

Christoph David Gladisch

Verification-based Software-fault Detection

Verification-based
Software-fault Detection

by
Christoph David Gladisch

KIT Scientific Publishing 2011
Print on Demand

ISBN 978-3-86644-676-2

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Dissertation, Karlsruher Institut für Technologie
Fakultät für Informatik
Tag der mündlichen Prüfung: 8. Februar 2011

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Verification-based
Software-fault Detection

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Christoph David Gladisch

aus Tichau

Tag der mündlichen Prüfung: 8. Februar 2011

Erster Gutachter: Prof. Dr. Bernhard Beckert,
KIT - Karlsruher Institut für
Technologie

Zweiter Gutachter: Prof. Dr. Peter Müller,
ETH Zürich - Eidgenössische
Technische Hochschule Zürich

Zusammenfassung (German Summary)

Motivation und Überblick

Software wird in vielen sicherheitskritischen Systemen verwendet. Bei
der Softwareentwicklung können jedoch Fehler entstehen, da der Soft-
wareentwickler versucht seine unpräzise Vorstellung von einem Pro-
gramm präzise in einer Programmiersprache zu formalisieren. Mit for-
malen Methoden kann dieses Problem reduziert werden. Formale Me-
thoden fügen zur Softwareentwicklung eine zusätzliche Schicht hinzu,
welche es erlaubt gewünschte Programmeigenschaften zu formalisieren
und zu überprüfen. Deduktive Softwareverifikation ist eine formale Me-
thode mit deren Hilfe die Korrektheit eines Programms bezüglich einer
formalen Anforderungsspezifikation bewiesen werden kann. Programme
sind jedoch oft fehlerbehaftet, d.h., sie erfüllen ihre Anforderungsspe-
zifikation nicht, und somit gelingen Korrektheitsbeweise oft nicht. Die
Möglichkeit Softwarefehler zu entdecken ist daher wichtig um die Effi-
zienz der Softwareverifikation zu erhöhen. Eine weitere Einschränkung
der Softwareverifikation ist, dass es oft nicht praktikabel ist Software-
verifikation rigoros auf das Programm und alle anderen Komponenten
anzuwenden, welche für das korrekte Verhalten des Programms verant-
wortlich sind. Eine Kombination aus Softwareverifikation und Softwa-
retesten ist daher selbst dann wichtig, wenn die Korrektheit des (Teil-)
Programms bewiesen wurde.

In dieser Dissertation werden neue Techniken für die Detektion von
Softwarefehlern (auch bekannt als Softwarebugs) entwickelt, welche auf
einer formalen deduktiven Verifikationstechnologie basieren. Der An-
satz dabei ist mit einem Verifikationsversuch Informationen aus dem
betrachteten Programm zu extrahieren und diese anschließend für die
Fehlerdetektion zu verwenden. Die Techniken sind in zwei Kategorien
aufgeteilt. Die erste Kategorie besteht aus rein deduktiven Techniken,
welche spezifische Probleme der deduktiven Fehlerdetektion lösen. Da-
bei sind die wichtigsten wissenschaftlichen Beiträge (a) eine Technik
zur Generierung von Gegenbeispielen (counterexamples), bzw. Gegen-
modellen, aus Formeln der Prädikatenlogik erster Ordnung mit Quan-
toren und (b) eine Technik zum Deduzieren der Existenz von Softwa-
refehlern aus offenen Beweisverpflichtungen, welche unter Verwendung
von Schleifeninvarianten und Methodenkontrakten entstanden sind. In
der zweiten Kategorie sind Techniken für die Generierung von Softwa-
retests enthalten, welche auf den Techniken aus der ersten Kategorie

aufbauen. Dabei erweitern wir existierende Arbeiten zur Generierung
von Testfällen aus Beweisstrukturen und beschreiben neue Werkzeug-
ketten (tool-chains), welche die verifikations-basierte Testgenerierung
mit traditionellen Techniken zur Testgenerierung kombinieren. Die vor-
gestellten Ansätze nutzen die Informationen, die bei der Softwareveri-
fikation berechnet werden, wodurch eine homogene Kombination aus
Softwareverifikation, deduktiver Fehlerdetektion und Testgenerierung
entsteht.

Teil I

Diese Arbeit wurde im Rahmen des KeY Projekts1 durchgeführt.
KeY [Beckert et al., 2007] ist ein Softwareverifikationssystem, wel-
ches am Karlsruher Institut für Technologie (KIT)2, an der Univer-
sität Koblenz-Landau und an der Chalmers University in Göteborg
(Schweden) entwickelt wurde. Im Teil I der Dissertation werden der
Formalismus und der Verifikationsansatz von KeY erklärt. Diese beste-
hen aus einer Instanz von Dynamischer Logik [Harel, 1984] und einem
Sequenzenkalkül, welcher klassisches Theorembeweisen und Programm-
verifikation für JAVA kombiniert. Die in dieser Dissertation vorgestell-
ten Techniken basieren auf dem KeY System und dessen Formalismen.
Wir nehmen jedoch an, dass die hier präsentierten Techniken auch als
Erweiterungen für andere Verifikationswerkzeuge geeignet sind, welche
im Ansatz dem KeY System ähnlich sind. Solche Werkzeuge sind zum
Beispiel VCC [Cohen et al., 2009], Spec# [Barnett et al., 2005], Why/-
Krakatoa/Caduceus [Filliâtre and Marché, 2007], ESC/Java2 [Chalin
et al., 2005], sowie die Beweisassistenten Isabelle/HOL [Wenzel et al.,
2008] und PVS [Owre et al., 1996] in einigen ihrer Anwendungen in
der Softwareverifikation. Solche Werkzeuge verifizieren ein Programm
auf einer quellcode-nahen Ebene anstatt eine abstrakte Repräsentation
des Programms zu verifizieren. Programmeigenschaften werden im Stil
von Hoare-Logik [Hoare, 1969] und Design-by-Contract [Meyer, 1997]
mit prädikatenlogischen Formeln als Vor- und Nachbedingungen von
Programmcode repräsentiert. Des Weiteren verwenden diese Ansätze
die wohlbekannten Konzepte, Methodenkontrakte, Klasseninvarianten
und Schleifeninvarianten. Die Analyse des Programms erfolgt mittels
symbolischer Programmausführung [King, 1976] oder Berechnung der

1 www.key-project.org
2 KIT – Universität des Landes Baden-Württemberg und nationales Forschungs-

zentrum in der Helmholtz-Gemeinschaft

II

www.key-project.org

schwächsten Vorbedingung [Dijkstra, 1976]. Die durch die Programm-
analyse gewonnen Beweisverpflichtungen sind prädikatenlogische For-
meln, welche anschließend mit Hilfe eines Theorembeweisers oder ei-
nes Satisfiability Modulo Theories (SMT) Solvers, wie zum Beispiel Z3
[de Moura and Bjørner, 2008], auf Gültigkeit überprüft werden. Ein
Verifikationsversuch mit solchen Techniken ist die Ausgangsbasis für
unsere Techniken, auf die wir im folgenden kurz eingehen.

Teil II

Wenn ein Programm bezüglich seiner formalen Spezifikation korrekt
ist und zusätzliche Programmannotationen, wie Methodenkontrakte,
Klasseninvarianten und Schleifeninvarianten, hinreichend ausdrucks-
stark sind, dann können moderne Verifikationswerkzeuge die Korrekt-
heit des Programms meistens automatisch Beweisen. Das Problem ist
jedoch diese Vorbedingungen zu erfüllen. Programme und Spezifikatio-
nen enthalten oft Fehler und die zusätzlichen Programmannotationen
sind oft nicht hinreichend ausdrucksstark um einen Verifikationsbeweis
zu schließen. Aufgrund der Semi-Entscheidbarkeit der Prädikatenlogik
erster Stufe ist es oft unklar, ob ein Verifikationsversuch fortgeführt
oder abgebrochen werden soll. Eine offene Beweisverpflichtung bedeu-
tet nicht zwingend, dass ein Fehler im Programm oder dessen Spezifi-
kation (kurz Softwarefehler) existiert, da eine Fortführung des Verifi-
kationsversuchs eventuell zum Beweis führen kann. Die Techniken im
Teil II dieser Dissertation helfen Softwarefehler zu entdecken und da-
her Verifikationsversuche abzubrechen die nicht gelingen können. Das
Besondere an diesen Techniken ist, dass sie die gewonnen Informatio-
nen aus dem Verifikationsversuch wiederverwenden und dadurch den
Berechnungsaufwand für die Fehlerdetektion reduzieren. Da die Fehl-
erdetektion deduktiv funktioniert, wird vom technischen Standpunkt
betrachtet auch die deduktive Verifikationstechnologie wiederverwen-
det. Das Resultat ist eine Symbiose aus deduktiver Softwareverifikation
und Fehlerdetektion.

Um einen Softwarefehler basierend auf einer offenen Beweisverpflich-
tung zu detektieren werden in unserem Ansatz zwei Bedingungen ge-
prüft: (1) ein offener Beweisast muss gültigkeitserhaltend sein und (2)
die Beweisverpflichtung im Blatt dieses Astes muss ein Gegenmodell
haben. Diese Bedingungen zu prüfen ist schwierig. Um Bedingung (1)
zu prüfen, muss mit Programmabstraktionen wie Methodenkontrak-
ten, Klasseninvarianten und Schleifeninvarianten umgegangen werden.

III

Gegenmodelle für offene Beweisverpflichtungen implizieren nicht, dass
die betrachtete Software einen Fehler hat, weil das Problem darin lie-
gen kann, dass ungeeignete Programmabstraktionen verwendet wur-
den. Wir lösen das Problem durch Prüfung der Bedingung (1), wofür
wir ein sehr effizientes Verfahren entwickelt haben. Um Bedinung (2) zu
prüfen, werden in der Regel SMT-Solver eingesetzt. In unseren Experi-
menten haben wird jedoch festgestellt, dass SMT-Solver schnell an ihre
Grenzen stoßen, wenn (Gegen-)Modelle für quantifizierten Formeln ge-
funden werden sollen. Modellgenerierung für quantifizierte Formeln ist
ein lang erforschtes Problem, für das wir eine neue Technik vorstellen.
In unseren Experimenten konnte diese Technik Modelle für Formeln
generieren, welche SMT-Solver nicht lösen konnten.

Teil III

Der vorgestellte Ansatz kann nicht nur Fehler entdecken, sondern er
liefert auch unterschiedliche Informationen, welche dem Benutzer hel-
fen die Fehler zu finden. Zu den Informationen gehört der Anfangszu-
stand des Programms, der zum fehlerhaften Programmverhalten führt.
Im Teil III der Dissertation werden diese Informationen zur Generie-
rung ausführbarer Tests genutzt. Fallunterscheidungen, welche sonst
bei der Programmausführung gemacht werden, führen zu Fallunter-
scheidungen in der Beweisstruktur während des Verifikationsversuchs.
Die Beweisstruktur enthält die Pfadbedingungen zur Ausführung der
unterschiedlichen Programmpfade. Die verifikations-basierte Testfall-
generierung (VBT) erzeugt Testfälle aus einer solchen Beweisstruk-
tur. Dadurch kann eine hohe Testfallabdeckung erreichen werden was
zum höheren Vertrauen des Benutzers in das korrekte Funktionieren
der Software führt. Mit Hilfe der Techniken aus Teil II können auch
Testfälle generiert werden, welche garantiert Fehler in der Software
entdecken. Die Tests können in Kombination mit einem Programm-
debugger genutzt werden, um den Fehler zu lokalisieren.

Die Dissertation beschreibt auch neue Ansätze, welche VBT mit
traditionellen Testwerkzeugen kombinieren, wie zum Beispiel Black-
box Testwerkzeuge und Capture & Replay (CaR) Werkzeuge. Der er-
ste dieser Ansätze verwendet die Pfadbedingungen, welche zuvor aus
einer Beweisstruktur extrahiert wurden, um die Anforderungsspezifi-
kation der betrachteten Software strukturell zu erweitern. Verwendet
man diese erweiterte Spezifikation als Eingabe in ein Black-box Test-
werkzeug, welches eine Testabdeckung der Spezifikation sicherstellt, so

IV

führt das effektiv zum White-box Testen. Ein Vorteil dieses Ansatzes
ist die Trennung von Zuständigkeiten. Ein weiterer Vorteil ist, dass das
Black-box- und das Verifikationswerkzeug die technischen Fähigkeiten
des jeweils anderen Werkzeugs nutzen können. Diese Vorteile treffen
auch zu, wenn VBT mit CaR Werkzeugen kombiniert wird. Wir haben
eine Werkzeugkette bestehend aus KeY und dem CaR Werkzeug Ge-
nUTest [Pasternak et al., 2009] implementiert. GenUTest führt dyna-
mische Programmanalyse durch und generiert aus beobachteten Pro-
grammausführungen isolierte Unittests mit Testorakeln, welche neue
Programmausführungen mit der alten Programmausführung verglei-
chen. KeY auf der anderen Seite generiert Tests, welche eine hohe Test-
fallabdeckung erreichen, und es kann korrekte Programmausführung
sicherstellen, wenn das Programm zuvor verifiziert wurde. Die resultie-
rende Werkzeugkette aus KeY und GenUTest erzeugt isolierte Unittests
mit einer hohen Testfallabdeckung, welche für Unit Regressiontesting
geeignet sind.

Die Verfahren und wissenschaftlichen Ergebnisse, welche in dieser
Dissertation beschrieben sind, wurden auf internationalen wissenschaft-
lichen Konferenzen vorgestellt und publiziert. Folgende Publikationen
des Autors haben zu dieser Dissertation beigetragen: [Gladisch, 2010a],
[Gladisch, 2010b], [Gladisch et al., 2010], [Gladisch, 2009], [Gladisch,
2008a], [Engel et al., 2008] und [Beckert and Gladisch, 2007].

V

Acknowledgements

This thesis was realized thanks to the support and encouragement from
many people to whom I would like to express my gratitude here.

First and foremost, I would like to thank my supervisor Prof. Dr.
Bernhard Beckert for his excellent guidance and support – financial,
personal, and technical. I’m grateful for the freedom he gave me in
research and the opportunity to participate at numerous workshops,
symposia, conferences, and at a summer school, a winter school, and
a research stay abroad. I appreciate the opportunity to work with him
and the research positions he offered me at Universität Koblenz-Landau
and at Karlsruher Institut für Technologie (KIT). He has been a rule
model for me in many respects. Discussions with him and his comments
to this thesis were very helpful and further improved the quality of this
thesis.

Prof. Dr. Peter Müller from ETH Zürich enjoys a high reputation in
the software verification community. I’m grateful to him for accepting
the role of the second reviewer of this thesis.

My great gratitude goes also to Prof. Dr. Ulrich Furbach from Uni-
versität Koblenz-Landau. I enjoyed working at his research group for 7
years since the beginning of my Studienarbeit (minor thesis). I’m grate-
ful that I was able to use the facilities at his research group (AGKI),
for being able to participate at social events, and for his guidance when
I applied for the extension of my fellowship. I would like to thank him
for the research position in the iCity project at the time when Prof.
Dr. Beckert moved to KIT.

I would like to thank Prof. Dr. Peter Schmitt and Prof. Dr. Dr.
h.c. Ludwig Tavernier for their letters of support which helped me to
receive the single university-wide Landesgraduiertenförderungsgesetz -
fellowship at Universität Koblenz-Landau. I would like to thank the
university for receiving this grant for 2 years and 9 months as well as
for additional research positions.

I’m thankful to my former colleges for a friendly atmosphere and
enjoyable work together in the research group of Prof. Dr. Furbach at
Universität Koblenz-Landau: Markus Maron, Dr. Ammar Mohammed,
Ekaterina Pek, Björn Pelzer, Claudia Schon, Christian Schwarz. My
special thanks goes to Markus Bender who was working as a student
assistant for several years and helped implementing and maintaining
the verification-based testing techniques described in Chapter 7.

I would like to thank my colleges at the KIT and members and
former members of the KeY-project for collaboration, for discussions,
or for help: Dr. Wolfgang Ahrendt, Thorsten Bormer, Daniel Bruns,
Dr. Richard Bubel, Dr. Christian Engel, David Farago, Prof. Dr.
Reiner Hähnle, Dr. Vladimir Klebanov, Dr. Philpp Rümmer, Christoph
Scheben, Prof. Dr. Peter Schmitt, Mattias Ulbrich, and Dr. Benjamin
Weiß.

In March 2009 I went on a Short Term Scientific Mission to the
University of Tel Aviv where I stayed at the research group of Prof.
Dr. Amiram Yehudai. I would like to thank Prof. Dr. Yehudai and Dr.
Shmuel Tyszberowicz for their great help and support during my stay
and for our long collaboration. I’m grateful to Benny Pasternak for
modifying the tool GenUTest as needed to combine it with KeY during
my stay in Tel Aviv. I would like to thank the COST Action IC0701 of
the European Science Foundation for this funding.

Jean-Louis Lanet provided the banking application that served as a
source for examples and experiments in several chapters of this thesis
and I would like to thank him for that.

Several people helped to proofread parts of this thesis. I would like
to thank: Thorsten Bormer, Daniel Bruns, Christian Dietz, Dr. Shmuel
Tyszberowicz, Markus Wagner, Dr. Benjamin Weiß, and Paul.

I owe my deepest gratitude to my parents and grandparents for
their love, support, encouragement, and discussions. They helped me
in many ways. Writing this thesis would not have been possible without
their support.

Zutiefst danke ich meinen Eltern und Großeltern für ihre Liebe, Un-
terstützung, Ermutigung und Gespräche. Sie haben mir in vielen Wei-
sen geholfen. Diese Dissertation hätte ohne ihre Unterstützung nicht
entstehen können.

Karlsruhe, Dezember 2010
Christoph D. Gladisch

VIII

Dr.

Contents

1 Introduction . 3
1.1 State of the Art and Challenges . 5
1.2 Contributions . 9

1.2.1 Counterexample Generation from Invalid
Verification Conditions with Quantifiers 11

1.2.2 Deducing the Existence of Software Faults when
Using Program Abstractions 12

1.2.3 Verification-based Test Case Generation 13
1.2.4 Tool-chain Approaches for Test Generation 14

1.3 Outline . 16
1.4 Publications of the Author . 17

Part I Foundations

2 The Formalism and Techniques of KeY 21
2.1 Introduction . 21
2.2 The First-order Logic Java Card FOL 22

2.2.1 Syntax . 22
2.2.2 Semantics . 28

2.3 The Dynamic Logic JAVA CARD DL 33
2.3.1 Syntax . 34
2.3.2 Semantics . 36

2.4 Calculus . 43
2.4.1 Sequents, Rules, and Proofs 44
2.4.2 How Verification Works in KeY 47
2.4.3 Calculus Component: First-order Logic Rules . . . 47

Contents

2.4.4 Calculus Component: Update Simplification Rules 50
2.4.5 Calculus Component: Program Reduction Rules . 56
2.4.6 Calculus Component: Contract Rules 63

3 Java Modeling Language (JML) . 73
3.1 Overview . 73
3.2 Translation of JML Specifications to Dynamic Logic . . . 75

Part II Deductive Techniques for Software-fault Detection

4 The Deductive Software-fault Detection Approach . . . 81
4.1 Introduction . 81
4.2 Properties and Ideas of the Deductive Fault-Detection

Approach . 82
4.3 The Algorithm . 86

4.3.1 Description of the Algorithm 86
4.3.2 Example . 89

4.4 Validity Preservation and Counterexample Generation . 92
4.4.1 Validity Preservation . 92
4.4.2 Counterexample Generation 98

4.5 Conclusion . 99

5 Deducing the Existence of Software Faults when
Using Contracts . 101
5.1 Introduction . 101
5.2 What Counterexamples of Contract Rule Premisses

Mean . 104
5.3 Notations and Definitions . 110
5.4 Techniques for Validity Preservation Analysis 112

5.4.1 Systematic Analysis of Validity Preservation 112
5.4.2 Three Approaches for Validity Preservation

Analysis . 114
5.4.3 Special Validity Preservation Condition 121

5.5 Example . 131
5.5.1 Verification Attempt . 131
5.5.2 Checking Validity Preservation 132

5.6 Evaluation . 133
5.7 Related Work . 136
5.8 Summary and Conclusion . 137

X

Contents

6 Counterexample Generation for Quantified
Verification Conditions . 139
6.1 Introduction . 139

6.1.1 Background and Related Work 142
6.2 The Basic Idea of our Approach . 145
6.3 Model Generation by Iterative Update Construction . . . 146

6.3.1 The Goal and the Challenges 146
6.3.2 The Solution . 148
6.3.3 Soundness Proof of Theorem 6.5 151

6.4 The Model Search Algorithm . 153
6.5 Heuristics for Update Construction from Formulas 158

6.5.1 Update Construction from Ground Formulas 159
6.5.2 Update Construction from Quantified Formulas . 161
6.5.3 Weakening of Updates . 162

6.6 Update Generation for Satisfying Quantified Formulas . 164
6.7 From Updates to a Test Preamble 168
6.8 Evaluation . 169
6.9 Conclusions and Future Work . 171

Part III Verification-based Test Generation Techniques

7 Verification-based Test Generation 175
7.1 Introduction . 175
7.2 Related Work . 178
7.3 Overview of the VBT Approaches in KeY 180
7.4 Extraction of Test Cases from a Proof Tree 184

7.4.1 Black-Box or Specification-based Test Cases 186
7.4.2 White-box Test Cases . 187
7.4.3 Test Cases with Fault Detection Guarantee 194

7.5 Generation of Executable JUnit Tests 195
7.5.1 Test Preamble Generation . 196
7.5.2 Test Oracle Generation . 206

7.6 Tool-chain Approach for Test Generation 209
7.6.1 Generation of the Enhanced Specification in JML 210
7.6.2 Example and Experiments . 213

7.7 Experience with VBT and Conclusions 216

XI

Contents

8 Generating Regression Unit Tests Using a
Tool-Chain Approach . 219
8.1 Introduction . 219
8.2 Complementary Strengths of the Regarded Techniques . 221
8.3 The Proposed Approach . 224

8.3.1 Building a Tool-chain . 225
8.3.2 Advantages and Limitations 226

8.4 KeYGenU . 228
8.4.1 GenUTest . 228
8.4.2 A Detailed Example . 229
8.4.3 A Short Evaluation . 233

8.5 Related Work . 234
8.6 Conclusion and Future Work . 235

9 Conclusions . 237

References . 243

Index . 261

XII

List of Tables

2.1 Rigid and non-rigid function symbols 25
2.2 Rigid and non-rigid predicate symbols 26
2.3 Classical first-order rules . 48
2.4 Equality rules . 50
2.5 Simplified program reduction rules . 57
2.6 Non-program rules for modalities . 58

3.1 A subset of JML keywords relevant in this thesis 76

5.1 Interpretation of falsifiable premisses of contract rules . . . 106
5.2 Overhead of validity preservation checking with respect

to verification . 135

6.1 Evaluation of the model generation algorithm 170

7.1 Software engineering terms relevant for verification-
based testing. 181

List of Figures

1.1 Examples used in falsifiability preservation analysis 12
1.2 Challenging examples for test generators based on

bounded symbolic execution . 14
1.3 White-box testing by combining specification mining

and black-box testing . 15
1.4 Combining verification-based testing with capture &

replay . 15

2.1 Type hierarchy of Java Card FOL and JAVA CARD DL 24
2.2 Structure of the proof and continuation of the branch

with the Sequent (2.17) . 63
2.3 Continuation of the branch B1 from Figure 2.2 64
2.4 Contract Rules . 65
2.5 Contract Rules . 69
2.6 Branch B1 of the example . 71
2.7 Branch B2 of the example . 71
2.8 Branch B3 of the example . 72

3.1 JML specification of the method sqrt 74
3.2 Translation of the JML specification of the method

sqrt into dynamic logic . 76

4.1 Variant of the method sqrt with a fault. 90
4.2 Open proof tree from a verification attempt of the

method sqrt . 91
4.3 (left) A field declaration and a class invariant; (right)

Quantified formulas occurring in test data constraints
generated by KeY from the listing on the left side 98

List of Figures

5.1 Motivating examples . 102
5.2 Contract Rules . 104
5.3 Three approaches for proving the validity preservation

of branch S4; A contract rule was applied at S1. 114
5.4 Failed proof attempt of the verification condition Si 116
5.5 Failed proof attempt of the validity preservation of the

third premiss of a contract rule application (Approach 1) 117
5.6 Failed proof attempt of the validity preservation of the

branch S1
n (Approach 2) . 119

5.7 Successful proof attempt of the validity preservation of
the branch S2

n (Approach 2) . 120
5.8 Proof of the special validity preservation condition for

branch S2
n (Approach 3) . 124

5.9 Open branch Sn resulting from a verification attempt
of the method sqrtA . 132

5.10 Excerpt from the banking case study. 138

6.1 An example of a JAVA method (of class MyCls) with a
Jml specification . 140

6.2 Quantified formulas in a sequent resulting from a failed
verification attempt . 141

6.3 A subset of generated updates satisfying the quantified
formulas in Figure 6.2 . 169

7.1 Three use-cases of VBT . 176
7.2 Overview of two verification-based test generation

approaches in KeY. 182
7.3 Proof tree for deriving white-box test cases 189
7.4 Examples of programs for which bounded symbolic

execution may not achieve branch coverage 190
7.5 Proof tree with test data constraints obtained by using

the loop invariant rule . 193
7.6 Generation of executable JUnit tests 195
7.7 White-box testing by combining structural specification

enhancement and black-box testing 209
7.8 White-box testing by combining specification mining

and black-box testing . 211
7.9 Generated wrapper class with a structurally enhanced

specification . 214
7.10 Excerpt from a large structurally enhanced specification . 215

XVI

List of Figures

8.1 The creation of a tool-chain and its application to unit
regression testing . 224

8.2 The traditional test selection (left) versus our approach
(right) . 227

8.3 Overview of capture and replay implemented in GenUTest229
8.4 Excerpt from the banking case study. 230
8.5 JUnit test method generated by KeY 231
8.6 JUnit test method generated by GenUTest 232
8.7 Mock aspect generated by GenUTest for the method

getRef() . 233

XVII

Abstract

Software is used in many safety- and security-critical systems. Soft-
ware development is, however, an error-prone task where a software
developer tries to precisely formalize in a programming language their
imprecise ideas about a program. Formal methods help to reduce this
problem. These methods add another layer to the software develop-
ment allowing to formalize and to check desired properties of a pro-
gram. Deductive software verification is a formal method for proving
the correctness of a program with respect to a requirement specifica-
tion. However, since programs often have faults, i.e., they do not satisfy
the required program properties, program correctness proofs often do
not succeed. The ability to detect software faults is therefore important
to increase the efficiency of software verification. Another deficiency of
software verification is that it is often not practical to apply software
verification rigorously to a program and all other components that are
critical for the the correct behavior of the program. The combination of
software verification with software testing is therefore important even
if a correctness proof for a program (subset) has been established.

In this dissertation new techniques for the detection of software
faults (or software “bugs”) are developed which are based on a formal
deductive verification technology. The general approach is to start with
a verification attempt in order to gain information about the respective
program and then to use this information for software fault detection.
The techniques are divided into two categories. The first category con-
sists of purely deductive techniques that solve specific problems for
detecting software faults if a verification attempt is not successful. The
most significant contributions are (a) a technique for counterexample
generation from first-order logic formulas with quantifiers, and (b) a
technique for deducing the existence of software faults from a failed
verification attempt when loop invariants and method contracts are
used. The second category consists of test case generation techniques
that are based on the techniques from the first category. We extend
existing work for the generation of test cases from proof structures
and describe tool-chains that combine verification-based test genera-
tion with more traditional test generation approaches. The described
approaches take advantage of information obtained during verification
and in this way combine verification technology with deductive fault
detection and test generation in a very unified way.

