, die von konzeptioneller Natur sind und besser auf einer
Abstraktion des Programmes gezeigt werden.

Um diese beiden Ziele zu erreichen, wird eine neue Programmlogik entworfen, die
zwei seit langem im Bereich der Implementierungsverifikation erfolgreiche Paradig-
men vereint.

Zum einen ist dies die dynamische Logik, die einen sehr flexiblen Ansatz für die
Formalisierung und den Beweis von Eigenschaften von Programmen darstellt. Sie
ist eng verwandt mit anderen Programmlogiken wie der ”Hoare-Logik“ oder dem

”Weakest-Precondition-Kalkül“, hat aber als besondere Eigenschaft, dass Programme
freier kombiniert werden können. Programme sind in dynamischer Logik Konstruk-
toren für Formeln. Da die Menge der Formeln unter Komposition abgeschlossen
ist, können auch programminduzierte Formeln geschachtelt oder logisch verknüpft
auftreten.

Zum anderen wird die Verifikation auf einer elementaren, reduzierten aber allge-
meinen Verifikationszwischensprache in den Ansatz mit eingebracht. Die Idee, Verifi-
kationsbedingungen einer modernen Programmiersprache auf eine solche elementare
Sprache zu reduzieren, scheint auf den ersten Blick einen Rückschritt darzustellen.
Aber dieser Eindruck täuscht. Eine schlanke und effiziente Kernsprache erlaubt es,
den Verifikationsprozess vom Modellierungsprozess zu entkoppeln. Es gibt fortan
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das Verifikationswerkzeug und den Übersetzer, der die Beweisverpflichtung aus ei-
nem in einer Hochsprache geschriebenen Programm und seiner Spezifikation heraus
erzeugt. Die Zwischensprache verbindet die beiden Systeme.

Ein prominenter Vertreter der Systeme, die auf auf dynamischer Logik beruhen,
ist das KeY-System, das auf einer speziell ausgelegten dynamischen Logik für Java-
Quelltext operiert. Ein erfolgreicher prototypischer Vertreter für ein Verifikations-
system, das auf einer Zwischensprache agiert, ist das System Boogie, für das eine
Vielzahl von Übersetzern existiert, die Beweisverpflichtungen aus einer Reihe von
Quellsprachen und Systemen heraus erlaubt. Diese Arbeit stellt eine dynamische
Logik im Stile von KeY vor, die auf einer Zwischensprache definiert ist, die mit der
Sprache von Boogie die primitiven Anweisungen gemeinsam hat.

Diese Arbeit beschreibt eine Methodik um Algorithmen in einer rein abstrak-
ten, mathematischen Pseudocode-Sprache zu formulieren, wie sie aus Lehrbüchern
bekannt ist. Diese Algorithmen können dann auf eine Implementierung in der Pro-
grammiersprache Java verfeinert werden. Interessante funktionale Eigenschaften,
die konzeptionell im Algorithmus begründet sind können auf Ebene der mathe-
matischen Modellierung beschrieben, untersucht und verifiziert werden, wobei die
Implementierungsdetails bei dieser Betrachtung außen vor gelassen werden können.
Ein formaler Verfeinerungsschritt überträgt dann die Verifikationsergebnisse auf die
Implementierung, ohne die Beweise auf der detaillierten Ebene erneut führen zu
müssen.

Der kombinierte Ansatz erlaubt eine besonders flexible Formulierung von Verifi-
kationsaufgaben. Er ist flexibel in der Formulierung der der Programme, weil die
Verifikationsprogrammiersprache besonders grundlegend und allgemein gehalten
ist. Er ist flexibel in der Formulierung von Beweisverpflichtungen, wenn diese über
mehrere Programme spricht, weil er von der dynamischen Logik übernimmt, dass
mehr als ein Programm in einer Verifikationsaufgabe enthalten sein kann. Ein Ver-
treter dieser Art von Verifikationssystemen ist das Werkzeug Boogie, für das eine
Vielzahl von Übersetzern existiert, die Beweisverpflichtungen aus einer Vielzahl von
Quellsprachen und System heraus erlaubt.

Die deduktiven Verifikation vollständiger funktionaler Spezifikationen von Imple-
mentierungen in der Programmiersprache Java ist eine schwergewichtige formale
Methode. Die vorliegende Arbeit setzt sich zum Ziel, diese Methode praktikabler zu
machen. Die wesentlichen Beiträge der Arbeit sind:

∙ Eine Dynamische Logik UDL für eine Verifikationszwischensprache wird vor-
gestellt und formal definiert. Diese Logik vereinigt zwei Ideen, die in anderen
Verifikationssystemen bereits erfolgreich eingesetzt worden sind, aber noch nie
zusammengeführt wurden. Die dynamische Logik wird gründlich untersucht
und mit der klassischen dynamischen Logik vergleichen wobei Gemeinsamkei-
ten und Unterschiede herausgearbeitet werden.

Die Logik, auf der UDL basiert, ist eine Prädikatenlogik, die um Variablenbin-
dersymbole (Binder) und parametrisierte Typen erweitert wurde. Es wird formal
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gezeigt, dass die Binder die Ausdrucksmächtigkeit der Sprache nicht erhöhen,
die parametrisierten Typen dagegen sehr wohl über die Ausdrucksmächtigkeit
der Logik erster Stufe hinausgehen. Ein Sequenzenkalkül für die Logik wird
entwickelt. Er erlaubt die Verifikation von Formeln, die Programme enthalten.
Invariantenregeln werden motiviert, vorgestellt und als korrekt bewiesen. Wir
zeigen, dass der Kalkül relativ vollständig ist mit Bezug auf die Entscheidbar-
keit von Aussagen über den natürlichen Zahlen ist.

∙ Eine Disziplin der formalen Algorithmenverfeinerung wird aufgebaut. Ausge-
hend von dem etablierten Begriff der formalen Verfeinerung wie er in abstrak-
ten formalen System schon seit langem Verwendung findet, wird ein Begriff
der formalen Verfeinerung von Algorithmen zu Implementierungen und eine
entsprechende Verfeinerungsbedingung mit Hilfe der dynamischen Logik defi-
niert. Es wird gezeigt, dass diese Bedingung mit den etablierten Begriffen der
formalen Verfeinerung kongruent ist.

Eine Menge von Regeln zur effizienten Behandlung von Schleifen in UDL-Ver-
feinerungsbedingungen wird vorgestellt. Da die Programmiersprache, die in
UDL Verwendung findet, unstrukturiert ist, können existierende Ansätze zur
Behandlung von gleichlaufenden Schleifen nicht direkt in den neuen Ansatz
übernommen werden. Die neuen Regeln arbeiten mit dem Konzept von Syn-
chronisationspunkten und schaffen es auf diese Weise, im Beweis die Schleife
aufzulösen.

Eine neue Technik, einen formalen Methodenvertrag für eine Java-Methode
aus einem erfolgreichen Verfeinerungsbeweis zu extrahieren, ermöglicht es
diesem Verfahren, das abstrakte Modell und die konkrete Implementierung
miteinander zu verknüpfen.

∙ Die Logik UDL, ihr Sequenzenkalkül und die Generierung von Verfeinerungs-
beweisverpflichtungen wurden im neuen interaktiven Verifikationssystem ivil
implementiert. Obwohl die Beweise in diesem System auf einer technischen
Zwischensprache formuliert sind, kann der Benutzer mit dem System in Be-
griffen der Quelltextsprache interagieren und bekommt Interaktionselemente,
die an bekannte Elemente aus statischen Debugger-Systemen erinnern, an die
Hand gereicht.

Die Implementierung einer Übersetzung von Java-Bytecode in die unstruktu-
rierte Zwischensprache, bei der die Interaktionsfähigkeit auf Quelltextebene
erhalten wurde, dient als Machbarkeitsstudie für den Ansatz der Verifikation
auf einer Zwischensprache.
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CHAPTER 1

Introduction

1.1 Motivation

Computerised systems have become pervasive companions in our lives. Many
of them are installed in places in which their functioning correctly is of utmost
importance, for instance, in financially relevant systems or in safety-critical areas such
as medical, aeronautical or automotive systems. More and more critical decisions are
made by computer programs. If they fail, it may have fatal economical consequences
or even cause people to come to harm.

This thesis is about ensuring that software behaves as it is supposed to behave.
More precisely, it is concerned with the deductive verification of the compliance of
software implementations with their formal specification.

Traditionally, functional safety of software is mostly guaranteed by performing
sufficiently many tests of various kinds on a system. The choice and design of the
test cases is crucial for the quality of the test process. Nevertheless, tests are seldom
exhaustive and may, therefore, fail to uncover faults hidden in the system.

The use of formal methods is an alternative way to ensure correct functional system
behaviour. Generally speaking, formal methods apply mathematically rigorous
techniques to model and analyse systems. In recent years, quality-ensuring safety
standards used for the certification of safety-critical systems have included formal
methods as admissible instruments to establish functional correctness. The standard
for automotive systems (ISO 26262, released in 2011) and the recent version of the
standard for aeronautical systems (DO-178C, released in 2012) explicitly1 mention
formal methods as adequate means to ensure functional safety of safety-critical
systems in various stages of the system design.

The methods which can be classified as formal cover a very broad area of ap-
proaches and tools. They differ considerably in the level of abstraction on which
they describe, formalise and operate on the model. Some formal systems are applied

1ISO-26262: The standard lists formal verification as a “recommended method” for systems with higher
safety level (ISO 26262-6, Req. 7.4.18)

DO-178C: “Formal methods [...] might be the primary source of evidence for the satisfaction of
many of the objectives concerned with development and verification.” (Dross et al., 2011)
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long before a program is implemented. They model a system on very abstract terms
and thus help to identify design flaws in very early stages of the development pro-
cess. Other methods operate on implemented code but abstract from it and show
conceptual properties on the abstracted models. Again other systems model the
behaviour of an implementation meticulously and thus examine behaviour on the
implementational level.

Formal methods vary also in the impact of the statements they make. Their pur-
poses range from providing a documentation with formal semantics, over the au-
tomatic identification of bugs or unexpected behaviour in implementations to full
functional verification of software with respect to a formal specification. The more
significant propositions of the last category come at a price: The closer the asserted
property is to a full formal description, the higher are the expertise, time and effort
that its verification requires.

This thesis is concerned with the formal verification of software implementations
with respect to full functional specifications. The goal is to perform the verification
on the level of the implementation, not (solely) by considering an abstraction. This
kind of formal methods is amongst the most cost-intensive. It combines the difficulty
of full functional verification with that of detailed implementation-level analysis. To
better cope with the increased complexity of this verification task, the thesis proposes
two instruments: interaction and refinement.

Verification Different people will understand different things under the notion of
“verification”. For the purposes of this thesis, verification means the application of
deductive proving techniques to provide formal evidence that the implementation of
a software system behaves according to its specification. This is done by conducting
mathematically rigour formal proofs within a system of formal deduction. If a proof
succeeds, then a program is ensured to behave as claimed in its specification.

In this thesis, two successful ideas in program verification are integrated into a
new approach which combines the advantages of both: Dynamic logic is brought
together with verification on an intermediate verification language.

Interaction In contrast to lightweight formal methods that, characteristically, can be
applied on a relatively large scale with relatively little effort, full functional verifica-
tion is inherently more difficult and requires an experienced specifier.

In this thesis, an interactive verification tool is presented which allows the user to
interact with the system mostly in terms of the original program description. For
verification tasks which require no interactive inspection, an automated version exists
as well.

Refinement Full functional verification of implementations combines two difficult
verification tasks in one. We propose a methodology to decompose this difficult task
into two easier tasks using the well-established technique of refinement.

The refinement method allows a separation of concerns between the algorithmic,
conceptual problem and the issues of the implementation.
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1.2 Dynamic Logic and Intermediate Language

This thesis brings together the benefits of two verification paradigms which have
proved to be successful in the field of implementation verification. We consequently
devise a verification system which combines the ideas of both into a novel approach.

Dynamic Logic On the one hand, there is dynamic logic (Harel et al., 2000) which is
a very flexible approach for the formalisation and proof of properties of a program. It
is closely related to other program verification logics, in particular to Floyd-Hoare
logic (Floyd, 1967; Hoare, 1969) and to the weakest precondition calculus (Dijkstra,
1975). What sets dynamic logic apart from other program logics is the possibility to
freely combine program constructs. Programs are part of dynamic logic formulas,
and with the set of formulas being closed under logical composition, programs can
be nested and logically composed. This flexibility to formulate expressions makes
dynamic logic a suitable vehicle for a variety of verification conditions. Besides
functional compliance, for example, non-interference of systems or hybrid systems
can be modelled.

A prominent representative of a verification system based on dynamic logic is the
KeY system covered in the monograph by Beckert et al. (2007). KeY is a verification
system for the interactive and automatic verification of sequential Java code. It is
based on a dynamic logic for sequential Java source code tailored to the requirements
of the tool.

In the context of KeY, dynamic logic has been used to model and verify a variety of
problems: Weiß (2010) describes how modular program specification and verification
can be accomplished with dynamic logic. Engel (2009) applies the KeY approach
to verify safety-critical Java applications with realtime constraints. There, dynamic
logic is used for the formalisation of the realtime memory model. Klebanov (2009) de-
scribes how dynamic logic can be adapted to allow the verification of multi-threaded
Java-like programs. Scheben and Schmitt (2011) use the flexibility of dynamic logic
to efficiently verify information flow properties for sequential Java programs. Beck-
ert and Bruns (2012) present an extension of dynamic logic which combines the
expressiveness of dynamic logic with that of temporal logic.

There are other systems besides the KeY project which support dynamic logic.
KIV (Reif et al., 1995) operates on dynamic logic over various system description
languages, amongst others for Java (Stenzel et al., 2008) or for state charts (Thums
et al., 2004). Platzer (2010) presents a verification system for hybrid systems based on
a dynamic logic.

Intermediate Language The other incorporated successful concept is the reduction
of the syntactical material to a minimalistic but general programming language
tailored to the needs of verification.

Such a special-purpose language may serve as an intermediate representation
of proof obligations which originally stem from another program in a high level
language. At the first glance, it seems like a step backward that one wants to verify
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programs in a high level programming language using such a rudimentary repre-
sentation. But this impression is deceptive. The verification language can, due to its
flexibility, become the target of a translation from the more powerful language, and
the verification process thus be decoupled from the process of producing the proof
obligation. This partition of the verification process into translation and verification
is helpful: The verification system which operates on an intermediate verification
language is independent of the input language and may serve as the base beneath
other verification systems. The task of the verification system for a particular pro-
gramming and specification language is reduced to a translation into the intermediate
representation.The translated model in intermediate representation is an artifact in its
own right and can be inspected and modified. This allows developers of verification
systems to experiment within the design space of the translation.

The Why verification tool (Filliâtre and Marché, 2007) is one representative of such
a system with intermediate language. Its input language is general enough to serve
as target language for renowned verification systems for different programming
languages: Krakatoa (Marché et al., 2004) for Java and Cadeceus/Jessie (Moy, 2009)
for C.

The Boogie approach is another success story for intermediate verification lan-
guages. There exist verification tools for many programming languages which oper-
ate by translation to the Boogie verification language: AutoProof (Eiffel, Tschannen
et al., 2011), HAVOC (C, Chatterjee et al., 2007), VCC (C, Dahlweid et al., 2009), Spec#
(C#, Barnett et al., 2011) and verification systems for Java (Lehner and Müller, 2007)
and Scala (Wüstholz, 2009) to name some. The intermediate language is also well
suited for experimental research programming languages like Dafny (Leino, 2010a)
or Chalice (Leino and Müller, 2009).

The dynamic logic presented in this thesis is inspired by the dynamic logic em-
ployed in the KeY system, but goes also beyond it in some respects. The programs
which can be incorporated in formulas of the presented logic share the primitive
statement constructors with the programming language of Boogie.

1.3 Implementation and Refinement

It has been mentioned that formal methods cover a wide range of abstraction degrees.
There are systems which operate on very abstract system descriptions and systems
that consider a very detailed model of the actual implementation.

This thesis builds a bridge between these two worlds of verification by applying the
well-established instrument of formal refinement. Refinement is a standard technique in
model verification to cover an abstraction gap. Many established formal methods rely
upon it: Z (Woodcock and Davies, 1996), Abstract State Machines (Börger and Stärk,
2003), B (Abrial, 1996) and its successor Event-B (Abrial, 2010) define closely related
theories of refinement. The refinement calculus (Morgan, 1990) allows stepwise
refinement of abstract code.
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Refinement has, however, seldom been applied to make a formal connection from
abstract descriptions to program code that has been written (not generated) to imple-
ment them.

The thesis describes a methodology to formulate algorithms in a purely abstract,
mathematical pseudocode language, like known from textbooks, which can then
be formally refined to an implementation given in the Java programming language.
This allows a canonical separation of verification concerns. Interesting functional
properties can be defined, examined and verified on the algorithmic level where
implementational details can be kept aside. The formal refinement then transfers the
verification results into results on the implementation level without proving them
again on that level. The intermediate verification language and dynamic logic are
fundamental and essential building blocks of this refinement verification.

1.4 Contributions

This thesis contributes to the field of deductive software verification by bringing
together well-established approaches in the field exploiting the benefits of each in
the other. By combining an intermediate language with dynamic logic, it aims for
flexibility in the formulation of verification goals. The reach of the instrument of
refinement is extended such that implementational code can also be the goal of a
refinement step.

In particular, the main contributions of the thesis are the following:

∙ A dynamic logic called UDL for an intermediate verification language is pre-
sented and formally defined. This logic incorporates two ideas that are widely
used in other verification systems, but have not yet been combined. The dy-
namic logic is thoroughly examined and compared to classical dynamic logic,
pointing out the commonalities and differences.

The underlying logic is an extension of predicate logic with binders and
parametrised types. Formal evidence is given that the former addition does not
extend the expressiveness of the logic and that the latter extends it beyond that
of first order logic.

A sequent calculus for the logic is devised which allows the verification of proof
obligation formulas containing intermediate programs. A set of invariants rules
to deal with loops in the code is motivated, defined and formally proved sound.
A proof is given to show that the calculus is relatively complete with respect to
the decidability of sentences over natural numbers.

∙ A novel refinement technique for UDL is introduced which can be applied to
establish a formal relation between two programs in the intermediate language
of UDL. The technique can be used to formally refine the abstract description of
an algorithm in pseudocode to an implementation in the Java programming
language.
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It is shown that the notion of refinement ensured by this technique agrees with
the established definitions of refinement. Since the programming language
of UDL is unstructured, existing approaches dealing with loops in refinement
pairs cannot be transferred to UDL. A set of new inference rules for the efficient
treatment of loops in refinement conditions is presented. The rules are proved
sound.

A new technique to extract a formal contract for a Java method from a successful
refinement proof allows this approach to connect abstract model verification
with implementation verification.

∙ The calculus for UDL and the refinement condition rules have been imple-
mented in the new interactive verification system ivil. Despite the intermediate
verification language, the verification system allows interaction on the level of
the source code of the verified program.

A proof-of-concept translation from Java bytecode to the intermediate language
which retains source code information on the intermediate level shows the
feasibility of the interactive approach.

1.5 Outline

The main part of the thesis is comprised of five chapters which build up on one
another.

In Chapter 2 the formal foundations are laid by defining the syntax and semantics
of a dynamic logic called unstructured dynamic logic. The underlying parametrically
typed predicate first order logic is defined first (2.2). This logic has constructs which
go beyond standard first order logic (2.3). The predicate logic is then extended to a
dynamic logic over the intermediate language (2.5).

In Chapter 3, a sequent calculus for unstructured dynamic logic is developed. Rules
for symbolic execution (3.2) of unstructured programs are presented as well as a
thorough examination of rules to handle unstructured loops using loop invariants
and variants (3.3). It is proved that the calculus is relatively complete (3.4).

Chapter 4 reports on the implementation of an interactive verification system which
puts the logic and calculus into practice. Special attention is turned to the issue of
user interaction (4.2). The verification system uses industry constraint solvers to
discharge proof obligations in the background; the translation from the system’s logic
to their input logic is also covered (4.3). To affirm the thesis that the intermediate
language is well suited for interactive verification, a prototypical translation from
Java bytecode to the intermediate representation is provided (4.4).

Chapter 5 brings abstract model software verification together with software verifi-
cation on concrete implementations using the established methodology of refinement.
After a brief introduction to the concept of refinement (5.2), refinement verification
conditions are formulated as proof obligations in dynamic logic (5.3). In particular,
the refinement of loops is considered extensively (5.4). We describe how refinement
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can be used to extract a formal contract for the implementation from a property
proved for an abstract algorithm (5.5).

Chapter 6 reports on two case studies which use the refinement approach from
Chapter 5 to prove non-trivial properties of non-trivial algorithms using the verifi-
cation system presented in Chapter 4. First (6.1), selection sort is presented as a less
complex algorithm which can be verified automatically. The second case study (6.2)
reports on a more complex example, an algorithm for finding the shortest paths using
breadth first search.

The concluding Chapter 7 summarises the contents of the thesis and gives an
outlook onto conceivable future work extending the lines begun in this work.

The appendices provide additional formal definitions (Appendix A) and list the
Java programs which were used as examples (Appendix B).





CHAPTER 2

Unstructured Dynamic Logic

In this chapter, we present the syntax and semantics of Unstructured Dynamic Logic
(UDL), a program logic to formulate verification conditions for an intermediate verification
language. It is a variation of classical dynamic logic in which program code constitutes modal
operators which describe state changes. The programs which are considered in UDL are
non-deterministic, unstructured and may contain embedded assertions. The underlying logic
in which the programs are embedded is a predicate logic with a parametrised type system.

We first present the typed logic and then introduce programs and program formulas. We
compare UDL to classical dynamic logic and examine the expressiveness of the predicate logic.

2.1 Types in Proof Assistants

Any deductive formal program verification system bases on a logic in which proper-
ties of programs can be formulated. In most cases, the underlying logic is a variation
of predicate logic. First-order logic, Higher-order logic or quantifier-free logics are
candidates for underlying logics. In many cases, verification logics add extensions on
top of the base logic, like Hoare-triples, separation-logic or dynamic logic, which help to
formalise proof obligations or to conduct proofs.

The design of the underlying logic includes the choice of a type system. While a
type system is not strictly needed for a predicate logic, it is often a good decision
to assign a type (in logics often called sort) of some shape to every expression in the
logic. Types are used to differentiate objects of different kinds on a syntactical level
already. There are several type systems which come into consideration for designing
a predicate logic:

Untyped It is not technically obligatory to structure the domain of discourse any
further. The entirety of all objects can be considered as one set with heteroge-
neous content. Most mathematically motivated material to show properties of
predicate logic uses this basic model for its simplicity in presentation. Most fun-
damental phenomena of predicate logic (like decidability results, compactness,
etc.) are properties of the untyped logic already.
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Types are usually added as soon as the logic is no longer itself the object under
investigation, but is used to denote and solve a formally described problem.

Some purely first order automatic theorem provers like Otter (Kalman, 2001)
operate on untyped problem descriptions, so does the constraint solver Simplify
(Detlefs et al., 2005).

Simply typed In the most simple case of typed logic, a finite number of types is intro-
duced with every object of the domain belonging to exactly one type. Function
symbols are annotated with argument and result types and the construction of
terms and formulas is required to respect these types.

The simple logic with typed symbols is not more expressive than the untyped
case. Enderton (1972, Sect. 4.3) shows how predicate logic with simple types
can be reduced to untyped first order logic.

Formal systems that use simple typed logic include the first version of the SMT-
LIB format, the de facto standard input language for predicate logic constraint
solvers with theories (Ranise and Tinelli, 2003).

Parametrically typed Here, the set of types can consist of composed types. In such a
system, types can be composed using type constructors which are applied to
argument types. The application of function symbols needs not be limited to
one dedicated type, but symbols can be polymorphic, and properties can be
stated parametrically for all instantiations of type variables. This kind of type
systems is often accredited to Hindley (1969).

Many modern proof environments like Isabelle/HOL, HOL, Boogie (Leino
and Rümmer, 2010) and recent versions of SMT-LIB (Barrett et al., 2010) use
variations of such a type system for their logic.

Hierarchically typed The type system of statically typed object oriented program-
ming languages is hierarchical. An expression can belong to more than one
type and the set of types forms a directed acyclic graph. In many cases even a
(semi-)lattice.

The KeY tool targets at the verification of Java source code. That is why the
underlying logic has got a hierarchical type system influenced by the Java type
hierarchy.

A type hierarchy does not conflict with type parameters. A hierarchical type
system with parameters has been proposed in (Ulbrich, 2007) to model Java
generics.

Dependently typed Dependent types allow types to depend on values of the domain.
The linear space Rn is a mathematical example. As a type it depends on n which
is not a type but a value. In dependent type systems, type checking is as difficult
as deciding satisfiability in the logic. This is why in systems with dependent
types, showing well-typedness is already a substantial part of the verification
task.
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The interactive theorem provers PVS (Shankar and Owre, 1999) and Coq (Bertot,
2008) are renowned representatives of this kind.

The purpose of types in deductive proof systems is two-fold:

1. (for the machine:) The process of deduction in predicate logic inherently involves
steps in which terms or formulas have to be unified (in a resolution step, for
instance, or when instantiating a quantified formula, or when finding a closing
unifier). Without annotating terms with types, there can be verification steps
which are valid in an untyped setting but are not semantically sensible and
will mislead the calculus. In a typed environment, however, typing constraints
forbid their unification, and the according steps cannot be taken; types serve,
hence, as a guidance to the proof system to choose sensible unification partners.

2. (for the human:) Type systems themselves are a (lightweight) formal method.
The additional annotations in the declarations document their intentions and,
if the well-typedness is decidable, serve as an early sanity check that prior to
doing any attempts in a proof system with high complexity, the statement is at
least well-typed.

Additionally, types provide a concise way to notate information which must be
encoded in the problem. If this knowledge is not given in types, then it must be
expressed semantically (by adding further additional predicates). Hence, type
systems help keeping proof obligations concise.

In the next section we will present a parametrically typed logic with variable types
which allows quantification over type variables. We opted for this design for the
following reasons:

∙ Well-typedness is decidable and ill-typed terms can be detected early on with-
out exception. We want to limit the difficult tasks to the process of proving
propositions, their well-formedness is meant to be a lightweight sanity check
which can be performed automatically and which increases confidence that the
formulated propositions are the intended.

∙ It is well suited to model general abstract datatypes in a data agnostic way.
Many datatypes abstract away from the “payload” they have got. The behaviour
of lists, for instance, can be described generically and later applied to concrete
type instances.

∙ It is also well suited to accommodate verification conditions for more concrete
problems stemming from concrete program languages. The type system is
non-hierarchical even though the logic is meant to be used to model verification
tasks for program languages which themselves do have type hierarchies - like in
particular object oriented languages. Experiences in other verification systems
(Spec#, Dafny, VCC, Krakatoa) show that handling the dynamic type issue
semantically rather than by incorporating the type system works out well.
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2.2 First Order Logic with Parametric Types

We begin by defining the type system in which types are composed using type
variables and type constructors. The set TVar = {α, β,γ, . . .} of type variables is fixed
and does not depend on the type signature. By convention, we denote type variables
by small Greek letters.

Definition 2.1 (Type signature) A type signature Γ = (TConΓ,arΓ) is comprised of a
set TConΓ of type constructors and an arity function arΓ : TConΓ → N assigning to each
constructor symbol the number of type arguments it takes.

We will throughout this section have a running example to illustrate the definitions
of the section. For this example, let us look at the type signature

Γex = ({set,nat,bool},{set ↦→ 1,nat ↦→ 0,bool ↦→ 0})

which contains one unary type constructor set and the constructors nat and bool
which do not take type arguments.

Definition 2.2 (Types) For a given type signature Γ = (TConΓ,arΓ), the set of variable-
free types (also called ground types) 𝒯 0

Γ is the smallest set such that

∙ c ∈ TConΓ and t1, . . . , tarΓ(c) ∈ 𝒯 0
Γ =⇒ c(t1, . . . , tarΓ(c)) ∈ 𝒯 0

Γ .

The set of types 𝒯Γ is the smallest set such that

∙ TVar ⊆ 𝒯Γ,

∙ c ∈ TConΓ and t1, . . . , tarΓ(c) ∈ 𝒯Γ =⇒ c(t1, . . . , tarΓ(c)) ∈ 𝒯Γ.

Obviously, any variable-free type is a type, that is 𝒯 0
Γ ⊆ 𝒯Γ.

In the above example type system Γex the sentences nat,set(set(bool)) ∈ 𝒯 0
ex are

ground types and α,set(β) ∈ 𝒯ex non-ground types.
Often in the following we will need to talk about the type variables which appear

in a type sentence or a tuple of types and, therefore, define the function typeVars :
𝒯 +

Γ → 2TVar as

typeVars(α) := {α} α ∈ TVar

typeVars(C(T1, . . . , TarΓ(C))) :=
arΓ(C)⋃

i=1

typeVars(Ti) C ∈ TConΓ, Ti ∈ 𝒯Γ

typeVars(⟨T1, ..., Tn⟩) :=
n⋃

i=1

typeVars(Ti) .

Definition 2.3 (Type substitution) A function τ : A → 𝒯Γ with A ⊆ TVar is called a
type substitution. We extend every substitution to a function τ : 𝒯Γ → 𝒯Γ on all types by
setting: τ(c(t1, . . . , tarΓ(c))) := c(τ(t1), . . . ,τ(tarΓ(c))), τ(β) = β for β ̸∈ A.
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Often we are interested in type substitutions which assign a type to a finite set
A = {β1, . . . , βk} of type variables. In this case, we write {β1/T1, β2/T2, . . . , βk/Tk} to
denote the substitution.

In our running example, the application of the type substitution τ = {α/nat} on
the pair ⟨α,set(α)⟩ of types results in the type pair ⟨nat,set(nat)⟩.

2.2.1 Simple Terms

Having fixed a type system Γ, we continue by defining terms. The set of variables
we can use depends on the type signature. For the given Γ, we assume that the set
VarΓ of variables contains infinitely many variables for every type (including the
non-ground types containing type variables). By convention we shall use single letter
identifiers from the end of the alphabet to denote variables. We will add the type to
the variable symbol as a superscript where necessary.

Definition 2.4 (Signature) Given a type signature Γ, a (term) signature Σ = (FctΣ,
BndΣ, tyΣ) is comprised of

∙ a set of function symbols FctΣ,

∙ a set of binder symbols BndΣ (disjoint from FctΣ)

∙ and a typing function tyΣ : FctΣ ∪ BndΣ → 𝒯 +
Γ .

We will deal first with function symbols in the following and postpone the treat-
ment of binder symbols until Section 2.3.1.

Conventions

∙ A function symbol f ∈ FctΣ with tyΣ( f ) = ⟨T1, . . . , Tn, T⟩ is called n-ary with
parameter types T1, . . . , Tn and result type T.

∙ A function symbol f ∈ FctΣ with typeVars(tyΣ( f )) = ∅ is called monomorphic
and

∙ A function symbol f ∈ FctΣ with typeVars(tyΣ( f )) ̸= ∅ is called polymorphic.

∙ The sequence of types in tyΣ( f ) describes the “signature” of the function symbol.
Therefore we write f : T1 × . . . × Tn → T for a function symbol with tyΣ( f ) =
⟨T1, . . . , Tn, T⟩.

∙ Unary function symbols with tyΣ(c) = ⟨T⟩ are called constants, and we write
c : T.

Extending our example from above and its type signature Γex, we define an exam-
ple signature Σex=(Fctex,Bndex, tyex) with Fctex={empty,singleton,union, in,zero,suc}
and
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∙ tyex(empty) = ⟨set(β)⟩

∙ tyex(singleton) = ⟨β,set(β)⟩

∙ tyex(union) = ⟨set(β),set(β),set(β)⟩

∙ tyex(in) = ⟨β,set(β),bool⟩

∙ tyex(zero) = ⟨nat⟩

∙ tyex(suc) = ⟨nat,nat⟩

Using the conventions from above, we could have instead of the third constraint
have written union : set(β)× set(β)→ set(β). The intention of the introduced signa-
ture is obvious: three constructors for sets (for the empty set, singleton sets and the
union), the set-membership predicate in and two constructors for natural numbers
(zero and successor) are given. The first four are polymorphic function symbols (with
type parameter β), while the last two are monomorphic symbols.

Variables and function symbols can be used to construct terms. The following
Definition 2.5 will later be subject to extensions when additional types of terms
are introduced (Def. 2.10 for binders, Def. 2.12 for type quantifiers, and Def. 2.15
for program formulas and updates). Appendix A.1.1 lists a comprehensive version
including the cases of all definitions.

Definition 2.5 (Terms) Let the type signature Γ and the signature Σ be given. For every
type T ∈ 𝒯Γ, the set TrmT

Σ of terms of type T is defined as the smallest set such that the
following inductive conditions hold:

1. xT ∈ VarΓ
=⇒ xT ∈ TrmT

Σ

2. f ∈ FctΣ, τ : typeVars(tyΣ( f ))→ 𝒯Γ
⟨T1, . . . , Tn, T⟩ = τ(tyΣ( f )),
ti ∈ TrmTi

Σ (1 ≤ i ≤ n)
=⇒ f [τ](t1, . . . , tn) ∈ TrmT

Σ

Like in untyped first order logic, terms are constructed by applying a function
symbol to a fixed number of terms (the arguments). In addition to the argument
terms, however, here we need to specify the instantiations of the type variables
of the symbol’s signature as well. A polymorphic function symbol can be seen
as a “template” symbol standing for an entire family of function symbols and the
parametrisation τ in the definition specifies one particular member of the family.
Please note that terms may also have a type containing type variables, that is, they
can be polymorphic as well. Nonetheless, every term belongs to exactly one type:
t ∈ TrmT

Σ ∩ TrmU
Σ =⇒ T = U.



2.2 FIRST ORDER LOGIC WITH PARAMETRIC TYPES 15

Let us look at some correctly constructed terms in our sample signature Σex:

xnat ∈ Trmnat
ex (2.1)

yset(β) ∈ Trmset(β)
ex (2.2)

zero[∅] ∈ Trmnat
ex (2.3)

suc[∅](suc[∅](zero[∅])) ∈ Trmnat
ex (2.4)

empty[id] ∈ Trmset(β)
ex (2.5)

empty[{β/nat}], singleton[{β/nat}](zero[∅]) ∈ Trmset(nat)
ex (2.6)

The first two examples (2.1) and (2.2) show variables which are exactly of the type
to which they are appointed. (2.3) and (2.4) are examples of monomorphic function
applications for which no type substitution (hence ∅) is needed. As shown in (2.5),
the type substitution needs not assign variable-free types to the type variables. Here
id = {β/β} is used as instantiation, the resulting term is polymorphic. Finally, in (2.6)
the type variable β is substituted for nat to construct the empty set and the singleton
set {0}.

On the other hand, the text singleton[∅](zero[∅]) is not a valid term of any type since
the instantiated function symbol singleton[∅] can only be applied to a term of type β,
but zero[∅] is of type nat and does, hence, not fulfil the requirement.

Type inference It is obvious that this notation which explicitly requires the spec-
ification of type variable instantiations under any circumstances is very verbose.
The good news is that it is not always required to notate them but that they can be
calculated. A type inference algorithm can be used to compute type substitutions for
a text without substitutions such that the result gives a valid term. Without going
into details here, this is a simple special case of the type inference situation presented
by Hindley (1969) and Damas and Milner (1982) which is efficiently decidable; the
most general type substitution can be computed in polynomial time. If there is no
type substitution to make the sentence a well-formed term, this will also be detected.

We will, hence, in the remainder of this thesis drop the type substitution entirely if
the context is unambiguous and assume that the most general type – as inferred by
the algorithm – is used. We may also choose to drop the type variable to substitute
and notate only the substituted type if the context is clear. For instance, the three
sentences

singleton[{β/nat}](zero[∅]), singleton[nat](zero[ ]), singleton(zero)

denote the same term.
The sentence union(singleton(zero),singleton(empty)), on the other hand, cannot be

a valid term expression for any type variable instantiation. The datatype set we have
created here is strictly typed unlike in fundamental set theory. A set of naturals
cannot be combined with a set over any other type.
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2.2.2 Semantics

In the following, we assume a type signature Γ and a signature Σ for Γ to be given.
For the sake of readability, we drop the indices Γ and Σ in this section if the context is
clear.

Terms are evaluated in semantic structures. In untyped predicate logic the structure
contains a set of object of discourse upon which terms evaluate. In a multi-sorted
environment that set is more structured. The domain is partitioned into subsets over
the ground types. Every element belongs to exactly one variable-free type. There are
no elements for non-ground types, and no element belongs to more than one type.

The interpretation maps function symbols to functions on the object level. In case
of parametrised logic this implies that the lifted function also depends (in its range,
domain and actual valuation) on the instantiation of the type variables. As for the
domains, only ground-types are taken into consideration here.

Definition 2.6 (Semantic Structure) A semantic structure D = ((𝒟T)T∈𝒯 0 , I) is com-
prised of

∙ a family (𝒟T)T∈𝒯 0 of pairwise disjoint, non-empty sets (called domains) and

∙ an interpretation I which assigns to every function symbol f : T1 × . . .×Tn → T ∈ Fct
and every ground type substitution τ : typeVars(ty( f ))→ 𝒯 0 a function

I( f [τ]) : 𝒟τ(T1) × . . . ×𝒟τ(Tn) →𝒟τ(T)

and to every binder symbol b ∈ Bnd with ty(b) = ⟨Tv, T1, . . . , Tn⟩ and every ground
type substitution τ a function

I(b[τ]) : (𝒟τ(Tv) →𝒟τ(T1))× . . . × (𝒟τ(Tv) →𝒟τ(T1))→𝒟τ(T)

Again, the treatment of binder symbols will be postponed until Section 2.3.1. If
f ∈ Fct is a polymorphic function symbol, its valuation depends on the “typing
context” as given by the ground type substitution τ. The evaluation function of
function symbol f is I( f [τ]) and depends also on the typing context. Different type
parameters make differently typed evaluation functions for the same symbol. For
a monomorphic function symbol, there is only one ground substitution (the empty
function) and the definition coincides with the situation in simply typed first order
logic: There is only one semantic function I( f ) for the symbol f .
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In our running example, we can define one semantic structure as follows (this is
not the only valid choice, but it is the intended standard definition):

𝒟nat
ex = N

𝒟bool
ex = {ff , tt}

𝒟set(T)
ex = 2𝒟

T
ex

Iex(zero) = 0
Iex(suc)(n) = n + 1, n ∈ N

Iex(empty[T]) = ∅T

Iex(singleton[T])(x) = {x}, x ∈ 𝒟T
ex

Iex(union[T])(s,u) = s ∪ u, s,u ⊆ 𝒟set(T)
ex

Iex(in[T])(x, s) = tt ⇔ x ∈ s, x ∈ 𝒟T
ex, s ∈ 𝒟set(T)

ex

where T ∈ 𝒯 0 ranges over all ground types.
A word about empty sets in this example: By requirement of Definition 2.6, all

domains must be pairwise disjoint. This implies that 𝒟set(nat) and 𝒟set(set(nat)) must
not have any element in common. However, both should contain the empty set and
would therefore not be disjoint. We overcome this dilemma by having a different
empty set object ∅T for every T ∈ 𝒯 0. These behave identically under the membership
predicate ∈ (always resulting in ff ), but are in different domains.

To talk about the set of objects of more than one domain, we use the abbreviations

𝒟 =
⋃

T∈𝒯 0

𝒟T and 𝒟c =
⋃

∧
i≤ar(c) Ti∈𝒯 0

𝒟c(T1,...,Tar(c)), c ∈ TCon

to denote the entirety 𝒟 of all objects and the set 𝒟c of all objects belonging to some
instantiation of a polymorphic type constructor c. In the above example this means
that 𝒟set

ex =
⋃

T∈𝒯 0
ex
𝒟set(T)

ex is the set of all homogeneous sets within 𝒟 in which all
elements have a common type T ∈ 𝒯 0.

Definition 2.7 ((Type) variable assignment)
A type variable assignment is a function τ : TVar → 𝒯 0.
A variable assignment is a function β : Var →𝒟.

A variable assignment is called compatible with a type variable assignment τ if for any
xT ∈ Var, the condition β(x) ∈ 𝒟τ(T) holds.

The concept of compatibility is essential for the evaluation of expressions ensuring
that a term evaluates to the domain corresponding to its type. For instance, the
evaluation of the term singleton[α](yα) depends on the choice of the variable elements
α and yα, and, hence, on the used type variable assignment τ and variable assignment
β. We lose compatibility if we chose τ(α) = bool and β(yα) = 1 since being of type α,
the variable yα should be evaluated to an element of the domain to which α points.
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Definition 2.8 (Evaluation of terms) For a semantic structure D = (𝒟, I), a type vari-
able assignment τ and a variable assignment β compatible with τ, the evaluation function
valI,τ,β : Trm →𝒟 is defined inductively as follows:

valI,τ,β(x) = β(x)

valI,τ,β( f [σ](t1, . . . , tn)) = I( f [τ∘σ])(valI,τ,β(t1), . . . ,valI,τ,β(tn))

for x ∈ Var, f ∈ Fct,σ : typeVars(ty( f ))→ 𝒯 .

This definition will be amended in Definitions 2.11 for binder symbols, 2.13 for type
quantifiers, and in 2.16 and 2.18 for program formulas and updates. Appendix A.1.2
lists a comprehensive version including the cases of all definitions. The definition
here resembles the definition of text book predicate logic in that the evaluation of a
compound term f (t1, . . . , tn) is broken down to the evaluation of the subterms t1, . . . , tn
whose results are then applied to the semantic function I( f ). However, to deal with
types containing type variables, Definition 2.8 employs a type variable assignment τ
to map all occurrences of type variables to ground types prior to evaluation.

Let us return to the running example of this chapter and evaluate the two terms
singleton[nat](zero[∅]) and singleton[{β/α}](yα). The second example is evaluated with
τ = {α/nat}, β = {yα/5}.

valIex,τ,β(singleton[nat](zero[∅])) valIex,{α/nat},{yα/5}(singleton[{β/α}](yα))

= Iex(singleton[nat])
(

Iex(zero[∅])
)

= Iex(singleton[{α/nat}∘{β/α}])(β(yα))

= {0} = Iex(singleton[{β/nat}])(5)
= {5}

Theorem 2.1 (Compatibility of evaluation) Given a semantic structure D, a type vari-
able assignment τ, and a variable assignment β compatible with τ, the evaluation of terms is
well-defined and compatible with τ, that is:

t ∈ TrmT =⇒ valI,τ,β(t) ∈ 𝒟τ(T)

PROOF The statement is true for variables since the variable assignment β is com-
patible with τ by assumption. Let f : T1 × . . . × Tn → T be a function symbol and
σ : typeVars(ty( f ))→ 𝒯 , and ti ∈ Trmσ(T1). The semantic function I( f [τ∘σ]) has the
range 𝒟(τ∘σ)T according to Definition 2.6, and, hence, for f [σ](t1, . . . , tn) ∈ Trmσ(T) we
get valI,τ,β( f [σ](t1, . . . , tn)) = I( f [τ∘σ])(valI,τ,β(t1, . . . , tn)) ∈ 𝒟τ(σ(T)) which is compat-
ible with respect to τ.

By induction hypothesis we know ti ∈ TrmTi entails that valI,τ,β(ti) ∈ 𝒟(τ∘σ)Ti . It
is this fact that ensures the arguments to the function application on the right hand
side in Definition 2.8 are in the respective domains: The definition is well-defined.�
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2.2.3 Formulas

Up to this point, we only mentioned terms and never spoke of formulas even though
the latter are the fundamental building blocks for sentences in a logic. The reason is
that in this framework every formula is also a term; a term of the distinguished type
bool. This unifying view to terms and formulas simplifies upcoming definitions and
observations; predicate symbols are only boolean function symbols, and need not be
treated any specially.

In the following, we assume that the type signature contains a nullary type con-
structor bool and that the evaluation is limited to structures with 𝒟bool = {tt, ff}, in
which tt is the semantic value for “true” and ff for “false”.

Definition 2.9 (Formulas) The set Trmbool of terms of type bool is called the set of for-
mulas.

We write I,τ, β |= ϕ for a formula ϕ ∈ Trmbool to denote that valI,τ,β(ϕ) = tt.
We write I |= ϕ if I, β,τ |= ϕ for every type variable assignment τ and every variable

assignment β compatible with τ.
We write |= ϕ if I |= ϕ for every semantic structure (𝒟, I), the formula is then called

(universally) valid.

To complete the embedding of formulas, we assume from now on that the signature
Σ contains the unary function symbol ¬ : bool → bool, and the binary symbols ∧,∨,→
,↔: bool × bool → bool, .

=: α × α → bool and
.≈: α × β → bool. We will write these

symbols in their usual prefix or infix notation. The symbols bind their arguments
with different strengths, .

=,
.≈ bind the most, followed by ¬, ∧ binds more than ∨ and

→, and ↔ binds least. We constrain the semantic structures which interpret formulas
to those in which the propositional junctors have their obvious intended meaning:

I,τ, β |= ¬a ⇐⇒ valI,τ,β(a) = ff
I,τ, β |= a ∧ b ⇐⇒ I,τ, β |= a and I,τ, β |= b
I,τ, β |= a ∨ b ⇐⇒ I,τ, β |= a or I,τ, β |= b

I,τ, β |= a → b ⇐⇒ I,τ, β |= a implies I,τ, β |= b
I,τ, β |= a ↔ b ⇐⇒ I,τ, β |= a if and only if I,τ, β |= b

I,τ, β |= t1
.
= t2 ⇐⇒ valI,τ,β(t1) = valI,τ,β(t2)

I,τ, β |= t1
.≈ t2 ⇐⇒ valI,τ,β(t1) = valI,τ,β(t2)

Two different equality symbols .
=: α× α → bool and

.≈: α× β → bool are introduced.
In multi-sorted logic, the equality is usually restricted to elements of the same type
only. To express this kind of equality, the symbol .

= is used. As the logic has type
variable types which stand for other types, it is possible that two terms with different
types still have the same value. The two variables xα and xβ may evaluate to the same
value if τ(α) = τ(β). The weakly typed equality xα .≈ xβ can be used in these cases. In
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general, it is better to use strongly typed equality if possible as it comprises equality
both on the values and on the types.

We say that two terms t1, t2 ∈ TrmT are semantically equal (and write t1 ≡ t2) if
valI,τ,β(t1) = valI,τ,β(t2) for all structures and variable assignments. This is the same
as saying that t1

.
= t2 is universally valid.

2.3 Extensions to Standard Logic

In the previous section we have presented a first order predicate logic with a para-
metric type system. Apart from the type system, the logic did not go beyond what
usually is expected in any first order introduction. In this chapter we will now add
two logical extensions which are not new, but less common for logic definitions. We
will also discuss the implications on the expressive power of the resulting logic.

Historically and mostly in the context of mathematical logic, definitions of terms
and formulas are kept with as few constructors as possible to facilitate their theoretical
examination. The additions we make in the following enrich the syntax of the logic.
While this makes theoretical examinations more laborious, this is sensible if the logic
is used as a vehicle to describe problems rather than a subject of investigation itself.

2.3.1 Binder Symbols

In mathematically motivated contexts, symbols often bind a variable ranging over a
set of values. Prominent instances of such binding symbol are the summation symbol
Σ or the logical quantifiers ∀,∃. Table 2.1 shows some typical binder symbols with a
typical use case and the corresponding translation into an extended predicate logic
with binder symbols.

Formally, binders are function symbols which bind a variable that can then appear
in its argument terms as a bound variable. The notion of a term signature (Definition
2.4) already contains a set BndΣ of binder symbols which have been ignored up to
this point. Like for a non-binding function symbol, ty(b) = ⟨Tv, T1, . . . , Tn, T⟩ specifies
the type signature of a binder symbol. The first element Tv of the sequence is the type
of the bound variable, followed by the types of the arguments of the binder. The last
element describes the type of the resulting term.

Syntactically, binder terms are very similar to function applications (see second
case in Definition 2.5). Binder symbols may be polymorphic as well, and when used
to compose terms, the instantiation of the type variables in the signature must be also
explicitly stated in the same way as for function symbols.

Definition 2.10 (Binder terms, Amendment to Definition 2.5) In addition to the cases
in Definition 2.5, the following construction creates terms:
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Quantification: ∀x. x * x ≥ 0 (forall xnat. xnat * xnat ≥ 0)

Minimum of an expression: min x. x + x * x (min xnat. xnat + xnat * xnat)

Summation:
b

∑
x=a

x * x (sum xnat. a,b, xnat * xnat)

Set Comprehension: {x | x * x > 2} (setComp xnat. xnat * xnat > 2)

Declarations used: +,* : nat × nat → nat denote the arithmetic operations written in infix notation.

Table 2.1: Some binder symbols with typical application and the corresponding term
in extended predicate logic syntax

3. b ∈ BndΣ, τ : typeVars(tyΣ(b))→ 𝒯Γ
⟨Tv, T1, . . . , Tn, T⟩ = τ(tyΣ(b))
xTv ∈ VarΓ, t1 ∈ TrmT1 , . . . , tn ∈ TrmTn

=⇒ (b[τ] xTv . t1, . . . , tn) ∈ TrmT

The parentheses around the expression are mandatory and fix the scope of the
bound variable of the binder. For the universal and existential quantifiers, we will
usually use the well-established symbols ∀ and ∃ and take the liberty to drop the
type information and the parentheses if the context is unambiguous. Quantifiers bind
less strongly than all other operators. The formula (∀x.ϕ ∧ ψ), for instance, stands
for (∀x.(ϕ ∧ ψ)) and not for ((∀x.ϕ) ∧ ψ).

Table 2.1 lists a number of sample terms and uses some symbols of Bndex =
{forall,exists,min,sum,setComp} with

∙ tyex(forall) = tyex(exists) = ⟨α,bool,bool⟩

∙ tyex(min) = ⟨α,nat,nat⟩

∙ tyex(sum) = ⟨nat,nat,nat,nat⟩

∙ tyex(setComp) = ⟨α,bool,set(α)⟩

Most of the binder symbols are polymorphic, only the bounded summation is mo-
nomorphic. Type inference can be applied for terms involving binder symbols in
precisely the same manner as for other terms. And we allow ourselves the same
liberal attitude when it comes to dropping type annotations for binder symbols as for
function symbols. Because of that, the following sentences denote the same term

(setComp[α/β] xβ. xβ ∈ empty[α/β]), (setComp[β] xβ. xβ ∈ empty[β]),
(setComp xβ. xβ ∈ empty) .
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We sometimes distinguish between bound variables occurrences which are in ar-
guments to a binder symbol binding the same variable and free variable occurrences
which are not in the scope of a corresponding binder. The set of freely occurring
variables freeVars(t) ⊆ Var for a term t ∈ Trm is defined as

freeVars(xT) = {xT} xt ∈ Var

freeVars( f [σ](t1, . . . , tn) =
n⋃

i=1

freeVars(ti)

freeVars((b[σ] v. t1, . . . , tn)) =
n⋃

i=1

freeVars(ti) ∖ {v} .

The semantic value of a function symbol is a function (more precisely, a family of
functions) on the domains of the semantic structure. What is then the semantic value
of a binder symbol b? The value of function symbol application may depend on the
value of its arguments, and so does the value of a binder application, but the binder
can consider the argument values for all possible instantiations of the bound variable.
A binder symbol is hence represented in the semantic domain by a function from
functions to a function (see Definition 2.6):

I(b[τ]) : (𝒟τ(Tv) →𝒟τ(T1))× . . . × (𝒟τ(Tv) →𝒟τ(T1))→𝒟τ(T)

The notion of “all possible instantiations” is formally captured as a function going
from the domain of the variable type into the type of the corresponding argument
domain. Having the semantic equivalent of a binder symbol, we can define the
semantic value of a binder application by extending Definition 2.8.

Definition 2.11 (Evaluation of binder symbols, Amendment to Definition 2.8) Let
D = (𝒟, I) be a semantic structure, τ a type variable assignment and β a variable assignment
compatible with τ. For the binder symbol b ∈ Bnd with ty(b) = ⟨Tv, T1, . . . , Tn⟩ applied to
σ : typeVars(ty(b))→𝒯 , a variable v : Tv and the terms t1 ∈ TrmT1 , . . . , tn ∈ TrmTn let the
functions

evali : 𝒟τ(σ(Tv)) →𝒟τ(σ(Ti))

evali(d) := valI,τ,β[v ↦�d](ti), d ∈ 𝒟τ(σ(Tv))

for 1 ≤ i ≤ n be the argument evaluations. The evaluation valI,τ,β : Trm →𝒟 from Def. 2.8
is then extended for binder applications as

valI,τ,β((b[σ] v. t1, . . . , tn)) = I(b[τ∘σ])(eval1, . . . , evaln) .

The following simple example also clarifies this definition: A unary monomorphic
binder symbol b with ty(b) = ⟨A, B,C⟩ applied to variable vA and argument t ∈ TrmB

is evaluated as

valI,τ,β((b vA.t)) = I(b)({d ↦→ valI,τ,β[vA ↦�d](t) | d ∈ 𝒟A}) .
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The most prominent representatives of binder symbols are the universal and
existential quantifier, and we can conclude the embedding of predicate logic into our
definitions by defining their semantics as

I(forall[α]) : (𝒟α →𝒟bool)→𝒟bool I(forall[α])( f ) :=

{
tt if {tt} = { f (d) | d ∈ 𝒟α}
ff otherwise

I(exists[α]) : (𝒟α →𝒟bool)→𝒟bool I(exists[α])( f ) :=

{
tt if tt ∈ { f (d) | d ∈ 𝒟α}
ff otherwise

.

In the following, we constrain ourselves to semantic structures which have this
interpretation of quantifiers and consider them ‘built-in’ with the expected semantics

I,τ, β |= (∀xT .ϕ) ⇐⇒ I,τ, β[xT ↦�d] |= ϕ for all d ∈ 𝒟τ(T) (2.7)

I,τ, β |= (∃xT .ϕ) ⇐⇒ I,τ, β[xT ↦�d] |= ϕ for some d ∈ 𝒟τ(T) .

When the logic is reduced to first order logic without binders in the following,
this does not affect the quantifiers which are still considered present unless they are
explicitly excluded as well.

We can also give the other examples in Table 2.1 a sensible interpretation by setting:

Iex(min[T])( f ) := min{ f (d) | d ∈ 𝒟T}

Iex(sum)(a,b, c) :=
b(0)

∑
d=a(0)

c(d)

Iex(setComp[T])( f ) := {d ∈ 𝒟T | f (d) = tt}

While the addition of binder terms does not increase the expressiveness of the logic
(see Section 2.3.3 below), it facilitates both tasks of problem statement and solving
considerably. Binders often allow the concise specification of operations which would
otherwise need the introduction of extra function symbols. Binders do not add to the
expressiveness of the logic (as we will see in Section 2.3.3), and it is always possible
to find a description without binder symbols, but the formula sizes are generally
considerably smaller when the more sophisticated symbols are employed. They
increase readability and comprehensibility of specifications.

Usually, there is a straightforward intuition about the meaning of a binder symbol,
but their more complex nature inherently bears some pitfalls. Some function or
binder symbols only describe partial functions. The division x/y, for instance, is only
defined if the second argument y is semantically different from 0. A similar situation
may arise if the semantics of the maximum operator is to be defined as analogon to
the minimum operator as

max[T]( f ) := max{ f (d) | d ∈ 𝒟T} .



24 CHAPTER 2 UNSTRUCTURED DYNAMIC LOGIC

While every non-empty set of naturals has a minimum, there is no guarantee that it
has a maximum. What would be the value of (max[nat] x. x)? There is no maximum
for the arguments, the result should not exist. But since every function and binder
symbol in the logic is total, this term must evaluate to a value in 𝒟nat. The problem
can be solved by underspecification. The value of a binder (or function) application
without defined value for some arguments is left open. In the axioms which give
the symbols their meaning, guarding conditions are added. For the max symbol, the
existence of a maximum value amongst all argument values must be guaranteed
prior to exploiting that the maximum over a term f is greater than any application of
f .

(∃y.∀x. y ≥ f (x))→ (∀y.(max x. f (x)) ≥ f (y))

Hähnle (2005) compares various possibilities to handle partial functions in predicate
logic (without binders) and Schmitt (2011) suggests to prove well-definedness con-
ditions for formulas with partial function symbols which could also be extended to
binder applications.

The proposed binder setComp to notate set comprehension allows the formula-
tion of arbitrary class terms {x | ϕ(x)}. From Russell’s famous antinomy, we know
that such class terms are dangerous in general, as they allow the formulation of
inconsistent sentences like {x | x ̸∈ x}. Fortunately, due to our type system, such
antinomies cannot be formulated, and we can give a superset for every set compre-
hension: valI,τ,β((setComp[T] x.ϕ)) ⊆ 𝒟τ(T). The sentence ¬in(t, t) cannot be typed
since type T of the first argument influences set(T) the type of the second. But the
typing constraint T = set(T) can never be resolved and the sentence cannot denote a
formula.

Dowek et al. (2002) propose a more general extension of predicate logic with binder
symbols. They relax extensional requirements of the behaviour of binder symbols,
that is, they do not require that the formula

(∀x.t .
= u)→ (b x.t) .

= (b x.u) (2.8)

holds for a unary binder b. In our setting, (2.8) is implied by the semantical evaluation
valI,τ,β((b x.t)) = I(b)({d ↦→ valI,τ,β[x ↦�d](t)}) which interprets (b x.t) and (b x.u)
equivalently (under I) if the terms t and u are semantically indistinguishable. The
binder symbols we have introduced and will introduce in this document depend
only on the semantic value of their bound terms and, hence, the less liberal semantic
Definition 2.11 fits better our needs.

2.3.2 Type Quantification

In the last section, binder symbols have been introduced to bind (object) variables,
but we have no means to bind a type variable, yet. In congruence with universal and
existential quantifiers on domain variables, we extend Def. 2.5 by the quantification
over type variables.
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Definition 2.12 (Type quantification, Amendment to Definition 2.5) In addition to
the cases in Definitions 2.5 and 2.10, the following constructions create terms:

4. α ∈ TVar, ϕ ∈ Trmbool

=⇒ (

A

α. ϕ), (

E

α. ϕ) ∈ Trmbool

The ability to quantify over types gives the possibility to formulate properties for
all possible type instantiations at a time. Instead of enumerating infinitely many
sentences

(∀xnat.¬in(xnat,empty)), (∀xset(nat).¬in(xset(nat),empty)),

(∀xset(set(nat)).¬in(xset(set(nat)),empty)), . . .

for all possible variable-free types, we can now write

(

A

α. ∀xα. ¬in(xα,empty)) . (2.9)

The addition of the existential type quantifier is redundant since if the logic contains
an universal type quantifier, the existential quantifier can be defined as its dual

E

α. ϕ := ¬

A

α. ¬ϕ .

One might be tempted to adapt (2.7) to type quantified formula which would yield

I,τ, β |= (

A

α. ϕ) ⇐⇒ I,τ[α ↦�T], β |= ϕ for all variable-free types T ∈ 𝒯 0 .

However, for T ̸= τ(α) the assignments τ[α ↦�T] and β are not compatible: β(xα) ∈
𝒟τ(α) by assumption that τ and β are compatible and therefore β(xα) ̸∈ 𝒟T .

To mend this situation, we need two helper notions which put β back into com-
patibility if the type variable assignment has been modified. Firstly, we assume that
there is a default value δD,Γ(T) for every ground-type T ∈ 𝒯 0. Since the domains of a
semantic structure D are defined non-empty, the following definition is feasible for
any D and any type signature Γ:

δD,Γ : 𝒯 0 →𝒟 with δD,Γ(T) ∈ 𝒟T

Secondly, a function is needed which renders a variable assignment β incompatible
with τ to one which is compatible. This coercion is performed by mapping all
incompatible values to the default value of the according type:

coerce(β,τ)(xT) :=

{
β(x) if β(xT) ∈ 𝒟τ(T)

δD,Γ(τ(T)) otherwise

for a variable xT ∈ Var of type T ∈ 𝒯 .
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Observation 2.2 (Coercion)

1. For any variable assignment and any type variable assignment τ, the coerced value
coerce(β,τ) is compatible with τ.

2. For a variable assignment β compatible with τ, coercion has no effect: coerce(β,τ) = β

PROOF Obvious. �

Using the notion of coercion, it is now possible to define the semantics of type-
quantified formulas.

Definition 2.13 (Evaluation of type quantification, Amendment to Definitions 2.8)
For a given semantic structure (𝒟, I), a type variable assignment τ and a variable assignment
β compatible with τ, the evaluation for universal type quantification (

A

α.ϕ) is defined as

I,τ, β |= (

A

α.ϕ) : ⇐⇒ I,τ[α ↦�T], coerce(β,τ[α ↦�T]) |= ϕ for all T ∈ 𝒯 0

This definition is similar to the definition of the universal quantification over
elements in (2.7). One might at first expect that the condition would be I,τ[α ↦�T], β |=
ϕ. But there would no reason to assume that τ[α ↦�T] and β are compatible even if
τ and β were. One implication of this would be that Theorem 2.1 would no longer
hold. The definitions of the semantics in this section build on this theorem since their
definitions would otherwise be ill-defined (functions would be used outside their
defined domain).