List of Figures

This research was carried out in the scope of the KeY project [KeY-
Home]. KeY is a software verification system developed at Karlsruhe In-
stitute of Technology (KIT)3 (Germany), Universität Koblenz-Landau
(Germany), and the Chalmers University in Gothenburg (Sweden). The
main scientific results underlying the proposed dissertation have been
published at international conferences.

In this thesis the pronoun “we” refers to the author of this thesis. The
pronoun “they” is frequently used as an epicene, i.e. gender-neutral,
pronoun according to The Cambridge Guide to English Usage (2004).

3 KIT – University of the State of Baden-Württemberg and National Research

Center of the Helmholtz Association

2

1

Introduction

Software is used in many safety and security critical systems. While it
may be forgivable when a text editor crashes, software faults in vehi-
cles, airplanes, heart pace-makers, radiation therapy machines, or bank-
ing applications can have catastrophic impact on finance and human
lives. In traditional engineering domains mathematical models are de-
veloped and verified before devices, machines, or buildings are built.
Formal methods in software engineering follow a similar idea and are
increasingly encouraged in the development of software systems. The
development of formal methods for software development is an active
research area. Due to their recent gain in maturity, these methods are
also repeatedly applied in industrial context.

Deductive verification is a formal method that allows proving the
correctness of a program with respect to a requirement specification.
A verification proof is valid for all input- and output-situations of a
program. We regard Hoare-style [Hoare, 1969] and design-by-contract
[Meyer, 1997] oriented verification approaches that verify programs on
the source code level. The requirement specification is usually writ-
ten for each program method using a variant of first-order logic as the
specification language. The specification describes the expected behav-
ior of the method via pre- and postconditions. The meaning of such
a specification is that if the program method is executed in a state
where the precondition holds, then after the execution of the method
the postcondition must hold as well. A verification tool then generates
verification conditions by analysing the program source code and the
specification. If these verification conditions can be proven, e.g. by uti-
lizing first-order theorem proving, then it is ensured that the program
satisfies its requirement specification.

1. Introduction

In practice, however, programs usually have faults (also known as
software bugs). In general, the search for the correctness proof of a
faulty program does not terminate because such a proof does not exist
in a correct verification system. Yet, when the proof search is termi-
nated, e.g. by timeout, then it remains unclear if the program is correct
or not. In practice, verification tools usually terminate after a few sec-
onds or hours. If in such cases a proof is not found, then the reason is
usually that not all possible rule applications like quantifier instanti-
ations and program abstractions were enumerated. Thus, as long as a
proof has not been found, the user does not know if they should con-
tinue searching for a proof or if they should search for a fault in the
program or its requirement specification. This problem results from the
semi-decidability of first-order logic. The detection of software faults,
which is the subject of this dissertation, plays therefore a major role
for deductive software verification.

The detection of software faults is, however, not only important
during the verification process, but also after the correctness of the
program has been proven. In practice it is often very hard or even
not practical to apply a formal verification process completely to the
program, the compiler, and its environment consisting of software and
hardware. In contrast to verification, these components are engaged
when software testing is applied. Software testing is not capable of
showing the correctness of programs for infinitely many input- and
output-situations but it allows the user a degree of confidence that
the program behaves as expected in its environment. The degree of
confidence in the correct behavior depends on how well the program
is tested or, in other words, how high the test coverage is. In contrast
to verification, tests do not attempt to formally verify a program, but
instead, they try to reveal software faults. Thus, the higher the test
coverage of the program is, the higher is the confidence of the user
about the correct functioning of the program.

In this dissertation new techniques for software fault detection are
described and investigated that are based on verification technology.
The general approach followed in this dissertation is to start with a
verification attempt in order to gain information about the regarded
program and then to use this information for software fault detection.
The techniques are divided into two categories. The first category con-
sists of purely deductive techniques that solve specific problems for
detecting software faults if a verification attempt is not successful. The

4

1.1. State of the Art and Challenges

second category consists of test generation techniques that are based
on the techniques from the first category. The described approaches
take advantage of information obtained during verification and in this
way combine verification technology with deductive fault detection and
test generation in a very unified way.

The research was carried out in the scope of the KeY-project [KeY-
Home]. KeY is a software verification system developed at Karlsruhe In-
stitute of Technology (KIT)1 (Germany), Universität Koblenz-Landau
(Germany), and Chalmers University in Gothenburg (Sweden). The
main scientific results underlying the proposed dissertation have been
published at international conferences.

1.1 State of the Art and Challenges

This section is devoted to give a high-level overview on the state-of-the-
art and challenges that are related to the approach described in this
thesis. A more detailed description of related techniques and references
is given in the respective chapters.

The novel techniques described in this thesis are extensions of ver-
ification technology. Therefore the state-of-the-art and challenges in
verification technology are relevant for our contributions. We restrict
our view on verification techniques for the verification of programs on
the source-code level. Those techniques differ from approaches which
use more abstract representations of the program and specification such
as the B approach [Abrial, 1996], Alloy [Jackson, 2002], Abstract State
Machines [Börger and Stärk, 2003], or Z [Spivey, 1992].

State-of-the-art deductive verification systems for source-code level
verification are for instance VCC [Cohen et al., 2009], Spec# [Barnett
et al., 2005], Why/Krakatoa/Caduceus [Filliâtre and Marché, 2007],
ESC/Java2 [Chalin et al., 2005], and KeY [Beckert et al., 2007], as
well as the proof assistants PVS [Owre et al., 1996] and Isabelle/HOL
[Wenzel et al., 2008]. Most of these tools take a two step approach. In
the first step, symbolic execution or predicate transformation is used
in order to transform a program method and its specification into a set
of first-order logic formulas which are called verification conditions. In
the second step, the verification conditions are forwarded to theorem
provers or to SMT solvers such as Simplify [Detlefs et al., 2005], Z3
1 KIT – University of the State of Baden-Württemberg and National Research

Center of the Helmholtz Association

5

1. Introduction

[de Moura and Bjørner, 2008], CVC3 [Barrett and Tinelli, 2007], or
Yices [Dutertre and de Moura, 2006a]. If all verification conditions are
proven, then the correctness of the program method with respect to its
specification is formally verified.

Software verification is an active international research area. For in-
stance, the COST Action IC 0701, which is funded by the European
Science Foundation (ESF), consists of members from research groups
in deductive verification located in 17 European countries. Due to an
increasing maturity level of verification techniques and tools, they can
be applied to increasingly realistic programs. For example, in the Mon-
dex case study a JAVA CARD implementation of an electronic purse has
been verified with the KeY tool [Tonin, 2007]. In the project Verisoft2

a complete software and hardware system consisting of a CPU, an op-
erating system, and applications running on the operating system were
verified using primarily Isabelle/HOL [Paul, 2005]. In the following
project, VerisoftXT3, software verification was applied among others
to Microsoft’s Hypervisor which is a layer of software located between
the hardware and one or more operating systems [Leinenbach and San-
ten, 2009]. In the L4.verified project4 the operating system kernel seL4
consisting of 8,700 lines of C code has been verified [Klein et al., 2010].

Yet, software verification is an iterative and time-consuming task. In
practice, most of the time verification attempts fail during a software
verification process, which is a major factor that makes the verification
process expensive. For some of the state-of-the-art verification tools an
unsuccessful verification attempt is, however, not a useless effort. From
a failed or interrupted verification attempt a rich set of information is
available that has been computed during the analysis of the program
and specification. The above-mentioned verification tools utilize this
information in order to help the user determine why the verification
proof does not succeed. For this purpose these tools provide means to
generate counterexamples from verification conditions that cannot be
proven. If a counterexample can be found, then it is clear that the
verification condition cannot be proven and the counterexample helps
the user to understand the problem. In some cases the counterexam-
ples can be regarded as program inputs that reveal software faults. In
such cases the counterexample can be used to generate a test that ex-

2 http://www.verisoft.de
3 http://www.verisoftxt.de
4 http://ertos.nicta.com.au/research/l4.verified/

6

http://www.verisoft.de
http://www.verisoftxt.de
http://ertos.nicta.com.au/research/l4.verified/

1.1. State of the Art and Challenges

ecutes the program in a manner revealing the fault. The user can then
use an ordinary program debugger in order to locate the fault. How-
ever, an unprovable verification condition does not necessarily imply
the existence of a software fault, and counterexamples of such verifi-
cation conditions are not necessarily valid program inputs that reveal
faults. The problem occurs when program abstractions in form of, e.g.,
loop invariants and method contracts are used during verification. If a
program abstraction, i.e. a loop invariant or method contract, is used
and a verification condition has a counterexample, then the user does
not know if (a) they should fix the program abstraction or (b) if they
should fix the program or its requirement specification. This is a prob-
lem in state-of-the-art deductive software verification systems that we
address.

A theoretical framework for static program analysis with abstrac-
tions is abstract interpretation [Cousot and Cousot, 1992]. In the ab-
stract interpretation approach, the domain of program variables is ab-
stracted and the program is symbolically executed with abstractions of
values. Automatically generated abstractions differ, however, from user-
provided abstractions which are given in form of loop invariants and
method contracts. The difference is that user-provided loop invariants
and method contract often express properties which are semantically
more complex. A variant of abstract interpretation is predicate abstrac-
tion [Graf and Säıdi, 1997] where abstractions are constructed from a
finite set of predicates. In this way, also more complex semantic proper-
ties can be expressed by providing semantically complex predicates. A
technique for automatically generating abstractions which are under-
or over-approximations of program states is counterexample guided ab-
straction refinement (CEGAR) [Clarke et al., 2000]. Depending on the
particular setting one approximation is sound for proving validity, i.e.
correctness of the program, and the other is sound for showing the ex-
istence of a fault in the program. Abstract interpretation and predicate
abstraction are integrated in variants of the KeY tool in [Bubel et al.,
2009] and [Weiß, 2009], respectively. The focus of our work is, how-
ever, not the generation of abstractions. We assume that verification
conditions are already generated using, e.g. user-provided, loop invari-
ants and method contracts. We propose a technique that investigates
under what conditions the counterexamples of verification conditions
are valid program inputs that reveal software faults. In this way, the
technique helps to disambiguate the reason for verification failure when

7

1. Introduction

using loop invariants and method contracts extending the current state
of the art.

Some state-of-the-art techniques for the generation of counterex-
amples from verification conditions, which are first-order logic formu-
las, are satisfiability modulo theory (SMT) solvers, e.g. [de Moura and
Bjørner, 2008; Barrett and Tinelli, 2007; Dutertre and de Moura, 2006a;
Detlefs et al., 2005]. These tools can check if first-order logic formulas
are satisfiable or unsatisfiable. By negating the input formula SMT,
solvers check if the original formula is valid or if it is falsifiable, i.e.,
if it has a counterexample. SMT solvers combine the advantages of
fast SAT solvers, of decision procedures for theories that are used in
verification, and of theory or decision procedure combination methods.
However, since first-order logic is only semi-decidable, SMT solvers can-
not always decide whether a verification condition is valid or if it has a
counterexample. This is especially the case if the input formula contains
quantifiers. For proving the validity of a quantified formula the problem
is to find an instantiation of the quantifier(s). Quantifier instantiations
can be enumerated for arbitrary formulas, which may not terminate,
but a proof exists for any valid first-order logic formula.5 On the other
hand, for proving the existence of a counterexample the formula must
be in a decidable fragment of the decision procedure. The problem,
when generating counterexamples, is that formulas outside the frag-
ment cannot be handled by the decision procedure. Decidable frag-
ments of decision procedures are, for instance, the Bernays-Schönfinkel
class [Ge and de Moura, 2009], the array property fragment [Bradley
et al., 2006], and rational or Presburger arithmetic for which quantifier
elimination techniques exist [Ghilardi, 2003]. If quantified formulas use
symbols from different theories, which is often the case with verification
conditions, then these formulas do not fit in the decidable fragments
of the procedures. Consequently, satisfiability of these formulas usu-
ally cannot be decided. We present a novel technique to address this
challenge.

Formal software verification and software testing are the two ma-
jor approaches to ensure the correct functioning of programs. Software
verification is the only means to guarantee that a program is correctly
implemented. However, due to its cost, software verification is restricted
to safety critical software and special application domains, in practice.
Software testing, on the other hand, is commonly used in industry and

5 The background theory must also be representable as a first-order logic formula.

8

1.2. Contributions

is applied to software projects of arbitrary size. Yet, software testing is
not capable of showing the correctness of programs for infinitely many
input- and output-situations. Because of the complementary strengths
of verification and testing, an increasing interest in the combination
of the two approaches can be observed. In recent years, several inter-
national conferences have adapted to accept contributions from both
fields. The convergence of both approaches is especially encouraged by
the international conference series Tests and Proofs which started in
2007. Several contributions of this dissertation were published at those
conferences.

Test suites that provide a high code coverage can be generated, e.g.,
by combining the well-known techniques symbolic execution and model
generation, as it was already proposed in the 1970s [King, 1974, 1976;
Clarke, 1976]. This approach has gained much attraction in the last
decade [Meudec, 2001; Zhang et al., 2004; Xie et al., 2005; Sen et al.,
2005; Deng et al., 2006b; Cadar et al., 2008; Tillmann and de Halleux,
2008; Pasareanu et al., 2008]. The gain in maturity of symbolic exe-
cution has been largely influenced by the advancements of verification
technology. Symbolic execution alone, however, cannot guarantee the
analysis of all execution paths. In verification approaches, program ab-
stractions, such as loop invariants and method contracts, are used for
reasoning about complex or infinitely many program execution paths.
We investigate their sematic properties which are required to generate
tests satisfying full feasible branch coverage.

1.2 Contributions

The proposed dissertation extends the state-of-the-art of software fault
detection approaches that are based on deductive verification technol-
ogy. The formal basis of the techniques are a first-order dynamic logic
[Harel, 1984] and a sequent calculus that combines symbolic execution
and first-order theorem proving. These techniques are implemented in
the KeY tool [Beckert et al., 2007]. In this thesis the pronoun “we”
refers to the author of this thesis. The following list summarizes our
contributions.

• We have developed a deductive software fault detection approach
that uses and extends verification technology, and we have devel-
oped the theory behind it. We belief that the approach is applicable

9

1. Introduction

also to other verification tools that follow similar ideas as the KeY
tool.
• We have discovered fundamental problems that occur when trying

to detect faults deductively. The problems are caused by quantifiers
and program abstractions (loop invariants and method contracts)
and differ from the problems that occur with quantifiers and pro-
gram abstractions in verification. We have invented novel techniques
to handle these problems:

– We have developed a technique for counterexample generation,
respectively model generation, for first-order logic formulas with
quantifiers. This technique is also important for test data gener-
ation when specifications and program annotations with quan-
tifiers are used.

– We have developed a technique for deducing the existence of
software faults from a failed verification attempt when loop in-
variants and method contracts are used. The technique unifies
verification and fault detection by reusing the information that
was obtained through a verification attempt.

• We have developed several test generation techniques that extend
and complement verification and deductive software fault detection.

– We have developed a new version of a test generation approach
that derives test cases from proofs (VBT) and we have devel-
oped a new theory behind it that is based on the theory of the
deductive fault detection approach.

– We have developed test generation approaches that combine
VBT with more traditional test generation techniques such as
black-box and capture & replay-based testing tools. The VBT
technique and the traditional testing techniques benefit from
this combination.

• The described techniques do not just exist side-by-side. All the
techniques are based on the same verification technology and in-
formation is shared and reused between these techniques. We have
achieved a combination of verification, deductive fault detection,
and test generation based on a common theory, in one framework,
and with a combined methodology.
• Prototypes of all technique are implemented in the KeY tool and

are evaluated or have been tested.

The techniques and approaches that we have developed are addressed
in the following subsections.

10

1.2. Contributions

1.2.1 Counterexample Generation from Invalid Verification
Conditions with Quantifiers

Verification conditions are first-order logic (FOL) formulas that are
obtained during a verification attempt. It is important to detect if ver-
ification conditions have counterexamples in order to stop proof at-
tempts that cannot succeed and in order to analyze the reason for
verification failure. This requires the ability to generate models, i.e.
interpretations, that satisfy first-order logic (FOL) formulas. Satisfia-
bility modulo theory (SMT) solvers are state-of-the-art techniques for
handling this problem. A major bottleneck is, however, the handling of
quantified formulas.

We propose a model generation technique that is not explicitly re-
stricted to a specific class of formulas. Consequently, the technique is
not a decision procedure, i.e., it may not terminate. However, it can
solve more general formulas than SMT solvers can solve in cases where
it terminates. For example, assume we want to show the satisfiability
of the formula

∀x.(x > 0→ prev(next(x)) = x) (1.1)

where prev and next are uninterpreted function symbols. The formula
stems from a verification condition. Some state-of-the-art SMT solvers
– concretely we have tested Z3 [de Moura and Bjørner, 2008], CVC3
[Barrett and Tinelli, 2007], Yices [Dutertre and de Moura, 2006a] – are
not capable to solve this formula in contrast to our proposed technique.
The reason is that this formula is not in the decidable fragment of the
SMT solvers because it combines arithmetics, uninterpreted functions,
and quantification.

Our contribution is a model generation technique for quantified for-
mulas that is powered by verification technology. The model generation
technique can be used either stand-alone for model generation, or as a
precomputation step for SMT solvers to eliminate quantifiers. Quanti-
fier elimination in this sense is sound for showing satisfiability but not
for refutational or validity proofs.

This technique is described in Chapter 6 and is based on the pa-
pers [Gladisch, 2010b] and [Gladisch, 2010a]. In [Gladisch, 2010b] we
describe the theory of this technique with a soundness proof and in
[Gladisch, 2010a] we describe an implementation of the technique and
its evaluation.

11

1. Introduction

1.2.2 Deducing the Existence of Software Faults when Using
Program Abstractions

The method contract and loop invariant rules (contract rules) are an
important software verification technique for handling method invoca-
tions and loops. However, if a verification condition resulting from using
a contract rule turns out to be falsifiable, then the user does not know
if (a) they could have chosen a stronger contract (respectively abstrac-
tion) to verify the program or (b) if the program is not verifiable due
to a fault in the program or its requirement specification. We approach
this problem and present a novel technique that unifies verification and
software fault detection.

The technique extends existing approaches that try to verify a pro-
gram and in case of verification failure generate counterexamples for
verification conditions. In contrast to existing approaches which only
check if verification conditions have counterexamples, this approach al-
lows us to conclude the existence of a software fault from falsifiable
verification conditions even if contract rules are used during the veri-
fication attempt. Checking the existence of a software fault after the
verification attempt does not require explicit program testing, symbolic
execution, or weakest precondition computation. Instead information
obtained from the verification attempt is reused to reason about the ex-
istence of a software fault. In this way, the technique unifies verification
and fault detection.

JAVA + JML (1.1)

public int sqrtA(int x){

int i=0;

/*@loop_invariant (i-1)*(i-1)<=x

|| i==0; modifies i; @*/

while(i*i<=x){

i++;

}

return i; //fault

}

JAVA + JML

JAVA + JML (1.2)

public int sqrtB(int x){

int i=0;

/*@loop_invariant (i-1)*(i-1)<=x;

|| x==0; modifies i;@*/

while(i*i<=x){ //weak invariant

i++;

}

return i-1;

}

JAVA + JML

Fig. 1.1. Examples used in falsifiability preservation analysis

12

1.2. Contributions

For example, the methods in Listings 1.1 and 1.2 of Figure 1.1 are
supposed to compute an integer approximation of the square-root of the
argument. Trying to verify the programs using the given loop invariants
fails because falsifiable verification conditions are created. The reason
for the failure is, however, different in both cases. The method sqrtA()
has a fault and cannot be verified with any loop invariant whereas
method sqrtB() is correct but the loop invariant is inappropriate. Our
approach tries to show if a contract rule with a given loop invariant
or method contract has the required properties in order to deduce the
existence of a fault in the program or its requirement specification. In
Listing 1.1 this is the case and indeed the discussed approach detects
that the method sqrtA() has a fault.

This technique is described in Chapters 4 and 5 and is based on the
paper [Gladisch, 2009]. The technique has evolved from a test genera-
tion technique described in [Gladisch, 2008a].

1.2.3 Verification-based Test Case Generation

The generation of tests from verification proofs has been proposed in
[Engel and Hähnle, 2007] and [Beckert and Gladisch, 2007]. Since this
technique involves the runtime execution of the considered program, it
can find faults that result from the interaction of the program under
test (PUT) and its runtime environment. We have extended the origi-
nal approaches enabling the generation of test cases of different quality
such as specification-based tests, white-box tests, and tests that are
guaranteed to reveal faults. The test cases with fault detection guaran-
tee are generated with the techniques described in Sections 1.2.1 and
1.2.2. Such test cases help the user finding the fault(s) in the PUT
using a program debugger.

The white-box test case generation technique can make use of loop
invariants and method contracts and generate test cases that are likely
to be missed by techniques based on bounded symbolic execution.
These would require an exhaustive inspection of all execution paths
which is infeasible in the presence of complex methods and impossible
in the presence of loops because loops represent infinitely many paths.
The technique was published in [Gladisch, 2008a].

An example that shows the advantages of the presented approach
is given in Listing 1.3 of Figure 1.2. In order to execute A() the loop
body has to be entered at least 11 times and in order to execute C() it
has to be executed exactly 20 times. In similar programs these numbers

13

1. Introduction

JAVA (1.3)

void foo1(int n){

int i=0;

while(i < n){

if(i==10){ A();}

B(); i++;

}

if(i==20){ C(); }

}

JAVA

JAVA + JML (1.4)

void D(int n){

while(i<n){ ... }

}

void foo2(int n){

D(n);

if(i==20){ C(); }

}

JAVA + JML

Fig. 1.2. Challenging examples for test generators based on bounded symbolic

execution

could be much larger or be the result of complex expressions requiring
an exhaustive inspection of all paths in order to find the case where the
branch conditions are satisfied. The situation is similar in Listing 1.4.
In this case an exhaustive inspection of D() may be required in order to
find a path such that after the execution of D() the branch condition
i
.= 20 holds (the “ .=” denotes semantic equality). Existing testing

techniques are likely to miss these cases because they have a bound
on the amount of inspected execution paths. For loops and recursive
methods the typical approach is to symbolically execute the first k loop
iterations or recursion steps, called k-bounded unwinding, where k is a
limiting constant.

In order to create executable tests also technical problems have to be
solved. We describe techniques for initializing the PUT with test data
which is obtained by the technique described in Section 1.2.1. Another
technique we describe is for evaluating the requirement specification
using a test oracle.

These techniques are described in Chapter 7. The chapter combines
contributions from [Beckert and Gladisch, 2007; Gladisch, 2008a; Engel
et al., 2008] where [Beckert and Gladisch, 2007] is one of the tool-chain
approaches described below.

1.2.4 Tool-chain Approaches for Test Generation

Verification-based test case generation is a powerful technique because
it ensures high code coverage by the generated tests. Yet, traditional

14

1.2. Contributions

Fig. 1.3. White-box testing by combining specification mining and black-box testing

Fig. 1.4. Combining verification-based testing with capture & replay

testing techniques are well established and tests generated using verifi-
cation technology alone may lack some of the benefits obtained by using
more traditional testing techniques. The dissertation investigates two
tool-chain approaches that combine and extend verification-based test
case generation with traditional approaches such as black-box testing
and capture & replay based techniques.

The first approach, illustrated in Figure 1.3, uses a deductive pro-
gram verification technique to generate specifications for given pro-
grams and it then uses these specifications as input for black-box test-
ing tools. Thus, (1) the black-box testing method can make use of
information about the program’s structure that is contained in the
specification, and (2) we separate concerns and get a clear interface be-
tween program analysis on the one hand and test-case generation and
execution on the other hand.

The second approach, illustrated in Figure 1.4, combines verification-
based testing and capture & replay based testing techniques in order to
obtain isolated unit regression tests that provide high code coverage. As

15

1. Introduction

we have identified, the two groups of techniques have complementary
strengths, and are therefore ideal candidates for the proposed tool-
chain approach. The first phase produces, for a given system P, unit
tests JT with high coverage. However, when using them to test a unit,
its environment is tested as well – resulting in a high cost of testing. To
solve this problem, the second phase captures the various executions
of the test suite JT, which is the output of the first phase. The output
of the second phase JT’ is a set of unit tests with high code coverage,
which use mock objects to test the units in isolation.

The two techniques are described in the Chapters 7 and 8 and are
based on the papers [Beckert and Gladisch, 2007] and [Gladisch et al.,
2010], respectively.

1.3 Outline

The dissertation is divided into three parts.
Part I. This part describes the verification framework that the pre-

sented techniques are based on. Chapter 2 describes the logic, the cal-
culus, and the overall approach of the KeY tool. The sections describing
the calculus components explain how verification works in KeY and pro-
vide several examples. Chapter 3 introduces the specification language
JML which is used in examples of this dissertation.

Part II. This part consists of purely deductive techniques that solve
specific problems for detecting software-faults if a verification attempt
is not successful. These techniques are also the most significant contri-
butions of this dissertation. Chapter 4 describes our general approach
and motivates the need for the techniques described in the following
chapters. Chapter 6 describes a technique for counterexample genera-
tion from first-order logic formulas with quantifiers. Chapter 5 describes
a technique for deducing the existence of software faults from a failed
verification attempt when loop invariants and method contracts are
used.

Part III. The third part is dedicated to test generation approaches
and techniques which extend the formal verification and fault detec-
tion approach described in the previous parts. Technically, the test
generation techniques are also based on the techniques of the previous
chapters and therefore an integration of verification, deductive fault
detection, and testing is achieved in one tool. In Chapter 7 several
techniques and approaches are described for test case generation and

16

1.4. Publications of the Author

for the generation of executable tests. The chapter combines contribu-
tion from several published papers as well as previously unpublished
content. Chapter 8 describes a tool-chain approach for the generation
of isolated regression unit tests. Candidates for the first component in
the tool-chain are, e.g., the approaches described in Chapter 7.

Related work, proofs, and experiments or evaluations are provided
in the respective chapters. Final conclusions of this thesis are given in
Chapter 9.

1.4 Publications of the Author

The following list contains publications that have directly contributed
to this dissertation.

[Gladisch, 2010a] Christoph Gladisch. Test data generation for pro-
grams with quantified first-order logic specifications. In Alexandre
Petrenko, Adenilso da Silva Simão, and José Carlos Maldonado, ed-
itors, Proceedings, Testing Software and Systems - 22nd IFIP WG
6.1 International Conference, ICTSS 2010, Natal, Brazil, volume
6435 of LNCS, pages 158–173. Springer, 2010a.

[Gladisch, 2010b] Christoph Gladisch. Satisfiability solving and model
generation for quantified first-order logic formulas. In Bernhard
Beckert and Claude Marché, editors, Conf. Post. Proc., Formal
Verification of Object-Oriented Software, International Conference,
FoVeOOS 2010, Paris, France, volume 6528 of LNCS. Springer,
2010b. (Best student paper and presentation award)

[Gladisch et al., 2010] Christoph Gladisch, Shmuel Tyszberowicz,
Bernhard Beckert, and Amiram Yehudai. Generating regression
unit tests using a combination of verification and capture & re-
play. In Gordon Fraser and Angelo Gargantini, editors, Proceed-
ings, Tests and Proofs, Forth International Conference, TAP 2010,
Málaga, Spain, volume 6143 of LNCS, pages 61–76. Springer, 2010.

[Gladisch, 2009] Christoph Gladisch. Could we have chosen a bet-
ter loop invariant or method contract? In Catherine Dubois, edi-
tor, Proceedings, Tests and Proofs, Third International Conference,
TAP 2009, Zurich, Switzerland, volume 5668 of LNCS, pages 74–89.
Springer, 2009.

[Gladisch, 2008a] Christoph Gladisch. Verification-based test case
generation for full feasible branch coverage. In Antonio Cerone

17

1. Introduction

and Stefan Gruner, editors, Proceedings, Sixth IEEE International
Conference on Software Engineering and Formal Methods, SEFM
2008, Cape Town, South Africa, pages 159–168. IEEE Computer
Society, 2008a.

[Engel et al., 2008] Christian Engel, Christoph Gladisch, Vladimir
Klebanov, and Philipp Rümmer. Integrating verification and test-
ing of object-oriented software. In Bernhard Beckert and Reiner
Hähnle, editors, Proceedings, Tests and Proofs, Second Interna-
tional Conference, TAP 2008, Prato, Italy, volume 4966 of LNCS,
pages 182–191. Springer, 2008.

[Beckert and Gladisch, 2007] Bernhard Beckert and Christoph Glad-
isch. White-box testing by combining deduction-based specification
extraction and black-box testing. In Yuri Gurevich and Bertrand
Meyer, editors, Proceedings, Tests and Proofs, First International
Conference, TAP 2007, Zurich, Switzerland, volume 4454 of LNCS,
pages 207–216. Springer, 2007.

Additional scientific contributions by the author are provided in the
following list.

[Gladisch, 2008c] Christoph Gladisch. Verification-based test case
generation with loop invariants and method specifications. In Bern-
hard Beckert und Reiner Hähnle, editors, Tests and Proofs: Pa-
pers Presented at the Second International Conference, TAP 2008,
Prato, Italy, Reports of the Faculty of Informatics 5/2008, Univer-
sity of Koblenz-Landau, April 2008c.

[Gladisch, 2008b] Christoph Gladisch. Extending KeY for the Verifi-
cation of C Programs. VDM Verlag Dr. Müller e.K., 2008b.

[Gladisch, 2007] Christoph Gladisch. How C differs from Java for sym-
bolic program execution. In Hendrik Tews, editor, Proceedings,
C/C++ Verification Workshop, Oxford, United Kingdom, Techni-
cal Report ICIS-R07015, Radboud University Nijmegen, Juli 2007.

18

Part I

Foundations

2

The Formalism and Techniques of KeY

2.1 Introduction

The KeY tool [Beckert et al., 2007] is a verification and test gener-
ation tool for a subset of JAVA and a superset of JAVA CARD [Chen,
2000], the latter is a standardized subset of JAVA for programming of
SmartCards. At its core, KeY is an automated and interactive theorem
prover for an instance of first-order dynamic logic (DL) [Harel, 1984;
Harel et al., 2000]. The logic combines first-order logic (FOL) formulas
with programs allowing to express, e.g., correctness properties of pro-
grams. The techniques presented in this thesis were developed on top
of the KeY tool. Hence, the details of the techniques are specific to the
formalism and techniques of the KeY tool.

The history of the KeY tool dates back to the year 1998. It has been
developed throughout several research projects by research groups at
Universität Koblenz-Landau, Chalmers University, and the Karlsruhe
Institute of Technology where the KeY project was initiated. At the 9th
International KeY Symposium 2010 – one of the annual meetings of the
research groups – statistics about the tool were presented by Richard
Bubel. According to these statistics KeY’s source code consisted at this
point of 174,732 source lines of code (SLOC) and 1755 calculus rules.
The rule base is so big because the rules encode the semantics of JAVA

as well as axioms of certain theories.
KeY’s approach to verification is to reduce DL formulas which ex-

press properties of programs to FOL formulas and then to prove the
FOL formulas. In contrast to the majority of verification tools at this
time, a strict separation between program analysis and first-order the-
orem proving is not made in the KeY approach. This is because both

2. The Formalism and Techniques of KeY

tasks are achieved by rule applications within the KeY tool and the
application of program reduction rules and first-order theorem proving
rules can be interleaved.

The techniques described in this thesis do not require any extension
of the logic or the calculus of KeY. The dynamic logic JAVA CARD DL
and the calculus described in this chapter are the same as in the KeY
Book [Beckert et al., 2007]. Most of the definitions and lemmas in this
chapter stem from the KeY Book. We present, however, a subset of
the definitions and lemmas from the KeY Book which is relevant for
understanding this thesis. Since the lemmas stem from the KeY Book,
they are not proved here. We refer the reader to the original source for
further details about the definitions and lemmas.

Structure of this chapter. Similarly as in the KeY Book the first-order
logic subset of JAVA CARD DL is presented first. In contrast to the KeY
Book we define a more concrete instance of first-order logic, called Java
Card FOL, which uses the same type system and signature as JAVA

CARD DL. On the one hand this enables us to refer to more concrete
sets of FOL terms and formulas and on the other hand we hope to
simplify the presentation of the dynamic logic.

We assume that the reader is familiar with first-order logic and can
use Section 2.2 as a reference rather than for learning it. In Section 2.3
we define JAVA CARD DL as an extension of Java Card FOL. Concrete
JAVA CARD DL formulas are used as examples in Section 2.4 where a
subset of KeY’s calculus is defined. Section 2.4 explains how software
verification works in KeY and we advise the reader to place their main
focus on this section.

2.2 The First-order Logic Java Card FOL

2.2.1 Syntax

In order to reason about JAVA programs, fields and program variables
are represented as function symbols in Java Card FOL. Each program
is associated with an instance of Java Card FOL whose type system
and signature is derived from the program.

The type system distinguishes between static, dynamic, and abstract
types. Each JAVA object has a dynamic type, e.g., the type of the ob-
ject created by new C() is C. In contrast, terms and expressions have
static types. Static types restrict the possible syntactical compositions

22

2.2. The First-order Logic Java Card FOL

of terms or expressions. The connection between static and dynamic
types is that an expression or a term with a static type A can have a
value whose dynamic type may be more specific than A. In JAVA the
dynamic type is also called the runtime type. A static type can also
be an abstract class type or interface type but the type of an object is
never an abstract class type or interface type.

Definition 2.1. A type hierarchy for a JAVA CARD program P is a
quadruple (T , Td, Ta,v) of

• a finite set of static types T ,
• a finite set of dynamic types Td,
• a finite set of abstract types Ta, and
• a subtype relation v on T ,

satisfying the conditions of Figure 2.1.
We say that A is a subtype of B if A v B. The set of non-empty

static types is denoted by Tq := T \{⊥}.

Since the details of the type hierarchy are not important to under-
stand this thesis, but are still required in order to define the same logic
as in the KeY Book, we have placed these conditions in Figure 2.1.
To summarize, KeY’s type hierarchy imports all relevant types and
type relations from the JAVA program and extends them. Additionally
the types ⊥ and > are added to the type hierarchy in order to en-
sure that all types have a common subtype and supertype. The type
integer is used in order to refer to any of the primitive JAVA types
byte, short, int, long, or char. The values of these types belong to
the type integerDomain which we will define as Z in Section 2.2.2.

Definition 2.2. Let T be a type hierarchy for a program P , then a
Java Card FOL signature (for T) is a tuple

Σ = (VSym,FSymr,FSymnr,PSymr,PSymnr, α)

consisting of:

• a typing function α such that1

• α(v) ∈ Tq for all v ∈ VSym,
• α(f) ∈ T ∗q × Tq for all f ∈ FSym, and

1 We use the standard notation A∗ to denote the set of (possibly empty) sequences

of elements of A.

23

2. The Formalism and Techniques of KeY

• T = Td ∪ Ta
• boolean ∈ Td denotes the boolean type

• Null ∈ Td denotes the type of the constant null

• A ∈ Td for all non-abstract class types A declared in P or imported into P .

• A ∈ Ta for all interface and abstract class types A declared in P or imported

into P

• v is a reflexive partial order on T ,

• {integer, byte, short, int, long, char} ⊂ Ta denotes the integer types

• integerDomain ∈ Td
• integerDomain v A v integer, for all A ∈ {integer, byte, short, int,

long, char}
• There is an empty type ⊥ ∈ Ta and a universal type > ∈ Td.
• ⊥ v A v > for all A ∈ T .

• C v D iff C is implicitly or explicitly declared as a subtype of D (using the

keywords extends or implements), for all (abstract) class or interface types C,D

declared in or imported into P

• For all array types A occurring in P , A ∈ T and A[]i ∈ Td for 0 6 i 6 n for

some n where A[]i denotes A [] . . . []| {z }
i times

for short and A[]0 = A.

• T is closed under greatest lower bounds w.r.t. v. We write AuB for the greatest

lower bound of A and B and call it the intersection type of A and B. The

existence of AuB also guarantees the existence of the least upper bound AtB
of A and B, called the union type of A and B.

• Every non-empty abstract type A ∈ Ta\{⊥} has a non-abstract subtype: B ∈ Td
with B v A.

Fig. 2.1. Type hierarchy of Java Card FOL and JAVA CARD DL

• α(p) ∈ T ∗q for all p ∈ PSym.
We use the following notations:
• v : A for α(v) = A,
• f : A1, . . . , An → A for α(f) = ((A1, . . . , An), A), and
• p : A1, . . . , An for α(p) = (A1, . . . , An).

• a set VSym of variables,
• the set FSym of function symbols with:

FSym = FSymr ∪ FSymnr

where FSymr is the set of rigid function symbols and FSymnr is
the set of non-rigid function symbols containing at least the symbols
defined in Table 2.1 such that

FSymr ∩ FSymnr = ∅

24

2.2. The First-order Logic Java Card FOL

The set FSymr includes at least the following symbols:

• (A) ∈ FSymr with (A) : > → A for any A ∈ Tq, called the cast

to type A,
• null ∈ FSymr with null : Null,

• A::get ∈ FSymr with A::get : integer→ A for any A ∈ Td\{Null}
• 0, 1, 2, . . . ∈ FSymr of type integer,

• − ∈ FSymr − : integer→ integer, called unary minus

• {+,−, ∗, /} ⊂ FSymr with ◦ : integer, integer → integer, for each

◦ ∈ {+,−, ∗, /},

The set FSymnr includes at least the following symbols:

• [] ∈ FSymnr with [] : >, integer→ > called array access,

• length ∈ FSymnr with length : > → integer called length of an

array ,
• A.<nextToCreate> ∈ FSymnr for any A ∈ Td with

A.<nextToCreate> : integer,

• <created> ∈ FSymnr with <created> : Object→ boolean,

• id : A ∈ FSymnr For all local variables and static field declarations

“A id;” in P ,
• id : (C → A) ∈ FSymnr For all non-static field declarations “A id;” in a

class C in P

Table 2.1. Rigid and non-rigid function symbols

• the set PSym of predicate symbols with:

PSym = PSymr ∪ PSymnr

where PSymr is the set of rigid predicate symbols and PSymnr is
the set of non-rigid predicate symbols containing at least the symbols
defined in Table 2.2 such that

PSymr ∩ PSymnr = ∅

A constant symbol is a function symbol c with α(c) = ((), A) for some
type A.

Function and predicate symbols are divided into rigid and non-
rigid symbols. Rigid symbols are those that have a fixed interpretation

25

2. The Formalism and Techniques of KeY

The sets PSymr and PSymnr include at least the following symbols:

• { .=, 6=} ⊂ PSymr with
.
=: >,> and 6=: >,>

• @−A ∈ PSymr with @−A : > for any A ∈ T , called the type predi-

cate of type A,
• {<,6,>, >} ⊂ PSymr for each ◦ ∈ {<,6,>, >}, p : (integer, integer)

• inReachableState ∈ PSymnr

Table 2.2. Rigid and non-rigid predicate symbols

throughout the Kripke structure such as the constant ‘0’ or the func-
tion ‘+’. Non-rigid symbols are those, whose value, respectively inter-
pretation, can vary between different program states. For instance, the
non-rigid function symbols in Table 2.1 include all fields and program
variables of the JAVA program because their values can be changed. Note
that a program variable id ∈ FSymnr is called a constant in terms of
the logic because it is a function symbol with no arguments. In con-
trast, an object field is a function which takes the object reference as
argument and returns the values of the field.

The function symbols A::get, A.<nextToCreate>, and <created>,
are used to model JAVA’s object creation mechanism. The functions
<created> and A.<nextToCreate>, and are called implicit fields be-
cause they are a static and a non-static field, respectively, which exist in
the logic but not in the JAVA program. When an object is created, then
its implicit field <created> is set to true and A::get returns the ref-
erence to the newly created object. In order to create a new reference
the static field A.<nextToCreate> is incremented and the reference
is accessed by the term A::get(A.<nextToCreate>). We will define
A::get as an injective function to ensure that A::get(x) 6= A::get(y)
if x 6= y.

Next we define the sets of terms and formulas as well as the notion
of free variables and ground terms and formulas.

Definition 2.3. Given a signature Σ, we inductively define the system
of sets {TrmFOL

A }A∈T of first-order logic terms of static type A to be
the least system of sets such that

26

2.2. The First-order Logic Java Card FOL

• x ∈ TrmFOL
A for any variable x : A ∈ VSym,

• f(t1, . . . , tn) ∈ TrmFOL
A for any function symbol f : A1, . . . , An →

A ∈ FSym, and terms ti ∈ TrmFOL
A′i

with
A′i v Ai for i = 1, . . . , n.

• (if φ then t1 else t2) ∈ TrmFOL
A for all φ ∈ FmlFOL (see Def. 2.4)

and all terms t1 ∈ TrmFOL
A1

, t2 ∈ TrmFOL
A2

with A = A1 tA2;
• (ifExMinx.φ then t1 else t2) ∈ TrmFOL

A for all φ ∈ FmlFOL (see
Def. 2.4) and all terms t1 ∈ TrmFOL

A1
, t2 ∈

TrmFOL
A2

with A = A1 tA2;

For type cast terms, we write (A)t instead of (A)(t). We write the static
type of t as σ(t) := A for any term t ∈ TrmFOL

A .

Definition 2.4. We inductively define the set of first-order logic for-
mulas FmlFOL to be the least set such that

• p(t1, . . . , tn) ∈ FmlFOL for any predicate symbol p : A1, . . . , An
and terms ti ∈ TrmFOL

A′i
with A′i v Ai, for

i = 1, . . . , n,
• true, false ∈ FmlFOL

• ¬φ, (φ ∨ ψ), (φ ∧ ψ), (φ→ ψ) ∈ FmlFOL for any φ, ψ ∈ FmlFOL.
• ∀x.φ,∃x.φ ∈ FmlFOL for any φ ∈ FmlFOL and any variable x.

For type predicate formulas, we write t@− A instead of @−A(t). For ◦ ∈
{ .=, 6=,6, <,>,>}, we write t1 ◦ t2 instead of ◦(t1, t2). An atomic for-
mula or atom is a formula of the shape p(t1, . . . , tn) (including t1

.= t2
and t@−A). A literal is an atom or a negated atom ¬p(t1, . . . , tn).

Definition 2.5. We define fv(t), the set of free variables of a term t,
by

• fv(v) = {v} for v ∈ VSym, and
• fv(f(t1, . . . , tn)) =

⋃
i=1,...,n fv(ti).

• fv(if φ then t1 else t2) = fv(φ) ∪ fv(t1) ∪ fv(t2)

A term t is called ground iff fv(t) = ∅.
The set of free variables of a formula is defined by

• fv(p(t1, . . . , tn)) =
⋃
i=1,...,n fv(ti),

• fv(true) = fv(false) = ∅,

27

2. The Formalism and Techniques of KeY

• fv(¬φ) = fv(φ),
• fv(φ ∧ ψ) = fv(φ ∨ ψ) = fv(φ→ ψ) = fv(φ) ∪ fv(ψ), and
• fv(∀x.φ) = fv(∃x.φ) = fv(φ)\{x}.

A formula φ is called closed or ground iff fv(φ) = ∅.

2.2.2 Semantics

The meaning of function and predicate symbols is determined by an
interpretation function. A valid a formula must hold for all interpre-
tations except that for some of the symbols such as ‘0’ or ‘+’ we are
interested only in their fixed interpretation. Due to this restriction on
the interpretation of a subset of the signature the notion of a partial
model is introduced.

Definition 2.6. A partial model is a quintuple (T,D,�, δ, I) of

• a type hierarchy T = (T , Td, Ta,v),
• a domain (also called universe) D,
• a binary relation � on D,
• a dynamic type function δ : D → Td, and
• an interpretation I,

such that, if we define

DA := {d ∈ D|δ(d) v A},

to be the set of all domain elements that “fit” the type A, it holds that

• DA is non-empty for all A ∈ Td,
• Z = Dinteger, {tt ,ff } = B = Dboolean, {null} = DNull,
• δ(Z) = integerDomain, δ(B) = boolean, δ({null}) = Null,
• for all dynamic types A ∈ Td\{Null} with A v Object there is a

countably infinite set DA ⊂ D,
• the binary relation � has the following properties for all x, y ∈ D
− x � x (reflexivity),
− x � y and y � x implies x = y (antisymmetry)
− x � y and y � z implies x � z (transitivity), and
− any non-empty subset Dsub ⊆ D has a least element min�(Dsub),

i.e., min�(Dsub) � y for all y ∈ Dsub (well-orderedness).
• for any f : A1, . . . , An → A ∈ FSym, I yields a function

I(f) : DA1 × . . .×DAn → DA,

and I is restricted according to Def. 2.7, and

28

2.2. The First-order Logic Java Card FOL

• for any p : A1, . . . , An ∈ PSym, I yields a subset

I(p) ⊆ DA1 × . . .×DAn ,

and I is restricted according to Def. 2.8.

Furthermore, functions and predicates which have a fixed interpretation
are called interpreted functions, respectively predicates. Otherwise, they
are called uninterpreted functions, respectively predicates.

The interpretation function maps constants to elements of a domain,
function symbols to functions over the domain, and predicates to rela-
tions over the domain. The domain, also known as universe, is divided
into sub-domains for the different types of the type hierarchy. The do-
main is ordered by a well-ordering � which is a total ordering such that
every non-empty subset Dsub ⊆ D has a least element min�(Dsub). The
well-ordering is required in order to define the semantics of quantified
updates in Section 2.3.2.1.

Fixed interpretations of function and predicate symbols are given
in the Definitions 2.7 and 2.8, respectively. Note, the logic may contain
also other symbols which have a fixed interpretation.

Definition 2.7. A partial model (T,D,�, δ, I) has the following re-
strictions on the interpretations of functions:

• the usual mathematical interpretations of the constants 0, 1, 2, . . .,
and of the binary arithmetic functions +,−, ∗ denoting addition,
subtraction, multiplication, respectively and of the unary function
‘−’ denoting negation on the domain Z,

• I(/)(x, y) = z such that
{

0 6 x− y ∗ z < |y| if y 6= 0
arbitrary fixed d ∈ Dinteger otherwise

• for type cast, I((A))(x) =
{
x if δ(x) v A
arbitrary fixed d ∈ DA otherwise

• I(A::get) ∈ DA. Restricted to the set of non-negative integers,
A::get is interpreted as a bijective mapping onto an object repos-
itory. For negative integers, A::get is also defined, but its values
are unknown. The index of an object o is the non-negative integer
i such that I(A::get)(i) = o holds.
• I(null) is the null constant of JAVA CARD

Definition 2.8. A partial model (T,D,�, δ, I) has the following re-
strictions on the interpretations of predicates:

29

2. The Formalism and Techniques of KeY

• I(.=) = {(d, d)|d ∈ D},
• I(6=) = {(a, b)|a, b ∈ Dand not a = b},
• the usual mathematical interpretations of the predicate symbols
<,6,>, > on the domain Z hold which denote order relations
• I(@−A) = DA
• I(inReachableState) holds in exactly those states that are reachable

by a JAVA CARD program. Note that we assume a certain restriction
of the interpretation of this predicate at this point and post-pone the
explanation of the connection between interpretations and states to
Section 2.3.

The meaning of the predicate @−A is similar to the JAVA operator
instanceof but the predicate allows to reason also about the extended
type hierarchy of the logic.

In the following we define how the values of terms and formulas
are determined if a variable assignment and a partial model are given.
Terms are evaluated by the function valuation function val and formu-
las are evaluated by the validity relation �.

Definition 2.9. Given a partial model (T,D,�, δ, I), a variable assign-
ment is a function β : VSym→ D, such that

β(x) ∈ DA for all x : A ∈ VSym.

We also define the modification βdx of a variable assignment β for any
variable x : A and any domain element d ∈ DA by:

βdx(y) :=
{
d if y = x
β(y) otherwise

Definition 2.10. Let M = (T,D,�, δ, I) be a partial model, and β
a variable assignment. We inductively define the valuation function
valM,β by

valM,β(x) = β(x) for any variable x.

valM,β(f(t1, . . . , tn)) = I(f)(valM,β(t1), . . . , valM,β(tn)).

valM,β(if ϕ then t1 else t2) =

valM,β(t1) if M, β � ϕ

valM,β(t2) if M, β 2 ϕ

30

2.2. The First-order Logic Java Card FOL

valM,β(ifExMinx.φ then t1 else t2) =
valM,βdx

(t1) if there is some d ∈ DA such thatM, βdx �
φ and d � d′ for any d′ ∈ DA with
M, βd

′
x � φ (where A is the type of x)

valM,βdx
(t2) otherwise

For a ground term t, we simply write valM(t), since valM,β(t) is inde-
pendent of β.

The constructs (if φ then t1 else t2) and (ifExMinx.φ then t1 else t2)
do not extend the expressibility of first-order logic but they reduce the
size of formulas and simplify the definition of the calculus. Formulas
with occurrences of these constructs can be rewritten to equivalent
formulas without these constructs. The KeY Book does not define sim-
plification rules for these terms but rather describes how these terms
can be modelled in first-order logic. The term (if φ then t1 else t2)
evaluates to t1 if φ evaluates to true and it evaluates to t2 if φ evalu-
ates to false. The meaning of the term (ifExMinx.φ then t1 else t2)
is described in the KeY Book as follows. If there is some d such that φ
holds, then the whole term evaluates to the value denoted by t1 under
the variable assignment βd

′
x , where d′ is the least element2 satisfying φ.

Otherwise, if φ does not hold for any x, then t2 is evaluated.

Definition 2.11. Let M = (T,D,�, δ, I) be a partial model, and β a
variable assignment. We inductively define the validity relation � by

• M, β � p(t1, . . . , tn) iff (valM,β(t1), . . . , valM,β(tn)) ∈ I(p).
• M, β � true.
• M, β 2 false.
• M, β � ¬φ iff M, β 2 φ.
• M, β � φ ∧ ψ iff M, β � φ and M, β � ψ.
• M, β � φ ∨ ψ iff M, β � φ or M, β � ψ, or both.
• M, β � φ→ ψ iff if M, β � φ, then also M, β � ψ.
• M, β � ∀x.φ (for a variable x : A) iff M, βdx � φ for every d ∈ DA.
• M, β � ∃x.φ (for a variable x : A) iff there is some d ∈ DA such

that M, βdx � φ.

2 The condition which checks if a least element satisfying φ exists is modelled as

∃x.(φ∧∀y.([y/x]φ→ quanUpdateLeq(x, y))), where the predicate quanUpdateLeq

represents the well-ordering �.

31

2. The Formalism and Techniques of KeY

Furthermore, if M, β � φ, we say that φ is valid in the partial model
M under the variable assignment β. For a closed formula φ, we write
M � φ, since β is then irrelevant.

In this thesis we are interested in different properties of formulas.
Based on the validity relation of Definition 2.11 we introduce the stan-
dard notions of validity, satisfiability, unsatisfiability, falsifiability, and
consequence in the following definition and define non-standard notions
of validity and consequence in Definition 2.13.

Definition 2.12. Let a fixed type hierarchy and signature be given.

• A formula φ is logically valid, denoted by � φ, if M, β � φ for any
partial model M and any variable assignment β.
• A formula φ is satisfiable if M, β � φ for some partial model M

and some variable assignment β.
• A formula is unsatisfiable if it is not satisfiable.
• A formula φ is falsifiable or it has as a counterexample ifM, β 2 φ

for some partial model M and variable assignment β.
• A formula φ is the (local) consequence of a set Φ of formulas, de-

noted by Φ � φ, iff for all partial models M and variable assign-
ments β, M, β �

∧
ϕ∈Φ ϕ implies M, β � φ.

Definition 2.13. Let a fixed type hierarchy and signature be given.

• If M, β �A φ, where A ⊆ (FSymnr ∪ PSymnr), we say that φ is
valid in the partial model M modulo A under the variable assign-
ment β. The relation M, β �A φ holds iff for all partial models
M′ = (T,D,�, δ, I ′), where M and M′ are identical except for the
interpretation of A,3 it holds that M′, β � φ.
• A formula φ is the (semi-local) consequence of a set Φ of formulas

modulo A, denoted by Φ �A φ, iff for all partial models M and
variable assignments β, M, β �A

∧
ϕ∈Φ ϕ implies M, β � φ.

The validity relation �A is generally stronger than the validity re-
lation �. For instance let valM,β(a) = 1, then M, β � a

.= 1 holds. In
contrast, M, β �{a} a

.= 1 does not hold because the relation requires
that the formula a .= 1 is true for all interpretations of a. The stronger
relation is needed in order to define the semi-local consequence relation
in the last item of the definition.

3 I(X) = I′(X) for all symbols X ∈ (FSymr ∪ FSymnr ∪ PSymr ∪ PSymnr)\A.

32

2.3. The Dynamic Logic JAVA CARD DL

Generally, the semi-local consequence relation �A is weaker than the
local consequence relation. It is needed if a formula on the left hand
side of the relation contains Skolem functions. A Skolem function is
an uninterpreted function (see Def. 2.6) which does not occur in the
proof structure yet. A typical situation is, e.g., to replace a quantified
variable by a Skolem function. This technique is called Skolemization.
For instance, in order to prove the validity of the formula ∀x.x + 1 .=
1 +x one can prove the validity of the formula sk+ 1 .= 1 + sk instead,
where sk is the Skolem function.

The difference between the local and semi-local consequence rela-
tions is that if ϕsk is the formula obtained from ϕ using Skolemiza-
tion, then {ϕsk} �{sk} ϕ holds but {ϕsk} � ϕ does not necessarily
hold. Consider, e.g., the case where ϕ = ∀x.(x > a → x > b) and
ϕsk = sk > a→ sk > b. If M � a < b and M � sk < a, then M � ϕsk
holds butM � ϕ does not hold and therefore {ϕsk} � ϕ does not hold.
In contrast the semi-local consequence relation {ϕsk} �{sk} ϕ does hold
because the premiss M �{sk} ϕsk does not hold.

Finally, we use the following notation to denote the equivalence
between terms or formulas.