Coercion is not a problem in reality, however. It has an effect on the semantics only
if the formula on which the quantifier operates contains a free variable whose type
contains the quantified type variable. Let p : α → bool for instance be a polymorphic
predicate symbol. The formula (

A

α.∀xα. p[α](xα)) is a formula in which the quantified
type variable α does not occur in a free variable in its scope, its evaluation is therefore
straightforward (see Proof of Observation 2.3 for details):

I,τ, β |= (

A

α.∀xα. p[α](xα)) ⇐⇒ I(p[T])(d) = tt for all T ∈ 𝒯 0,d ∈ 𝒟T (2.10)

which means that the formula holds if and only if p is the universal predicate resulting
in tt on every argument. In the formula (∀xα.

A

α. p[α](xα)), on the other hand, the two
quantifiers have swapped places. Now the type quantifier binds α even if it appears
in the type of the variable xα which occurs free in its scope.

I,τ, β |= (∀xα.

A

α. p[α](xα)) ⇐⇒ I(p[T])(δ(T)) = tt for all T ∈ 𝒯 0, (2.11)

and I(p[τ(α)])(d) = tt for all d ∈ 𝒟τ(α)

which means that this formula may hold even if p is not universal. It suffices for p to
be true on all values in 𝒟τ(α) and on the default values. The coercion did not vanish
from the evaluation and it depends on the choice of default values δ(T).



2.3 EXTENSIONS TO STANDARD LOGIC 27

Moreover, we have found a counter example that shows that the implication
(∀xα.

A

α.ϕ) → (

A

α.∀xα.ϕ) is not valid in general. The opposite direction is valid,
however:

Observation 2.3 (Permuting object and type quantifiers) Let ϕ ∈ Trmbool be a for-
mula, α ∈ TVar a type variable and xα ∈ Var a variable. Then the implication (

A

α.∀xα.ϕ)→
(∀xα.

A

α.ϕ) is valid. The converse is not valid in general.

PROOF Using the abbreviation τ′ = τ[α ↦�T] we show the implication on the seman-
tics:

I,τ, β |=

A

α.∀xα.ϕ

⇐⇒ I,τ′, coerce(β,τ′) |= ∀xα.ϕ for all T ∈ 𝒯 0

⇐⇒ I,τ′, coerce(β,τ′)[xα ↦�d] |= ϕ for all T ∈ 𝒯 0, d ∈ 𝒟T

(a)⇐⇒ I,τ′, coerce(β[xα ↦�d],τ′) |= ϕ for all T ∈ 𝒯 0, d ∈ 𝒟T

(b)
=⇒ I,τ′, coerce(β[xα ↦�d],τ′) |= ϕ for all T ∈ 𝒯 0, d ∈ 𝒟τ(α)

⇐⇒ I,τ, β[xα ↦�d] |=

A

α.ϕ for all d ∈ 𝒟τ(α)

⇐⇒ I,τ, β |= (∀xα.

A

α.ϕ)

(a) The two variable assignments are equal to coerce(β,τ)(v) on any variable v ∈
Var other than xα. Since d ∈ 𝒟τ′(α), it easy to see that both variable assignments
result in d for xα.

(b) The consequence is trivially true for T = τ(α). If T ̸= τ(α), then the update to
the variable assignment is incompatible with τ′ and by definition we get the
equality coerce(β[x ↦�d],τ)(xα) = δ(T) = coerce(β[x ↦�δ(T)])(xα). The value
δ(T) ∈ 𝒟T is covered by the premiss: The implication holds because the general
case automatically covers the default value as well. It is here that the opposite
direction is not necessarily the case.

The formula (

A

α.∀xα. p[α](xα)) for p : α → bool holds if the predicate p is true on
all arguments. This has already been mentioned in (2.10), we provide the formal
evidence here.

I,τ, β |= (

A

α.∀xα. p[α](xα))

⇐⇒ I,τ′, coerce(β,τ′) |= ∀xα. p[α](xα) for all T ∈ 𝒯 0

⇐⇒ I,τ′, coerce(β,τ′)[xα ↦�d] |= p[α](xα) for all T ∈ 𝒯 0,d ∈ 𝒟T

⇐⇒ I(p[T])
(
(coerce(β,τ′)[xα ↦�d])(xα)

)
= tt for all T ∈ 𝒯 0,d ∈ 𝒟T

⇐⇒ I(p[T])(d) = tt for all T ∈ 𝒯 0,d ∈ 𝒟T
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With the additional abbreviation β′ := β[xα ↦�d], the converse (∀xα.

A

α. p[α](xα)) then
holds under different conditions:

I,τ, β |= (∀xα.

A

α. p[α](xα))

⇐⇒ I,τ, β′ |= (

A

α. p[α](xα)) for all d ∈ 𝒟τ(α)

⇐⇒ I,τ′, coerce(β′,τ′) |= p[α](xα) for all d ∈ 𝒟τ(α), all T ∈ 𝒯 0

⇐⇒ I(p[T])(coerce(β′,τ′)(xα)) = tt for all d ∈ 𝒟τ(α), all T ∈ 𝒯 0

⇐⇒ I(p[T])(d) = tt if T = τ(α) or d = δ(T), T ∈ 𝒯 0,d ∈ 𝒟T

⇐⇒ I(p[T])(δ(T)) = tt for all T ∈ 𝒯 0, and I(p[τ(α)])(d) = tt for all d ∈ 𝒟τ(α)

which means that this formula may hold even if p is not universal, see also (2.11). A
concrete interpretation can easily be found in which the second formula holds but
the first does not. �

The resemblance between this definition and the valuation of object quantifiers
(2.7) might lead to the conclusion that type quantification is an application of object
quantification. But this is not the case. Types are not reified into a “type of types”
which could then be subject to quantification. Instead, the type quantifiers are a
new syntactic category. The context of the quantifier influences the type variable
assignment τ and leaves the object variable assignment β untouched. In example
(2.9), the set over which the quantification (∀xα. . . .) ranges is influenced by the
type quantifier. Such an evaluation context can never be created using a variable
assignment, it must be the type variable context which is modified.

While parametric type systems, polymorphic function symbols and type variables
are common for the definition of predicate logics for proof assistants, type quantifi-
cation is not. There is one suggestion by Melham (1993) to add it to a higher order
logic framework, but it has not been incorporated into the system. To our knowledge,
the Boogie 2 system described by Leino and Rümmer (2010) is the only logic system
which supports type quantification. The reason for this reluctance may be that type
quantifiers increase expressiveness of the logic (see next section).

2.3.3 Expressiveness

In the last sections we have introduced a predicate logic with some deviations from
textbook first order logic. The question which naturally arises is whether the addi-
tional constructs enrich the syntax of the logic without increasing its expressiveness.

Usually, a logic is more expressive than first order logic if there is a set of semantic
structures which can be characterised by the enriched logic but not in first order logic.
Of course, this notion is only sensible if the semantic structures coincide between the
logics under examination.

Since some of the defined extensions change the notion of semantical structures,
we will use the less strict notion of reducibility. A logic can be reduced to first
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order predicate logic if for every recursive set of formulas M in the richer logic an
equisatisfiable1 set M′ of first order formulas can be computed.

Binders

The addition of binders as new syntactical concept into the logic does not increase
its expressiveness. It is possible to reduce logic with binders to traditional predicate
logic by replacing the binder symbols with ordinary function symbols. A binder
symbol can this be seen as an abbreviation for an entire family of function symbols.

Theorem 2.4 (Reduction of binder logic) For any recursive set M ⊆ Trmbool of formu-
las containing binder symbols, an equisatisfiable set M′ ⊆ Trmbool of formulas without binder
symbols can be computed.

In M′ only binder terms have been replaced by first order terms.

The idea behind the proof is to introduce a new function symbol f(b x.t1,...,tn) for ev-
ery binder term (b x.t1, . . . , tn). These new function symbols must then be constrained
such that they are consistent with the semantics of binder symbols. However, while
these additional constraints are straightforward, there will be infinitely many of them.

PROOF We present the proof for the untyped case, that is, there are only boolean
terms and terms of one other sort. The aspect of types is orthogonal to the presented
idea and omitting type annotations clarifies the proof. For the same purpose, the
presentation is limited to unary binder symbols. The extension to higher arities is
canonical.

Let M(0) = M be the set of formulas containing binder symbols. The set M(1) is
constructed from M(0) by replacing every binder term (b x.t) in which no binder
occurs in t by the term f(b x.t)(v̄) in which f(b x.t) ∈ Fct is a fresh replacement function
symbol and v̄ denotes the free variables (without the variable x bound to b) occurring
in t. Let, in general, the set M(n+1) emerge from M(n) by the same construction. Let
ultimately M∘ denote the set of terms in which all binders have been thus replaced:

M∘ := (
⋃

n∈N
M(n)) ∩ {t ∈ Trm | t is binder-free}

The auxiliary set M† ⊂ Trmbool captures the constraints which ensure that the fresh
function symbols behave consistently. It is defined as

M† = {(∀v̄.∀w̄.(∀z.tz .
= uz)→ f(b x.t)(v̄)

.
= f(b y.u)(w̄)) | t,u ∈ Trm, binder-free}

(2.12)
in which w̄ are the free variables in u (again, without the bound variable y). Since
the bound variable differs between t and u (variable x versus y), the comparison is

1This would be “equivalent” instead of “equisatisfiable” to show a logic was not more expressive than
first order logic.
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performed on the terms tz and uz in which all occurrences of the bound variables
have been replaced by a common variable z not occurring in t or u.

Two binder applications in which the argument terms are semantically (but not syn-
tactically) equal need to result in the same evaluation (by Def. 2.11). The constraints
in M† ensure that any two binder terms with semantically equivalent arguments t
and u have equivalent replacement functions f(b x.t) and f(b y.u).

The union M′ = M∘ ∪ M† has a model if and only if M has: Let (𝒟, I) be a model
of M (with binders), we construct the model (𝒟, I′) (without binders) by setting the
interpretation I congruent with I′ on all function symbols in M and extend it for the
new symbols by setting:

I′( f(b x.t))(d̄) := valI,τ,β[v̄ ↦� d̄](b x.t) = I(b)(e ↦→ valI,τ,β[x ↦� e][v̄ ↦� d̄](t)) (2.13)

The evaluation of the replacement function symbols is chosen to match the value of
the replaced binder terms. Hence, by construction, the formulas in M∘ are true in I′.
Due to the equality in (2.13), it is obvious that a term u which behaves identically to t
under I for all instantiations of x will have the same value if applied as arguments to
the binder b. The equalities in M† are thus rendered true as well.

For the other direction, let now (𝒟, J′) be a model of M′, from which we construct
a model (𝒟, J) for M. On function symbols, J behaves identically as J′ and for any
binder symbol b, we set

J(b)(e ↦→ valJ′ ,τ,β[x ↦� e](t)) = valJ′ ,τ,β( f(b x.t)(v̄)) (2.14)

for all applicable terms t and variable assignments β. This does not fix J entirely. If
g : 𝒟 → 𝒟 is a function not induced by a term2, the valuation J(g) is not fixed by
(2.14). For the evaluation of any term, however, J will only be applied to functions
which are induced by terms. We can therefore choose the value of J on the remaining
places arbitrarily. It is still fixed “tightly enough” for our purposes. The binder terms
evaluate equal to their replacement terms and since J′ |= M∘, we have J |= M.

For the choice of (2.14) to be well-defined, the replacement functions f(b x.t) and
f(b x.u) for two equivalent terms t ≡ u inducing the same function, must result in the
same value. This is the case since J′ satisfies M† which implies exactly this condition.�

This result considers all binder (and function) symbols as uninterpreted symbols
which have no fixed meaning. The valid formulas in first order predicate logic are
recursively enumerable if semantics of the function symbols is not fixed. If their
meaning can be fixed by means of axioms in the logic itself, the decidability state
does not change.

Often function symbols are given their fixed meaning using a finite number of
axioms. The function symbol for the empty set has its meaning fixed by the single

2If the domain is infinite, there must be one such function on the domain which cannot be described by a
term. This is since the set of terms is countable while the set of functions on the domain is not.
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axiom (

A

α.∀xα.¬in(x,empty)). Binder symbols are of a different nature: They can
usually not be adequately axiomatised by a single axiom but need an infinite set of
formulas. The binder setComp for the set comprehension (mentioned in Table 2.1), for
instance, is axiomatised by the infinite set {(∀T.∀xT . in(x, (setComp x.ϕ))↔ ϕ) | T ∈
𝒯 0, ϕ ∈ Trmbool with freeVars(ϕ)⊆ {xT}}. The set is schematic and as such recursive,
the validity problem remains semi-decidable for predicate logic with binders which
have there semantics fixed by such schematic axiomatisations.

In Section 4.3.2 we will come back to the issue of translating logic with binder
symbols to first order logic, but then with the intention to efficiently feed UDL proof
obligations to a constraint solver. The translation presented there reifies functions
using a first order theory of functions. It is theoretically incomplete but better suited
for practical usage.

Dowek et al. (2002) provide a sound and complete calculus for a more general
extension of predicate logic with binder symbols. In their setting, the extensional
equation (2.8) needs not hold. If the structures are restricted to such structures
with finite domain, binders do increase the expressiveness of the logic. Otto (2000)
shows that Hilbert’s ε choice binder allows the formulation of properties over finite
structures which are not expressible in first order logic itself.

Parametrised Types and Type Quantification

The situation is different if type parameters and quantification over types are admitted.
Using type quantification, it is possible to axiomatise that the domain of a type is
isomorphic to the natural numbers, a fact which cannot be specified in first order
predicate logic as a result of Gödel’s incompleteness theorem.

We will in the following construct a formula over the type signature Γarith =
{S,n,bool} and signature Σarith = {c : α, f : S(α)→ n, succ : n → n,zero : n} such that
for every model (𝒟n, I(zero), I(succ)) ∼= (N,0,+1)

The formula is as follows:

A

α.∀xS(α). xS(α) .
= c[S(α)] (2.15)

∧ ∀xn.

E

α. f (c[S(α)]) .
= xn (2.16)

∧

A

α.

A

β. f (c[S(α)]) .
= f (c[S(β)])→ c[S(α)]

.≈ c[S(β)] (2.17)

∧ zero .
= f (c[S(n)]) (2.18)

∧

A

α. succ( f (c[S(α)])) .
= f (c[S(S(α))]) (2.19)

Equality (2.15) ensures that the domains 𝒟S(S(...(n)...)) are singletons. The following
formulas achieve that the chain I(c[S(n)]), I(c[S(S(n))]), . . . is isomorphic to the natural
numbers. Using (2.16) for surjectivity and (2.17) for injectivity3 we define a bijection
between that chain and the domain 𝒟n via the polymorphic function symbol f :
S(α)→ n. The last two conjuncts (2.18) and (2.19) fix the semantics of zero and succ.

3We must use weak equality here since the types of c[S(α)] and c[S(β)] make them incomparable using .
=.
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It is in this case the existential quantifier in (2.16), which is used to formulate the
surjectivity of f , that is responsible for the increased expressiveness in this formula.
However, even without explicit type quantifiers (all type variables are implicitly
universally quantified), there would be a way to encode structures (for instance,
non-linear arithmetic) which cannot otherwise be encoded in first order logic.

The set of ground types is the freely generated algebra over the type constructors
and it is this structure (which cannot generally be expressed in first order logic)
inherited to the domains which causes the logic to theoretically go beyond first order
logic here. Only if the type system is relaxed to contain at least the generated types
(but possibly more types) can the logic be first order again. Schmitt et al. (2009)
describe a similar criterion for the reification of a hierarchical type system.

This result is a motivation for us to leave first order definability behind us and to
semantically fix certain domains. The resulting logic will not have a complete calculus,
but practice has shown that the theoretical completeness gap and the incompleteness
of theorem proof systems have little in common.

2.4 Structured Dynamic Logic

To formally prove properties about programs in a deductive manner, we need a
formalism which combines programs and properties in one language. Dynamic Logic
(DL) is such a formalism embedding pieces of code into logical formulas. It was
introduced by Pratt (1976), refined by Harel (1979), and is extensively covered in the
monograph by Harel et al. (2000).

DL is a modal logic, that is, the evaluation of a formula spans over more than one
semantic structure, modal operators switch between the semantic structures in the
evaluation. The modalities of DL are induced by programs: A program P can be
embedded into modal operators [·] (called box) or ⟨·⟩ (called diamond) and is followed
by a formula ϕ. The formula [P]ϕ is true if ϕ is true in all possible terminal states of
the execution of P and ⟨P⟩ϕ is true if there is one terminal state such that ϕ holds.

Dynamic Logic has strong connections with the weakest precondition calculus by
Dijkstra (1975) and Floyd-Hoare logic (Floyd, 1967; Hoare, 1969). The DL-formula
ψ → [P]ϕ is valid if the metaformula ψ → wlp(P; ϕ) of the weakest precondition
calculus is, or – equivalently – if the Hoare triple {ψ}P{ϕ} is valid in Floyd-Hoare
calculus. Unlike Hoare triples and Dijkstra’s weakest precondition meta-operators
wp and wlp, however, the DL-modalities are first class formula constructors and the
logic is closed under composition. We shall in later sections, for instance, make use of
that fact by constructing formulas like [P]⟨Q⟩ϕ which have no counterpart as Hoare
triple.

An example of a formula in dynamic logic is the following stating that the addition
of two natural numbers a,b can be performed by iteratively incrementing variable a
and decrementing b until b = 0.

a .
= a0 ∧ b .

= b0 → [while ¬b .
= 0 do a := a + 1; b := b − 1 end]a .

= a0 + b0 (2.20)
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The language employed in the program of this tiny example supports the while
loop statement. In the original presentation of DL, however, programs in modalities
were composed using more fundamental combinators influenced by Kleene Algebra
(Kozen, 1997). The thus constructed programs are called regular programs due to their
resemblance with regular expressions; Table 2.2 gives an overview of the constructors
of regular programs. Please note that regular programs are indeterministic, in the sense
that the execution started in one state can result in more than one (or no) terminal
state.

Construct Semantics when used in regular programs
P1 ∪ P2 (Indeterministic choice) The execution of this program in-

deterministically chooses either P1 or P2 to continue the
execution.

P1 ; P2 (Sequential composition) After the execution of P1, the pro-
gram P2 is executed. This operator is deterministic.

P* (Kleene-star repetition) The execution of the program repeats
the program P an indeterministically chosen number of
times.

ϕ? (Test) The execution of this program proceeds if the formula
ϕ holds, and blocks execution (i.e., does not result in a
terminal state) if not.

x := t (Assignment) The value of the expression t is assigned to a
program variable x.

x := ? (Random assignment) An extension to DL defined by Harel
et al. (2000, S11.2). An arbitrary, indeterministically chosen
value is assigned to the program variable x

P, P1, P2 are regular programs, x is a program variable, t a term of the same type as x and
ϕ a formula.

Table 2.2: Statement constructors in structured DL

The more convenient program constructors like “while” or “if-then-else” can be
defined as macros using the regular program junctors. The DL formula (2.20) from
above using the high-level while construct can, for instance, be seen as an abbrevia-
tion of the spelled out formula

a .
= a0 ∧ b .

= b0 → [(¬b .
= 0?; a := a + 1;b := b − 1)*;b .

= 0?]a .
= a0 + b0

which uses a regular program. The loop with a condition has been replaced by a
indeterministic repetition. The repeated program starts with a test ensuring that the
loop condition holds in every iteration of the loop. The actual assignments in the
body remain untouched. Only after the repeated block, another test ensures that the
loop condition does not hold any longer after the execution of the loop. Despite the
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fact that the repetition and the choice operation individually are indeterministic, this
particular combination ensures that the program seen as a whole is deterministic.

Dynamic logic is used as underlying logic in the deductive program verifiers KIV
(Reif et al., 1995) and KeY (Beckert et al., 2007) to formulate program verification con-
ditions. Inference rules and deduction are then used to reduce verification conditions
in DL to formulas of the underlying logic.

2.5 Unstructured Dynamic Logic

In this section we devise a dynamic logic for a special indeterministic verification
language and embed it into the presented predicate logic.

2.5.1 Unstructured Programming Language

“Go to statements considered harmful” is the title of a famous letter by Dijkstra (1968)
criticising that excessive use of unstructured jump commands decreases the quality of
the resulting code: “The go to statement as it stands is just too primitive; it is too much
an invitation to make a mess of one’s program.” In the decades following 1968, when
Dijkstra expressed his concerns, programming in unstructured languages has been
overcome. Why, then, do modern verification approaches revert to an unstructured
goto language again? Is this not a step backward?

The reason is that intermediate verification languages are not intended as input
languages for a human programmer (or specifier) but as platforms for intermediate
translation representations. They must, therefore, not be compared to high-level
programming languages (such as Java, for instance) but rather to intermediate repre-
sentations within a compilation process (such as Java bytecode, for instance). Such
low-level, machine-oriented languages are still based on the goto statement due to
the nature of target processors. An intermediate verification language is intended as a
vehicle to formulate proof obligations which originally stem from a (possibly already
compiled) program in a higher programming language. For a machine-targeted
language, generality and efficiency are higher design goals than human comprehensi-
bility. A structured program containing loops can canonically be transformed into a
goto-program, the converse is not as easy to achieve, see Section 2.5.5 for a detailed
analysis.

When choosing the set of control flow operations, we align the unstructured
language with the structured case presented in Table 2.2 and transfer the statements
into a goto-oriented setting. The language primitives essentially remain the same,
only the control-flow operators ∪ and * are replaced by the general goto statement to
control flow more flexibly.

The resulting programming language bases on the same primitive building blocks
as the programming language of Boogie defined by Leino and Rümmer (2010). Al-
though the Boogie proof system uses weakest-precondition-techniques rather than
dynamic logic, the likeness cannot be overseen and is intentional. Boogie has a long
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tradition going back to its predecessor intermediate representations of ESC/Mod-
ula and ESC/Java(2). These systems used a language similar to Dijkstra’s guarded
commands, indeterministic but structured. It was discovered that for a translation
from already compiled code to an intermediate language it helps if the verification
language allows for more flexible control flow.

Unlike in Boogie, we do not structure the program into basic blocks which are
sequences of statements such that no path through the program enters or leaves a
basic block other than through the first or last statement. The finer granularity of
indexing statement-wise allows us to point to each statement individually and to
symbolically execute the code statement by statement.

We will together with the primitives also adopt the terminology introduced by
Boogie and name our statements equally. Table 2.3 states a full comparison between
the constructors of regular programs and the ones of UDL.

Traditionally, program verification systems consider pairs of states: One state
before the program execution and one state which can be reached by the execution.
Depending on the termination and determinism status of the program, there may be
none, one, or many pairs for a given start-state. Pre- and postcondition refer to the
start- and end-state, the states which are traversed during the execution are of no
interest for the semantic meaning.

However, it proved more flexible to disseminate the verification condition onto
various places within the program. The benefits include:

1. During the course of a program, constraints on the values of the program
variables must hold and these refer to the values of the intermediate state not
to those of the end state. While it would be possible to remember the values
and to do the checks in the end-state, it seems natural to resolve this in situ.

2. If a constraint does not hold or cannot be proved valid, it would be nice to be
able to give an adequate feedback on what and where the problem occurred.
If the constraints are kept close to the place where the action happens, the
localisation of errors is a lot easier.

Therefore, we will allow for embedded assertions within the program in addition
to the other program constructs. This is a significant extension to the traditional DL
paradigm which does not consider intermediate states.

2.5.2 Formal Definition of UDL

It is in the nature of a program to change the state of the environment it is executed
in. In the context of dynamic logic, this means that the execution of a program may
change the valuation of some symbols. In the following, we limit the effects of a
program execution to some logical symbols which we call the program variables. The
set PVarΣ of program variables for a given signature Σ is a subset of the nullary
monomorphic function symbols, formally

PVarΣ ⊆ { f ∈ FctΣ | ty( f ) = ⟨T⟩, typeVars(T) = ∅} .
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Construct Struct. DL UDL
(Indeterministic choice) P1 ∪ P2 goto idx1, idx2
(Kleene-star repetition) P* goto idx
(Test) ϕ? assume ϕ

(Assignment) x := t x := t
(Random assignment) x :=? havoc x
(Embedded assertions) n/a assert ϕ

idx, idx1, idx2 are natural number literals, P1, P2 regular programs, x is a
program variable, t a term of the same type as x and ϕ a formula.

Table 2.3: Comparison between constructors in structured and unstructured DL

Definition 2.14 (Statement, Unstructured program) For a given signature Σ, the set of
statements StmΣ is defined as

StmΣ = {skip, end}
∪ {assert ϕ | ϕ ∈ Trmbool

Σ }
∪ {assume ϕ | ϕ ∈ Trmbool

Σ }
∪ {goto n1, . . . ,nk | n1, . . . ,nk ∈ N}

∪ {p := t | p ∈ PVarΣ, t ∈ Trmty(p)
Σ }

∪ {havoc p | p ∈ PVarΣ}

An unstructured program is a finite sequence of statements. The set of programs is
denoted by ΠΣ and |π| ∈N denotes the length (that is, the number of statements) of π ∈ ΠΣ.
For a natural number i ∈ N, the selection π[i] refers to the i-th statement in π if i < |π| and
refers to the statement “end” if i ≥ |π|.

A program is called self-contained if (1) the last statement is an end-statement and
(2) n < |π| for every argument n ∈ N to any goto-statement in π.

Unlike programs in structured higher programming languages in which the pro-
gram text forms a (syntax) tree, unstructured programs have no such recursive build-
ing nature, but are a raw sequence of commands. Control flow can be transferred
arbitrarily using goto statements.

The program flow may go beyond the range of the defined program, but terminates
immediately then. It is obvious that every program is equivalent to a very similar
self-contained program.

The upcoming definition will introduce dynamic logic constructions which incor-
porate unstructured programs, similar to the structured case. But program modalities
are not the only means to describe changes of state. In addition we also permit the
notation of explicit substitutions for program variables, called updates. Updates are
used, for instance, to store intermediate states during symbolic execution of programs
(see Section 3.2).
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Definition 2.15 (Update and program formulas, Amendment to Definition 2.5) In
addition to the cases in Definitions 2.5, 2.10, and 2.12, the following two constructions create
terms:

5. p1, . . . , pn ∈ PVarΣ and t1 ∈ Trmty(p1)
Σ , . . . , tn ∈ Trmty(pn)

Σ , t ∈ TrmT
Σ

=⇒ {p1 := t1 ‖ . . . ‖ pn := tn}t ∈ TrmT
Σ (Update term)

6. π ∈ ΠΣ,n ∈ N
=⇒ [n;π], Jn;πK ∈ Trmbool

Σ (Program formula)

The first component n of the pair n;π serves as a program counter or instruction
pointer into the program π. It indicates that the next statement to be executed is π[n],
the n-th statement of π. Since we often consider execution starting at the beginning
of a program, we take the liberty to write [π] (or, respectively, JπK) to denote the
modalities [0;π] (J0;πK) starting from the beginning of π.

The definitions of statements and terms need to be read simultaneously as they refer
to each other (statements may contain terms and, vice versa, formulas can contain
programs and therefore statements). It is possible to nest programs and formulas
and the statement assert [0;π] is a legal statement. That such a deep embedding is
desirable is shown in the approach presented by Barnett and Leino (2010). There,
the authors formulate verification conditions for specifications themselves written
in code (in this case Code Contracts, see Fähndrich et al. (2010)) in Boogie using very
similar deep embeddings.

Dynamic logic is a special case of modal logic. Traditionally, the semantics of
modal logic is defined using the notion of a Kripke structure. A Kripke structure
consists of a set of states with a binary state relationship. Each state may interpret
symbols differently. The evaluation of formulas behind a modal operator switches
the evaluation state. In the case of dynamic logic, the modal operators are induced by
a piece of code.

In our case, we will deviate from this pure doctrine in so far as not only the
begin/end-pair of the state relation is considered but all traversed states in between
them as well. However, we will use a Kripke structure as evaluation basis and define
our semantics upon them. As set of states we use the set of all possible semantic
structures I over the signature Σ.

This is of course an over-relaxation of the state space since programs may only
change program variables and must leave every other symbol of the signature seman-
tically untouched. However, it simplifies definitions a lot. If you like, you can also
think of the state space as the set of all possible value assignments to the program
variables.

Updates are a simple modal operator in which the state change is explicitly de-
scribed as set of assignments which are executed in parallel and the state change hap-
pens without intermediate step. The value of an updated term {p1 := t1 ‖ . . . ‖ pn :=
tn}t is equivalent to the value of t in a modified semantic structure in which the
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program variables p1, . . . , pn are evaluated as the value of their replacement terms
t1, . . . , tn:

Definition 2.16 (Evaluation of update terms, Amendment to Definition 2.8)
Let D = (𝒟, I) be a semantic structure, τ a type variable assignment and β a variable
assignment compatible with τ. For program variables p1 : T1, . . . , pn : Tn and equally typed
terms t1 ∈ TrmT1 , . . . , tn ∈ TrmTn and an arbitrary term t ∈ Trm the evaluation function
valI,τ,β as introduced in Def. 2.8 is extended by setting

valI,τ,β({p1 := t1 ‖ . . . ‖ pn := tn}t) = valI′ ,τ,β(t)

with
I′ = I[p1 ↦�valI,τ,β(t1)][p2 ↦�valI,τ,β(t2)] . . . [pn ↦�valI,τ,β(tn)] .

Note that this definition includes a “last-win”-semantics: In case the same program
variable is assigned two or more (possibly contradictory) values, the last occurrence
outplays its predecessors. This makes, for instance, the equalities ({p := 5 ‖ p :=
7}t) .

= ({p := 7}t) and ({p := 5 ‖ p := p}t) .
= t valid for any term t.

Our logic is different to other modal logics because we do not have one formula
behind the operator to be evaluated under a different evaluation context but want to
consider several asserted formulas in various intermediate states. To achieve this, we
define the semantics of the modal operator using traces, that is, sequences of states
making up runs of the program. The upcoming definition will give an operational
semantics for the unstructured intermediate language using a state-successor-function
Rπ .

The states of a trace have two components: 1) The semantic structure they are
evaluated in and 2) the current program counter value. We define the set of all states
as

𝒮Σ,𝒟 := {(I,n) | I is the interpretation of a semantic structure (𝒟, I) ,n ∈ N}.

Traditionally in DL, the interpretation of a semantic structure is split up into a variable
part (the evaluation I

∣∣
PVar of the program variables) and an invariable part (the

evaluation I
∣∣
{PVar of the remaining symbols). The set of states is then defined over

the variable part of the interpretation. The invariable part makes up the environment.
We deviate from that standard in the presentation to make it more concise but could
equivalently have split up the interpretations.

Intuitively, a program formula should hold if all assertions in all conceivable
successful program runs hold. This can be put formally into

Definition 2.17 (Program execution, Traces) The program execution function Rπ :
𝒮 → 2𝒮 is a mapping that for a program π ∈ Π assigns to every state a set of one-step-
successor states. Its result depends on the active statement π[n] of π.

Let s = (I,n) ∈ 𝒮 be a state, τ a type variable assignment and β a compatible variable
assignment. Then the value of Rπ(s) is according to the following table:
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If π[n] matches and then Rπ(s) =
skip {(I,n + 1)}
p := t {(I[p ↦�valI,τ,β(t)],n + 1)}
assert ϕ I,τ, β |= ϕ {(I,n + 1)}
assert ϕ I,τ, β ̸|= ϕ ∅
assume ϕ I,τ, β |= ϕ {(I,n + 1)}
assume ϕ I,τ, β ̸|= ϕ ∅
end ∅
goto n1, . . . ,nk {(I,n1), . . . , (I,nk)}
havoc p {(I[p ↦�d],n + 1) | d ∈ 𝒟ty(p)}

∙ An infinite sequence (s0, s1, . . .) with s0 ∈ 𝒮 and si+1 ∈ Rπ(si) for i ∈ N is called an
infinite trace of π starting in s0.

∙ A finite sequence (s0, s1, . . . , sr) with s0 ∈ 𝒮 and si+1 ∈ Rπ(si) for i ∈ {0, . . . ,r − 1}
is called a finite trace of π starting in s0 if Rπ(sr) = ∅.

∙ A finite trace (s0, . . . , sr) is called failing if the statement π[nr] in the last state
sr = (Ir,nr) is an assert statement.

∙ A trace which is not failing is called successful.

The table in the definition shows that a trace may possibly also terminate at an
assumption. In structured DL, a failing assumption means that this execution branch
diverges without post-state. We also do not consider a trace with a missed assumption
any more. However, the state sequence is still counted a trace as it may already have
passed some checked assertion and thus witness some specified properties of π.

Most of the statements increase the instruction pointer by one stepping into the next
statement. Only the goto statement transfers control to other places than the successor
statement and may hence have more than one successor state. The interpretation I is
modified only by assignments and havoc statements which both change the value
for a program variable p. The havoc statement may have more4 than one successor,
depending on the dimension of the domain. It may even have infinitely many.

The state transition function Rπ modifies the interpretation function I, but does
not touch the domain 𝒟. This is known as the “constant-domain assumption” in
modal predicate logic. Most program logics assume the set of considered objects to
be constant throughout all conceivable states. But sometimes new elements may be
created during the course of a program (by object creation or memory allocation).
With a constant domain, this is modelled such that every element has always been
present, even before its creation, but has been semantically marked as not yet created.
The creation changes this mark. This makes the logic simpler and more uniform.
However, there needs to be an extra predicate (or similar) to model the creation
status of objects. Ahrendt et al. (2009) present a dynamic logic for an object-oriented

4It has at least one successor since a domain 𝒟ty(p) is a non-empty set.
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language with a non-constant, growing domain. Its suitability for practical use
remains to be examined.

For a finite trace, the type of the last executed statement is of the utmost importance
as it decides upon the fate of the trace. If an assert-condition is not met, the program
fails to fulfil its specification embedded into the program. If an end- or a failing
assume-statement is reached, the trace is successful.

Definition 2.18 (Evaluation of program formulas, Amendment to Definition 2.8)
Let D = (𝒟, I) be a semantic structure, τ a type variable assignment, β a compatible variable
assignment, π ∈ Π a program, n ∈ N an index and ϕ ∈ Trmbool a formula. The evaluation
function valI,τ,β introduced in Def. 2.8 is then extended to program formulas as follows:

I,τ, β |= [n;π] ⇐⇒ Every trace starting in (I,n) is successful.
I,τ, β |= Jn;πK ⇐⇒ I,τ, β |= [n;π] and π has no infinite trace starting in (I,n).

This distinction is also the explanation of the fact that the table of Definition 2.17
only seemingly suggests the semantics of assert- and assume-statements be the same.
This is not the case; while the successor relations are identical, their semantics differ
fundamentally.

If I,τ, β |= [n;π], we can say that the program fulfils all of its embedded specification
elements when started in (I,n). If I,τ, β |= Jn;πK, termination of the program started
in (I,n) is additionally ensured in all possible cases.

2.5.3 Post-fix Assertions

One point of difference between structured and unstructured DL is evident: DL
modalities are followed by a formula following the modality while UDL has all
assertions embedded in the modality. Note that structured DL has also embedded
formulas in the tests (assume statements).

We will overcome this difference and allow formulas after program modalities
also in UDL. The motivation behind this is that we regain thus the possibility to nest
modalities. While it is syntactically possible to do so already (by asserting a program
formula within another program), it is more comprehensible and comparable to other
approaches if a post-fixed assertion is annotated.

Definition 2.19 (Post-fix assertions) Let π ∈ Π be a self-contained program and 0 ≤ n <
|π|. The construct [n;π]ϕ stands for the program formula [n;π′] with self-contained program
π′ ∈ Π with |π′| = |π|+ 2 and

π′[n] =


goto |π| if π[n] = end
assert ϕ if n = |π|
end if n = |π|+ 1
π[n] otherwise
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In comparison to program π, the modified program π′ possesses two more state-
ments at the end: assert ϕ followed by end. Every end statement within the range of
the original program π is redirected to this appendix. This ensures that at the end of
every successful trace, ϕ holds in addition to the embedded assertions.

It is only now that the end statement gets its right of existence. In the Definitions 2.17
and 2.18, there is no observable difference between the two statements assume false
and end, both terminate a trace successfully. The difference becomes evident now
that postfixed assertions are added to the modalities. We observe, for instance,
that [end]ϕ ≡ ϕ while [assume false]ϕ ≡ true. Furthermore, we also name successful
traces differently for the two cases: A successful finite trace ((I0,n0), . . . , (Ir,nr)) with
π[nr] = end is called convergent and divergent if π[nr] is an assume-statement.

The syntactical alignment opens a common ground with the structured dynamic
logic, and it allows the investigation of their relationship.

As has been mentioned earlier, structured dynamic logic has got two types of
modality, the box [·] and the diamond ⟨·⟩ operator. UDL, as we have defined it so far,
has got the box [·] and the terminating box J·K but no diamond operator. The diamond
modality is, as usual for modal logics, defined to be the dual of the box-modality. We
could not define a dual operator for the unstructured box operator up to this point as
the post-fixed argument formula had been missing. With Definition 2.19 we can now
finally define for n < |π|:

⟨n;π⟩ϕ := ¬[n;π]¬ϕ ⟨⟨n;π⟩⟩ϕ := ¬Jn;πK¬ϕ (2.21)

Note that the post-fixed assertion ϕ plays a special role amongst the assertions
checked in the program. It acts as pivotal point for the duality definition and appears
negated in the definition of the diamond modality. All assertions embedded in π are
not negated.

The semantics of the new constructs is then the following:

I,τ, β |= [n;π]ϕ ⇐⇒ Every finite trace ((I,n), ..., (Ir,nr)) of π is successful and
Ir,τ, β |= ϕ if it is convergent.

I,τ, β |= Jn;πKϕ ⇐⇒ I,τ, β |= [n;π]ϕ and every trace starting in (I,n) is finite.
I,τ, β |= ⟨n;π⟩ϕ ⇐⇒ There is a finite trace ((I,n), ..., (Ir,nr)) of π which is failing

or convergent with Ir,τ, β |= ϕ.
I,τ, β |= ⟨⟨n;π⟩⟩ϕ ⇐⇒ I,τ, β |= ⟨n; P⟩ϕ or π has an infinite trace ((I,n), . . .) .

Let πaf ∈ Π be a program without embedded assertions. The trace semantics we
defined due to the embedded assertions coincides with the semantics which would
be expected of UDL as a modal logic.

I,τ, β |= [n;πaf]ϕ ⇐⇒ Ir,τ, β |= ϕ for every convergent trace ((I,n), ..., (Ir,nr)) of π

I,τ, β |= ⟨n;πaf⟩ϕ ⇐⇒ Ir,τ, β |= ϕ for some convergent trace ((I,n), ..., (Ir,nr)) of π

The Kripke state transition relationship is, hence, between the starting state (I,n) and
the final states (Ir,nr) of convergent traces.
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If the program πaf,det is assertion-free and also (semantically) deterministic, that
is, the program started in any state has at most one non-diverging trace, then the
modalities discriminate the issue of termination: [πaf,det]ϕ says that πaf,det is partially
correct with respect to ϕ (that is, ϕ holds if πaf,det terminates), and ⟨πaf,det⟩ϕ says
that πaf,det is totally correct with respect to ϕ (that is, ϕ holds and π terminates). In
particular the implication

|= ⟨πaf,det⟩ϕ → [πaf,det]ϕ (2.22)

is valid for all assertion-free, deterministic programs πaf,det. This does not hold for
general UDL programs, however, which may be indeterministic or contain embedded
assertions.

Indeterminism The existence of one successful trace does not ensure that every
possible execution path is successful. Consider the program Pind := ⟨goto 1,2; x :=
x + 1;end⟩ for a program variable x : nat. The formula x .

= 1 → ⟨0; Pind⟩x .
= 2 is valid

since there is one trace (visiting statements 0,1,2) which converges by incrementing
x. However there is another trace (visiting 0,2) which leaves x untouched such that
x .
= 1 → [0; Pind]x

.
= 2 is not valid.

Embedded assertions Embedded assertions have unexpected properties under the
dual modality. Let us look at a small program which assigns the value 1 to a program
variable x : nat and checks in an embedded assertion whether x equals 0. The name
“assertion” suggests that the according program should fail and not reach a post-state
regardless of the postcondition. Expanding Definitions 2.17 and 2.18 yields

I,τ, β |= [x := 1;assert x .
= 0]true ⇐⇒ I[x ↦�1],τ, β |= x .

= 0 and I[x ↦�1],τ, β |= true
(2.23)

I,τ, β |= ⟨x := 1;assert x .
= 0⟩true ⇐⇒ I,τ, β |= ¬[x := 1;assert x .

= 0]¬true
⇐⇒ I[x ↦�1],τ, β ̸|= x .

= 0 or I[x ↦�1],τ, β ̸|= true
(2.24)

The first case (2.23) behaves as expected: Despite the trivial postcondition, the formula
does not hold, it fails at the assertion x .

= 0. Formula (2.24) using the diamond
modality, on the other hand, behaves differently: Due to the duality of box and
diamond, the same program succeeds. It is De Morgan’s law that lets the failing
assertion x .

= 0 make the diamond modal formula true.
We have thus two reasons why (2.22) does not hold and why the diamond modality

does not model total correctness. This observation led to the introduction of the new
modality J·K which combines indeterminism and termination, but is not part of the
standard repertoire of dynamic logic. The fourth modality ⟨⟨·⟩⟩ has been defined in
(2.21) as the dual of J·K for the sake of completeness. While the other three modal
operators all have their right of existence in one or more typical use cases, this
operator was never needed throughout the course of this work. If πaf,det ∈ Π is again
assertion-free and deterministic, the correspondences

[πaf,det]ϕ ≡ ⟨⟨πaf,det⟩⟩ϕ and Jπaf,detKϕ ≡ ⟨πaf,det⟩ϕ
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emerge as the notions of “there exists one trace” and “for every trace” fall together.
We had observed that the behaviour of assertions under the diamond modality is

not as one would expect intuitively. A very similar phenomenon applies to the assume
statement under the two modalities. The relationship of assertions and assumptions
is even so tangled that assert and assume are complementary in a sense:

Observation 2.5 (Duality of UDL statements) Let ϕ,ψ ∈ Trmbool be UDL formulas, p :
T ∈ PVar a program variable, t ∈ TrmT . Then the following semantic equivalences hold:

[assert ϕ]ψ ≡ ⟨assume ϕ⟩ψ
[assume ϕ]ψ ≡ ⟨assert ϕ⟩ψ

[p := t]ψ ≡ ⟨p := t⟩ψ

Updates also each have a complementary dual operator:

Observation 2.6 (Updates are self-dual) The formula {U}ϕ ↔ ¬{U}¬ϕ is valid for
any update U and any formula ϕ ∈ Trmbool.

PROOF Let I′ like in Def. 2.16 denote the semantic structure which results from I
after applying the update U.

valI,τ,β(¬{U}¬ϕ) = I(¬)(valI,τ,β({U}¬ϕ))

= I(¬)(valI′ ,τ,β(¬ϕ)) = I(¬)(I′(¬)(valI′ ,τ,β(ϕ)))

using I(¬) = I ′(¬) = (I(¬) ∘ I(¬))︸ ︷︷ ︸
=id

(valI′ ,τ,β(ϕ)) = valI′ ,τ,β(ϕ) = valI,τ,β({U}ϕ)

Assignment statements are closely related to update operators. Their being self-
dual is therefore closely related to Observation 2.6. The dual operators to the goto and
havoc statement could also be added to the syntax of statements, but no application
for them could be found which would justify their introduction.

2.5.4 Removing Embedded Assertions

Embedding specification as assertions into the program is a deviation from the usual
definitions in dynamic logic. We show, however, that in a first order logic setting, the
checking of embedded assertions can efficiently be postponed until after the end of
the program execution, thus resorting to standard notions of DL.

At first glance, this result may be unexpected since an embedded assertion may
be called at an unbounded number of times (in infinite traces even infinitely often)
while a post-fixed assertion can be examined only once at the end of the execution.
Nonetheless, for any UDL program, a canonical equivalent program which does
not contain embedded assertions can be constructed efficiently. The addition of
assertions to the verification language then becomes a mere convenience, neither
does it increase expressiveness of the language nor does it significantly reduce the
sizes of the program text.
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Theorem 2.7 (Removing embedded assertions in UDL) Let π ∈ Π be a self-contained
UDL-program, ϕ ∈ Trmbool a formula and 0 ≤ n < |π| an index into π. The signature needs
to contain a boolean program variable which does not occur in π and ϕ. Then there exist
assertion-free programs π′,π′′ ∈ Π and formulas ϕ′, ϕ′′ ∈ Trmbool such that

[n;π]ϕ ≡ [n;π′]ϕ′ and Jn;πKϕ ≡ Jn;π′Kϕ′ and ⟨n;π⟩ϕ ≡ ⟨n;π′′⟩ϕ′′ .

The sizes of π′ and π′′ are linear in the sizes of the original program.

PROOF The idea of the construction of π′ is that the result of the embedded assertion
checks can be “stored” in a common boolean program variable. Checking that
program variable then stands in for checking any of the assertions. Let l = |π| be the
number of statements in π and a : bool ∈ PVar be a program variable of type bool not
occurring in π or ϕ. The program π′ with |π′| = 3l is then chosen such that for all
n ∈ N,n < l

π[n] = assert ψ =⇒
{

π′[n] = goto n + 1, l + 2n (*)
π′[l + 2n] = a := ψ

π[n] = end =⇒
{

π′[n] = goto l + 2n
π′[l + 2n] = a := ϕ

π[n] is neither assert nor end =⇒
{

π′[n] = π[n]
π′[l + 2n] = end

for all 0 ≤ n < l =⇒ π′[l + 2n + 1] = end

The first l statements coincide between programs π and π′ except for end- and
assert-statements, which are each replaced by a goto-statement to a unique index
l + 2n beyond the domain of π. At the target position the program variable a is set
to the condition to be checked at π[n] (either the assertion ψ or the postcondition
ϕ). Since π[l + 2n + 1] = end for all n < l, execution terminates after that assignment.
Checking that a is true after the execution, hence, indirectly checks whether the
assertion holds in the same state. The position of every assert-statement in π is
replaced by an indeterministic goto (at (*)) branching indeterministically between
the check of the assertion and the next position of the program. This ensures that the
program execution continues after a successful assertion check.

The thus constructed program has the desired properties for the modality [·]. We
show this by examining the semantics when the modality formula does not hold:
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I ̸|= [n;π]ϕ
⇐⇒ there is a maximal trace (I,n), . . . , (Ir,nr) with

π[nr] = end and Ir ̸|= ϕ
or π[nr] = assert ψ and Ir ̸|= ψ

⇐⇒ there is a maximal trace (I,n), . . . , (Ir,nr), (Ir, l + 2nr), (Ir+2, l + 2nr + 1) for
π′ with

π[nr] = end and Ir+2 = Ir[a ↦�ϕ] and Ir+2 ̸|= a
or π[nr] = assert ψ and Ir+2 = Ir[a ↦�ψ] and Ir+2 ̸|= a

⇐⇒ I ̸|= [n;π′]a (since the only end points of π′ are those induced by an assert
or end in π)

The set of infinite traces is the same for [n;π] and [n;π′]. Together with the afore-
mentioned this implies that Jn;πKϕ ↔ Jn;π′Ka is valid.

Due to the duality of the modalities, the following formulas are equivalent:

I |= ⟨n;π⟩ϕ ⇐⇒ I |= ¬[n;π]¬ϕ ⇐⇒ I |= ¬[n;π′′]a ⇐⇒ I |= ⟨n;π′′⟩¬a

in which program π′′ is the same as π′ but with π[n] = end implying π[l + 2n] = a :=
¬ϕ (since the postcondition in this place is ¬ϕ). To apply the duality of (2.21) again,
the evident equivalence a ≡ ¬¬a is used. �

2.5.5 Propositional UDL

To investigate the relationship of the control flow mechanism of UDL in comparison
to structured DL, we will in this section look at a version of dynamic logic abstracting
away from data representation and concrete programs resulting in a logic with a
decidable satisfiability problem. This abstracted logic is called Propositional Dynamic
Logic (PDL) and has been proposed by Fischer and Ladner (1977, 1979).

In PDL, formulas are abstracted from by parameterless propositional variables,
and data modifying statements (that is assignments and havoc statements) are seen
as atomic programs whose semantics is not specified any further. The regular program
constructors ?, ∪ and * responsible for control flow are kept unchanged, however.

Unstructured PDL (UPDL) now applies the same abstraction to UDL: Propositional
variables replace formulas and atomic programs replace assignments and havoc-
statements. The control-flow statement constructors goto,assume, assert, end of UDL
are, again, kept in UPDL. The difference between PDL and UPDL is that the control
flow is transferred using goto and end statements rather than by structured blocks.

The embedded assertions in UPDL lack a corresponding counterpart in structured
PDL. It is now interesting to see if the assertions increase expressiveness in this
abstracted setting. In Theorem 2.7 we have seen that using a fresh boolean program
variable, embedded assertions can be removed. But now propositional abstraction
took away from us the possibility to store the assertion result in a program variable.
Instead we state the slightly weaker
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Theorem 2.8 (Removing embedded assertions in UPDL) For every UPDL formula ϕ
containing embedded assertions, there is an equivalent UPDL formula ψ without assertions
statements in programs.

PROOF by structural induction. We show the interesting case: Every formula [n; P]ϕ
is equivalent to a formula ψ such that the top-level program formulas in ψ do not
contain assertions. Let {assert σ1, . . . ,assert σk} enumerate all assert-statements in P.
Define then for 1 ≤ i ≤ k:

ψ :=
k∧

i=0

[n; Pi]ϕi

P0 := P with all assertions replaced by skip
ϕ0 := ϕ (the postfixed assertion)

Pi := P with all end statements replaced by assume false and all assertions
replaced by skip, but i-th one which becomes end

ϕi := σi (the i-th assertion)

Let I be an interpretation with I ̸|= [n; P]ϕ. There is then a trace starting in (I,n)
which fails at an assertion assert σj in P. The same trace is also a failing trace for
[n; Pj]ϕj, therefore I ̸|= ψ.

Let I ̸|= ψ which means that there is an index 1 ≤ j ≤ k such that [n; Pj]ϕj has a
failing trace starting in (I,n). This state sequence induces a failing trace for [n; P] as
well. Either an assertion prior to assert σj (one of those replaced by skip) fails or the
execution reaches assert σj. Since the trace fails the asserted condition σj of Pi for this
state, the embedded assertion assert σj is falsified as well.

All formulas which occur within the programs Pi can be replaced by an assertion-
free equivalent formula by induction hypothesis. �

The predicate logic Theorem 2.7 gave us that any program modality term with
embedded assertions can canonically and efficiently be transformed into one without.
Here every program formula must be replaced by a conjunction of several terms. No
equivalent single program can be given. But the theorem allows us to concentrate on
UPDL programs without embedded assertions.

Harel and Sherman (1985) examine the expressiveness and complexity of UPDL
without embedded assertions (they call it APDL for Automaton PDL). Any UPDL
program can be seen as a non-deterministic finite automaton (NFA) over atomic
programs and tests in which goto statements model the state transitions. Any regular
PDL program, on the other hand, can be seen as a regular expression over atomic
programs and tests. Finite traces of programs can then be seen as words over tests
and atomic programs.

The semantics of a PDL program α can be described by the set of all possible
sequences of tests and atomic programs. These sequences are called computation
sequences of α. The set of computation sequences generated by an unstructured or a
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structured PDL program is always regular. It is only the notation formalism (regular
expressions versus NFA) that distinguishes them. Figure 2.4 draws a picture of the
related natures of automata (unstructured programs) and regular programs.

It is comparatively straightforward to construct an accepting NFA from a regular
expression with n literals such that the automaton has O(n) states (see Chang and
Paige (1992) for details). The reverse transformation is harder. There exist various
algorithms to extract an equivalent regular expression from a finite automaton: for
instance the stepwise state-removal as described by Linz (1997), or the algebraic
approach of Brzozowski (1964) constructing a solution of a system of linear equations
on regular expressions. The resulting regular expressions may still be exponential in
the number of states of the NFA (Harel and Sherman, 1985).

This is a strong argument in favour of the more flexible formalisation of algorithms
as unstructured programs (that is, as NFA) rather than as regular programs: It is
straight-forward to convert structured input into unstructured, but highly difficult to
do the other way, the result will be larger and less intuitive to understand.

while P do
if Q then α

else β end;
γ

(a) Pseudocode

(P?; ((Q?;α)∪ (¬Q?; β)))*;¬P?;γ

(b) Regular program

0: goto 1,9
1: assume P
2: goto 3,6
3: assume Q
4: α
5: goto 8
6: assume ¬Q
7: β
8: goto 0
9: assume ¬P
10: γ
11: end

(c) Unstructured program

0start 2

4

7

10

11

P?
¬P?

Q?

¬Q?

α

β

γ

(d) Finite Automaton

Figure 2.4: Example for different representations of the same regular set of execution
paths

In one respect, UPDL is strictly more expressive than PDL. For a determinis-
tic program α, the formula ϕ → ⟨α⟩ψ describes the verification condition for total
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correctness of α with precondition ϕ and postcondition ψ. For an indeterministic pro-
gram, no PDL formula can express a total correctness condition, the UPDL formula
Jα;assume P;goto 0K for an atomic program α and a propositional variable P has no
equivalent in PDL. See Harel et al. (2000) for details.

2.6 Chapter Summary

This chapter has laid the foundations for the thesis by formally defining the syntax
and semantics of Unstructured Dynamic Logic (UDL), the logic in which verification
problems will be formulated and solved in the remaining chapters of the thesis. The
logic has been outlined also in Ulbrich (2011).

First, the underlying predicate logic which does not contain programs to verify has
been defined and examined. The type system of the logic is parametric, types are
themselves expressions built from type constructors and type variables. But every
term belongs to precisely one variable-free type, there is no hierarchy (subtyping
relationship) in the type system. Although the logic is first order, it possesses syn-
tactical constructions to quantify over type variables. This allows the formulation
of type-agnostic statements which hold for all instantiations of a type variable. The
logic shares with many other typed logics, that the notion of formulas falls together
with that of boolean terms.

In addition to predicate logic function symbols, UDL allows the declaration of binder
symbols which bind a variable in their arguments and are, hence, not evaluations
depending on argument values but on argument functions. We have shown that first
order predicate logic with binder symbols can be reduced to first order logic without
them. Although this is a straightforward result, we could not find it in the literature.

With the underlying logic outlined, we have turned to the dynamic logic aspect
of UDL. Dynamic logic allows the embedding of programs in modal constructors
for formulation of program verification conditions. The programming language
which has been chosen for the embedded programs shares its primitive statement
constructors with the intermediate verification language Boogie (Leino and Rümmer,
2010), the choice is intentional as the language of Boogie has been successfully
used in many verification projects. The indeterministic programming language is
intentionally limited in the number of constructors. They are: Assignment, assertion,
assumption, anonymisation (called havoc) and branching. The logic has common
ground with standard structured dynamic logic (Harel et al., 2000) but they also have
mentionable differences.

Dynamic logic is defined in terms of a state relation between the beginning and the
terminal state of a program. We have seen a formal definition of the semantics of UDL
in terms of program traces. A trace is a sequence of program states which is backed
up by a run of the program. This different program semantics is required since UDL
programs may contain embedded assertions (defined by their assertion statements). As
an important result we have shown that every program with embedded assertions
can be canonically reduced to a program with a single assertion checked after the
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program execution, the standard semantics of modal logic. Nevertheless, when
applying the logic to verification tasks (in Chapter 4) , we shall see that having several
checks which are localised helps the comprehensibility of programs and proofs.

Classical structured dynamic logic has got a variant which is called propositional
dynamic logic (PDL) in which programs and formulas are abstracted. We have
applied the same kind of abstraction to UDL and obtained the unstructured version
UPDL of PDL. Also in the abstracted logic, embedded assertions are not essential. In
general, there is, as we have shown, not a canonical program with the same semantics
but every formula with programs with embedded assertions can be reduced to an
equivalent formula in which all programs are assertion-free.





CHAPTER 3

A Sequent Calculus for UDL

In this chapter, we present a sound sequent calculus for the Unstructured Dynamic Logic
(UDL) presented in Chapter 2.

UDL formulas may contain programs in their formulas. Rules will be presented that
perform symbolic execution on programs in formulas to reduce proof obligations with
programs to formulas without programs in a stepwise manner. Programs which contain loops
must be treated differently. Several rules are proposed that allow the resolution of programs
with loops.

UDL is more expressive than first order logic; hence, no complete calculus exists. However,
we show that the presented calculus is relatively complete, that is, that the provided set
of rules allow the reduction of proof obligations with programs to obligations on natural
numbers.

3.1 Sequent Calculus

The calculus to reason about the validity of UDL is an extension of the Sequent calculus
originally proposed by Gentzen (1935) for first-order predicate logic.

Definition 3.1 (Sequent, Inference rule) A sequent is a pair of finite sets Γ,∆⊆Trmbool

of formulas without free variables written as Γ ⊢ ∆ in which the set Γ = {γ1, ..., γg} is called
the antecedent and ∆ = {δ1, ..., δd} the succedent. The sequent Γ ⊢ ∆ has the same semantic
value as the formula (γ1 ∧ . . . ∧ γg)→ (δ1 ∨ . . . ∨ δd).

A sequent calculus inference rule is a sequence ⟨P1, ..., Pn,C⟩ of sequents usually written
as

P1 . . . Pn

C

in which the sequents Pi above the line are called the premisses of the rule and the sequent C
below the line the conclusion. An inference rule is called sound if the validity of all premisses
implies the validity of the conclusion.
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The rules close, andLeft and andRight are examples of rules that have no, one or
two premisses and one conclusion:

Γ, A ⊢ A,∆
close

Γ, A, B ⊢ ∆
Γ, A ∧ B ⊢ ∆

andLeft

Γ ⊢ A,∆ Γ ⊢ B,∆
Γ ⊢ A ∧ B,∆

andRight (3.1)

Rules are usually stated in a schematic form not only containing terms but also
placeholders for syntactical entities (formulas, terms, updates, modalities, . . . ). In
the schematic rules (3.1), A and B are schematic placeholders for formulas, and Γ
and ∆ for sets of formulas. A schematic rule represents the set of all rules that can
be derived by instantiating its schematic placeholders. When notating rules, we will
take the liberty of relaxing the set notation and write Γ, A, B (and similar) instead of
Γ ∪ {A, B}.

Proofs in sequent calculus are conducted by applying inference rules to sequents
yielding new sequents which can then again be subjected to rule applications. The
iterative application of rules results in a tree:

Definition 3.2 (Proof tree) A sequent calculus proof tree is a finitely branching tree such
that

1. Every node is labelled with a sequent.

2. Every inner node is labelled with an inference rule. Every leaf may be labelled with an
inference rule.

3. An inner node labelled with sequence C whose children are labelled with sequents

P1, . . . , Pk, is labelled with the inference rule P1 . . . Pk
C

.

4. If a leaf is labelled with sequent C and an inference rule, then the inference rule label is

C
.

A proof tree is called closed if every node is labelled with a rule. A leaf without inference rule
label is called an open goal.

During a proof search, a proof tree is constructed bottom up starting with a single
node containing the sequent to be proved valid. A rule with conclusion C can be
applied to an open goal with sequence C. The premisses of the rule are then added
to the proof tree as new children to the leaf node. A rule schema can be applied
by matching the schematic conclusion against an open goal. The premisses are
instantiated with the unifying substitution before they are added as new children. A
rule without premisses (close in (3.1) for instance) is called an axiom. Applying an
axiom to a leaf of the tree, closes the branch.
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Observation 3.1 (Soundness of sequent calculus) The sequent S is universally valid if
there exists a closed proof tree such that

1. the root is labelled with S and

2. all inference rule labels are sound rules.

PROOF Since the tree is closed, the sequents in the leaves must be valid formulas
(since they result from the application of sound axioms). The fact that every inference
rule label is a sound rule inductively ensures that every sequent (including the root
S) in the tree is valid. �

It is very important that every rule of the calculus be sound as any unsound rule will
compromise the correctness of the approach. Programs with faults would potentially
be proved correct which is not acceptable. Completeness, on the other hand, cannot
be achieved for UDL both theoretically and practically. Theoretically not since UDL
comprises logics for which no complete calculus exists (for instance program formulas
or type quantifiers). But the extend of the search space for many programs renders
their verification technically infeasible and this practical boundary is well below the
theoretical frontier. But it is still desirable to have a calculus which is “as complete
as possible”. An inference rule is called complete if there exists a closed proof tree
after its application to a leaf if there has been one before1. Semantically, this means
that the relationship between the premisses and conclusion of the rule is not only
an implication but an equivalence. Applying incomplete rules to a proof tree may
lead into a dead end, hence, they should be applied with caution, especially if
their application is triggered automatically during a mechanised proof search. Most
inference rules that will be presented in this chapter will be complete with exception
of the loop invariant rules defined in Section 3.3.

There is another category of rules called rewrite rules: For two equally typed terms
s, t ∈ TrmT , we write s t to denote the rule schema which replaces one occurrence
of term s anywhere in a sequent by the term t. If terms s and t are semantically
equivalent (that is, if s ≡ t), then the replacement does not change the truth value
of the sequent. The respective inference rules are correct. Rewrite rules can be,
like inference rules, schematic. The conditional schematic rewrite rule C =⇒ s t
possibly containing schematic variables is an abbreviation for the set {s t | C} of
all instances for which the condition C holds. An example of a conditional schematic
rewrite rule is the rule x ̸∈ freeVars(ϕ) =⇒ (∀x. ϕ) ϕ which permits the removal
of unneeded quantifiers. The rule is not essential but is a convenient extension to the
calculus.

The soundness condition for an inference rule can be formalised in predicate logic
itself; Bubel et al. (2008) show how derived inference rules can be proved correct
using more fundamental rules. This allows us to enrich the calculus with lemma
inference rules which are not strictly needed but may improve the efficiency of the
calculus without compromising its correctness.

1This is sometimes also referred to as a confluent rule.
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3.1.1 Rules of the Calculus

Tables 3.1 and 3.2 summarise the sequent calculus inference rules for propositional
logic, first-order logic and the extensions introduced in Section 2.3. The part of UDL
dealing with program modalities will be subject of the next sections.

Propositional Logic

Γ,⊢ A,∆
Γ,¬A ⊢ ∆

notLeft Γ, A, B ⊢ ∆
Γ, A ∧ B ⊢ ∆

andLeft Γ, A ⊢ ∆ Γ, B ⊢ ∆
Γ, A ∨ B ⊢ ∆

orLeft

Γ, A ⊢ ∆
Γ ⊢ ¬A,∆

notRight Γ ⊢ ∆, A Γ ⊢ ∆, B
Γ ⊢ ∆, A ∧ B

andRight Γ ⊢ ∆, A, B
Γ ⊢ ∆, A ∨ B

orRight

Γ ⊢ ∆, A Γ, B ⊢ ∆
Γ, A → B ⊢ ∆

impLeft Γ, A → B, B → A ⊢ ∆
Γ, A ↔ B ⊢ ∆

equivLeft Γ,C ⊢ ∆ Γ ⊢ ∆,C
Γ ⊢ ∆

cut

Γ, A ⊢ ∆, B
Γ ⊢ ∆, A → B

impRight Γ ⊢ ∆, A ∧ B,¬A ∧ ¬B
Γ ⊢ ∆, A ↔ B

equivRight
Γ, A ⊢ A,∆

axiom

Γ, false ⊢ ∆
falseLeft

Γ ⊢ true,∆
trueRight

(A .
= B) (A ↔ B)

A, B ∈ Trmbool eqToEquiv

Object Quantifiers

Γ, (∀xT .t), t[xT/t′] ⊢ ∆
Γ, (∀xT .t) ⊢ ∆

forallLeft Γ ⊢ t[xT/c],∆
Γ ⊢ (∀xT .t),∆

forallRight

with T ∈ 𝒯 , t′ ∈ TrmT without free variables with c : T a fresh constant symbol

Γ, t[xT/c] ⊢ ∆
Γ, (∃xT .t) ⊢ ∆

existsLeft Γ,⊢ (∃xT .t), t[xT/t′] ⊢ ∆
Γ,⊢ (∃xT .t) ⊢ ∆

existsRight

with c : T a fresh constant symbol with T ∈ 𝒯 , t′ ∈ TrmT without free variables

Strong and weak equality

Γ′, t1
.
= t2 ⊢ ∆′

Γ, t1
.
= t2 ⊢ ∆

applyEq σ(Γ),σ(t1
.
= t2) ⊢ σ(∆)

Γ, t1
.≈ t2 ⊢ ∆

leftTypeEq

where Γ′,∆′ emerge from Γ,∆ by replacing where σ is a most general unifier of T1 and T2
one or more occurrences of t1 by t2 which with ti ∈ TrmTi

are not within a program formula or behind
an update.

t .
= t  true eqRefl

the types of t1 and t2 cannot be unified =⇒ t1
.≈ t2  false typeDiff

t1, t2 ∈ TrmT =⇒ t1
.≈ t2  t1

.
= t2 typeEq

Table 3.1: Sequent calculus I
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General binder symbols

yT does not occur in t =⇒ (b xT .t) (b yT .t[xT/yT ]) binderAlpha

Γ ⊢ (∀xT .t1
.
= u1 ∧ . . . ∧ tn

.
= un),∆

Γ ⊢ (b xT .t1, . . . , tn)
.
= (b xT .u1, . . . ,un),∆

binderExt

Type quantification

Γ, (

A

α.t),σ(t) ⊢ ∆
Γ, (

A

α.t) ⊢ ∆
alltypesLeft Γ ⊢ σ(t)∆

Γ ⊢ (

A

α.t),∆
alltypesRight

with σ = {α ↦→ T} for some type T ∈ 𝒯 with σ = {α ↦→ β} for β ∈ TVar not
occurring in the conclusion

Γ,σ(t) ⊢ ∆
Γ, (

E

α.t) ⊢ ∆
extypeLeft Γ ⊢ (

E

α.t),σ(t),∆
Γ ⊢ (

E

α.t),∆
extypeRight

with σ = {α ↦→ β} for β ∈ TVar not with σ = {α ↦→ T} for some type T ∈ 𝒯
occurring in the conclusion

Γ ⊢ (

A

α1. . . .

A

αar(C1)
. {α/C1(α1, . . . ,αar(C1)

)}ϕ),∆
. . .
Γ ⊢ (

A

α1. . . .

A

αar(C|Γ|)
. {α/C|Γ|(α1, . . . ,αar(C|Γ|)

)}ϕ),∆

Γ ⊢ (
A

α. ϕ),∆
typeInduction

where TConΓ = {C1, . . . ,C|Γ|} and αi are fresh type variables

Table 3.2: Sequent calculus II

The propositional rules are the rules of the traditional sequent calculus. They
include also the rule ‘cut’ which allows the interactive application of case distinctions
over a formula C. There are two general approaches to deal with quantifiers in
sequent calculus. Either universal quantifiers can be instantiated with arbitrary
ground terms or they are instantiated with free variables which become instantiated
at a later point during the proof. We opted for the ground version of the calculus. This
has the advantage that only Skolem constants need to be instantiated for existential
quantifieres whereas free variables would require that Skolem functions (with the free
variables as arguments) be introduced making the formulas more complex. The rules
for treatment of quantifiers are thus taken directly from the classical sequent calculus
but have been adapted to the parametric type system.

UDL has not one but two equality symbols .
=: α × α → bool (the strongly typed

equality) and
.≈: α × β → bool (the weakly typed equality). The rules eqRefl and

applyEq are known to be sound (and complete) for the strong equality (see also Degt-
yarev and Voronkov, 2001). Semantically, weak and strong equality are equivalent but.≈ has a less strict type signature. If the types of the arguments of the weak equality
are equal, it can equivalently be rewritten using the strong equality (rule typeEq). If a



56 CHAPTER 3 A SEQUENT CALCULUS FOR UDL

weak equality occurs toplevel in the antecedent of a sequent, equality of its arguments
is assumed, including equality of their types. Rule leftTypeEq implements this by
applying a unifying type substitution to the entire sequent. If the argument types of
a weak equality cannot be unified, its value is known to be false (rule typeDiff).

For the general treatment of binder symbols, a rewriting rule for renaming the
bound variable (binderAlpha) is provided. Also an extensionality rule for binder
symbols is introduced which allows the reduction of an equality of binder terms to
the equality of their arguments. The rule binderExt is correct since binder symbols
must, by definition, yield the same result if applied to semantically equal (for all
values of the bound variable) parameter terms.

Type quantifications possess instantiation rules which resemble the rules for object
quantification. They do not instantiate variables of the argument ϕ, but apply a type
variable assignment σ to the type variables which appear in the type of ϕ. Addition-
ally, an induction schema typeInduction is provided with which universal statements
for all types can be inductively conducted for all type constructors. It is sound since
the type system is the freely generated structure over the type constructors.

3.1.2 Why Sequent Calculus?

Calculi need a representation of their intermediate proof state. Some calculi have
representations which are little comprehensible for the reader. For example, resolution-
based systems transform formulas into sets of clauses and tableau calculi store proof
states as trees.

Interactive proof assistants (like HOL, Isabelle or Event-B) often employ a Natural
Deduction Calculus. Natural deduction can be regarded as the special case of sequent
calculus in which all judgements Γ ⊢ ∆ are constrained by |∆| = 1. The succedent in
such calculi holds the formula under inspection while the antecedent contains the
available prerequisites.

Originally, the sequent calculus was introduced to establish Gentzen’s Hauptsatz
stating that every proof in sequent calculus can be conducted without resorting to
the Cut-Rule (also known as Cut-elimination). This is particularly in contrast to
systems based on natural deduction. For an automated proof system the prospect
of cut-freedom is very appealing since it greatly reduces the search space: Not all
conceivable formulas have to be considered for instantiation of the Cut rule at all
times, a more goal-driven reasoning can be performed (like in tableaux or resolution-
based calculi).

The other side of the coin is that a representation which is well-suited for a machine,
may be less intuitive to a human user. A survey conducted by Grebing (2012) revealed
that the equal distribution of formulas over the right and left hand sides tends to
render proof obligations less conceivable for a human. In particular the rules notLeft2,
notRight (and similar) can cause confusion on the sequent by transferring a statement
from the antecedent to the succedent or vice versa.

2see Table 3.1
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Beside the logic and system presented here, the interactive theorem provers KeY
(Beckert et al., 2007) and PVS (Shankar and Owre, 1999) employ sequent calculus: It
appears to be a good compromise for the combination of interactive and automated
reasoning.

3.2 Symbolic Execution in UDL

Traditionally, the calculation of weakest preconditions is done in a backward fashion
starting at the last statement and modifying the postcondition in a stepwise manner
until the program has been fully removed. In Dynamic Logic, symbolic forward
execution (King, 1976), which preserves the natural execution direction, can be used to
compute weakest preconditions. In an interactive proof environment, the execution
direction plays a role when the comprehension of the human user is an issue.

Symbolic forward execution keeps a record of the symbolic state which is constantly
updated while stepping over the statements of a program. This engulfs an execution
tree of all possible execution paths through the program. Despite the fact that the
execution is done from front to end, symbolic execution computes the weakest
precondition rather than the strongest postcondition of the program.

The collected effects of assignments are accumulated in updates which are used as
representation of the intermediate execution state. After the program has been fully
symbolically executed, the updates can syntactically be applied to the postcondition,
resulting in the update-free weakest precondition of the according branch.

Updates can always be removed from formulas which do not contain program
formulas. There may be variable naming clashes hindering the application of updates
to terms with bound variable, but these can always be avoided by renaming the
bound variable3.

Theorem 3.2 (Update resolution) Let f ∈ Fct ∖ PVar be a function symbol which is not
a program variable, p,q ∈ PVar program variables, b ∈ Bnd a binder symbol. Moreover,
a1, . . . , an ∈ Trm are terms of appropriate type, v ∈ Var a variable, and Q ∈ {

A

,

E

}. The
following rules are sound rewrite rules for the resolution of updates:

{U}v v
{U ‖ p := t}p t

q ̸= p =⇒ {U ‖ q := t}p {U}p
{U} f (a1, . . . , an) f ({U}a1, . . . ,{U}an)

v does not occur free in U =⇒ {U}(b v.a1, . . . , an) (b v.{U}a1, . . . ,{U}an) (3.2)

α does not occur in U =⇒ {U}(Qα.a1) (Q α.{U}a1) (3.3)

3Using rule binderAlpha from Table 3.2
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PROOF According to Definition 2.16, updates modify the interpretation function I′

under which the argument term is evaluated. Due to the last-win-semantics of the
successive modification of I, updates to program variables must be coiled up from the
back. If the considered program variable p is the last updated program variable, the
result is I′(p) = valI,τ,β(t). An update assignment to a program variable q different
from p, does not touch the value of I(p) and can be discarded; not however the other
modifications made to I. Since updates only touch the values of program variables,
I( f ) and I(b) and the type quantifier cannot be the affected, and the updates are
distributed over their arguments. �

The restrictions in (3.2) and (3.3) are necessary. Moving an update containing a
free variable into the arguments of a binder symbol binding the very same variable
results in an illegal change of scope of the bound variable:

(∃xS.{p := xS}(∀xS.p .
= xS)) ̸≡ (∃xS.∀xS.{p := xS}p .

= xS) (3.4)

E

α.{p := q(c[α])}

A

α.p → q(c[α]) ̸≡

E

α.

A

α.{p := q(c[α])}p → q(c[α]) (3.5)

Example (3.4) shows that the distribution of an update into a conflicting binding is
not sound. After renaming the first bound variable to yS, the semantical difference
becomes apparent. The left-hand side is then equivalent to (∃yS.∀xS.yS .

= xS), which
is not a valid formula in general (unless |𝒟S| = 1), while the right-hand side is
equivalent to (∃yS.∀xS.xS .

= xS), which is valid. A similar restriction exists for the
distribution of updates over a type quantification and (3.5) shows that it is necessary
as well.

Updates can be seen as a form of explicitly notated substitutions. These substitu-
tions can be syntactically applied to program variables by substituting them in terms
everywhere but in program formulas and behind other updates. A term is said to be
in update normal form if every update stands in front of a program formula.

Let us now turn towards program formulas, the last remaining construct without
calculus rules. First, a set of rewrite rules which formally capture the effects of a
single step of symbolic execution is presented. These rules already suffice to resolve
linear4 program formulas to first-order formulas.

4that is, programs without loops



3.2 SYMBOLIC EXECUTION IN UDL 59

Theorem 3.3 (Symbolic execution) The following rules are sound rewrite rules for the
forward symbolic execution of unstructured programs. Let xty(c) ∈ Var be a variable that
does not occur in π.

π[n] = skip =⇒ [n;π]  [n + 1;π]

π[n] = end =⇒ [n;π]  true
π[n] = c := v =⇒ [n;π]  {c := v}[n + 1;π] (3.6)

π[n] = havoc c =⇒ [n;π]  (∀xty(c).{c := x}[n + 1;π]) (3.7)

π[n] = goto g1, . . . , gk =⇒ [n;π]  [g1;π] ∧ . . . ∧ [gk;π]

π[n] = assume ϕ =⇒ [n;π]  ϕ → [n + 1;π]

π[n] = assert ϕ =⇒ [n;π]  ϕ ∧ [n + 1;π]

Replacing [·] by J·K in the rewrite rules yields a set of sound rewrite rules including termi-
nation. The introduced logical variables xty(c) are chosen such that they do not occur in π.

PROOF To prove the correctness of the rewrite rules, equivalence of the replaced term
and its replacement must be shown. By Definition 2.18, the formula [n;π] holds in I
if every trace beginning in (I,n) is successful.

The basic argument is the same for all cases: We reduce the case that all finite
traces starting in (I,n) must be successful to the case that all finite traces from
(I′,n′) ∈ Rπ(I,n) are successful and encode the knowledge on I′ either into an update,
an implication or conjunction. The state successor relation Rπ is identical for assert
and assume statements (as defined in Definition 2.17), but their semantics differ due
to the definition of successful traces.

We exemplarily show havoc, assume and assert and leave the remainder as an easy
exercise.

havoc: For π[n] = havoc c we have (*) Rπ(n) = {(I[c ↦�d],n + 1) | d ∈ 𝒟ty(c)} and
can write

I,τ, β |= [n;π]

⇐⇒ every trace beginning in (I,n) is successful
(*)⇐⇒ for any d ∈ 𝒟ty(c) every trace beginning in (I[c ↦�d],n + 1) is successful

⇐⇒ for any d ∈ 𝒟ty(c): I[c ↦�d],τ, β |= [n + 1,π]

(†)⇐⇒ for any d ∈ 𝒟ty(c): I[c ↦�d],τ, β[x ↦�d] |= [n + 1,π]

(Def. 2.16)⇐⇒ for any d ∈ 𝒟ty(c): I,τ, β[x ↦�d] |= {c := x}[n + 1;π]

⇐⇒ I,τ, β |= (∀x.{c := x}[n + 1;π])

(†) Variable x does not occur in π.
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assume: Let π[n] = assume ϕ. If I,τ, β ̸|= ϕ, then Rπ(I,n) = ∅ and the only trace
beginning in (I,n) ends in this assume statement and is successful. If I,τ, β |= ϕ,
the truth value depends entirely on the traces starting in (I,n + 1), therefore,
on [n + 1;π].

I,τ, β |= [n;π]

⇐⇒ every trace beginning in (I,n) is successful

⇐⇒ I,τ, β ̸|= ϕ (assumption does not hold) or

I,τ, β |= ϕ and every trace beginning in (I,n+1) is successful (continues)

⇐⇒ I,τ, β ̸|= ϕ or every trace beginning in (I,n+1) is successful

⇐⇒ I,τ, β |= ϕ → [n + 1;π]

assert: Let now π[n] = assert ψ. If I,τ, β ̸|= ψ, the only trace beginning in (I,n) ends
in an assert statement and, hence, fails. The other case depends again on the
traces from (I,n + 1):

I,τ, β |= [n;π]

⇐⇒ every trace beginning in (I,n) is successful

⇐⇒ I,τ, β |= ϕ and every trace beginning in (I,n + 1) is successful

⇐⇒ I,τ, β |= ϕ ∧ [n + 1;π]

A trace ((I,n), (I′,n′), . . .) is finite if and only if the one starting in ((I′,n′), . . .) is.
The above arguments can, hence, be adapted to the J·K-modality by replacing “is
successful” by “is successful and finite”. �

These rules are the basic blocks for the symbolic execution. For the application in
a verification system, there are cases in which alternative inference rules are more
efficient. Applying an alternative can always be simulated by a series of basic rules,
but shorter proofs with fewer branches can be produced if they are considered rules
in their own right.

For a havoc statement in the succedent, for instance, the introduction of a fresh
variable and its Skolemisation sk : ty(p) can be immediately resolved by the rule

π[n] = havoc p =⇒ Γ ⊢ {U ‖ p := sk}[n + 1;π],∆
Γ ⊢ {U}[n;π],∆

havocAndSkolem .

An assertion within the program which has been proved valid may still be helpful
later during the proof. It is therefore wise to provide the asserted condition as an
additional assumption to the use case sequent.

π[n]=assert ϕ =⇒ Γ ⊢ {U}ϕ,∆ Γ,{U}ϕ ⊢ {U}[n+1;π],∆
Γ ⊢ {U}[n;π],∆

assumeAssertion
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This rule is correct due to the propositional tautology A ∧ B ≡ A ∧ (A → B) which is
sometimes referred to as the local lemma property since A may be used to show B. In
practice, it showed that although it enlarges the sequent, the additional knowledge is
often helpful to establish the remaining assertions of a program.

Another important special case rule is the treatment of deterministic case distinc-
tions in the antecedent. Assume the program

π = (goto 1,3 + |α|;assume ϕ;α;end;assume ¬ϕ; β) =̂ ⟨if ϕ then α else β⟩

which performs a deterministic case distinction and either executes program α if ϕ
holds, or program β otherwise. If [0;π] appears on the succedent side of a proof
obligation, the symbolic execution with the basic rules will decompose it as follows:

ϕ ⊢ [α] ⊢ ϕ, [β]
⊢ (ϕ → [α]) ∧ (¬ϕ → [β])

⊢ [0;π]
(3.8)

in which [α] and [β] abbreviate [2;π] and [4 + |α|;π]. If [0;π] appears on the left hand
side of the sequent, the resulting symbolic execution proof tree

ϕ ⊢ ϕ [β] ⊢ ϕ ϕ, [α] ⊢ [α], [β] ⊢
(ϕ → [α]), (¬ϕ → [β]) ⊢

...

[0;π] ⊢

has four instead of only two branches. One of the branches can be closed more
trivially; on it, ϕ occurs both in the antecedent and succedent. The two branches
[β] ⊢ ϕ and ϕ, [α] ⊢ are the two branches, one would have expected from the execution
of an if-statement. The fourth unexpected branch now makes no reference to the
branching condition at all and only contains the two program formulas.

The symbolic execution opens more proof goals in this case than needed. This
situation is not satisfactory for the symbolic execution of programs in the antecedent
and, therefore, the rule

π[n] = goto k1,k2
π[k1] = assume ϕ
π[k2] = assume ¬ϕ

 =⇒

Γ,{𝒰}ϕ,{𝒰}[k1 + 1;π] ⊢ ∆
Γ,{𝒰}[k2 + 1;π] ⊢ {𝒰}ϕ,∆

Γ,{𝒰}[n;π] ⊢ ∆
BranchLeft

is introduced which allows a branching behaviour in the antecedent congruent to the
case in (3.8). This rule is sound as it exploits the following propositional equivalences:
[n;π]≡ (ϕ → [k1 + 1;π])∧ (¬ϕ → [k2 + 1;π])≡ (ϕ ∧ [k1 + 1;π])∨ (¬ϕ ∧ [k2 + 1;π]).
A direct consequence of this equivalence is that the premisses of the rule imply its
conclusion (and vice versa).
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3.3 Loop Invariants in UDL

The rewrite rules in Theorem 3.3 allow the symbolic execution of an unstructured
program in a stepwise manner. If a program contains no loops, symbolic execution
eventually results in a formula free of program formulas. However, as soon as the
program flow allows a statement to be executed more than once during the run of a
program, these rules can no longer remove program formulas entirely. A calculus
for symbolic execution requires rules using loop invariants to resolve programs with
loops. Such rules will, naturally, closely resemble invariant rules which are used to
resolve loops in structured programs.

As mentioned earlier, the rules presented in this section will not be complete: If
they are applied with too weak a loop invariant, the proof may be stuck in a dead
end. We consider this as an acceptable gap since in deductive approaches the loop
invariant is considered a kind of “user input” to the proof which we can confide in.

3.3.1 Informal Introduction

Dijkstra (1968) wrote in his seminal paper “Go to statement considered harmful”:

The unbridled use of the go to statement has an immediate consequence
that it becomes terribly hard to find a meaningful set of coordinates in
which to describe the process progress.

This is precisely the problem that we have to face when devising inference rules for
the treatment of loops in the unstructured programming language of UDL. This will
lead to a relaxed notion of loop invariant which can be applied to any statement in
an unstructured program, not only to a loop.

The invariant inference rules for UDL can be motivated by a comparison to the
situation in classical structured dynamic logic. In structured DL, the sound inference
rule

ϕ ⊢ [α]ϕ

ϕ ⊢ [α*]ϕ

called the loop invariant rule or induction axiom is the base behind the treatment of the
Kleene-star program construct. If the formula ϕ is preserved under the execution of
α in all states, it is also preserved under finitely many repetitions α* since each of the
successive executions of α preserves ϕ. In the context of a while-language, this rule
becomes the while-invariant rule

ψ, ϕ ⊢ [α]ϕ

ϕ ⊢ [while ψ do α end](¬ψ ∧ ϕ)

in which ϕ plays the role of the loop invariant which, if initially valid, holds after the
loop, if the loop body preserves it. The loop condition plays a special role as it may
be assumed true before the loop body α and is ensured false after the loop.
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In a sequent calculus proof obligating, the context sets Γ,∆ seldom contain the loop
invariant. This is why typically the rule variant

Γ ⊢ ϕ,∆ ψ, ϕ ⊢ [α]ϕ ¬ψ, ϕ ⊢ σ

Γ ⊢ [while ψ do α end]σ,∆
(3.9)

with three premisses is used. The loop invariant ϕ is a parameter to this rule and can
be chosen freely. It is introduced into the new proof obligations. The first premiss is
called the base case, the second the induction step and the third the use case. This is very
closely related to conducting an induction proof.

These rules have in common that we can extract the loop body α from a composed
program (α* or while ψ do α end). In unstructured programs of UDL, we lack the
capability of such structural decomposition. In a goto-program the statements which
are to be repeated may be spread all over the program text and cannot be extracted.

As discussed in Section 2.5.5, every unstructured program can be transformed into
a structured one. But this transformation would be complex, and result in a larger
and probably unintuitive result. The necessary loop invariants would be difficult to
find and formulate.

Instead, we propose a rule operating on the statements of an unstructured program
π. The idea behind it is to use a modified program π′ into which additional statements
have been inserted:

Γ ⊢ ϕ,∆ ϕ ⊢ [n′,π′]

Γ ⊢ [n,π],∆

Program π′ has its program flow “cut” at index n within a loop of statements, using
an invariant ϕ to abstract from the program state at this point. Figure 3.3 informally
shows how π′ is derived from π. Nodes in this schematic control flow graph represent
statements and edges represent the statement successor relationship (by walking into
a statement or by explicit goto statements). In the original program (Fig. 3.3a), the
program control flow has got a cycle and n is the index of a statement within this
loop.

In the modified program (Fig. 3.3b), the general structure has remained, yet the
cycle has been broken up. The “gap” introduced by this removal is “bridged” by the
invariant ϕ ∈ Trmbool. We use ϕ as assumption to the modified program formulas
[n′,π′] and have to ensure that, whenever we reach this point in the program again,
ϕ holds again. This check is encoded as an inserted statement assert ϕ. After the
insertion, the abstraction has been proved correct and the symbolic execution may
stop. This realises the “cut” in the program flow and is implemented by inserting the
statement assume false quitting unconditionally.

This procedure does not require that the control flow of the program corresponds
to one achieved by a structured loop. Also goto programs with arbitrary control-flow
transfer or indeterministic forking can be subject to this rule, Figure 3.4 shows how
the cycle can be broken in a general goto program.

There are even cases in which it may be advisable to utilise the splitting invariant
rules even if there is no loop at all. The rules support the abstraction of the program
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at certain statements, and it can simplify the proof of a second part of a program
significantly if the first part is not given by all its formulas but only by a user-defined
abstraction.

In the remainder of the section, we will present three versions of the invariant rule
extending one another. First, we give the simple version of an invariant rule. Then, a
rule involving termination is defined and, finally, a rule which preserves more context
information. The latter two can canonically be combined to a rule with termination
and context preservation. Section 3.3.6 completes the collection of invariant rules
by stating inference rules for the case that program formulas occur in a sequent’s
antecedent.

n

(a) Original program π

n′

assert ϕ

assume false

(b) Modified program π′

Figure 3.3: Informal description of the modification of UDL programs

Figure 3.4: General goto programs (not induced by loops) can be treated as well
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3.3.2 Program Modifications

In structured dynamic logic, the invariant rule introduces new proof goals on the
loop body, that is, on a strict subprogram of the original code. We are not able to
decompose a program’s code to a subset of statements in UDL since no restriction is
imposed on the targets of goto statements and any statement, also outside the loop
body, may be addressed.

We need, however, a means to reduce the number of loop body iterations to one.
This is achieved by inserting new statements into the program under inspection.
There is a technical issue, however, since index changes may make goto statements
point to wrong targets afterwards. To compensate for this effect, we introduce an
offset correction function off k

m which increments the target indices by k if they lie after
the insertion point m.

off k
m(a) =

{
a if a ≤ m
a + k otherwise

We also apply off k
m to statements. Here, it operates only on the target indices of goto

statements and behaves like the identity function on all other statements.

Definition 3.3 (Statement injection) For programs π,τ ∈ Π and an arbitrary index m ∈
N, the insertion π 2m τ ∈ Π of τ into π at position m has length |π|+ |τ| and is defined as

(
π 2m τ

)
[i] =


off |τ|m (π[i]) for i < m
τ[i − m] for m ≤ i < m + |τ|
off |τ|m (π[i − |τ|]) for m + |τ| ≤ i

.

The infix operator is left-associative.

τ is not subject to an offset correction since the programs we use for insertion here
will not contain goto-statements.

0: goto 2
1: y := x
2: goto 1

π

0: assert ϕ
1: assume ϕ

τ
=⇒

0: goto 4
1: assert ϕ
2: assume ϕ
3: y := x
4: goto 1

π 21 τ

Figure 3.5: Example of the program insertion π 21 τ

Figure 3.5 shows a sample program insertion. The program τ=(assert ϕ;assume ϕ)
is inserted into the program π = (goto 2;y := x;goto 1) at position 1. Please note that
in statement 4 : goto 1 of the resulting program, the target has not been incremented
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and still refers to the insertion point even though the statement to which it points has
been changed.

Due to the index adaption off k
m, a trace for π which does not pass through the

insertion point m induces a trace for the program after the insertion (of course with
possibly adapted statement indices). The only way to enter the inserted statement
sequence is to reach statement m, either as a goto target or by “stepping” into it. The
sequence may start off in m, however.

The upcoming observations will not talk about traces but about partial traces which
are state sequences like traces, but without the requirement that the last state has no
successor. Every subsequence of a trace is a partial trace.

Observation 3.4 (Trace correspondence)
For any partial trace (I0,m), (I1,k1), . . . , (Ir,kr) for π with r ∈N, ki ̸= m for 0 < i < r, there
is a partial trace (I0,m + |τ|), (I1,k′1), . . . , (Ir,k′r) for π 2m τ. In particular, if kr = m, then
k′r = m can be chosen.

For any infinite trace (I0,m), (I1,k1), . . . for π with ki ̸= m for i > 0, there is an infinite
trace (I0,m + |τ|), (I1,k′1), . . . for π 2m τ.

Conversely, a trace in a modified program which does not step into the inserted
statements via the entry point m also induces a trace in the unmodified program:

Observation 3.5 (Trace correspondence)
For any finite partial trace (I0,m + |τ|), (I1,k1), . . . , (Ir,kr) for π 2m τ with ki ̸= m for
0 < i < r, there is a state sequence (I0,m), (I1,k′1), . . . , (Ir,k′r) for π. In particular, if kr = m,
then k′r = m can be chosen.

For any infinite trace (I0,m + |τ|), (I1,k1), . . . for π 2m τ with ki ̸= m for 0 < i, there is
an infinite trace (I0,m), (I1,k′1), . . . for π.

Updates can be resolved completely from UDL formulas without program modal-
ities using the rewrite rules of Theorem 3.2. However, an update which precedes
a program modality cannot in general be resolved. Symbolic execution may also
introduce new updates before the program formula through applications of (3.6),
(3.7). This is why all invariant rules match against a formula {𝒰}[n;π].

One problem that is not present in structured dynamic logic but with which we
have to cope here, is the detection of loops. In classic dynamic logic, a loop can
be identified syntactically as a statement initiated with the keyword “while”. We
do not have such landmarks in an unstructured program. A loop becomes a loop
because of a goto statement targeting backward. Not every such statement, however,
is necessarily an indicator for a loop. Therefore, we formulate our invariant rules in
such a manner that they can be applied to every statement. Of course, the application
is not equally expedient for all execution states, and it is the task of either a static
analysis or the translation mechanism to identify (and to mark) the points at which
an invariant rule should be applied.
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3.3.3 Simple Invariant Rule

The general idea in the upcoming invariant rules is to change a program in such
a way that a loop becomes dissected. At the beginning of the loop, an invariant is
assumed which has to be asserted whenever the initial statement is reached again by
symbolic execution. For that purpose we insert the statements (assert ψ;assume false)
at the current position.

Theorem 3.6 (Simple invariant rule) The rule

Γ ⊢ {𝒰}ψ,∆ ψ ⊢ [n + 2;ρ1]

Γ ⊢ {𝒰}[n;π],∆
Invariant

with ρ1 = π 2n (assert ψ;assume false) is a sound rule for any formula ψ.

This rule has two premisses: The first provides evidence that the invariant ψ holds
initially when arriving in the current state. The second premiss requires that in a
state in which the invariant holds, the execution of the changed program is successful.
Please note that the antecedent and succedent contexts Γ and ∆ are not present in the
second premiss. We will address this issue in Theorem 3.8.

This rule is similar to the invariant rule (3.9) for a dynamic logic for a simple
‘while’-language. One difference is that, here, we have two rather than three premisses
to establish. This is due to the fact that multiple assertions are embedded into the
program ρ1 and the second premiss [n + 2;ρ1] plays two roles: It proves the absence
of assertion violations after the loop (the ’use case’ of ψ), and it ensures that the loop
body preserves ψ establishing it as an invariant.

PROOF We can without loss of generality assume that ∆ = ∅. For an arbitrary
interpretation5 I, we need to show that I |= ∧

Γ → {𝒰}[n;π]. If I ̸|= ∧
Γ, the proof

is completed. Thus, let I |= ∧
Γ. It remains to be shown that I |= {𝒰}[n;π]. Setting

I0 := I𝒰 (the result of applying the assignments in U to I) yields the obligation
I0 |= [n;π].

Let us first look at an arbitrary finite trace of π starting in (I0,n). We can divide
this trace into “loops from n to n”, that is, split the trace into r subsequences such that
every occurrence of n starts a new partial trace. For any 0 ≤ i < r, the state (Iki

,n)
initiates a partial trace. The last trace ends in state (Ikr , skr ) with skr (the final state of
the trace) not necessarily equal to n. See Fig. 3.6 for an illustration.

We claim that for every first state (Iki
,n) of a partial trace, Iki

|= ψ holds and show
this by induction on 0 ≤ i < r. For Ik0(= I0 = I𝒰 ), this is a consequence of the validity
of the first premiss. Let us assume then that Iki

|= ψ for some 0 ≤ i < r − 1. For the
partial trace (Iki

,n), . . . , (Iki+1
, ski+1

), only the first and the last state visit statement n:
The sequence hence matches the requirements of Observation 3.4, and, thus, we know

5For the sake of readability, we leave variable assignments aside in this section. Since formulas on the
sequent are assumed to have no free variables, this does not influence the evaluation.
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that (Iki
,n + 2), . . . , (Iki+1

,n) is a trace for program ρ1. Furthermore, ρ1[n] = assert ψ
and no trace for ρ1 fails by the second premiss. This implies that (1) Iki+1

|= ψ and (2)
that the partial trace does not fail.

I0n · · · Ik1−1
sk1−1

Ik1n · · · Ikr−1−1
skr−1−1

Ikr−1
n · · · Ikrskr

Figure 3.6: Subdividing a trace into partial traces

We have seen that every partial trace begins in an interpretation in which ψ holds.
In particular, we have Ikr−1 |= ψ. The last partial trace (Ikr−1 ,n), . . . , (Ikr , skr ) is a trace
and statement n does not appear after the first state of this trace. We can therefore
apply Observation 3.4 again and obtain a trace (Ikr−1 ,n + 2), . . . , (Ikr , s

′
kr
). Again due

to the second premiss, this trace must be successful, implying that the entire trace is
successful.

The argument is the same for an arbitrary infinite trace for π starting from (I0,n).
If there are finitely many loop iterations from n to n, the last partial trace is infinite,
but cannot fail due to the second premiss. If there are infinitely many loop iterations
from n to n, the inductive argument from above can be conducted for N rather than
only up to r. �

3.3.4 Invariant Rule with Termination

Theorem 3.6 is not sufficient if we want to incorporate the question of termination
into the verification process. The rule for the total modality J·K introduces a variant
term whose value must strictly decrease from iteration to iteration. We therefore
assume there is a binary predicate symbol ≺: α × α → bool ∈ Fct whose interpretation
is a well-founded relation. With the aid of this predicate symbol, we can formulate
an invariant rule which includes termination.

Theoretically, it would suffice to use natural numbers as type for variants, but
it proves very valuable, in practice, to allow for more general notions of variants.
Typically supported variant predicates are comparison by < on natural numbers,
comparison by ⊆ on finite sets and lexicographic ordering on finite sequences or
tuples.

Theorem 3.7 (Invariant rule with termination) The rule

Γ ⊢ {𝒰}ψ,∆ ψ ⊢ {nc := ν}Jn + 2;ρ2K
Γ ⊢ {𝒰}Jn;πK,∆

InvariantTermination
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with ρ2 = π 2n (assert ψ ∧ ν ≺ nc;assume false) is a sound rule for a program variable
nc ∈ PVar which does not occur in the conclusion, any formula ψ ∈ Trmbool and any term
ν ∈ Trmty(nc).

PROOF Partial correctness [n;π] is a direct consequence of Theorem 3.6 since we
made the program modification stronger requiring ψ ∧ var ≺ nc to hold instead of
only ψ.

Like in the proof above, we fix an interpretation I with I |= ∧
Γ and set I0 := I𝒰 . It

remains to be shown that there is no infinite trace for π starting in (I0,n). Assuming
there is such an infinite trace, we could subdivide it into partial traces such that every
occurrence of the statement n initiates a new partial trace like in the previous proof.
We can use the induction from the proof of Theorem 3.6 to establish that for every
first state (Iki

,n) of a partial trace we have Iki
|= ψ.

In case there are finitely subtraces, the last partial trace
(
(Ikr−1 ,n), . . .

)
must be

infinitely long and not passing through n. Since Ikr−1 |= ψ, there is a contradiction
with the second premiss which forbids an infinite trace for ρ2 starting in (Ikr−1 ,n + 2)
(because it uses the total modality operator).

In case of infinitely many subtraces, every partial trace is finite. For the first states
of the partial traces, we define vi := valIki

(ν). In a state (Iki
,n) with i > 0, we know

that (*) Iki
|= ν ≺ nc since this formula is part of the assertion. As nc does not occur

elsewhere on the sequent and because of the semantics of the update nc := ν, we get
that nc holds the value of ν of the previous iteration, i.e. Iki

(nc) = vi−1. This and (*)
imply that (vi−1,vi) ∈ I(≺). The sequence (v1,v2, . . .) would therefore be an infinitely
descending chain for I(≺) which cannot be since ≺ is a well-founded relation. �

3.3.5 Improved Invariant Rule

The major disadvantage of the rules in Theorems 3.6 and 3.7 is that the information
contained in Γ and ∆ of the conclusion is not available in the second premiss. There
invariant ψ is the only formula in the antecedent of the sequent. If any of the
information encoded in Γ ∪ ∆ was needed to close the proof, it would have to be
implied by ψ. This would usually mean that the description of ψ gets longer and
that a proof that this information holds initially would be needed, though it holds by
construction.

We will provide an invariant rule which keeps the context Γ and ∆ but subjects those
program variables which are touched during a loop iteration to a generalisation. We
can use the havoc statement to do this generalisation because of (3.7) in Theorem 3.3.

The rule follows the ideas of Beckert et al. (2005) where a context preserving
invariant rule is defined for a structured dynamic logic. The advantage is that more
information on the sequent remains available and does not need to be encoded in the
invariant.

Definition 3.4 (loop-reachable) A statement index m is called loop-reachable from n
within a program π if there is a trace (I0,k0), (I1,k1), . . . such that
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1. ko = n,

2. there is an index r ≥ 1 with kr = m, and

3. there is an index s > r with ks = n.

We write reach(n,m,π) in this case.

We use the notion of reachability to define the set of possibly modified program
variables as

mod(n,π) :=
{

c
∣∣∣∣ there are m, c and t s.t. reach(n,m,π) and

(π[m] = havoc c or π[m] = c := t)

}
⊆ PVar .

Loop reachability can, in general, not be computed. The reachability of a state-
ment may depend on the satisfiability of an assumption statement earlier in the
execution path and this is undecidable. However, a static analysis can be used to
over-approximate mod(n,π) if it assumes that every assumption might succeed.

The modification of the program for the third invariant rule is also more complex.
In addition to the statement injected in Theorem 3.6, statements need to be added to
anonymise the values of those program variables that are possibly changed by the
execution of the loop body. This anonymisation is performed using a sequence of
havoc statements. The second premiss can thus be relaxed and contains the contextual
information of Γ, ∆ and 𝒰 .

Theorem 3.8 (Context-preserving invariant rule) The rule

Γ ⊢ {𝒰}ψ,∆ Γ ⊢ {𝒰}[n + 2;ρ3],∆
Γ ⊢ {𝒰}[n;π],∆

InvariantContext

with ρ3 = π 2n (assert ψ; assume false; havoc r1; . . . ; havoc rb; assume ψ) is a sound rule
for any formula ψ and any finite set {r1, . . . ,rb} with mod(n;π) ⊆ {r1, . . . ,rb} ⊆ PVar.

The assumption that ψ holds must also be moved from the antecedent of the second
premiss to an assumption in the injected program since it is assumed to hold after the
anonymisation of the program variables.

PROOF Again, let ∆ = ∅. We observe that the second premiss is (after a number of
steps of symbolic execution and simplification) equivalent to

Γ ⊢ ∀x1. . . .∀xb.{𝒰 ‖ r1 := x1 ‖ . . . ‖ rb := xb}(ψ → [n + 2 + b + 1;ρ3]) . (3.10)

The injected havoc and following assume statements are not reachable from n + 2 +
b + 1 in ρ3 since they follow the statement assume false which ends every trace. Se-
quent (3.10) is hence equivalent to

Γ ⊢ ∀x1. . . .∀xb.{𝒰 ‖ r1 := x1 ‖ . . . ‖ rb := xb}(ψ → [n + 2;ρ1]) . (3.11)
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For an interpretation I with I |= ∧
Γ, we know, because of the validity of the premiss,

that I makes the formula in (3.11) true. If an interpretation I′ differs from I𝒰 at most
on the values of the program variables r1, . . . ,rb, then we have due to the semantics of
the quantifier and the updates that also

I′ |= (ψ → [n + 2;ρ1]) .

For a trace for [n;π] (cf. Fig. 3.6) started in (I𝒰 ,n), we observe that every statement
before (Ikr−1 ,n) is loop-reachable from n. The program variables which are changed
over this trace are, hence, in mod(n,π) and, therefore, also among the {r1, . . . ,rb}.
This implies that for all 0 ≤ i < r, the interpretation Iki

coincides with I𝒰 outside
the program variables r1, . . . ,rb, and we obtain Iki

|= (ψ → [n + 2;ρ1]) and, hence,
Iki

|= [n + 2;ρ1] by induction from the proof of Theorem 3.6.
In particular we have Ikr−1 |= [n + 2;ρ1] for which we saw in the proof of Theo-

rem 3.6 that it implies that the entire trace is successful. �

Bringing together the results of Theorem 3.7 and 3.8 yields

Theorem 3.9 (Context-preserving invariant rule with termination) The rule

Γ ⊢ {𝒰}ψ,∆ Γ ⊢ {𝒰}Jn + 2;ρ4K,∆
Γ ⊢ {𝒰}Jn;πK,∆

InvariantTerminationContext

with

τ = (assert ψ ∧ var ≺ nc; assume false; havoc r1; . . . ; havoc rb; assume ψ; nc := var)
ρ4 = π 2n τ

is a sound rule for any formula ψ and any finite set {r1, . . . ,rb} of program variables with
mod(n;π) ⊆ {r1, . . . ,rb} ⊆ PVar.

There is one difference to the rule of Theorem 3.7 regarding the second premiss.
While rule InvariantTermination uses an update term to store the value of the variant
into program variable nc, rule InvariantTerminationContext uses an assignment
in the inserted statements of ρ4. The reason for this is that the assignment must
happen after forgetting the values of the modified program variables, after the havoc
statements. As an update cannot be placed within statements, it has been replaced by
a semantically equal assignment statement.

3.3.6 Antecedent Invariant Rules

In the last sections we have considered four inference rules to deal with program
formulas in the succedent of a sequent. This is by far the most common use of invari-
ant rules in program verification. However, to have a complete calculus, program
formulas must also be considered if they appear in the antecedent of a sequent.
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The necessity for the rules becomes also more evident, if postfixed assertions (see
Section 2.5.3) are taken into consideration. The formula ⟨π⟩ϕ is equivalent to ¬[π]¬ϕ
due to the duality of (2.21) and would hence, if reduced to the non-postfix version of
the logic, not appear in the succedent but in the antecedent of a proof obligation.

Theorem 3.10 (Antecedent invariant rule) The rule

Γ ⊢ {𝒰}ψ,∆ ψ, Jn + 2;ρ5K ⊢
Γ,{𝒰}Jn;πK ⊢ ∆

AntecedentInvariant

with ρ5 = π 2n (assert ¬ψ;assume false) is a sound inference rule for any formula ψ.

PROOF As before, let ∆ = ∅ and an interpretation I with I |= ∧
Γ be given. The

conclusion is true if and only if I𝒰 |= ¬Jn;πK, that is, if there is a failing or infinite
trace for π starting in (I𝒰 ,n).

We iteratively construct such a trace by augmenting an intermediate partial trace
(I𝒰 ,n), . . . , (Ji,n) for π. As an invariant it is ensured that Ji |= ψ for its last state. For
the start, we use the singleton state sequence (J0,n) with J0 := I𝒰 of which we know
that I𝒰 |= ψ by the first premiss.

Let (Ji,n) with Ji |= ψ now be the last state of the intermediate partial trace. By the
second premiss we know that there is a trace of ρ5 starting in (J1,n + 2) which either
diverges or fails:

1. If it fails in ρ5[n], the trace (Ji,n + 2), . . . , (Ji+1,n) of ρ5 meets the requirements
of Obs. 3.5 and there is a state sequence of π from (Ji,n) ending in (Ji+1,n).
Due to the inserted statement assert ¬ψ at which the trace failed, we have that
Ji+1 ̸|= ¬ψ, that is, Ji+1 |= ψ and we append this trace to the intermediate partial
result.

2. If it fails elsewhere, there is an according trace of π from (J,n) (again by Obs. 3.5)
failing at an corresponding index. Appending this failing trace to the interme-
diate partial trace gives a failing trace for π starting in (I𝒰 ,n).

3. If it is infinite, it never visits the inserted program (which would always termi-
nate) and Obs. 3.5 can be applied. The corresponding infinite trace of π can be
appended to the intermediate result which is then an infinite trace for π starting
in (I𝒰 ,n).

This iteration is repeated either infinitely often or until either the second or third
option is applicable. In either case, a failing or infinite trace of π starting in (I𝒰 ,n)
has been constructed. �

When occurring in the antecedent, the modalities swap their roles with respect
to the issue of termination. While in the rules for the succedent side in the last
section, total program formulas Jn;πK required a termination argument using a
variant expression, this is the case for program formulas [n;π] in the antecedent.
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Theorem 3.11 (Antecedent invariant rule with termination) The rule

Γ ⊢ {𝒰}ψ,∆ ψ,{nc := ν}[n + 2;ρ6] ⊢
Γ,{𝒰}[n;π] ⊢ ∆

AntecedentInvariantTermination

with ρ6 = π 2n (assert ¬(ψ∧ ν ≺ nc);assume false) is a sound inference rule for a program
variable nc which does not yet appear elsewhere in the conclusion, any formula ψ ∈ Trmbool

and any term ν ∈ Trmty(nc).

PROOF As before, let ∆ = ∅ and I with I |= ∧
Γ be given. The conclusion holds then

if and only if I𝒰 |= ¬[n;π], that is if there is a failing trace. Note that the presence of
an infinite trace no longer makes this sequent true.

The argument is essentially the same as for the last theorem. However, the case
that the resulting witnessing trace is infinite must be excluded. Since the second
premiss requires the non-terminating program formula [n + 2;ρ6] unlike Jn + 2;ρ5K in
Theorem 3.10, the third option (an infinite trace for ρ6) of the last proof cannot arise
here.

It remains to be shown that the iterative construction of the result eventually
leads to a failing state. This is done using a variant expression like in the proof for
Theorem 3.7.

The finite partial trace is composed of loop iterations from (Ji,n) to (Ji+1,n). As
we have seen in the last proof, it is an invariant that all Ji fail the assertion ¬(ψ ∧ ν <
nc). Hence, we have that Ji+1 |= ν ≺ nc, that is, valJi+1(ν),valJi (ν) ∈ I(≺). The
intermediate evaluations vi := valJi (ν) of the variant expression hence form a strictly
descending chain under ≺. Since ≺ is well-founded, there cannot be an infinite chain.
The resulting trace must be finite. �

For the succedent side of the sequent, we have defined rules which preserve the
context Γ, ∆ and 𝒰 of the original sequent. To parallel this for the other side of the
sequent, we state the corresponding rules here. The translation of the rules is not as
canonical as one might think, however. In Theorem 3.8, havoc statements were intro-
duced to anonymise the relevant program variables. Since the modality appears now
with the complementary polarity on the sequent, the universal quantification implied
by havoc has not the indented semantics. There is no statement which possesses the
semantics dual to that of the havoc statement. Instead, an anonymising update 𝒱 is
introduced which assigns fresh Skolem constants to the program variables.

Theorem 3.12 (Context-preserving antecedent invariant rules) The rule

Γ ⊢ {𝒰}ψ,∆ Γ, {𝒰}{𝒱}(ψ ∧ Jn + 2;ρ5K) ⊢ ∆
Γ,{𝒰}Jn;πK ⊢ ∆

AntecedentInvariantContext

and the rule AntecedentInvariantContextTermination

Γ ⊢ {𝒰}ψ,∆ Γ, {𝒰}{𝒱}(ψ ∧ {nc := ν}[n + 2;ρ6]) ⊢ ∆
Γ,{𝒰}[n;π] ⊢ ∆
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with ρ5 like in Theorem 3.10, ρ6,ν and nc like in Theorem 3.11, are sound inference rules
for any formula ψ and any finite set {r1, . . . ,rb} with mod(n;π)⊆ {r1, . . . ,rn} ⊆ PVar. The
anonymising update is {𝒱}= {r1 := r′1 ‖ . . . ‖ rb := r′b} for fresh constant symbols r′i : ty(ri)
not occurring in the conclusion (1 ≤ i ≤ b).

We omit the proofs for the soundness of these rules since they are simple adaptions
of the proofs for Theorem 3.10 and 3.11 with the idea illustrated for Theorem 3.8.
The fresh Skolem constants introduced for the modified program variables r1, . . . ,rb
ensure that the second premiss holds for all possible values for these variables. Since
intermediate states differ from the starting state at most in these program variables,
the second premiss covers hence all necessary cases.

3.4 Completeness

Harel et al. (2000, Theorem 75) state that there is a sound and relatively6 complete
calculus for structured first order logic if the underlying logic is sufficiently expressive.
Since dynamic logic is more expressive than first order logic, the completeness notion
employed in this theorem can only be of a weaker kind, that is, modulo the natural
numbers: Given an oracle to decide the validity of any formula over the naturals, the
validity of every valid dynamic logic formula can be proved.

Since DL and UDL are equally expressive (see Section 2.5.5), it is clear that a
relatively complete calculus exists also for UDL. We show that the rules presented in
this chapter constitute a relatively complete calculus if we leave type quantifiers aside.
This means that the presented calculus allows the reduction of any proof obligation
containing program formulas to one without such terms. Given an oracle for the
underlying logic, any formula could be decided, hence.

3.4.1 Completeness for First Order Formulas

The correctness and completeness of the first order sequent calculus with equality is
well-known; it has, for instance, been shown by Degtyarev and Voronkov (2001). The
rules presented in Tables 3.1 and 3.2 summarise such a complete calculus. However,
the first order logic we employ has some idiosyncrasies which deserve being looked
at in the light of completeness of the calculus.

Binder symbols We can use the reduction to first order logic without binder sym-
bols used in the proof of Theorem 2.4 to show that the calculus is complete for binder
symbols.

6Harel uses the notion of arithmetical completeness
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In this reduction, every7 binder term (b v.t) is replaced using a fresh function
symbol f(b v.t). To reflect the semantic properties of binder symbols, the replacement
function symbols are axiomatised by the set (see also (2.12))

M† = {(∀v̄.∀w̄.(∀z.tz .
= uz)→ f(b x.t)(v̄)

.
= f(b y.u)(w̄)) | t,u ∈ Trm, binder-free} .

Let S be a valid sequent with binder symbols and S† denote the equivalid transla-
tion without binder symbols. As the calculus without binders is complete, a closed
proof tree can be constructed for S† if it is valid. In the closed proof tree, the reduction
can afterwards be undone again yielding a closed proof tree for the sequent S with
binder symbols.

However, during the proof of the reduction, formulas from M† could have been
incorporated onto the sequent. Undoing the reduction yields a sequent proof in
which the schematic inference rule

Γ, (∀v̄.(∀z.tz .
= uz)→ (b x.t) .

= (b y.u)) ⊢ ∆
Γ ⊢ ∆

(3.12)

might have been used. The vector v̄ denotes the free variables in t and u. In this rule, tz

and uz emerge from t and u by replacing the bound variable (x and y respectively) by
a common unused variable z. It is obvious that a cut over the introduced formula can
mimic an application of (3.12). Yet, this opens a second branch with the cut formula
in the succedent. Such remaining open goals can be discharged using predicate logic
rules (allRight, impRight), alpha renaming (binderAlpha) and binderExt. Thus a
closed sequent proof tree can be found for every valid formula with binders.

This completeness result is only valid if all function and binder symbols are unin-
terpreted. As soon as symbols have a fixed semantics and new rules are introduced
to reflect their meaning, the completeness must be reconsidered.

Boolean terms Traditionally, formulas and terms are different syntactical entities
and the calculus is defined accordingly. In UDL the distinction between formulas and
terms of type bool has been deliberately dropped for the sake of a greater freedom in
expressions.

This has as an effect that boolean operators need not appear as toplevel function
symbols on the sequent but may also occur embedded into an argument to a function
symbol. But the presented propositional rules of the sequent calculus are only
applicable if formulas are not embedded into function applications.

However, this relaxation does not increase the expressiveness of the logic as the
following short argument shows. Every atomic formula ϕ(ψ) in which formula ψ
occurs as parameter to a function symbol which is not a boolean junctor can be
equivalently rewritten as

ϕ(ψ) ≡ if ψ then ϕ(true) else ϕ(false) ≡ (ψ → ϕ(true)) ∧ (¬ψ → ϕ(false)) .
7We will, again, restrict ourselves to unary binder symbols here. The generalisation to symbols of higher

arity is obvious.
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By such rewriting, every formula can be rephrased as one in which every boolean
argument to a function is one of the constants true and false. Their being different
(true ̸ .= false) and tertium non datur (∀bbool.b .

= true ∨ b .
= false) can be shown in the

calculus.
These steps can be applied within the calculus, too. Let Γ ⊢ p(ψ),∆ be a sequent

(without binder symbols) in which the formula γ appears as argument to the function
p : bool→ bool. The available rules can be used to split the above sequent equivalently
into the two sequents Γ,ψ ⊢ p(true),∆ and Γ ⊢ ψ, p(false),∆.

This leaves the question of quantifiers. The above direct case distinction approach
can only be applied for toplevel ground formulas p(ψ). Fortunately, this is already
sufficient. A proof in sequent calculus can always be conducted on a set of ground
formulas derived from the formulas on the sequent. The reason for this is Herbrand’s
theorem which says: For any valid sequent S there is a valid sequent SH which
emerges from S by applying quantifier rules followed by removal of the quantified
formulas. If S is in Skolem normal form, then SH consists of instantiations of the
formulas on the sequent of S. Sequent SH is called a Herbrand sequent (Hetzl et al.,
2008) of S. Case distinctions on the ground terms of SH can remove all formulas from
embedded applications.

Weak equality and type quantification No completeness can be achieved in the
presence of parametrised types and type quantification. It has been pointed out in
Section 2.3.3 that these features extend the expressiveness beyond that of first order
logic. The first order induction scheme for the type system has been added to provide
as much completeness as possible.

The weakly typed equality suffers a similar fate. The validity of a weak equality
depends in the end also on the extension of the type system. For instance, if there
is only one single non-parametric type, the weak equality t

.≈ u is equivalent to
σ(t) .

= σ(u) for any unifying type substitution σ. Rules which resolve the weakly
typed equality to strong equality have been added for the cases in which it is possible.

Updates The rewriting rules for updates presented in Theorem 3.2 are complete
in the sense that every formula can be brought into update normal form. Naming
conflicts impeding update resolution can be averted by alpha renaming of bound
variables using rule binderAlpha.

3.4.2 Completeness for Program Formulas

The completeness of the program calculus can only be shown for structures which
contain a faithful copy of the natural numbers. For this section we therefore assume
that the type system is Γ = {bool,nat} and that we only regard interpretations with
𝒟nat = N,𝒟bool = {ff , tt}. We write |=N to denote this special evaluation. Let us
for this section also (without loss of generality) assume that the terms occurring in
programs have no free variables.
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The completeness proof for the calculus will consist of two results. First, we
will adapt the result of Cook (1978) to UDL to show that the arithmetic structure
is expressive for UDL. Then, we will use this result to specify the most specific
loop invariant and variant for the rules of Section 3.3. In total we show that the
presented calculus can be used to reduce any sequent containing program formulas
to a program-free equivalid sequent of the underlying logic.

We begin with the observation that one step of symbolic execution of a program
π can be expressed in a before-after-after-predicate χπ . This predicate formalises
the program execution function Rπ : 𝒮Σ,𝒟 → 2𝒮Σ,𝒟 used in Definition 2.17 to de-
fine the semantics of the programming language. Often in the following, an enu-
meration of all variables standing for the program variables will be needed. We
will use vector notation like x̄ to denote the finite list of variables xp1 , . . . , xp|PVar|
enumerating the program variables pi ∈ PVar occurring in π. The interpretation
Ix̄ := I[p1 ↦�β(xi)] . . . [pP ↦�β(x|PVar|)] then denotes the interpretation in which the
program variables hold the values of the variables x̄.

Lemma 3.13 (Encoding symbolic execution steps) Let π ∈ Π be a self-contained UDL
program. There exists a formula χπ ∈ Trmbool with 2|PVar|+ 2 free variables such that:

I,τ, β |= χπ(l1, x̄1, l2, x̄2) for n,m, l : N ⇐⇒ (Ix̄2 , l2) ∈ Rπ(Ix̄1 , l1).

All program formulas occurring in χπ already occur within π.

PROOF It is possible to encode the state relationship Rπ for a single statement π[k]
with k < |π| into a formula χπ,k. It is easy to see that the formulas defined in Table 3.7
faithfully formalise the state relationship Rπ in the sense that (Ix̄2 , l2) ∈ Rπ(Ix̄1 , l1)⇔
I |= χπ,l1(x̄1, l2, x̄2). Note that if π[k] = assume ϕ is a false assumption under Ix̄1 , then
χπ,k is also false: An assumption which does not hold ends the trace. Assertions
have the same semantics. The formula χπ can then be defined as a combination of all
predicates χπ,k within π:

χπ(l1, x̄1, l2, x̄2) :=
∧

k<|π|
(k .

= l1 → χπ,k(x̄1, l2, x̄2))

Any program formula in χπ has already occurred within an assertion, assumption or
assignment in π. �

Since the natural numbers are fixed in the considered structures, we can use
standard encoding techniques (see, for instance, Monk, 1976, Ch. 3) to encode a
finite sequence of natural numbers σ ∈ N* into a single natural number, denoted by
pσq ∈ N. The reverse operation can also be encoded. The current state of the (finitely
many) natural8 program variables can be seen as a sequence of natural numbers. It
is, hence, possible to encode a finite sequence of states into a single natural number.
Using this expressiveness, we can find a formula χ+

π for the n-fold composition of the
one-step before-after-predicate χπ .

8boolean program variables can be canonically subsumed by using 0 and 1 for the values true and false.
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π[k] χπ,k(x̄,m, ȳ)
skip m .

= k + 1 ∧ ȳ .
= x̄

q := e m .
= k + 1

∧ yq
.
= { ‖

p∈PVar
p := xp}e

∧
∧

p∈PVar∖{q}
yp

.
= xp

havoc q m .
= k + 1

∧
∧

p∈PVar∖{q}
yp

.
= xp

assume ϕ m .
= k + 1 ∧ ȳ .

= x̄
assert ϕ ∧ { ‖

p∈PVar
p := xp}ϕ

goto g1, . . . , gn ȳ .
= x̄

∧ (m .
= g1 ∨ . . . ∨ m .

= gn)
end false

Table 3.7: State transition for a program π encoded as formulas

Lemma 3.14 (Encoding symbolic execution sequences) Let π ∈ Π be a self-contained
UDL program. There exists a formula χ+

π ∈ Trmbool with 2|PVar|+ 3 free variables such
that for any n ∈ N

I,τ, β |=N χ+
π (n, l1, x̄1, l2, x̄2) ⇐⇒ there is a state sequence ((Ix̄1 , l1), . . . , (Ix̄2 , l2))

of length n for π.

All program formulas occurring in χπ already occur within π.

PROOF Using the encoding of sequences of naturals within natural numbers, a
formula χ̃π(N1, N2) with two free variables N1, N2 : nat can be defined such that χ̃π

encodes χπ , that is, χ̃π(pl1, x̄1q,pl2, x̄2q)≡N χπ(l1, x̄1, l2, x̄2). The first free variable N1
encodes the start state l1, x̄1 and the second N2 the end state l2, x̄2 of a single execution
step.