Definition 2.14. Given terms t and t′ and formulas φ and φ′, we write

• t ≡ t′ if � t .= t′

• φ ≡ φ′ if � φ↔ φ′

2.3 The Dynamic Logic JAVA CARD DL

First-order dynamic logic (DL) [Harel, 1984] is a multi-modal logic. It
is an extension of first-order logic where a formula φ can be prepended
by the modal operators 〈p〉 and [p] for every program p. The formula
[p]φ means that if p terminates, then φ holds in the state after the
execution of p. Using the termini in [Dijkstra, 1976], [p]φ is semantically
equivalent to the weakest precondition wlp(p, ϕ). As we consider only
sequential and deterministic JAVA programs the meaning of 〈p〉φ is that
the program terminates and that [p]φ is true. Thus, [p]φ ∧ 〈p〉true is
equivalent to 〈p〉φ which is again equivalent to the weakest precondition
wp(p, ϕ) in [Dijkstra, 1976]. Different program states are realized as
first-order partial models with different interpretations of the non-rigid
function symbols. Hence, if p changes the program state this means that

33

2. The Formalism and Techniques of KeY

the interpretation of non-rigid functions is changed. In the following the
set Formulae denotes the set of dynamic logic formulas.

An implication of the form pre → [p]post ∈ Formulae with pre,
post ∈ Formulae corresponds to the Hoare triple {pre}p{post} in Hoare
logic [Hoare, 1969].4 If the precondition pre is true in the state before
the execution of the program and the program terminates, then the
postcondition post holds after the execution of the program; if the pre-
condition does not hold before the execution of the program, then no
statement is made about the post-state. The implication pre→ 〈p〉post
states additionally that p terminates. In contrast to Hoare logic, dy-
namic logic is closed under the logical operators, i.e., dynamic logic
allows the formulas pre and post to contain programs as modal opera-
tors.

JAVA CARD DL is an instance of classical dynamic logic [Harel, 1984]
and extends it (syntactically) with updates [Beckert, 2001]. Updates
are used to capture the essence of programs, namely the state change
computed by a program execution. Intuitively, updates can be seen
as modal operators although they are not defined as such in the KeY
Book. Updates allow an efficient way of handling the aliasing problem
by delaying of proof splits.

2.3.1 Syntax

Definition 2.15. Given a signature Σ, we inductively define the sys-
tem of sets {TermsA}A∈T of terms of static type A to be the least system
of sets such that

• all syntactic constructors of TrmFOL
A according to Def. 2.3 are also

constructors of TermsA,

• {u}t ∈ TermsA for all updates u ∈ Updates (see Def. 2.16)
and all terms t ∈ TermsA.

In the style of JAVA CARD syntax we often write t.f instead of f(t) and
a[i] instead of [](a, i).

Definition 2.16. Given a JAVA CARD DL signature (VSym,FSymr,
FSymnr,PSymr,PSymnr, α) for a type hierarchy (T , Td, Ta,v), the set
Updates of syntactic updates is inductively defined as the least set such
that:
4 The Hoare triple exists only if pre, post ∈ FmlFOL.

34

2.3. The Dynamic Logic JAVA CARD DL

• (f(t1, . . . , tn) := t) ∈ Updates (called function update) for all
terms f(t1, . . . , tn) ∈ TermsA (see Def.
2.15) with f ∈ FSymnr and t ∈ TermsA′
s.t. A′ v A;

• (u1 ;u2) ∈ Updates (called sequential update);
• (u1 ||u2) ∈ Updates (called parallel update);
• (for x; φ; u) ∈ Updates (called quantified update) for all u ∈

Updates, x ∈ VSym, and φ ∈ Formulae
(see Def. 2.17);

• ({u1}u2) ∈ Updates (called update application)

where u1, u2, u ∈ Updates.
In a function update f(t1, . . . , tn) := t the term f(t1, . . . , tn) is called

the location term and t is called the value term.

The atomic updates are always function updates. Function updates
are similar to assignments in JAVA. The main difference is that the left
and right hand side of the updates are terms and not JAVA expressions.
In contrast to expressions, terms may contain quantified variables and
they have no side-effects. A side effect occurs if the evaluation of an
expression changes the state, hence, e.g. a := i++ is not an update.
Important is that the top-level symbol of a location term is a non-
rigid function symbol. For instance, 1 + 2 := 4 is not an update but
f(1, 2) := 4 ∈ Updates if f ∈ FSymnr.

Definition 2.17. Given a signature Σ, we inductively define the set
Formulae to be the least set such that

• all syntactic constructors of FmlFOL according to Def. 2.4 are also
constructors of Formulae with the extension that the terms of the
sets {TermsA}A∈T (see Def. 2.15) are used in Def. 2.4,

• {u}φ ∈ Formulae for all φ ∈ Formulae and u ∈ Updates (see
Def. 2.16),

• 〈p〉φ, [p]φ ∈ Formulae for all φ ∈ Formulae and any legal se-
quence p of JAVA CARD DL program state-
ments. The program may also contain
method frame blocks (see Section 2.4.5).

Furthermore, the modal operator 〈p〉 is called diamond and [p] is called
box for any program p.

35

2. The Formalism and Techniques of KeY

Definition 2.18. We define the set fv(u) of free variables of an update
u by:

• fv(f(t1, . . . , tn) := t) = fv(t) ∪
⋃n
i=1 fv(ti),

• fv(u1 ;u2) = fv(u1) ∪ fv(u2),
• fv(u1 ||u2) = fv(u1) ∪ fv(u2),
• fv(for x; φ; u) = (fv(φ) ∪ fv(u))\{x}.

For terms and formulas we extend Def. 2.5 as follows:

• fv({u}t) = fv(u) ∪ fv(t) for a term t,
• fv({u}φ) = fv(u) ∪ fv(φ) for a formula φ,
• fv(〈p〉φ) = fv(φ) for a formula φ,
• fv([p]φ) = fv(φ) for a formula φ.

A formula φ is called closed iff fv(φ) = ∅.

2.3.2 Semantics

Partial models according to Definition 2.6 and program states are the
same concept in JAVA CARD DL. Hence, from now on we use the term
state in order to refer to a partial model. When a program changes the
values of fields or program variables, this means that the interpretation
of these symbols is changed. In contrast to first-order logic several states
may have to be considered in order to evaluate a formula in dynamic
logic. The connection between states is given by a Kripke structure.

Definition 2.19. A JAVA CARD DL Kripke structure K� is a tuple
(S, ρ) consisting of the set of all partial models S as defined in Def. 2.6,
that we call states, and a program relation ρ such that for all states
S1, S2 ∈ S and any legal sequence p of JAVA CARD DL program state-
ments with possible non-standard JAVA constructs5:

ρ(S1, p, S2)

iff

• Let (T1,D1,�1, δ1, I1) = S1 and (T2,D2,�2, δ2, I2) = S2, then
− T1 = T2

− D1 = D2

− �1=�2

5 A non-standard JAVA construct of KeY used in this thesis is the method frame

block which is described in Section 2.4.5.

36

2.3. The Dynamic Logic JAVA CARD DL

− δ1 = δ2,
• and p started in S1 in a static context terminates normally (i.e.,

without throwing an exception) in S2 according to the JAVA language
specification [Gosling et al., 1996] with extensions for non-standard
constructs.

In this context we call S1 the pre-state and S2 the post-state of p.

2.3.2.1 Semantics of Updates

An update changes the interpretation of non-rigid function symbols. For
instance, the formula ({a := b}a .= c) ∈ Formulae, where a ∈ FSymnr

and b, c ∈ FSym consists of the (function) update a := b and the
application of the update operator {a := b} on the formula a

.= c.
The meaning of this update application is the same as that of the

weakest precondition wp(a := b, a
.= c), i.e., it represents all states

such that after the assignment a := b the formula a
.= c is true –

which is equivalent to b
.= c. In contrast to programs updates always

terminate.
The semantics of an update is defined by its evaluation into a se-

mantic update. A semantic update maps a state to a new state. The
Definitions 2.20, 2.21, and 2.22 are needed for the definition of the
semantics of updates in Definition 2.23.

Definition 2.20. Let (VSym,FSymr,FSymnr,PSymr,PSymnr, α) be
a signature for a type hierarchy. A semantic update is a triple

(f, (d1, . . . , dn), d)

such that

• f : A1, . . . , An → A ∈ FSymnr,
• di ∈ DAi (i 6 i 6 n), and
• d ∈ DA .

Definition 2.21. A set CU of semantic updates is called consistent if
for all (f, (d1, . . . , dn), d), (f ′, (d′1, . . . , d

′
m), d′) ∈ CU ,

d = d′ if f = f ′, n = m, and di = d′i (1 6 i 6 n) .

Let CU denote the set of consistent semantic updates.

37

2. The Formalism and Techniques of KeY

Definition 2.22. Let (VSym,FSymr,FSymnr,PSymr,PSymnr, α) be
a signature for a given type hierarchy and further let S = (T,D,�, δ, I)
be a JAVA CARD DL state, i.e. partial model, for that signature.

For any set CU ∈ CU of consistent semantic updates, the modifica-
tion CU(S) is defined as the partial model S′ = (T,D,�, δ, I ′) with

I ′(f)(d1, . . . , dn) =
{
d if (f, (d1, . . . , dn), d) ∈ CU
I(f)(d1, . . . , dn) otherwise

for all f : A1, . . . , An → A ∈ FSym and di ∈ DAi (1 6 i 6 n)
and I ′(p)(d1, . . . , dn) = I(p)(d1, . . . , dn) for all predicate symbols p ∈
PSym\{inReachableState}. The interpretation I ′(inReachableState) sat-
isfies Definition 2.8.6

In this context S is the pre-state and S′ is the post-state of CU .

Definition 2.23. Given a signature for a type hierarchy, let K� =
(S, ρ) be a JAVA CARD DL Kripke structure with ordered domain, let β
be a variable assignment.

For every state S = (T,D,�, δ, I) ∈ S, the valuation function valS :
Updates→ CU for updates is inductively defined by

• valS,β(f(t1, . . . , tn) := s) = {(f, (d1, . . . , dn), d)} where

di = valS,β(ti) (1 6 i 6 n)
d = valS,β(s),

• valS,β(u1 ;u2) = (U1 ∪ U2)\C where

U1 = valS,β(u1)
U2 = valS′,β(u2) with S′ = valS,β(u1)(S)
C = {(f, (d1, . . . , dn), d)|(f, (d1, . . . , dn), d) ∈ U1 and

(f, (d1, . . . , dn), d′) ∈ U2 for some d′ 6= d},

• valS,β(u1 ||u2) = (U1 ∪ U2)\C where

U1 = valS,β(u1)
U2 = valS,β(u2)
C = {(f, (d1, . . . , dn), d)|(f, (d1, . . . , dn), d) ∈ U1 and

(f, (d1, . . . , dn), d′) ∈ U2 for some d′ 6= d},
6 The function symbol inReachableState is a so-called location dependent symbol.

For simplicity we only give a special treatment for this symbol.

38

2.3. The Dynamic Logic JAVA CARD DL

• valS,β(for x; φ; u) = U where

U = {(f, (d1, . . . , dn), d)|there is a ∈ DA such that
((f, (d1, . . . , dn), d), a) ∈ dom and
b � a for all ((f, (d1, . . . , dn), d′), b) ∈ dom}

with dom =
⋃
a∈{d∈DA|S,βdx�φ}(valS,βax(u) × {a}), and A is the type

of x,
• valS,β({u1}u2) = valS′,β(u2) with S′ = valS,β(u1)(S).

For an update u without free variables we simply write valS(u) since
valS,β(u) is independent of β.

In the following we give examples for the evaluation of syntactic
updates to semantic updates. The updates are evaluated in a state S ∈
S of a Kripke structure and I is the interpretation function of S. For a
shorter notation we write gI to denote the interpretation of a function
symbol g ∈ FSym. Furthermore, we assume that f, a, b ∈ FSymnr, and
x ∈ VSym are of compatible types in the respective case.

The function update f(1) := a evaluates to the consistent set of
semantic updates {((f, (1I)), aI)} and the sequential update (f(1) :=
3 ; f(2) := 4) evaluates to the set {((f, (1I)), 3I), ((f, (2I)), 4I)} of con-
sistent semantic updates. More interesting is the case when a clash
occurs as in the update

f(1) := 3 ; f(1) := 4 (2.1)

The two function sub-updates assign different values to the location
(f, (1I)). In this case the set C of the sequential update according
to Definition 2.23 is {((f, (1I)), 3I)}. The set of consistent semantic
updates is in this case

{((f, (1I)), 3I), ((f, (2I)), 4I)}︸ ︷︷ ︸
U1∪U2

\ {((f, (1I)), 3I)}︸ ︷︷ ︸
C

= ((f, (2I)), 4I)

The update (2.1) is equivalent to the update f(1) := 4. Hence, in case
of a clash the latter update wins.

In order to show the difference between sequential and parallel up-
dates consider the following example.

a := b ; b := a (2.2)

39

2. The Formalism and Techniques of KeY

The update (2.2) evaluates to the set

{(a, ()), bI), ((b, ()), val{(a,()),bI)}(S), β(a))} (2.3)

The state modification {(a, ()), bI)}(S) results in a state where a is
interpreted as bI . Therefore (2.3) simplifies to

{(a, ()), bI), (b, ()), bI)}

In contrast the value terms of a parallel update are evaluated in the
same state S. The parallel update

a := b || b := a

evaluates therefore to

{(a, ()), bI), (b, ()), aI)}

This set of semantic update modifies a state such that the values of a
and b are swapped.

Quantified updates can be informally seen as an infinite composition
of parallel updates. A quantified update can be used, e.g., in order
to initialize the values of an array arr to 0, which can be written as
(for x; true; arr[x] := 0).

The update

for x; 0 6 x ∧ x 6 2; f(x) := x (2.4)

is equivalent to the parallel update

f(2) := 2 || f(1) := 1 || f(0) := 0

and it evaluates to the following set of consistent semantic updates:

{((f, (2I)), 2I), ((f, (1I)), 1I), ((f, (0I)), 0I)}

Quantified updates may, however, have clashes as it is the case with
the following update.

for x; x .= 0 ∨ x .= 1︸ ︷︷ ︸
φ

; a := x (2.5)

In this case the set dom and the well-ordering � come into play. The
set dom for this update is

40

2.3. The Dynamic Logic JAVA CARD DL

{(((a, ()), 0I), 0I), (((a, ()), 1I), 1I)}

because only for the variable assignments β0I
x and β1I

x , φ evaluates to
true. The definition says that in case of a clash the update with the
least value of x according to the well-ordering � wins. Hence, from the
set dom we derive the following consistent set

{((a, ()), 0I)}

The update (2.5) is therefore equivalent to the parallel update (a :=
1 || a := 0) but not to the update (a := 0 || a := 1).

The final example shows an update application.

{a := b}(a := a) (2.6)

An update application does not affect the top-level function symbol of
the location term, i.e., the left hand side of a := a is not affected. The
semantic update for a := b is ((a, ()), bI). The update (2.6) evaluates
therefore to

{val{((a,()),bI)}(S),β(a := a)} = {((a, ()), bI)}

In contrast to the top-level function symbol of the location term, an
update application does affect the sub-terms of the location term. For
instance the update application

{a := b}(f(a) := a)

evaluates to
{((f, (bI)), bI)}.

2.3.2.2 Semantics of Terms and Formulas

With the notions of a Kripke structure and semantic updates it is
easy to define the semantics of JAVA CARD DL terms and formulas.
The definition of the semantics of terms and formulas in Section 2.2.2
is extended here. A term or formula which is in the scope of a modal
operator is evaluated in the post-state of the modal operator. Similarly,
a term or formula which is in the scope of an update is evaluated in
the post-state of the update.

41

2. The Formalism and Techniques of KeY

Definition 2.24. Given a signature for a type hierarchy, let K� =
(S, ρ) be a JAVA CARD DL Kripke structure, and let β be a variable
assignment.

For every state S = (T,D,�, δ, I), the valuation function valS is
inductively defined according to Definition 2.10 (note that S = M)
with the following extension

valS,β({u}(t)) = valS′,β(t) with S′ = valS,β(u)(S).

Since valS,β(t) does not depend on β if t is ground, we write valS(t) in
that case.

Definition 2.25. Given a signature for a type hierarchy, let K� =
(S, ρ) be a JAVA CARD DL Kripke structure, and let p be a JAVA CARD

program.
For every state S = (T,D,�, δ, I), the validity relation � for JAVA

CARD DL formulas is inductively defined according to Definition 2.11
(note that S =M) and the following extensions

• S, β � {u}φ iff S′, β � φ with S′ = valS,β(u)(S)
• S, β � [p]φ iff there exists some state S′ ∈ S such that (S, p, S′) ∈ ρ

and S′, β � φ
• S, β � 〈p〉φ iff S′, β � φ for every state S′ ∈ S with (S, p, S′) ∈ ρ

We write S � φ for a closed formula φ, since β is then irrelevant.
The formula [p]φ expresses partial correctness and 〈p〉φ expresses

total correctness.

As one can see the valuation function of updates plays the same
role for updates as the program relation ρ for programs. In contrast
to updates, programs do not always terminate and they may throw
exceptions. For this reason there are two modal operators for every
program which have different semantics depending on the termination
of the program. If a program does not terminate or throws an exception,
then according to Definition 2.19 there is no post-state of the program
satisfying the program relation ρ. In this case the formula [p]φ evaluates
to true for any φ ∈ Formulae and 〈p〉φ evaluates to false which is one
of the facts stated in the following lemma.

Lemma 2.26. For every program p and φ ∈ Formulae.

• 〈p〉φ ≡ ¬[p]¬φ

42

2.4. Calculus

• 〈p〉φ ≡ (〈p〉true) ∧ ([p]φ)

If P is a non-terminating program, then for any φ ∈ Formulae

• 〈p〉φ ≡ false
• [p]φ ≡ true

Lemma 2.27. Let ϕ ∈ Formulae, if � ϕ, then for any update u ∈
Updates, � {u}ϕ holds.

Lemma 2.27 does not stem from the KeY Book and is therefore proved
here.

Proof of Lemma 2.27. Since for any s ∈ S, s � ϕ holds, it is also the
case for s′ = vals(u) that s′ � ϕ because s′ ∈ S. �

Definition 2.28. A JAVA CARD DL term t is rigid

• if t = x and x ∈ VSym,
• if t = f(t1, . . . , tn), f ∈ FSymr and the sub-terms ti with (1 6 i 6 n)

are rigid,
• if t = {u}(s) and s is rigid,
• if t = (if φ then t1 else t2) and the formula φ is rigid and the

sub-terms t1, t2 are rigid,
• if t = (ifExMinx.φ then t1 else t2) and the formula φ is rigid and

the sub-terms t1, t2 are rigid.

A JAVA CARD DL formula φ is rigid

• if φ = p(t1, . . . , tn), p ∈ PSymr and the terms ti with (1 6 i 6 n)
are rigid,
• if φ = true or φ = false,
• if φ = ¬ψ and ψ is rigid,
• φ = (ψ1 ∨ ψ2), φ = (ψ1 ∧ ψ2), or φ = (ψ1 → ψ2), and ψ1, ψ2 are

rigid,
• if φ = ∀x.ψ or φ = ∃x.ψ, and ψ is rigid,
• φ = {u}ψ and ψ is rigid.

2.4 Calculus

The calculus of KeY is divided into several groups of calculus rules
such as first-order rules, update simplification rules, program reduction
rules, and contract rules. Since programs and formulas are combined

43

2. The Formalism and Techniques of KeY

in dynamic logic the calculus consists of rules for reasoning about first-
order logic formulas as well as of rule for program analysis by symbolic
execution. KeY’s rule base consists of about 1755 rules where most
of the rules model the semantics of JAVA programs. The correctness
of the program rules has been validated using different techniques as
described in [Trentelman, 2005] and [Ahrendt et al., 2005]. A more
general discussion about the correctness of verification systems is found
in [Beckert and Klebanov, 2006].

In the following sections we show only a subset of rules which is
relevant for understanding this thesis. Furthermore, we have simplified
the rules in Sections 2.4.5 and 2.4.6 which model the semantics of pro-
grams. This is because most of the technical details are not necessary for
understanding the techniques described in this thesis. However, the im-
plementation of the described techniques works with the original rules.
Many rules of KeY’s calculus also encode theories such as Presburger
arithmetic which are not described in this thesis. The calculus rules
for Presburger and non-linear arithmetic are formalized in [Rümmer,
2007, 2008] and we assume that the reader can follow our arithmetic
transformations without seeing the concrete rules. For further details
about KeY’s calculus we refer the reader to the KeY Book.

2.4.1 Sequents, Rules, and Proofs

For proving the validity of formulas (Def. 2.12) KeY uses a sequent
calculus. The sequent calculus rules create a tree structure that we call
a proof tree. The root of the proof tree is the formula whose validity
is to be proven. The goal of the calculus is to replace the formula by
new formulas, that are in a way simpler, until axioms are derived. If
all leaves of the proof tree are axioms, then soundness of the calculus
ensures that the formula at the root of the proof tree is a consequence
of the axioms, i.e., it is valid.

The syntactic structure of sequents, rules, rule schemas, and proofs
is defined in the Definitions 2.29, 2.30, 2.32, and 2.31. Examples are
shown in Section 2.4.3 and the following sections. Definition 2.34 de-
scribes a generalization of rule schemas which applies to almost all
sequent rules of the calculus. Finally, Propositions 2.35 and 2.36 state
soundness and relative completeness of KeY’s calculus.

Definition 2.29. A sequent is of the form Γ =⇒ ∆, where Γ,∆ are
finite sets of closed (see Def. 2.5 and 2.18) JAVA CARD DL formulas.

44

2.4. Calculus

The left-hand side Γ is called antecedent and the right-hand side ∆ is
called succedent of the sequent.

The semantics of a sequent

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is the same as that of the formula

(φ1 ∧ . . . ∧ φm)→ (ψ1 ∨ . . . ∨ ψn).

We write
∧
Γ to abbreviate

∧
φ∈Γ φ and we write

∨
∆ to abbreviate∨

ψ∈∆ ψ.

Definition 2.30. A rule R is a binary relation between (a) the set of
all tuples of sequents and (b) the set of all sequents.

If R(〈P1, . . . , Pk〉, C) (k > 0), then the conclusion C is derivable
from the premisses P1, . . . , Pk using rule R.

Definition 2.31. A proof tree is a finite tree (shown with the root at
the bottom), such that

• each node of the tree is annotated with a sequent,
• each inner node of the tree is annotated with one rule that has at

least one premiss. The sequent of the node is the rule conclusion.
The direct descendants of the nodes are the premisses of the rule.
• If a leaf node is annotated with a rule, then the rule has no premisses

and is called a closing rule.

Furthermore

• A proof tree for a formula φ is a proof tree where the root sequent
is annotated with =⇒ φ.
• A branch of a proof tree is a path from the root to one of the leaves.

A branch is closed if the leaf is annotated with one of the closing
rules. A proof tree is closed if all its branches are closed, i.e., every
leaf is annotated with a closing rule.
• A closed proof tree (for a formula resp. a sequent φ) is also called

a proof (for φ) and φ is in this case derivable in the calculus.

45

2. The Formalism and Techniques of KeY

Definition 2.32. A rule schema is of the form

P1 P2 . . . Pk
C (k > 0)

where P1, . . . , Pk and C are schematic sequents, i.e., sequents contain-
ing schema variables.

Remark 2.33. Despite the distinction between a rule (Def. 2.30) and a
rule schema (Def. 2.32) we will conveniently use the term rule to refer
to a rule schema in the following sections and chapters.

Definition 2.34. Let A,A1, . . . , Ak, B,B1, . . . , Bk ⊂ Formulae. If

A1 =⇒ B1 . . . Ak =⇒ Bk

A =⇒ B

is an instance of a rule schema, then

Γ,UA1 =⇒ UB1, ∆ . . . Γ,UAk =⇒ UBk, ∆

Γ,UA =⇒ UB,∆

is an inference rule of our DL calculus, where U is an arbitrary syn-
tactic update, and Γ,∆ are finite sets of context formulas.

The notation UΦ with {φ1, . . . , φn} = Φ ⊂ Formulae is an abbrevi-
ation for {Uφ1, . . . ,Uφn}.

If, however, the symbol (∗) is added to the rule schema, the context
Γ,∆,U must be empty, i.e., only instances of the schema itself are
inference rules.

Proposition 2.35. If a sequent Γ =⇒ ∆ is derivable (see Def. 2.31) in
the JAVA CARD DL calculus, then it is valid, i.e., the formula

∧
Γ →∨

∆ is logically valid (Def. 2.12).

Proposition 2.36. If a sequent Γ =⇒ ∆ is valid, i.e., the formula∧
Γ →

∨
∆ is logically valid (Def. 2.12), then there is a finite set

ΓFOL of logically valid first-order formulae such that the sequent

ΓFOL, Γ =⇒ ∆

is derivable in the JAVA CARD DL calculus.

46

2.4. Calculus

Propositions 2.35 and 2.36 state the soundness and relative com-
pleteness properties of the calculus and were established for a simplified
version of KeY’s dynamic logic and calculus in [Platzer, 2004; Beckert
and Platzer, 2006]. As mentioned in the beginning of this section, addi-
tional arguments support Proposition 2.35 [Trentelman, 2005; Ahrendt
et al., 2005; Beckert and Klebanov, 2006].

2.4.2 How Verification Works in KeY

The principal verification approach can be divided into three phases:

1. Program reduction rules are applied leading to a proof tree where
branches in the proof tree correspond to case distinction in the pro-
gram control flow. The proof construction in this phase can be seen
as symbolic execution [King, 1976] of the program. After this phase
the program parts are replaced by updates.

2. The state change performed by the program on each execution trace
is captured by an update on each branch. In this phase the updates
simplification calculus is applied in order to obtain first-order logic
formulas. Effectively, this step performs weakest precondition com-
putation.

3. At this stage all information from the original program has been
transformed into first-order logic formulas. It remains to use the first-
order logic rules in order to prove the remaining proof obligations.

Similar phases exist in other verification systems where a different tool
for each of such phases is used in a tool-chain. In contrast to other
systems, the KeY tool integrates the three phases in one calculus and
allows using SMT solvers in addition to that. As calculus rules can
be applied in any order if applicable, i.e., the separation between the
phases is not strict in KeY. For instance, the three phases can be per-
formed for the first statement of the program before proceeding to the
next statement.

2.4.3 Calculus Component: First-order Logic Rules

The following example illustrates how the propositional rules of Ta-
ble 2.3 are used. In this example the formula ((A ∧ B) → C) →
(¬(A ∧B) ∨ C) is proven where A,B,C ∈ Formulae. The formula has
no particular meaning, rather it has been constructed to show several
different rule applications while keeping the example small.

47

2. The Formalism and Techniques of KeY

Propositional Rules

notRight
φ =⇒

=⇒ ¬φ
andRight

=⇒ φ =⇒ ψ

=⇒ φ ∧ ψ
orRight

=⇒ φ, ψ

=⇒ φ ∨ ψ

notLeft
=⇒ φ

¬φ =⇒
andLeft

φ, ψ =⇒
φ ∧ ψ =⇒

orLeft
φ =⇒ ψ =⇒
φ ∨ ψ =⇒

impLeft
ψ =⇒ =⇒ φ

φ→ ψ =⇒
impRight

φ =⇒ ψ

=⇒ φ→ ψ
cut

φ =⇒ ¬φ =⇒
=⇒

close
φ =⇒ φ

closeFalse
false =⇒

closeTrue
=⇒ true

unitProp
ψ, φ =⇒

φ→ ψ, φ =⇒

Quantifier Skolemization Rules

allRight
=⇒ [x\sk](φ)

=⇒ ∀x.φ
exLeft

[x\sk](φ) =⇒
∃x.φ =⇒

where sk is a new constant of type α(sk) = α(x)

Quantifier Instantiation Rules

allLeft
∀x.φ, [x\t](φ) =⇒
∀x.φ =⇒

exRight
=⇒ ∃x.φ, [x\t](φ)

=⇒ ∃ x.φ
where t ∈ TrmFOL

A with A v α(x), and either

a) φ ∈ FmlFOL (classical first-order), or

b) t is a rigid ground term (see Def. 2.28) (DL extension).