The n-fold composition of χ̃π can also be arithmetically represented using quan-
tification over all (encoded) sequences of length n. The resulting predicate has an
additional free variable n and is denoted by χ̃+

π (n, N1, N2).
The two encoded arguments can be decoded into 2|PVar|+ 2 variables resulting in a

formula χ+
π with χ+

π (n, l1, x1, l2, x2) ≡N χ̃+
π (n,pl1, x̄1q,pl2, x̄2q) which has the required

property. �

The formula χ+
π can be used to quantify over all reachable states. Thus, it is possible

to state a formula that is equivalent to a program formula by formulating that all
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reachable assertions hold. This can be done in a formula that itself does not contain
program formulas.

Theorem 3.15 (N expressive for UDL) Let π ∈ Π be a self-contained UDL program and
0 ≤ n < |π|. There exist formulas ζ[n,π],ζJn,πK ∈ Trmbool without program formulas such
that

|=N ζ[n;π] ↔ [n;π] and |=N ζJn;πK ↔ Jn;πK .

PROOF This is an inductive argument on the nesting level of program terms. A logic
without program formula has nesting level 0. A program term in which all terms do
not themselves have program formulas inside has level 1, and so on. A formula of
nesting level 0 already has the required properties.

Let π be of nesting level l > 0. We define

ζ ′[n;π] := ∀s.∀x̄.
∧

k<|π|
π[k] .=assert ϕ

(χ+
π (s,n, p̄,k, x̄)→ { ‖

p∈PVar
p := xp}ϕ) (3.13)

ζ ′Jn;πK := ζ ′[n;π] ∧ ∃s.∀l.∀x̄.¬χ+
π (s,n, p̄, l, x̄) (3.14)

Definition (3.13) encodes that ζ ′Jn;πK is true if every assertion π[k] = assert ϕ reach-
able from the initial state holds in its respective state (Ix̄,k), that is, if Jn;πK holds.
This is the case if and only if every trace is successful. Definition (3.14) additionally
requires an upper bound s on the length of traces; no state must be reachable with
(precisely) s execution steps.

The primed formulas may still contain program formulas. But by Lemma 3.14,
these program formulas already occured in π and, hence, have a nesting level strictly
lower than l. By induction hypothesis, these can be replaced by equivalent program-
free formulas, yielding the unprimed formulas ζ[n;π],ζJn;πK. �

A direct consequence of this theorem is that every UDL formula has got a (com-
putable) equivalent UDL formula without program formulas: Natural arithmetic is
expressive for UDL. We have concluded the first goal of the section.

To show the completeness of the calculus, we still need to reason that the rules pre-
sented in the last sections suffice to remove program formulas from proof obligations.
The first observation we can make in this direction is that the ζ-formulas allow us to
always state a sufficiently strong loop invariant and a valid invariant. A statement in
a program usually has many invariants which are satisfied whenever the statement is
visited. The formula true is the weakest possible loop invariant. We are interested in
loop invariants which are not only inductive but also imply that the program does
not fail, and we are particularly interested in the weakest condition which implies
this.

Under the assumption of this loop invariant, a program cannot fail. This implies
in particular that the invariant rules instantiated with such loop invariants are not
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an overapproximation any more. While the invariants may still approximate the
program state, they preserve validity when used in the invariant rules.

Lemma 3.16 (Complete invariant rules) There exist terms for the invariant and variant
such that the inference rules presented in Theorems 3.6, 3.7, 3.10 and 3.11 are complete.

For the definition of the variants, we make use of the fact that binder symbols do
not add to the expressiveness of the logic. The binder symbol τ : α → bool → α is
called the description operator and denotes the unique value for which a predicate
holds. It has the semantics

I(τ[T])(b) =

{
u if {u} = {x ∈ 𝒟T | b(x) = tt}
underspecified otherwise

and can be axiomatised by (

A

α.(∀yα.(τxα. x .
= y) .

= y)). The introduction of the
binder τ is a conservative extension of first order predicate logic as, for instance,
shown by Monk (1976, Ch. 29).

Specialisations of this operator are τmin,τmax : nat × bool → nat denoting the min-
imum (maximum) natural number for which the argument term evaluates to true.
They are defined as abbreviations in terms of τ as

(τ{max
min
}xnat.ϕ) := (τxnat.ϕ ∧ (∀ynat. ϕ[x/y]→ x

{
≥
≤

}
y))

The value of τ binder expressions is underspecified in cases in which the unique
value does not exist. When using the binders to specify the variants in the proof of the
following lemma, binder applications will be limited to cases in which a minimum or
maximum is ensured to exist.

PROOF To prove that the application of the rules is complete, it must be shown
that the converse rule is sound. The converse inference rule is the rule which arises
from a rule by exchanging premisses and conclusions. The converse rules have two
conclusions which must both be implied by the premiss.

Naturally, the rules are not complete for every invariant. Different invariants
ψ1,ψ2,ψ3,ψ4 and variants ν2,ν4 are needed for the four rules to be complete. Their
proofs are presented sequentially.

Invariant We choose ψ1 := ζ[n;π] as the invariant for this rule. To show that rule
Invariant is complete, we have to show that the converse inference

Γ ⊢ {𝒰}[n;π],∆
Γ ⊢ {𝒰}ψ1,∆ ψ1 ⊢ [n + 2;ρ1]

with ρ1 = π 2n (assert ψ1;assume false) is valid. Since |=N ζ[n;π] ↔ [n;π] and
ψ1 = ζ[n;π], the first conclusion (base case) is equivalent to the assumption.
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Due to the definition of the loop invariant, the step case is equivalent to [n;π]→
[n + 2;ρ1]. Assume that (*)I |= [n;π], that is, there is no failing trace for π
starting in (I,n).

Let (I,n + 2), . . . , (I′,k) be a partial trace for ρ1 reaching an assertion. If k ̸= n,
then the original program π has a corresponding assertion and (*) implies
that the trace for the modified program ρ1 will also not fail here. If k = n,
then the execution reaches the insertion point n. By definition of the loop
invariant, I′ |= ζ[n;π] or equivalently I′ |= [n;π] must be established. If there
was a failing trace (I′,n), . . . , (I′′,m) for π, then together with the initial partial
trace, a failing trace (I,n), . . . , (I′,n), . . . , (I′′,m) for π would exist. But this
cannot be by assumption (*).
Note that the validity of the second conclusion does not depend on the validity
of the premiss for the choice of the strongest loop invariant.

InvariantTermination For the rule with termination, we use the invariant ψ2 :=
ζJn;πK and the variant ν2 := (τmax snat. (∃l. ∃x̄. χ+

π (s,n, p̄, l, x̄))). It must be
shown that the inference

Γ ⊢ {𝒰}Jn;πK,∆
Γ ⊢ {𝒰}ψ2,∆ ψ ⊢ {nc := ν2}Jn + 2;ρ2K

with ρ2 = π 2n (assert ψ2 ∧ ν2 ≺ nc;assume false) is sound.

The first conclusion is again equivalent to the premiss due the chosen invariant.
Also the proof for the invariant part of the second conclusion is the same as
above.

It remains to be shown that the variant ν2 is indeed decreased in every step. The
term ν2 encodes the length of the longest trace (I,n), . . . , (Ix̄, l) starting in (I,n).
The assignment Ix̄ or the l do not play a role, it is the length of this trace which
counts. If the program terminates, the length of the longest remaining trace
strictly decreases from loop iteration to iteration. Invariant ψ2 is an assumption
in the second conclusion and implies that there are no infinite traces in the
states in which the variant is evaluated. This guarantees that the operator τmax
is always applied to a predicate which has a maximum.

AntecedentInvariant To show the result for the rule applied to the program formula
in the antecedent the invariant ψ3 := ¬ζJn;πK is used. The converse rule is

Γ,{𝒰}Jn;πK ⊢ ∆
Γ ⊢ {𝒰}ψ3,∆ ψ3, Jn + 2;ρ5K ⊢

with ρ5 = π 2n (assert ¬ψ3;assume false). The base case is again equivalent
to the premiss. The sequent ¬ζJn;πK,Jn + 2;ρ5K ⊢ in the second conclusion is
equivalent to Jn + 2;ρ5K→ Jn;πK.
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Assume that (*)I |= Jn + 2;ρ5K and let (I,n), . . . be a trace of π. If the trace does
not visit π[n] again after the initial state, it has an according trace in ρ5 (by
Obs. 3.4) starting in (I,n + 2). By (*), the trace (and, hence, also the trace for π)
is finite and does not fail.

If the trace visits π[n] in a state I′ again, the corresponding trace visits statement
ρ5[n] = assert ¬(¬ζJn;πK), that is I′ |= Jn;πK. Any trace (I′,n), . . . , (I′′,k) for π is
finite and successful. The concatenated trace (I,n), . . . , (I′,n), . . . , (I′′,k) is also
finite and does not fail.

AntecedentInvariantTermination For the last rule, the strongest invariant is ψ4 =
¬ζ[n;π] and the according variant is

ν4 = (τmin snat.
∨

k<|π|
π[k] .

=assert ϕ

(∃x̄. χ+
π (s,n, p̄,k, x̄) ∧ { ‖

p∈PVar
p := xp}¬ϕ)

encoding the length of the shortest failing path: The value is the smallest
number of steps which can be executed resulting in a state (Ix̄,k) with π[k] =
assert ϕ such that the assertion is not satisfied. The value ν4 is only defined, if
there is a failing trace and unspecified otherwise.

The converse rule is

Γ,{𝒰}[n;π] ⊢ ∆
Γ ⊢ {𝒰}ψ4,∆ ψ4,{nc := ν4}[n + 2;ρ6] ⊢

with ρ6 = π 2n (assert ¬(ψ4 ∧ ν4 ≺ nc);assume false).
The base case of the converse rule is again equivalent to the premiss. The
sequent ψ4,{nc := ν4}[n + 2;ρ6] ⊢ in the second conclusion is equivalent to
¬[n;π]→¬{nc := ν4}[n + 2;ρ6].

Assume that I |= ¬[n;π], that is, there is a failing trace (I,n), . . . , (I′,k) for π. We
may, without loss of generality, choose this trace to be the shortest failing trace. If
π[n] is not visited after the first state, then the trace has a corresponding failing
trace for ρ6 according to Obs. 3.4. Otherwise, if (I′′,n) is a state in the above trace
after the first state, then (by Obs. 3.4) ρ6[n] = assert ¬(ψ4 ∧ ν4 ≺ nc) is visited in
a corresponding trace of ρ6. The assertion is equivalent to ν4 ≺ nc → [n;π].

Since the trace from I has been chosen the shortest failing trace (its length
is stored in nc), the shortest failing trace from I′′ (length ν4) must be strictly
shorter since at least one step of execution has been performed. That means:
I′′ |= ν4 ≺ nc. The trace for π from the intermediate state (I′′,n) fails, therefore
I′′ ̸|= [n;π]. These two facts imply that I′′ does not satisfy the assertion ρ6[n].
There is a failing trace for ρ6.

The invariant ψ4 guarantees that there always exists a failing path; the predicate
in τmin is satisfiable and the operator used within its specified range. �



3.4 COMPLETENESS 83

With these invariants and variants, we have a complete version for every rule in
the calculus at hand. The open goals of a proof tree for a valid formula in which only
complete inference rules have been applied are all valid themselves. It remains to be
seen that we can always apply the rules to get the sequent program-free. First, we
observe a special case of this reduction:

Lemma 3.17 (Completeness of the calculus for a modality definitions) Let 𝒰 be an
arbitrary update, π ∈ Π a program and every term occurring in π be program-free.

There exist closed proof trees for ⊢ {𝒰}(ζ[n;π] ↔ [n;π]) and ⊢ {𝒰}(ζJn;πK ↔ Jn;πK) .

PROOF Let us consider the modality [n;π] (the argument is the same for Jn;πK). Cal-
culus rules can be applied resulting in two sequents for the form {𝒰}ζ[n;π] ⊢ {𝒰}[n;π]
and {𝒰}[n;π] ⊢ {𝒰}ζ[n;π]. These sequents can be reduced to sequents without modal-
ity or update using symbolic execution (Theorem 3.3), update simplification (Theo-
rem 3.2) and loop invariant rules with the strongest invariant and variant terms as
found in Lemma 3.16.

The original sequent is valid by construction, and, hence, as every applied rule
is complete, also every leaf of the proof tree. The oracle for sentences over natural
numbers can be used to close the proof tree. �

These considered equivalences between ζ[n;π] and [n;π] have a special signifi-
cance as they “define” the truth value of the program formula [n;π] in terms of a
modality-free formula. Replacing [n;π] by the program-free ζ[n;π] does not change
the semantics but removes this program formula from the sequent. To be able do so,
we need a technical lemma which shows us that we can use quantified equalities to
replace expressions using the rules of the calculus.

Lemma 3.18 (Application of quantified equalities) A sequent (∀x1...xn.t .
= u),Γ ⊢ ∆

in update normal form can be reduced by application of calculus rules to a sequent Γ′ ⊢ ∆′

in which every instantiation of t[x1/s1, . . . , xn/sn] has been replaced by the corresponding
instantiation u[x1/s1, . . . , xn/sn] but in program formulas.

This is obvious for every ground instance t[x/g]. The quantified equality can be
instantiated (using allLeft) and the replacement made by applyEq directly. But the
replacement is also possible for non-ground terms with free variables but this requires
a structural decomposition over binder applications. With help of the rules cut and
binderExt, the non-ground problem can eventually be reduced to the variable-free
case. The simple proof works by structural induction and is not elaborated on here
since it is rather technical and does not elucidate the goal of the section.

These lemmas allow us to finally formulate the completeness theorem for UDL.
Defining formulas for modalities are discharged using Lemma 3.17, and Lemma 3.18
is used to remove them from the sequent.

Theorem 3.19 (Complete calculus for UDL) Given an oracle for first order sentences
over natural numbers, the UDL calculus presented in this chapter is complete:

|=N ϕ =⇒ ⊢N ϕ for all ϕ ∈ Trmbool
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PROOF Proof by induction on the number of program formulas. If ϕ has no program,
the assumed oracle can be relied upon directly. Let otherwise Γ ⊢ ∆ be a sequent in the
process of the proof. We select a program formula [n;π] without embedded program
formulas and extract it onto the top level of the sequent applying a cut with the
formula (∀v̄.{𝒱}(ζ[n;π]

.
= [n;π])) in which the update {𝒱} = {p1 := v1 ‖ . . . ‖ pn :=

vn} ensures that the definition captures all valuations of the program variables
PVar = {p1, . . . , pn}. Using the cut rule we introduce this axiomatisation on the
sequent. The proof tree has two children (A) and (B).

(A) Γ ⊢ (∀v̄.{𝒱}(ζ[n;π]
.
= [n;π])),∆ Γ, (∀v̄.{𝒱}(ζ[n;π]

.
= [n;π])) ⊢ ∆ (B)

Γ ⊢ ∆
cut

Branch (A) contains the definition of the modality term in the succedent which can
be closed9 by Lemma 3.17. (There may be additional modalities in the context Γ,∆,
but they do not hinder this proof.)

In branch (B), the definition can be used (by Lemma 3.18) to replace every occur-
rence of {𝒰}[v;π] in Γ and ∆ such that the resulting node in the proof tree has one
program term less and can be closed by induction hypothesis. �

3.5 Chapter Summary

This chapter has presented a calculus for UDL. The logic has also, in less detail,
been described in (Ulbrich, 2011). The proof methodology is based on the sequent
calculus by Gentzen (1935). In addition to the classical logical rules for sequent calculi,
inference rules to handle the idiosyncratic properties of the underlying predicate
logic of UDL have been introduced.

Updates within formulas can be simplified using a set of update simplification
rules. With them, every formula can be brought into an update normal form in which
every update occurs directly in front of a program formula. These updates can
be considered as the intermediate representation of the program state during the
execution.

Special emphasis has been put on the treatment the program formulas of the
dynamic logic. UDL programs can be processed by a set of rules performing stepwise
forward symbolic execution in the calculus. The application of a step of symbolic
execution moves the instruction pointer within the program formula and modifies the
proof context of the program formula according to the executed statement. Depending
on the type of statement, this may be by adding an assumption, by opening a new
side proof or by modifying the program variable assignment.

Unlike in the Boogie approach where the code is organised in basic blocks each com-
prising several statements of the program, in UDL every statement can be addressed

9Recall that .
= and ↔ denote the same operation on boolean values (see rewrite rule eqToEquiv in Figure

3.1
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and executed individually. This allows the calculus to perform a very fine-grained
symbolic execution in which every intermediate state can be inspected.

Programs containing loops must be treated differently. After reviewing the sit-
uation in classical structured dynamic logic, a methodology to break up loops in
unstructured programs has been devised. It has been used to define a sequent cal-
culus rule for the application of loop invariants in the unstructured case. This first
inference rule has then been joined by a rule considering termination using a well-
founded variant expression which is decreased in every loop iteration. The loop
invariant usually provides the necessary information of an abstraction of the current
proof state to conduct the proof. However, Beckert et al. (2005) show that the part
of the proof context which cannot be affected by the program execution may also be
used within the proof even if it is not part of the loop invariant. A rule in which the
context of the currently undertaken proof is better preserved has been presented.

Usually in program verification, proof obligations are sequents in which a single
program formula appears on the right hand side of a sequent. However, there are
cases, in which program formulas may also appear on the left hand side of the
sequent. Rules which cover this case have also been introduced. They resemble the
rules for the execution under normal conditions – with subtle differences.

Since the program modalities make UDL more expressive than first order logic,
completeness cannot be achieved for this calculus. Instead a proof has been given
for the relative completeness of UDL: Under the hypothetical assumption that there
was a complete calculus for the validity problem over natural numbers, there would
also be one for UDL. A more practical implication of this completeness result is that
provided sufficiently strong loop invariants can be stated, every verification condition
involving program formulas can be reduced to proof obligations without programs.
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Implementation
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This chapter reports on the reference implementation of a verification system for UDL proof
obligations which implements the sequent calculus outlined in the last chapter.

The developed theorem prover ivil supports both interactive and automatic verification.
For the automation, a translation of UDL to the input logic of industry-standard decision
procedures is presented. The interactive system is designed to allow for user interaction on
the source-code level despite the presence of an intermediate verification language. To broaden
the reach of automatic verification, additional annotations can be added on the source-code
level as hints to the verification engine.

The implementation of the verification system for the core logic is amended by a prototypical
implementation of a translation from annotated Java bytecode to ivil programs. It proves the
feasibility of both the interactive and the automatic aspect of the approach.

4.1 ivil - A Theorem Prover for UDL

The verification system “ivil” (which stands for Interactive Verification on Interme-
diate Language) is a proof assistant for the discharge of UDL formulas combining
interactive and automatic proof search. The human interaction in its interactive
component is based on and extends interaction philosophies of other systems, in
particular of the KeY system (Beckert et al., 2007) and the Event-B prover Rodin
(Hallerstede, 2008). The automation component implements automated symbolic
execution, automatic application of logical rules and supports the connection of
decision procedures to solve problems. ivil possesses both a command line interface
(allowing for embedding it into integrated development environments for instance)
and an easy-to-use graphical user interface. It has been implemented in Java and the
source code base comprises approximately 50.000 lines of code.

The system operates on the variant of UDL in which program formulas are postfixed
with an additional assertion (see Section 2.5.3). The implemented calculus is the
sequent calculus for UDL presented in Chapter 3. The fundamental rules presented
there are complemented by numerous additional lemmas introduced to make the
system more efficient and powerful. The validity of derived rules can, under certain
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restrictions, be proved within the system itself. An adaptation of the approach by
Bubel et al. (2008) has been used to check the validity of the lemmas (where possible).
This check is part of the regression test base of the system.

The input language of ivil is designed to allow for extensions of the system. Types,
function and binder symbols, axioms, rewriting or inference rules can be declared
in ivil input files. Common data types often needed in verification contexts (namely
finite sequences, sets and maps) together with typical operators on them are specified
in a small, but extensible, library of input files.

The programming language of ivil is intentionally closely related to the language
used in the Boogie verification system but there are concepts in ivil like the inference
rules which are not available in Boogie. The input language of Boogie is syntactically
richer though every input can be reduced to a core language which resembles that of
ivil. Felden (2011) describes the implementation of a front-end which allows reading
Boogie files as input into ivil.

One design decision for the system was not to emphasise a fully automated calculus
serving as a decision procedure for UDL but to rely on existing decision procedures
for first order logic with theories (satisfiability modulo theory solvers; SMT). ivil has got
an engine to apply rules automatically, buts its purpose is more to pre-process the
received input than to prove it correct. In more evident cases, the automation can
find a proof without relying on solvers. For the automatic application of rewriting
and inference rules, a number of configurable strategies have been implemented to
control the process of rule application. Simplification by term rewriting is a simple
strategy. It can be restricted to rules not splitting the goal such that the number of
open proof branches does not explode. Symbolic execution is the strategy responsible
for removing program formulas from the proof obligation. It can be configured to stop
execution under certain conditions. The strategies are designed to keep the formulas
on the sequent comprehensible for the human reader, leaving transformation to
normal forms, skolemisation and other processing entirely to the theory solver.

The verification engines relies on findings that a decision procedure returns. For
the communication with the underlying decision procedures, the de-facto standard
format SMT-LIB (Barrett et al., 2010) has been chosen. It is widely supported and
can be used to drive many different solvers. We aimed in particular for the solver
Z3 (de Moura and Bjørner, 2008) which stands out with its wide range of featured
theories, its power and active development.

4.2 User Interaction

It has been a major concern that an intermediate verification language would severely
abate the comprehensibility of the verification process for the human user. Can the
verification state be presented understandably to the user of the verification system if
it operates on an internal representation? And can the system provide useful feedback
to the user in case of a failed verification attempt? This section will report on the
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Figure 4.1: Screenshot of ivil in action

measures which have been taken in the ivil system to achieve a powerful tool which
is still comprehensible.

Figure 4.1 shows a typical situation during a proof within ivil. The main view is the
sequent in the upper right part of the window. The formulas on the sequent are kept
in individual boxes which separate them more clearly. This presentation is similar
to the one in Rodin while KeY separates formulas by commas making it sometimes
hard to tell where one formula ends and the next one starts.

On the left hand side of the frame, the sequent calculus proof tree with the applied
inference rules is visible. The granularity of the tree can be adjusted. Inference rules
can be annotated with a level of importance and the tree can be configured to only
show rule applications whose rules have at least the configured level of importance.
Thus, the proof tree can be kept clean from “background clatter” (such as, for instance,
propositional or update normalisation). The user can concentrate on the relevant rule
applications. These include, as the most prominent instances, the rules which have
been applied to perform symbolic execution. This allows any intermediate state in
the transformation from code into logic to be inspected by examining the associated
sequent. A green bullet next to the node label indicates that a node has a closed
subtree beneath it, that is, that its sequent has already been proved valid.
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Verification goals will usually not be formulated in the cumbersome intermediate
language directly but in a higher language and then automatically translated into
their UDL equivalent. With the deliberately small number of statement constructors
in the intermediate programming language, UDL programs tend to be significantly
longer than the source programs. For the sake of better readability, the programs are
not displayed in the sequent view, but instead referred to by name. On the lower left
of the sequent view resides an area in which all relevant UDL programs are listed.
To the right of this area, there is another code area containing the source code which
gave rise to the intermediate code.

4.2.1 Application of Rules

Moving the mouse pointer over a subterm of a formula on the sequent highlights
that term. A mouse click opens a popup menu in which all applicable rules (and their
instantiations) are presented and from which the next rule application can be chosen.
Applying a rule changes the sequent accordingly and the next rule application can be
selected. This method of interaction for rule selection is (in general) also used in KeY
and Rodin, and has already been presented by Bertot et al. (1994). Rules requiring
a term parameter, like quantifier instantiation, replacement of equal terms etc. can
also be applied conveniently by dragging a subterm and dropping it onto some other
term on the sequent.

4.2.2 Background Constraint Solving

During an intricate interactive proof, often situations arise in which a number of
open branches remain to be discharged. It is usually the case that the difficulty of a
particular proof obligation manifests itself only on a limited number of open proof
goals while the majority of them can be discharged automatically without further
help from the user.

ivil features a background process running with low priority which constantly
invokes the constraint solver on the currently open goals, which automatically closes
them if they can be discharged and leaves them untouched if they cannot be closed.
This process is, hence, totally transparent to the user.

This mechanism allows an analytic and explorative approach to examine goals in
which it is unclear what steps are to be taken. Case distinguishing rules like Cut (for
immediate lemma generation), andRight or orLeft can be applied repeatedly to split
the proof into individual cases. If the proof obligation has a local problem which is
specific to one of these cases, this case will remain open as the only branch, while
the others are closed automatically. On the remaining branches, the user has more
detailed information which facilitates the problem analysis.
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4.2.3 Strict Separation between Interaction and Automation

A feature which separates ivil noticeably from KeY is the way in which automatic and
interactive rule application are kept separate.

The proof strategies in KeY aim to implement a complete calculus for its logic.
Hence, rules are automatically applied eagerly resulting in proof states which are
often not comprehensible for the human user: Formulas are brought into negation
normal form, arithmetic expressions are normalised to allow for better algorithmic
treatment. Grebing (2012) reports in her usability study that this makes it difficult to
keep track of the proof. ivil does not suffer from this deficiency since the inference
rules it applies are meant to help the user understand the proof situation, normalisa-
tions are left to the decision procedure. The subsystem of the SMT solver can, in this
regard, be considered a black box.

This is mainly achieved by reducing the set of rules which are applied by default.
Propositional rules, for instance, which decompose larger formulas into their smaller
parts usually make the proof situation more understandable and are included in this
basic set of rules. Rules which change the way in which the statements are represented
are less suited for interactive presentation. Expanding a function symbol by its
definition (for instance replacing S ⊆ T by (∀x.x ∈ S → x ∈ T)) often does not improve
readability and is, hence, not automatically applied in the interactive environment.
It may, however, be necessary to also apply such rules, and the strategies can be
reconfigured such that such rules are enclosed in the automatically applied set of
rules when necessary.

One separating advantage lies in the logic and calculus themselves. The interme-
diate proof states can be kept relatively small as all assignments handled during
symbolic execution are stored in the update preceding a program term. Other ap-
proaches that do not have this kind of intermediate value storage must add an
equality to the context describing the assignment. A program becomes thus executed
as a large number of equalities. This may be efficient for automatic provers, but is
not suited to be shown to the user for interaction. Capturing intermediate states by
means of updates condenses this presentation: unneeded assignments are discarded,
consecutive value changes combined.

4.2.4 Presentation of Code

It is evident that an intermediate language layer poses additional challenges for an
interactive verification of programs in a higher programming language.

The input language of ivil allows the specification of correspondences between
lines in the source program text and statements in the intermediate program. The
user interface then presents to the user both the source code and the intermediate
code side by side. This allows the symbolic execution to be tracked not only on the
intermediate program but also on the level of the original source language.

A proof is organised as a tree in which every branch corresponds to one path in the
intermediate program. When a node in the proof tree is displayed, those statements



92 CHAPTER 4 IMPLEMENTATION

which have been traversed by symbolic execution in the current proof situation are
highlighted. The defined correspondence between source and intermediate code
allows that the traversed lines of the original program be highlighted as well. It is
hence possible to recognise the currently examined path through the program at a
glance on the program text. The statements executed last are additionally highlighted
in a more intense colour to indicate the execution state to which the sequent belongs;
see the screenshot in Figure 4.1 for an example.

The interactive component can thus be used as a formal static debugger. The user
is acquainted with the mentioned highlighting from their source level dynamic
debugger integrated in modern software development environments where the
currently active statement is similarly marked. Other features known from dynamic
debuggers have found their way into the interactive prover: The system also allows
setting breakpoints both in the source code and the intermediate program. They
cause the symbolic execution to run up to the marked statement but no further. This
can be used to inspect the system state at defined points. It is also possible to step
through a program statement by statement, or line by line in the sources, to observe
the evolution of the proof state captured in the sequent.

In the sequent of a node in the proof tree, the current state of the symbolic execution
manifests itself in form of the path condition as formulas on the sequent and the
update which captures the assignments which have been made in the course of the
execution.

Assertions in ivil are embedded within the programs to be verified. This also
supports human comprehensibility: By disseminating the proof obligation into many
individual assertions distributed over the intermediate program, every unclosable
branch points directly to its failing assertion. Any statement within a program
declared in an ivil input file can optionally be annotated with a text. If assertions are
furnished with a description of their intention, every failing branch directly informs
the user about the cause. Figure 4.2 depicts a proof situation in which the check “array
index in bounds” cannot be closed; the program under investigation has a bug such
that the index may go beyond the legal range. The UDL program statement and the
source code line responsible for the check are highlighted. The user is immediately
informed about the nature of the failed check. Also the command line tool can fail
with a meaningful error message and a pointer to the failing source code line:

IVIL COMMAND LINE OUTPUT

This is ivil - 0.20
SumMax.m(int[])-normal.p#Java_total :

file:SumMax.jspec:32:
annotation: array index in bounds

IVIL COMMAND LINE OUTPUT – 4.1

In classical dynamic logic without embedded assertions, any verification condition
must be checked after the execution of the entire program using the modal operator.
Embedding these conditions into the code opens the field for a clearer separation
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Figure 4.2: A failed assertion giving feedback to its reason

of the different proof goals. If the postcondition is a conjunction of more than one
expression, these conditions can be checked in separate assertions, allowing clear
indication of which of them failed and which succeeded. Checks for division by zero,
index out of bounds, illegal heap accesses and similar need not be postponed to the
end of the code but can thus be executed in place.

In Section 4.4, a translation from Java bytecode to UDL programs is presented. Java
bytecode is the result of a Java compilation process and, as such, another intermediate
code representation. Despite the two intermediate stages, the information from the
sources is preserved such that the verification can be performed in terms of the source
code elements.

However, completely hiding the intermediate program proved not so good an idea.
At times, during the verification one wonders why specific elements on the sequent
show up and where they stem from, or also why expected elements do not show up.
It may then be helpful to be able to have a glance under the hood of the verification
machine to understand the cause of action. It is a feature of this interactive verification
system that the verification can be inspected on both levels of details, depending on
the needs of the user.

4.2.5 Autoactive Proof Control

The ivil tool has an interactive user interface which allows direct user intervention on
the level of the logic. However, this not always the desired level of abstraction:

In the field of program verification, it is a concern that the user of the verification
system should get as little as possible in touch with the technical details of the un-
derlying theorem prover engine as using such a system requires detailed knowledge
and experience. Intermediate proof state representations tend to become rather large
and little comprehensible.

The specifier and programmer of a piece of code will most probably have an intuition
of the program which operates in terms of the programming language of that code.
An appropriate specification language is, hence, close to the programming language
which is used1. In a fully automatic, non-interactive proof system, the specifier then
invokes the verification system as a black box without seeing an intermediate level at
all. Even though the possibilities of theorem solvers have increased tremendously

1like the embedded specification language of Eiffel, the Java Modeling Language for Java or the Spec#

language extending C#.
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in recent years, deductive verification will always be a complex task. There will
always be specifications which cannot be decided totally automatically (even if this
automation-frontier will be constantly pushed further and further).

The adjective autoactive (as in the combination of automatic and interactive) has
been coined by Leino (2010b) to characterise verification tools with a certain limited
kind of user interaction: In an autoactive verification environment, the specifier
interacts with the system solely by annotation of the sources with additional proof
hints interpreted by the verification tool. The most commonly known and widely
accepted autoactive annotation is a loop invariant: It is not part of the formal contract
of an operation but a mere aid for the verification tool to establish the proof of the
contract. A loop invariant is not essential: It can be omitted if an invariant generator
is powerful enough to infer it from the surrounding code and specification.

Other annotations which may be added to guide the non-interactive background
solver include additional assertions which can be added as statements to give the
“stepping stones” that the automatic tool can use to perform the proof.

When a program cannot be verified automatically, either the property might not
hold or the theorem prover might not be strong enough to show it. Without interacting
with the verification on a more detailed level, autoactive annotations can be modified
in an iterative fashion. Either this will eventually lead the automation to success or it
helps to pinpoint the potential error in the code or specification.

Autoaction inherently has major advantages over the reduction to interactive
theorem proving technologies: The specifier does not need to switch their intuition
between two semantic systems. A verification engine has to map notions of the
programming and specification language onto their logical counterparts. Usually it is
inherent that the notions of the logic differ (subtly or substantially) between these
two systems. In a verification system with autoactive interaction, there is only one
level of syntax and semantics, that of the programming and specification language,
and every input and output happens in terms of that level. If the verification fails,
the failing specification part is indicated together with the reason for the failure.

Annotations serve also as additional documentation for the code: A formal loop
invariant strong enough to establish the postcondition and formal assertions are (gen-
erally) comprehensible annotations that help to make the code more understandable.
Another positive effect of autoactive annotations is that they serve as proof scripts
to reconstruct the proof at a later date. The annotated sources become proof carrying
(source) code.

But a proof cannot always be conducted autoactively. The advantage of autoactive
systems is, at the same time, their major disadvantage. They do not give any insight on
the reasons of a failure as they provide no details in terms of a logical representation
of the verification conditions. The feedback an autoactive system can give consists of
a pointer to a problematic specification element and the message that a corresponding
proof obligation could not be closed but not why. If there is a flaw in the specification,
a counter example might also be presented in addition, but if the verification fails
due to an incompleteness of the calculus, that is not an option either. It may require a
lot of understanding of the verification system and an experienced intuition to learn
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about the actual cause of the failure. This implies that the verification effort must
be driven by repeated trial-and-error refinement of assertions added to the program.
Without adequate insight into the formalisation and the theorem prover, this is often
a wild-goose chase.

There are situation when introspection into the prover is needed to learn more
about the current proof situation. This may be because the failing of an assertion
is justified but hard to understand or because of an incompleteness issue in the
theorem solver which could be amended by a little interactive guidance. The user
of an interactive verification system needs to know about the logical counterparts of
a specification if they want to investigate why a proof fails. Since the effort for full
interaction is considerably higher than for autoaction, this should be reduced to as
few cases as possible.

Interactive additions to the major available autoactive tools provide evidence that
automation is not always achievable. The tool additions grant more insight than
the push-button process of the tool itself. The Why verification tool family (Filliâtre
and Paskevich, 2013) uses Coq (Bertot, 2008) as interactive back-end for the most
intricate proof situations. Böhme et al. (2008) describe such an extension for Boogie
using Isabelle/HOL (Paulson, 1986) to manually discharge difficult proof obligations.
Dahlweid et al. (2009) present a tool suite for the VCC verification tool permitting the
analysis of counter examples and proof logs provided by Boogie and Z3.

The ivil approach combines the best of both worlds: It provides an interactive proof
environment in which proof situations can be investigated on a level of presentation
which does not expose all technical details needed by the automation. On the other
hand, an efficient connection to decision procedures has been established such that
automation can be achieved to a high degree.

We have taken the source level interaction one step further and allow the specifica-
tion not only of intermediate lemmas but can also give hints on how their proof show
be conducted. In purely automatic systems, a verification condition is generated from
the source code and handed to an automatic theorem solver which then hopefully
discharges it. But no further influence can be exerted on the process of the solver. ivil
is different in this respect. The course of proof can be influenced after it has been
started.

We allow statements to be accompanied by a proof hint indicating how the verifi-
cation engine should continue on a particular proof branch. The calculus possesses
rules which are correct but which are not applied automatically as they could lead an
automated strategy astray. By adding an annotation, the application of such rules can
be triggered. Figure 4.3 lists the proof hints implemented in ivil.

As a small instructive example assume that there is a proof situation in which
it must be proved that the factorial of n ≥ 0 is positive. This cannot be deduced
automatically by neither the ivil-strategy nor by the constraint solver. To autoactively
mend the situation we add an assertion.

assert (∀n.n ≥ 0 → fac(n) ≥ 1) “(axiom facDef) (rule intInduction)”
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(rule R) Apply the inference rule named R to the asserted condition.
(drop ϕ) Remove the formula ϕ from the sequent under inspection.

There are cases when a (usually quantified) formula can
prevent the solver from deciding a otherwise decidable
sequent. Dropping them makes life easier for the decision
procedure.

(focus ϕ1 ϕ2 . . . ϕn) Remove all but the given formulas ϕi from the sequent
under inspection. This follows the same principles as drop
but allows the selection of the relevant formulas rather than
of the irrelevant.

(axiom A) Add the axiom named A known to the system to the se-
quent. This axiom is normally not part of the SMT trans-
lation (it might be a recursion) and can thus be explicitly
added.

(expand R [n]) Apply the rewriting rule R to the entire sequent. Optionally
a bound n can be stated on how often a recursion is to be
expanded.

(cut ϕ) Do a case distinction over the formula ϕ.
(inst ϕ t) Instantiate the quantified formula ϕ with the term t.
(decproc params) Call the decision procedure with the given parameters. This

is a rather technical directive which can be used to explore
the capabilities of the decision procedure.

Figure 4.3: Proof hints in ivil

This proof hint annotation first adds the definition of the factorial function onto the
sequent (see also (4.22)) and then applies the rule intInduction (see also Appendix A.2)
on it which is the induction schema rule for natural numbers. The obligation can then
be closed by the SMT solver.

The notation of proof hint annotated assertions bears an inherent resemblance
with intermediate proof results in Isabelle/HOL’s proof script language Isar (Wenzel,
1999):

ivil : assert ϕ “(hint arg) (hint args)”
Isabelle/Isar : have ϕ by (tactic args)

Proof hint annotations have, for instance, been used to make the proof of the
benchmark “First in Linked List” in Section 4.4.11 run automatically.

4.3 Interaction with the Decision Procedure

Section 3.4 showed that the calculus presented there is complete given an oracle on
the natural numbers. When suitably strong loop invariants have been provided for
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all control flow cycles of a program, the calculus is able to reduce a verification proof
obligation containing program formulas to a formula without modalities or updates.
This process, which then reduces the problem to verification conditions in the base
logic, is deterministic and can be implemented efficiently.

Since an oracle for the natural numbers cannot exist, we instead rely on the results
of sophisticated theory solvers which approximate an oracle. Modern SMT solvers
are quite mature when it comes to integer arithmetic. They support linear arithmetic
well and some systems even support non-linear arithmetic involving multiplication
and division. We rely on their abilities, in particular for the theories of integers.

This does not take away the necessity of sensible inference rules which are applied
within the calculus either automatically or interactively as not every problem can be
solved by a constraint solver. In particular, proofs involving some kind of induction
are not within reach for constraint solvers. Additionally, even if a problem could
theoretically be decided by a solver, it may be beyond its means due to the resources
(time or memory) that would be needed to find the proof. It is then helpful to guide
the automation by a few interactive steps, like by instantiating quantified formulas or
by removing irrelevant parts from the problem to reduce the search space. Moreover,
additionally introduced (and proved) lemmas can be applied as inference rules.

4.3.1 Translation from UDL to SMT

Leino and Rümmer (2010) show how parametrically typed first order logic can be
reduced to the logic supported by SMT solvers; further details on the translation can
also be found there. We extend their translation to obtain a function ·̂ to translate
a UDL proof obligation ϕ over the signatures Γ,Σ to an equisatisfiable formula ϕ̂
over Γ̂, Σ̂ doing without the advanced features of the logic. In particular, parametric
types, binder symbols and type quantification are removed. The translation silently
assumes that all program formulas and updates have been resolved by symbolic
execution and update simplification. Table 4.4 gives an overview over the translation.

The translation is sound, yet deliberately incomplete. In some cases where more
information could theoretically be transferred to the constraint solver, this is not done
to not lead the fully automatic tool astray. For instance, the axiom

(∀sset(nat). in(0, s) ∧ (∀xnat. in(x, s)→ in(x + 1, s))→ s .
= fullsetnat)

representing an induction scheme for the type set(nat) should not be presented to the
SMT solver since the prover could be tempted to instantiate s with many matching
terms that would not help the proof. During an interactive proof, well-chosen
instances of such rules should be used only.

The target type system Γ̂ = {type,universe, int,bool,array} is fixed independently
of the type system Γ. The types int, bool and array are built into the SMT solver
and the theories build upon them. The type ‘universe’ serves as common reservoir
for all objects of the original logic, its domain 𝒟universe

Γ̂
corresponds to the union

domain 𝒟Γ in the original type system. Although the target logic would support
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parametrically polymorphic types, the translation does not make use of it. Instead,
the original type system is flattened into a single type universe. The SMT logic does not
support quantification over types; therefore, the translation is designed to preserve
the possibility to translate polymorphic statements which are in the translation no
longer polymorphic.

The type ‘type’ models the type system Γ as a type itself. For every type constructor
c ∈ TConΓ, there is a function symbol ĉ : typear(c) → type of corresponding arity. The
intuition of this type is that its domain 𝒟type = 𝒯 0

Γ is the set of ground terms over
these function symbols. The type of types is not fully specified; in particular, it is
not formalised that the types are freely generated by the constructors. However,
for the practical applications we encountered, it was sufficient to encode that the
functions ĉ for c ∈ TConΓ are injections with disjoint images. A predicate instance :
universe × type → bool sets objects and their types into relation. Using the type of
types, a type quantification (

A

α.ϕ) or (

E

α.ϕ) can be translated to an ordinary object
quantification (∀α̂type. ϕ̂) or (∃α̂type. ϕ̂) respectively. The type variable α ∈ TVar
becomes the object variable α̂type ∈ VarΓ̂.

To fully utilise the built-in theories of the solver, their respective types must be
used. To bridge between these built-in types and the universe of all objects, mapping
functions like i2u : int → universe and u2i : universe → int are introduced to switch from
one representation to another when needed. Every term t ∈ TrmT

Σ for any type T ∈ 𝒯Γ
is translated to a term t̂ ∈ Trmuniverse

Σ̂ , but operators like “+” are defined on the type
int. The addition t + u of two terms t,u ∈ Trmint is hence translated by a temporary
projection to the integer type as i2u(u2i(t̂) + u2i(û)). If properly axiomatised, these
injections do not notably impede the efficiency of the SMT solver. We will in the
following drop these mappings from the notation and silently assume them applied
where needed. A similar encoding has been done for the boolean type using the
functions b2u : bool → universe and u2b : universe → bool.

For every function symbol f : T1 × . . . × Tm → T ∈ FctΣ, there is a function symbol
f̂ : typen × universem → universe on the target side of the translation in which n is the
number of the distinct type α1, . . . ,αn variables occurring in T1, . . . , Tm, T. The type
arguments only implicitly present in the polymorphic input logic are made explicit
in the result logic.

For an example, assume there is a polymorphic constant symbol d : α in the
signature whose interpretation is partially given by the equalities d[int] .

= 1 and
d[bool] .

= false. Clearly, this symbol cannot be translated as constant in the type universe
as its value depends on the type applied to it. Therefore, its translation is the unary
function symbol d̂ : type → universe. It needs the explicit type argument to distinguish
between the many values in the set {I(d[T]) | T ∈ 𝒯 0}. The concrete instance d[int] is
translated as the application d̂(înt). The axiom (∀ttype. instance(d̂(t), t)) guarantees
type safety.

Unlike the symbol d, the function symbol singleton : α → set(α) for singleton sets
has no type variables in the result type not already occurring in one of its argument
types. This implies that both return type and return value are fully determined by
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UDL t SMT t̂

c ∈ Γ ĉ : typear(c) → type

f ∈ Fct f̂ : typen × universem → universe

b ∈ Bnd b̂ : typen × (array(universe,universe))m → universe

xT ∈ VarΓ x̂universe ∈ VarΓ̂

α ∈ TVar α̂type ∈ VarΓ̂

f [T1,...,Tn ](t1, . . . , tm) f̂ (T̂1, . . . , T̂n, t̂1, . . . , t̂m)

t ∘int u i2u
(
u2i(t̂) ∘int u2i(û)

)
ϕ ∘bool ψ ϕ̂ ∘bool ψ̂

t .
= u, t

.≈ u t̂ =̂ û

(∀xT . ϕ) (∀x̂universe. instance(x̂, T̂)→ ϕ̂)

(∃xT . ϕ) (∃x̂universe. instance(x̂, T̂) ∧ ϕ̂)

(

A

α. ϕ) (∀α̂type. ϕ̂)

(

E

α. ϕ) (∃α̂type. ϕ̂)

(b[T1,...,Tn ] v. t1, . . . , tm) b̂(T̂1, . . . , T̂n, Av
t1
(x̄1), . . . , Av

tm
(x̄m))

ST
v select(ŜT

v , v̂)
n denotes the number of type arguments of a symbol, m the number of object arguments,
∘bool ∈ {∧,∨,→,↔}, ∘int ∈ {+,−,*}

Table 4.4: Synopsis of the translation from UDL to SMT

its argument value already. Therefore, an additional type argument would not be re-
quired. singleton could be translated as a unary function ̂singleton : universe → universe
with the axiom (∀ttype.∀uuniverse. instance(u, t) → instance( ̂singleton(u), ŝet(t))) guar-
anteeing welltypedness.

But the employed SMT solver proved to give better results when singleton was
instead translated with an additional type parameter as ̂singleton : type × universe →
universe even though this introduces a redundant encoding of the typing and leads
to terms that do not have a counterpart in the original logic. For instance, the term
̂singleton(b̂ool, ẑero) in which the explicit typing contradicts the implicit typing de-

ducible from the arguments, has no correspondent in the source logic. The translated
function can hence be regarded as an underspecified partial function. However,
despite the spurious descriptions and the seemingly lengthy encoding, the additional
arguments appear to provide the SMT calculus with more material to apply its match-
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ing algorithms against. This observation coincides with the ones made by Leino and
Rümmer (2010).

In general, a function application f [{α1/U1,...,αk/Un}](t1, . . . , tm) is for types U1, . . . ,
Un ∈ 𝒯 , hence, translated by distributing the translation ·̂ over its arguments resulting
in the term f̂ (Û1, . . . ,Ûn, t̂1, . . . , t̂n).

4.3.2 Translation of Binder Symbols

The last section covered most of the constructs of UDL, in particular, type quantifica-
tions by reducing them to object quantifications. The translation of formulas with
binders remains to be defined now as the decision procedure does not support the
concept of uninterpreted variable-binding symbols.

As an example let us look at the binder symbol setComp : α × bool → set(α) for the
set comprehension over a predicate; it has already been mentioned in Section 2.3.3.
The term (setComp xnat.(∃ynat.x .

= y * y)), for instance, describes the set of all (natural)
square numbers. The binder is axiomatised in terms of the predicate in : α × set(α)→
bool as2

(∀xT . in(x, (setComp xT .ϕ))↔ ϕ) for all T ∈ 𝒯 , ϕ ∈ Trmbool with free variable xT .
(4.1)

For the sake of comparison, let us consider the defining axiom of the polymorphic
function symbol singleton:

(

A

α.∀xα.∀yα.in(x,singleton(y))↔ x .
= y) (4.2)

Note that while the definition (4.2) of the function symbol can be formulated as a
single axiom, the formalisation (4.1) of the binder requires an axiom scheme in which
the schematic formula ϕ can be instantiated by any formula over the free variable xT .
The schematic description (4.1) stands thus for a (countably) infinite set of formulas.

This situation is prototypical for defining axioms for binders. Since binders do not
receive single values as arguments for their evaluation, but functions3, it is natural that
their definitions do not refer to a single value but to an evaluation (via a schematic
term).

This does not pose a problem for the interactive sequent calculus in which rules
can be formulated schematically. In an actual sequent, schematic entities do not occur,
and the schematic inference rules are matched against the non-schematic formulas
on the sequent.

But how can we translate binders into the SMT logic which has no schematic
entities? In Section 2.3.3, we have seen that predicate logic with binder symbols can
be reduced to predicate logic without binders. However, this reduction was at the
cost of obtaining a potentially infinite set of premisses. If we followed the idea of the

2As a side note it should be mentioned that this axiom for the class term constructor setComp is not open
for Russell’s paradox {s | s ̸∈ s} ∈ {s | s ̸∈ s} since the type system forbids sentences of the form in(s, s).

3compare Definition 2.11 on page 22.
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proof of Theorem 2.4, every usage (b v.t) of a binder symbol b would give rise to a
fresh function symbol f(b v.t) representing the binder’s value. That would require that
every schematic axiom over b be repeated for every relevant instance of b. If such a
formalisation happened to be recursive (like, for instance, (b x.t) .

= (b x.t − 1) + 1),
an infinite number of additional formulas would have to be added since any freshly
added formula triggers the addition of the next.

Moreover, it does not suffice to include the instances of the binder occurring in the
problem into the translation. There are cases in which instances are needed which are
not originally present on the scene. Consider the proof obligation

(∃sset(nat).∀xnat.in(x, s)↔ (∃ynat.x .
= y * y))

in which we need to show the existence of the set of square numbers. This can
be discharged if the term (setComp x.∃y.x .

= y * y) or rather its translation result
f(setComp x.∃y.x .

=y*y) is available during reasoning as it serves as the witness for s. But
the term (setComp x.∃y.x .

= y * y) does not occur in the above proof obligation and
therefore would not be translated. In an interactive proof using the sequent calculus,
the user would instantiate the quantifier manually with this witness.

We will instead find another translation for binder symbols. To motivate this
approach, let us for a moment break free from the constraints of first order logic and
look at binders from the perspective of higher order logic. A binder is then a (higher
order) function symbol receiving a function as parameter:

setComphol : (α → bool)→ set(α)

Using λ-expressions to construct functions, the question whether 16 is a member of
the set of square numbers can then be formulated as the higher order term

in(16,setComphol(λx.(∃y.x .
= y * y))) (4.3)

and the symbol setComphol can be axiomatised using the higher order axiom

(∀Fα→bool.∀xα.in(x,setComphol(F))↔ F(x)) . (4.4)

This closely resembles the axiomatisation in (4.1) with the difference that the meta-
quantification over all formulas ϕ has been replaced by the higher-order quantifier
over Fα→bool. But (4.4) is no longer a schematic representation of a set of formulas
but a single formula.

If we approximate4 functional expressions and λ-terms appropriately in first order
logic, a suitable translation for binder symbols emerges. This approximation of func-
tions can be found in the well-known theory of arrays (as introduced by McCarthy,
1962). This theory is very slim and is supported by most SMT solvers. The binary type

4It is evident that they cannot be fully specified since this is precisely the difference between first and
higher order logic.
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constructor array ∈ Γ̂ is used to construct arrays and the polymorphic access function
select : array(α, β)× α → β reads a value from an array. The first-order approximation
of the higher order definition (4.4) reads, hence,

(∀aarray(universe,bool).∀xuniverse. instance(x, α̂)→ în(α̂, x, ̂setComp(a))↔ select(a, x))
(4.5)

and is still a single formula.
Translating the λ-expression in (4.3) proves a little more intricate as the target

logic does not have the according operator available. However, we can consider the
formula

(∀Fnat→bool. F .
= (λx.∃y.x .

= y * y) → in(16,setComphol(F)))

equivalent to (4.3) and expand the first equality which is an equality over functions. It
can be replaced by an equality over all function applications due to the extensionality
axiom of higher order logic.

(∀Fnat→bool.(∀znat.F(z) .
= (λx.∃y.x .

= y * y)(z)) → in(16,setComphol(F))) (4.6)

The application (λx.∃y.x .
= y * y)(z) in (4.6) can be subject to a β-reduction. Replacing

the higher order constructs in this formula by their first order counterparts, we can
finally formulate the first-order translation of (4.3) as

(∀aarray(universe,bool).(∀znat.select(a,z) .
= (∃y.z .

= y * y)) → in(înt,16, ̂setComp(a))) .
(4.7)

To present this proof obligation to the SMT solver, it needs to be reformulated as the
satisfiability problem (4.5) ∧ ¬(4.7). That allows us to skolemise variable a in (4.7).
When Z3 is challenged with this problem, the solver can prove it valid.

This translation served as an instructive example for the general description of the
translation of expressions with binders: Let us consider the sets STrmT

Γ,Σ ⊇ TrmT
Γ,Σ

of schematic terms of type T ∈ 𝒯 0 augmented by an additional term constructor:
schema variables (SVar). A scheme variable ST

v ∈ SVar is a placeholder for a term
of type T with freeVars(ST

v ) ⊆ {v}. We augment the evaluation context by a schema
variable mapping σ : SVar → (𝒟τ(Tv) →𝒟) with σ(ST

v ) : 𝒟τ(Tv) →𝒟τ(T). A schematic
formula ϕ ∈ STrmbool

Γ,Σ is true if every evaluation of the schematic term variables with
according functions satisfies it:

I,τ, β |= ϕ ⇐⇒ I,τ, β,σ |= ϕ for all schema variable mappings σ

In the introductory example, the result type of the binder symbol was bool. As, in
general, binders may have any result type, this is now generalised to universe. The
projection u2b : bool → universe can be used if a boolean result value is needed. A
binder symbol b : Tv × T1 × . . . × Tm → T ∈ BndΣ is translated to a function symbol
b̂ : typen × (array(universe,universe))m → universe in which n denotes the number of
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type variables in the signature of b. If a binder term occurs within a term, it is
translated as follows:

(b[{α1/U1,...,αk/Uk}] v. t1, . . . , tn) becomes b̂(Û1, . . . ,Ûk, Âv
t1
(w̄1), . . . , Âv

t1
(w̄n))

in which the Âv
ti

are fresh function symbols with result type array(universe,universe). If
ti contains more free variables w̄i than only v, these variables are added as parameters
to the Skolem-function Âv

ti
. Whenever a new symbol Âv

t is introduced, it is defined
by the axiom

(∀w̄.∀v. select(Âv
t (w̄),v) .

= t̂) . (4.8)

For translating a schematic axiom over b, the following is the case: Every schematic
term variable S (in the scope of the variable v) becomes a universally quantified array
variable Ŝarray(universe,universe). If S occurs in the schematic axiom, it is replaced by the
function application select(Ŝ,v) in the translation.

An optimisation can be made if S is a direct argument to a binder symbol. Ac-
cording to the rules, an expression (b v.S) would be translated to b̂(Âv

S(Ŝ)) with
the auxiliary definition (∀Ŝ.∀v. select(Âv

S(Ŝ),v) .
= select(Ŝ,v)) after (4.8). Due to the

extensionality of arrays, this is equivalent to Âv
S(Ŝ)

.
= Ŝ and (b v.S) can be translated

as b̂(Ŝ) avoiding the introduction of unnecessary additional intermediate symbols.
We conclude the description of the translation by stating5 the axioms which have

been collected during the translation and which characterise the function symbols.
The implementation uses more efficient axioms with the same effect (described by
Leino and Rümmer, 2010, S2.0).

Âx := {(∀ttype
··· .∀t′type

··· . ¬ĉ(t1, . . . , tn)
.
= d̂(t′1, . . . , t′m)) | c,d ∈ Γ, c ̸= d} (4.9)

∪ {(∀ttype
··· .∀t′type

··· . ĉ(t1, . . . , tn)
.
= ĉ(t′1, . . . , t′n)→

n∧
i=1

t···
.
= t′···) | c ∈ Γ,ar(c) = n}

(4.10)

∪ {(∀xuniverse.∀ttype
1 .∀ttype

2 . instance(x, t1) ∧ instance(x, t2)→ t1
.
= t2) (4.11)

∪ {(∀xint. u2i(i2u(x)) .
= x ∧ instance(i2u(x), înt))} (4.12)

∪ {(∀xuniverse. instance(x, înt)→ (∃yint. i2u(y) .
= x))} (4.13)

∪ {(∀xbool. u2b(b2u(x)) .
= x ∧ instance(b2u(x), b̂ool))} (4.14)

∪ {(∀xuniverse. instance(x, b̂ool)→ b2u(true) .
= x ∨ b2u(false) .

= x)} (4.15)

∪ {(∀α̂type
··· .∀xuniverse

··· . instance( f̂ (α̂1, . . . , α̂n, x1, . . . , xm), T̂)) (4.16)
| f : T1 × . . . × Tm → T ∈ Fct, typeVars( f ) = {α1, ...,αn}}

5To shorten the presentation, repeated quantifications are abbreviated by ellipses. Hence, (∀xT
···.ϕ) stands

for (∀xT
1 . . . .∀xT

n .ϕ).
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∪ {(∀α̂type
··· .∀xarray(universe,universe)

··· . instance(b̂(α̂1, . . . , α̂n, x1, . . . , xm), T̂)) (4.17)
| b : Tv × T1 × . . . × Tm → T ∈ Bnd,typeVars(b) = {α1, ...,αn}}

∪ {(∀w̄.∀v. select(Âv
t (w̄),v) .

= t̂) | t occurs as argument to a binder (4.18)

with bound variable v, freeVars(t̂) = w̄}

The axioms in (4.9) and (4.10) characterise the structure of the domain 𝒟type of the
type of types. It cannot be formalised that the constructors generate all possible types,
yet it is ensured that two ground types are translated onto two distinct objects in
𝒟type. Axiom (4.11) makes sure the relation instance is a partial function. As matter of
fact, it is expected to be a total function, yet in practice this partial statement suffices.
The axioms in (4.12) to (4.15) ensure the mappings from the built-in integers and
boolean are bijections from and to the respective parts of the universe appointed to
the types int and bool. The axioms (4.16) and (4.17) fix the result types for function
and binder symbols as required. Finally, the axioms in (4.18) have been collected
during the translation and fix the semantics of the auxiliary array symbols standing
for the term parameters of binders.

Theorem 4.1 (Correctness of the translation to SMT) Let Φ ⊆ STrmbool
Γ,Σ be a set of

closed schematic UDL formulas without program formulas and updates. Φ̂ ∈ Trmbool
Γ̂,Σ̂

denotes its SMT-translation and Âx ⊆ Trmbool
Γ̂,Σ̂ the set of the additional axioms introduced

during the translation. Then

Φ satisfiable =⇒ Âx ∪ Φ̂ satisfiable,

that is, the translation is correct.

The converse direction of the implication in the theorem does not hold as some
aspects of the translation have not been faithfully fully formalised in the translation.
The extend of the type of types is one such aspect.

PROOF (SKETCH) We will leave aside the bijection mappings between theory-
induced types and universe and vice versa. Let (𝒟, I) be a semantic structure over
Γ,Σ with I |= Φ. In the following, we construct a canonical structure (�̂�, Î) over Γ̂, Σ̂
with Î |= Φ̂. The type domain is chosen as �̂�type

Γ̂
= 𝒯 0

Γ , the domain of the universe
�̂�universe

Γ̂
= 𝒟Γ =

⋃
T∈𝒯 0

Γ
𝒟T

Γ as the union of all domains in 𝒟. Assume that the array

types �̂�array(T1,T2) = { f : 𝒟T1 →𝒟T2} are interpreted as the total functions. The predi-
cate instance : universe × type → bool is assumed true if the first argument is element
of the domain of the second type argument, that is Î(instance)(d, t) = tt ⇐⇒ d ∈
𝒟t, t ∈ 𝒯 0
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Let α1, . . . ,αn denote the type variables in the signature of a function symbol f :
T1 × . . . × Tm → T ∈ Fct or binder symbol b : Tv × T1 × · · · × Tm → T ∈ Bnd. Their
evaluations in Î are defined as follows using τ = {α1/U1, . . . ,αn/Un}

Î( f̂ )(U1, . . . ,Un,d1, . . . ,dm) = I( f [τ])(d1, . . . ,dm) for di ∈ 𝒟τ(Ti),Uj ∈ 𝒯 0 (4.19)

Î(b̂)(U1, . . . ,Un, a1, . . . , am) = I(b[τ])(a1, . . . , am) for ai : 𝒟τ(Tv) →𝒟τ(Ti), tj ∈ 𝒯 0 .

These definitions do not fully specify Î( f̂ ) or Î(b̂), we leave them underspecified for
the case that the arguments do not adhere to the typing constraints provided in the
type arguments. For the evaluation of the translation of closed formulas, this does
not play a role. As the evaluation of terms adheres to their types (see Theorem 2.1),
a translated term will only produce compliant type-value combinations. To satisfy
the typing constraints in Âx, we set Î( f̂ ) and Î(b̂) to a fixed value in 𝒟τ(T) if the
arguments and types to not go together. The auxiliary function symbols Âv

t standing
for term arguments to binder symbols are evaluated as

Î(Âv
t )(d̄) = {e ↦→ val Î,β̂[w̄ ↦� d̄][v ↦� e](t̂) | e ∈ 𝒟universe} for w̄ = freeVars(t) ∖ {v}.

(4.20)

Î(Âv
t ) is a function in 𝒟universe → 𝒟universe and hence an element of the domain

𝒟array(universe,universe). Î is constructed such that it satisfies the axioms in Âx. By
structural induction, we show that valI,τ,β(t) = val Î,β̂(t̂) with β̂(x̂) = β(x), β̂(α̂) =

τ(x). Exemplarily, the two most interesting cases for the universal quantification and
the general binder are shown. The other cases are similar.