Table 2.3. Classical first-order rules

A proof tree is constructed bottom-up, i.e., the leaf of a proof branch
is matched with a rule conclusion and the rule premisses become the
new leaves. In this example the proof tree starts with the root sequent

=⇒ ((A ∧B)→ C)→ (¬(A ∧B) ∨ C) (2.7)

and is constructed by application of the rules impRight, orRight, notRight,
impLeft, close, andLeft, andRight, close, close in the given order. Closed
branches are marked with ’∗’.

48

2.4. Calculus

∗
C,A ∧B =⇒ C close

B1

A ∧B =⇒ A ∧B,C (see below)

(A ∧B)→ C,A ∧B =⇒ C impLeft

(A ∧B)→ C =⇒ ¬(A ∧B), C notRight

(A ∧B)→ C =⇒ ¬(A ∧B) ∨ C orRight

=⇒ ((A ∧B)→ C)→ (¬(A ∧B) ∨ C) impRight

The branch B1 is continued as follows.

∗
A,B =⇒ A,C close

∗
A,B =⇒ B,C close

A,B =⇒ A ∧B,C andRight

A ∧B =⇒ A ∧B,C andLeft

Since all branches are closed, the proof tree is closed, and the For-
mula (2.7) is proven.

Note that in order to reduce computational complexity a good strat-
egy is to delay the application of the branching rules andRight, orLeft,
and impLeft as much as possible. This example further illustrates the
symmetry between the rules andRight, orLeft on the one hand and or-
Right, andLeft on the other hand.

The next example shows how quantifier Skolemization and instan-
tiation rules of Table 2.3 are used. The formula to be proven is

(∃x.∀y.p(x, y))→ (∀v.∃u.p(u, v))

where p ∈ PSymr and x, y, v, u ∈ VSym are of the same type. The
formula is proved by the following proof tree where sk1, sk2 ∈ FSymr

are fresh symbols, i.e., they do not occur in the proof tree before their
first usage.

∗
∀y.p(sk1, y), p(sk1, sk2) =⇒ p(sk1, sk2), ∃u.p(u, sk2) close

∀y.p(sk1, y), p(sk1, sk2) =⇒ ∃u.p(u, sk2) exRight

∀y.p(sk1, y) =⇒ ∃u.p(u, sk2) allLeft

∀y.p(sk1, y) =⇒ ∀v.∃u.p(u, v) allRight

∃x.∀y.p(x, y) =⇒ ∀v.∃u.p(u, v) exLeft

=⇒ (∃x.∀y.p(x, y))→ (∀v.∃u.p(u, v)) impRight

This example shows that the existential quantifier in the antecedent
and the universal quantifier in the succedent can be easily eliminated

49

2. The Formalism and Techniques of KeY

eqLeft
t1

.
= t2, φ, φ[t1\t2] =⇒
t1

.
= t2, φ =⇒

eqRight
t1

.
= t2 =⇒ φ, φ[t1\t2]

t1
.
= t2 =⇒ φ

if σ(t2) v σ(t1) and (a) if σ(t2) v σ(t1) and (a)

eqLeft’
t1

.
= t2, φ, φ[t1\(A)t2] =⇒

t1
.
= t2, φ =⇒

eqRight’
t1

.
= t2 =⇒ φ, φ[t1\(A)t2]

t1
.
= t2 =⇒ φ

with A := σ(t1) and (a) with A := σ(t1) and (a)

eqSymmLeft
t2

.
= t1 =⇒

t1
.
= t2 =⇒

eqClose =⇒ t
.
= t

(a) It is required that φ ∈ FmlFOL and φ has an occurrence of t1. The notation

σ(t) is defined in Definition 2.3.

Table 2.4. Equality rules

by Skolemization, i.e., the quantified variable is replaced by a new con-
stant without losing information. In contrast, existentially quantified
formulas in the succedent and universally quantified formulas in the
antecedent cannot be eliminated without loosing information. Quanti-
fied formulas that require instantiation cause challenging problems in
many situations, some of them will be investigated in the next part of
the thesis.

Finally, the next proof tree shows an example that makes use of
rules from Tables 2.3 and 2.4. We assume that σ(x) = σ(a) = σ(b).

∗
∀x.x = f(x), f(a) = a, a = b =⇒ a = a eqClose

∀x.x = f(x), f(a) = a, a = b =⇒ f(a) = a eqLeft

∀x.x = f(x), f(a) = a, a = b =⇒ f(a) = b eqRight

∀x.x = f(x), a = f(a), a = b =⇒ f(a) = b eqSymmLeft

∀x.x = f(x), a = b =⇒ f(a) = b allLeft

((∀x.x = f(x)) ∧ a = b) =⇒ f(a) = b andLeft

=⇒ ((∀x.x = f(x)) ∧ a = b)→ f(a) = b impRight

2.4.4 Calculus Component: Update Simplification Rules

Updates are the connecting link between programs and first-order logic
formulas and are therefore presented before showing the program re-
duction rules in Section 2.4.5. Updates express the state-change that is

50

2.4. Calculus

performed by a program. The update simplification calculus is capable
to accumulate updates and then to evaluate first-order formulas in the
state expressed by those updates. We first give some general simplifi-
cation laws for updates in Section 2.4.4.1 and then show how to apply
updates on updates, terms, and formulas in Section 2.4.4.2. Application
of an update means the evaluation of an updates, term, or formula in
the post-state of an update. When using the update simplification cal-
culus typically an update is created in front of the program modality
as will be described in Section 2.4.5. This update is typically converted
into update normal form during verification as defined below.

Definition 2.37. An update u is in update normal form if it has the
form

for x̄1; φ1; u1 || . . . || for x̄n; φn; un

where the ui are function updates (see Def 2.16) and x̄1, . . . , x̄n denote
vectors of variables, i.e., more than one variable can be quantified.

We often write ui instead of for x̄i; φi; ui if x /∈ fv(ui) and φ =
true.

2.4.4.1 General Simplification Laws

The update simplification calculus is defined in form of equivalence
relations rather than sequent rules. The equivalence or rewriting rules
are applied from left to right, i.e., the left-hand side of the relation is
substituted by the right-hand side. In the KeY tool the application of
these rules is not made explicit in the proof tree. Instead the result of
using multiple update simplification steps is shown in the proof tree as
one update simplification rule.

Definition 2.38. Let u1, u2 ∈ Updates. The relation

≡⊆ Updates×Updates

is defined by

u1 ≡ u2 iff valS,β(u1) = valS,β(u2)

for all variable assignments β and JAVA CARD DL states S.

51

2. The Formalism and Techniques of KeY

Lemma 2.39. For all u1, u2, u3 ∈ Updates the following holds:

• u1 || (u2 ||u3) ≡ (u1 ||u2) ||u3

• u1 ; (u2 ;u3) ≡ (u1 ;u2) ;u3

Lemma 2.40. Let x ∈ VSym, φ ∈ Formulae, and u ∈ Updates. If φ is
logically valid and x /∈ fv(φ) ∪ fv(u) then

(for x; φ; u) ≡ u.

Lemma 2.41. For all u1, u2 ∈ Updates:

u1 ;u2 ≡ u1 || {u1}u2

2.4.4.2 Update Application

The following lemmas represent substitution rules for applying an up-
date to an update (Lemma 2.42), to a term (Lemma 2.43), and to a
formula (Lemma 2.45).

Lemma 2.42. Let an arbitrary update u ∈ Updates and function up-
dates u1, . . . , un ∈ Updates be given. Then,

• {u}(f(t1, . . . , tn) := s) ≡ f({u}t1, . . . , {u}tn) := {u}s
• if none of the variables in the variable lists x̄i occur in u

{u}(for x̄1; φ1; u1 || . . . || for x̄n; φn; un) ≡
for x̄1; {u}φ1; {u}u1 || . . . || for x̄n; {u}φn; {u}un)

For instance, the update application {a := b}a := a simplifies to
a := {a := b}a. The example shows that the update is not applied to the
top-level function symbol of the location term. It is applied, however, to
the sub-terms of the top-level function symbol. For instance, the update
application {a := b}f(a) := a simplifies to f({a := b}a) := {a := b}a.

Lemma 2.43. Let

u = for x̄1; φ1; u1 || . . . || for x̄n; φn; un

be an update in normal form. Then,

• for all rigid terms t ∈ Terms (see Def. 2.28),

{u}t ≡ t,

52

2.4. Calculus

• for all terms f(a1, . . . , an) ∈ Terms,

{u}f(a1, . . . , an) ≡ if Cm then Tm else (
...

if C1 then T1 else f({u}a1, . . . , {u}an)
...

)

where C1, . . . , Cm are guard formulas expressing that the i-th sub-
update of u affects the term f(a1, . . . , an), and T1, . . . , Tm are terms
that describe the value of the expression in these cases.
Ci and Ti are defined as follows. Suppose that the i-th part of u is
of the form

for (z1, . . . , zl); φi; g(b1, . . . , bk) := si.

Then, the formula Ci is defined by

Ci =
{
∃z1. · · · ∃zl.C ′i if f = g and n = k
false otherwise

C ′i = φi ∧ ({u}a1) .= b1 ∧ · · · ∧ ({u}ak)
.= bk

and the terms Ti are constructed from the si by applying substitu-
tions that instantiate the occurring variables with the smallest of
clashing values (corresponding to the clash semantics of quantified
updates):

[z1/(ifExMin z′1.∃z2. · · · ∃zl.C ′′i then z′1 else zsk1)]
[z2/(ifExMin z′2.∃z3. · · · ∃zl.C ′′i then z′2 else zsk2)]

...
[zl/(ifExMin z′l.C

′′
i then z′l else zskl)]si

where C ′′i = [z1/z
′
1, . . . , zl/z

′
l]C
′
i and zsk1 , . . . , zskl ∈ FSym are fresh

functions.
• for all u1 ∈ Updates and t ∈ Terms,

{u}({u1}t) ≡ {u ;u1}t .

Remark 2.44. Lemma 2.43 fixes a typing mistake in the definition of the
terms Ti that was made in the respective lemma in the KeY Book. A
formal definition of the update simplification calculus with a soundness
and completeness proof is presented in [Rümmer, 2008].

53

2. The Formalism and Techniques of KeY

In the following paragraphs we show examples of using the second
equivalence (rule) of Lemma 2.43.

First we consider the application of a single function update on a
term such as

{g(b1, . . . , bk) := s}f(a1, . . . , an)

where g 6= f or k 6= n. Note, that the update can also be written as a
quantified update of the form (for y; true; g(b1, . . . , bk) := s) where y
does not occur in the function update. In this example C is false and
the if-cascade which has the form

if C then T else f({g(b1, . . . , bk) := s}a1, . . . , {g(b1, . . . , bk) := s}an)

simplifies to

f({g(b1, . . . , bk) := s}a1, . . . , {g(b1, . . . , bk) := s}an)

The update is propagated to the sub-terms of f(a1, . . . , an) but f re-
mains the top-level function symbol. Hence, the update is not effective
on f .

Now we look at more concrete examples where the conditions g = f
and k = n are satisfied such as in the following update application.

{f(b) := s}f(a) (2.8)

A function update has no quantified variables and the formula φ is not
present. In this case C is the same as C ′ and there are no substitutions
for variables in T , i.e., T is simply si. The (ifExMin then . . . else . . .)
term has in this case the same semantics as the (if . . . then . . . else . . .)
term (see Def. 2.10). According to Lemma 2.43 the update application
(2.8) is equivalent to

if ({f(b) := s}a) .= b︸ ︷︷ ︸
C

then s︸︷︷︸
T

else f({f(b) := s}a)

The condition C checks if f(b) and f(a) are aliased, i.e., if they refer
to the same location. If this is the case, then the update is effective on
f(a) and the resulting term is s. Otherwise, the update is not effective
on f(a) but possibly on a which results in f({f(b) := s}a).

Next, we consider the application of a parallel update to a term.

{a := 1 || f(1) := 2 || f(3) := 4︸ ︷︷ ︸
u

}f(a)

54

2.4. Calculus

This update application rewrites by equivalence transformations to the
if-cascade

if ({u}a) .= 3 then 4 else (if ({u}a) .= 1 then 2 else f({u}a)) (2.9)

The condition ({u}a) .= 3 can be simplified to false and the condition
({u}a) .= 1 can be simplified to true. Hence, the Term (2.9) simplifies
to 2.

Finally, we consider the application of a quantified update to a term
(see also Section 2.3.2.1):

{for x;

φ︷ ︸︸ ︷
0 6 z ∧ z 6 2; f(z) := z︸ ︷︷ ︸

u

}f(1) (2.10)

This update application is equivalent to

if C then T else f({u}1)

where C is defined as

∃z.
φ︷ ︸︸ ︷

0 6 z ∧ z 6 2∧({u}1) .= z)

and can be simplified to true, and T is defined as

[z/(ifExMin z′.[z/z′]

φ︷ ︸︸ ︷
0 6 z ∧ z 6 2∧({u}1) .= z then z′ else zsk)]z

which can be simplified to

ifExMin z′.[z/z′]0 6 z ∧ z 6 2 ∧ ({u}1) .= z′ then z′ else zsk

≡ ifExMin z′.0 6 z′ ∧ z′ 6 2 ∧ 1 .= z′ then z′ else zsk

≡ ifExMin z′.1 .= z′ then z′ else zsk (2.11)
≡ 1

We have simplified the Term (2.11) by following its semantics according
to Definition 2.10. KeY is capable to do such simplifications automati-
cally with rewriting rules presented in [Rümmer, 2008].

The following lemma shows equivalence relations for handling up-
date applications on formulas. Reading the equivalence relations as
rewriting equations, the applied update is in most cases propagated to
sub-formulas and terms.

55

2. The Formalism and Techniques of KeY

Lemma 2.45. Let u ∈ Updates be an update, then:

• {u}p(t1, . . . , tn) ≡ p({u}t1, . . . , {u}tn),
• {u} true ≡ true and {u} false ≡ false,
• {u}(¬φ) ≡ ¬{u}φ,
• {u}(φ ◦ ψ) ≡ {u}φ ◦ {u}ψ for ◦ ∈ {∨,∧,→},
• {u}∀x.φ ≡ ∀x.{u}φ and {u}∃x.φ ≡ ∃x.{u}φ provided that
x /∈ fv(u),
• {u}({u1}φ) ≡ {u ;u1}.

2.4.5 Calculus Component: Program Reduction Rules

When a program is executed on a processor the state of the program is
determined by the values of program memory locations, the program
pointer, and the method call stack. In a sense, these concepts have
counterparts in a dynamic logic formula with a modal operator.

A verification condition with an occurrence of the program to be
verified has typically the form

Γ =⇒ U〈πstmt;ω〉φ,∆ (2.12)

The formulas Γ ∪∆ and the update U determine the values of memory
locations, i.e., the state in which 〈πstmt;ω〉φ is evaluated. The prefix
π is a stack with information required to determine where program
execution shall continue if a jump statement such as return, throw,
break, or continue is encountered. The prefix may contain labeled
opening braces label:{, opening try blocks try{, and opening method
frames MF(v,C,se):{, where v, C, and se contain context information
of the method call. The method frame can be seen as a special labelled
block that is the jump-target of the return statement. The statement
stmt is the current or first active statement that is to be executed.
Program reduction rules given in Table 2.5 operate always on the first
active statement. The rest of the program that is executed after stmt is
abbreviated by ω. With this intuition in mind program reduction rules
perform execution of the program with symbolic values which is called
symbolic execution [King, 1976]. Broadly speaking, the sequent (2.12)
can be read as the Hoare triple

{
∧
Γ ∧ ¬

∨
∆}Uπ stmt; ω {φ}

56

2.4. Calculus

assignment
⇒ {loc := se∗}〈π ω〉φ
⇒ 〈π loc = se; ω〉φ

ifElseSplit

se∗ ⇒ 〈π p ω〉φ
¬se∗ ⇒ 〈π q ω〉φ

⇒ 〈π if(se) p else q ω〉φ

loopUnwind
⇒ 〈π if(e){ p while(e)p} ω〉φ
⇒ 〈π while(e)p ω〉φ

methodExpand
⇒ 〈π MF(lhs,C , se):{body} ω〉φ
⇒ 〈π lhs = se.mname(v1 , . . . , vn)@C; ω〉φ

methodReturn
⇒ 〈π v = se; ω〉φ
⇒ 〈π MF(v , . . .):{return se;p} ω〉φ

methodEmpty
⇒ 〈π ω〉φ
⇒ 〈π MF(v , . . .):{} ω〉φ

methodThrow
⇒ 〈π throw se; ω〉φ
⇒ 〈π MF(v , . . .):{throw se;p} ω〉φ

tryCatchThrow

=⇒ 〈π if(se == null){

try{throw new NullPointerException();}

catch(T v){ q } finally { r }

} else if (se instanceof T) {

T v ; v = se ; q ; r

} else {

T v = se; r ; throw v;} ω〉φ
=⇒ 〈π try{throw se; p }

catch(T v){ q } finally{ r } ω〉φ

createObject

⇒ {loc := C::get(C .<nextToCreate>)}{loc.<created> := true}
{C .<nextToCreate> := C .<nextToCreate> + 1}
〈π ω〉φ

⇒ 〈π loc = newC(); ω〉φ

throwDia
=⇒ false

=⇒ 〈throw se; ω〉φ
throwBox

=⇒ true

=⇒ [throw se; ω]φ

The notation se∗ represents the translation of the simple expression se into

a term or formula depending on the context (see Remark 2.47). The notation

mname(v1 , . . . , vn)@C identifies the method mname that is defined in the class C.

Table 2.5. Simplified program reduction rules

57

2. The Formalism and Techniques of KeY

emptyDiamond
=⇒ φ

=⇒ 〈〉φ
emptyBox

=⇒ φ

=⇒ []φ

diamondLeft
=⇒ [p]¬φ
〈p〉φ =⇒

boxLeft
=⇒ 〈p〉¬φ
[p]φ =⇒

diamondToBox
=⇒ [p]φ =⇒ 〈p〉true

=⇒ 〈p〉φ

Table 2.6. Non-program rules for modalities

After symbolic execution of the first active statement the formulas
Γ ∪∆ and the update U may be updated reflecting the new program
state. The prefix π is updated if the program enters or leaves a program
method or a program block that may be the target of a jump statement.

Remark 2.46. The rules in Table 2.5 are simplified rules of KeY’s cal-
culus which capture only the essential idea of the original rules. The
actual rules of the KeY tool are equipped with additional case dis-
tinctions in order to check if exceptions should be thrown such as
NullPointerException-, ArrayIndexOutOfBounds-exceptions, as well
as other exceptions.

2.4.5.1 Example 1

In the following we show a simple example that illustrates the three
phases of verification as described in Section 2.4.2. Note, however, that
calculus rules can be applied in any order if applicable.

Consider the program

if(a<b) d=b-a; else d=a-b;

where a, b, and d are program variables of type int. The goal is to
prove that after the execution of this program d stores the absolute
difference between a and b. This requirement can be formalized by the
verification condition

〈if(a<b) d=b-a; else d=a-b;〉((d .= b− a ∨ d .= a− b) ∧ d > 0)︸ ︷︷ ︸
post

where the formula post is the postcondition. The prefix π and the post-
fix ω as used in Table 2.5 are empty and therefore do not occur in the

58

2.4. Calculus

modal operator. The logical constants a, b, and d represent the program
variables a, b, and d respectively.

In the following proof tree, according to phase 1, mainly program
reduction and modality rules from Tables 2.5 and 2.6 are applied.

B2

a < b =⇒ {d := b− a}post
a < b =⇒ {d := b− a}〈〉post emptyDiamond

a < b =⇒ 〈d=b-a;〉post assignment B1

=⇒ 〈if(a<b) d=b-a; else d=a-b;〉post ifElseSplit

On branch B2 the case is considered where a < b holds after the appli-
cation of the ifElseSplit rule while on branch B1, that we show below,
the case is considered where ¬(a < b) holds.

B3

¬a < b =⇒ {d := a− b}post
¬a < b =⇒ {d := a− b}〈〉post emptyDiamond

¬a < b =⇒ 〈d=a-b;〉post assignment

Notice that the program has been replaced by two updates on the
branches B2 and B3. The effective computation performed by the pro-
gram is now captured by the updates. In phase 2 the update simplifica-
tion calculus is applied in order to obtain first-order logic formulas. As
both branches are very similar we show only the continuation of branch
B2. The following derivation is obtained using Lemmas 2.45 and 2.43.

B4

a < b =⇒ ((b− a .= b− a ∨ b− a .= a− b) ∧ b− a > 0)
a < b =⇒ {d := b− a} ((d .= b− a ∨ d .= a− b) ∧ d > 0)︸ ︷︷ ︸

post

The application of update simplification rules is not made explicit in
the proof tree when using the KeY tool. At this point the leaf of the
branch consists only of first-order logic formulas. Finally, in phase 3
first-order logic rules and arithmetic rules are used to extend branch
B4.

∗
a < b =⇒ true, b− a .= a− b

a < b =⇒ b− a .= b− a, b− a .= a− b
a < b =⇒ b− a .= b− a ∨ b− a .= a− b

∗
...

a < b =⇒ b > a
a < b =⇒ b− a > 0

a < b =⇒ ((b− a .= b− a ∨ b− a .= a− b) ∧ b− a > 0)

59

2. The Formalism and Techniques of KeY

Note, that the arithmetic rules are not provided in this thesis. The
calculus for arithmetics is described in [Rümmer, 2007, 2008].

Remark 2.47. We use the notation se∗ to denote the translation of a
simple expression, i.e. an expression without side-effects, into a term
or formula in the respective case. The KeY tool features the choice
between different semantics for the JAVA operators +, -, *, and /. In
this thesis we use infinite integer semantics for the sake of simplicity.

2.4.5.2 Example 2

The next example shows the application of some of the other rules
shown in Tables 2.5 and 2.6. Another purpose of the example is to
demonstrate bounded symbolic execution with finite loop unwinding as
this is a common technique used by software fault detection methods.
The method sqrt of Listing 2.1 will serve as our running example and
in latter chapters we will refer to this example.

JAVA (2.1)
1 public int sqrt(int x){
2 int i=0;
3 while(i*i<=x){
4 i=i+1;
5 }
6 return i-1; }

JAVA

The method sqrt computes the square root of its argument by
incrementing i up to the value of the square root of the argument.
In this example finite unwinding of loops is considered. We verify the
program only for the input value x .= 0. Verification of the method for
more general input values requires to use the loop invariant rule which
will be discussed in Section 2.4.6.

The verification condition for the method sqrt with restriction to
the input value x .= 0 reads as follows (let X2 = X ∗X).

x
.= 0, o 6= null︸ ︷︷ ︸

Γ

=⇒ 〈r=o.sqrt(x);〉(r2 6 x ∧ (r + 1)2 > x)︸ ︷︷ ︸
ϕ

(2.13)

Note that like in the previous example the constants x, o, r represent
the program variables x,o,r respectively. The first statement to be ex-
ecuted is the invocation of the method sqrt. Generally when a method

60

2.4. Calculus

is invoked, dynamic dispatch has to be performed which chooses differ-
ent implementations of the invoked method depending on the dynamic
type of o. KeY implements dynamic dispatch by creating an if-cascade
that checks the dynamic type of the target object o. Dynamic dispatch
is realized by the following rule.

methodCall
=⇒ 〈πTlhsv0;paramDecl;ifCascade;lhs=v0; ω〉φ

=⇒ 〈πlhs=se.mname(se1 , . . . , sen);ω〉φ

where paramDecl abbreviates

Tse1p1=se1; . . . ;Tsenpn=sen;

and ifCascade abbreviates
if (se instanceof C1)

v0 = se.mname (p1 , . . . , pn)@C1 ;
else if (se instanceof C2)

v0 = se.mname (p1 , . . . , pn)@C2 ;
...
else if (se instanceof Ck−1)

v0 = se.mname (p1 , . . . , pn)@Ck−1 ;
else v0 = se.mname (p1 , . . . , pn)@Ck ;

The symbols C1, . . . , Ck represent classes which contain a definition
of the method mname, where Ci is more specific than Ci+1 for 0 < i <
k. The notation mname(v1 , . . . , vn)@C identifies the method mname
that is defined in the class C.

We consider dynamic dispatch as a technical detail and omit it in
the following. In the following chapters we assume that the dynamic
type of the target object, here represented by o, is known and allow to
use the rule methodExpand directly, i.e., without prior usage of the rule
methodCall. The actual rules of KeY additionally check if se .= null (see
Remark 2.46).

Following the example the application of the rule methodExpand
yields the sequent

Γ =⇒ 〈MF(r,C,o):{︸ ︷︷ ︸
π

int i=0; while(i*i<=x){...〉ϕ (2.14)

The method frame MF(r,C,o) stores information about the context of
the method invocation. In this example only the argument r is impor-
tant as it represents the expression that will be assigned the return
value of the method.

61

2. The Formalism and Techniques of KeY

Declarations have no effect on the semantics of DL formulas, i.e.,
for all states s ∈ S of a Kripke structure (S, ρ) we have (s, decl, s) ∈ ρ,
where decl is a declaration. We therefore treat the statement int i=0;
like an ordinary assignment. Using the rule assignment we obtain the
sequent

Γ =⇒ {i := 0}〈π while(i*i<=x){i=i+1;}...〉ϕ (2.15)

In the next step the loop is unwound once using the rule loopUnwind.

Γ =⇒ {i := 0}〈π if(i*i<=x){i=i+1;while(i*i<=x){i=i+1;}}...〉ϕ
(2.16)

The rule ifElseSplit makes a case distinction on the if-condition. Here
we use a variant of the ifElseSplit rule for an if-statement without an
else-branch and obtain the following two sequents

x
.= 0, o 6= null︸ ︷︷ ︸

Γ

, {i := 0}i ∗ i 6 x =⇒ {i := 0} 〈π i=i+1;
while(i*i<=x) . . .〉ϕ

(2.17)
and

x
.= 0, o 6= null︸ ︷︷ ︸

Γ

, {i := 0}¬(i∗ i 6 x) =⇒ {i := 0}〈π return i-1;...〉ϕ

(2.18)
Note that the update in front of the formula i ∗ i 6 x, respectively the
formula ¬(i ∗ i 6 x), results from the generalisation of rules according
to Definition 2.34.

The antecedent of sequent 2.18 evaluates to false as can be seen when
simplifying {i := 0}¬i ∗ i 6 x to 0 > x and considering the condition
x
.= 0. The rule closeFalse of Table 2.3 closes this branch. The formulas

in the antecedent of the sequent 2.18 constitute the path-condition,
i.e., the condition to be satisfied in order to execute the program on
the current execution path. If the path-condition is false, then the path
cannot be executed. In this case the execution path of this branch is
infeasible.