Let t = (∀xT .ϕ) be a quantified formula. By induction hypothesis, we have the
equality valI,τ,β[x ↦�d](ϕ) = val Î,β̂[x̂ ↦�d](ϕ̂) for any d ∈ 𝒟τ(T). The translated variable
x̂ is of type universe and has thus the wider quantifier range 𝒟universe. For the guard
G := instance(x̂, T̂) which precedes the formula ϕ̂ in the translation of the quantifier
(see Table 4.4), we have by definition of Î(instance) that G does not hold if the variable
x̂ has a value outside of 𝒟τ(T). This implies that ϕ is true for all d ∈ 𝒟τ(T) for x if and
only if ϕ̂ is true for all d ∈ 𝒟universe for x̂.

Let t = (b[U] x. u) be a binder term for the binder symbol b : Tv × T1 → T with
freeVars(u) = {x}, the generalisation to higher arities and free variables is obvious.

valI,τ,β(b[U] x.u) Def. 2.11
= I(b[τ(U)])({d ↦→ val Î,β[x ↦�d](u) | d ∈ 𝒟{α/τ(U)}(Tv)})
i.h.
= I(b[τ(U)])({d ↦→ val Î,β̂[x̂ ↦�d](û) | d ∈ 𝒟{α/τ(U)}(Tv)})
(*)
= I(b[τ(U)])({d ↦→ val Î,β̂[x̂ ↦�d](û) | d ∈ 𝒟universe})

(4.20)
= I(b[τ(U)])( Î(Âx

u))
(4.19)
= Î(b̂)(val Î,β̂(Û), Î(Âx

u)) = val Î,β̂(b̂(Û, Âx
u))

= val Î,β̂(
̂(b[U] x. u))
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At (*), a certain notational laxness has been used by applying I(b[τ(U)]) to a function
with a larger domain than expected, for the evaluation only the restriction is needed.

This concludes the induction proof from which we have learnt that if I,τ, β |= Φ,
then also Î, β̂ |= Φ̂. Since Φ has no free variables, structure Î indeed satisfies Âx ∪ Φ̂.
Note that if Φ contained free variables, we could not deduce that Î, β̂ |= Φ̂ for all
assignments β: A variable xT is translated as variable x̂universe which may have a
value also outside 𝒟T . No corresponding assignment β would exist to back up the
claim. �

Evaluation

The presented translation has been applied to a number of small experiments in which
the binder terms appeared isolated. Fig. 4.5 lists a number of properties highlighting
various isolated aspects of binders. The translation for all of them are discharged
by the solver Z3 in virtually no time. The translation engine was also used in the
upcoming larger case studies of the thesis. Together with useful inference rules
in the calculus and this reduction, binder symbols could be efficiently used in the
specifications to come.

in(16, (setComp x.∃y.x .
= y * y)) A concrete instance of a collected

property can be identified.
(b v.p(v)) .

= (b w.p(w)) Equality under α-conversion is re-
solved even if for an uninterpreted
binder symbol b.

(∀x.p(x) .
= q(x))→

(b v.p(x)) .
= (b v.q(x))

Two binder expressions result in the
same value if their arguments are
equal in all positions. Here speci-
fied using a universally quantified
equality, . . .

(b v.v + 1) .
= (b v.1 + v) . . . or by two terms which can be

proved equal by the solver.
(

A

α.(setComp xα. false) .
= empty[α]) Since type quantification can be re-

duced to ordinary quantification,
polymorphic properties can as well
be proved.

Figure 4.5: Properties proved automatically with the binder translation

While this translation works well with the quantifier instantiation mechanisms of
the SMT solver, there are limits to it. If in a schematic axiom, a schematic term does
not occur as a direct subterm of the binder symbol but as a subterm to one of the
arguments, the matching mechanisms of the SMT solver cannot be triggered.
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For instance, consider the schematic rewriting lemma

t ∈ Trmnat, freeVars(t) = {nnat} =⇒ (min nnat.t + 1) (min nnat.t) + 1

for the binder min : nat × nat → nat denoting the minimum value over the naturals
described by its argument term. The rewrite rule uses a schematic integer entity t
which stands for any term which may contain the free variable nnat. The schematic
term t does not appear as direct argument to the binder symbol but as a subterm to the
argument. According to the translation described above, the equivalent formulation
as an axiom for the SMT solver is

(∀tarray(nat,nat).m̂in(Ân
t+1(t))

.
= m̂in(t) + 1)

together with the definition of

(∀aarray(universe,universe).∀nnat. select(Ân
t+1(a),n) .

= select(a,n) + 1) (4.21)

in which the schematic term t has been translated as a : array(universe,universe), a
variable. Please note that a is a free variable in t and as such has been added to the
Skolem function Âv

t+1 as a parameter. The difference between formulas (4.5) defining
setComp and (4.21) defining the lemma over min is that in (4.5) the argument to the
binder is a quantified variable (aarray(universe,universe)) whereas the argument to min
is a function application (Ât+1(t)). Hence, the former can be matched against any
application of the binder while the latter is only defined on the symbol Âv

t+1 which
precludes that a sensible instantiation is found by matching.

This translation can be significantly be improved if “hybrid” symbols are supported
which may have both value and functional arguments. The lifting of expressions
using array constants is not needed then for the value arguments. The binder sum
presented in Section 2.3.1 is a candidate for such a hybrid symbol in which the first
two arguments (the lower and upper summation limits) are value-arguments while
the term over which the summation operates is a functional argument.

Leino and Monahan (2009) present a translation for a fixed set of binders (there
called comprehensions), namely the sum, product, minimum and maximum over a
integer term. They introduce fresh function symbols such that every comprehension
term can be formulated as an application of the new function symbols. The function
symbols are then axiomatised using recursive axioms.

The translation of binder symbols to first order logic is similar to the task that
has to be performed when higher order formulas are submitted to automatic first
order theorem provers. The sledgehammer tool of the Isabelle/HOL theorem prover,
described by Meng and Paulson (2008), maps functions symbol to constants, function
applications to expressions using select and λ-expressions using combinators. This
translation can be used very successfully with automatic theorem provers over unin-
terpreted symbols without built-in theories, but cannot be applied to solvers with
theory support as the structure of the formulas is not maintained.

Blanchette et al. (2011) present an extension of the sledgehammer mechanism
targeting SMT solvers. This translation lifts lambda expressions and creates a new
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constant per expression and is, thus, similar to the approach presented here. Exam-
ples 4 and 5 in Figure 4.5 can not be proved by Isabelle’s SMT translation. Number 4
not even by the mighty sledgehammer tool.

As a final note: One notable exception amongst the available decision procedures is
the solver yices, described by Dutertre and de Moura (2006), which supports function
types, higher order functions and λ-expressions in its native input language. With
this more expressive logic, the last Skolemisation step (the introduction of Âx

t ) of the
translation can be omitted and λ-expressions be used instead. The in vitro examples
above can be solved automatically by yices but the first (as yices does not support
non-linear arithmetic).

4.3.3 Efficiency Issues

Due to the technology employed in SMT solvers, they can handle quantifiers signifi-
cantly less efficiently than automatic first order theorem provers (ATP). Many of the
supported theories in solvers are quantifier-free, the combination of some theories
works only for ground instances. ATP can work more liberally with free variables
while SMT solvers instantiate quantifiers with ground terms which results in a set of
ground formulas on which the algorithms operate.

The instantiation of (universally) quantified formulas is performed using heuristic
strategies built-in into the solver but can be controlled by means of so called matching
patterns (sometimes also called triggers). The design of these patterns is delicate (see
Moskal, 2009).

The SMT solver is fed the translation of the axioms defined in the system, the
translated sequent under inspection and the translation of selected inference rules.
Not every rule can be translated, meta conditions can possibly not be translated and
schematic rules are impossible to translate in general. Rewrite rules, on the other
hand, can efficiently be translated as equalities by quantifying other their schematic
entities. Their left hand sides are herein used as matching pattern. This encoding
reflects the behaviour of the rule in sequent calculus: the left hand side is matched
and then replaced by the right hand side, that is, their equality is assumed.

Attention must be paid to recursive definitions. If the rewriting rule

fac(n) (if n ≤ 0 then 1 else fac(n − 1)) (4.22)

for the factorial fac : int → int was eagerly translated as an axiom for the decision
procedure, an infinitely running expansion involving fac(n), fac(n − 1), fac(n − 2), . . .
might be triggered. Seen as a rewriting system, the axioms provided to the decision
procedure, should be terminating to avoid dead ends in the proof search.

4.4 Translating Java Bytecode to UDL Proof Obligations

Although the intermediate verification language is limited in its expressive means, it
is ideal for the verification of real programming languages. The continuing success
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of the verification methodology of Boogie used in many real-language verification
systems: VCC (for C, Dahlweid et al., 2009), Spec# (for C#, Barnett et al., 2011), Au-
toProof (for Eiffel, Tschannen et al., 2011) and more, shows that a general-purpose
intermediate verification representation is a suitable stage in the process of verifica-
tion. It also proves that the intermediate verification representation of many different
programming languages and specification approaches can be expressed in a common
formalism. The idiosyncrasies of the programming languages are removed during
the reduction to intermediate code. As a consequence of the elementariness of the
target language, the resulting code will usually be more extensive than the original
code.

An unstructured intermediate language is particularly appealing if the orginal
language is unstructured itself. This is the case for Java bytecode, the result language
of the compilation process of the Java compiler. Verifying Java bytecode has two
advantages over verifying Java source code:

1. The subject of verification is the result of the compilation, a process which the
sources are subject to on their way to execution. As such, bytecode is closer
to what is actually executed than the not yet processed source code. Bytecode
is an interpreted intermediate language itself and different from the actually
executed machine instructions, but is closer to them than the Java sources.

2. The bytecode language is machine-oriented and has a much more precise
semantics description than the feature-rich source code language.

Despite the fact that the Java language has a relatively strictly described seman-
tics, capturing it formally is a much larger task than modelling the semantics of
the low-level machine-oriented intermediate compilation code.

As a potential drawback of working on bytecode rather than on the source text, we
identified that the human user who needs to interact in the proof does not want to
work on the low technical level but wants to identify artifacts they know from their
source text. We will address this topic in Section 4.4.10.

In this section, we briefly present a prototypical translation from Java bytecode
to UDL. The translation and its technical details are described in extenso in Felden
(2012). It addresses the translation of Java bytecode without taking type parameters
(generics) into account. Generic types are removed from the bytecode at any rate and
would have to be reconstructed from additional information stored in the binary files.
The incorporation of generic types would generally fit into the framework but would
have gone beyond the scope of a feasibility implementation. Ulbrich (2007) describes
theoretically how generics can be handled in Java verification. The translation is also
limited to sequential single-threaded programs.

One difference to other similar translations is that debugging and other source code
information delivered with the bytecode is exploited to keep as much structure of the
program as possible despite the intermediate representation. In particular, the names
that have been used in the original Java specification and code are retained in the
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intermediate verification code. This significantly faciliates an interactive verification
process and makes it more transparent.

This implementation is not the first to perform Java program verification on the
level of bytecode. Quigley (2003) presents a first formalisation of a subset of Java
bytecode in a higher-order Hoare logic and Bannwart and Müller (2005) present a
Hoare-style logic for a sequential bytecode kernel language similar to Java bytecode
directly without intermediate representation. Barthe et al. (2008); Pavlova (2007)
introduce the Java Applet Correctness Kit tool (JACK), an automatic prover reducing
annotated Java bytecode to SMT verification conditions. The appealing fact of this
approach described by Burdy et al. (2007) is that it also compiles the source code spec-
ifications (in JML) into a bytecode representation (then called the bytecode modelling
language BML) and embeds it into the bytecode. A proved sound translation from
Java bytecode with embedded BML annotations to the intermediate language Boogie
has been developed by Lehner and Müller (2007) in the context of the Mobius project
(Mobius Consortium, 2006),

Java is a structural programming language: Its code is composed by nesting state-
ment and statement blocks; repetition is encoded using while and similar loop con-
structors. The language lacks an unconfined goto statement. On the other hand, it is
not a strictly structural language in the sense that control flow always would follow
the nested block structure like it would be the case in a pure while-language. The
Java language possesses the following constructs which make the flow non-strictly
structural:

∙ break and continue statements preempt the execution of a block and continue
the program at the point after/before the preempted block.

∙ return statements preempt the execution of the entire method (normally).

∙ Throwing exceptions also preempts the execution of the surrounding block
and either continues at a point after the block or terminates the method (abnor-
mally).

This makes a structural analysis and execution of Java code less straightforward
and costs extra efforts when modelling the non-strictly structured behaviour in
structured modelling languages. For instance, the invariant treatment for loops is
considerably more complicated in dynamic logic for Java (presented by Beckert et al.,
2007) than in a strictly structural language. In classical dynamic logic, it must be
established that the loop invariant is inductive for the loop body. The postcondition
and the code outside the loop needs not be considered at this point. In dynamic logic
for Java, the postcondition and the code after the loop cannot be completely left aside
in this examination as a statement in the body may preempt the loop body and then
make these parts relevant.

However, the Java language does not support arbitrary transfer of control between
statements within the scope of a method. Java bytecode as the target language of the
compiler, on the other hand, is a language which resembles assembly language and it
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supports unconstrained control flow within the bounds of a method. The translation
from bytecode to UDL as another goto language can be performed canonically and
locally by considering one bytecode instruction after the other. The control flow of
the UDL result replicates the control structures of the bytecode program.

Adding debugging information obtained from the information present6 in the
bytecode files allows an interactive stepwise verification on the level of source code
even though the actual executed code has been compiled twice by two separate
tools. The effect is similar to what one experiences when using a source code level
debugger which allows the developper to operate (display, inspect or modify memory
structures) on the source code level even though the debugger tool actually operates
on bytecode level.

When designing the translation target for Java verification, a number of decisions
have to be made on how entities are modelled. In the upcoming paragraphs, we
will point out the important design features made in the reference implementation.
In many of the features, the translation resembles that presented by Lehner and
Müller (2007), other decisions have been inspired by Schmitt et al. (2010) and Weiß
(2010). This prototypical translation is still presented in relative detail since the case
studies in Chapter 6 make use of the formalisation that will be introduced here.
For a fully detailed description presentation and formal soundness proofs, see the
aforementioned references.

For the sake of better readability, symbolic targets will be used in the ivil program
fragments instead of numerical indices over which goto statements of the UDL pro-
gramming language are defined. This is only a notional syntactic sugar which is also
available in the implementation. The beginning of a comments is marked with a “#”.

4.4.1 Class Hierarchy

The Java language is an object-oriented programming language; its type system is
therefore hierarchically organised and has a subtype relationship on the reference
types. The logic UDL, however, supports parametrised types but has no subtype
relationship. All (ground) types have disjoint domains. This is why integral primitive
types (int, byte, short, char, long) are mapped to the type int, and all reference
types (that is, all types inheriting from java.lang.Object) are subsumed in one type
ref. The reference types themselves are brought onto the object level in another type
named ‘type’. The subtype relationship is modelled as a binary partial order predicate
<: : type × type → bool on the types. A typing function typeof : ref → type assigns to
any reference object its unique dynamic type.

If no arrays or generic classes are allowed, the type type can be modelled to be the
finite set of all class types. The subtype relationship on them can be made explicit.
If array types or generics are taken into consideration, the type system cannot be
precisely formalised any more (see Schmitt et al., 2009). What can be modelled is the

6if the corresponding compiler switches were set
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direct parent relationship between class types and their supertypes. The fact that
class D is a direct subtype of class C is encoded as

(∀Ttype. D <: T ↔ (D .
= T ∨ C <: T))

Multiple inheritance (having more than one directly extended class type) is not
allowed in Java. A class may, however, possibly implement one or more interfaces.
The inheritance constraint can faithfully be encoded in UDL as

(∀Ttype.∀Utype
1 .∀Utype

2 . T <: U1 ∧ T <: U2 →
T .
= typeof(null) ∨ U1 <: U2 ∨ U2 <: U1 ∨ interface(U1) ∨ interface(U2))

in which interface : type → bool is a predicate which holds if and only if the argument
stands for an interface declaration.

We silently assume that the given bytecode program is wellformed, in particular,
it must be statically ensured that for every operation in the code, the types of its
operands are compatible with the operation. With the static welltypedness assumed,
the application of type checking must only be performed in the comparatively rare
cases of dynamic type checks. Only instanceof operations and explicit downcast
checks entail assertions involving the subtype relationship. For every class or interface
C a constant symbol C : type is introduced. To construct an array type over another
reference type, the constructor arrayType : type → type is used. The type of the distinct
null object is subtype of every reference type as null can be cast to any other reference
type.

4.4.2 Integers

Numerical datatypes in Java have a fixed bitwidth (32 bit for the type int for instance)
while the type int in UDL represents the mathematical integers Z. For the specification
of a program, the mathematical interpretation is usually the intended. We assume that
the author of a specification does not take overflow into account deliberately when
writing a specification since it is against the natural understanding of operations (as
observed by Chalin, 2003).

The reference implementation maps numerical operations in the Java program
to the corresponding operations on mathematical integers. This deviates from the
actual semantics of the operation, but greatly lightens the burden of the formulating
and discharging specifications. Overflow-accounting specifications tend to be more
lengthy than those disregarding the issue. Typically, constraints on the range of
integer values need to be assumed as additional preconditions.

Instead of modelling the overflow, the implemented translation has got a switch
which allows the verification to be sound again. With the overflow-check switched
on, the translated program still operates on mathematical integers, but it ensures
that these operations always coincide with what happens in the Java semantics.
Additional range assertions are added after each integer manipulating instruction,
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thus ensuring that the value of each local variable, primitive heap and stack locations
are always within the bounds defined by their primitive type, hereby ensuring that
their being modelled as mathematical integers is sound. With the bytecode as input
to the translation, it is particularly easy to identify the points at which the checks
need to be performed. This is significantly more elaborate when done on the source
code level.

To model the Java semantics faithfully with integer arithmetic, all integer operations
would have to be embedded in modulo operations normalising the value range, like
formulated by Beckert et al. (2007, chapter 12). Modern SMT solvers support the
theory of finite bitvectors and arithmetic over them. This datatype seems to be the
ideal choice for a translation of Java primitive integer types: a decidable theory
supported by many decision procedures matching the definition exactly. However,
there is one drawback. As specifications are to be interpreted in mathematical integers,
formalising the operations in the program as bitvector operations requires that there
be a formal connection between the two integer representations. The theory of
bit vector and integer arithmetic operate on the same set of values and decision
procedures for the two theories are usually organised differently, and are, hence,
difficult to combine.

The primitive floating point datatypes double and float are not supported.

4.4.3 The Heap

The central data structure on which all data (with exception of local variables) within
a Java program resides, is the heap. The efficiency and usefulness of its encoding
into logic is crucial to the success of the entire task of verifying Java programs. The
formalisation in ivil follows the ideas presented by Schmitt et al. (2010).

Heap access can be modelled in several different ways in first order logic, each
with advantages and disadvantages. See Weiß (2010, Chapter 4) for a comparison of
various first order representations of Java heaps. The explicit heap model proved to be
the most flexible amongst them. It is called explicit as it introduces the concept of
heaps and field names as expressions (in two new types) into the logic. This way, the
information on the value of all fields of all objects in an execution state is condensed
into one semantic value. This allows storing of intermediate heap states in variables,
comparison of heap states, and quantification over heap states. The price to be paid
for this flexibility is that formulating read or write accesses to the heap may require
lengthy expressions.

The encoding of a heap is a two-dimensional map in the sense of McCarthy’s
(1962) theory of arrays. The new types heap and field(α) are introduced together with
the function symbols select : heap × ref × field(α)→ α for retrieving from and store :
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heap × re f × field(α)→ heap for updating a heap. The two functions are connected
by the axiom

(

A

α.

A

β.∀hheap.∀rref
1 .∀ f field(α)

1 .∀vα.∀rref
2 .∀ f field(β)

2 .

select(store(h,r1, f1,v),r2, f2)
.
= (if r1

.
= r2 ∧ f1

.≈ f2 then v else select(h,r2, f2)))

which is implemented by schematic rewriting rules in ivil. The weakly typed equality
has to be used here to allow for the comparison f field(α)

1
.≈ f field(β)

2 of two differently
typed field variables to be correctly typed.

The intended semantics of the type of heaps is 𝒟heap = { f : 𝒟ref × 𝒟field → 𝒟 |
x ∈ 𝒟ref ,y ∈ 𝒟field(α) =⇒ f (x,y) ∈ 𝒟α}, the set of functions which obey typing.
The evaluation of select-terms is then the function application I(select)( f , x,y) =
f (x,y) and that of store the function update I(store)( f , x,y,v) = f [(x,y) ↦�v]. To reflect
this fact, we will in the following write h[r, f ] instead of the term select(h,r, f ) and
h[(r, f ) := v] instead of store(h,r, f ,v) whenever it is unambiguous.

A distinct program variable h : heap ∈ PVar is used to denote the current heap
state during program execution, additional heap program variables are introduced
to denote heaps in various states, like before the method execution (hpre) or before a
loop or method invocation (hbefore).

For every field x of a reference type in class C, a constant symbol C::x : field(ref)
is introduced. Arrays are also reference objects and the indices into an array can
be considered as fields. Therefore, there is a function symbol idxRef : int → field(ref)
which turns an array index into a field value. Respective constant and function
symbols exist also for fields or array access of boolean or integer type (idxBool, idxInt).
The length of an array is invariant and needs not be encoded as a field of the array
type. Instead it is denoted by a function symbol arrlen : ref → int.

A predicate wellformed : heap → bool is used to formulate wellformedness of heaps.
The set 𝒟heap of heaps is an overapproximation of the heap states reachable by a Java
program. Assuming wellformed(h) sorts those semantic values out which represent
valid Java heaps. The wellformedness condition implies the following properties:

∙ Only finitely many objects are created on the heap.

∙ A reference type field of an object points to null or to a created object.

∙ The heap is well-typed: A location of reference type points to an object of its
declared classtype (or a subtype of it).

4.4.4 The Operand Stack

Java bytecode is a stack-oriented programming language, that is, most instructions
take their arguments from the operand stack and replace their results back on the
stack. Local variables are kept in registers7.

7Byte code differs here from other low-level languages which keep local variable on the stack while the
instructions operate on operands presented in registers.
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The idea is the following: Every position n ∈ N of the stack is represented by a row
(stackint

n , stackbool
n , stackref

n ) of program variables all standing for the same position
depending on the type of the data stored in the positon of the stack. For this model to
work we need to rely on properties of Java bytecode guaranteed by the specification
of Java bytecode (Lindholm and Yellin, 1997, Section 4.10):

1. The stack is type-safe. It is not possible to read a numerical value from a stack
position to which a reference value has been written (or vice versa).

2. Stack layout is consistent. The types stored on the stack in a particular bytecode
statement must be the same irrespective of the execution path by which it is
reached. That is that every loop iteration must have the same stack layout;
joining branches after a conditional block likewise.

These properties allow us to perform a simple static analysis prior to the actual
translation such that we can learn for each operation which stack positions and which
types are involved. For every instruction within the bytecode block of a method
definition, the stack variables upon which it operates can be computed statically, even
if it lies within a loop. Other register-based (or assembly) languages may not have
this property; it was introduced to Java to be able to efficiently ensure the integrity of
a running JVM (the so called bytecode verification).

Let us look at a very simple example illustrating this analysis and corresponding
translation: Let P be a Java program which contains the statement x1 = x2 + x3. We
assume that integer variable xi is stored in register i. The above statement is then
translated to bytecode as the following sequence of instructions

JAVA BYTECODE

1 iload 2
2 iload 3
3 iadd
4 istore 1

JAVA BYTECODE – 4.2

first loading the summands x1 and x2 onto the stack, then adding the two values and
storing the result back to local variable x1.

From the static analysis of P we know the stack layout for the first instruction
of Listing 4.2, in particular the number n ∈ N of used stack elements8. The direct
translation of this yields the following piece of intermediate code:

IVIL

1 stackint
n+1 := x3

2 stackint
n := stackint

n + stackint
n+1

3 x1 := stackint
n

IVIL

8that is, positions stack0, ..., stackn−1 are taken
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Herein, the stack positions n and n + 1 are filled with the values of x2 and x3
respectively, subsequently added up in stack position n and finally written to variable
x1. This reflects the behaviour of the stack machine exactly. The translation can be
performed locally, instruction by instruction.

During symbolic execution (as described in Section 3.2), this ivil code fragment will
become translated into the parallel update

stackint
n := x2 ‖ stackint

n+1 := x3 ‖ stackint
n := x2 + x3 ‖ x1 := x2 + x3 .

As mentioned above, the stack will not be used within specification elements such
as pre- or postconditions, loop invariants, etc. since the stack is a concept of which
the source code level is oblivious. This implies that the update can be equivalently
replaced by the following, much simpler single assignment update

x1 := x2 + x3 .

This applies accordingly to all bytecode instructions involving the stack. After
the symbolic execution, the update removes the necessity of stack variables. The
symbolic execution, hence, performs an on-the-fly transformation of the bytecode into
a stackless representation. An external pre-processing step (as, for instance, proposed
by Demange et al. (2010)) could have resolved the stack externally, but the update
simplification handles this automatically.

An alternative stack representation which would not need the stack analysis before-
hand is to model the stack explicitly using one variable of an abstract datatype stack
supporting the operations push : stack × α → stack, top : stack → α and pop : stack →
stack. This modelling has a disadvantage, however, when it comes to loops. Since
all the information stored on the stack is stored in one single variable, this variable
would be subject to an anonymisation in the loop invariant rules. The loop invariant
would need to explicitly express that the lower indices in the stack remain unchanged.
This can be omitted with the model using explicit stack variables since the flow
analysis automatically detects which variables are touched and which are not.

4.4.5 Exceptions

The Java language has a sophisticated language-based exception-handling mecha-
nism. An exception object can be raised using a throw statement and can be handled
in catch blocks. Some exceptions may be thrown implicitly, that is without that
an explicit throw statement gave rise to them. Implicit exception types include
NullPointerException, IndexOutOfBoundsException, ArrayStoreException.

In the logic, thrown exceptions are assigned to the program variable exc : ref holding
the currently active exception or null if no exception has been raised. The control
flow transfer at throw statements happens by translating the exception jump target
table into a sequence of UDL statements.

It is often considered bad programming style if code can implicitly give rise to
exceptions. Any exception thrown should have gone through an explicit statement.
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That indicates that the error is intended and deliberately taken into consideration.
For the translation to UDL, two modi can be considered: Either any implicit exception
is considered a faulty program and rejected or the code for the handling of this is
performed as if thrown explicitly. A heap access o.field for a reference variable o
may hence be either translated as

IVIL

1 assert ¬o .
= null

IVIL

rejecting a program with implicit exceptions, or as

IVIL

1 goto null non null
2 null:
3 assume o .

= null
4 # create new NullPointerException object nr
5 exc := nr
6 # use the according exception handling table.
7

8 non null:
9 assume ¬o .

= null
10 # continue with the translation.

IVIL

fully handling the faulty case by creating a fresh exception and raising it. The
reference implementation rejects implicit exceptions.

4.4.6 Design by Contract

This implemented Java verification system aims at a modular verification methodol-
ogy, that is, every program method should be verified separately. This entails that
every method must also be formally specified. Formal contracts – in the sense of
design by contract (Meyer, 1988) – bind invoking and invoked method together. A
formal method contract for a method T m(T1 p1, . . . ,Tn pn) in class C is comprised of

1. a precondition prem ∈ Trmbool describung the states in which m may be called,

2. a postcondition postm ∈ Trmbool describing the states in which m may terminate,

3. a modification clause modm ∈ Trmset(ref) describing the set of objects whose
fields may be changed by m,

4. an optional exception clause signalsm ∈ Trmtype describing the class of Java
exceptions which may be thrown by m,
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5. a recursion variant decreasesm ∈ Trm used to provide evidence for the termina-
tion of programs.

All elements may refer to the heap and to the parameters of the method as well
as the implicit this pointer. All but the postcondition are evaluated in the state at
the beginning of the method execution. The postcondition is a two-state predicate
and can evaluate both in the heap after the execution (using h) and in the heap before
the execution (using hpre). It can also use the special polymorphic program variable
res : α to refer to the result of the method. The proof obligation in dynamic logic for
the correctness of a contract can be sketched as

prem → {hpre := h}JmK(postm ∧ eqHeap(h, hpre,{h := hpre}modm) ∧
typeof(exc) <: signalsm) . (4.23)

eqHeap(h1, h2,S) is a predicate which is true if its two arguments h1, h2 ∈ Trmheap

differ at most on locations which belong to objects in S ∈ Trmset(ref).
The sketch proof obligation leaves aside some vital preconditions which are guar-

anteed by the Java virtual machine without that they would have to be checked. Such
conditions are called free assumptions and in this case include the wellformedness
of the heap and of the arguments to the method. There are advantages if the proof
obligation is not formulated as an implication like in (4.23) but as a UDL program
with embedded assumptions and assertions. Thus, line number annotations can
be made to the different conditions linking them more transparently to the original
source code. The condition after the modality in (4.23) is split up into individual
checks. If a single case fails, then it is easier to track down the problem.

IVIL

1 # dropped if m is a static methodassume ¬this .
= null

2 # likewiseassume typeof(this) .
= C

3 assume wellformed(h)
4 # repeated for all reference type argumentsassume typeof(argi) <: Ti
5 assume prem
6 exc := null
7 hpre := h
8

9 # the translated method body of m,
10 # return statements and uncaught exceptions lead to the label endOfMethod
11

12 endOfMethod:
13 assert postm
14 # if a signals clause is givenassert exc <: {h := hpre}signalsm
15 # if no signals clause has been givenassert exc .

= null
16 assert (

A

α.∀oref .∀ f field(α). h[o, f ] .
= hpre[o, f ] ∨ in(o,{h := hpre}modm))

17 # = eqHeap(h, hpre,{h := hpre}modm)
IVIL – 4.3
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With this formulation, a method must be “reverified” in any subclass not overriding
it with new code. In line 2 exact coincidence of the type of the receiver and the class
C are assumed. Alternatively, if line 2 is relaxed to assume typeof(this) <: C, it is
not needed to repeat the verification in subclasses. However, the proof obligation is
significantly harder then since less is known about the receiver object.

In a modular verification context, it is vital to be able to specify which memory
locations may be changed and which must remain untouched. Several methodologies
have been developed addressing this the issue.

Separation Logic (O’Hearn and Pym, 1999; Distefano and Parkinson, 2008) intro-
duces a new junctor in the logic which formulates separation by syntax. In ownership
approaches (Clarke et al., 1998; Leino and Müller, 2004; Müller, 2002), operations on
the heap are restricted to certain permissible cases. Ownership can be enforced by
static checking, type checking or full verification.

The reference implementation addresses the framing problematic using explicit
dynamic frames (Kassios, 2011) (also called regions (Banerjee et al., 2008a,b)). Dynamic
frames are most liberal in their application but provide also the most specification
notation overhead.

Framing clauses specify which objects are modified, not which are assigned to. A
location for an object outside the modifies clause, may temporarily change its value
as long it returns to the original value in the end. As an alternative to checking the
framing condition after the method body, the checks can also be performed in situ
right after a location has been written. That is, every assignment h := h[(o, f ) := v] is
followed by an assertion assert in(o,{h := hpre}modm). Yet, this checks for assignment
instead of for modification which is a stricter condition than the former check. For
the interaction, the immediate assignment check has the advantage that a possible
violation of the modifies-contract can be located within the sources which is not
considerably more difficult with the deferred check. The reference implementation
has got a switch to choose between the two translations.

An important set that can be specified as modification clause is freshObjects(h) :=
(setComp o. ¬h[o, created]). It denotes the objects which have not yet been created
in the heap provided as argument. A method whose modification clause contains
freshObjects(h) is hence allowed to create fresh objects9.

4.4.7 Method Invocations

The counterpart of proving a method contract correct in a modular setting is applying
it to a method invocation. A method call o.m() in Java source code is translated into
an “invoke” bytecode instruction naming the method to be called. The receiver object
and all arguments are put onto the operand stack before the invocation. A method
call can be overapproximated using a contract defined and proved for the called
method.

9This set corresponds to the semantics of a “pure” method in the Java Modeling Language
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IVIL
1 # receiver must not be nullassert ¬stackref

n
.
= null

2 assert decreases′m ≺ {h := hpre}decreasesn # if termination is examined
3 assert pre′m
4 hbefore := h
5 havoc h
6 # dropped if m is declared voidhavoc resT

7 havoc exc
8 # free assumptionassume wellformed(h)
9 assume (∀oref . hbefore[o, created]→ h[o, created]) # no created object is ever deleted

10 # free assumption if the resultassume typeof(res[ref]) <: T
11 # type is a reference type
12 assume post′m
13 # if no signals clause givenassume exc .

= null
14 assume typeof(exc) <: {h := hbefore}signals′m ∧ h[exc, created] # otherwise
15 assume eqHeap(hbefore, h,{h := hbefore}mod′m)
16 goto exc no exc
17 exc:
18 assume ¬exc .

= null
19 # use the according exception handling table.
20

21 no exc:
22 assume exc .

= null
23 # store the result onto the operand stackstackT

n := resT

IVIL – 4.4

The primed version of the contract elements in lines 3 (pre′m), 12 (post′m), 14
(signals′m) and 15 (mod′m) of Listing 4.4 stand for the version in which all this ref-
erences and the method parameters have been adapted. The actual values reside in
locations on the operand stack. The translation can statically compute which stack po-
sition the arguments are to be found in. For the invocation of a method k(int p) with
one argument for instance, the general precondition prek = hpre[this,intField] > p
would be adapted by replacing the reference to this and p. The adapted precondition
which would be assumed in line 3 reads pre′k = hbefore[stackref

n−1,intField] > stackint
n

wherein n is the index of the current top-most (head) element of the operand stack.
Pre- and postcondition have swapped their roles between the programs in List-

ings 4.3 and 4.4. While the precondition is assumed in the beginning of the proof
obligation, it must be established when the method is called. The postcondition (to-
gether with the framing and exception clauses) may then be assumed in the after-state
of the method call since their being true has been be proved in the proof obligation.

Replacing a method invocation by its contract is, in general, an overapproximation of
the actual behaviour. For instance, for every trace (I, 0), . . . , (I′,n) of the method body
with I |= prem, it is guaranteed that I′ |= postm. But there can be pairs of states (J, J′)
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with J |= prem and J′ |= postm such that there is no corresponding run of the method
body. This has a consequence: This translation can only be used if the program is
examined for all traces using [·] or J·K but cannot be used for ⟨⟨·⟩⟩, ⟨·⟩. The box modal-
ities formulate safety properties that hold for all runs and an overapproximation
includes all cases. The diamond modalities formulate reachability conditions, in
which one trace with a property (it fails) is searched for. An overapproximation bears
the problem that the actual execution may have no trace with the property but the
overapproximation can have. The proof would, in such cases, find a trace though
there is none in the implementation. For such proof obligations, an underapproximat-
ing contract would be needed. For program verification, this is, however, not really a
constraint since we usually prove that all traces do not fail and not the reachability of
states.

There exists an alternative to applying a method contract: Unrolling the method
body. In general, however, this way of handling method calls is not modular. At
verification time, all extending classes of a type might not be known, and, hence,
the implementation to be chosen for unrolling might not be available. A contract is
valid also for all overriding implementations if we assume the substitution principle
by Liskov and Wing (1994). Yet, there are cases in which method body unrolling is
modular and thus acceptable: If the method body cannot possibly be refined in any
inheriting class. This is the case if a method is declared private, final or if the entire
class is declared final.

The UDL translation of the method body can be simply put in place in the transla-
tion of the invoking method:

IVIL

1 assert ¬stackref
n

.
= null

2 # assign the arguments to the method invocation fromarg1 := stackT1
n+1

3 # the stack to the variables arg1, . . . of the parametersarg2 := stackT2
n+2

4 # . . . repeated for all arguments
5

6 # include the translation of the method body of the called method in which every
7 # return statement or uncaught exception is redirected to this point:
8 afterMethodCall:
9 goto exc noExc

10 exc:
11 assume ¬exc .

= null
12 # jump to the according exception handler if defined or end program
13

14 noExc:
15 assume exc .

= null
16 # continue execution ...

IVIL



122 CHAPTER 4 IMPLEMENTATION

Precautions may have to be taken to ensure that the local variables of the two
methods are chosen disjoint. They may have to be renamed or chosen different by
construction. Return instructions or uncaught exceptions statement of the called
method must not terminate the calling method but return the control flow to the
calling method. The method body must be followed by statements which handle a
potentially uncaught exception thrown in the called method. See Section 4.4.5 for
details. The stack indices must be shifted by the number of resident objects at method
entry.

4.4.8 Object Creation

In Java, new objects can be allocated on the heap during the run of a program. This
provides a challenge to the translation as in UDL all objects exist from the beginning
on. The solution, also employed by Weiß (2010), is to use a purely verificational
boolean class attribute created which stores on the heap whether or not an object
is created on the heap. It must be ensured that this attribute is “monotone”, that
is, whenever an object has been created, its status cannot be changed10 any more.
Garbage collection is left aside in this model.

A Java constructor invocation new C() is decomposed into two separate steps on
the bytecode level:

JAVA BYTECODE

1 new C
2 invokespecial C.<init>()

JAVA BYTECODE

First, a new object of the given class C is created, and then the synthetic method
void <init>() is invoked on the freshly created object. The method call does not
deviate from any other method calls and can be handled accordingly. The creation
process is handled using a program variable nr : ref holding the reference to the fresh
object.

IVIL

1 havoc nr
2 # Choose an object reference which is not yet in useassume ¬h[nr, created]
3 # initialise all fields of nr and mark it as in useh := create(h,nr)
4 # push the freshly created reference onto the stackstackref

n := nr
5

6 # code for calling/inlining C.<init>()
IVIL

According to Lindholm and Yellin (1997, 2.5.1), prior to calling the initialising
function, the fields of a freshly created object carry the default value of their respective

10See also the free assumption in line 9 of Listing 4.4.
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type. In logic, this is captured by the heap constructor create(h,o) which assigns to
all fields of o the default value but true to the creation-flag field created:

(

A

α.∀oref .∀gfield(α). create(h,o)[p, g] .
=

if o .
= p then (if g

.≈ created then true else defaultValue[α]) else h[p, g])

The polymorphic constant defaultValue : α holds the default value for the argument
type. The default value is fixed by the axiom

defaultValue[int] .
= 0 ∧ defaultValue[bool] .

= false ∧ defaultValue[ref] .
= null .

4.4.9 Specifications

Felden (2012) describes how specifications in the Java Modeling language (JML) can
be translated into equivalent specifications in UDL. Although JML is the de-facto
standard for specifying contracts for Java programs, this implementation operates on
contracts in UDL. The rationale behind this decision is that in the face of formalism-
crossing proof obligations in Chapter 5, a purely Java-oriented formal corset (like
JML) would be disadvantageous.

The specification framework allows the annotation of the following specification
elements:

1. Method contracts with the elements listed in Section 4.4.6.

2. Model methods which can be used to define heap dependent function sym-
bols. JML class invariants and model fields can be implemented using model
methods. Model methods are more flexible in that they can take additional
arguments.

3. Loop specifications consisting of a loop invariant, a loop variant and a modifica-
tion clause.

4. Embedded ghost code including embedded assertions which can be used to control
the proof engine. Proof hints (as introduced in Section 4.2.5) may be used
to fix the verification persistently from within the source code. Additional
assignments to ghost fields and variables can be embedded as well.

Class invariants11 are not a concept in their own right in the framework. There
are fundamental questions open in the semantics of class invariants, as shown by
Parkinson (2007). The approach of visible states as propagated by Chalin et al. (2005)
proved not practical in a deductive setting. More recent approaches abolish the
concept of class invariants altogether and replace it by specification functions (in the
verification system Dafny by Leino, 2010a) or by model fields (see Weiß, 2010). In

11sometimes called object invariants
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these approaches, the invariant needs to be mentioned explicitly if needed. Model
methods can be used to realise a similar approach using ivil. Unlike in the above
mentioned systems, however, wellfoundedness of the model method definitions is
not checked.

The implementation adopts the notation of specification elements from JML. Speci-
fication elements are embedded in special comments embraced by the character se-
quences /*@ and */. The UDL-specifications used in the benchmarks of Section 4.4.11
do not use model methods and can all be expressed canonically in JML as well.

The most important autoactive annotation is the loop specification. A loop speci-
fication includes an invariant which must be inductive for the loop, a wellfounded
variant and a modifies-clause denoting the set of objects whose locations may be
modified by the loop body. Loop specifications are added as annotations to the
translated program. In bytecode, the original structure of the Java sources has been
replaced by unstructured code. The translation must hence find the point at which
the invariant needs to hold by detecting the statement which performs the loop entry
decision in the bytecode control flow graph. A simple code analysis can achieve this.

4.4.10 Bridging the Gap between Intermediate and Source Code

Since the objective of the translation is to obtain a result which can be used in
an interactive verification process, special attention must be paid to retaining as
much source code information as possible. But the starting point for the presented
translation here is Java bytecode, already an intermediate representation. Thanks to
the nature of Java bytecode and the format of bytecode class-files, it is possible to
regain a lot of source code information from the compilation result.

Fortunately, the bytecode format has built-in capabilities to preserve source code
information in the compilation result. This information is originally intended to
enable dynamic debugging on source code level. But the same information used
to connect a concrete execution of bytecode with the source code elements can be
used to relate the source code entities with the statements in UDL programs. If the
compiler is told to store debug information with the bytecode, lookup tables with
source line numbers and names of local variables and method parameters are added
to the saved files for the bytecode. Without the debug option, this information would
be lost as the Java Virtual Machine itself does not have names for its registers or
stack positions. The source line table can be used to connect the translated program
statements and the original source code line number using the annotations available
in ivil. The table for local variables can be used to name the created program variables
according to their original name in the source code, increasing comprehensibility of
the translation result.

In addition to this debug information, the modular design of the bytecode language
preserves naming information as well. Since the virtual machine allows dynamic
linking of classes, all references to methods, classes and fields are stored using the
original symbolic names of these entities. In a less modularly compiled language,
such references may not be given by name anymore but by numeric references.
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We can therefore preserve the original class and field name constants in heap access
instructions, method names in method invocations, class names in exception handling
etc. in the translated ivil program.

Modern Java compilers do little or no optimisation at all on their resulting byte-
code. They leave the optimisation to so-called just-in-time compilers which translate
the bytecode to optimised native code right before executing it. This ensures a
close semantic resemblance between sources and their bytecode which increases
the comprehensibility of the verification conditions. In other systems with highly
optimising compilers performing out of order execution, loop unwinding, and other
modifications, this traceability would be considerably reduced.

4.4.11 Example and Evaluation

We conclude the presentation of the reference translation from Java bytecode to
intermediate ivil verification code by an example and an evaluation.

Figure 4.6 shows a small Java method, its compilation result as a sequence of
bytecode instructions and the ivil program which emerges from the translation of the
bytecode to the intermediate language. It is evident that the translation made the
program significantly longer, but the individual statements in the translation are of a
finer granularity. The example method incX(int p) adds to an integer field int x in
the class C the absolute value of the parameter p if that is not zero. The formal contract
is given using UDL formulas within comments directly. The contract possesses one
precondition (requires), one postcondition (ensures) and one modification clause
(modifies). As it has no exception clauses, it is assumed that the method does not
throw exceptions. The contract says that whenever the argument is not zero, the
value of the heap location this.x strictly increases by invoking the method and at
most the fields of the receiver object are modified.

The first lines up to Label1 are the preamble which sets the stage of for the method
execution by assuming important known facts on the heap (in particular its well-
formedness) and the invocation receiver this. The precondition ¬p .

= 0 is assumed,
too. The following lines implement the method body in the intermediate language.
The last commands from LabelEnd onwards encode the checks which are to be per-
formed after the method body: the exception clause (no exception thrown) in line 42,
the postcondition in line 44 and the modification clause in line 46. The automatic
verification of this tiny example happens instantaneously in ivil.

Evaluation We have applied the approach and the reference implementation to a
number of standard benchmarks. These case studies were taken from the challenges
presented in the verification contests VSTTE 2010 (Klebanov et al., 2011) and FM
2012. These benchmarks are of smaller complexity and size and were chosen to show
the adequacy of this proof-of-concept implementation and to demonstrate that the
dynamic logic over the intermediate language can be used for the verification of Java
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JAVA & JAVA BYTECODE

1 int x;
2 /*@ contract
3 @ requires ¬p .

= 0
4 @ ensures h[this,C::x] > hpre[this,C::x]
5 @ modifies this
6 @*/
7 void incX(int p) {
8 if(p < 0) {
9 p *= -1;

10 }
11 x += p;
12 }
13 }

1 iload_1
2 ifge 7
3 iload_1
4 iconst_m1
5 imul
6 istore_1
7 aload_0
8 dup
9 getfield C::x

10 iload_1
11 iadd
12 putfield C::x
13 return

JAVA & JAVA BYTECODE

IVIL

1 program Java source ”C.jspec”
2 sourceline 4
3 assume ¬p .

= 0
4 assume wellformed(h)
5 assume ¬this .

= null
6 assume h[this, created]
7 assume typeof(this) = C
8 hpre := h
9 ppre := p

10 Label1:
11 sourceline 9
12 stackint

0 := p
13 branchCond := stackint

0 >= 0
14 goto Label2, Label3
15 Label2:
16 assume branchCond
17 goto Label4
18 Label3:
19 assume ¬branchCond
20 Label5:
21 sourceline 10
22 stackint

0 := p
23 stackint

1 := −1
24 stackint

0 := stackint
0 * stackint

1

25 p := stackint
0

26 Label4:
27 sourceline 12
28 stackref

0 := this
29 stackref

1 := stackref
0

30 assert ¬stackref
1

.
= null

31 stackint
1 := h[stackref

1 ,C::x]
32 stackint

2 := p
33 stackint

1 := stackint
1 + stackint

2
34 assert ¬stackref

0
.
= null

35 h := h[(stackref
0 ,C::x) := stackint

1 ]
36 Label6:
37 sourceline 13
38 exc := null
39 goto LabelEnd
40 Label7:
41 LabelEnd:
42 assert exc .

= null
43 sourceline 5
44 assert h[this,C::x] > hpre[this,C::x]
45 sourceline 6
46 assert eqHeap(h, hpre,
47 {h := hpre}(singleton(this))

IVIL

Figure 4.6: An example Java program and its translations to bytecode and ivil
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programs. The tool will also be used to discharge the proof obligations which arise
from the refinement conditions in the case studies in Chapter 6.

Table 4.7 lists the benchmarks and their runtime on a Quadcore 2GHz machine
with 4GB RAM. The needed runtimes are compared to the time that the KeY tools
takes to verify a corresponding proof obligation. The KeY tool operates on the source
level and must, hence, upon reading a proof obligation perform a lot of internal
overhead work. Due to this, the trivial proof obligation ⊢ true takes more than 4
seconds to verify. Hence, the results for the KeY prover12 are compensated for by this
amount since the compilation to ivil code (which takes less than a second for each
of these examples) has not been taken into account, too. The code together with the
used specifications can be found in Appendix B.1.

Benchmark Collection ivil KeY

⊢ true 0.5 sec 4.3 sec –

ARRAY SUM AND MAX VSTTE 2010 5.2 sec 13.6 sec 9.3 sec

LONGEST COMMON PREFIX FM 2012 2.3 sec 10.6 sec 6.3 sec

ARRAYLIST (4 POS) 30 sec 46 sec 29 sec

FIRST IN LINKED LIST VSTTE 2010 4.2 sec 33 sec 29 sec

Table 4.7: Benchmarks for ivil and comparison to KeY

4.5 Chapter Summary

The interactive verification system ivil has been presented in this chapter. The system
implements the sequent calculus for UDL which has been proposed in the last chapter.
ivil is both an interactive theorem prover for UDL proof obligations and an automatic
verification system. The system has been implemented in Java and comprises a Java
source code base of about 50.000 lines of code.

The graphical user interface is designed to incorporate ideas of other interactive
theorem prover interfaces, in particular from the KeY tool (dynamic logic for Java,
Beckert et al., 2007) and from Rodin (Event-B, Hallerstede, 2008). Its major novelty is
the integration of the original source code together with the translated intermediate
code. Concepts with which users are familiar from dynamic source code debug-
gers (breakpoints, stepwise execution) have been transferred into the interactive
component of ivil.

The user interface provides a detailed insight on the goings-on under the hood of
the verification engine and a tool to intervene on this level of technical detail. While

12The latest release 2.0 of KeY has been used for the benchmarks.



128 CHAPTER 4 IMPLEMENTATION

we deem this a necessity if intricate and challenging proofs are conducted, it is not
always the level of detail which is to be chosen when an interactive system is desired.
For many proof obligations no interaction should be necessary at all and for most
obligations, the interaction should not require a look into the verification system but
should happen on the level of the sources as annotations to them. The most widely
accepted interaction which happens on the level of the source code annotations are
loop invariants which are not part of the contract of the code, but help the verification
tool to find a proof for the contract. Leino (2010b) has coined the term of autoaction
for systems with this kind of interaction.

In purely automatic verification systems, a verification condition is generated and
sent to an automatic prover. Since in ivil, the verification process can be interacted
with during the course of the proof, there is the possibility to control the prover by
annotations from within the program source code. We have presented a list of proof
hints which can be annotated to statements in order to control the proof.

Though the calculus has been proved relatively complete in the last chapter, ivil
does not rely on this completeness to discharge proof obligations which have been
reduced to the underlying predicate logic. Instead, an industry-standard solver for
satisfiability modulo theories (SMT) is driven to take care of proving the open proof
goals. We have presented how, based on an idea by Leino and Rümmer (2010), UDL
formulas are reduced to formulas in the simpler SMT input language. Particular
attention has been spent on the efficient translation of binder terms. The translation
has been proved correct.

Finally, a prototypical proof-of-concept implementation of a translation from Java
bytecode to the intermediate language of ivil has been presented. There already
exist similar translations and what sets this translation apart from them is that it
manages to preserve source code information from the original Java source files,
in the translation result. In particular, names of classes, methods, fields, method
parameters and local variables can be retained, and intermediate code be brought
in relation to the respective causing source code line. This makes the interactive
verification of Java programs possible even if the program has been translated twice
to an intermediate representation (first to bytecode, then to ivil code).

The implementation has been applied to standard benchmarks which could be
verified automatically. On these benchmark, the presented verification system has
proved competitive with the KeY tool, another semi-interactive Java verification
system.



CHAPTER 5

Algorithm Refinement

In my humble opinion, the only
tool to master complexity is abstraction.

CLIFF JONES

In this chapter, a new methodology is devised which decomposes the task of verifying the
implementation of an algorithm into two easier tasks:

1. The algorithm is developed, specified and verified in abstract, mathematical terms.

2. A formal relationship between this abstract algorithm description and an actual imple-
mentation is established such that it is formally ensured that the code puts the abstract
description into action.

This process is called refinement. We develop a notion of refinement using UDL and present
how it can be used to verify method contracts. It is also shown that formal refinement with
UDL coincides with the established notions of formal refinement.

Chapter 6 will report on case studies with this new approach.

5.1 Separation of Concerns

When specifying and verifying a non-trivial algorithm implemented in a modern
programming language, two difficulties come together and interfere with one another:

1. The complexity of understanding and fully formalising the algorithm on a
conceptual level. This includes formalising the required precondition as well as
coming up with a sufficiently strong postcondition; a task which can already
be complex on its own. Even for a simple-looking specification, the required
intermediate annotations may already exceed the length of the actual code
considerably.
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2. The complexity of the implementation. This includes the idiosyncrasies of the
programming language, like side-effects in expressions, handling of underspec-
ified or exceptional behaviour. Also the model of the data in implementations
(often organised in a heap) has significantly more structure than in the math-
ematical model. Potential overlapping of heap data structures must be dealt
with in the implementation verification.

The approach to be presented in this chapter separates these two concerns: The
algorithm is formalised as a purely mathematical description in pseudocode removing
any implementational detail from it. This algorithm is specified and verified on the
higher level of abstraction.

An implementation is then written structurally coherent to the algorithmic de-
scription of the pseudocode. A refinement relationship between the implementation
code and the abstract is established formally using coupling predicates formally
connecting the abstract and the concrete model state spaces. The specification of the
abstract pseudocode algorithm together with the coupling predicates lead then to a
correct formal specification of the implementation.

Such a strict separation is not always feasible. It is a well-known fact that the
verification of lightweight safety properties may be as difficult as a full functional
verification and that the two aspects may not be separable. Consider an algorithm
which performs a lengthy calculation of a number which is then used as denominator
in a division. Showing that this number cannot be zero may require a full specification
even if it seems to be a mere functional safety property. However, experience shows
that there are many cases in which the complexity of the algorithm can be separated
from the complexity of showing absence of error cases.

5.1.1 Pseudocode

We use pseudocode as the formal input language to describe algorithms on the abstract
level. For the purposes of this work, pseudocode is a straightforward while-language
over mathematical expressions as it can be found in algorithm engineering textbooks.
Pseudocode has many advantages which make it the ideal choice of modelling
language for algorithms:

∙ Pseudocode is well suited for imperative descriptions. In purely declarative de-
scription languages like the set-theoretic Z (Woodcock and Davies, 1996) or
the relational Alloy (Jackson, 2006), algorithms can be specified by their effects
(what is achieved) using before-after-predicates. Pseudocode allows a sequential
decomposition of the work-flow elucidating how the effects are achieved.

∙ Pseudocode is simple. Effects which may occur in more complex languages do
not show up in pseudocode: Aliasing of references, or overlapping of memory
segments1 are excluded by construction if the values are taken from abstract

1sometimes called the abstract aliasing problem
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datatypes. If such effects are needed for the algorithm, they can be modelled
explicitly but can equally be ignored if not relevant.

∙ Pseudocode allows mathematical notation. Mathematical expressions are an ade-
quate tool to concisely and rigorously formulate complex facts. The richness
of mathematical language may be hindering for the direct implementation of
expressions in a programming language, but then, they can be refined to less
involved expressions.

∙ Pseudocode is self-explanatory. The original intention of pseudocode language is
to present algorithms in a comprehensible way (for instance, in a textbook). The
abstraction capacity of the language as well as the simplicity of the available
control-structures allow a convenient presentation of algorithms.

∙ Pseudocode is widely accepted. It is often used as the notation to present algorithms
in various application fields and is not a formalism only known within the
verification community.

∙ Pseudocode is a good starting point for a refinement to an imperative implementation.
Many modern programming languages are imperative. If the target language of
the algorithmic refinement is such a language, the modelling language should
have the same property.

The pseudocode language which we will employ in this chapter is not, strictly
speaking, a pseudo language. One major characteristic feature of pseudocode is
that it lacks a formal syntactical and semantical corset but has its meaning been
given by resorting to the reader’s intuition. Since our goal is to perform formal
refinements, this is unacceptable in our case. Hence, we sacrifice the freedom of being
able to loosely formulate everything and formally fix the syntax and semantics of
pseudocode. Appendix A.3 gives a syntax of the pseudocode used in this approach
and its semantics by stating how to translate pseudocode to UDL programs. We still
believe that, despite being formalised, the language matches the reader’s intuition.

5.1.2 Code as Behavioural Specification

For functional verification, one challenge is to come up with good specifications.
Normally, a specification is being thought of as a pair of pre- and postcondition or of
a before-after-predicate which describe the results that an algorithm achieves. Both
are purely declarative.

Sometimes such a purely result-oriented specification is not what is really meant to
be specified. For an algorithm computing the shortest path between to places, it is
a considerable difference to say that the result is the shortest distance between the
places rather than to describe how the algorithm finds it. Of course, when seen from
the outside, the former may be sufficient but when implementing the algorithm, the
latter is a lot more valuable.
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There may be situations in which it is impossible or at least practically infeasible
to state a declarative specification. An algorithm traversing a data-structure may be
canonically represented using a while-loop whereas its representation as a closed
formula may be more involved, for instance, needing an operator for transitive
closure or similar.

Of course, any specification which can be stated by a program can also be given by
defining a recursive function. However, this may be unintuitive and may have little
to do with the implementation. In such cases, an algorithm given in pseudocode may
provide a formal, semantically unambiguous and comprehensible specification.

5.1.3 Verification versus Code Generation

An alternative to establishing a refinement relation between an algorithm and its
implementation is to have the implementation code produced automatically from an
abstract description by a code generator. If this generator can be verified correct (or
adequately certified), the resulting code can be deemed correct by construction.

For code generation to be possible, the last description in the refinement chain
must be of a form which can be automatically transferred into an implementation.
It is in particular the B methodology (Abrial, 1996) whose models can span from
high-level descriptions to synthesisable code descriptions, and industry-scale projects
have already been realised using this approach (Behm et al., 1999, to name one).

However, such a proceeding is a good option only if the entire software system is
modelled, refined and then its code generated. In such a scenario, the resulting code
is fully under control of the code generator which can conduct the translation as it
pleases – as long as it is correct.

In a more heterogeneous setting, the algorithm for which the refinement takes
place may only account for a small part of a larger system. Other parts may not be
subject to the idea of refinement and may, for instance, be provided by a third party
which does not know about the internals of the code generator.

The realisation of data structures is not always necessarily canonical: An abstract
sequence of values can be refined in many ways in the Java language: as an array, as
an instance of a class implementing the interface java.util.List or by some other
data structure implementation.

Also, it may be helpful to retain control over the implementational code such that it
can realised more efficiently since generated code generally tends to be less efficient
than manually written equivalents.

5.2 Refinement

Requirements for a complex (software or other) system are usually specified on more
than one level of abstraction. In engineering, for instance, a first pencil sketch outlin-
ing an idea is refined via various intermediate stages to a fully precise construction
drawing then used to eventually manufacture the part. Some properties of the object
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can be deduced already from a less detailed description of the object. To compute
the dimensions of an article, for instance, no information concerning its interior are
needed, the property can be computed from the outline of the object alone. The final
construction drawing refines this outline sketch by adding detail information. The
computation of the circumference made on the abstract sketch will still be valid.

We call the step from a more high-level description to a more detailed low-level
description a refinement. Derrick and Boiten (2001, page 47) give a definition of a
refinement called the principle of substitutivity: For an observer who is interested
in a particular property, it must not be possible to tell if the description has been
substituted by a refined description. For the engineer whose job it is to calculate the
dimension of an article from the numbers in a drawing, whether or not details of the
interior of the article are depicted does not make a difference. From the computations
alone, one cannot tell which description has been used; substitutivity is given. The
refinement may contain more details, but these do not invalidate calculations made
on the more abstract level.

If the system is modelled using a formal description method with defined semantics,
the refinement can be made equally formal by requiring that a refinement preserve
the properties of a system. The benefit of a formal refinement is that a property shown
for an abstract description then holds automatically also in its refined models. This
is a desirable goal since it is very likely that the computation of a property can be
performed more easily on an abstract system description than on the concrete.

System descriptions can be treated by more than one single refinement step. Usu-
ally, the development of a system starts with a rough overview description of the
system followed by a series of refinements which all add detail and precision to
various aspects of the system. This may serve documentation purposes as well as
keeping the system comprehensible. We call the evolutionary series of sequentially
refined descriptions a refinement chain.

5.2.1 Refinement in Formal Software Engineering

Formal refinement has a long standing tradition in formal methods and various
related methodologies for refinement have been developed.

The Z specification language (Woodcock and Davies, 1996) is based on typed set
theory and has a rich toolkit of operators which can be used to formulate declarative
specifications. Operations are specified in form of before-after-predicates defining
binary relations on the state space. The B method introduced by Abrial (1996) is
inspired by Z and provides a methodology to refine system descriptions from a purely
descriptive algorithmic description level down to actual executable code. Event-B
(Hallerstede, 2008; Abrial, 2010) is an evolution of the B methodology in which the
possibilities to formulate state transitions have been severely reduced and unified.
Abstract State Machines (ASM, Börger and Stärk, 2003) provide a logical framework
for definition of state transition system by means of a relatively small but general
language of logical value updates. Morgan (1990) describes the Refinement Calculus, a
method in which a system description is refined in a stepwise manner, beginning from
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a single pair of pre- and postcondition. Sequential decomposition of one operation
by two consecutively executed operations is possible. The programs become more
and more detailed with every refinement step, introducing conditional operations,
loops, etc. The refinement calculus operates on the level of abstract algorithms (in
the guarded command language devised by Dijkstra, 1975). Z and the refinement
calculus are in a sense deliberately complementary: Z supports refinement of data
structures, and has no means to sequentially decompose commands whereas the
refinement calculus supports precisely this and does not incorporate data refinement.

All mentioned approaches propagate a multi-step refinement process in which
the complexity is brought into the model step by step. Topmost descriptions are
of a more declarative nature, explaining the objectives of a system in high-level
notions. Refinements introduce more and more detailed aspects of the model, and
towards the end of a refinement chain, the descriptions will become more and more
technical, incorporating details of the implementation of the system, on the actual
data structures or even on the way the code may be implemented.

Usually, the last refinement step in a refinement chain is the implementation which
transfers the most detailed, yet still abstract, description into a working piece of
executable code which can be run on a machine. This last step crosses a formalism
border: The abstract descriptions are usually formulated in a language supporting
abstract modelling concepts while the target formalism is usually a programming
language. The last refinement step is, hence, not accompanied by a formal justification
but done manually and inspected in a subsequent code review to establish that the
implementation really realises the specification. Alternatively the code can be gener-
ated from the last element in the refinement chain by a code generator which may be
proved to produce correct code refinements by construction. The last refinement step
is often called the “jump to code”.

In this chapter, we will attend to this last refinement step in particular and come
up with a refinement method which allows also this last step to be done in a formal
manner.

5.2.2 A Relational Notion of Refinement

The different established traditions of refinement share a common basic notion of
what a refinement is though they differ in subtleties. Informally this definition
says that given an abstract and a concrete system description, for every behaviour
supported on the concrete level, there must be a corresponding behaviour on the
abstract level.

We consider in the following two descriptions A (for abstract) and C (for concrete)
of the same algorithm. Let us first look at the case in which they share a common
state space S. The semantics of the algorithm descriptions is then given by two binary
relations RA, RC ⊆ S × S containing pairs of corresponding before- and after-states.
The algorithm may or may not terminate, fail or contain sources of indeterminism.
The relations need hence not be partial (let alone total) functions.
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A description may be given in various ways: It may be stated declaratively by a
before-after-predicate ϕ describing the evolution of the data using a formula2. The
state pairs (s, s′) ∈ R in the relation are in this case those in which ϕ holds.

But an algorithm may also be given as an imperative, sequential program π. In this
case, the pair (s, s′) ∈ R is in the relation if and only if the program π started in state
s may terminate in state s′. Programs can be indeterministically or non-terminating
and may, hence, have none or several corresponding end states s′ for a state s.

The notion of refinement is defined on these state relations: A concrete description
refines an abstract description if the concrete behaviour is subsumed by the abstract
behaviour, that is

C refines A ⇐⇒ RC ⊆ RA . (5.1)

From this follows the above mentioned principle of substitutivity: A user observing
the operation can never tell if a A has been substituted by C3. This means that the
refined description A may have more possible behaviours than the refining concrete
description, but that every behaviour of the concrete system is “backed up” by the
abstract system.

This refinement condition requires that both descriptions operate on the same
state space. This is, for example, the case for algorithmic refinement in which RA is
a declarative description of the state relation (a before-after-predicate) and C is an
imperative implementation operating on the same data model. It is quite common
in a refinement chain to first manipulate the data and declarative notions of the
operations (the notion of what happens) and then finally to look at the way, in which
the operation is actually performed (the notion of how it happens). Usually for a
refinement step in which the data remains unchanged, the operation descriptions
evolves considerably.

In an object oriented context, a method which implements a contract which has
been specified at its interface falls into this category of refinement as well. The code is
the concrete description and the formal contract defines the abstract behaviour. There
is a difference to (5.1), however (one of the mentioned subtleties): The implemented
method must have a behaviour for a pre-state s if the contract has one. But it may
have additional behaviour outside the cases covered by the contract. Formally, this
can be expressed as dom RC ⊇ dom RA ∧ RC

∣∣
dom RA

⊆ RA. Behavioural subtyping
and refinement are very related notions, but not the very same.

In the following we need the forward composition A ; B of two binary relations which
is defined as A ; B := {(x,y) | (∃z.(x,z) ∈ A ∧ (z,y) ∈ B)}. It is the commutation of
the composition ∘ in the sense that A ; B = B ∘ A.

The refinement requirement (5.1) is often too strong a restriction, a refinement may
introduce new aspects into the state space which are to be considered unobservable in
the abstract state space; or the data representation changes and abstract and concrete

2A before-after-predicate ϕ is a two-state formula and may syntactically incorporate two copies of the
symbols in the signature (primed and unprimed).

3They may be able to tell the opposite. If a state transition (s, s′) ∈ RA ∖ RC occurs, they know that A and
not C must have been used. A refinement is called complete if this cannot be learnt either.
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state are then incomparable. To allow for the more relaxed situation, we consider
the state spaces of A and C to be potentially different and denote them as SA and SC
respectively. However, the states are not fully independent from another, there exists
a relationship between abstract and refined state space which is captured in a binary
relation r ⊆ SA × SC. Relation r specifies which states correspond to one another. The
nature of the relation depends on the type of the refinement, it will be an injection or
bijection in many cases; but in general, r needs not have such properties.

The refinement requirement from (5.1) can be reformulated with the relation r
acting as a mediator between the state spaces:

C refines A ⇐⇒ r ; RC ⊆ RA ; r (5.2)

This condition can also be found in the formal definition of Z (Woodcock and
Davies, 1996, S16.4) and B (Abrial, 1996, S11.2.4). Relation r defines the correspon-
dence of abstract and concrete states and is an integral part of the refinement step. It
is called the coupling relation or simply the glue.

The condition can also be visualised in form of a diagram:

a0 a1

c0 c1

RA

RC

r r

⊆

In the beginning there is an arbitrary abstract state a0 ∈ SA. For every path from a0
first following the mediating relation r (reaching a coupled concrete state c0 ∈ SC)
and then the concrete operation RC terminating in the concrete final state s1 ∈ SC,
there must be a path from a0 first performing the abstract operation RA (resulting in
a1 ∈ RA) followed by relation r which reaches the same state c1 ∈ SC.

There are a number of special cases for certain shapes of the coupling relation r.
The algorithmic refinement has already been mentioned; condition (5.1) is a special
case of the more general (5.2) for the case that SA = SC and r = idSA .

A refinement is called a data refinement if it changes the representation of the
algorithms data. Changing the value space of a description necessarily requires that
the algorithm description also be changed, but we may claim, that no behaviour is
added or removed just the representation changed. A data refinement is characterised
by a functional relationship a : SC → SA called the abstraction function which describes
how a refined state is mapped to a state in the abstract state space. This function must
be total4 but needs not be injective or surjective.

Note that while one abstract state may have no, one, or many concrete represen-
tation mapping to it, no concrete state can map to more than one abstraction. This

4or at least defined on dom RC
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is deliberate and sensible: A more concrete data structure has more room for re-
dundancies than a mathematical counterpart. Consider the prototypical example
of implementing sets of naturals as doublet-free value sequences. The refinement
function would be the function aset : Seq(N) → 2N. The empty set would be repre-
sented only by the empty sequence, a(⟨⟩) = ∅. Finite sets with a cardinality of at least
2 have more than one representation in sequents, like a(⟨1,2⟩) = a(⟨2,1⟩) = {1,2}
while infinite sets do not have a single preimage. The coupling relation used for a
refinement would be the inverse a−1 of the abstraction function seen as a relation.

Introduction refinement is the a data refinement which introduces new aspects into
the system by extending the abstract state space SA by a space Snew such that SC =
SA × Snew. The abstraction function a : SA × Snew → SA is given by the projection
a((sa, snew)) = sa, the common part of the state SA must be identical while the new
data aspects are discarded.

The refinement categories are not strict, and a refinement step may belong to
more than one of the categories. A concretion of the used data model is clearly a
data refinement. If the new data structure reveals more structure and does cover all
cases which have been allowed on the abstract level (like implementing sets with
finite sequences, see above), it is at the same time an algorithmic refinement. If the
refinement step crosses the language border, it is likely that all three categories will
be touched.

Remember that the rationale behind doing refinement in the first place is to au-
tomatically pass on a property P which holds on the abstract level to the concrete
level.

Such a property may be a set P ⊆ SA approximating the set of reachable states of
RA. This set can, for instance, be induced by a postcondition which has been proved
to be valid for A. For the relations, this means that on the abstraction rng RA ⊆ P
holds. If the coupling relation is the identity, then this directly induces that the same
postcondition also holds for the refined description rng RC ⊆ P. If a non-identical
coupling relation r is to be considered, the property inheritance is only modulo this
relation and reads rng(r ; RC) ⊆ P ; r.

Thus, the refined property depends on P and r which shows that the choice of
relation r is crucial for the refinement step. Let us consider the corner case of the
empty relation r = ∅. Both compositions (r ; RC and RA ; r) are also empty and
the subsumption holds trivially. When we say that C refines A, we must always
additionally state the coupling relation r modulo which the refinement has been
established.

5.2.3 A Programmatic Notion of Refinement

Morgan (1990) has another definition of refinement which is based on weakest pre-
conditions of programs rather than on subsumption of relations. Program C refines
a program A in this definition if the weakest precondition of A implies the weakest



138 CHAPTER 5 ALGORITHM REFINEMENT

precondition of C for any postcondition ϕ. This requirement can be conveniently be
expressed in dynamic logic as

C refines A ⇐⇒ |= [A]ϕ → [C]ϕ for all ϕ ∈ Trmbool (5.3)

This condition can also be interpreted as the fact that whenever the formula ϕ is a
valid postcondition for A, it is also a valid postcondition for C. Any argument relying
only on valid postconditions5 for the program A applies by construction also to C:
The substitutivity principle holds.

Quite astonishingly, definition (5.3) and the relational refinement definition (5.2)
are equivalent. We will capture this fact in Observation 5.3 and prove it, but better
postpone this until after we have come up with the necessary definitions in the next
section.

As has been mentioned before, Morgan’s refinement calculus does not support
data refinement and definition (5.3) does thus not allow for a mediating coupling
relation.

5.3 Refinement using UDL

With the notion of a formal refinement established, we can now set out to find a
way to express refinement conditions using UDL. Let us therefore look at system
descriptions which are given as two UDL programs A,C ∈ Π and let us for the
moment also assume that the programs are assertion-free. The goal is to find a UDL
formula which is valid if program C is a refinement of program A.

Let the function PV : Π → 2PVar assign to every program π ∈ Π the program
variables which occur in π. We assume from now on that PV(A) and PV(B) are
disjoint sets, that is, that the two programs do not share program variables. This
is a sensible restriction since the two programs are considered individual separate
descriptions of the algorithm which cannot in any way interact with one another.
There are cases in which A and C share program variables, as we have seen, for
instance, for an algorithmic refinement. This can be mended by replacing every
variable p ∈ PV(A) in A by a fresh variable p′ of the same type yielding an modified
program A′, which performs the same algorithm, yet operates on a different set of
program variables.

The state space S𝒟 depends on the domain 𝒟 of the semantic structure in which
the program is started. It is then the set S𝒟 = {I | (𝒟, I) is a semantic structure} of
all interpretations over the fixed domain. The before-after relation induced by an
assertion-free program π ∈ Π is hence the binary relation Rπ defined as

Rπ = {(I, I′) ∈ S𝒟 × S𝒟 | there exists a finite trace (I,0), . . . , (I′,k) with π[k] = end}
(5.4)

5or rather their weakest preconditions



5.3 REFINEMENT USING UDL 139

which is the set of pairs of before- and after-states of π. Since π modifies at most
the variables in PV(π), most of the state remains unchanged under the execution of
π. Therefore the states in a before-after state pair (I, I′) may differ at most on the
evaluation of the program variables in PV(π).

In the following we assume that the domain 𝒟 is fixed. In the context of program
verification, for many types the domain is assumed predefined and fixed at any rate
(for instance, 𝒟int = Z). Uninterpreted types may have more than one conceivable
domain, yet for the examination of traces we only compare states with the same
domain. We drop hence the index 𝒟 whenever the context is unambiguous.

Let us consider again the two programs A and C for the refinement. Under the as-
sumption of disjoint program variable sets, the interpretation function I of a semantic
structure giving semantics to all function and binder symbols can be partitioned into
three disjoint functions:

IC := I
∣∣
PV(C) IA := I

∣∣
PV(A)

I0 := I
∣∣
{(PV(C)∪PV(A))

with I = I0 + IC + IA (5.5)

in which we use + to denote the disjoint union of functions. A program can neither
depend on the values of the variables of the other program nor modify them. In
any successful trace, the part of the interpretation for the complementary program is
always constant. Since it cannot play a role in the execution, replacing it with another
evaluation yields another successful trace. The disjointness of the program variables
used in A and C allows us, hence, to make the following observation.

Observation 5.1 (Independence of program variable evaluation) Let I, I′, X ∈ S be
interpretations with the common domain 𝒟.

1. If (I, I′) ∈ RA, then (I0 + XC + IA, I′0 + XC + I′A) ∈ RA and I0 = I′0 and IA = I′A.

2. If (I, I′) ∈ RC, then (I0 + IC + XA, I′0 + I′C + XA) ∈ RC and I0 = I′0 and IC = I′C.

PROOF Direct consequence of the disjointness PV(A) ∩ PV(C) = ∅. �

This lemma summarises the effects that a program execution can have. At most the
program variables of the executed program may have their value changed and the
values of the program variables belonging to the other program in the refinement
process, may be replaced without effect.

In (5.2) we introduced a refinement coupling relation r which brings together
abstract and concrete state space. In the context of a logical embedding, this relation
is now induced by a formula ψ ∈ Trmbool which can make use both of the program
variables in PV(C) and PV(A), thus binding concrete and abstract state together. We
call this formula ψ a coupling predicate. It induces the coupling relation rψ = {(I, I) |
I |= ψ} ⊆ S2. It may seem strange that rψ is a subset of the identical relation. But
recall that I = I0 + IC + IA, and since both programs each disregard one of these
components (see Observation 5.1), this can be thought of as the asymmetric relation
{(I0 + IA, I0 + IC) | I |= ψ}.
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Using UDL we can express the relational inclusion from (5.2). The execution of two
programs must be combined in one expression to achieve this. The inclusion requires
that for every post state of the concrete execution, there exists a coupled post-state
for the execution of the abstract code such that the coupling predicate holds. Unlike
triples for the Hoare Calculus, formulas in dynamic logic may contain more than
one program formula. In particular, we can nest modal operators, and can therefore
formulate

ψ → [C]⟨A⟩ψ (5.6)

as a formula in the version of UDL with postfixed assertions (see Section 2.5.3). The
dual modality formula [C]⟨A⟩ψ in (5.6) has the meaning that for every trace of C
reaching an end statement, there is a successful trace of A ending at an end statement
such that in the end ψ holds. The composed program formula expresses precisely the
refinement relationship:

Theorem 5.2 (Refinement condition in UDL) Let A,C ∈ Π be two self-contained
assertion-free programs such that PV(A) ∩ PV(C) = ∅. Program C refines program A
modulo the coupling relation induced by the formula ψ : Trmbool (that is, rψ ; RC ⊆ RA ; rψ)
if the formula ψ → [C]⟨A⟩ψ is valid.

PROOF For this proof we will for once use quantifiers also on the meta level outside
the object level of the logic as this clarifies the presentation a lot. We first expand the
premiss

|= ψ → [C]⟨A⟩ψ
into the implication on the interpretations6:

(∀I.I |= ψ =⇒ (∀I′.(I, I′) ∈ RC =⇒ (∃I′′.(I′, I′′) ∈ RA ∧ I′′ |= ψ)))

Expanding the interpretations into partial interpretations as defined in (5.5) yields(
∀I0.∀IA.∀IC. I0 + IC + IA |= ψ =⇒(

∀I′C. (I0 + IC + IA, I0 + I′C + IA) ∈ RC =⇒

(∃I′A. (I0 + I′C + IA, I0 + I′C + I′A) ∈ RA ∧ I0 + I′C + I′A |= ψ)
))

.

This already uses Observation 5.1 as the quantifiers range only over that partial
interpretation that can be changed by the execution of a program, the remainder is
left untouched.

Now we can introduce abbreviations for the states: a = c = I, c′ = I0 + I′C + IA,
a′ = I0 + I′C + I′A. We can also rewrite the quantifiers accordingly. Quantifying
over the reachable post-states c′ from c is as good as quantifying over the partial
component I′C. This gives us the more readable condition

(∀a.∀c. (a, c) ∈ rψ =⇒ (∀c′.(c, c′) ∈ RC =⇒ (∃a′.(a, a′) ∈ RA ∧ (a′, c′) ∈ rψ))) .

6The quantification over interpretations ranges over all interpretations for the fixed domain 𝒟.
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This can be transformed using predicate logic equivalence transformations to

(∀a.∀c′. (∃c.(a, c) ∈ rψ ∧ (c, c′) ∈ RC) =⇒ (∃a′.(a, a′) ∈ RA ∧ (a′, c′) ∈ rψ))

which is then equivalent to the relational rψ ; RC ⊆ RA ; rψ after collapsing the rela-
tional operators. �

What we have shown is that the refinement proof obligation (5.6) directly imple-
ments the notion of refinement introduced for the classical discipline of refinement
known from Z or the B method. This very notion is also captured by the definition
using weakest preconditions of the refinement calculus as proposed in Section 5.2.3.
We now have the necessary instruments to formulate and show the congruence of
the notions of refinement.

Observation 5.3 (Congruence of refinement notions) Let A,C ∈ Π be assertion-free
programs which operate on the same set of program variables PV(A) = PV(C) with their
state relations RA and RC defined as in (5.4). Then

RC ⊆ RA ⇐⇒ |= [A]ϕ → [C]ϕ for all ϕ ∈ Trmbool

PROOF (OF OBSERVATION 5.3) First we need a short argument why we can quantify
over all sets of states S instead of quantifying over all postconditions ϕ. If there are
infinitely many states, not every set of states can be described by a postcondition in a
given interpretation.

However, since all interpretations have to be taken into consideration, we can
find a way to represent them. Assume that the signature contains an uninterpreted
predicate symbol P which will stand for an arbitrary set of states. The symbol must be
applicable to all program variables of A as its truth value may depend on them. Let
the symbol provide a parameter for every p ∈ PV(a). We can, hence, write P(PV(A))
to denote the predicate application to all program variables of A. The right hand side
of the claim includes the case for ϕ = P( p̄). Since P is uninterpreted, it may assume
any semantics and all sets of states are included as postconditions.

Expanding the right hand side using the definition of the relation RA and RC
gives the equivalent condition (again using quantifiers on the meta level to ease
presentation)

(∀s ⊆ S. ∀I. (∀I′. (I, I′) ∈ RA =⇒ I′ ∈ s) =⇒ (∀I′′. (I, I′′) ∈ RC =⇒ I′′ ∈ s))

which, after some relational equivalence transformations7, is equal to

(∀s ⊆ S. ∀I. ¬I ∈ (RA ; {s) =⇒ ¬I ∈ (RC ; {s)) .

7The forward composition is here also applied between a binary relation R and a set s and is defined as
R ; s = {r | ∃x.(r, x) ∈ R ∧ x ∈ s}.
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This can be rewritten using propositional logic and the fact that quantifying over all
sets s is as good as quantifying over their complements {s as

(∀s ⊆ S. ∀I. I ∈ (RC ; s) =⇒ I ∈ (RA ; s)) .

It is an easy exercise to show that this is equivalent to RC ⊆ RA. �

This raises a natural question at this point: Why cannot the implication [A]ϕ → [C]ϕ
for all ϕ be used as the refinement proof obligation directly? The uninterpreted
Skolem symbol P from the proof would allow us to formulate [A]P(PV(A)) →
[C]P(PV(A)) as the proof obligation. However, if a refinement coupling predicate ψ
is needed for instance in a data refinement, the proof obligation would become as
complicated as ψ∧ [A](∀x̄C.{ p̄C := x̄C}(ψ → P( p̄C)))→ [C]P( p̄C). It is the additional
quantifier which makes this proof obligation less useful. After finishing the symbolic
execution of A, the quantifiers need to be instantiated with a matching tuple of values
from the abstract state space. When doing the compositional approach ([C]⟨A⟩ψ),
these values are instantiated automatically as a result of the symbolic execution of C,
a vital advantage when it comes to automatic (or semi-automatic) refinement proofs.

This nesting of modal operators is similar to a refinement condition formulated by
Abrial (1996) in the B-book. Since Abrial does not use dynamic logic, however, and
has only the operator corresponding to the [·] modality at hand, the formulation there
would translate to dynamic logic as ψ → [C]¬[A]¬ψ which is logically equivalent to
(5.6).

There are two different modalities involved in the definition of the refinement.
The reason for this is that we want to ensure that for every possible execution of the
concrete code there is (at least) one admissible run of the abstract code. In general, it
cannot be shown that every run through the abstract program makes the coupling
predicate true. This also mirrors the fact that an implementation may reduce the
degree of indeterminism of an abstract description.

5.3.1 An Example for Refinement in UDL

It is time for a first example for refinement using UDL. We want to refine the operation
of adding a value nA : nat to a set sA : set(nat) of natural numbers. We start on the
most abstract level with the model which has for this operation two program variables
PV(A) = {nA, sA}. The abstract program Ainsert is the obvious operation which adds
the value nA to the set using a single assignment to update sA.

IVIL – Ainsert
1 sA := union(sA,singleton(nA))

IVIL – 5.1

This program is now submitted to a data refinement changing the representation of a
set towards an implementation by modelling it as a finite sequence of numbers. The
concrete program variables are PV(Cinsert) = {nC : nat, lC : seq(nat)}.
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The refined program also optimises the process since it appends the value nC to
the sequence only if it has not yet occurred in it. When regarding the sequence as a
set of values, adding a value already present for a second time is not necessary. The
refinement is, hence, not a pure data refinement as it changes both the data and the
structure of the program. The refinement step could be broken down into two steps
which could then be attributed to one category only.

IVIL – Cinsert
1 if ¬(∃inat. i < seqLen(lC) ∧ seqGet(lC, i) .

= nC)
2 then lC := seqAppend(lC,nC)
3 end

IVIL – 5.2

To formulate the coupling predicate binding the state of Ainsert and Cinsert together,
we must find a way to express that the values in the list can be seen as a set. This
can, for instance, be done by using a function seqAsSet : seq(α)→ set(α). This poly-
morphic function symbol is defined to result in the set consisting of the entries of the
sequence by the polymorphic axiom (

A

α.∀xα.∀lseq(α). in(x,seqAsSet(l)) .
= (∃nnat.n <

seqLen(l) ∧ seqGet(l,n) .
= x)). We employ seqAsSet to state the coupling predicate

ψinsert := sA
.
= seqAsSet(lC) ∧ nA

.
= nC.

This refinement is obviously functional since for every abstract variable, we give
an evaluation term to compute it from the concrete values. Had we had not the
function seqAsSet available, we could have instead used the formula (∀xnat.x ∈
sA ↔ (∃nnat.n < seqLen(lC) ∧ seqGet(l,n) .

= x) equivalent to sA
.
= seqAsSet(lC). The

coupling relation induced by the predicate without seqAsSet is still functional but
this fact is far less easy to observe and it cannot be as easily exploited. We will later
see that coupling predicates which contain equalities can be considered a substitution
(see Observation 5.12 in Section 5.5.1).

The additional equality nA
.
= nC is needed to couple the input variables of the

abstract and the concrete program. Even though the semantics of the input value is
not refined between A and C, the two variables must be different by the disjointness
requirement. By assuming their equality they are semantically made equal again. It
is an often occurring phenomenon that the refined algorithm shares some variables
with the abstract program. We then assume that there are two copies of the variables
and that equality between them is assumed, like we have done here.

The refinement proof obligation ψinsert → [Cinsert]⟨Ainsert⟩ψinsert for this data refine-
ment can be discharged using the ivil verification tool with one interaction instantiat-
ing a set rule.

The example can be taken one step further using an algorithmic refinement which
transforms the existential quantifier in the condition of the if statement of Cinsert
into a loop to scan for the first relevant entry. The resulting program Iinsert (for
implementation) is
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IVIL – Iinsert

1 iI := 0;
2 while iI < seqLen(lI)
3 inv 0 ≤ iI ≤ seqLen(lI) ∧ (∀j. 0 ≤ j < iI →¬seqGet(lI , j) .

= nI)
4 var seqLen(lI)− iI
5 do
6 if seqGet(lI , iI)

.
= nI

7 then
8 return
9 end;

10 iI := iI + 1
11 end;
12

13 lI := seqAppend(lI ,nI)

IVIL – 5.3

In addition to the program variables nI : nat and lI : seq(nat) inherited from Cinsert,
the program Iinsert introduces a loop counter variable iI : nat. The coupling predicate
for this refinement is obvious: Since no data is refined, equality is to be assumed:
nC

.
= nI ∧ lC

.
= lI . The variable iI has no counterpart in Cinsert, and thus does not occur

in the coupling predicate.
Program Iinsert is less comprehensible in comparison to its predecessors Ainsert and

Cinsert. The shorter program Cinsert is an example of a functional specification which
is not given as a postcondition but in form of a program itself. The small program is
at least as good a specification for Iinsert as a postcondition involving a conditional
expression would be.

This program is also an example of a non-strictly structurally composed program.
The return statement in line 8 abruptly terminates the program from within the loop.
Using a purely structural while language or regular programs, this would have to
be paraphrased differently. The translation of the return statement in UDL is an end
statement which may appear at any point in the statement list.

The loop invariant and variant annotated in lines 3 and 4 allow the verifier ivil
to discharge the refinement proof obligation automatically. In Section 5.5.2, we will
come back to the example by refining the short algorithm to a Java method.

5.3.2 More than one Coupling Predicate

With declarative languages like Z, B or Event-B, refinement is often used to model the
behaviour of reactive systems in which a sequence of operations (or events) sequentially
modify the system state. The formal connection between an abstract and a concrete
state description does not depend on the operation which has been performed and
should be the same relation before and after any operation. The coupling relation is
an invariant of the refinement.
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For the verification of algorithms using refinement, this is different: The notion
of which states are considered equivalent may differ considerably between the be-
ginning and the end of an algorithm. Before the algorithm, the input values need to
correspond between the abstraction and the implementation. After the executions,
the results need to correspond. The description of which states are related may have
changed.

Formally this is reflected by relaxing the refinement condition to rpre ; RC ⊆ RA ; rpost

for two relations rpre,rpost ∈ S2 instead of the one relation r in (5.2). The UDL proof
obligation then reads ψpre → [C]⟨A⟩ψpost with two different coupling predicates for
the pre- and the post-state. We call ψpre and ψpost the coupling precondition and coupling
postcondition.

5.3.3 Verification using Program Products

The refinement condition which we have considered so far is a special case of a
verification task in which not one but two programs are examined at a time. In
dynamic logic, these verification conditions follow the schematic form ψ → [P1]⟨P2⟩ψ
for two programs P1, P2 ∈ Π and a coupling predicate ψ ∈ Trmbool. The program
variables used in P1 and P2 are disjoint. The coupling formula ψ connects the states
of P1 and P2 in a problem specific manner.

Refinement is not the only verification challenge that can be formulated using
program products:

Information Flow Information flow analyses examine whether in a piece of code
information may flow from variables with a high security level to locations which
have a low security level. A program has an information leak if such a flow is possible.

To formalise this in dynamic logic, Darvas et al. (2005) propose to compose two
copies of the same program P (so-called self composition) to show that P has no illegal
information flow. The coupling formula used for this case is the equality over all
program variables L ⊆ PVar which are considered to be of a low security level. The
formula to express the partial information flow security in dynamic logic is∧

l∈L

l .
= l′ → [P]⟨P′⟩

∧
l∈L

l .
= l′ . (5.7)

P′ is a copy of P in which all occurrences of program variables have been replaced
by their primed version. The partial verification condition has the theoretical leak
that P might terminate for one high input and not terminate for another high input
thus leaking information. In the literature, self composition is often described as the
combination [P][P′] of modalities, or equivalently as [P ; P′]. This is the same proof
obligation for a deterministic program P. For an indeterministic program, condi-
tion (5.7) still makes sense: It requires that the set of indeterministically achievable
value constellations for the low variables l be the same regardless of the values of the



146 CHAPTER 5 ALGORITHM REFINEMENT

high input variables. This does not incorporate the probabilistic distribution of the
values but only their theoretical reachability.

Scheben and Schmitt (2011) apply the self-compositional approach to dynamic
logic for the full Java language.

Program Equivalence If only small changes are made to a piece of code, ensuring
that its behaviour has not changed may be important. In a safety-critical situation,
formal evidence that the semantics of a program has not changed, may complement
or replace regression testing. In dependence on this established technique, the
formal proof of program equivalence is called a regression verification. The original
implementation serves here as a specification in this situation as it precisely describes
how the system should behave.

The change made to the code needs not be made manually. Verifying the result of a
code optimisation (unrolling of loops, code alignment, etc.) as it may appear within an
optimising compiler is another use case of program equivalence proof obligations.

Like information flow, program equivalence is a special case of algorithmic refine-
ment: The data structures and the language are the same, only the program texts
evolves. The verification condition hence reads∧

p∈PVar

p .
= p′ → [P]⟨Q′⟩

∧
p∈PVar

p .
= p′

for the original program P and the optimised implementation Q′ (in which all pro-
gram variables are primed). Again, the issue of termination is left aside in this
verification condition as the original problem may diverge where the optimised
terminates.

This approach with nested modalities is not suited to prove properties of two
concurrently executed interleaved programs even if it is another verification condition
with two programs. The difference is that they do not adhere to the disjointness of
the program variables and that they are decidedly assumed to interact. Beckert and
Klebanov (2013); Klebanov (2009) describe how this kind of program composition
can be dealt with in dynamic logic.

5.4 Synchronised Loops

Any non-trivial algorithmic description will contain a repetition structure of some
kind, either in form of a loop or of a recursive invocation of the same algorithm.
Repetition structures are always the difficult part in a verification process. They
cannot be simply expanded using symbolic execution if the number of iterations is
not bounded by a constant known a priori.

In Chapter 3, calculus rules for the treatment of loops have been devised for the
case of verification conditions with a single program formula. Of course, this very
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mechanism could also be applied if two nested program formulas are used like in
the refinement condition [C]⟨A⟩ψ. However, this would require that every loop
be fully annotated with a sufficiently strong loop invariant and a suitable variant.
The calculus for UDL could then be used to reduce the refinement proof obligation
to a verification condition in the underlying logic. This would always be possible
under the assumption that one can formulate a sufficiently strong loop invariant
for every program. But the enormous disadvantage of this proceeding would be
that the coupling between the two abstraction levels is never exploited. Following
the idea of separation of concerns from Section 5.1, it would be appreciated if the
concrete program need not be annotated with a loop invariant. The invariant should
be automatically induced from the abstract level by the coupling relation.

We assume now that the abstract program and its refinement have a structural re-
semblance; after all, they represent the same procedure on different abstraction levels.
It is therefore safe to assume that their program flows follow similar patterns. For
instance, if a branching condition is reached in both programs, always corresponding
branches are taken if the program resemble each other. In particular it seems sensible
that every abstract loop corresponds to one loop in the implementation. The loops
correspond in the sense that every iteration in the concrete world corresponds to
precisely one loop iteration on the abstract level modulo a coupling predicate. We
call a pair of thus coupled loops synchronised.

The first definition for synchronised loops operates on structured while loops
instead of their unstructured counterpart to bring out the intuition behind the defini-
tion.

Definition 5.1 (Synchronised loops) Two loops

while cndA do bodyA end and while cndC do bodyC end

are called synchronised modulo the coupling predicate ψ if

ψ ∧ cndA ∧ cndC → [bodyC]⟨bodyA⟩(ψ ∧ (cndC ↔ cndA)) .

is a valid formula.

If the programs are deterministic, this means that the coupling predicate is a loop
invariant for the consecutive execution of the two loop bodies. Therefore we call ψ
in these cases a coupling invariant. Moreover, the equivalence of the loop conditions
cndC ↔ cndA is also a loop invariant.

Consider for example the small program (a) in Figure 5.1 which takes one value
n1 : nat and computes the factorial f1 = n1! iterating the numbers from 1 to n with
the counter variable k1. The program in (b) performs the same computation as (a):
Given the coupling predicate n1

.
= n2 in the pre-state, the coupling predicate in the

post-state therefore is f1
.
= f2. However, the counter in (b) does not start at 1 but at 0.

To compensate, the value k2 + 1 is used as the factor instead of k2 in line 4 of (b), and
the condition in line 3 is stricter. The loops in (a) and (b) are obviously synchronised
modulo the coupling invariant ψa-b = ( f1

.
= f2 ∧ k1

.
= k2 + 1).
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Are the loops in (a) and (c) also synchronised? The third program computes the
factorial f3

.
= n3! as well, but its counter k3 decreases from n3 to 1. The intermediate

results in f1 and f3 during the course of the algorithm differ considerably even though
their values are equal in the end. Yet, there is a coupling invariant

ψa-c = ( f1 ·
n1!

(k1 − 1)!
.
= f3 · k3!) ∧ k1 + k3

.
= n1 + 1

modulo which (a) and (c) are synchronised. This invariant uses the fact that the
“missing factors” of fi to ni! can be expressed using ki in both cases. While the
synchronisation between (a) and (b) is obvious and intuitive, programs (a) and (c)
are synchronised in a far less obvious way and the coupling has a more technical
character. The loops are synchronised but in a far less natural way. Situations like the
latter synchronisation do not usually occur in algorithmic refinements as this would
mean that the structure of a loop would be fundamentally revised in a refinement
step. Normally, refinements are devised in such a manner that the steps build on one
another and do not contradict each other so severely.

Assuming for the fourth variant that n4 is even, program (d) is equivalent to (a).
Its loop performs two loop bodies of (a) at a time. For any even input value, program
(a) will need twice as many loop iterations as (d). The loops cannot be synchronised.

1 k1 := 1;
2 f1 := 1;
3 while k1 <= n1 do
4 f1 := f1 * k1;
5 k1 := k1 + 1
6 end

(a) Counter from 1

k2 := 0;
f2 := 1;
while k2 < n do

f2 := f2*(k2+1);
k2 := k2 + 1

end

(b) Counter from 0

k3 := n3;
f3 := 1;
while k3 > 0 do

f3 := f3 * k3;
k3 := k3 - 1

end

(c) Decreasing counter

k4 := 1;
f4 := 1;
while k4 <= n do

f4 := f4*k4*(k4+1);
k4 := k4 + 2

end

(d) Double step

Figure 5.1: Example for synchronised loops: Computing factorials

We will in the next section concentrate on synchronised loops since they capture
the idea of separation of concern best. They only require that coupling invariants
be specified. While synchronisation between loops simplifies refinement a lot, it is
not a requirement. If loops are not synchronised or if their coupling invariant is too
complicated or impossible to state, the approach with individual loop invariants can
also be performed. If more than one loop is involved, they are handled separatedly
and can be treated differently. The approach is flexible enough.

Synchronised loops play a less prominent role in the other kinds of product pro-
gram verification conditions presented in Section 5.3.3: For information-flow analyses,
every path must be considered, loops in which the loop condition depends on vari-
ables with high security level are not necessarily synchronised with themselves8.

8that is, of course, with a copy of themselves to keep the program variables separate.
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It is a core business of compiler optimisation to partially unroll loops for various
performance reasons. Proving program equivalence in the face of such optimisations
requires the flexibility that only a number of loop iterations are synchronised and
others are not. While it would be theoretically possible to generalise the presented
approach to such cases, we leave this aside here.

5.4.1 Synchronised Refinement for Dynamic Logic

After the introduction to synchronised loops, we will now search for suitable sequent
calculus rules to deal with them. Before turning our attention to the case of unstruc-
tured dynamic logic, some preparatory thoughts on structured dynamic logic set the
stage.

The inference rules for loop invariants in structured dynamic logic base on the
induction rule

ψ ⊢ [α]ψ

ψ ⊢ [α*]ψ

which says that an invariant formula ψ maintained by a program α for all possible
executions is also maintained by a repetition of α. A similar sound rule exists for
loops in program products.

Observation 5.4 (Synchronised structured refinement) Let α and β be regular pro-
grams for structured dynamic logic with disjoint program variables. If α refines β modulo the
coupling predicate ψ, then this is also the case for the repeated executions of α and β. The rule

PVar(α) ∩ PVar(β) = ∅ =⇒ ψ ⊢ [α]⟨β⟩ψ
ψ ⊢ [α*]⟨β*⟩ψ

is sound.

This rule over the composition of two programs is only sound if the program variables
involved in α and β are disjoint. This requirement is indeed necessary as the following
shows: x .

= 2 → [x := x − 1]⟨x := x + x⟩(x .
= 2) is a valid formula and the two

programs share the variable x : nat. If the first program (x := x − 1) is executed twice,
x .
= 0 will hold in the post-state. No repetition of the second program (x := x + x) can

ever establish the invariant x .
= 2 again. The conclusion does not hold.

The rule is sound if the used program variables are disjoint and we will briefly
sketch why. By n-fold iteration of the premiss ψ ⊢ [α]⟨β⟩ψ we also know that ψ ⊢
([α]⟨β⟩)n ψ for any n ∈ N. Since the variable sets of the programs do not overlap,
the implication ⟨β⟩[α]ψ → [α]⟨β⟩ψ is valid and can be used to reorder the modal
operators in ψ ⊢ ([α]⟨β⟩)nψ to ψ ⊢ [α]n⟨β⟩nψ. This is now evidence for the claim since
for any number of repetitions of α there is a number of repetitions of β (namely the
same number) such that the invariant ψ is reached.

The same rule with the modalities exchanged is not sound. The validity of
ψ → ⟨α⟩[β]ψ does not imply the validity of ψ → ⟨α*⟩[β*]ψ. As a counter exam-
ple consider α = (havoc xα) and β = (xβ := xβ + 1) with ψ = xα

.
= xβ. Obviously
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ψ → ⟨α⟩[β]ψ is valid (it reduces to (∃vnat.v .
= xβ + 1)) while ψ → ⟨α*⟩[β*]ψ (equiva-

lent to (∃vnat.∀cnat.v .
= xβ + c)) is unsatisfiable.

We now turn again to the while programs mentioned in Definition 5.1. Their
translations into regular programs are as follows:

while cndC do bodyC end = (cndC? ; bodyC)
* ; ¬cndC?

while cndA do bodyA end = (cndA? ; bodyA)
* ; ¬cndA?

The programs contain the repetition operator *, and we can hence apply Observa-
tion 5.4 to them. The refinement rule shows that synchronised loops always are in a
refinement relationship.

Observation 5.5 (Refinement of synchronised loops) For two while-loops which are
synchronised modulo a coupling invariant ψ ∈ Trmbool as defined in Definition 5.1, the
concrete loop program refines the abstract modulo the coupling predicate ψ∧ (cndA ↔ cndC).

This observation implies that it suffices to prove for a refinement verification condi-
tion that all involved loops are pairwise synchronised. If all loops are synchronised, it
is not necessary to come up with loop invariants for the loops in the concrete program
if coupling invariants can be stated which may be significantly simpler.

PROOF Let ψ′ := ψ ∧ (cndA ↔ cndC), α = cndC? ; bodyC and β = cndA? ; bodyA. The
formula

ψ′ → [cndC?]⟨cnd′A?⟩ψ′ (5.8)

is valid since it is equivalent to the tautology ψ′ → (cndC → (cndA ∧ ψ′)) in which
the assumptions have been symbolically executed. Using this expansion also for α
and β, it is easy to see that the condition

ψ ∧ cndA ∧ cndC → [bodyC]⟨bodyA⟩ψ′

of Definition 5.1 is equivalent to the formula ψ′ → [α]⟨β⟩ψ′. By Observation 5.4, this
implies also the validity of ψ′ → [α*]⟨β*⟩ψ′. Combining this result with (5.8) gives
ψ′ → [α*]⟨β*⟩[cndC?]⟨cndA?⟩ψ′. Since the programs do not share program variables
by assumption, the valid implication ⟨β*⟩[cndC?]ϕ → [cndC?]⟨β*⟩ϕ (for any condition
ϕ) allows us to reorder the modal operators such that we have that the loops are in
the refinement relationship: ψ′ → [α* ; cndC?]⟨β* ; cndA?⟩ψ′

�

5.4.2 A Synchronised Refinement Rule for UDL

The loop invariant inference rules presented in Section 3.3 allow the verification of
programs with loops by introducing invariant split points at which a loop invariant
predicate needs to hold whenever it is visited. The rules translate the loop invariant
rule from structured to unstructured logic. The control flow of the unstructured
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mA

mC

C

A

assume ψpre assert ψpost

(a) Original programs A and C

mA

mCend

end

C’

A’

assume ψpre assert ψinvassume ψinvassert ψinv

(b) Modified programs A′ and C′

Figure 5.2: Informal description of the modification of UDL programs for refinement
with marks



152 CHAPTER 5 ALGORITHM REFINEMENT

program is thus broken up at one point such that the program control graph is made
cycle-free. Figure 3.3 schematically depicts how a cycle in a program is suspended by
the use of a loop invariant.

The idea of using an invariant split point to remove cycles can be transferred from
the case with a single program to the situation that not one but the composition of
two programs is examined. A synchronisation point consists of two corresponding
indices in the refined program and its refinement. Corresponding in this context
means that we can provide a coupling predicate between the abstract and concrete
states which holds whenever the two programs reach their respective corresponding
index.

Figure 5.2 transfers the intuition shown in Figure 3.3 onto the case with two
composed programs. Both programs are sketched as finite automata. The composed
program can then be thought of as the product automaton of C (above the dotted line)
and A (below the line). Figure 5.2a shows the original refinement proof obligation:
In the beginning, the coupling predicate ψpre is assumed and for every run of the
automaton for C, a corresponding run must be found for the automaton A such that
ψpost holds in the end.

To resolve the cycles in both programs simultaneously using a common invariant,
we identify two indices mA,mC ∈ N into the programs A and C which are both
within the cycle of their respective loop and between which we can establish a formal
refinement relationship in form of a coupling invariant ψinv. The two programs are
then modified in such a manner that the control flow stops whenever mA or mC are
reached. Instead of continuing, it is ensured that the corresponding index in the other
automaton has been reached, and that ψinv holds, too, in the after-state. Like in the
single-program loop invariant case, the programs are then also started in the marked
indices with initial state (mC,mA) under the assumption of ψinv. If both program
executions reach an end statement, the post-state coupling predicate ψpost must hold.
Figure 5.2b schematically sketches how the programs A′ and C’ which result from A
and C are organised after their modification. The cycles in both programs have been
discontinued. Instead of one condition over cyclic conditions, two initial states must
be considered in the modified environment.

For the implementation of this program modification with the means of UDL, we
use the statement injection operator 2 introduced in Definition 3.3. It is necessary to
remember whether the split indices mC and mA have been reached or whether the
program terminated because it reached an end statement in the original code. The
point of termination is encoded in two fresh program variables MA, MC : nat. They
are used to store the nature of the programs’ termination. They hold the value 1 if
the synchronisation point has been reached and 0 in case of reaching a regular end
statement.

Theorem 5.6 (Synchronised loop invariant rule) Let A,C ∈ Π be self-contained
assertion-free UDL programs with PV(A) ∩ PV(C) = ∅, 0 ≤ mA < |A|,0 ≤ mC < |C|
indices into the programs, MA, MC : nat fresh program variables which do not occur in the
conclusion, ψpost,ψinv ∈ Trmbool formulas without free variables.
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Then the sequent calculus inference rule

Γ ⊢ {𝒰}ψinv, ∆ ψinv ⊢ {MA := 0 ‖ MC := 0}[mC + 2;C′]⟨mA + 2; A′⟩Ψ
Γ ⊢ {𝒰}[mC;C]⟨mA; A⟩ψpost, ∆

with

Ψ = (MA
.
= MC) ∧ (MA

.
= 0 → ψpost) ∧ (MA

.
= 1 → ψinv),

C′ = C 2mC (MC := 1;end) and
A′ = A 2mA (MA := 1;end)

is sound.

The idea behind the proof of this theorem is that the premisses ensure that every
loop iteration from mC to mC in C induces an according loop from mA to mA in A. The
coupling loop invariant ψinv binds the abstract and concrete state together after each
loop iteration. The first premiss of the rule ensures that the coupling loop invariant
holds in the beginning.

PROOF We may without loss of generality assume that ∆ = ∅. Let I be an interpreta-
tion with I |= ∧

Γ and I1 := I𝒰 the interpretation with the update 𝒰 applied. Further-
more, assume there is a successful trace (I1,mC), . . . , (I3,kC) of C with C[kC] = end.
The trace may visit statement C[mC] several times since it may lie within a loop. We
use induction over the number N of states in the trace which visit C[mC] (that is,
the number of loop iterations) to show that there is a trace (I3,mA), . . . , (I4,kA) with
A[kA] = end and I4 |= ψpost.

N = 1 : The trace (I1,mC), . . . , (I3,kC) has no loop which goes through mC and the
trace ends with C[kC] = end. By Obs. 3.4, there is a corresponding trace (IC,mC +
2), . . . , (I3,k′C) of C′ with C′[k′C] = end. We have that I1 |= ψinv by the first premiss
and thus that I3 |= ⟨mA + 2; A′⟩Ψ by the second premiss. That means there must be
a trace (I3,mA + 2), . . . , (I4,k′A) with I4 |= Ψ, which implies I4(MA) = I4(MC). But
the trace for C′ could not pass through a statement changing MC (this would imply
a loop involving mC). Therefore, I4(MC) = I4(MA) = 0, and the abstract program
terminates in a statement with A′[k′A] = end and I4 |= ψpost. By Obs. 3.5, there is a
corresponding trace (I3,mA + 2), . . . , (I4,kA) with A[k4] = end for A.

The induction step is schematically sketched in Figure 5.3. Programs can only
modify the part of state which belongs to their respective program variables. We
hence restrict the presentation of the states to the part of the interpreting function
responsible for the respective program. The rigidly interpreted I0 is constant. The
state for the complementary program can be varied, the sequence of states remains a
trace, see also Obs. 5.1.

N > 1 : There is at least one loop iteration from mC to mC. Let (I2|C,mC) be the
first occurrence of mC in the trace after I1. The partial trace (I1|C,mC), . . . , (I2|C,mC)
then has the required properties of Obs. 3.4 and there exists a partial trace (I1|C,mC +
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2), . . . , (I2|C,mC) of C′ which will lead by one more execution step to the successful

trace (I1|C,mc + 2), . . . , (I[1]2|C,mC + 1) for I[1]2|C := I2|C[MC ↦�1]. By the second premiss,

it must be that I0 + I1|A + I[1]2|C |= ⟨mA + 2; A′⟩Ψ, i.e., there is a trace T′
1 := (I1|A,mA +

2), . . . , (I2|A,mA + 1) for A′ with I0 + I2|A + I2|C |= Ψ. This trace must end in mA + 1
as the only manipulation of MA ensuring I2|A(MA) = I2|C(MC) = 1 is at A′[mA]. But
then I2 |= ψinv.

The remaining trace (I2|C,mc), . . . , (I3|C,kC) has now only N − 1 loop iterations and
I2 |= ψinv. By induction hypothesis, there exists a trace T2 := (I2|A,mA), . . . , (I3|A,kA)
such that I0 + I3|A + I3|C |= ψpost.

The trace T′
1 for A′ gives rise to a partial trace T1 := (I1|A,mA), . . . , (I2|A,mA) of

A according to Obs. 3.5. The parts T1 and T2 can be concatenated to obtain a trace
(I1|A,mA), . . . , (I3|A,kA) for A. By defining I4 := I0 + I3|A + I3|C we have found the
sought trace for A with I4 |= ψpost. �

mC mC kC

end

I1 I2 I3

mC + 2 mC mC k′C

MC :=1end end

I1|C I2|C I[1]2|C I2|C I3|C

mA + 2 mA mA k′A

MA :=1end end

I1|A I2|A I[1]2|A I2|A I3|A

mA mA kA

end

I3 I4

T1 T2

ψinv by premiss 1 Ψ by premiss 2 ψinv ψpostby induction hypothesis

Trace for C:

Traces for C′:

Traces for A′:

Trace for A:

Figure 5.3: Visualisation of the induction step for the proof of Thm. 5.6



5.4 SYNCHRONISED LOOPS 155

5.4.3 Improved Synchronised Refinement Rules

While Theorem 5.6 already allows the verification of refinement proof obligations
using a coupling invariant, there is still room for improvement to obtain rules which
are better suited for the application in practice. Section 3.3.5 covers a similar challenge
in the context of single-program invariant rules. One rule for the treatment of loop
invariants has been presented as Theorem 3.8 which allowed retaining information
from the context Γ, ∆ and 𝒰 not changed within the loop for the step case.

The context may contain additional information which is needed to conduct the
proof. This information could be added to the invariant and thereby made available,
but a relatively small adaption of the rule relieves us from the obligation to identify
this information by retaining as much as possible of the original context. This can
be achieved by anonymising the program variables modified within the loop body.
The same technique used in Theorem 3.8 can be applied here using a reachability
analysis for both programs. The goal is to relax the second premiss in the last theorem
to a sequent in which the context is preserved and is structured like Γ,𝒰ψinv ⊢
𝒰{...}[...]⟨...⟩Ψ,∆.

However, this relaxed sequent would give an unsound rule variation as some
program variables used in the context may have been changed in the course of the
program and some propositions in the context may not hold any longer in some
intermediate state. For the improved rule to be sound, the variables which are under
the influence of assignments and havoc statements within the loop under inspection
must have their value deleted using an additional update 𝒱 which assigns to every
modified program variable p the value of a fresh uninterpreted function symbol p′.
Variables which are not touched in the loop may keep their respective values from
before the loop and the propositions of the context applies to them.

In the theorem for the improved refinement rule, we come back to Definition 3.4
from Section 3.3.4 where the set mod(n,π) ⊆ PVar has been defined as the set of all
program variables which may be assigned to during the course of a loop iteration
from π[n] to π[n]. The rule requires that the set of program variables changed in the
course of the inspected loops in A and C be computed. The modification sets for the
programs can be computed by two independent simple static code analyses.

Observation 5.7 (Improved synchronised loop invariant rule) Let the requirements
of Theorem 5.6 hold. Additionally, let the finite set {p1, . . . , pr} with mod(mc,C) ∪
mod(mA, A) ⊆ {p1, . . . , pr} ⊆ PVar approximate the variables which are modified in the
loops of A and C. p′1, . . . , p′r denote fresh constant function symbols of the same types as
p1, . . . , pr which do not occur in the conclusion, 𝒱 := {p1 := p′1 ‖ . . . ‖ pr := p′r}.

Then the sequent calculus inference rule

Γ ⊢{𝒰}ψinv, ∆
Γ,{𝒰 ‖ 𝒱}ψinv ⊢{𝒰 ‖ 𝒱 ‖ MA := 0 ‖ MC := 0}[mC + 2;C′]⟨mA + 2; A′⟩Ψ,∆

Γ ⊢ {𝒰}[mC;C]⟨mA; A⟩ψpost, ∆

with Ψ, C′ and A′ like in Theorem 5.6 is sound.
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PROOF In the proof of Theorem 5.6, the second premiss is only applied to states
which have evolved from the initially considered interpretation I with I |= Γ. It
suffices to show that the validity of the modified second premiss implies that the
original second premiss holds in these reachable states.

Let I′ be a state which is reachable via symbolic execution of A and C from I𝒰

and let I′′ := I[p′1 ↦� I′(p1)] . . . [p′r ↦� I′(pr)]. The second premiss is assumed valid,
therefore it holds in I′′ which coincides with I on all symbols but the newly introduced
anonymisation symbols p′i. Due to the assumptions that ∆ = ∅ and I |= ∧

Γ in the
previous proof, it must be that I′′ |= ∧

Γ, too, and I′′ |= {𝒰 ‖ 𝒱}ψinv ⊢ {𝒰 ‖ 𝒱 ‖ MA :=
0 ‖ MC := 0}[mC + 2;C′]⟨mA + 2; A′⟩Ψ. This is equivalent to I′′𝒰‖𝒱 |= ψinv ⊢ {MA :=
0 ‖ MC := 0}[mC + 2;C′]⟨mA + 2; A′⟩Ψ, the second premiss in Theorem 5.6.

It remains to be shown that the interpretation I′′𝒰‖𝒱 is equal to I′: By construction,
the possibly modified symbols pi are equal as update 𝒱 ensures that I′′𝒰‖𝒱 (pi) =
I′′(p′i) = I′(pi). Any other symbol s cannot have been changed by the programs and
has the value I𝒰 (s) it had the beginning of the trace: I′(s) = I𝒰 (s). The symbols s
is not amongst the program variables anonymised in 𝒱 such that I′′𝒰‖𝒱 (s) = I𝒰 (s)
holds. Thus we have shown that I′ fulfils the second premiss of the original rule: We
can safely apply the proof of Theorem 5.6 to show correctness of this rule. �

The verification of a refinement step can also be used to simultaneously show
termination of the algorithm. The proof obligation is in this case formulated using
the terminating modality JCK instead of the partial [C]. A variant expression whose
value is decreased in every loop iteration has to be specified as a witness for the
termination.

Like in Theorem 3.7 in the case of single program conditions, the value of the
variant is stored in a fresh program variable nc before the loop iteration, and var ≺ nc
must hold after each loop iteration.

Observation 5.8 (Synchronised loops with termination) Let the requirements of The-
orem 5.6 hold. Additionally, let nc be a fresh program variable which do not occur in the
conclusion and var : Trmty(nc) a variable-free variant term.

Then the sequent calculus inference rule

Γ ⊢{𝒰}ψinv, ∆
ψinv ⊢{MA := 0 ‖ MC := 0 ‖ nc := var}JmC + 2;C′K⟨mA + 2; A′⟩Ψ≺

Γ ⊢ {𝒰}JmC;CK⟨mA; A⟩ψpost, ∆

with C′ and A′ as above and

Ψ≺ = Ψ ∧ (MA
.
= 1 → var ≺ nc),

is sound.
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PROOF The program formula in the conclusion is equivalent to the conjunction
Jmc;CKtrue ∧ [mC;C]⟨mA; A⟩ψpost. The second conjunct is a conclusion of the pre-
misses as we have already seen in Theorem 5.6 (The second premiss here implies the
second premiss of Thm. 5.6). Only the termination JmC;CK remains to be shown. The
argument is an alteration of the one for Theorem 3.7.

Assume that there is an infinite trace (I1,mC), . . . , (I2,mC), . . . , (I3,mC), . . . of C
which can be partitioned into partial traces from mC to mC. Each loop synchro-
nisation point is evaluated in an interpretation with I |= ψinv. By assumption 2 (which
uses J·K) none of these partial traces can be infinite themselves, thus, there must
be infinitely many repetitions of mC to constitute the infinite trace. The sequence
(valI1(var),valI2(var),valI3(var), . . .) must be infinite. Due to the added variant re-
duction condition in Ψ≺, the chain must be strictly decreasing. But this cannot be as
there is no infinite strictly decreasing chain for ≺. �

This rule is helpful if the termination of the algorithm is to be shown during
the refinement process. But termination may already have been proved for the
abstract program A prior to its formal refinement. It may be part of the functional
specification and verification of algorithm A. In such situations, there seems to be
no need to provide another termination argument during refinement; the refined
program should inherently be terminating as well. This is indeed the case, and we
can adapt the rule from Theorem 5.6 for total correctness if we require one additional
premiss.

Theorem 5.9 (Synchronised loops with inherited termination) Let the requirements
of Theorem 5.6 hold. Then the rule

Γ ⊢ {𝒰}JmA; AKtrue, ∆
Γ ⊢ {𝒰}ψinv, ∆

ψinv ⊢ {MA := 0 ‖ MC := 0}JmC + 2;C′K⟨mA + 2; A′⟩Ψ

Γ ⊢ {𝒰}JmC;CK⟨mA; A⟩ψpost, ∆

with Ψ, C′ and A′ as in Theorem 5.6 is sound.

In contrast to the rule for [·], this inference rule requires that termination of A is
known. This is represented by the premiss Γ |= {𝒰}JmA; AKtrue,∆ in the antecedent
of the conclusion. This property may be known as a consequence from another proof
of a functional property.

PROOF Let ∆ = ∅ and I with I |= ∧
Γ. Assume we had an infinite trace (I𝒰 ,mC), . . .,

(I1,mC), . . . , (I2,mC), . . . for C. Due to the premisses, this trace must visit statement
C′[mC] infinitely often. Otherwise the last subtrace from the synchronisation point
mC onwards would be infinite which contradicts the third premiss which uses the
terminating modality.
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But also by the third premiss, each of the partial traces from mC to mC in C in-
duces a corresponding partial trace from mA to mA of program A. Putting together
these partial traces for A results in an infinite trace for A starting in I𝒰 which is a
contradiction with the added first premiss. �

This rule needs the termination of A begun at index mA. Usually termination will
have been shown for A from the beginning of the program not from an intermediate
proof state. We will use the result of Theorem 5.9 for the terminating variant of the
next, more powerful rule which requires termination of A started at its beginning.

5.4.4 A Refinement Rule with Multiple Synchronisation Points

The most important improvement of the synchronised loop treatment showed up
in practice when doing refinement proofs. Applying all program modifications as
the first step in the proof turned out to be superior to interjecting execution and
splitting of the program. A single rule application is easier to apply and introduces
less management overhead in the proof obligations. Also the symbolic execution
does not need to synchronise the two programs and inhibit symbolic execution for
one program to wait for the other party to arrive at the synchronisation point.

If several synchronisation points are specified, the control flow is broken up accord-
ingly and simultaneously for all points. The rule has as many premisses as there are
synchronisation points (plus one for the initial case, and another one if termination is
considered).

Theorem 5.10 (Synchronised multi-loop invariant rule) Let A,C ∈ Π be
self-contained assertion-free programs with PVar(A) ∩ PVar(C) = ∅, 0 ≤ m1

A < m2
A <

. . . < mN
A < |A|, 0 ≤ m1

C < m2
C < . . . < mN

A < |C| indices into the programs, MA, MC : nat
fresh program variables which do not occur in the conclusion, ψpost,ψ1

inv, . . . ψN
inv ∈ Trmbool

formulas without free variables.

Then the sequent calculus inference rules

Γ ⊢ {𝒰}{MA := 0 ‖ MC := 0}[C′]⟨A′⟩Ψ, ∆
ψ1

inv ⊢ {MA := 0 ‖ MC := 0}[m1
C+2;C′]⟨m1

A + 2; A′⟩Ψ
...

ψN
inv ⊢ {MA := 0 ‖ MC := 0}[mN

C + 2N;C′]⟨mN
A + 2N; A′⟩Ψ

Γ ⊢ {𝒰}[C]⟨A⟩ψpost, ∆
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and

Γ ⊢ {𝒰}JAKtrue, ∆
Γ ⊢ {𝒰}{MA := 0 ‖ MC := 0}JC′K⟨A′⟩Ψ, ∆

ψ1
inv ⊢ {MA := 0 ‖ MC := 0}Jm1

C+2;C′K⟨m1
A + 2; A′⟩Ψ

...
ψN

inv ⊢ {MA := 0 ‖ MC := 0}JmN
C + 2N;C′K⟨mN

A + 2N; A′⟩Ψ
Γ ⊢ {𝒰}JCK⟨A⟩ψpost, ∆

with

Ψ = (MA
.
= MC) ∧ (MA

.
= 0 → ψpost) ∧

N∧
i=1

(MA
.
= i → ψi

inv),

C′ = C 2mN
C
(MC := N;end) 2mN−1

C
(MC := N − 1;end) 2mN−2

C
. . . 2m1

C
(MC := 1;end)

A′ = A 2mN
A
(MA := N;end)2mN−1

A
(MA := N − 1;end) 2mN−2

A
. . .2m1

A
(MA := 1;end)

are sound.

In contrast to the rules introduced so far, this rule is not applied upon reaching the
synchronisation points by symbolic execution but prior to doing any execution steps.
This has the advantage that no synchronisation is needed between the symbolic exe-
cutions of A and C, the automation can be applied without modification. Accordingly,
the first premiss also contains a program formula unlike in earlier invariant rules to
reach the first synchronisation point.

PROOF A detailed proof is omitted here as it follows the same lines as that for
Theorem 5.6 but is more technically elaborate.

If a trace for C does not visit any of the insertion points m1
C, . . . ,mN

C , the first premiss
ensures the existence of an according trace for A directly.

If the trace visits one or more synchronisation points, the inductive argument
applied earlier can be adapted. It must be canonically generalised a little since there
is not one but N synchronisation points of which one is used in the induction step.

That the terminating rule is sound can be shown using the argument from the proof
of Observation 5.8. If the there was an infinite trace for C, then the premisses would
allow the construction of a corresponding infinite trace for A which cannot be due to
the first premiss requiring that there is no infinite trace for A in the given context. �

The inference rule with multiple synchronisation points explains why MA and MC
were modelled as natural numbers. In Theorem 5.6, boolean flags with only two
possible values would have sufficed, but with N disjoint exit options to distinguish,
natural numbers model this more concisely. The assignments to MC and MA ensure
that the traces always go side-by-side. For every synchronisation point C[mi

C] visited
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by the trace of C, the trace of A must visit A[mi
A] for the same index i or the postfixed

condition Ψ cannot hold.
In the previous rules, the synchronisation point at which the program had to be

modified was implicitly given by the current indices in the conclusion. This is no
longer the case for the multi-split rules. The indices for which the splits should be
applied are parameters to the rule since they do not occur in the conclusion. The
rules have an additional degree of freedom in this respect.