Since the branch with the sequent 2.18 is closed, the proof construc-
tion continues with the branch that ended with Sequent 2.17. Figure 2.2
shows the structure of the proof up to this point as well as the con-
tinuation of the branch where the loop is unwinded again. Only the
path where the loop body is executed exactly once represents a feasible
path. The last sequent of the open branch B1 is:

62

2.4. Calculus

∗
. . . , false =⇒ . . .

x
.
= 0, . . . ,1 6 0 =⇒ ∆

x
.
= 0, . . . , 1 6 x =⇒ ∆

Γ ′,1 ∗ 1 6 x =⇒ ∆

Γ ′,{i := 1}i ∗ i 6 x =⇒ ∆

B1

Γ ′, 1 > x =⇒ ∆′

Γ ′,¬1 6 x =⇒ ∆′

Γ ′,¬1 ∗ 1 6 x =⇒ ∆′

Γ ′,¬{i := 1}i ∗ i 6 x =⇒ ∆′

Γ ′ =⇒ {i := 1}〈π if(i*i<=x){i=i+1;while(ii<= x){...〉ϕ
Γ ′ =⇒ {i := 1}〈π while(i*i<=x){i=i+1;} ...〉ϕ

Γ ′ =⇒ {i := 0}{i := i + 1}〈πwhile...〉ϕ
x
.
= 0, o 6= null, 0 6 x| {z }

Γ ′

=⇒ {i := 0}〈πi=i+1;while...〉ϕ

x
.
= 0, o 6= null,0 ∗ 0 6 x =⇒ {i := 0}〈πi=i+1;while...〉ϕ

x
.
= 0, o 6= null,{i := 0}i ∗ i 6 x =⇒ {i := 0}〈πi=i+1;while ...〉ϕ

∗
...

(2.18)

(2.16)

(2.15)

(2.14)

(2.13)

Fig. 2.2. Structure of the proof and continuation of the branch with the Se-

quent (2.17)

x
.= 0, o 6= null, 0 6 x︸ ︷︷ ︸

Γ ′

, 1 > x =⇒ {i := 1} 〈
π︷ ︸︸ ︷

MF(r,C,o):{
return i-1;}〉ϕ

(2.19)
The method frame MF(r,C,o):{, that we abbreviated previously with
π, stores information that is required for handling the return statement
by rule methodReturn. Application of the rule methodReturn yields:

x
.= 0, o 6= null, 0 6 x, 1 > x =⇒ {i := 0}〈r=i-1;〉ϕ (2.20)

The construction of the single open branch B1 continues as shown in
Figure 2.3.

2.4.6 Calculus Component: Contract Rules

2.4.6.1 Basic Variants of Contract Rules

The contract rules are the method contract rule and the loop invariant
rule. These rules abstract a method or a loop with a contract. In this
way verification of programs can be modularized. The correctness of

63

2. The Formalism and Techniques of KeY

∗
... using arithmetic rules

x
.
= 0, . . . =⇒ (02 6 x ∧ (0 + 1)2 > x)

x
.
= 0, . . . =⇒ {i := 1 || r := 0}(r2 6 x ∧ (r + 1)2 > x)

x
.
= 0, . . . =⇒ {i := 1 || r := 1− 1}(r2 6 x ∧ (r + 1)2 > x)

x
.
= 0, o 6= null, 0 6 x, 1 > x =⇒ {i := 1}〈r=i-1;〉(r2 6 x ∧ (r + 1)2 > x)| {z }

ϕ

(2.20)

(2.19)

Fig. 2.3. Continuation of the branch B1 from Figure 2.2

the abstraction is shown once and then the abstraction is used as a
surrogate whenever the method or loop is encountered during verifica-
tion. Due to the dependency of showing and assuming the correctness
of the abstraction we refer to the abstractions as contracts. Technically,
there is no distinction between a specification and a contract. However,
the term specification emphasizes the requirements of a program while
the term contract emphasizes a dependency between entities.

Definition 2.48. A specification or contract is a quadruple

(pre, post,mod, term)

specifying the behavior of a method, constructor, or loop.

• pre ∈ Formulae is the precondition,
• post ∈ Formulae is the postcondition,
• mod is a modifier set for the method, constructor, or loop (see Sec-

tion 2.4.6.2),
• The termination marker term is an element from the set {partial,

total}; the marker is set to total if and only if the contract requires
the method, constructor, or loop to terminate, otherwise term is set
to partial.

A specification typically describes the behavior of a method but it
can specify the behavior of any statement or sequence of statements.
For instance a loop invariant I ∈ Formulae is the pre- and postcondition
of a loop’s body and the loop itself. A stronger postcondition of the loop
is I∧¬c where c ∈ Formulae is the loop condition, i.e., the loop iterates

64

2.4. Calculus

Method Contract Rule* Loop Invariant Rule*

1: Γ ⇒ {U}prem,∆
2∗: ⇒ prem → 〈[m]〉postm
3: ⇒ postm → 〈[πω]〉post

Γ ⇒ {U}〈[πm;ω]〉post,∆

1: Γ ⇒ {U}I,∆
2: ⇒ I ∧ c→ [b]I

3: ⇒ (I ∧ ¬c)→ [πω]post

Γ ⇒ {U}[π while(c){b;}ω]post,∆

Fig. 2.4. Contract Rules

while c is true. The specification of a loop is therefore a quadruple of
the form (I, I ∧ ¬c,mod, term).

Besides the modularization, the loop invariant rule realizes also in-
duction on the iteration of loops. This enables the verification of pro-
grams with loops which have arbitrary or runtime-dependent numbers
of loop iterations. The method contract rule can be used in combination
with an induction rule in order to handle recursive method calls.

Different variants of the contract rules exists. Firstly, they differ
depending on how many technical details of the programming language
are handled, e.g. if jump-statements such as break, continue, throw,
and return are handled. Secondly, they differ depending on whether
modifier sets are supported or not.

In this section we describe the contract rules in their simplest form
(see Figure 2.4) without handling of jump statements and modifier
sets. The formulas prem, postm ∈ Formulae constitute the contract of
the method invocation m and I ∈ Formulae is called the loop invariant
of the loop while(c){b;}. The following description applies to both
rules of Figure 2.4.

In Premiss 1 the goal is to show that the precondition prem resp. the
loop invariant I holds in the state before the execution of the method
resp. the loop.

In Premiss 2 of the method contract rule the goal is to show that
prem and postm constitute a correct contract of m. We have annotated
this premiss with ’∗’ because in the KeY tool this branch of the method
contract rule is omitted. Instead, the correctness of the contract is just
assumed and should be ensured by a separate verification proof. The
motivation behind this is modularity of proofs. The correctness of the
method contract is proven once and is assumed in other proofs.

Premiss 2 of the loop invariant rule ensures that the formula I is
actually an invariant of the loop body. Since I has to be an invariant
for all iterations of the loop the context Γ , ∆, and {U} is omitted,

65

2. The Formalism and Techniques of KeY

otherwise only the pre-state of the first iteration would be regarded. If
the loop invariant I is preserved by each loop iteration, then it is also
an invariant of the whole loop.

While the goal of the Premisses 1 and 2 is to show that the abstrac-
tion is correct and applicable, in Premiss 3 the abstraction is used as
surrogate for the method invocation, respectively the loop execution.
The formulas postm and I ∧ ¬c describe the state after the execution
of the method or loop, respectively.

Note that in case of recursive method calls, the application of the
method contract rule with a proof of the Premiss 2 does not terminate
unless it is combined with induction.

2.4.6.2 Modifier Sets and Anonymising Updates

The rules in Figure 2.4 are annotated with * which means that the
rule generalizations of Definition 2.34 do not apply. The reason is that
the context information in Γ,∆, and {U} may not be satisfied in the
post-state of the method invocation or loop execution. Thus, the con-
text information must be omitted in Premiss 2 of the loop invariant
rule and in Premiss 3 of both rules. However, the context informa-
tion is often required for a successful proof. One option is to encode
this information in prem and postm, respectively in I. This approach
is, however, problematic because it adds complexity to the proof and
the contract and, even worse, the context information is generally not
known beforehand. A better approach is to assume by default that
the context information holds in the post-state and to allow specifying
where it does not hold. The latter technique is realized by modifier sets
as defined next.

Definition 2.49. (Syntax of Modifier Sets). Let (VSym,FSymr,
FSymnr,PSymr,PSymnr, α) be a signature for a type hierarchy.

A modifier set Mod is a set of pairs 〈φ, f(t1, . . . , tn)〉 with φ ∈
Formulae and f(t1, . . . , tn) ∈ Terms with f ∈ FSymnr.

Definition 2.50. (Semantics of Modifier Sets). Given a signature for a
type hierarchy T , let K� = (S, ρ) be a JAVA CARD DL Kripke structure,
and let β be a variable assignment.

A pair (S1, S2) = ((T,D,�, δ, I1)×(T,D,�, δ, I2)) ∈ S×S of states
satisfies a modifier set Mod, denoted by

(S1, S2) �Mod,

66

2.4. Calculus

iff, for

a) all f : A1, . . . , An → A ∈ FSymnr,
b) all (d1, . . . , dn) ∈ DA1 × . . .×DAn

the following holds:

I1(f)(d1, . . . , dn) 6= I2(f)(d1, . . . , dn)

implies that there is a pair 〈φ, f(t1, . . . , tn)〉 ∈ Mod and a variable
assignment β such that

di = valS1,β(ti) (1 6 i 6 n)

and
S1, β � φ.

Furthermore, a modifier set is minimal if the underlined implication
in this definition is replaced by “if and only if”. We write Mod(p) to
denote an arbitrary but fixed minimal modifier set for a program p.

The modifier set Mod is correct for a program p, if

(S1, S2) �Mod

for all state pairs (S1, p, S2) ∈ ρ.

A modifier set for a program is a set of terms with side conditions.
The purpose of using a modifier set as part of a contract or specifica-
tion is to specify which of these terms – modelling program variables,
fields, and arrays – are modified by the program. All other program
variables, fields, and arrays, are assumed to be not modifiable by the
program. For example, a correct modifier set for the assignment o.b=1
is {〈true, b(x)〉}, where x ∈ VSym. Note that the field b is modelled
as a function b ∈ FSymnr. A minimal modifier set for o.b=1 is, e.g.,
{〈true, b(o)〉}. The minimal modifier set is not unique because the sets
{〈o .= o, b(o)〉} and {〈true, b(o)〉, 〈false, c(o)〉} are minimal for o.b=1 as
well.

Remark 2.51. Techniques for proving the correctness of modifier sets
are not discussed in this thesis. As it is the case with method contracts
the correctness of modifier sets has to be shown in separate proofs. We
assume that the modifier sets in the examples of this thesis are correct
if not stated otherwise.

67

2. The Formalism and Techniques of KeY

Modifier sets are utilized in KeY proofs through anonymising up-
dates. An anonymising update assigns unspecified values to memory
locations which are mentioned in the modifier set. Hence, anonymising
update correspond to the havoc command in Boogie [Barnett et al.,
2006] language. For the construction of anonymising updates an exten-
sion of the update language is not necessary.

Definition 2.52. (Anonymising Update w.r.t. a Modifier Set). Let a
signature (VSym,FSymr,FSymnr,PSymr,PSymnr, α) for a type hier-
archy, a modifier set M , and a sequent Γ =⇒ ∆ be given. For every
〈φi, fi(ti1, . . . , tini)〉 ∈ M with fi : A1, . . . , Ani → A, let fski ∈ FSym be
a fresh (w.r.t. Γ ∪ ∆) function symbol with the same type as fi, i.e.,
fski does not occur in Γ ∪∆.
If

M = {〈φ1, f1(t11, . . . , t
1
n1

)〉, . . . , 〈φk, fk(tk1, . . . , tknk)〉}

then the update VM is defined as

VM = u1 || . . . ||uk

with

ui = for xi1; true; . . . for xli ; φi; fi(t
i
1, . . . , t

i
ni) := fski (ti1, . . . , t

i
ni)

where
{xi1, . . . , xili} = fv(φi) ∪ fv(ti1) ∪ . . . ∪ fv(tini)

is called an anonymising update with respect to M .

An anonymising update assigns unspecified values to function sym-
bols which occur in the corresponding modifier set. This happens by
assigning to those function symbols the values of Skolem functions, i.e.,
fresh functions which do not occur in the proof. For instance, given the
modifier set M = {〈true, f(a)〉, 〈ϕ, g(x)〉} the corresponding anonymis-
ing update is

f(a) := fsk(a) || for x; ϕ; g(x) := gsk(x)

where fsk and gsk are fresh function symbols.

68

2.4. Calculus

Method Contract Rule (mContract) Loop Invariant Rule (loopInv)

1: ⇒ prem
2∗: ⇒ prem → 〈[m]〉postm (∗)
3: ⇒ VM (postm → 〈[πω]〉post)
⇒ 〈[πm;ω]〉post

1: ⇒ I

2: ⇒ VM (I ∧ c→ [b]I)

3: ⇒ VM ((I ∧ ¬ c)→ [πω]post)

⇒ [π while(c){b;}ω]post

where VM is an anonymising update w.r.t. the modifier set M and M is a correct

modifier set for m, respectively b and c.

Fig. 2.5. Contract Rules

2.4.6.3 Contract Rules with Anonymising Updates

Figure 2.5 shows variants of the contract rules which, in contrast to
the contract rules of Figure 2.4, can be generalized according to Defini-
tion 2.34. This means that contextual information that is stored in Γ ,
∆, and in updates is available on all three branches of both rules. An
exception is, however, the Premiss 2 of the method contract rule where
the contextual information is omitted. As described in Section 2.4.6.1,
in order to support modularity the Premiss 2 is proven in a separate
proof and the contract is assume to be correct in other proofs. In order
to allow this assumption in all contexts the specific contextual infor-
mation Γ , ∆, and U is omitted.

The context information refers to the pre-state of the method, re-
spectively the loop. Due to the anonymising updates VM this infor-
mation can be used in the post-state of the method, respectively the
loop. Functions whose interpretation is modified by the program, and
which may be in conflict with the context information, are assigned
unspecified values through the anonymising update.

In the following example we show how the loop invariant rule in
Figure 2.5 is used in order to verify the Program 2.1 for arbitrary
numbers of loop iterations. The specification (see Def. 2.48) of the
method sqrt is the quadruple (let X2 = X ∗X).

(x > 0 ∧ ¬o .= null︸ ︷︷ ︸
precondition

, r2 6 x ∧ (r + 1)2 > x︸ ︷︷ ︸
postcondition

, {〈true, i〉}︸ ︷︷ ︸
mod.

, partial︸ ︷︷ ︸
term.

) (2.21)

The modifier set specifies that the program variable i may be modified.
In JAVA program variables are local and are not accessible outside the
method in which they are defined. Therefore, in JML specifications (see
Chapter 3) modifier sets do not contain program variables or method

69

2. The Formalism and Techniques of KeY

parameters but rather object fields and static fields. As mentioned in
Remark 2.51 we do not check the correctness of modifier sets.

Since the variants of the loop invariant rule in Figures 2.4 and 2.5
do not support total correctness proofs, i.e., these variants of the rule
do not ensure the termination of loop, the specification requires only
partial correctness of the method sqrt. From the specification (2.21)
we construct the following proof obligation

x > 0,¬o .= null︸ ︷︷ ︸
Γ

=⇒ [r=o.sqrt(x);] (r2 6 x ∧ (r + 1)2 > x)︸ ︷︷ ︸
ϕ

(2.22)

and obtain the following partial proof tree by applying of the rules
methodCall, assignment, and loopInv.

B1 B2 B3

Γ =⇒ {i := 0}[π while(i*i<=x){i=i+1;} return i;]ϕ loopInv

Γ =⇒ [π int i=0; while(i*i<=x){i=i+1;} return i;]ϕ
Γ =⇒ [r=o.sqrt(x);]ϕ

For the application of the loop invariant rule in the last step the loop
invariant I and the modifier set M we use are

(i− 1)2 6 x ∨ i .= 0 and {〈true, i〉}

respectively. The modifier set yields the anonymising update VM =
{i := i′}, where i′ is a fresh function symbol. Application of the loop
invariant rule on the last sequent of the proof tree results in the follow-
ing three sequents.

B1 : Γ =⇒ {i := 0}(

I︷ ︸︸ ︷
(i− 1)2 6 x ∨ i .= 0)

B2 : Γ =⇒ {i := 0}{i := i′}(I ∧ i2 6 x→ [i=i+1]I)
B3 : Γ =⇒ {i := 0}{i := i′}((I ∧ ¬(i2 6 x))→ [π return i-1;}︸ ︷︷ ︸

ω

]ϕ)

The anonymising update {i := i′}, where i′ is the fresh constant,
overrides the update {i := 0}. Thus, {i := 0}{i := i′}I simplifies to
{i := i′}I. In this way the value of i in the pre-state is not in conflict
with its value in other states.

Finally, Figures 2.6, 2.7, and 2.8 show how the three branches B1,
B2, and B3 close, respectively. The proof trees shown in the figures
make use of the rules introduced throughout this chapter as well as of
arithmetic rules.

70

∗
Γ =⇒ ((0− 1)2 6 x, true

Γ =⇒ ((0− 1)2 6 x,0
.
= 0

Γ =⇒ ((0− 1)2 6 x∨ 0
.
= 0

Γ =⇒ {i := 0}((i− 1)2 6 x ∨ i .= 0

Fig. 2.6. Branch B1 of the example

∗
Γ, . . . , i′2 6 x =⇒ i′2 6 x, i′ + 1

.
= 0

Γ ′ =⇒ (i′+1 − 1)2 6 x, i′ + 1
.
= 0

Γ ′ =⇒ (i′ + 1− 1)2 6 x∨ i′ + 1
.
= 0

Γ ′ =⇒ {i := i′ + 1}((i− 1)2 6 x ∨ i .= 0)

Γ ′ =⇒ {i := i′}{i := i + 1}I
Γ ′ =⇒ {i := i′}{i := i+ 1}[]I

Γ ′z }| {
Γ, (((i′ − 1)2 6 x ∨ i′ .= 0) ∧ i′2 6 x) =⇒ {i := i′}[i=i+1]I

Γ =⇒(((i′ − 1)2 6 x ∨ i′ .
= 0) ∧ i′2 6 x) → {i := i′}[i=i+1]I

Γ =⇒ {i := i′}((((i− 1)2 6 x ∨ i .= 0) ∧ i2 6 x)→ [i=i+1]I)

Γ =⇒ {i := 0}{i := i′}((((i− 1)2 6 x ∨ i .= 0)| {z }
I

∧i2 6 x)→ [i=i+1]I)

Fig. 2.7. Branch B2 of the example

Branch B3.1

∗
. . . , false =⇒ . . .

. . . ,x > 0, 0 > x =⇒ . . .

. . . , x > 0, i′
.
= 0,02 > x =⇒ . . .

. . . , x > 0, i′ .
= 0, i′2 > x =⇒ . . .

∗
. . . , ((i′ − 1)2 6 x =⇒ (i′ − 1)2 6 x

x > 0,¬o .
= null| {z }

Γ

, (i′ − 1)2 6 x ∨ i′ .
= 0, i′2 > x =⇒ (i′ − 1)2 6 x

Branch B3

B3.1

∗
Γ, . . . , i′2 > x =⇒ i′2 > x

Γ, . . . , i′2 > x =⇒ (i′ − 1)2 6 x ∧ i′2 > x

Γ, . . . ,¬i′2 6 x =⇒ (i′ − 1)2 6 x ∧ i′2 > x

Γ ′ =⇒ (i′ − 1)2 6 x ∧ (i′−1 + 1)2 > x

Γ ′ =⇒ {i := i′ || r := i′ − 1}(r2 6 x ∧ (r + 1)2 > x)

Γ ′ =⇒ {i := i′ || r := i′ − 1}[](r2 6 x ∧ (r + 1)2 > x)

Γ ′ =⇒ {i := i′}{r := i − 1}[]ϕ

Γ ′ =⇒ {i := i′}[r=i-1]ϕ

Γ ′ =⇒ {i := i′}[
πz }| {

MF(r,C,o):{

ωz }| {
return i-1;}]ϕ

Γ ′z }| {
Γ, (((i′ − 1)2 6 x ∨ i′ .= 0) ∧ ¬i′2 6 x) =⇒ {i := i′}[πω]ϕ

Γ =⇒(((i′ − 1)2 6 x ∨ i′ .
= 0) ∧ ¬i′2 6 x) → {i := i′}[πω]ϕ

Γ =⇒ {i := i′}((((i− 1)2 6 x ∨ i .= 0) ∧ ¬i2 6 x)→ [πω]ϕ)

Γ =⇒ {i := 0}{i := i′}((I ∧ ¬(i2 6 x))→ [πω]ϕ)

Fig. 2.8. Branch B3 of the example

3

Java Modeling Language (JML)

3.1 Overview

The Java Modeling Language (JML) is a formal behavioral interface
specification language for JAVA [Leavens and Cheon, 2006; Chalin et al.,
2005; Leavens et al., 2009]. It has been inspired significantly by the
specification language Larch [Guttag et al., 1985; Ellis and Stroustrup,
1990] for C++ and by the specification and programming language
Eiffel [Meyer, 1991]. JML is also similar to the specification language
Spec# [Barnett, 2004] for C# and the specification language of VCC
[Cohen et al., 2009] which have been influenced by JML and its pre-
decessors. In contrast to Z [Abrial et al., 1980; Spivey, 1992] these
languages do less abstraction from the program and are syntactically
and semantically very close to the target programming language.

JML extends JAVA with special annotations in JAVA-comments for
specifying the behavior of methods and the properties of fields. Pre-
and postconditions as well as class and loop invariants are specified
using side-effect free JAVA expressions with some extensions. In this
way, JML enables specifying the syntax and semantics of classes and
interfaces in JAVA.

The language supports the essential notations that are used for
design-by-contract (DBC) [Leavens and Cheon, 2006; Meyer, 1997].
These are method pre- and postconditions and class invariants. In or-
der to satisfy a contract a method must ensure that, if the method is
executed in a state that satisfies the precondition, then in the method’s
post-state the postcondition is satisfied (see also Section 2.4.6, page 63).
Hence, if the client code which is calling a specified method fulfills the
precondition of the method, then it can relay on the specified postcon-

3. Java Modeling Language (JML)

JAVA + JML (3.1)

1 /*@ public normal_behavior

2 requires x>=0;

3 ensures \result * \result <= x &&

4 (\result+1) * (\result+1)>x;

5 diverges true;

6 @*/

7 public int sqrt(int x){

8 int i=0;

9 /*@ loop_invariant (i-1)*(i-1)<=x || i==0;

10 modifies i; @*/

11 while(i*i<=x){

12 i=i+1;

13 }

14 return i-1;

15 }

JAVA + JML

Fig. 3.1. JML specification of the method sqrt

dition after the method call. A class invariant is, in principle, a pre-
and postcondition of all methods. This means that if the class invariant
holds before the execution of a method, then it must hold also after
the execution of the method. More advanced policies exist for class in-
variants such as visible state semantics [Müller, 2002] but we use this
simplified concept of class invariants.

Besides the specification of interfaces JML also supports loop invari-
ants. A loop invariant (see Section 2.4.6) must hold before and after
every loop iteration. We regard loop invariants, however, not as part
of the requirement specification but rather as auxiliary formulas which
are in practice needed for proof construction.

For example, Figure 3.1 shows the specification of the method sqrt
which computes an integer approximation of the square root of the
number passed as argument (see also Sections 2.4.5 and 2.4.6). JML
annotations are written in JAVA comments of the form /*@ ... @*/ or
//@... .

In Line 1 of Listing 3.1 the keyword public specifies the visibil-
ity of the specification. In a public specification only fields with pub-
lic visibility are allowed. In this way JML allows information hid-
ing. The keyword normal behavior specifies that the method must
not throw an exception. Pre- and postconditions are marked with the

74

3.2. Translation of JML Specifications to Dynamic Logic

keywords requires and ensures, respectively. The return value of a
method is represented by the keyword \result. In Section 2.4.6 we
have verified that the method sqrt is partially correct, i.e., its termi-
nation is not ensured. Partial correctness is expressed by the annotation
diverges true. Lines 9 - 10 show the loop invariant and modifier set
of the loop respectively.

Throughout this thesis we will use additional JML keywords and
constructs which are not shown in Figure 3.1. The construct \old(e)
occurs in postconditions of methods and represents the value that the
expression e had in the pre-state of the respective method. Implications
in JML are represented by the symbol ’==>’. An expressions of the form
(\forall T x; guard; phi), where T is a JAVA type and guard and
phi are boolean JML expressions, represents the universally quantified
formula ∀x.((ϕT (x)∧guard)→ phi) with ϕT (x) ∈ Formulae.1 The for-
mula ϕT (x) restricts the values of x to the value set of T . For instance,
the range of integers is restricted to a finite domain and the range of
objects is restricted to not include null. Similarly, an expression of the
form (\exists T x; guard; phi) represents an existentially quanti-
fied formula of the form ∃x.(ϕT (x) ∧ guard ∧ phi). Table 3.1 shows a
subset of the JML keywords relevant in this thesis. For more details
about JML we refer the reader to the cited references.

3.2 Translation of JML Specifications to Dynamic Logic

The KeY tool translates JML annotated JAVA code into dynamic logic
proof obligations. Throughout the evolution of the KeY tool different
translations of JML to dynamic logic have been realized. This is mainly
due to the development of JML itself and modifications of KeY such
as the extension of the logic. Hence, there exist several different trans-
lations from JML to dynamic logic. For instance, Figure 3.2 shows the
translation of the method specification of Figure 3.1 into a dynamic
logic formula as it is realized in version 1.6 of the KeY tool.

The predicate inReachableState ∈ PSymr in Figure 3.2 is satisfied
only in reachable JAVA states. This means for instance that integer val-
ues of fields and program variables are within the finite integer bounds
of JAVA. The program variable self holds the reference to the tar-
get object of the method sqrt and the implicit field <created> states
1 In the formula ∀x.((ϕT (x)∧ guard)→ phi) we assume the respective representa-

tions of the JML expressions guard and phi as formulas.

75

3. Java Modeling Language (JML)

Keyword Description

public visibility specifier

requires introduces a precondition

ensures introduces a postcondition

diverges introduces a non-termination condition

loop invariant introduces a loop invariant

invariant introduces a class invariant

modifies introduces a modifier set

modifies \nothing empty modifier set

nullable
nullvalue is allowed; applicable to fields

and return values of methods
\exists existential quantifier

\forall universal quantifier

\old
evaluation of an expression in the pre-state

of a method
\result return value of a method

Table 3.1. A subset of JML keywords relevant in this thesis

(inReachableState

∧ self. < created >
.
= TRUE∧¬self .

= null

∧ inInt(x)

∧ x > 0)

→
{−x := x}

[exc=null; try{

result=self.sqrt(x)@C;

} catch(Throwable e){

exc=e;

}

](result ∗ result 6 x

∧(result+ 1) ∗ (result+ 1) > x

∧exc .= null)

Fig. 3.2. Translation of the JML specification of the method sqrt into dynamic

logic

whether the object is created. The predicate inInt ∈ PSymr states that
its the argument is within JAVA’s finite integer bounds.

According to JML semantics, method parameters that occur in the
ensures clause are evaluated in the pre-state of the method. In this
example the only parameter is x. Following the JML semantics KeY

76

3.2. Translation of JML Specifications to Dynamic Logic

replaces the parameter with a new symbol (here, −x). In this way the
value of the parameter is not changed by symbolic execution and it can
be used in the postcondition.