To make the rule usable in a more automatic fashion, we add autoactive annotations
to both the abstract program A and its refinement C. The annotations are synchro-
nisation markers which can be annotated to the statements in programs without
changing their semantics. Each marker carries a natural number indicating the value
for MA (or MC) to be assigned at this point. For the annotations to be wellformed, it
is necessary that the set of annotated markers is the same for both programs and that
every number occurs at most once in a marker in a program. The invariants ψi for
the used synchronisation markers are stated in a table.

The example which follows next demonstrates on a small example how the syn-
chronised loop splitting can be used to prove a refinement proof obligation.

5.4.5 Example: Summation

The small example code to demonstrate the invariant rules for synchronised loops
computes the sum of a finite set of integers. The abstract program has a program
variable sA : set(int) for the set. The simple summation algorithm takes an element
out of that set, removes it from the set and adds it to the interim sum sumA : int. This
is repeated until the set is empty.

Similar to the process in Section 5.3.1, this program is then subjected to a data
refinement using a more implementation-friendly data-structure, namely sequences
instead of sets. The set variable is refined by the program variable lC : seq(int) holding
a sequence of integer values. The refined algorithm uses an iteration variable iC : nat
to iterate over the indices into the sequence. Each value seqGet(lC, iC) within the
sequence is then added to the sum sumC : int.

Both programs are formulated in pseudocode. We present the abstract program
Asum and concrete Csum side by side in the following listing:

PSEUDOCODE
1 sumA := 0;
2 while ¬sA

.
= {} do

3 choose xA such that xA ∈ sA;
4 sA := sA \ {xA};
5 mark 1; . . . . . . . . . . . . . . . .
6 sumA := sumA + xA;
7

8 end

sumC := 0;
iC := 0;
while iC < seqLen(lC) do

mark 1;
sumC := sumC + seqGet(lC,iC);
iC := iC + 1

end
PSEUDOCODE
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It is important to observe that the algorithm in both programs follows the same
general idea, and that their loops are synchronised. While in the abstract description
an arbitrary value may be taken from the set, the order of the summed values in the
refined program is fixed by the order of the values in the sequence. But the order in
Csum is backed up by the indeterministic choice in Asum such that the presented proof
method for synchronised programs can be applied.

Line 5 plays an important role in both programs as it marks the synchronisation
points which are needed to couple the two programs. They lie within the respective
loops of the programs such that breaking up the control flow at these points will
make the modified programs loop-free. No loop invariant needs to be annotated for
Csum, only a coupling invariant on the data structures must be found.

In the case of this example, a functional coupling predicate can be given. We can
even provide an explicit functional relationship by using the polymorphic functions
seqAsSet : seq(α)→ set(α) and seqSub : set(α)× int× int → set(α) The former denotes
the set of all components of the sequence while the latter describes the subsequence
of the first argument which starts at the second and ends at the third. For a formal
definition of the symbols see Appendix A.2.

The first refinement condition which comes to mind says that if set and sequence
are coupled in the beginning, the sums are equal in the end:

sA
.
= seqAsSet(lC)→ [Csum]⟨Asum⟩sumC

.
= sumA

But this proof obligation cannot and must not be discharged. The condition does not
describe a valid refinement. A counter example which could, for example, emerge
from an analysis of a failed interactive proof attempt reveals that a value may still
be present in the sequence even if it has been removed from the set: If a value is
contained in the sequence more than once, this is not reflected in the abstraction as a
set. The loops are no longer synchronised: Removing a value from the set does not
necessarily mean that it is also removed from the refined data structure.

Therefore, the coupling for the precondition must be strengthened and additionally
require that the sequence contains no duplicates. The refinement condition can now
be discharged. The formal definition of the refinement comes together with the
definitions of the two programs and reads as follows:

PSEUDOCODE REFINEMENT
1 refine Asum as Csum
2 requires sA

.
= seqAsSet(lC)∧

3 (∀k.∀j. 0 ≤ k < j < seqLen(lC)→¬seqGet(lC,k) .
= seqGet(lC, j))

4 ensures sumA
.
= sumC

5 mark 1 inv sumA
.
= sumC ∧ sA

.
= seqAsSet(seqSub(lC, iC,seqLen(lC)))∧

6 0 ≤ iC < seqLen(lC)
PSEUDOCODE REFINEMENT

There are three coupling predicates involved in the refinement: The coupling predi-
cate used as precondition line 2, the postcondition coupling in line 4 and the coupling
invariant for the synchronisation point in line 5.
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5.5 Refinement from Pseudocode to Java

Let us come back to the goal outlined in the first section of the chapter: Separation of
Concerns, that is, the verification of an algorithm implemented in a real programming
language with all its technical challenges by means of refinement. The refinement
tool developed in the last sections can now be used to achieve precisely this. We can
formally link a Java implementation to its abstract algorithm description.

The refinement step from the algorithmic description to the implementation crosses
a language border as one description is given as a Java method implementation while
the other is stated as an algorithm in pseudocode. Yet, the two languages have to be
formally coupled. We have described in detail in Section 4.4 that the execution state
of a Java program manifests itself in the program variables which represent the local
variables and method parameters and a special program variable capturing the entire
heap as a two-dimensional array. The pseudocode algorithm operates on its own set
of program variables which is disjoint from the ones available in Java. The predicate
logic provides the common ground to formulate coupling predicates between the
pseudocode level and the Java level.

For the refinement approach with dynamic logic, both algorithm formalisations
need to be combined within one verification condition. At this point, the intermediate
verification language proves particularly valuable. By reducing Java and pseudocode
algorithms to the same intermediate format, we are able to consider the two formu-
lations as two programs in the same language and do not need special constructs
which connect two different notions of symbolic execution.

5.5.1 Extracting Contracts from Refinement

An algorithm will usually not stand on its own but be embedded in a system context
in which it interacts with other parts of the software. For this reason, it is important
that the implemented algorithms have a formal contract which can then be used in
the verification even if the refinement model does not cover the entire system.

Refinement can be used to transfer proofs for properties of abstract descriptions to
contracts on the level of the implementation. The proof of the properties need not be
repeated on the implementational level. The refinement condition has been defined
such that every property of the abstract level is automatically one of the concrete
level, possibly modulo a coupling relation.

However, not every property of an implementation can be inherited from its
abstraction. There are aspects which are better shown on the implementation level
directly rather then synthesising them downwards from the abstract level. Exception
handling and framing properties concerning the memory footprint of code of the
implementation highly depend on the data structures and their implementations.
They are not part of the abstract model. These properties can and should be proved on
the concrete level directly without an additional refinement layer. Also, the absence
of unexpected runtime errors (like null pointer dereferencing, out of bounds accesses,
etc.) can and should be treated on that level directly. Showing functional safety in
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this sense may be as hard as full functional verification in some cases, but in practice,
technical issues can often be separated from the algorithmic complexity.

Let us assume that an abstract algorithmic description A ∈ Π is given as well as
its implementation J ∈ Π as a Java method, each translated to a UDL program. To
obtain a functional contract for the implementation through the formal refinement
from A to J, the following proof obligations must be discharged:

1. The technical functional safety is the part of the verification best performed on the
implementation directly:

pretech → [J]posttech (5.9)

The pair of technical pre- and postcondition pretech and posttech give a con-
tract for the program J directly. This also ensures that under the technical
precondition, no assertion of J ever fails.

If desired, termination of J can also be proved on the implementation directly;
in that case the modality JJK is to be used instead of [J] in the proof obligation.
Termination may be inherited from the abstract algorithm as has been shown in
Observation 5.8 such that the termination modality needs not be applied here
but may be used in (5.10) instead.

2. The algorithmic property
prealgo → JAKpostalgo (5.10)

must be shown to hold for the abstract algorithm. The verification can be made
on the abstract level solely ignorant of a later refinement step. Termination
suggests itself to be proved during this full functional algorithm verification of
the algorithm.

However, it may be that the abstract algorithm description does not necessarily
imply termination, but that the implementation always does terminate. Then
termination must be shown on J directly, and the weaker modality [A] can be
used in (5.10) instead of JAK.

3. The refinement condition modulo the coupling predicates ψpre and ψpost

ψpre → JJaf K⟨Aaf ⟩ψpost (5.11)

requires assertion-free variants Aaf and Jaf of A and J. We can safely remove9

the assertions from the programs as only cases in which we have shown that
assertions hold will be considered for the refined contract. In items 1 and 2
we have shown that, under the respective precondition, J and A do not violate
their embedded assertions.

If termination is proved on the implementation, it suffices to use the partial
modality [Jaf ].

9that is, replace every statement assert ϕ by skip.
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From the combination of these three verification conditions, a contract for the
implementation J can be extracted. The contract comprises a pre- and postcondition,
but not the other elements we had identified as elements for contracts in Section 4.4.6.
They are more of a technical nature and should be proved on the implementation
directly (for instance as part of the technical postcondition posttech). This also includes
the framing condition modJ describing the set of objects possibly modified by J.

The extracted contract makes use of an abstraction from the values of the variables
in PV(A). This is achieved by a combination of existential quantifiers and updates
which assign to the program variables the values of the quantified variables. For the
set PV(A) = {p1

A, . . . , pn
A} of abstract program variables, the abstraction of a formula ϕ

reads (∃x1 . . .∃xn. {p1
A := x1 ‖ . . . ‖ pn

A := xn}ϕ). For better readability, we abbreviate
this as (∃x̄.{ p̄A := x̄}ϕ).

Theorem 5.11 (Contract extraction) Let A, J ∈ Π be self-contained programs with
PV(A) ∩ PV(C) = ∅. Let pretech, posttech ∈ Trmbool be formulas in which the abstract
program variables PV(A) do not occur and prealgo, postalgo ∈ Trmbool formulas in which the
implementation program variables PV(C) do not occur. The coupling predicates ψpre,ψpost ∈
Trmbool may make use of all program variables.

If the formulas (5.9), (5.10) and (5.11) are valid, then the implication pre → JJKpost with

pre = (∃x̄.{ p̄A := x̄}(ψpre ∧ prealgo)) ∧ pretech and

post = (∃x̄.{ p̄A := x̄}(ψpost ∧ postalgo)) ∧ posttech

is also valid.

Both the pre- and the postcondition of the extracted contract pre, post for J contain
existential quantifiers which decouple the abstract from the concrete state space. The
extracted contract does not depend on the abstract program variables though they
may syntactically appear in it. The conditions talk about the concrete Java state and
only about a coupled (modulo ψpre or ψpost respectively) abstract state implicitly. The
resulting contract is self-contained on the implementational level and can also be
used in a context oblivious of the abstract algorithm description.

PROOF Let I be an interpretation with I |= ψpre ∧ prealgo ∧ pretech. Then clearly I |=
[J]posttech, I |= JAKpostalgo and I |= JJaf K⟨Aaf ⟩ψpost by the three assumptions (5.9),
(5.10) and (5.11).

Let IJJK be a state which is reached by executing J starting in (I,0) (ending at an
end-statement):
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(A) IJJK |= preA since I |= preA and program J did not modify the program
variables that preA depends on.

(B) IJJK |= JAKpostA due to (A) and assumption (5.10)
(C) IJJK |= ⟨Aaf ⟩ψpost by assumption (5.11). Modality JJaf K could be replaced by

J as by assumption (5.9), J is known not to fail from I on.
(D) IJJK |= ⟨A⟩ψpost due to (B) no trace of A from IJJK can fail

IJJK |= ⟨A⟩postA by (D) there is a final state of A and (B) ensures that postA
holds.

Put together, this means that I |= JJK⟨A⟩(ψpost ∧ postalgo). Note that the assumption
of assertion-freeness has been dropped here.

The second modality can be abstracted from by an anonymising update. Instead of
claiming that there exists a post-state of A, we can formulate the weaker statement
that there is a modification of the variables in PV(A) with the same effects:

I |= JJK(∃x̄.({ p̄A := x̄}ψpost ∧ postalgo))

The interpretation I has been chosen such that pretech ∧ prealgo ∧ ψpre holds. The
last condition is, hence, equivalent to claiming that

|= ψpre ∧ prealgo ∧ pretech → JJK(∃x̄.{ p̄A := x̄}ψpost ∧ postalgo)

is valid. This is equivalent to the condition in which the values of the abstract program
variables are anonymised prior to the evaluation, that is

|=
(
∀ȳ.{ p̄C := ȳ}

(
ψpre ∧ prealgo ∧ pretech → JJK(∃x̄.{ p̄A := x̄}ψpost ∧ postalgo)

))
.

The conclusion of the implication does not depend on the value of the symbols in
PV(A) as the program J does not use them and the postcondition of J has the values
of all variables PV(A) overwritten by the anonymising assignment in the update.
Also the technical precondition is independent of PV(A). We can therefore conclude
that

|= (∃ȳ.{ p̄C := ȳ}(ψpre ∧ prealgo)) ∧ pretech → JJK(∃x̄.{ p̄A := x̄}ψpost ∧ postalgo) .

which is the claim if we consider that the technical postcondition posttech has already
been proved a postcondition of J in (5.9). �

The quantifiers in the extracted contract make them cumbersome. They are dis-
advantageous since whenever an extracted method contract is to be applied, the
precondition needs to be established. This means for these cases that a witness needs
to be provided giving evidence that the algorithmic precondition is satisfiable. This
is an undesired effect since the method contract is meant to be an artifact on the level
of the implementation solely and, as such, should not rely on algorithmic entities
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like the abstract precondition any more. To overcome the necessity of this step, an
additional proof obligation can be introduced, the so-called feasibility condition

pretech → (∃x̄.{ p̄A := x̄}ψpre ∧ prealgo)

to establish that the technical precondition is strong enough to imply the existence of
a coupled abstract state in which the algorithmic precondition holds. By discharging
this obligation, no witness needs to be provided on the individual applications of the
extracted contract.

A formula is called syntactically functional if it is of the form
∧

p∈PV(A) p .
= ep such

that the expression ep is a term over the concrete program variables in which the
abstract program variables do not occur. It has been mentioned earlier that an explic-
itly stated functional coupling predicate has advantages over a merely semantically
functional formula. The reason is the following: The quantifiers in the extracted
contract can be eliminated if the coupling predicates are syntactically functional.

Observation 5.12 (Contract extraction, syntactically functional) If the coupling pred-
icates

ψpre =
∧

p∈PV(A)

p .
= epre

p and ψpost =
∧

p∈PV(A)

p .
= epost

p

in Theorem 5.11 are syntactically functional, the extracted contract pre → JJKpost can be
rewritten without existential quantifiers as

pre = { ‖
p∈PV(A)

p := epre
p }prealgo ∧ pretech and

post = { ‖
p∈PV(A)

p := epost
p }postalgo ∧ posttech .

PROOF This is a direct consequence of the equivalence of (∃x.{p := x}(p .
= e ∧ ϕ))

and {p := e}ϕ in predicate logic (if x does not occur in ϕ). �

In most cases, the algorithmic pre- and postconditions will not themselves contain
program formulas. The updates in Observation 5.12 can hence be applied as syntacti-
cal substitutions to the formulas using the equivalences in the update simplification
rules of Theorem 3.2 in Section 3.2. This yields a logically equivalent contract for the
Java implementation in which the abstract program variables PV(A) do not occur
any more.

5.5.2 Refinement Example Revisited

We come back to the example begun in Section 5.3.1 and provide now a straight-
forward refinement of the most concrete description onto an implementation given
as a Java method. Recall that the example models the operation of adding a value
to a set of values which is implemented as a sequence. The natural choice for the
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implementation of a sequence of integers in Java is an integer-array. The auxiliary
method add(int[] a, int v) creates a new array of length a.length+1, copies the
values of a into the result and appends the value v.

JAVA

1 int[] insertInSet(int[] l, int n) {
2 for(int i = 0; i < l.length; i++) {
3 if(l[i] == n) {
4 return l;
5 }
6 }
7

8 return add(l, n);
9 }

JAVA – 5.4

Let us denote the UDL translation of the code of the method insertInSet as Jinsert.
This method implements the algorithm given as program Iinsert (see page 144) on
the mathematical level in a straightforward manner. It preserves the structure of the
algorithm while the implementation language changes.

Like in a previous step in the refinement chain on the mathematical level, we
introduce a function to map from the concrete data onto the abstract state space. In
this case a sequence of integers must be extracted from a Java reference pointing
to an array of ints. The function intArrayAsSeq : heap × ref → seq(int) assigns to a
Java reference (of type int[]) the sequence of the values stored in the array. These
values in the array depend on the heap in which it is evaluated. The function is hence
defined as

(∀h.∀r. intArrayAsSeq(h,r) .
= (seqDef i. 0,arrlen(r), h[r, idxInt(i)])) .

According to last section, in order to extract a contract for the Java method from
the abstract description, three proof obligations need to be examined:

1. The implementation has no runtime violations.

2. The abstract algorithm adds the argument n to the set.

3. The Java code Jinsert refines Iinsert.

For the first verification task, the program must be annotated with trivial loop
specifications (shown on the left hand side of Figure 5.4) which are simple enough that
they could also be inferred using one of the many invariant inference techniques. As
technical precondition, l ̸ .= null is used. This task is hence concluded by discharging
the obligation l ̸ .= null → JJKtrue.

We have not yet specified the property for which the contract should be syn-
thesised by refinement. The obvious property already established by the most
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JAVA + IVIL FRAGMENT
1 /*@ maintains 0 ≤i ∧ i≤ arrlen(l)
2 @ decreases arrlen(l)−i
3 @ modifies empty
4 @*/
5 for(int i = 0; i < l.length; i++) {
6 //@ mark 1;. . . . . . . . . . . . . . . . . .
7 if(l[i] == n) {
8 return l;
9 }

10 }

iI := 0;
while iI < seqLen(lI)
do

mark 1;
if seqGet(lI , iI)

.
= nI

then return end
iI := iI + 1;

end;
JAVA + IVIL FRAGMENT – 5.5

Figure 5.4: Loop refinement from pseudocode to Java

abstract description A is that the algorithm adds its argument n to its represen-
tation of the set. This can be expressed on the abstract level as the implication
l0
I

.
= lI → JIinsertKseqAsSet(lI)

.
= seqAsSet(l0

I ) ∪ {nI} in which the fresh function sym-
bol l0

I : seq(int) has been used to remember the old value of lI prior to the method.

For the refinement task, we use different coupling predicates for pre- and postcon-
dition.

ψpre := lI
.
= intArrayAsSeq(h,l) ∧ l0

I
.
= intArrayAsSeq(hpre,l) ∧ nI = n

ψpost := lI
.
= intArrayAsSeq(h,res[ref]) ∧ l0

I
.
= intArrayAsSeq(hpre,l) ∧ nI = n

ψinv := lI
.
= intArrayAsSeq(h,l) ∧ l0

I
.
= intArrayAsSeq(hpre,l) ∧

nI
.
= n ∧ iI

.
= i ∧ 0 ≤ i ∧ i < arrlen(l)

In the pre-state (using ψpre), lI is coupled to the method parameter l while in the
post-state (ψpost), it is coupled with the result program variable res[ref] : ref of the
method. The loops are synchronised and we can use ψinv as coupling invariant to
prove the condition ψpre → JJaf

insertK⟨Iaf
insert⟩ψpost.

The refinement is syntactically functional. The specification extraction described in
Section 5.5.1 lets us hence arrive at the following contract for insertInSet in which
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the updates have already been simplified:

JAVA

1 /*@ contract
2 @ requires ¬l .

= null
3 @ ensures seqAsSet(intArrayAsSeq(h,res[ref]))
4 @ .

= seqAsSet(intArrayAsSeq(hpre,l)) ∪ {n}
5 @*/
6 int[] insertInSet(int[] l, int v) { ... }

JAVA – 5.6
The contract does not show signs of the refinement it has undergone and operates
only on items from the Java world.

5.5.3 Assumptions and Assertions in Refinement

We have accepted throughout the chapter that both the abstract code A and its
refinement C have been assumed to be free of assertion statements. The reasons for
this restriction differ from C to A.

For the concrete implementation, it has been done for performance reasons: As
part of the separation of concerns, the assertions in C should be discharged in a proof
outside the refinement condition. This allows the refinement to concentrate on the
relation between C and A.

The situation is different for the abstract program A. If it contains an assertion
which is not met, then every non-failing program refines the abstraction. This is a
dangerous implication of the modelling and should better be avoided. Consider the
program A = (assert false) which has a failing assertion. The refinement condition
ψpre → [C]⟨A⟩ψpost is valid regardless of the employed (non-failing) C and ψpre/ψpost.
This is due to the equivalence ⟨assert false⟩ϕ ≡ ¬([assert false]¬ϕ) ≡ ¬(false ∧ ϕ) ≡
true.

The implication of this is that if a program description has got a failing trace,
then any program refines it. While this is strictly an effect coming from the logical
framework, it is unexpected and unwanted behaviour. To prevent us from running
into such difficulties, assertions in abstract programs were generally forbidden.

We can relax that restriction a little now. In those cases in which we know that an
assertion can never fail, it may be included. If pre → [A]true has been verified and
ψpre implies pre, then we can take A instead of the assertion-free variant Aaf to build
the refinement condition; the relevant traces for A and Aaf are the same.

Moreover, assertions can even be used to provide help during the refinement
proof. If a property ϕ is needed during the refinement proof at a particular point of
the abstract program, it can be added as additional assert ϕ to the program. When
verifying A, it is, amongst other things, shown that ϕ holds whenever the assertion
is reached. Upon reaching the same statement under the ⟨·⟩ modality, the asserted
ϕ (due to the duality; compare Obs. 2.5) becomes an additionally assumed formula.
This can be thought of as a small in-situ contract deep-embedded into the algorithm.
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The contract is proved correct during the algorithm verification and used during the
refinement proof.

A similar local contract effect can be made on the concrete program. Since they
appear always under a box modality, the duality between the modalities cannot be
exploited. However, when injecting an additional assertion (assert ϕ) to a program,
it is safe10 to inject an assumption of the same formula right after the assertion
(assert ϕ;assume ϕ). During the technical verification of C, the assertion is proved
correct. For the refinement condition the assertion-free Caf is used in which only the
assumption remains, which can then be used in the refinement proof.

5.6 Related Work

Literature on refinement in the various refinement traditions is extensive. However,
most research effort has been put in refinement on abstract levels. As far as refinement
from abstract descriptions onto program code is concerned, fewer notable works
exist.

Grandy et al. (2007) present a method within a case study in which they refine
Abstract State Machines to Java programs. They apply the approach to verify security
protocols implemented in the mobile edition of the Java language. The approach uses
the interactive theorem prover KIV (Reif et al., 1995). The systems under consideration
are reactive systems and not algorithmic descriptions, their code does not contain
loops, loop synchronisation is not an issue. Leino and Yessenov (2012) present a
methodology to perform statementwise algorithmic refinement within the Chalice
language, an experimental language for specification and verification of concurrent
programs (Leino and Müller, 2009). It is closely related to Morgan’s refinement
calculus and extends it to an object-oriented setting. They provide a mechanism for
supplying witnesses when refining non-deterministic programs. Tafat et al. (2011)
compare model fields in the Java Modeling Language together with representation
clauses to refinement in the B method. Their focus, however, lies on the question of
abstract aliasing rather than on code refinement.

Apart from the results in the application of refinement techniques, another field
of related research are approaches that prove equivalence of programs. Godlin and
Strichman (2009) give an overview to the topic. They describe an approach which
uses bounded verification techniques to automatically verify program equivalence
between two similar implementations, especially abstracting away from recursive
function calls. Barthe et al. (2011) propose a calculus and a framework to prove
program congruence. They combine the two programs for which equivalence is to
be proved into one single program. Synchronised loops can hereby be resolved as
one single loop with additional checks the loop conditions always coincide. They
explicitly support the case that loops are not perfectly synchronised by unrolling a
fixed number of loop iterations. This is helpful especially for the regression proofs

10The reason is the local lemma property mentioned in Section 3.2.
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for compiler-optimised programs. The experiments are conducted using the Why
tool (Filliâtre and Paskevich, 2013). Almeida et al. (2010) devise a similar method for
regression verification using program composition to prove equivalence of crypto-
graphic implementations using Frama-C (Cuoq et al., 2009).

The approach described by Feng and Hu (2005) comes from a more technical
domain. They apply the technique of cut-points used in hardware verification for the
equivalence verification of low-level software given in machine code. Cut-points are
very similar to what we called synchronisation points in Section 5.4. Their intention
for using cut-points, however, is to reduce the state space for the model checker they
apply on the problem. They describe also how to find cut-points for the analysis
automatically.

The mentioned equivalence approaches serve a similar goal as refinement, yet
have two major differences: Data refinement is not taken into consideration and
the approaches assume that programs are always deterministic. This is a sensible
assumption if both programs are implemented in code; for refinement, this is not
sufficient.

5.7 Chapter Summary

In this chapter, a new approach to prove Java implementation of algorithms has been
presented. The refinement technique allows separation of concerns: An algorithmic
property is proved on a high-level abstraction of the algorithm formalised in pseudo-
code and then refined to a contract of the implementation. At the same time, technical
issues which have their origin in the used programming language are proved on the
level of the implementation directly.

The refinement notion has been motivated and formally introduced with reference
to existing definitions in established abstract formal systems like B, Z or the refinement
calculus. A refinement condition for two programs in the programming language of
UDL has been proposed. The concrete program is a refinement of the abstract program
if every possible concrete behaviour is backed by an abstract behaviour. Since the state
spaces may differ between abstract and concrete program, the refinement conditions
have been defined modulo a coupling predicate binding the state spaces together. It has
been shown that the notion of refinement induced by the UDL refinement condition
is equivalent to the established notion of refinement.

Particular emphasis has been put on the treatment of loops. The loop in a program
and its refinement are likely to be similar: Each abstract loop iteration corresponds
to precisely one loop iteration in the concretion. Loops with this property are called
synchronised loops. Inference rules for the sequent calculus have been presented
which can handle synchronised loops using a coupling invariant binding abstract and
concrete state space together. Like in Section 3.3 where rules for treatment of loops in
UDL have been proposed, improved rules have been introduced which allow a more
efficient application during a proof attempt in practice.



172 CHAPTER 5 ALGORITHM REFINEMENT

Finally, the refinement from abstract descriptions to Java code has been elucidated.
Since the intermediate programming language provides a common language ground
for the abstract and for the Java programming language, this refinement step is, from
the theoretical point of view, not different to other algorithmic refinement steps. The
extraction of contracts for the Java method under investigation has been explained.
From the discharged proof obligations for (1) the technical issues on the Java code
directly, (2) the abstract contract on the abstract program, and (3) the refinement
condition, a contract for the Java method can be synthesised. If the used coupling
is syntactically functional, the contract contains no syntactical traces of the abstract
refinement layer.

Throughout the chapter, small examples have been presented to motivate and
illustrate the introduced concepts.



CHAPTER 6

Case Studies

The case studies in this chapter bring together the threads begun in the previous chapters.
Algorithms are presented as abstract mathematical descriptions and then refined to Java im-
plementations applying the refinement approach presented in Chapter 5. The proof obligations
which emerge from the verification are discharged using the verification system ivil introduced
in Chapter 4.

The first smaller case study shows how a sorting algorithm can be formally refined into
an implementation in the Java programming language. The algorithmic descriptions can be
annotated with intermediate specifications such that the proofs can be performed automatically.

The second more extensive and more complex case study is an algorithm for computing
shortest paths in graphs. This case study shows that an algorithm which is sufficiently complex
already on the abstract level can be refined all the way down to a non-trivial implementation
in the Java programming language.

6.1 Selection Sort

The first non-trivial algorithm onto which we apply the refinement chain from a
most abstract description down to an implementation is the selection sort algorithm.
Selection sort is a procedure bringing n elements within a sequence into an ascending
order with O(n2) many comparisons. The runtime of selection sort is hence longer
than that of other sorting algorithms (like heap sort, merge sort, etc.), but this is of no
importance for our purposes.

This easier kind of algorithm has been chosen deliberately for this first case study
to demonstrate how the approach can be used to verify the implementation of an
algorithm through refinement without user interaction in the theorem prover. Inter-
action for this verification example can be restricted to annotations on the level of the
sources.

The selection sort procedure is defined by the semi-formal pseudocode descrip-
tion in Figure 6.1a which takes a sequence a : seq(int) as input and gives another
sequence b : seq(int) as output. The algorithm sorts a into b by successively finding
the minimum value in the tail sequence of b from i and replacing it with its target
index i.



174 CHAPTER 6 CASE STUDIES

This description relies on natural language and needs to be brought into a for-
malised setting first before any formal refinement can take place. This first formalisa-
tion step can evidently not be formal, we can only try to capture the meaning of the
English text and bring it into the formal variant of pseudocode as closely as possible.
Natural language always bears the danger of impreciseness. Here, line 8 says that
t should become the value of the minimum from indices i to n. It is not mentioned
whether this range from i to n is inclusive or exclusive the bounds. In this case, it is
that i is meant inclusive while n is to be handled exclusive. A formal transcript of the
algorithm clarifies such imprecisenesses.

This translated program AbstractSelectionSort, which will be used as the start-
ing point for the refinement, is depicted in Figure 6.1. The algorithmic property which
is to be proved for this algorithm is obvious: The algorithm must sort the values of a
into b. This obligation has two aspects: The result sequence must contain the same
values as the input (b must be a permutation of a), and the values in b must be in
good order. Formally, this can be expressed as the proof obligation

true → JabstractSelectionSortK(seqPerm(a,b) ∧ seqSorted(b)) . (6.1)

The two symbols seqSorted : seq(int) → bool and seqPerm : seq(α) × seq(α) → bool
capture the two mentioned aspects of the contract. For their formal definitions see
the description of the sequence data type in Appendix A.2.2.

Proof obligation (6.1) cannot verify automatically without additional annotations.
The theorem prover needs help in form of intermediate specifications telling it how
to proceed at certain points. These are annotations for the following two statements:

1. The loop invariant and variant

ϕ1 = 0 ≤ i ∧ i < n ∧ seqPerm(a,b) ∧ seqLen(b) .
= n ∧

(∀k.∀l. 0 ≤ k ∧ k ≤ l ∧ l ≤ i → seqGet(b,k) ≤ seqGet(b, l)) ∧
(∀k.∀l. 0 ≤ k < i ∧ i ≤ l ∧ l < n → seqGet(b,k) ≤ seqGet(b, l)) ∧

ν1 = n − i

need to be annotated to the while loop in line 14. The invariant ensures that
sequence b is always a permutation of a, that b is sorted up to index i inclusively
and that the values beyond that index are all larger than the values in the
already sorted part. The variant ν1 is the typical termination expression for a
counting loop.

2. The choice operator1 in line 16 incorporates an assertion that there exists an
element with the propagated attributes.

To symbolically execute such a statement under the J·K modality, a witness must
be provided which shows that there is a value with the chosen property. It is not
so easy to find this witness for the minimum value in the sequence here. Again

1see Appendix A.3 for the semantics of the choose statement.
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INFORMAL PSEUDOCODE

1 algo InformalSelectionSort
2 do
3 b := a;
4 i := 0;
5 while i < (length of a) - 1
6 do
7 choose t such that it is the index of the minimum of the values
8 in the sequence from index i to n;
9 swap i and t in b;

10 i := i+1
11 end
12 end

INFORMAL PSEUDOCODE — (a)

PSEUDOCODE

1 algo AbstractSelectionSort
2 input a: seq(int)
3 output b: seq(int)
4

5 ensures seqSorted(b)
6 ensures seqPerm(a,b)
7

8 var i,t : int
9 do

10 b := a;
11 i := 0;
12 n := seqLen(a);
13 while i < n-1
14 inv ϕ1 var ν1
15 do
16 choose t such that i≤t<n ∧ (∀k. i≤k<n → seqGet(b,t) ≤ seqGet(b,k))
17 b := seqSwap(b, i, t);
18 i := i+1
19 end
20 end

PSEUDOCODE — (b)

Figure 6.1: Pseudocode for the abstract description of selection sort
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we rely on a symbol from the library for sequence, in this case the polymorphic
binder argmin : α × bool × int → α. The application (argmin x.ϕ, e) denotes one
of the elements of type α for which the formula ϕ ∈ Trmbool holds and e ∈ Trmint

has the minimum value. It is formalised by the schematic axiom

(∃l.∀x.ϕ → e ≥ l) ∧ (∃x. ϕ)→ ϕ[x/(argmin x.ϕ, e)] ∧
(∀x.ϕ → e[x/(argmin x.ϕ, e)] ≤ e) .

The term can only denote a minimum if there is a lower bound to the val-
ues that satisfy ϕ. This can, for instance, be established by showing that
finite((setComp x.ϕ)) holds. The binder argmin is a generalisation of the special
description operator τmin which has been used to show completeness of the
calculus in Section 3.4.2 due to (τmin x.ϕ) ≡ (argmin x.ϕ, x).
Hence, we annotate as an autoactive hint to the program code in line 16 the
witness

(argmin k. i ≤ k ∧ k < n,seqGet(b,k)))

for the existence of the chosen value t. Using the binder opens side branches in
the proof tree. For the minimum to exist, the finiteness and non-emptiness of
the set of values which satisfy the guard must be shown.

The verification system ivil can discharge the proof obligation for the thus annotated
algorithmic code automatically and instantaneously.

6.1.1 Abstract Refinement

The description abstractSelectionSort is too abstract for a direct refinement to
an implementation in Java since the “choose” operator is a concept which has no
direct realisation in the Java language. This is why a refinement on the abstract level
precedes the implementation. This refinement step is an algorithmic refinement as
it does not touch the representation of the data at all, but only the way in which
they are processed. The performed change expands the before-mentioned choose
operator by a loop searching for the minimum value amongst the relevant values in
the remainder sequence.

The refined program selectionSort is shown in Figure 6.2. The two commented
lines will become relevant in the refinement step to the implementation in the next
section. The program uses the same identifiers for program variables as the abstract
program even though we still adhere to the assumption of disjointness of the program
variables. Using the same names is suggestive for a purely algorithmic refinement
since the respective program variables are coupled by their equality. If necessary,
we differentiate the variables in the refinement condition by adding primes to the
abstract program variables.

Instead of the indeterministic choice in the abstract program, a loop using the
newly introduced counter variable j finds the index t of the minimum entry in the
sequence b from i to its end.
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PSEUDOCODE

1 algo selectionSort
2 input a : seq(int)
3 output b : seq(int)
4 var i,j,t,n : int
5 do
6 b := a;
7 i := 0;
8 n := seqLen(a);
9

10 if n .
= 0 then return end;

11

12 while i < n-1 do
13 mark 1; /* abstract */
14 t := i;
15 j := i+1;
16

17 while j < n
18 inv ϕ2 var ν2
19 do
20 if seqGet(b,j) < seqGet(b,t) then t := j end;
21 /* implementation refinement: mark 1; */
22 j := j+1
23 end;
24 b := seqSwap(b, i, t);
25 i := i+1
26 /* implementation refinement: mark 2; */
27 end
28 end

PSEUDOCODE – 6.1

Figure 6.2: Pseudocode for the refined abstract selection sort algorithm

The intention is to prove now that the two descriptions are equivalent. The refine-
ment condition for the two programs according to Theorem 5.2 is

ψeq → JselectionSortaf K⟨abstractSelectionSortaf ⟩ψeq

with ψeq = (a′ .
= a ∧ b′ .

= b ∧ i′ .
= i ∧ t′ .

= t). The box modality J·K is chosen to show
termination on the fly during the refinement verification. Using Theorem 5.9, termi-
nation can be inherited from the termination of abstractSelectionSort obtained
by the proof of (6.1).

The refined program has two nested loops whereas the original description only
had one. It is obvious that the outer loop is synchronised with the loop of the original
description modulo ψeq. The inner loop however has no counterpart and cannot be
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verified using this technique. Instead a loop invariant and variant can be specified
describing its behaviour adequately:

ϕ2 = (∀k.i ≤ k ∧ k < j → seqGet(b, t) ≤ seqGet(b,k)) ∧ i + 1 ≤ j ∧ j ≤ n ∧ i ≤ t ≤ n
ν2 = (n − j) + 1 (6.2)

The outer loop requires the placement of one synchronisation point in line 13 of
Figure 6.2. Synchronisation points must be matched between abstract and concrete
program; and we assume the counterpart placed between lines 15 and 16 in Figure 6.1.
Then the refinement in the pseudocode language can be stated by giving the involved
coupling predicates:

PSEUDOCODE REFINEMENT

1 refine abstractSelectionSort as selectionSort
2 requires a’ .

= a
3 ensures b’ .

= b
4 mark 1
5 inv i’ .

= i ∧ b’ .
= b’ ∧ n’ .

= n ∧ seqLen(b) .
= n ∧ i < n

PSEUDOCODE REFINEMENT – 6.2

Note that in the pre-state the equality only is relevant for the input sequence and
does not matter for the other program variables. Likewise, in the terminal state only
the value b is visible after the execution of the sorting algorithm and must equal
the abstract result. In the intermediate coupling predicate (line 5) these equalities
cannot be spared out. Additionally, one condition on the counter of the outer loop
must be preserved. The synchronised invariant rules need to abstract from the actual
programs, and it may be necessary to preserve some information in addition to the
coupling relation in the synchronisation invariants.

Since no data refinement has taken place in this refinement step and the coupling
predicates are equalities, the property proved on the abstract description is passed on
automatically to abstractSelectionSort without any further proof.

In the verification tool ivil, this refinement step can be performed automatically
if one autoactive annotation is added to the abstract program. The abstract choose
operation of line 16 in abstractSelectionSortaf (Figure 6.1) corresponds in its
assertion-free variant to the two UDL statements (havoc t′, assume ϕ). Let us assume
these are at indices k and k + 1 in the program. When symbolic execution of the
refinement condition proceeds over this point ⟨k;abstractSelectionSortaf ⟩ψeq, it
yields the formula (∃x.{t′ := x}(ϕ ∧ ⟨k + 2;abstractSelectionSortaf ⟩ψeq)). An ex-
istential quantifier has been introduced by the havoc statement under the ⟨·⟩ modality
which must satisfy assumption ϕ.

This quantifier in the proof obligation needs to be instantiated with a sensible
value to proceed the verification. It is not possible to infer the instantiation from the
sequent on which the quantifier appeared as the further course of the program may
be important to deduce this right instantiation.
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This is why a witness for this existential quantifier needs to be stated. Yet, this
instantiation reflects an important decision which has to be made in the refinement. It
couples the one course of the concrete algorithm to one of the many possible courses
of the abstract algorithm. By annotating another autoactive proof hint (witness t) to
the choice statement (the second to this line!) we allow the symbolic execution to
continue over this position. The canonical choice for the indeterministic choice is the
obvious value which is the result computed by the inner loop of the refined program.

With this additional annotation, ivil proves the obligation instantaneously. The
program has no embedded assertions, the technical proof obligation

true → [selectionSort]true

is hence trivially valid.

6.1.2 Implementation Refinement

The algorithm description last examined in the last section is finally implementation-
friendly enough to refine it to a Java method. The algorithm has been modelled such
that we can preserve the algorithmic structure of the program (its control flow and
loops). The step will refine the data representation severely.

Figure 6.3 shows the Java implementation onto which the pseudocode algorithm
selectionSort will be refined. It consists of a single static method in a single class
which sorts the array which it receives as argument. Unlike the abstract algorithm
which uses separate variables a for input and b for output, this implementation
operates in place on the input array and does not return a new copy of the array.

The first proof of this refinement step is to show the integrity of the implemen-
tation sort. The condition ¬array .

= null → [sort]true shows that no unexpected
exceptions are raised in the program. Loop invariants which ensure that the values
of i, j and t remain within the array boundaries must be annotated. The technical
precondition pretech under which the program behaves as expected is the requirement
that the parameter is different from null. More details on this verification step are
omitted here since they do not provide new insights.

For the actual refinement condition, synchronisation points must be identified in
the programs selectionSort and sort. It proved convenient to place them at the
end of the two loops. The synchronisation points are marked in the Java source
code as comments /*@ mark ...; @/ with special semantics in lines 14 and 19. The
corresponding synchronisation points of the refined pseudocode program are shown
in Figure 6.2 embedded in comments.

The coupling relation is functional and we can reuse the function intArrayAsSeq
which we already have encountered in the example in Section 5.5.2. It couples
the elements of array in the current heap with the abstract sequence of integers;
in the pre-state with a and in the post-state with b. Thus, the in-place sorting of
sort can be matched to the formulation with abstract datatypes. The refinement
description in Figure 6.4 uses again primed variables to distinguish the abstract
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ANNOTATED JAVA
1 class SelSort {
2

3 /*@ contract
4 @ requires ¬array .

= null
5 @*/
6 static void sort(int[] array) {
7

8 for(int i = 0; i < array.length - 1; i++) {
9 int t = i;

10 for(int j = i+1; j < array.length; j++) {
11 if(array[j] < array[t]) {
12 t = j;
13 }
14 /*@ mark 1; @*/
15 }
16 int tmp = array[i];
17 array[i] = array[t];
18 array[t] = tmp;
19 /*@ mark 2; @*/
20 }
21 }
22 }

ANNOTATED JAVA – 6.3

Figure 6.3: Java implementation of selection sort

program variables from the program variables from the concrete Java signature.
The pseudocode language allows the definition of abbreviations for formulas. The
abbreviation @idx range stating that the loop variables are within the array range is
added to the coupling invariants in the synchronisation points.

The extracted Java contract for sort according to Observation 5.12 reads then

JAVA CONTRACT

1 /*@ contract
2 @ requires ¬ array .

= null
3 @ ensures seqSorted(intArrayAsSeq(h, array))
4 @ ensures seqPerm(intArrayAsSeq(hpre, array), intArrayAsSeq(h, array))
5 @*/

JAVA CONTRACT – 6.5
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PSEUDOCODE REFINEMENT
1 abbreviation
2 @idx_inrange := 0 ≤ i < arrlen(array) ∧
3 0 ≤ j ≤ arrlen(array) ∧
4 0 ≤ t < arrlen(array)
5

6 refine selectionSort as Java
7 requires ¬array .

=null ∧ a .
= intArrayAsSeq(h, array)

8

9 ensures b’ .
= intArrayAsSeq(h, array)

10

11 mark 1
12 inv b’ .

= intArrayAsSeq(h, array) ∧ n’ .
= seqLen(b) ∧

13 i’ .
= i ∧ j’ .

= j ∧ t’ .
= t ∧ j < n ∧ @idx_inrange

14

15 mark 2
16 inv b’ .

= intArrayAsSeq(h, array) ∧ n’ .
= seqLen(b) ∧

17 i’ .
= i ∧ j’ .

= j ∧ @idx_inrange
PSEUDOCODE REFINEMENT – 6.4

Figure 6.4: The refinement description for the implementation of selection sort

This convenient and comprehensible specification is self-contained, contains no more
signs of the abstraction which has taken place for the refinement and is a sensible and
concise full2 functional specification of the method.

6.1.3 Remarks

It may be questioned whether for such a seemingly simple algorithm a refinement
with three steps is too fine-grained a division. Apart from the intention to demonstrate
the procedure in this section, the finer granularity of the steps has its benefits even
for the small example:

The very first formal description had only a single loop, the second loop was
introduced by the first refinement step. In the first algorithmic verification the effort
could be concentrated on finding a suitable loop invariant for the outer loop while
the inner loop was not an issue but has been abstracted from adequately.

With the outer loop specified and verified, the verification of the second program
could fully concentrate on the inner loop, the outer loop was treated automatically by
the invariant mechanism of synchronised loops. In fact, the loop invariant that served
as specification for the inner loop in (6.2) can be chosen a lot more concisely if the loop
can be considered alone. If both loops are verified at once, the inner loop invariant
must imply parts of the outer loop invariant to allow the latter to be inductive.

2The examination in this section does not cover a modifies-clause for the method sort, but separation of
concerns applies and the modifies clause {array} can be verified in the technical verification step.
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This examples shows also another thing: It is tempting to use the idea of refinement
to formulate an algorithm on the set of mathematical integers and then refine it to the
numerical datatype which is present in the implementation language, Java’s 32-bit
signed integers for instance. The problems that arise here are the same technical
challenges mentioned in Section 4.4.2. It is difficult to handle situations in which
bounded and unbounded integer values exist side by side. The overflow check asser-
tions mentioned in Section 4.4.2 can, of course, also be applied within a refinement
proof to show that the bounded values behave like the mathematical integers.

6.2 Breadth First Search

The second refinement example is more complex. It shows that pseudocode is
an adequate formulation language for algorithms and that the refinement concept
can be used to synthesise sophisticated contracts for an implementation from an
abstract description. This example will be refined by two steps from a set-theoretical
pseudocode description down to an efficient implementation in Java using boolean
arrays.

The example has been taken from the offline verification competition which took
place prior to the conference Verified Software: Theories, Tools, Experiments (VSTTE
2012). The organisers give an overview of the competition in (Filliâtre et al., 2012)
including a brief description of the assignments. The assignment has been worked
on by many participants in the competitions. Most of the solutions for them are on a
higher abstraction level. There are solutions for the tools VCC (Dahlweid et al., 2009)
and VeriFast (Jacobs et al., 2011) which also operate on the implementational level,
but we did not have access to their solutions to compare.

The assignment was to verify an algorithm which computes the shortest distance
between two vertices in a directed graph using breadth first search. The edges in
the graph are not weighted, that is, the shortest path is the path with the fewest
visited nodes. The algorithm as it has been presented on the occasion is depicted in
Figure 6.5a. In the algorithm, the function application succ(n) is used to denote the
successors of a node n in the graph.

Figure 6.5b shows the verbatim transliteration of the problem description into our
formalised pseudocode language. The two descriptions resemble each other very
much, the differences are only owing to concrete syntax. This resemblance shows
that the pseudocode language is indeed a suitable means to formulate algorithms on
an abstract level.

The verification process of the algorithm takes the following steps:

1. Verification of the algorithm on the purely algorithmic level using the mathe-
matical notions of the original problem description.

2. Refinement onto a pseudo-code algorithm which uses more implementation-
friendly, yet still abstract data structures: sequences instead of sets and integer
indices instead of vertices.
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3. Implementation of the algorithm in a Java class in accordance with this last
refined description. A lightweight verification is conducted that the implemen-
tation is free of exceptions.

4. Refinement from the intermediate refined algorithm to the Java implementation.

V <- {source};
C <- {source};
N <- {};
d <- 0;
while C is not empty do

remove one vertex v from C;
if v = dest then return d; endif
for each w in succ(v) do

if w is not in V then
add w to V;
add w to N;

endif
endfor
if C is empty then

C <- N;
N <- {};
d <- d+1;

endif
endwhile
fail "no path"

(a) Original problem description

V := {src};
C := {src};
N := {};
d := 0;
while !(C = {}) do

choose v such that v in C;
C := C \ {v};
if v = dest then return end;
iterate succ(v) with w in tovisit do

if not w in V then
V := V \/ {w};
N := N \/ {w}

end
end;
if C = {} then

C := N;
N := {};
d := d+1

end
end;
d := -1

(b) Pseudocode transliteration

Figure 6.5: Description of the breadth-first-algorithm

The case study is significantly more complex than the selection sort algorithm
presented in the last section. The data refinements make larger changes, the set-
theoretic expressions involved in the algorithm are non-trivial and their translation in
the refinement give more complex proof obligations. The verification conditions are
not necessarily larger but more intricate formulas. As a consequence, the proofs for
this section cannot be conducted automatically or autoactively by the ivil system. At
various occasions, manual user interaction has been necessary to support the theorem
prover.

Astonishingly, these interactions where sometimes purely of propositional nature.
If the proof obligation contained a conjunction A ∧ B of two parts to be shown, a
split of the current sequent into one for A and one for B allowed the SMT solver to
discharge both parts relatively fast (in a matter of seconds) while the conjunction
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could not be proved even within minutes sometimes. This interaction was definitely
not a theoretically required input for the verification engine, but was a helpful
guidance for the prover which showed it where to split the proof condition.

6.2.1 Algorithm Verification

For the logical encoding we model the set of vertices as an unparametrised new type
vertex. The successor map is then a function succ : vertex → set(vertex) on this type.

The path searching algorithm operates in rounds. Every round explores the nodes
which have a certain distance d : int from the source src. In round 0, only the source it-
self is visited; in round 1, all nodes which can be reached with one step are considered,
and so on. Three sets of vertices are used in the algorithm: The set V : set(vertex) (for
visited) contains all vertices which have been considered by the algorithm so far. The
set C ⊆ V (for current) contains the nodes of the currently visited distance level which
are still to be checked while N ⊆ V (for next) contains the nodes of the next distance
level which have been discovered lately. When all nodes in C have been checked, the
algorithm steps over to the next distance level and N becomes the next input set C.

Figure 6.6 shows an example directed graph during the visitation. The graph is
drawn in such a way that the horizontal distance of a vertex to src equals its minimum
distance to it. For instance, nodes a and b are one step away from src while d is two
steps away. There are paths to vertices which are longer than the minimum distance
but they do not matter. The sets V, C and N are outlined in the sketch. At the time
of the visitation, the current distance level is d = 2. At the beginning of round 2, C
equalled {d, e, f }. Node d has already been explored and gave rise to adding h, g into
N. Vertex e is to be examined next. This examination of e will ensure that i is added
to N as well (h is already in N). Examination of the successors of f does not yield
any new findings. Then the next round for d = 3 commences in which {g, h, i} will be
used as set C of current nodes.

Whenever the algorithm reaches the destination node, it finishes and reports the
current level as the minimum distance between source and destination. The algorithm
is thus a simplified version of Dijkstra’s shortest path algorithm for the special case
that all edges have the same weight 1.

The distance between vertices is modelled using two primitive recursive predi-
cates. The first predicate connect : vertex × vertex × int → bool formalises reachability
between vertices and is defined by

(∀a.∀b.∀n. connect(a,b,n) .
=

if n ≤ 0 then a .
= b else (∃x.connect(a, x,n − 1) ∧ b ∈ succ(x))))

and minconnect : vertex × vertex × int → bool axiomatised as

(∀a.∀b.∀n. minconnect(a,b,n) .
=

(connect(a,b,n) ∧ (∀m. 0 ≤ m ∧ m < n →¬connect(a,b,m)))) .
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d = 0 d = 1 d = 2 d = 3
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Figure 6.6: Example for a directed graph during breadth-first-search

The property that we want to show is that the algorithm (we denote the translation
to a UDL program as bfs) with the input variables src,dest : vertex and the result
variable d : int returns the shortest distance between src and dest in d, that is that
minconnect(src,dest,d) holds. If the two vertices are not connected, the value d = −1
should be returned. The verified property can be expressed as the UDL contract

finite(fullset[set(vertex)])→ JbfsK
(
d ≥ −1

∧ (d .
= −1 → (∀m.m ≥ 0 →¬minconnect(src,dest,m)))

∧ (d > 0 → minconnect(src,dest,d))
)

.

The atomic formula connect(a,b,n) mans that vertex b can be reached from a with
(precisely) n steps in the graph. minconnect(a,b,n) additionally implies that there is
no shorter connection between a and b.

The finiteness in the precondition is a necessary condition as the algorithm might
not finish if there is no connection from src to dest and the graph is infinite. The only
small difference of the verified algorithm to the problem description is that, if no path
exists between src and dest, a negative result is given instead of raising a failure.

The algorithm has two nested loops (one while loop and one set iteration). If these
loops are furnished with sufficiently strong loop invariants and variants, the proof
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can be conducted almost automatically. The sufficient loop invariant employed for
the outer while loop is the formula

d ≥ 0 ∧ ¬dest ∈ (V ∖ N) ∖ C (6.3)
∧ (∀x. x ∈ C → minconnect(src, x,d)) (6.4)
∧ (∀y. y ∈ N ↔ minconnect(src,y,d + 1) ∧ y ∈ V) (6.5)
∧ (∀z. z ∈ V ∖ N ↔ (∃n. 0 ≤ n ≤ d ∧ connect(src,z,n))) (6.6)
∧ (∀w. minconnect(src,w,d + 1)→ (∃c. w ∈ succ(c) ∧ c ∈ C) ∨ a ∈ N) (6.7)
∧ (C .

= ∅ → N .
= ∅) . (6.8)

This invariant is a straightforward and concise formalisation of the state during a
run of the algorithm. The fact that this invariant spans, already on this high level of
abstraction, over six lines is a strong indicator that the verification better be started on
this higher level leaving aside technical issues of an implementation. (6.3) captures
information on the current round and that the destination has not yet been reached
yet. (6.4), (6.5) and (6.6) define the contents of the sets C, N and V. The last two (6.7)
and (6.8) are needed to deduce the postcondition in case that no path between source
and destination exists.

The inner iterate-loop is less complex, it merely iterates over all successors succ(v)
of v and adds them to N and V if they had not yet been visited. The overall effect
of the loop is hence that V = V0 ∪ succ(v) and N = N0 ∪ (succ(v) ∖ V0) where V0 and
N0 are the values of V and N prior to the inner loop. For the loop invariant, the
vertices in tovisit ⊆ succ(v) have not been visited yet and the invariant is the weaker
V = V0 ∪ (succ(v) ∖ tovisit) ∧ N = N0 ∪ ((succ(v) ∖ tovisit) ∖ V0).

Termination can be guaranteed using the decreasing variant expressions {(V ∖
(C ∪ N)) for the outer loop and tovisit for the inner loop. Both invariants are of set
type and the well-founded precedence relation for finite sets is fixed as A ≺ B :↔
A ⊆ B ∧ (∃x. ¬x ∈ A ∧ x ∈ B).

The proof needs some interaction: Expansion of set theoretical properties, quantifier
instantiation, case distinctions guide the SMT solver to the solution.

6.2.2 Refinement on Algorithmic Level

We have now verified that the algorithm given in the pseudocode indeed computes
the shortest distance in an unweighted graph. This description is now in a first
refinement step subjected to a data refinement transforming its data structures into
concepts closer to an implementation in a programming language.

The abstract description uses typical elements of an algorithm explanation in
pseudocode: A problem-specific data-type (vertex) is used to denote the elements on
which the algorithm operates. Abstract data structures over them (here set(vertex))
are used to define structures over the elements.

The data refinement step refines precisely these two aspects without changing the
control flow of the algorithm. The logical type vertex introduced for this challenge
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is removed and the nodes in the graph are represented by integer numbers in a
well-specified range. The finite sets of vertices used in the abstract description are
replaced by sequences of boolean values. A sequence of boolean values can be seen as
a function from its index range to true or false, and thus as the characteristic function
of a subset of its index range. By ensuring that the sequences have the integer values
which represent vertices in their index range, they can be used to refine the sets in
the algorithm.

Vertices and these index integers must be identified in the coupling predicates.
The index range of a sequence is always an initial sequence of the natural numbers,
vertices are therefore refined as numbers between 0 and the number of vertices.
We introduce function symbols vi : vertex → int and iv : int → vertex for this partial
bijection which are defined as

(∀vvertex. iv(vi(v)) .
= v ∧ 0 ≤ vi(v) < card(fullset[vertex]))∧

(∀iint. 0 ≤ i < card(fullset[vertex])→ vi(iv(i)) .
= i) .

This definition only describes a conservative extension if the set of vertices is known
to be finite, a fact we had already assumed before.

Such a bijection relationship is typical for a data refinement where the behaviour
does not change, but the data model is modified. Having the explicit function symbols
vi and iv for the bijection helps for the formulation of the coupling predicates and
during the proofs.

The structure of the algorithm is not changed in the refinement, yet the refined
procedure possesses less indeterminism than the original: In the second loop of bfs,
an arbitrary element w of the not-yet-visited successors of v may be chosen (line 18 in
Fig. 6.8b). The refinement narrows this operation and always chooses the vertex with
the minimum index vi(w). The purpose of this concretion is to save the expenses of
keeping an explicit list of nodes still to be visited. Selecting the minimum in all cases
allows us to keep a single integer value as index to the part yet to be traversed.

Reducing indeterminism is a typical operation during a refinement step. On the
abstract level, things are kept deliberately open to not restrict the possibilities of
an implementation. In the case of the example, the particular order in which the
set is traversed does not play a role in the correctness of the algorithm or its result.
However, when the set becomes concretised as a sequence, the elements are ordered,
the data has more structure. This additional information on the concrete level can be
exploited to optimise the algorithm.

We can now proceed and present the algorithm bfsseq which refines bfs. To differ-
entiate between variables on the original description level and the refinement, we
suffix every variable in the refined algorithm with seq (as it uses sequences). There
is one program variable pseq ∈ PVar(bfsseq) for every abstract variable p ∈ PVar(bfs).
The refinement step applied here is a functional refinement, the coupling predicates
give terms to compute the abstract values from the concrete. The program variables
and their coupling predicates are shown in Table 6.7.
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Variable in bfs refined in bfsseq

Coupling predicate

succ : vertex → set(vertex) succseq : int → seq(bool)

(∀v. succ(v) .
= (setComp x. seqGet(succseq(vi(v)),vi(x)))

src,dest : vertex srcseq,destseq : int

src .
= iv(srcseq), dest .

= iv(destseq)

d : int dseq : int

d .
= dseq

V : set(vertex) Vseq : seq(bool)

V .
= (setComp x.seqGet(Vseq,vi(x))) ∧ seqLen(Vseq)

.
= size

C : set(vertex) Cseq : seq(bool)

C .
= (setComp x.seqGet(Cseq,vi(x))) ∧ seqLen(Cseq)

.
= size

N : set(vertex) Nseq : seq(bool)

N .
= (setComp x.seqGet(Nseq,vi(x))) ∧ seqLen(Nseq)

.
= size

v,w : vertex vseq,wseq : int

v .
= iv(vseq), w .

= iv(wseq)

tovisit : set(vertex) —

tovisit .
= (setComp x. vi(x) > wseq) ∩ succ(v)

Table 6.7: Abstract and refined variables and coupling predicates
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The coupling for the distance output value is trivial (the result must be the same),
the currently examined vertices are kept in program variables v,w and their coun-
terparts must hold the same nodes modulo the bijection iv. The coupling for the
sets V, C and N is more involved and it says that the sets must contain precisely
those nodes xvertex for which the corresponding entry in the according characteristic
sequence Vseq, Cseq or Nseq holds the value true. The set tovisit of vertices which are
still to be processed has no counterpart in the refinement but can be computed from
the concrete variables wseq and vseq.

The original program bfs and its refinement bfsseq are listed in Figure 6.8. It is evident
that, compared to the concise formalisation of the set-theoretic description, the refined
program is more extensive and less intuitive to comprehend. Both pseudocode texts
have been annotated with synchronisation points (mark 1, . . . , mark 6) marking the
program indices to be used with the synchronised loop invariant rule with multiple
synchronisation points from Section 5.4.4. Each pair of identical mark statements
marks program states at which a coupling predicate must hold.

Before we check that the refinement condition is valid, it is advisable to prove
true → [bfsseq]true, that is, that the embedded assertions of bfsseq hold. In this case,
there is only one assertion, associated to the second choose statement (line 18 in
Fig. 6.8b) selecting the minimum element with the property. Using the binder symbol
argmin that we have already used for the first refinement in the selection sort algo-
rithm, we can specify the smallest witness for the existence of the chosen predicate as
(argmin xint. tseq ≤ x ∧ x < sizeseq ∧ seqGet(succseq(vseq), x), x).

The program contains two loops; it would, hence, suffice to use only two synchro-
nisation points (for instance mark 1 and mark 3), one in each loop to break up the
cyclic structure of the programs. This is along the same lines as applying the invariant
rule twice during the correctness proof. However, experience showed that having
more check points in the programs makes the proof significantly shorter and easier
to conduct. The reason is the following: Whenever the program flow may split the
execution into several paths, it is likely that a similar effect also appears on the run
of the other program. The overhead (measured in the number of proof goals) grows
exponentially in the number of branches. Providing more synchronisation points
reduces this load and splits the proof on a rather high level into subproofs. The costs
of this reduction in proof size is the specification of extra coupling invariants. In the
case of this case study, and we believe this to be prototypical, however, the invariants
are relatively similar to one another.

The proof of the refinement condition ψpre → Jbfsaf
seqK⟨bfsaf ⟩ψpost requires eight

coupling predicates, one coupling precondition, one coupling postcondition and one
coupling invariant per synchronisation point. The predicates used in the proof are
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1 V := {src};
2 C := {src};
3 N := {};
4 d := 0;
5

6 while ¬(C .
= {}) do

7 mark 1;
8

9 choose v such that v ∈ C;
10 C := C \ {v};
11 if v .

= dest then
12 return
13 end;
14 mark 2;
15

16 iterate succ(v)
17 with w in tovisit do
18

19

20

21 mark 3;
22 if ¬w∈V then
23 V := V ∪ {w};
24 N := N ∪ {w}
25 end
26 mark 4;
27

28 end;
29 mark 5;
30 if C .