The JML expression diverges true states that the program does
not need to terminate which is why the box modal operator is used
(see Def. 2.25, page 42). The method call is surrounded by a try-catch-
block because the keyword normal behavior requires that no exception
is thrown, but [throw e;]φ ≡ true (see Lemma 2.26). Whether an
exception was thrown is determined by the program variable exc whose
value is defined in the modality which is check in the postcondition.

The implementation of the techniques described in this thesis han-
dles such technical details. In the examples of this thesis we assume,
however, simplified JAVA semantics that use unbounded integer domain.
The examples are constructed such that most of the technical details
of the JML translation can be ignored. For instance, if we know that a
formal parameter is not changed by a method, then we omit the update
{−x := x} and if we know that no exception is thrown, then the try-
catch-block showing in Figure 3.2 is omitted. A simplified translation
of the JML specification in Figure 3.1 is, for instance, the formula

x > 0,¬o .= null =⇒ [r = o.sqrt(x);](r2 6 x ∧ (r + 1)2 > x)

which we have used earlier in Section 2.4.6.3 on page 69.

77

Part II

Deductive Techniques for
Software-fault Detection

4

The Deductive Software-fault

Detection Approach

4.1 Introduction

Software verification is an expensive task to a large extent because
programs and specifications often have faults and because annotations
such as (loop) invariants are often too weak to show desired program
properties. During software verification, much time is spent fixing and
adjusting the programs, requirement specifications, and program an-
notations. It is therefore invaluable to detect faults in these software
artifacts. Once a program is correct and annotations are strong enough,
a state-of-the-art verification tool usually can prove the correctness of
the program automatically afterwards.

Although programs and specifications can have different kinds of
faults we restrict our view on faults that can be formalized in Hoare-
style logics as follows.

Definition 4.1. A software fault exists in the program, in the specifica-
tion, or in both, iff the program does not satisfy its specification for all
states, formalized as a verification condition. Otherwise, the program
satisfies its specification for all states and we say that the program is
correct. The exact formalization depends on how the specification of a
program is transformed into a verification condition of the target logic
(see Chapter 3). The translation is assumed to be correct.

The general approach we follow is to start with a verification at-
tempt and if the verification attempt does not succeed, then faults are
searched based on the unproved verification conditions. This approach
is not new and it has been proposed already in 1980 [Suzuki and Jef-
ferson, 1980]. This thesis goes, however, beyond that basic idea. We

4. The Deductive Software-fault Detection Approach

extend a verification tool for a real world programming language, pro-
pose new techniques for challenging issues, and extend this approach
for test generation.

Loop statements and quantified formulas are two of the challenging
issues in verification and in our approach. The problems are, however,
not exactly the same for verification on the one hand and deductive
software-fault detection on the other hand. The difference results from
the different nature of verification and software-fault detection. In ver-
ification the goal is to show a universally quantified property, namely
that a program is correct for all inputs. In contrast, in software-fault
detection the problem is existentially quantified, i.e., the goal is to show
the existence of at least one input that violates a desired program prop-
erty. In order to extend the verification process with the ability to detect
software faults we concluded that new techniques have to be developed
in order to handle loops and quantified formulas.

We introduce two novel techniques in this part of this thesis. Chap-
ter 5 describes a technique for handling the problem with loops and in
Chapter 6 a technique is described which handles the problem with
quantified formulas. Our general approach of extending verification
with software fault detection capability is described in this chapter.

4.2 Properties and Basic Ideas of the Deductive
Fault-Detection Approach

Part II of this thesis is dedicated to deductive techniques for software
fault detection. With the term deductive we want to emphasize that
these techniques do not require the execution of the target program in
a Java Virtual Machine (JVM). Instead, the program is symbolically
executed during a verification attempt. Techniques which execute a
program in its runtime environment are described in Part III of this
thesis.

Given a program with a specification as input, our approach yields
one of the following three answers: the program is correct, the program
has a fault, or it is unknown if the program is correct or not. Note that
correctness in this sense is solely defined by the logical satisfaction of
the specification by the program for all program states.

The fault detection technique is based on information that is ob-
tained by a verification attempt. The technique is therefore not discon-
nected from the verification process. Instead, both processes overlap

82

4.2. Properties and Ideas of the Deductive Fault-Detection Approach

and information between verification and fault detection is reused. In
this way, the resources required to extend the verification process with
the software fault detection capability are minimized.

The approach is not a decision procedure, i.e., termination is not
guaranteed. This is because showing the correctness or incorrectness
of a program requires to prove the validity of first-order logic formulas
which is an undecidable problem. However, since our approach features
the possibility of detecting faults, it may terminate in cases where a
verification alone would not terminate.

A verification technique is the underlying component of our soft-
ware fault detection approach. The details of our approach are specific
to KeY’s verification approach. However, we believe that our extension
to verification is also applicable to other verification tools that follow
similar paradigms as the KeY tool. Those tools can usually only prove
the correctness of a program. With verification-based software fault de-
tection we aim at extending techniques which follow a similar paradigm
as the KeY tool with the ability to detect faults in programs – with
programs we mean a program method or sequence of statements. The
program as a whole is not abstracted into, e.g., an (abstract) state ma-
chine before the verification. Instead the source code of the program is
symbolically executed.

Program abstractions play in fact an important role in our approach.
However, these abstractions differ from approaches that transform the
whole program into a state machine. The difference is that in the here
considered verification approach the abstractions consist of possibly
complex first-order logic formulas that can be provided by a user. Fur-
thermore, these abstractions are applied only to selected program parts
such as method calls and loops.

We abbreviate the underlying verification technique with VT.

Definition 4.2. The set Branches denotes all branches of proof trees
(see Def. 2.31, page 45).

• Let B ∈ Branches, with BFml ∈ Formulae we denote the formula
at the leaf of the branch B (see Def. 2.29 for the translation of
sequents to formulas). If B is closed we define BFml = true.
• Let Bs ⊂ Branch, then the set BsFml denotes

⋃
B∈Bs{BFml}.

• Branchesϕ denotes all branches with the root ϕ.

Definition 4.3. The underlying verification technique for verification-
based fault detection is a function V T : Formulae → Branches that

83

4. The Deductive Software-fault Detection Approach

maps a formula to a set of open branches with proof obligations such
that

• V T (ϕ) ⊂ Branchesϕ,
• true /∈ V T (ϕ)Fml, i.e., closed branches are not in the set, (this

condition is omitted for white-box test case generation described in
Section 7.4.2)
• V T (ϕ)Fml �A ϕ, where A is the set of new symbols introduced by
V T (see Def. 2.13).

Example. Let ϕ = (=⇒ ∀x.(a < x→ {y := x}(a < y ∧ y < b))). A proof
tree for ϕ is for instance:

B1

a < sk =⇒ a < sk

B2

a < sk =⇒ sk < b
a < sk =⇒ a < sk ∧ sk < b andRight

...
=⇒ a < sk → {y := sk}(a < y ∧ y < b)

=⇒ ∀x.(a < x→ {y := x}(a < y ∧ y < b)) allRight

In this case we have

BFml
1 = (a < sk → a < sk)

BFml
2 = (a < sk → sk < b)

Branchesϕ = {B1, B2}
V T (ϕ) = {B1, B2}

V T (ϕ)Fml = {(a < sk → a < sk), (a < sk → sk < b)}
A = {sk}

The conditions of Definition 4.3 are satisfied. Note that V T (ϕ)Fml � ϕ
does not hold which becomes clear when considering, e.g., the interpre-
tation, I(a) = 0, I(sk) = 1, I(b) = 2.

�

The function V T represents the input and output relation of KeY’s
software verification component. It allows for some freedom regarding
the logic and formalization of the input formula ϕ. The verification con-
dition ϕ can be expressed, for instance, in Hoare Logic. The definition

84

4.2. Properties and Ideas of the Deductive Fault-Detection Approach

also allows for freedom regarding the actual transformations performed
on ϕ. With some creativity the concept of a proof tree and a branch can
be generalized and adapted to the particular verification technique. For
instance, we can imagine using a weakest precondition calculus in or-
der to obtain a set of first-order proof obligations and then discharging
each proof obligation by a theorem prover. Such an adaption requires,
however, a detailed look at the transformations performed by the ver-
ification tool.

The proof tree that is obtained by the verification attempt as well as
the calculus for construction of the proof tree play a central role in this
thesis. The proof tree contains rich information about the program and
its specification. The idea of our approach is to utilize this information
in order to detect faults. If a proof attempt does not lead to a closed
proof tree, then we consider the proof attempt as failed. However, a
failed proof attempt does not imply the existence of a fault in the
program or the specification. It is only for practical reasons if a proof
attempt is considered as failed. For instance, the KeY tool stops a proof
attempt if a timeout is reached, if a maximum amount of rules has been
applied, or if analytic rules have been applied exhaustively. A proof
attempt can always be continued as long as the proof does not close.
The reason is that there is an infinite number of possible applications
of non-analytic rules. Those rules introduce new formulas into a proof
tree such as the cut-rule and induction-rule in the first-order logic part
and the contract rules in the dynamic logic part of the calculus.

A failed proof attempt results in an open proof tree which contains
at least one open proof branch and other closed branches potentially.
The branches of a proof tree are closely corresponding to an execution
tree, i.e., proof branches correspond to execution paths of the program.
Closed proof branches correspond to program executions that satisfy
the specification of the program. We regard these program executions
as correct. When searching for software faults it is therefore reason-
able to look at proof branches that were not closed during the proof
attempt. This is because if the program has a fault on an execution
trace, then the proof tree must have an open proof branch correspond-
ing to this execution trace. The underlying verification step can be seen
as a filtering mechanism. In this sense the execution traces on which
the program behaves correctly are filtered out by the verification at-
tempt and the remaining open proof branches represent those program
executions on which an error may potentially occur.

85

4. The Deductive Software-fault Detection Approach

4.3 The Algorithm

4.3.1 Description of the Algorithm

The deductive fault detection technique is an extension that builds
on top of a verification technique and is given as Algorithm 1. The
algorithm is a framework that connects other algorithms or techniques
which will be described in the following chapters.

Algorithm 1 tryToVerifyOrToFindABug(ϕ)
1: Bs = V T (ϕ)

2: if Bs = ∅ then

3: return “Verified”

4: else

5: for all B ∈ Bs do

6: a) Try to show that BFml has a counterexample and store it in Ex

7: b) Try to show that B is validity preserving

8: if showing a) and b) was successful then

9: res = res ∪ (B,Ex)

10: end if

11: end for

12: if res = ∅ then

13: return “Unknown”

14: else

15: return “The program or its specification has faults on trace(es) res”

16: end if

17: end if

The input to the Algorithm 1 is a formula ϕ that expresses the cor-
rectness of a program. In Section 2.4.5 and Chapter 3 we have described
the form of such formulas in the KeY approach. In Line 1 of the algo-
rithm the verification tool is invoked and the result of the verification
attempt is checked in Line 2. According to Definition 4.3, if the veri-
fication attempt was successful, then the set of open proof obligations
returned by V T is empty and the result “Verified” is returned to the
user.

In case the verification attempt was not successful, V T returns a set
of open proof branches. The loop in Line 5 iterates over the open proof
branches and tries to determine whether the information contained in a
branch implies the existence of a counterexample of the input formula

86

4.3. The Algorithm

ϕ. If this is so, then we interpret this as a fault in the program or its
specification. Two conditions have to be checked for this purpose.

The condition (a) in Line 6 requires that the open proof obligation
of branch B, i.e. BFml, has a counterexample. When using an interac-
tive prover such as KeY, one option is to let the user decide if BFml

has a counterexample. Automation can be achieved by using, e.g., a
satisfiability modulo theories (SMT) solver. Such tools can decide in
many cases whether a first-order logic formula is satisfiable or not.
This means, however, that BFml must be a first-order logic formula.
An important task of the underlying verification technique is therefore
to reduce the original verification condition into a set of first-order logic
formulas. Branches whose leaf nodes are not first-order logic formulas
cannot be processed by SMT solvers.

We have found through experiments that SMT solvers often cannot
decide if the proof obligations generated by KeY have a counterexample
or not – even if they are first-order logic formulas. The problem is the
limited power of SMT solvers for handling quantified formulas. We
describe this problem in Section 4.4.2 and in Chapter 6 we describe a
new technique for addressing this problem.

Notation 1 We denote a branch by a sequence S0, . . . , Sn of sequents.

In this notation the sequent S0 represents the input formula ϕ and Sn
is the last sequent on the branch which is equivalent to BFml.

Definition 4.4. Definition of validity preservation (VP) conditions:

− Given a rule R, where P is a rule premiss and C is the conclusion
of R. The validity preservation condition VPP of the rule premiss
P is the formula

C → P

The rule premiss P is validity preserving iff � VPP .
− A rule R is validity preserving iff for all premisses P of R, � VPP

holds.
− The validity preservation condition of a sub-sequence Si, . . . , Sj of

sequents of a branch S0, . . . , Sn, with 0 6 i 6 j 6 n, is the formula

Si → Sj

which is denoted by VPSjSi . The sequence Si, . . . , Sj is validity pre-

serving iff � VPSjSi .

87

4. The Deductive Software-fault Detection Approach

− A proof branch S0, . . . , Sn is validity preserving iff � VPSnS0
. We

abbreviate VPSnS0
with VPSn.

Translation from sequents to formulas is assumed according to Defini-
tion 2.29.

Remark 4.5. VPSS is trivially true.

The condition (b) in Line 7 of the algorithm requires the branch B to
be validity preserving. Validity preservation means that the validity of
the input formula ϕ implies the validity of BFml and also that every
model of ϕ is a model of BFml. Why validity preservation is important
for the algorithm becomes obvious by the following simple theorem.

Theorem 4.6. Let Si, . . . , Sj be a sub-sequence of sequents of a branch
S0, . . . , Sn, with 0 6 i 6 j 6 n. If � VPSjSi , then any counterexample
(Def. 2.12) of Sj is a counterexample of Si.

Proof. Assume that � VPSjSi holds, i.e., that Si → Sj is valid. The im-
plication is equivalent to the implication ¬Sj → ¬Si. Let S be a partial
model (see Definitions 2.6 and 2.19) such that S � ¬Sj . According to
Definition 2.12, S is a counterexample of Sj . The assumptions imply
that S � ¬Si holds, i.e., the partial model S is a counterexample of
Si. �

Corollary 4.7. Given a rule R, let P be a rule premiss and let C be the
conclusion of R. If P is validity preserving, then any counterexample
of P is also a counterexample of C.

Proof. VPP is equivalent to VPSjSi where Si = C and Sj = P . �

Theorem 4.6 formalizes the essential idea of Algorithm 1. The valid-
ity preservation condition of the branch B is equivalent to the formula

(¬BFml)→ (¬ϕ) (4.1)

If BFml has a counterexample, then Formula (4.1) implies that ϕ has
a counterexample as well. For example, let ϕ = 〈x=1〉x .= a and let
BFml = 1 .= a, then Formula (4.1) is valid and the state S with I(a) = 2
is a counterexample of BFml and of ϕ.

A counterexample of the initial verification condition implies that
the target program does not satisfy its specification for all states
(Def. 4.1). Hence, if the conditions (a) and (b) are satisfied in Line 8 of

88

4.3. The Algorithm

the algorithm, then it is known that the target program or its specifi-
cation is faulty. Furthermore, since a model for ¬BFml is also a model
for ¬ϕ, the model represents the initial state for running the program
in order to reveal the fault.

The branch B can be mapped to a program execution trace by
following the symbolic execution rules that were applied on the branch.
In this way, the described approach does not only detect software faults
but it also returns the trace on which the fault occurs together with the
counterexample that triggers the execution of the trace. Those traces
are collected in the set res in Line 9 and are returned by the algorithm
in Line 15. This information is helpful to the user for finding the fault. If
the set res is empty, however, then it is unknown if the target program
has a fault or not. The latter is the case if either no counterexample
for BFml was found, i.e., showing condition (a) was no successful, or if
from a counterexample of BFml it is not sound to conclude that ϕ has
a counterexample, i.e., showing condition (b) was successful. Showing
a condition is not successful if the condition is falsifiable or if after a
proof attempt it remains unknown whether it holds or not.

Branches are not always validity preserving. Proving the validity
preservation condition as an implication ϕ → BFml is as hard as the
verification attempt because the implication contains the original input
formula ϕ of the verification tool. In Chapter 5 we describe a new
technique that can very efficiently prove the validity preservation of
branches when using contract rules. In Section 4.4.1 we describe which
rules of KeY’s calculus are validity preserving and which are not.

4.3.2 Example

In this section we use an example to demonstrate how the Algorithm 1
works. The code shown in Figure 4.1 is a modified version of our run-
ning example from Chapters 2 and 3. The method sqrt is supposed
to compute an integer approximation of the square root of the input
value. For the purpose of the example we have injected a fault into the
method sqrt. The fault is at the end of the computation where i is
returned instead of i− 1.

Algorithm 1 expects a formula as input which expresses the cor-
rectness of a program. We use the following translation of the JML
specification in Figure 4.1 into a sequent (let X2 = X ∗X).

x > 0, o 6= null =⇒ 〈r=o.sqrt(x);〉(r2 6 x ∧ (r + 1)2 > x) (4.2)

89

4. The Deductive Software-fault Detection Approach

JAVA + JML (4.1)

1 /*@ public behavior

2 requires x>=0;

3 ensures \result * \result <= x &&

4 (\result+1) * (\result+1) > x;

5 @*/

6 public int sqrt(int x){

7 int i=0;

8 while(i*i<=x){

9 i=i+1;

10 }

11 return i; //FAULT, it should be i-1

12 }

JAVA + JML

Fig. 4.1. Variant of the method sqrt with a fault.

This sequent is similar to the representation of the verification condition
used in Section 2.4.5.2 where we verified the correct version of the
method sqrt for the case x

.= 0. The actual verification condition
generated by the KeY tool is more involved (see Chapter 3), however,
the differences can be ignored in this example.

In Line 1 of Algorithm 1 the verification tool is invoked which is in
our case the KeY tool. It generates the partial proof tree shown in Fig-
ure 4.2 by using finite loop unwinding with at least one loop unwinding.
For details about the construction of the proof tree we refer the reader
to Section 2.4.5.2 on page 60. The proof tree in Figure 4.2 coincides
largely with the proof tree in Figure 2.2, except that the branch B2 is
not closed here. This is because in the verification condition (4.2) the
program variable x has no upper bound in the initial state.

Using finite loop unwinding, the correctness of a program can be
shown only for a bounded number of loop iterations. Generally there
is at least one branch, here B2, on which the loop remains to be sym-
bolically executed. The strengths of finite loop unwinding are that the
rule loopUnwind satisfies the validity preservation property required by
Algorithm 1 and that no loop invariant has to be provided.

The closed branch B0 corresponds to the execution of the method
where the loop iterates zero times, i.e., the loop condition is false before
the first iteration of the loop. This is possible only if x < 0 which con-
tradicts the precondition x > 0. Program traces whose path conditions

90

4.3. The Algorithm

B2

...

B1

Γ ′′ =⇒ (12 6 x ∧ (1 + 1)2 > x)
...

Γ ′′ =⇒ {i := 1 || r := 1}ϕ
...

Γ ′′ =⇒ {i := 1}〈π return i;}〉ϕ
Γ ′,¬1 6 x =⇒ {i := 1} . . .

...

Γ ′, {i := 1}¬i ∗ i 6 x =⇒ . . .

Γ, 0 6 x =⇒ {i := 1}〈π if(i*i<=x)...〉ϕ
Γ, {i := 0}i ∗ i 6 x =⇒ . . .

∗B0

...

x > 0, o 6= null| {z }
Γ

=⇒ 0 6 x . . .

...

Γ, {i := 0}¬i ∗ i 6 x =⇒ . . .

Γ =⇒ {i := 0}〈π if(i*i<=x){i=i+1;while(i*i<=x){i=i+1;}}...〉ϕ
...

x > 0, o 6= null| {z }
Γ

=⇒ 〈r=o.sqrt(x);〉(r2 6 x ∧ (r + 1)2 > x)| {z }
ϕ

Fig. 4.2. Open proof tree from a verification attempt of the method sqrt

cannot be satisfied are closed during the verification attempt. Since Al-
gorithm 1 analyzes only open branches the verification technique works
as a filtering mechanism.

Branch B1 represents the case where the loop execution terminates
after one iteration. Further rule applications on B1 result in the open
branch B1,1.

B1,1

o 6= null, x
.= 0 =⇒ 1 6 x

∗
...

o 6= null, x
.= 0 =⇒ 4 > x

o 6= null, x
.= 0 =⇒ 1 6 x ∧ 4 > x

...
x > 0, o 6= null, 0 6 x,¬1 6 x︸ ︷︷ ︸

Γ ′′

=⇒ (12 6 x ∧ (1 + 1)2 > x)

The leaf BFml
1,1 is a first-order logic formula. Hence, in order to check if

the leaf has a counterexample (Line 6 of the algorithm) an SMT solver
can be used. However, when using KeY as the underlying verification
tool, it is in some cases not necessary to rely on external tools in order
to generate counterexamples. For example, the formula BFml

1,1 has a

91

4. The Deductive Software-fault Detection Approach

counterexample because it is in a decidable fragment of KeY and cannot
be proven. Counterexample generation for integer arithmetic formulas
in KeY is described in [Rümmer, 2007].

In Line 7 of the algorithm, validity preservation of B1,1 is checked.
For the proof tree construction only validity preserving rules were used.
Section 4.4.1 explains which rules are validity preserving and which are
not. As both conditions (a) and (b) are satisfied for B1,1 (Line 8) we can
conclude that Formula (4.2) has a counterexample. The counterexample
is syntactically given by o 6= null, x .= 0, and 1 > x. The branch and
its counterexample are finally returned with the statement that the
program or its specification has a fault.

4.4 Validity Preservation and Counterexample
Generation

4.4.1 Validity Preservation

In this section we show that most of KeY’s calculus rules are valid-
ity preserving but that special treatment is required for the contract
rules. Validity preservation of rules is important because it allows us
to conclude the validity preservation of proof branches as stated by the
following lemma.

Lemma 4.8. According to Definition 2.31 the sequents of a proof tree
branch are rule premisses, except for the sequent at the root. If the
sequents of a proof tree branch B are validity preserving rule premisses
of the rules that were applied on B, then B is validity preserving.

Proof. Induction Hypothesis: If a branch S0, . . . , Sk−1, with k > 0, is
validity preserving, and Sk is a validity preserving rule premiss of a
rule which is applied on Sk−1, then the branch S0, . . . , Sk is validity
preserving.

Induction Base (k = 0): In this case no rule is applied and the
branch consists only of the root sequent S0. VPS0

S0
is trivially valid.

Induction Step (k > 0): Assume the branch S0, . . . , Sk−1 is validity
preserving, i.e. � S0 → Sk−1. Also assume that Sk is a validity preserv-
ing rule premiss of a rule that is applied on Sk−1, i.e. � Sk−1 → Sk.
We conclude that � S0 → Sk which means that the branch S0, . . . , Sk
is validity preserving. �

92

4.4. Validity Preservation and Counterexample Generation

In the following we select exemplary rules from different rule sets
of KeY’s calculus and prove their validity preservation property. Most
rules of the calculus are equivalence rules.

Definition 4.9. A rule is an equivalence rule if the conjunction of the
rule premisses is semantically equivalent to the conclusion of the rule.

Validity preservation of equivalence rules follows immediately from
Definitions 4.4 and 4.9.

Remark 4.10. In a proof of validity preservation of a rule it is sound
to use the same rule for proof construction. This is because the proof
relies only on the soundness property of the rule and not on its validity
preservation property.

Propositional Rules.

The propositional rules in Table 2.3 are equivalence rules. For instance,
the validity preservation conditions of the rule premisses of the rule

andRight
=⇒ φ =⇒ ψ

=⇒ φ ∧ ψ

are (φ ∧ ψ) → φ for the first premiss and (φ ∧ ψ) → ψ for the second
premiss. Both are valid formulas.

In [Harel, 1984] and in [Platzer, 2004; Beckert and Platzer, 2006]
where completeness proofs for dynamic logic calculi are given the fol-
lowing additional rules are included in the set of propositional rules.

removeLeft
=⇒
φ =⇒ and removeRight

=⇒
=⇒ φ

It is sound to remove an arbitrary formula from a sequent. When a
formula is removed from a sequent, the sequent is potentially strength-
ened. The premiss of the rules removeLeft and removeRight implies the
conclusion of the rules, respectively, but the conclusion does not neces-
sarily imply the premiss. The latter means that not all instances of this
rule schema are validity preserving. The validity preservation condition
for the rule schema removeLeft is ¬φ → false. The condition does not
hold if, e.g., φ = false. Similarly, the validity preservation of the rule
schema removeRight does not hold if φ = true.

Remark. The KeY tool implements these rules but with different
semantics. The corresponding rules in KeY allow to hide an arbitrary

93

4. The Deductive Software-fault Detection Approach

formula from a sequent and are called hideLeft and hideRight respec-
tively. The semantic difference to the rules above is that in KeY the
hidden formulas can be reintroduced on the same branch which is not
allowed in [Harel, 1984; Platzer, 2004; Beckert and Platzer, 2006]. If
a hidden formula is not reintroduced on a branch, then the validity
preservation on the branch may be violated.

Quantifier Rules.

The quantifier rules consist of Skolemization rules and instantiation
rules for universal and existential quantifiers. We regard here only the
universal quantifiers, the existential quantifiers behave analogously.

The quantifier Skolemization rules are not equivalence rules but they
are validity preserving. The validity preservation condition of the rule

allRight
=⇒ [x\sk](φ)

=⇒ ∀x.φ (sk is new)

is the formula ∀x.φ→ [x\sk](φ) which can be proved as follows.

∗
∀x.φ, [x\sk](φ) =⇒ [x\sk](φ) close

∀x.φ =⇒ [x\sk](φ) allRight

=⇒ ∀x.φ→ [x\sk](φ) impRight

Note that using the rule allRight in this proof is sound as explained in
Remark 4.10.

The quantifier instantiation rules are equivalence rules. The validity
preservation condition of the rule

allLeft
∀x.φ, [x\t](φ) =⇒
∀x.φ =⇒

is the formula (¬∀x.φ) → ¬(∀x.φ ∧ [x\t](φ)) and can be proved as
follows.

∗
∀x.φ, [x\t](φ) =⇒ ∀x.φ close

∀x.φ ∧ [x\t](φ) =⇒ ∀x.φ andLeft

¬∀x.φ, ∀x.φ ∧ [x\t](φ) =⇒ notLeft

¬∀x.φ =⇒ ¬(∀x.φ ∧ [x\t](φ)) notRight

=⇒ (¬∀x.φ)→ ¬(∀x.φ ∧ [x\t](φ)) impRight

94

4.4. Validity Preservation and Counterexample Generation

General Validity Preserving Rules.

The instantiation rules add a formula to the sequent and do not remove
any formulas from the sequent. This is also the case for the rules eqLeft,
eqLeft’, eqRight, and eqRight’ in Table 2.4. All such rules are validity
preserving. This patterns leads us to the following lemma.

Lemma 4.11. Let Γ,∆ ⊂ Formulae and φ ∈ Formulae. The rules of
the form

Γ =⇒ φ,∆

Γ =⇒ ∆
and

Γ, φ =⇒ ∆

Γ =⇒ ∆

are validity preserving.