= {} then
31 C := N;
32 N := {};
33 d := d+1
34 end
35 mark 6;
36 end;
37 d := -1

(a) bfs: Using sets of vertices

Vseq := (seqDef i. 0, sizeseq, i .
= srcseq);

Cseq := (seqDef i. 0, sizeseq, i .
= srcseq);

Nseq := (seqDef i. 0, sizeseq, false);
dseq := 0;

while (∃k. 0≤k<sizeseq ∧ seqGet(Cseq, k)) do
mark 1;

choose vseq such that 0≤vseq<sizeseq ∧ seqGet(Cseq, vseq);
Cseq := seqUpdate(Cseq, vseq, false);
if vseq

.
= destseq then

return
end;
mark 2;
wseq := 0;
while (∃i. wseq≤i<sizeseq ∧ seqGet(succseq(vseq), i)) do

tseq := wseq;
choose wseq such that tseq≤wseq<sizeseq

∧ seqGet(succseq(vseq), wseq)
∧ (∀j. tseq≤j<wseq →¬seqGet(succseq(vseq), j));

mark 3;
if ¬seqGet(Vseq, wseq) then

Vseq := seqUpdate(Vseq, wseq, true);
Nseq := seqUpdate(Nseq, wseq, true)

end;
mark 4;
wseq := wseq + 1

end;
mark 5;
if ¬(∃i. 0≤i<sizeseq ∧ seqGet(Cseq, i)) then

Cseq := Nseq;
Nseq := (\seqDef i. 0, sizeseq, false);
dseq := dseq+1

end;
mark 6

end;
dseq := -1

(b) bfsseq: Using sequences of boolean values

Figure 6.8: Data refinement from sets to sequences
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(various) conjuncts of the basic predicates presented in Table 6.7, in particular we
have the pre- and postconditions

ψpre := fullset[vertex] .
= (setComp v. (∃i. 0 ≤ i ∧ i < size ∧ v .

= iv(i))) ∧ (6.9)

size .
= sizeseq ∧ src .

= iv(srcseq) ∧ dest .
= iv(destseq)∧

(∀v. succ(v) .
= (setComp x. seqGet(succseq(vi(v)),vi(x))))

ψpost := d .
= dseq

which are syntactically functional.
Termination of the refined algorithm is directly inherited from the abstract algo-

rithm.

6.2.3 Refinement to Implementation

The second refinement step is now the implementation of the algorithm as described
in bfsseq in a Java program. The sets of the original algorithm description, the se-
quences of the first refinement will there be represented as boolean arrays.

The intermediate data refinement step was devised in such a manner that the
second refinement step is relatively canonical now. The data structures need not be
tremendously altered any more. We adopt in the Java implementation the concept of
boolean sequences standing for the characteristic functions of the sets of vertices. The
sequences are, quite naturally, implemented by arrays of booleans in the Java pro-
gram. The successor function succseq : int → seq(bool) is refined as an array boolean
adjacency[][] representing the adjacency matrix as a two-dimensional array.

Unlike in the case for selection sort, this algorithm is not implemented in one
solitary method. Theoretically, it could be, but both for the sake of better code quality
and to ease the burden of the verification, several aspects of the algorithm can be
sourced out into small helper methods. These methods handle, in particular, the
management of the arrays which implement the sets of vertices. Figure 6.9 lists the
declarative skeleton of the implementing class BFS. It contains the declarations of
fields and methods and the contracts of the helper methods. The main method which
performs the actual computation is minDistance. It and its contract will be listed later.
Appendix B.2 fully lists the class with its methods, their contracts and additional
specification comments.

Two of the methods (isEmpty and first) are queries; isEmpty computes whether
an index in the array exists which holds the value true; first retrieves the first such
index. The method copy copies the contents of one array to another array of the same
length, and clear sets all values in the array to false. All methods have relatively
straightforward tasks to implement, but each needs a for-loop to finish their job.
The complexity of their tasks is moderate and when annotated with canonical loop
invariants and variants, the fully automatic verification of the contracts of the helper
function takes ivil approximately 4 seconds.
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JAVA
1 class BFS {
2 int size;
3 boolean[][] adjacency;
4

5 /*@ contract
6 @ requires ¬array .

= null
7 @ ensures -1 .

= resint ∨ from ≤ resint ∧ resint < arrlen(array)
8 @ ensures resint ≥ from → h[array, idxBool(resint)] ∧
9 @ (∀i. from≤i ∧ i<resint → ¬h[array, idxBool(i)])

10 @ ensures resint .
= -1 → (∀i. 0≤i ∧ i<arrlen(array) →

11 @ ∧ h[array,idxBool(i)])
12 @ modifies empty
13 @*/
14 int first(boolean[] array, int from) { ... }
15

16 /*@ contract
17 @ requires ¬array .

= null
18 @ ensures resbool .

= ¬(∃i. 0 ≤ i ∧ i < arrlen(array) ∧
19 @ h[array, idxBool(i)])
20 @ modifies empty
21 @*/
22 boolean isEmpty(boolean[] array) { ... }
23

24 /*@ contract
25 @ requires ¬array .

= null
26 @ ensures (∀i. 0 ≤ i ∧ i < arrlen(array) →
27 @ ¬h[array, idxBool(i)])
28 @ modifies {array}
29 @*/
30 void clear(boolean[] array) { ... }
31

32 /*@ contract
33 @ requires ¬target .

= null
34 @ requires ¬source .

= null
35 @ requires arrlen(source) .

= arrlen(target)
36 @ ensures (∀i. 0 ≤ i ∧ i < arrlen(target) →
37 @ h[target, idxBool(i)] .

= h[source, idxBool(i)])
38 @ modifies {target}
39 @*/
40 void copy(boolean[] target, boolean[] source) { ... }
41

42 /**
43 * This method computes the distance between src and dest using
44 * the breadth-first-search algorithm.
45 */
46 int minDistance(int src, int dest) { ... }
47 }

JAVA – 6.6

Figure 6.9: Skeleton of the Java class BFS implementing the breadth first search
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Let us now turn to the implementation minDistance of the actual algorithm. The
code of the method and its technical contract are listed in Figure 6.10. The method
body possesses six synchronisation points which directly correspond to the six marks
in Figure 6.8b.

The technical contract which is needed to show that the implementation behaves
well with respect to throwing unexpected exceptions is more extensive for this method
than for the smaller examples we have looked at so far. It contains technical details
which were not an issue on the abstract descriptions. In particular, the contract
requires that all references in the adjacency matrix do not reference to null and
that all rows in the matrix have the same length size. This contract together with
the minimal technical loop annotations allow the verification of the technical proof
obligation pretech → [minDistance](res[int] ≥ −1). The verification system ivil can do
this proof without any further user interaction, but it takes the system approximately
20 seconds. The method is significantly more complex than other methods we have
examined: It possesses two nested loops, several conditional statements and six
method calls which must be handled by their respective method contracts.

This shows that the separation of concerns as propagated in Section 5.1 has been
achieved for the example. The technical issues have been factored out and are con-
sidered separated from the algorithm. The non-trivial technical precondition proves
that the technical aspects are not negligible and must be considered. A verification of
all concerns at the same time would have been drastically more challenging.

With these technical issues proved correct, we can safely remove the assertions
from the program minDistance and use the assertion-free variants for the refinement
proof condition. Since six synchronisation marks have been specified, eight coupling
predicates need to be specified in the refinement declaration: one for the pre-, one for
the postcondition, and one for each synchronisation point. The coupling invariants
comprise several aspects and are very similar to another. Therefore, three abbreviations
have been introduced such that these aspects need not always be spelled out. The
coupling predicates become thus more comprehensible.

Figure 6.11 shows the refinement definition which accompanies the algorithm
descriptions. The abstract variable names (of program bfsseq) are primed again. The
introduced abbreviations (lines 1–21) precede the actual refinement definition.

Abbreviation @vars coupled captures the functional part of the refinement relation.
The values of the abstract program variables V′,C′, N′,d′, src′,dest′ and size′ can be
computed from their Java counterparts. The boolean sequences use the abstraction
function boolArrayAsSeq which is analogous to the earlier used intArrAsSeq but for
boolean values rather than for int. The technical coupling invariant @arrays is
needed to guarantee some properties of the arrays which must be maintained. They
must not alias with another nor with the adjacency matrix. Additionally, their length
must always be constant and equal to size′. The abbreviation @succ finally captures the
refinement of the successor function succ′ into the adjacency matrix. The refinement
is again functional and the abstraction for each relevant succ′(v) is given using the
function boolArrayAsSeq.
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JAVA
1 class BFS {
2 int size;
3 boolean[][] adjacency;
4 // ...
5

6 /*@ contract
7 @ requires ¬h[this, adjacency] .

= null
8 @ requires h[this, size] > 0
9 @ requires arrlen(h[this, adjacency]) .

= h[this, size]
10 @ requires (∀i. 0 ≤ i ∧ i < h[this, size] →
11 @ !h[h[this, adjacency], idxRef(i)] .

= null
12 @ ∧ arrlen(h[h[this, adjacency], idxRef(i)]) .

= h[this, size])
13 @ requires 0 ≤ src ∧ src < h[this, size]
14 @ requires 0 ≤ dest ∧ dest < h[this, size]
15 @ ensures -1 ≤ resint

16 @ modifies freshObjects(h)
17 @ decreases 1
18 @*/
19 int minDistance(int src, int dest) {
20 boolean[] V = new boolean[size];
21 boolean[] C = new boolean[size];
22 boolean[] N = new boolean[size];
23

24 V[src] = true;
25 C[src] = true;
26 int d = 0;
27

28 /*@ maintains 0 ≤ d
29 @ decreases 2
30 @ modifies {V, C, N}
31 @*/
32 while(!isEmpty(C)) {
33 //@ mark 1;
34 int v = first(C, 0);
35

36 C[v] = false;
37 if(v == dest) {
38 return d;
39 }
40

41 /*@ maintains 0 ≤ w
42 @ decreases 2
43 @ modifies {V, N}
44 @*/
45 //@ mark 2;
46 int w = 0;
47 while(true) {

48 w = first(adjacency[v], w);
49 if(w == -1) {
50 break;
51 }
52

53 //@ mark 3;
54 if(w < size && !V[w]) {
55 V[w] = true;
56 N[w] = true;
57 }
58

59 //@ mark 4;
60 w++;
61 }
62

63 //@ mark 5;
64 if(isEmpty(C)) {
65 copy(C, N);
66 clear(N);
67 d++;
68 }
69

70 //@ mark 6;
71 }
72 return -1;
73 }
74 }

JAVA – 6.7

Figure 6.10: Java method implementing breadth first search
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With these auxiliary abbreviations defined, the actual refinement (from line 23
on) can be specified. The refinement precondition (ψpre, line 24) is followed by the
postcondition (ψpost, line 25) and the coupling invariants for the six synchronisation
points. It is obvious that the coupling invariants are very similar and each have only
small additions to the abbreviated conditions.

The verification of the refinement condition needs heavy user interaction in the
verifier: Most notably, the choice operator in the abstraction must be instantiated
with the corresponding choice on the more concrete level. This corresponds to an
observation made for the selection sort verification. The choose operator of line 18
in the program bfsseq (Figure 6.8b) is actually deterministic. Still, we must provide
the instantiation of the extensional quantifier to proceed with the symbolic execution.
Luckily, we can take the value obtained by the execution of the Java code and use it
as witness.

Other user interactions are owing to the complexity of the proof obligation. The
underlying decision procedure is often overburdened by the verification conditions
spanning over two levels of abstraction. As has been mentioned and reported earlier,
simple propositional splits and small canonical lemmas (introduced using the “cut”
rule of the calculus interactively) guided the theorem prover. We use the decision
procedure as a black box and cannot look inside it when it cannot decide a proof
obligation; we could therefore only speculate about the reasons for this kind of
behaviour.

6.2.4 Extracting a Method Contract

Two formal refinement steps have been presented and all arisen verification con-
ditions have been successfully discharged. It remains, in a final step, to extract a
functional contract for the main method of the Java implementation. This contract
should not make any references to the more abstract formulations using sequences or
sets of vertices but be completely in terms of the Java implementation.

Recall that the formulated contract of the original most abstract algorithm bfs is the
following:

finite(fullset[set(vertex)])→ JbfsK
(
d ≥ −1 (6.10)

∧ (d .
= −1 → (∀m.m ≥ 0 →¬minconnect(src,dest,m)))

∧ (d > 0 → minconnect(src,dest,d))
)

The result d is either −1 if src : vertex and dest : vertex are not connected, or it holds
the minimum distance between the two nodes.

The coupling predicates in the first refinement step (6.9) are syntactically functional
as they provide definitions for abstract entities in terms of the concretion. In partic-
ular, the extend of the type vertex is fixed by means of the equality fullset[vertex] .

=
(setComp v. (∃i. 0 ≤ i ∧ i < size ∧ v .

= iv(i))). The elements of the domain 𝒟vertex

are the images of the interval {0, . . . , size − 1} under the partial bijection iv. This



196 CHAPTER 6 CASE STUDIES

immediately implies the domain is finite, and the precondition finite(fullset[vertex])
from (6.10) is under these circumstances equivalent to true and can be dropped. Using
the functional coupling predicates of (6.9), the following contract for the intermediate
program bfsseq can be extracted:

true → JbfsseqK
(

dseq ≥ −1

∧ (dseq
.
= −1 → (∀m.m ≥ 0 →¬minconnect(iv(srcseq), iv(destseq),m)))

∧ (dseq > 0 → minconnect(iv(srcseq), iv(destseq),dseq))
)

This contract has still got references to the abstract world in form of the function ap-
plications of minconnect. If according new function symbols connectseq,minconnectseq :
int× int× int→ bool are defined in the same way but not with respect the abstract suc-
cession function succ but using its refinement succseq, then (6.10) can be reformulated
without reminiscences to the abstract world as

true → JbfsseqK
(

dseq ≥ −1 (6.11)

∧ (dseq
.
= −1 → (∀m.m ≥ 0 →¬minconnectseq(srcseq,destseq,m)))

∧ (dseq > 0 → minconnectseq(srcseq,destseq,dseq))
)

.

For the refinement of this contract to a contract for the Java program, we need to
look at the refinement definition given in Figure 6.11, in particular at the coupling
pre- and postcondition in line 24 and 25. They are both functional and the program
variables in (6.11) can be replaced by their equally named Java counterparts.

To remove dependency on the abstract algorithms, we need to reformulate the
postcondition (like before) replacing the function symbols connectseq and minconnectseq
by symbols that are not defined in terms of abstract entities but solely over the
elements present in the Java world. As the connection of nodes on the Java level
depends on entries of the adjacency matrix, the corresponding function symbols
connectJava,minconnectJava : heap × ref × int × int → bool for Java must hence depend
on the heap and the BFS object. They are defined by the axioms

(∀h.∀r.∀a.∀b.∀n. connectJava(h,r, a,b,n) .
=

if n ≤ 0 then a .
= b else (∃x.0 ≤ x ∧ x < h[r,size] ∧ connectJava(h,r, a, x,n − 1) ∧

h[h[h[r,adjacency], idxRef(x)], idxBool(b)]))

and

(∀h.∀r.∀a.∀b.∀n. minconnectJava(h,r, a,b,n) .
=

(connectJava(a,b,n) ∧ (∀m. 0 ≤ m ∧ m < n →¬connectJava(a,b,m)))) .

The clumsy-looking expression h[h[h[r,adjacency], idxRef(x)], idxBool(b)])) in the
defining axiom for connectJava is the logical equivalent of the corresponding Java
expression r.adjacency[x][b].
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These definitions can now replace the functions connectseq and minconnectseq in
(6.11). When we bring this contract together with the technical contract of the Java
method, we obtain the following Java method contract:

JAVA CONTRACT
1 /*@ contract
2 @ requires ¬h[this, adjacency] .

= null
3 @ requires h[this, size] > 0
4 @ requires arrlen(h[this, adjacency]) .

= h[this, size]
5 @ requires (∀i. 0 ≤ i ∧ i < h[this, size] →
6 @ ¬h[h[this, adjacency], idxRef(i)] .

= null
7 @ ∧ arrlen(h[h[this, adjacency], idxRef(i)])
8 @ .

= h[this, size])
9 @ requires 0 ≤ src ∧ src < h[this, size]

10 @ requires 0 ≤ dest ∧ dest < h[this, size]
11 @ ensures resint ≥ -1
12 @ ensures resint .

= -1 → (∀m. m≥0 → ¬minconnectJava(src,dest,m))
13 @ ensures resint > 0 → minconnectJava(src,dest, resint)
14 @*/

JAVA CONTRACT – 6.9

This contract is completely dissociated from the more abstract definitions of the
algorithm which have preceded the Java implementation. It can stand on its own. It is
apparent that an attempt to prove this contract correct directly on the implementation
would be a far more complex undertaking as the relatively simple refinement steps.
The separation of concerns has worked well for this example.

It should finally be admitted that this contract was not obtained by a direct syn-
tactical replacement of a more abstract definition. The equivalence of the various
minconnect variants needs to be established semantically since the different successor
relation encodings are not functional.

6.3 Chapter Summary

In two case studies which cover examples of different degree of complexity and
difficulty, we have shown that the refinement approach which has been proposed in
Chapter 5 is a practicable way to formalise, specify and verify abstract algorithms and
their implementations. The software verification system ivil presented in Chapter 4 for
the program logic UDL has been used to prove all verification conditions which arose
during the refinement process. The translation of Java bytecode to UDL programs
outlined in Section 4.4 has been used to bring in the Java implementation.

The first and smaller case study has formalised and refined the selection sort al-
gorithm. In the most abstract pseudocode description, a part of the algorithm is
abstracted from by an indeterministic choice operation. This makes the program



198 CHAPTER 6 CASE STUDIES

more comprehensible and easier to verify. The indeterministic operation is then for-
mally refined to an implementable algorithmic description which is, in another step,
formally refined to its implementation as a Java method. The program code could be
annotated with autoactive proof hints introduced in Section 4.2 such that the proof
obligations could be discharged automatically without further human interaction in
the interactive verification tool.

The second case study has been more sophisticated and more extensive; it covers an
algorithmic problem which had been given as a challenge during a software verifica-
tion competition. A breadth first search algorithm for the shortest-path computation
in a graph was to be verified. The original problem description fitted seamlessly into
our proposed pseudocode language. This description uses presentation-friendly data
structure like sets to transport a good intuition of the procedure. A formal refinement
has step been proposed transferring this data representation to more implementation-
friendly data structures. These have then, in a second formal refinement step, been
brought into connection with the Java implementation of the algorithm. In the verifi-
cation of the Java implementation, regular contract-based verification meets with the
refinement-based approach.

For both case studies, formal contracts for the implementing Java methods without
reference to abstractions could be achieved by means of the presented refinement
technique.
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PSEUDOCODE REFINEMENT
1 abbreviation
2 @vars_coupled := V’ .

= boolArrayAsSeq(h, V) ∧ C’ .
= boolArrayAsSeq(h, C) ∧

3 N’ .
= boolArrayAsSeq(h, N) ∧ d’ = d ∧ src’ = src ∧

4 dest’ = dest ∧ size’ = h[this, size]
5

6 abbreviation
7 @arrays :=
8 ¬(V .

=N) ∧ ¬(N .
=C) ∧ ¬(V .

=C) ∧ ¬(V .
=h[this, adjacency]) ∧

9 ¬(N .
=h[this, adjacency]) ∧ ¬(C .

=h[this, adjacency]) ∧
10 ¬(V .

=this) ∧ ¬(N .
=this) ∧ ¬(C .

=this) ∧
11 (∀i; 0 ≤ i < size’ →
12 ¬h[h[this, adjacency], idxRef(i)] .

= V ∧
13 ¬h[h[this, adjacency], idxRef(i)] .

= N ∧
14 ¬h[h[this, adjacency], idxRef(i)] .

= C) ∧
15 arrlen(V) .

= size’ ∧ arrlen(N) .
= size’ ∧ arrlen(C) .

= size’
16

17 abbreviation
18 @succ :=
19 (∀v.0≤v<size’ →
20 succ’(v) .

= boolArrayAsSeq(h, h[h[this,adjacency],idxRef(v)])) ∧
21 (∀i.0≤i<size’ → arrlen(h[h[this, adjacency], idxRef(i)]) .

= size’)
22

23 refine bfsseq as minDistance
24 requires @succ ∧ src’ .

= src ∧ dest’ .
= dest ∧ size’ .

= h[this, size]
25 ensures d’ .

= resint

26

27 mark 1
28 inv @varscoupled ∧ @arrays ∧ @succ ∧ (∃i. 0≤i<arrlen(C) ∧ h[C, idxBool(i)])
29

30 mark 2
31 inv @varscoupled ∧ @arrays ∧ @succ ∧ v’ .

= v ∧ 0 ≤ v < size’
32

33 mark 3
34 inv @varscoupled ∧ @arrays ∧ @succ ∧ v’ .

= v ∧ 0≤v<size’ ∧ w’ .
= w ∧ 0≤w<size’

35

36 mark 4
37 inv @varscoupled ∧ @arrays ∧ @succ ∧ v’ .

= v ∧ 0≤v<size’ ∧ w’ .
= w ∧ 0≤w<size’

38

39 mark 5
40 inv @varscoupled ∧ @arrays ∧ @succ ∧ v’ .

= v ∧ 0 ≤ v < size’
41

42 mark 6
43 inv @varscoupled ∧ @arrays ∧ @succ ∧ v’ .

= v ∧ 0 ≤ v < size’
PSEUDOCODE REFINEMENT – 6.8

Figure 6.11: The refinement declaration for the breadth first search
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Conclusion

7.1 Summary

The goal of this thesis has been to make deductive verification of Java implemen-
tations more practicable. Two means have been proposed to reduce the workload
which is inherent to this heavyweight formal method:

A novel logical framework based on an intermediate verification language has been
presented which allows the formulation of verification conditions in a very flexible
way. Its flexibility has been achieved by combining two successful paradigms of
implementation verification: dynamic logic and intermediate verification languages. The
new logic inherits the flexibility to compose programs with disseminated embedded
assertions from the intermediate language it incorporates. At the same time, it retains
the flexibility to combine several programs within a single verification condition from
dynamic logic.

Deductive verification can be a difficult business, and it cannot always succeed
fully automatically, but may require input from the user. Therefore, the interactive
theorem prover ivil for the new logic has been devised. It permits the user to intervene
in the process of symbolic execution and proof. The interaction provides insight into
the current proof situation and allows the user to give stimuli in form of interactive
proof steps which help the automatic proof component to eventually find the proof.

The interactive framework is designed such that the communication between
user and verification system can happen in terms of elements also present in the
source code program even if the verification is actually performed on a translation
to the intermediate representation. The user interface has got interaction features
like breakpoints and stepwise execution which are similar to familiar features known
from dynamic source-level debugging tools.

The second instrument that has been presented to deal with the difficult task of
full functional verification is refinement. It is a well-established technique in formal
methods which operate on abstract models. Beginning from the most abstract coarse
system model, refinement is used to make the models more and more detailed in a
stepwise fashion. Properties satisfied by an abstract model are passed down to its
refining descriptions.
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We have extended the reach of formal refinement to include the implementation in
code as the final step in the formal refinement process. Thus, a separation of concerns
between the conceptual questions and the implementational details of a verification
task has been achieved. The technical issues that an implementation in a modern
programming language necessarily brings with it can be dealt with on the implemen-
tational level directly. The implementation is verified with lightweight specifications
to establish technical goals like the absence of runtime errors or compliance with
a framing contract. The conceptual, still challenging proof of properties which are
inherent to the algorithm not the implementation, is conducted on a suitable ab-
straction of the implementation. This abstract model of the implementation and the
implementation are brought into a formal relationship using coupling predicates.
The results proved on the abstraction are finally transferred to the implementational
level resulting in a correct formal contract for the implementation.

In recent software verification competitions1, most of the proposed challenges
have been of an abstract, algorithmic nature. They show that full functional verifi-
cation is difficult already on the conceptual level without the added difficulty of an
implementation in a real-world programming language.

The novel refinement approach makes full use of the flexibility introduced by the
new logic: The intermediate language is important to prepare a common ground to
accommodate quite different source languages. Both programs in an abstract pseudo-
code language and Java implementations (given as bytecode) must be translated to
the intermediate language. The fact that the logic is a dynamic logic is important
since the refinement proof obligation requires that proof obligations contain two
non-trivially composed programs.

7.2 Future Work

The approach for refinement to implementation code by using dynamic logic and
symbolic execution presented here is a new method; the provided examples and
case studies can only be considered the first steps into this direction. But the results
are promising since a non-trivial algorithm could already be provided with a sound
formal contract using the new method.

Besides the evident need of more case studies to explore the possibilities of the
refinement approach, more theoretical research questions remain to be answered:

The approach as it has been presented here is limited to programs which use loops;
algorithmic descriptions which rely on recursion rather than on loops cannot be
considered. A canonical extension of the presented approach could hence also allow
recursive programs to be formally refined. However, the programming languages
in structured or unstructured dynamic logic do not have a concept of recursion;
they base on regular programs. Harel et al. (2000, S9.1) have loosened this restriction

1in particular the competitions associated with the conferences VSTTE 2010, FoVeOOS 2011, VSTTE 2012
and FM 2012
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theoretically for structured dynamic logic by relaxing the programs in modalities
from regular to context-free programs. These results would have to be transferred to the
unstructured variant of the logic affecting its basic definitions and the calculus. Loops
and recursion are related patterns, and it is to be expected that a verification pattern
similar to the presented case for loops would emerge for recursion as well. Instead
of synchronised loops, the approach would introduce a concept of synchronised
recursive program invocations. The regression verification method by Godlin and
Strichman (2009) (a topic closely related to refinement) relies heavily on coupled
recursive function calls.

The implementation abstractions that have been explored in the case studies were
conceptually similar; all involved arrays in the implementation and sequences in
the abstraction. The arrays in the Java code were abstracted from using function
symbols which have a heap argument. Such a proceeding is by no means limited
to abstracting arrays to sequences, a similar abstraction function can be devised, for
instance, to retrieve an element of the abstract datatype tree from a heap structure.
A collection and classification of relevant datatypes together with their abstraction
functions from heap structures should be worked out.

The refinement approach would not be the only scenario in deductive verification
where such a collection would prove valuable. Modular specifications of interfaces
which do not want to reveal details of their implementations also require means
to abstract from the implementational data structures, and could employ the same
abstraction techniques as the refinement.

The potential of this refinement approach should, in particular, be examined for
implementations involving rich heap structures in which many objects and references
between them are involved. On such structures, it appears particularly interesting
to separate the algorithmic questions from the technical issues. The most relevant
technical aspects of heap-intensive structures are framing issues. It is desirable to
factor this question out as much as possible.

As far as the interactive verification tool ivil is concerned, two further development
ideas come to mind: First, the user experience could be brought closer to that of a
dynamic source-level debugging tool. In particular, the presentation of data to the
user could be conceptually reconsidered. Instead of displaying the proof state as a
logical sequent, a more data-oriented presentation approach which separates path
condition, variable assignment and heap state would be appreciated. Ideas from tools
like the visual debugger presented by Hähnle et al. (2010) that present a symbolic
system state graphically could be incorporated in the context of the prover.

Secondly, storing interactively applied proof steps persistently remains an inter-
esting open question. Interaction in ivil can be provided by means of user input in
the interface or as autoactive proof hints annotated to the source code controlling the
verification system. It would simplify the process of interactive verification if these
two kinds of interaction could be unified. A suitable generalising concept which
allows the formulation of proof scripts should be defined. These scripts should be
comprehensible enough to be written manually while they should serve at the same
time as the persistent store format for interactive rule applications. If only small and
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irrelevant changes are made to the input description, such scripts would be robust
enough to reproduce proofs even if an earlier proof cannot be replayed verbatim.



APPENDIX A

Formal Definitions

A.1 Syntax and Semantics of Terms

The definition of the syntax and semantics of terms in UDL has been split into several
smaller incremental definitions for the sake of a clearer presentation. This section
merges for these definitions the parts scattered over several places in Chapter 2 into
one spot.

A.1.1 Syntax

Definition A.5 (Terms) Let the type signature Γ and the signature Σ be given. For every
type T ∈ 𝒯Γ be a type, the set TrmT

Σ of terms of type T is defined as the smallest set such
that the following inductive conditions hold:

1. xT ∈ VarΓ
=⇒ xT ∈ TrmT

Σ

2. f ∈ FctΣ, τ : typeVars(tyΣ( f ))→ 𝒯Γ
⟨T1, . . . , Tn, T⟩ = τ(tyΣ( f )),
ti ∈ TrmTi

Σ (1 ≤ i ≤ n)
=⇒ f [τ](t1, . . . , tn) ∈ TrmT

Σ

3. b ∈ BndΣ, τ : typeVars(tyΣ(b))→ 𝒯Γ
⟨Tv, T1, . . . , Tn, T⟩ = τ(tyΣ(b))
xTv ∈ VarΓ, t1 ∈ TrmT1 , . . . , tn ∈ TrmTn

=⇒ (b[τ] xTv . t1, . . . , tn) ∈ TrmT

4. α ∈ TVar, ϕ ∈ Trmbool

=⇒ (

A

α. ϕ), (

E

α. ϕ) ∈ Trmbool

5. p1, . . . , pn ∈ PVarΣ and t1 ∈ Trmty(p1)
Σ , . . . , tn ∈ Trmty(pn)

Σ , t ∈ TrmT
Σ

=⇒ {p1 := t1 ‖ . . . ‖ pn := tn}t ∈ TrmT
Σ (Update term)
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6. π ∈ ΠΣ,n ∈ N
=⇒ [n;π], Jn;πK ∈ Trmbool

Σ (Program formula)

This definition consolidates Definitions 2.5, 2.10, 2.12 and 2.15.
The set of freely occurring variables freeVars(t) in a term t ∈ TrmT is inductively

defined for as follows:

freeVars(xT) = {xT}, xT ∈ Var

freeVars( f [σ](t1, . . . , tn) =
n⋃

i=1

freeVars(ti), f ∈ Fct

freeVars((b[σ] v. t1, . . . , tn)) =
n⋃

i=1

freeVars(ti) ∖ {v}, b ∈ Bnd

freeVars(

A

α.ϕ) = freeVars(ϕ)

freeVars({p1 := t1 ‖ . . . ‖ pn := tn}t0) =
n⋃

i=0

freeVars(ti)

freeVars([n;π]) = freeVars(Jn;πK) =
⋃{

freeVars(t)
∣∣∣∣ assert t or assume t or

p := t is a statement in π

}
If-then-else terms have not been officially introduced and they have been used

confiding in their intuitive meaning. Formally, there is a polymorphic function
cond : bool × α × α → α which is axiomatised as (

A

α.∀xα.∀yα. cond(true, x,y) .
= x ∧

cond(false, x,y) .
= y). Instead of the term cond(t,u,w) we use the established notation

(if t then u else w).

A.1.2 Evaluation

Definition A.6 (Evaluation of Terms) Let D = (𝒟, I) be a semantic structure, τ a type
variable assignment and β a variable assignment compatible with τ. The term evaluation
function valI,τ,β : Trm →𝒟 is inductively defined as follows:

1. xT ∈ VarΓ
=⇒ valI,τ,β(xT) = β(xT)

2. f ∈ Fct, σ : typeVars(ty( f ))→ 𝒯 , ti ∈ TrmTi
Σ (1 ≤ i ≤ n)

=⇒ valI,τ,β( f [σ](t1, . . . , tn)) = I( f [τ∘σ])(valI,τ,β(t1), . . . ,valI,τ,β(tn))

3. b ∈ Bnd, σ : typeVars(ty(b))→ 𝒯 , ti ∈ TrmTi
Σ (1 ≤ i ≤ n),v ∈ Var,

ty(b) = ⟨Tv, T1, . . . , Tn⟩
evali : 𝒟τ(σ(Tv)) →𝒟τ(σ(Ti)),
evali(d) = valI,τ,β[v ↦�d](ti), for all d ∈ 𝒟τ(σ(Tv))

=⇒ valI,τ,β((b[σ] v. t1, . . . , tn)) = I(b[τ∘σ])(eval1, . . . , evaln)
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4. ϕ ∈ Trmbool
Σ , α ∈ TVar

=⇒ valI,τ,β(

A

α.ϕ) = tt ⇐⇒ I,τ[α ↦�T], coerce(β,τ[α ↦�T]) |= ϕ for all T ∈ 𝒯 0

5. p1, . . . , pn ∈ PVarΣ, t ∈ TrmΣ, ti ∈ Trmty(pi)
Σ (1 ≤ i ≤ n)

I′ = I[p1 ↦�valI,τ,β(t1)][p2 ↦�valI,τ,β(t2)] . . . [pn ↦�valI,τ,β(tn)]
=⇒ valI,τ,β({p1 := t1 ‖ . . . ‖ pn := tn}t) = valI′ ,τ,β(t)

6. π ∈ Π,n ∈ N, ϕ ∈ Trmbool
Σ

=⇒ valI,τ,β([n;π]) = tt ⇐⇒ Every trace starting in (I,n) is successful.
valI,τ,β(Jn;πK) = tt ⇐⇒ valI,τ,β([n;π]) = tt and π has no infinite trace

starting in (I,n)

This definition consolidates Definitions 2.8, 2.11, 2.13, 2.16 and 2.18.

A.2 Definitions of Abstract Data Types

At various points in the thesis, abstract data types were used to model aspects of
systems. In particular sets (as the polymorphic type set) and sequences (as the
polymorphic type seq) are used. To clarify their meaning, we list the defined symbols
with their signatures and the defining axioms for the two data types.

The induction schema for has been mentioned in Section 4.2.5. It is the Peano
axiom for induction over natural numbers generalised to a set of integers with a
lower bound l : Trmint.

Γ ⊢ ϕ[n/l], ∆ Γ ⊢ (∀n. n ≥ l ∧ ϕ → ϕ[n/n + 1]),∆
Γ ⊢ (∀n. n ≥ l → ϕ),∆

intInduction

A.2.1 Sets

The formalisation of sets in ivil bases (like axiomatic set theory) on the ∈-relation. All
operators on set are defined in terms of ∈. An extensionality axiom is added which
says that sets are considered equal if the contain the same elements.

The theory of sets contains the function symbols

in : α × set(α)→ bool (∈)
empty : set(α) (∅)

fullset : set(α)
singleton : α → set(α) ({·})

union : set(α)× set(α)→ set(α) (∪)
intersect : set(α)× set(α)→ set(α) (∩)

diff : set(α)× set(α)→ set(α) (∖)
complement : set(α)→ set(α) ({)

seqAsSet : seq(α)→ set(α)
finite : set(α)→ bool
card : set(α)→ int
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(

A

α.∀sset(α).∀tset(α). (∀xα. (in(x, s)↔ in(x, t)))→ s .
= t)

(

A

α.∀xα. ¬in(x,empty))
(

A

α.∀xα. in(x, fullset))
(

A

α.∀xα.∀yα. in(x,singleton(y))↔ x .
= y)

(

A

α.∀xα.∀sset(α). in(x,complement(s))↔¬in(x, s))

(

A

α.∀xα.∀sset(α).∀tset(α). in(x,union(s, t))↔ (in(x, s) ∨ in(x, t)))

(

A

α.∀xα.∀sset(α).∀tset(α). in(x, intersect(s, t))↔ (in(x, s) ∧ in(x, t)))

(

A

α.∀xα.∀sset(α).∀tset(α). in(x,diff(s, t))↔ (in(x, s) ∧ ¬in(x, t)))

(

A

α.∀sset(α).∀tset(α). subset(s, t)↔ (∀xα. (in(x, s)→ in(x, t))))

(

A

α.∀sset(α). finite(s)↔ (∃tseq. s .
= seqAsSet(t)))

(

A

α.∀xα. in(x, (setComp xα. ϕ))
.
= ϕ)

for all ϕ ∈ Trmbool, freeVars(ϕ) ⊆ {x}

Figure A.1: Axioms for the abstract data type set

and the set comprehension binder symbol

setComp : α × bool → set(α) .

We use the typical mathematical notation for the set functions for more concise
presentation if the context is clear. The according mathematical symbols are annotated
to the function symbol declarations above.

Sets are axiomatised by the set of axioms in Figure A.1 in which the last axiom is
schematic (containing the schematic formula ϕ) .

A.2.2 Finite Sequences

A similar theory of finite sequences has also been covered more extensively by Schmitt
(2011, Section 2.6).

The domain for finite sequences of type T ∈ 𝒯 0 is fixed as the set 𝒟seq(T) = (𝒟T)* =⋃∞
n=0(𝒟T)n of finite words over 𝒟T to match the intuition. There are two relevant

observer symbols in the theory: seqLen : seq(α) → int and seqGet : seq(α)× int → α.
The former gives the length of the sequence and the latter retrieves a value from the
sequence at a specified index:

I(seqLen[T])(⟨v1, . . . ,vn⟩) = n I(seqGet[T])(⟨v1, . . . ,vn⟩, i) =
{

vi+1 if 0 ≤ i < n
⊥[T] otherwise
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If a value is to be retrieved from a sequent outside its valid index range, an error value
⊥T ∈ 𝒟T is given. The error value is represented in the logic as the underspecified
polymorphic constant seqError : α.

Unlike the sets which are axiomatised using an observer symbol, sequence opera-
tors are defined by means of a constructor symbol. The binder seqDef : int× int× int×
α → seq(α) can be used to define sequences. Its semantics is fixed by the schematic ax-
ioms with l,h ∈ Trmint,v ∈ TrmT , freeVars(l) = freeVars(h) = ∅, freeVars(v) ⊆ {iint}:

(∀jint. seqGet[T]((seqDef [T] iint. l,h,v), j) .
= if 0≤j<h−l then v[i/j+l] else seqError[T])

seqLen[T]((seqDef [T] iint. l,h,v), j) .
= if l < h then h − l else 0

The remaining symbols of the theory

seqEmpty : seq(α) seqSingleton : α → seq(α)
seqConcat : seq(α)× seq(α)→ seq(α) seqSub : seq(α)× int × int → seq(α)
seqUpdate : seq(α)× int × α → seq(α) seqAsSet : seq(α)→ set(α)

seqPerm : seq(α)× seq(α)→ bool seqSorted : seq(int)→ bool
seqSwap : seq(α)× int × int → seq(α)

have their semantics fixed by the axioms in Figure A.2. All formulas are implicitly
universally quantified. The quantifiers were left out to shorten the presentation.
An auxiliary predicate isPermN : seq(int) → bool is used. The formula isPermN(p)
is true if the parameter is a permutation of the first seqLen(p) natural numbers:
(∀i. 0 ≤ i < seqLen(p)→ (∃j. 0 ≤ j < seqLen(p) ∧ seqGet(p, j) .

= i)).
The following theorem is relevant for the proof of the selection sort algorithm

(Section 6.1): Swapping two elements within the sequence preserves the permutation
property

0 ≤ aint < seqLen(sseq(α)
1 ) ∧ 0 ≤ bint < seqLen(sseq(α)

2 ) ∧
seqPerm(s1, s2)→ seqPerm(seqSwap(s1, a,b), s2)) .

This can be proved within ivil to be a consequence of the definitions of the function
symbols.

A.3 Formal Definition of Pseudocode

Pseudocode is used as the input language for the algorithmic descriptions on higher
abstration level in Chapter 5. The rationales of using pseudocode as modelling
language have been discussed in Section 5.1.1.

The pseudocode that we consider uses UDL as inner language, that is, every
expression in a pseudocode program can use the logical symbols which are defined
the signature in use. This includes (type) quantifiers and other binders, updates
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seqEmpty[α] .
= (seqDef i. 0,0,seqErr[α])

seqSingleton[α](vα)
.
= (seqDef i. 0,1,v)

seqConcat[α](sseq(α)
1 , sseq(α)

2 )
.
= (seqDef i. 0,seqLen(s1) + seqLen(s2),

if i < seqLen(s1) then seqGet(s1, i)
else seqGet(s2, i − seqLen(s1))

seqSub[α](sseq(α), aint,bint)
.
= (seqDef i. a,b,seqGet(s, i))

seqUpdate[α](sseq(α), aint,vα)
.
= (seqDef i.0,seqLen(s), if i .

= a then v else seqGet(s, a))

seqAsSet[α](sseq(α))
.
= (setComp x.(∃i.0 ≤ i ∧ i < seqLen(s) ∧ seqGet(s, i) .

= x))

seqSorted[α](sseq(α))
.
= (∀i.0 ≤ i < seqLen(s)→

(∀j. 0 ≤ j < seqLen(s) ∧ i < j → seqGet(s, i) ≤ seqGet(a, j))))

seqSwap[α](sseq(α), aint,bint)
.
= (seqDef t.0,seqLen(s),

if t .
= a then seqGet(s,b) else

(if t .
= b then seqGet(s, a) else seqGet(s, t)))

seqPerm[α](sseq(α)
1 , sseq(α)

2 )
.
= seqLen(s1)

.
= seqLen(s2)∧

(∃p.isPermN(p) ∧ seqLen(p) .
= seqLen(s1) ∧

(∀i.0 ≤ i < seqLen(p)→
seqGet(s1, i) .

= seqGet(s2,seqGet(p, i))))

Figure A.2: Axioms for finite sequences

and even program formulas. The pseudocode language heavily depends on sensible
datatypes which can be used to model algorithms. The datatype signatures and
definitions which are used for the presented algorithms are listed in Appendix A.2.

Pseudocode programs can easily be translated to UDL programs, in fact, pseudo-
code is a syntactical frontend to UDL and ivil. The Boogie language which shares its
primitives with ivil has an input language which features a rich set of syntactic sugar
to enable expressive freedom. This pseudocode frontend provides now a similar
feature-rich language to the user, but with a different goal: While for the Boogie
system, the input language is an intermediate representation format generated auto-
matically and not written by the end-user (and rarely read), pseudocode is intended
for the designer of an algorithm as input language.

The following grammar in extended Backus-Naur-Form describes the general
structure of a pseudocode declaration.
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EBNF

Declaration =
{ Algorithm }
[ Refinement ]

Algorithm =
"algo" Identifier
[ "input" VariableDeclarations ]
[ "output" VariableDeclarations ]
[ "var" VariableDeclarations ]
{ "requires" Expression }
{ "ensures" Expression }
"do"

Command
"end"

VariableDeclarations =
{ Identifier ":" Type }

Refinement =
"refine" Identifier "as" Identifier
"requires" Expression
"ensures" Expression
{ "mark" NaturalNumber

"inv" Expression }

Command =
| Command ";" Command
| Assume | Assert
| Identifier := Expression
| Mark
| While | Repeat | Choose | Note
| If | Iterate | Return

EBNF

A pseudocode algorithm description starts with the declaration of the program
variables which are used in the course of the program. They may be marked as
parameters to the algorithm (input), as result of the algorithm (output) or internal for
the algorithm (var). Then, pre- and postcondition formulas of the code are specified.
The actual code follows after these declarations. A full example of a pseudo algorithm
description is the following:

PSEUDOCODE
1 algo addNumbers
2 input S : set(int)
3 output sum : int
4 var T : set(int)
5 x : int
6 requires finite(S)
7 ensures sum = (sum i. i ∈ S)
8 do
9 sum := 0;

10 iterate S with x as T
11 inv sum = (sum i. i ∈ S ∖ T)
12 do sum := sum + x end
13 end

PSEUDOCODE

The commands of the language are given their semantics by describing how they
are reduced to the intermediate language of ivil. Assumptions, assertions and as-
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signments are directly adopted in the translation. Mark statements are translated
to annotations in the program. Figure A.3 shows the structure of the remaining
pseudocode command constructors and their translation in ivil.

Besides the while loop whose semantics is as expected, there are two more loop
statements: A repeat-loop which allows the repetition of a block indeterministically
often (the correspondent to the Kleene-star) and an iterate-loop which allows the
iteration over a set of values. Iterations take the iterated set S as argument and the
program variable x with which the set is iterated. Program variable T is used to
denote the elements in S which are still to be iterated. See the above small pseudocode
program for an example with these program variables.

The looping constructors (while, repeat and iterate) have an annotated invariant ϕ
and variant ν. These are brought into the unstructured program as annotations to
the suggested loop invariant places which are labelled with (*) in Figure A.3. For the
iterate statement, the suggested loop invariant point is in (**). The variant is the set
of remaining elements T ⊂ S; the loop terminates if T is finite. An implicit additional
invariant for iterate loops is T ⊆ S.

A pseudocode description may contain several programs and a concluding refine-
ment description. The description

PSEUDOCODE REFINEMENT

1 refine A as C
2 requires ψpre
3 ensures ψpost
4 mark 1 inv ψ1
5 ...
6 mark n inv ψn

PSEUDOCODE REFINEMENT

is translated into the proof obligation ψpre → [C]⟨A⟩ψpost. The intermediate coupling
invariants ψi are annotated together with the mark statements in the programs and
will be used by the strategies during the verification of the refinement condition.
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PSEUDOCODE/IVIL

while κ
inv ϕ
var ν

do P end

choose x
such that ϕ

if ϕ
then P
else Q
end

loop:
goto after, body
# (*)

body:
assume κ
# translate P
goto loop

after:
assume ¬κ

assert
(∃vT .{x := vT}ϕ)

havoc x
assume ϕ

goto then, else
then:
assume ϕ
# translate P
goto after

else:
assume ¬ϕ
# translate Q

after:

repeat
inv ϕ
var ν

do P end

note ϕ

iterate S
with x as T
inv ϕ

do P end

return

loop:
# (*)
goto after, body

body:
# translate P
goto loop

after:

assert ϕ
assume ϕ

T := S
loop:

# (**)
goto after, body
assume ¬T .

= empty
havoc x
assume in(x, T)
T := T ∖ {x}
# translate P
goto loop

after:
assume T .

= empty

end
PSEUDOCODE/IVIL

x ∈ PVar, κ, ϕ ∈ Trmbool, S, T ∈ Trmset(ty(x)), ν ∈ Trm, P and Q pseudocode programs

Figure A.3: Translation from pseudocode to ivil





APPENDIX B

Java Code

This appendix lists Java code excerpts which have been considered in the various
examples throughout the thesis.

B.1 Examples for Evaluation

Here we list the examples which have been used in Section 4.4.11 as benchmarks to
evaluate the capacities of ivil as a Java verification system.

Sum and Max In this example, a method computes the maximum and the sum of
the values given to it as a parameter. Additionally, the lemma that the sum is at most
as large as the length of the array multiplied with its maximum value.

This benchmark has been proposed as an assignment during the verification com-
petition VSTTE10 (covered by Klebanov et al., 2011).

JAVA
1 class SumAndMax {
2 int sum, max;
3

4 /*@ contract normal_behaviour
5 @ requires ¬a .

= null
6 @ requires (∀i. 0 ≤ i ∧ i < arrlen(a)→ 0 ≤ h[a, idxInt(i)])
7 @ modifies {this}
8 @ ensures (∀i. 0 ≤ i ∧ i < arrlen(a)→ h[a, idxInt(i)] ≤ h[this,max])
9 @ ensures (arrlen(a) > 0 → (∃i. 0 ≤ i ∧ i < arrlen(a) ∧ h[a, idxInt(i)] .

=h[this,max]))
10 @ ensures h[this,sum] .

= (sum i. 0,arrlen(a), h[a, idxInt(i)])
11 @ ensures h[this,sum] ≤ arrlen(a) * h[this,max]
12 @*/
13 void sumAndMax(int[] a) {
14 int sum = 0;
15 int max = 0;
16 int k = 0;
17
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18 /*@ maintains
19 @ 0 ≤ k ∧ k ≤ arrlen(a) ∧ (∀i;0 ≤ i ∧ i < k → h[a, idxInt(i)] ≤ max)
20 @ ∧ (k = 0 → max .

= 0) ∧ (k > 0 → (∃i. 0 ≤ i ∧ i < k ∧ max .
= h[a, idxInt(i)]))

21 @ ∧ sum .
= (sum i. 0,k, h[a, idxInt(i)]) ∧ sum ≤ k * max

22 @
23 @ modifies empty
24 @ decreases arrlen(a)− k
25 @*/
26 while(k < a.length) {
27 if(max < a[k]) {
28 max = a[k];
29 }
30 sum += a[k];
31 k++;
32 }
33

34 this.sum = sum;
35 this.max = max;
36 //@ note k .

= arrlen(a);
37 }
38 }

JAVA

Least Common Prefix This simple method is part of a verification benchmark pro-
posed within the verification competition at the Formal Methods conference 2012 in
Paris.

The method takes an array a of integers and two indices x, y into the array and
returns the number of elements which equal from both indices counted onwards.

JAVA
1 class LeastCommonPrefix {
2 /*@
3 @ contract normal_behaviour
4 @ requires 0 ≤ x ∧ x < arrlen(a)
5 @ requires 0 ≤ y ∧ y < arrlen(a)
6 @ requires ¬a .

= null
7 @ ensures 0 ≤ res[int]

8 @ ensures res[int] ≤ arrlen(a)− x
9 @ ensures res[int] ≤ arrlen(a)− y

10 @ ensures (∀j. 0 ≤ j ∧ j < res[int] → h[a, idxInt(x + j)] .
= h[a, idxInt(y + j)])

11 @ ensures res[int] .
= arrlen(a)− x ∨ res[int] = arrlen(a)− y ∨

12 @ ¬h[a, idxInt(x + res[int])]
.
= h[a, idxInt(y + res[int])]

13 @ modifies empty
14 @*/
15 @spec.Include("options.p")
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16 int lcp(int[] a, int x, int y) {
17 int i = 0;
18

19 /*@ maintains
20 @ 0 ≤ i ∧ i ≤ arrlen(a)− x ∧ i ≤ arrlen(a)− y ∧
21 @ (∀j. 0 ≤ j ∧ j < i → h[a, idxInt(x + j)] .

= h[a, idxInt(y + j)])
22 @ decreases arrlen(a)− i
23 @ modifies empty
24 @*/
25 while(x+i < a.length && y+i < a.length &&
26 a[x+i] == a[y+i]) {
27 i++;
28 }
29

30 return i;
31 }
32 }

JAVA

Array List This example has not been part of a competition. It implements a list
backed up by an array. To the user, the list is abstracted by a sequence of the references
stored in a ghost field S. The methods add and get are specified with respect to this
ghost field.

It has been mentioned that object invariants are not supported by the translation.
Instead, a model method boolean listInv() is used to describe when an object is
valid. It is translated to a fresh predicate symbol listInv : heap× ref → bool in the logic.
A model method may depend on the heap and on the object upon which it is called
(the receiver). Both are added as arguments.

The methods are annotated with a decreases clause which is a constant. This is
necessary since any method call may only call a method with a strictly lower value for
their clause to avoid infinite method call cycles. A more sophisticated implementation
would compute these constants for non-recursive call graphs like this automatically.

JAVA
1 final class ArrayList {
2

3 private Object[] data;
4 private int len;
5 //@ ghost seq(ref) S;
6

7 /*@ model boolean listInv() {
8 @ return 0 ≤ h[r,len] ∧ (h[r,data] .

= null → h[r,len] .
= 0)

9 @ ∧ (¬h[r,data] .
= null → h[r,len] ≤ arrlen(h[r,data])

10 @ ∧ typeof(h[r,data]) .
= arrayType(java.lang.Object))

11 @ ∧ seqLen(h[r,S]) .
= h[r,len]

12 @ ∧ (∀i. 0 ≤ i ∧ i < h[r,len]→ seqGet(h[r,S], i) .
= h[h[r,data], idxRef(i)]);
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13 @ }
14 @*/
15

16 /*@ contract normal
17 @ requires listInv(h, this)
18 @ ensures h[this,len] < arrlen(h[this,data])
19 @ ensures h[this,S] .

= hpre[this,S]
20 @ ensures h[this,len] .

= hpre[this,len]
21 @ ensures listInv(h, this)
22 @ ensures ¬h[this,data] .

= null
23 @ ensures h[this,data] .

= hpre[this,data] ∨ ¬hpre[h[this,data], created]
24 @ modifies {this} ∪ freshObjects(h)
25 @ decreases 0
26 @ */
27 private void ensureSpace () {
28 if (data == null) {
29 data = new Object[10];
30 } else if (data.length == len) {
31 Object[] newData = new Object[len + 10];
32 /*@ maintains 0 ≤ i ∧ i ≤ h[this,len] ∧
33 @ (∀j. 0 ≤ j ∧ j < i → h[newData, idxRef(j)] .

= h[h[this,data], idxRef(j)])
34 @ decreases h[this,len]− i
35 @ modifies {newData}
36 @ */
37 for (int i = 0; i < len; i++) {
38 newData[i] = data[i];
39 }
40 data = newData;
41 }
42 }
43

44 /*@ contract normal
45 @ requires listInv(h, this)
46 @ ensures h[this,S] .

= seqConcat(hpre[this,S],seqSingleton(d))
47 @ ensures listInv(h, this)
48 @ modifies {this, h[this,data]} ∪ freshObjects(h)
49 @ decreases 1
50 @ */
51 public void add (Object d) {
52 ensureSpace ();
53 data[len] = d;
54 len++;
55 /*@ inline
56 @ h[this,S] := seqConcat(hpre[this,S],seqSingleton(d));
57 @ */
58 }
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59

60 /*@ contract normal
61 @ requires listInv(h, this)
62 @ requires 0 ≤ i ∧ i < h[this,len]
63 @ ensures res[ref] .

= seqGet(h[this,S], i)
64 @ modifies empty*/
65 /*@ contract exceptional
66 @ requires i < 0 ∨ i >= h[this,len]
67 @ signals java.lang.IndexOutOfBoundsException
68 @ decreases 1
69 @ modifies freshObjects(h)
70 @*/
71 public Object get (int i) {
72 if (i < 0 || i >= len) {
73 throw new IndexOutOfBoundsException ();
74 }
75 return data[i];
76 }
77 }

JAVA

First in Linked List This benchmark is like the first taken from the VSTTE 2010
competition. The assignment was to write a program which returns the index of the
first 0 in a linked list of integer values.

The linked list structure is more complex as it involves several objects on the heap
over which the information of the list is distributed. The list is, therefore, augmented
by a ghost field of type seq(int) in which the sequence of values in the list from
the current element on is stored. As object invariants are not supported by the
translation, a model method boolean nodeInv() is declared which captures that
the object is in a good state. Its correspondent in the logic is the predicate symbol
nodeInv : heap × ref → bool which gets the heap and the receiver object as additional
parameters. This parallels the modelling in the last benchmark.

There is one difference to the last predicate listInv. The definition of nodeInv is
recursive in the sense that on right hand side of the rewrite rule, the symbol is used
again (for the next node in the list). An unbridled replacement using the rewriting rule
leads to an infinite expansion of the definition. Instead we use autoactive annotations
to remark that these definitions should be expanded twice on the branch.

JAVA
1 class Node {
2 Node next;
3 int value;
4 /*@ ghost seq(int) data; */
5

6 /*@ model boolean nodeInv() {
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7 @ return (h[r,next] .
= null → h[r,data] .

= seqSingleton(h[r,value]))
8 @ ∧ (¬h[r,next] .

= null →
9 @ h[r,data] .

= seqConcat(seqSingleton(h[r,value]), h[r,data]))
10 @ ∧ (¬h[r,next] .

= null → nodeInv(h, h[r,next]));
11 @ }
12 @*/
13

14 /*@ contract normal
15 @ requires nodeInv(h, this)
16 @ ensures 0 ≤ res[int] ∧ res[int] ≤ seqLen(h[this,data])
17 @ ensures res[int] < seqLen(h[this,data])→ seqGet(h[this,data],res[int])

.
= 0

18 @ ensures res[int] = seqLen(h[this,data])→
19 @ (∀x. 0 ≤ x ∧ x < res[int] →¬seqGet(h[this,data], x) .

= 0)
20 @ modifies empty
21 @*/
22 public int search() {
23 int i = 0;
24 Node n = this;
25 /*@ maintains 0 ≤ i ∧ i ≤ seqLen(h[this,data]) ∧
26 @ (¬n .

= null → h[n,data] = seqSub(h[this,data],i,seqLen(h[this,data]))) ∧
27 @ (n .

= null → i .
= seqLen(h[this,data])) ∧

28 @ (∀x. 0 ≤ x ∧ x < i →¬seqGet(h[this,data], x) .
= 0) ∧

29 @ (¬n .
= null → nodeInv(h,n))

30 @ decreases seqLen(h[this,data])− i
31 @ modifies empty
32 @*/
33 while(n != null && n.value != 0) {
34 n = n.next;
35 i++;
36 //@ hint "(expand invDef 2)";
37 }
38

39 //@ hint "(expand invDef 2)";
40 return i;
41 }
42 }

JAVA – B.1

B.2 Case Study – Breadth First Search

In Section 6.2, a breadth first search algorithm has been presented. It is implemented
in the class BFS of which excerpts have been depicted in the section. We deliver here
the missing implementation code of the auxiliary methods of the class. The main
method has already been listed in Figure 6.10.
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The typeset for the formal annotation changes a little in comparison to the last
section. There the different types of symbols should be pointed out, an aspect we want
to emphasise less in this example. Originally, all files are annotated with specifications
in ASCII.

JAVA

1 class BFS {
2

3 int size;
4 boolean[][] adjacency;
5

6 /*@ contract
7 @ requires ¬array .

= null
8 @ ensures -1 .

= resint ∨ from ≤ resint ∧ resint < arrlen(array)
9 @ ensures resint ≥ from → h[array, idxBool(resint)] ∧

10 @ (∀i. from≤i ∧ i<resint → ¬h[array, idxBool(i)])
11 @ ensures resint .

= -1 → (∀i. 0≤i ∧ i<arrlen(array) →
12 @ ∧h[array,idxBool(i)])
13 @ modifies empty
14 @*/
15

16 int first(boolean[] array, int from) {
17 /*@ maintains
18 @ from ≤ i ∧ i < arrlen(arry) ∧
19 (∀j. 0 ≤ j ∧ j < i → ¬h[array, idxBool(j)])
20 @ decreases arrlen(array) - i
21 @ modifies empty
22 @*/
23 for(int i = from; i < array.length; i++) {
24 if(array[i]) {
25 return i;
26 }
27 }
28 return -1;
29 }
30

31 /*@ contract
32 @ requires ¬array .

= null
33 @ ensures res[bool] .

= ¬(∃i. 0 ≤ i ∧ i < arrlen(array) ∧
34 @ h[array, idxBool(i)])
35 @ modifies empty
36 @*/
37 boolean isEmpty(boolean[] array) {
38 /*@ maintains
39 @ 0 ≤ i ∧ _i ≤ arrlen(array) ∧
40 @ (∀ j. 0 ≤ j ∧ j < i -> ¬h[array, idxBool(j)])
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41 @ decreases arrlen(array) - i
42 @ modifies empty
43 @*/
44 for(int i = 0; i < array.length; i++) {
45 if(array[i]) {
46 return false;
47 }
48 }
49 return true;
50 }
51

52 /*@ contract
53 @ requires ¬array .

= null
54 @ ensures (∀i. 0 ≤ i ∧ i < arrlen(array) →
55 @ ¬h[array, idxBool(i)])
56 @ modifies {array}
57 @*/
58 void clear(boolean[] array) {
59 /*@ maintains
60 @ 0 ≤ i ∧ i ≤ arrlen(array) ∧
61 @ (∀j. 0 ≤ j ∧ j < i → ¬h[array, idxBool(j)])
62 @ decreases arrlen(array) - i
63 @ modifies {array}
64 @*/
65 for(int i = 0; i < array.length; i++) {
66 array[i] = false;
67 }
68 }
69

70 /*@ contract
71 @ requires ¬target .

= null
72 @ requires ¬source .

= null
73 @ requires arrlen(source) .

= arrlen(target)
74 @ ensures (∀i. 0 ≤ i ∧ i < arrlen(target) →
75 @ h[target, idxBool(i)] .

= h[source, idxBool(i)])
76 @ modifies {target}
77 @*/
78 void copy(boolean[] target, boolean[] source) {
79 /*@ maintains
80 @ 0 ≤ i ∧ i ≤ arrlen(source) ∧
81 @ (∀j. 0 ≤ j ∧ j < i →
82 @ h[target, idxBool(j)] .

= h[source, idxBool(j)])"
83 @ decreases arrlen(source) - i
84 @ modifies {target}
85 @*/
86 for(int i = 0; i < source.length; i++) {



B.2 CASE STUDY – BREADTH FIRST SEARCH 223

87 target[i] = source[i];
88 }
89 }
90

91 /*
92 * The main method minDistance(int src, int dest) has already
93 * been listed in Figure 6.10.
94 */
95

96 }
JAVA
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Gilles Dowek, Thérèse Hardin, and Claude Kirchner (2002). Binding logic: Proofs
and models. In Matthias Baaz and Andrei Voronkov, editors, Proceedings, Logic for
Programming, Artificial Intelligence, and Reasoning, 9th International Conference (LPAR
2002), volume 2514 of LNCS, pages 130–144. Springer. (Cited on pages 24 and 31.)
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for object-oriented programs. In Bernhard Beckert and Claude Marché, editors, Re-
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