Proof. Since Γ, φ =⇒ ∆ is equivalent to Γ =⇒ φ′, ∆ with φ′ = ¬φ
we prove validity preservation only of the premiss of the left rule. The
validity preservation condition of the premiss is (

∧
Γ →

∨
∆)→ (

∧
Γ →

(φ ∨
∨
∆)) which can be proved as follows.

∗∨
∆,
∧
Γ =⇒ φ,

∨
∆

∗∧
Γ =⇒

∧
Γ, φ,

∨
∆ close∧

Γ →
∨
∆,
∧
Γ =⇒ φ,

∨
∆ impLeft∧

Γ →
∨
∆,
∧
Γ =⇒ (φ ∨

∨
∆) orRight∧

Γ →
∨
∆ =⇒

∧
Γ → (φ ∨

∨
∆) impRight

=⇒ (
∧
Γ →

∨
∆)→ (

∧
Γ → (φ ∨

∨
∆)) impRight

�

Lemma 4.11 is not only useful to quickly decide if a rule (premiss) is va-
lidity preserving but it can also be used to fix the validity preservation
of rule premisses. The following lemma states under what condition
and how a rule (premiss) can be modified such that it becomes validity
preserving.

Lemma 4.12. Let Γ,∆ ⊂ Formulae and let φ, φ′ ∈ Formulae. Let

=⇒ φ′

=⇒ φ (4.3)

be a sound rule. Hence, {φ′} �A φ holds, where A is the set of newly
introduced symbols in φ′ (A may be empty). The following rule is (a)
validity preserving and (b) sound.

=⇒ φ′, φ

=⇒ φ (4.4)

95

4. The Deductive Software-fault Detection Approach

Proof. (a) Rule 4.4 is validity preserving according to Lemma 4.11.
(b) The soundness proof of Rule (4.4) requires us to prove that

{φ′} �A φ implies {φ′ ∨ φ} �A φ. (4.5)

We try to prove the opposite and derive a contradiction. Assume the
statement (4.5) is false which is possible only if {φ′} �A φ is true and
{φ′ ∨ φ} �A φ is false. According to the last item of Definition 2.13
(on page 32) the latter means that there is a partial model M1 and a
variable assignment β1 such thatM1, β1 �A φ′∨φ is true butM1, β1 �
φ is false. The condition {φ′} �A φ means that for all partial models
M and variable assignments β; M, β �A φ′ implies M, β � φ. Hence,
M, β � φ can be false only ifM, β �A φ′ is false, under our assumption.
From M1, β1 � φ being false follows that M1, β1 �A φ′ is false which
contradicts that M1, β1 �A φ′ ∨ φ is true. Hence, the statement (4.5)
is true.

�

Equality, Arithmetic, and Update Simplification Rules.

It is easy to see that the equality rules of Table 2.4, are equivalence
rules. The update simplification rules in Section 2.4.4 (page 50) are all
defined as equivalence transformations. Also arithmetic rules of KeY
[Rümmer, 2007] were designed as equivalence transformations rules and
are therefore validity preserving.

Program Reduction Rules.

The program reduction rules (see Section 2.4.5, page 56) were designed
as equivalence transformation rules, and hence as validity preserving
rules, that mimic the execution of a JAVA program according to the JAVA

language specification. Validity preservation of these rules can be shown
as in the following example where we prove the validity preservation
condition of the first premiss of the rule

ifElseSplit

se∗ ⇒ 〈π p ω〉φ
¬se∗ ⇒ 〈π q ω〉φ

⇒ 〈π if(se)p else q ω〉φ

from Table 2.5. The root of the following proof tree is the validity
preservation condition of the first premiss of the rule.

96

4.4. Validity Preservation and Counterexample Generation

∗
se∗, 〈πpω〉φ =⇒ 〈πpω〉φ
se∗,¬[πpω]¬φ =⇒ 〈πpω〉φ R2

se∗ =⇒ 〈πpω〉φ, [πpω]¬φ R1

∗
se∗ =⇒ se∗, . . .

se∗,¬se∗ =⇒ 〈πpω〉φ, [πpω]¬φ
se∗ =⇒ 〈πpω〉φ, [π if(se)p else q ω]¬φ
〈π if(se)p else q ω〉φ, se∗ =⇒ 〈πpω〉φ
〈π if(se)p else q ω〉φ =⇒ (se∗ → 〈πpω〉φ)

For the proof construction we used the following additional sound rules
that were not presented in Chapter 2.

R1
¬φ =⇒
=⇒ φ

R2
〈p〉φ =⇒
¬[p]¬φ =⇒

Soundness of the rule R1 is trivial and soundness of the rule R2 follows
from Lemma 2.26.

Contract Rules.

The loop invariant and method contract rules (see Section 2.4.6,
page 63) are generally not validity preserving. The validity preserva-
tion property depends on the strength of the loop invariant or method
contract that is used. For instance, the formula “true” is an invariant
of any loop but no properties of the loop can be concluded from it.
Hence, a proof obligation is obtained that is not valid, i.e., it has a
counterexample, but the original formula expressing the property of
the loop may be valid.

In order to fix validity preservation of the contract rules it may be
tempting to use Lemma 4.12. The following is a validity preserving
variant of the loop invariant rule obtained by using that lemma.

loopInvVP

1: ⇒ I, [π while(c){b;}ω]post
2: ⇒ VM (I ∧ c→ [b]I), [π while(c){b;}ω]post
3: ⇒ VM ((I ∧ ¬c)→ [πω]post), [π while(c){b;}ω]post
⇒ [π while(c){b;}ω]post

This rule is, however, problematic for counterexample generation be-
cause it prevents the reduction of verification conditions to first-order
logic formulas (see Section 4.3.1). When using the rule loopInvVP in-
stead of the rule loopInv the DL-formula cannot be removed from the
sequents. Therefore our approach requires to use the rules presented in
Section 2.4.6 and we present special techniques for checking the validity
preservation of contract rules in Chapter 5.

97

4. The Deductive Software-fault Detection Approach

JAVA + JML

public class C{

private String[] s;

/*@ invariant

s.length>=10;*/

...

}

JAVA + JML

0B@∀o : C.o 6= null→ (s(o) 6= null∧
(∀i : int.0 6 i 6 length(s(o))→

acc[](s(o), i) 6= null))

1CA
(4.6)

∀o : C.o 6= null→ length(s(o)) > 10 (4.7)

Fig. 4.3. (left) A field declaration and a class invariant; (right) Quantified formulas

occurring in test data constraints generated by KeY from the listing on the left side

4.4.2 Counterexample Generation

In this section we shortly motivate why we propose a special technique
for counterexample generation in Chapter 6. SMT solvers are consid-
ered as state-of-the-art techniques for generating models, respectively
counterexamples, for first-order logic formulas. A major bottleneck is,
however, the handling of quantifiers (see, e.g., [Moskal et al., 2008;
Nieuwenhuis et al., 2007]). SMT solvers can often create models for
quantified formulas if one theory is involved. Quantifiers and multiple
theories often lead to problems that are not in the decidable fragments
of the solvers. In such cases an SMT solver cannot generate a model
for the formula.

For example, Figure 4.3 shows a JAVA class with a field declaration
and a JML specification of a class invariant. From the field declara-
tion and the class invariant the KeY tool generates the Formulas (4.6)
and (4.7), respectively. These formulas are part of verification condi-
tions. Formula (4.6) follows JML’s semantics and expresses that the
array field s and the elements of the array are not null. Formula (4.7)
expresses the class invariant, that for all objects of class C the array s
has 10 or more elements.

The problem is that state-of-the-art SMT solvers, concretely we have
tested Z3 [de Moura and Bjørner, 2008], CVC3 [Barrett and Tinelli,
2007], Yices [Dutertre and de Moura, 2006a], are not capable of gen-
erating models or counterexamples for the Formulas (4.6) or (4.7). Al-
though SMT solvers can solve quantified formulas in certain cases, the
Formulas (4.6) and (4.7) are not in the decidable logic fragment of
the solvers. Note, that a different translation of the code in Figure 4.3
could create formulas that are solvable by SMT solvers, but the general

98

4.5. Conclusion

problem of solving quantified formulas remains. We have developed a
technique for handling quantified formulas in this context and describe
it in Chapter 6.

4.5 Conclusion

Our general approach is an extension for deductive verification tech-
niques. Information obtained from a failed verification attempt is used
to determine if the verification condition at the beginning of a proof
has a counterexample. If this is so, then the program or its specification
has a fault.

The algorithm presented in this chapter is easy to understand and
easy to implement. The algorithm is, however, only a framework which
delegates more complicated problems to sub-components. The dele-
gated problems to be solved are to check if a formula has a counterex-
ample and to check if a proof branch is validity preserving. Hence, one
goal of this chapter was to explain how these techniques are related to
our approach and to motivate the need for techniques which address
these problems in the following chapters. The algorithm is implemented
in the KeY tool. Evaluations are provided for the more interesting sub-
algorithms presented in the following chapters.

Counterexamples can be generated directly with KeY in certain
cases or with an external tool like an SMT solver. In order to utilize
these tools the verification conditions generated by the verification tool
must be first-order logic formulas. Therefore certain calculus rule such
as the rule loopInvVP (see Section 4.4.1) cannot be used. The actual
challenge is, however, to generate counterexamples for quantified for-
mulas. These occur frequently in verification conditions. In Chapter 6
we describe a novel technique for handling the problem of counterex-
ample generation from quantified formulas.

If the leaf node of a branch has a counterexample, our approach
is to deduce the existence of a software fault by showing the validity
preservation of this branch. When using finite loop unwinding and finite
unfolding of method calls, which is also known as bounded symbolic
execution, then the branches of the proof tree are validity preserving.
However, verification tools typically use contract rules which allow rea-
soning about arbitrary numbers of loop iterations or method calls. The
problem with contract rules is that their validity preservation prop-

99

4. The Deductive Software-fault Detection Approach

erty depends on the contract that is used. Techniques for handling this
problem are addressed in the following chapter.

100

5

Deducing the Existence of Software

Faults when Using Contract Rules

5.1 Introduction

The technique described in this chapter is a sub-component of our gen-
eral deductive software-fault detection approach described in Chap-
ter 4. It checks conditions for deducing the existence of software faults
based on a failed verification attempt. A software correctness proof usu-
ally does not succeed on the first proof attempt because often either a)
the target program is not correct, i.e., the program does not satisfy the
specification, or b) the program is correct but inappropriate auxiliary
formulas, i.e., loop invariants or method contracts, are used. The user
then does not know if they should search for a fault in the program
or requirement specification, or search for a different loop invariant or
auxiliary method contract.

The technique described in Chapter 4 tries to show the correctness
of a program and in case of verification failure it tries to show pro-
gram incorrectness. The problem of existing techniques following this
approach is that counterexamples for verification conditions do not
necessarily imply a program incorrectness. The reason for verification
failure may be the usage of inappropriate auxiliary formulas resulting
in rules which are not validity preserving. Counterexamples of verifi-
cation conditions only guide the user to find the problem. In contrast,
the technique described in this chapter tries to exclude case (b) as the
source for verification failure by showing case (a), i.e., it checks if a
falsifiable verification condition implies a software fault. The technique
does not always give an answer because the problem is undecidable.

The bottlenecks that prevent from concluding the existence of soft-
ware faults directly from a falsifiable verification condition are the con-

5. Deducing the Existence of Software Faults when Using Contracts

JAVA + JML (5.1)

1 /*@ public normal_behavior

2 requires x>=0;

3 ensures \result * \result <= x && (\result+1)*(\result+1)>x;

4 diverges true;

5 @*/

6 public int sqrtA(int x){

7 int i=0;

8 /*@ loop_invariant (i-1)*(i-1)<=x || i==0;

9 modifies i; @*/

10 while(i*i<=x){

11 i++;

12 }

13 return i;//FAULT, it should be i-1

14 }

JAVA + JML

JAVA + JML (5.2)

1 /*@ public normal_behavior

2 requires x>=0;

3 ensures \result * \result <= x && (\result+1)*(\result+1)>x;

4 diverges true;

5 @*/

6 public int sqrtB(int x){

7 int i=0;

8 /*@ loop_invariant (i-1)*(i-1)<=x || x==0; //weak invariant

9 modifies i; @*/

10 while(i*i<=x){

11 i++;

12 }

13 return i-1;

14 }

JAVA + JML

Fig. 5.1. Motivating examples

tract rules (loop invariant rule, method contract rule) of the verification
calculus (see Section 2.4.6, page 63). These rules are important to rea-
son about programs with loops and method invocation. However, in
contrast to first-order logic rules and most other rules that transform
the program to a first-order formula, the contract rules are not always
validity preserving because their validity preservation depends on the

102

5.1. Introduction

instantiation of their rule schema (see Section 4.4.1). Validity preser-
vation (Def. 4.4, page 87) is the property of the rules that enables us
concluding that the verification condition at the beginning of the proof
attempt is falsifiable. The core of our method described in this chapter
is to check if contract rules that occur in a sequence of rule applica-
tions are validity preserving for the particular contracts. In this way,
if the check succeeds, it enables us to conclude the existence of soft-
ware faults from falsifiable verification conditions. We describe three
variants of this method in this chapter. The final technique, that we
call special validity preservation checking, truly unifies verification and
software fault detection because all information computed during the
verification attempt is reused for fault detection.

For example, trying to verify the programs in Listings 5.1 and 5.2
(see Figure 5.1) using the given loop invariants fails because the loop
invariant rule, as will be shown in this chapter, creates a falsifiable
verification condition. The reason for the failure is, however, different
in both cases. The method sqrtA has a fault and cannot be verified
with any loop invariant whereas method sqrtB is correct but the loop
invariant is inappropriate. The method described in this chapter tries to
show if a contract rule with a given loop invariant or method contract
is validity preserving. In Listing 5.1 this is the case and indeed our
approach detects that the method sqrtA has a fault.

Whether a contract rule is validity preserving or not depends on the
strength of the auxiliary formulas which instantiate the loop invariant
or method contract rule in the respective case, i.e., the loop invariant
or method pre- and postconditions. The stronger an auxiliary formula
is, the more detailed information it contains about the loop or method
invocation it describes. Consequently the described method is capable
to detect faults only if contracts are sufficiently strong. The method
does not check if a stronger contract exists that would complete the
proof or make a contract rule validity preserving. Checking if an ap-
propriate contract exists in order to close a proof is regarded here as
the task of the verification engineer during the verification process or
in the ideal case the task of a complete and automatic verification tool.
Instead the proposed technique is applied after a verification attempt
for which contracts were already used. Based on the information ob-
tained from the verification attempt it tries to detect software faults.
In this chapter we assume that the input to our technique is provided
from Algorithm 1 (page 86). The input consists of proof branches of un-

103

5. Deducing the Existence of Software Faults when Using Contracts

Method Contract Rule (mContract) Loop Invariant Rule (loopInv)

1: Γ ⇒ Uprem,∆
2∗: ⇒ prem → 〈[m]〉postm (∗)

3: Γ ⇒ UVM (postm → 〈[πω]〉post),∆
Γ ⇒ U〈[πm;ω]〉post,∆

1: Γ ⇒ UI,∆
2: Γ ⇒ UVM (I ∧ c∗ → [b]I),∆

3: Γ ⇒ UVM ((I ∧ ¬c∗)→ [πω]post),∆

Γ ⇒ U [π while(c){b;}ω]post,∆

where VM is an anonymising update w.r.t. the modifier set M and M is a correct

modifier set for m and b respectively.

Fig. 5.2. Contract Rules

proved verification conditions and we assume the existence of a method
that determines if a first-order logic formula has a counterexample. A
technique for solving the latter problem is described in Chapter 6.

This chapter is an extension of the paper [Gladisch, 2009]. The de-
scribed techniques have resulted from the refinement of a test case
generation technique described in [Gladisch, 2008a].

5.2 What Counterexamples of Contract Rule Premisses
Mean

The method contract and loop invariant rules (contract rules) (see Sec-
tion 2.4.6) are a software verification technique for generating verifica-
tion conditions for programs with method calls and loops. If a verifi-
cation condition resulting from using a contract rule turns out to be
falsifiable, then one cannot always conclude if the target program has
a fault or not. This section explains how to interpret falsifiable proof
branches, i.e. rule premisses, that these rules generate upon rule appli-
cation.

For convenience the contract rules from Figure 2.5 are shown in
Figure 5.2 with the generalization applied that is described in Defini-
tion 2.34 (page 46). The generalization adds the contextual informa-
tion Γ,∆ and the update U to the sequents. A contract is a quadruple
(see Def. 2.48). The contract used in the method contract rules is the
quadruple

(prem, postm,M, term)

where the modality 〈〉 is used in the method contract rule if term=partial
and the modality [] is used if term=total . The contract of a loop that

104

5.2. What Counterexamples of Contract Rule Premisses Mean

is used in the loop invariant rule is the quadruple1

(I, I ∧ c∗,M, partial)

Note that in Premiss 2 of the loop invariant rule the correctness of the
contract of the loop is proven by showing that I is an invariant of the
loop body.

Contracts can play different roles in different verification approaches.
We distinguish the role of a requirement specification and the role as an
auxiliary formula that is required for proof construction. If a program
does not satisfy a contract, then depending on the role of the contract
one can argue that either the program or the contract has a fault. De-
pending on the perspective, the falsifiability of a verification condition
can be interpreted in different ways. In the following we give different
interpretations for the falsifiability of the premisses of contract rules.
Table 5.1 on the following page gives an overview of the different cases
and interpretations. Below the table a list with abbreviations is shown
that we are going to use in the following because both contract rules are
considered in parallel. Using the notation of Table 5.1 the verification
condition at the root of the proof tree is

pre→ 〈[ABC]〉post (5.1)

Rule Premiss 1

This premiss ensures that the precondition preB, i.e. prem or I, is satis-
fied in the pre-state of the method or loop, respectively. The pre-state is
given by the formulas in Γ and ∆ and the update U (see Section 2.4.5,
page 56). The formulas Γ and ∆ consist of the preconditions of the tar-
get program, i.e., the program to be verified, and the path-conditions
that led to the current execution point. The update U describes how
the program state has been changed up to this point of execution. Fol-
lowing the abbreviations of Table 5.1 this rule premiss expresses the
property

pre→ 〈[A]〉preB (5.2)

Falsifiability of this premiss can be interpreted in two ways.
Firstly, if the precondition preB must be satisfied in the verification

approach, then falsifiability of this rule premiss implies the existence
of a fault in A or pre. For instance, consider the method useSqrt.
1 c∗ is the translation of the loop condition into a formula.

105

5. Deducing the Existence of Software Faults when Using Contracts

Falsifiable Rule

Premiss

Type of the contract

preB → 〈[B]〉postB
Implication for the correctness of

the software
1 required fault exists in pre,A, or preB

1 auxiliary preB is inappropriate

2 required fault exists in preB , B, or postB

2 auxiliary preB or postB are inappropriate

3 required unknown, if a fault exists

3 auxiliary unknown, if a fault exists

Abbreviations

pre — precondition of the target program to be verified

A — code between the beginning of the target program and the method

call or loop to be substituted by a contract
preB — precondition of the contract, i.e., prem or I

B — code of the method that is called or the loop that is executed

postB — postcondition of the contract, i.e., postm or I ∧ c∗

C — code that is executed after the method call or loop execution

post — postcondition of the target program to be verified

Table 5.1. Interpretation of falsifiable premisses of contract rules

JAVA + JML (5.3)
1 /*@ ... requires x>=0; ...@*/
2 public int useSqrt(int x){
3 int y = x-1;
4 int z = sqrt(y);
5 ...
6 }

JAVA + JML

In a verification attempt of the method useSqrt, where the contract of
the method sqrt (see Chapter 3) is used, the first premiss of the method
contract rule is falsifiable. This is because if x .= 0, then y

.= −1 and
the precondition of the method sqrt requires that the argument y is
greater or equal to zero. It is arguable if the fault is in the code or in
the specification of useSqrt because one could either change the line
int y=x-1; or the precondition requires x>=0;.

Secondly, if the precondition preB is an auxiliary formula and the
first rule premiss is falsifiable, then we regard the auxiliary formula as
inappropriate. Hence, a different formula for preB has to be considered.
For instance, when trying to verify the method sqrtB (Listing 5.2) with

106

5.2. What Counterexamples of Contract Rule Premisses Mean

the loop invariant
(i− 1) ∗ (i− 1) 6 x (5.3)

instead of (i−1)∗(i−1) 6 x∨x .= 0, the first premiss of the loop invari-
ant rule is falsifiable. This is because in the state before the execution of
the loop, where i .= 0, the loop invariant evaluates to (0−1)∗(0−1) 6 x
which is not a consequence of the precondition x > 0 of sqrtB.

If the first premiss of the contract rule is falsifiable, then the user
has the options to change pre, A, or preB. For example, in order to
prove the first premiss of the loop invariant rule when verifying the
method sqrtB, one option is to use the loop invariant from Listing 5.1
or to use the loop invariant (5.3) and change the requires clause of
the method sqrtB to, e.g. x>0.

A frequent question is also if pre and preB are consistent, i.e., if
there is a state which satisfies both conditions. For this purpose the
satisfiability of

(
∧
Γ ∧ ¬

∨
∆) ∧ UpreB

can be checked with the method described in Chapter 6.

Rule Premiss 2

This premiss ensures that the contract of B, i.e., the called method
or the loop, is correct. The method contract rule in KeY does not
implement this premiss explicitly (see Section 2.4.6.1, page 63). Instead
the correctness of a method contract is ensured in a separate proof (not
a sub-proof) for which Algorithm 1 can be utilised, or it is justified by
other means.

In case of the loop invariant rule the rule Premiss 2 ensures that I
is an invariant of the loop and that it supports itself inductively, i.e.,
its satisfaction after the execution of the loop body follows from the
assumption that it is satisfied before the execution of the loop body.
Following the abbreviations of Table 5.1 the rule Premiss 2 expresses
the property

pre→ 〈[A]〉(preB → 〈[B]〉postB) (5.4)

We interpret the falsifiability of this branch in two ways depending on
the verification approach.

If the contract, i.e. (preB, postB, . . .), is regarded as a requirement
specification, then falsifiability of this branch implies the existence of a
software fault. The software fault is, however, not in the caller program

107

5. Deducing the Existence of Software Faults when Using Contracts

ABC but in the callee B. An example for this situation is a verification
attempt of the following code.

JAVA + JML
1 /*@ public normal_behavior

2 requires x>=0; ensures x>=0; diverges true @*/
3 public int useSqrt(int x){ return sqrtA(x); }

JAVA + JML

In this example the method sqrtA is the callee, which does not satisfy
its requirement specification. The contract of sqrtA is therefore useless
for verification.

If the contract is regarded as an auxiliary and not as a requirement
specification, then falsifiability of the second rule premiss means that
an inappropriate contract was chosen.

In both cases, whether the contract is a requirement or auxiliary,
our general software fault detection approach of Chapter 4 is applied
recursively on the second premiss. Hence, a trace and a counterexam-
ple can be provided in order help the user understanding the problem.
When using the loop invariant rule and the second rule premiss is fal-
sifiable, then a frequent issue is to determine if the loop invariant is
violated during the execution of the loop or if the loop invariant does
not support itself. In order to disambiguate this problem a similar so-
lution as proposed in [Claessen and Svensson, 2008] can be followed. In
order to check if a loop invariant is violated during the execution of the
loop, finite loop unwinding is used (see Sections 2.4.5.2 and 4.3.2) where
at each iteration the loop invariant is checked. This technique can be
simply integrated into the verification and fault detection process by
extending the loop invariant rule with a premiss of the form:

Γ =⇒ U(I ∧ (c∗ → [b](I ∧ (c∗ → [b](. . . (I ∧ (c∗ → [b]I)) . . .))))), ∆

The formula following the update U expresses that I has to hold in the
initial state of the loop, subsuming Premiss 1, and I has to hold after
each execution of the loop body b if the loop condition c is satisfied.
The length of this formula has to be finite.

Rule Premiss 3

In this premiss the postcondition of the contract is a surrogate for
the description of the state transition by the program B. The premiss
expresses the following property.

108

5.2. What Counterexamples of Contract Rule Premisses Mean

pre→ 〈[A]〉VM (postB → 〈[C]〉post) (5.5)

The anonymising update VM (see Figure 5.2, page 104) assigns un-
specified values to the locations described by the modifier set M of
B while preserving contextual information that stem from pre,A, and
preB. The values of the location are then restricted by the postcondi-
tion postB, i.e. postm or I ∧ ¬c∗. In these states the rest of the target
program has to satisfy the postcondition of the target program. This is
expressed by the sub-formula 〈[C]〉post respectively [πω]post following
the notation of the rules. If the first and the second premiss are valid,
and the postcondition of the contract implies 〈[C]〉post, then the target
program satisfies its requirement specification.

If this rule premiss is falsifiable, then it is unclear what implication
this has for the correctness of the target program. An example for this
situation are the listings in Figure 5.1 (page 102). One possibility is that
the target program is not correct (Listing 5.1). The other possibility
is that the contract is just too weak to complete the proof. I.e., the
target program may be correct, but a stronger contract has to be used
to complete the proof (Listing 5.2)2.

Conclusion.

The relevant question for the approach described in Chapter 4 is
whether falsifiability of a contract rule premiss implies the falsifiability
of the verification condition at the root of the proof tree. The latter we
represented by Formula (5.1) on page 105. Our approach is to prove
validity preservation along a proof branch. Whether the falsifiability of
Premiss 1 or 2 is caused by a fault depends on whether preB and postB
are required properties or auxiliary formulas (see Table 5.1).

If preB and postB are required properties and Premiss 1 or 2 has a
counterexample, then validity preservation between Formula (5.1) and
the premiss does not have to be computed because it is already known
that a fault exists. The knowledge of the falsifiability of these premisses
also allows a more precise localizations of the fault than the knowledge
of the falsifiability of Formula (5.1) does.

If preB and postB are auxiliary formulas, then the user or an au-
tomatic method has to find formulas preB and postB and a modifier
set M that satisfies Premiss 1 and 2. It is not the objective of this

2 Note that the contract that we refer to in the example is given by the loop

invariant, i.e. (I, I ∧ ¬c∗, {〈true, i〉}, partial).

109

5. Deducing the Existence of Software Faults when Using Contracts

chapter to generate specifications but rather to check validity preser-
vation. Hence, in this case we assume the existence of other methods
that provide correct and applicable specifications or that help to find
faults in these situations.

Remark 5.1. Techniques for automatic generation of specifications in
KeY are described, e.g., in [Weiß, 2009; Bubel et al., 2009]. In Section
7.6 we describe a specification mining technique based on bounded
symbolic execution that was proposed in [Beckert and Gladisch, 2007]
for the purpose of test case generation.

Premiss 3 is the only premiss which checks if the postcondition of
the target program, which is the actual requirement to be checked in
Formula (5.1) on page 105, is satisfied after the execution of the target
program. Falsifiability of Premiss 3 has in contrast to Premisses 1 and
2 in both cases, i.e., whether the contract of B is auxiliary or required,
an ambiguous meaning. The contract of B may be either too weak to
complete the proof or the target program ABC may be incorrect. If the
contract is auxiliary, then falsifiability of the premiss can be caused by
a fault in any part of the program ABC. Fortunately, a special validity
preservation condition can be constructed for the Premiss 3 which we
describe in Section 5.5.2 and which allows to check validity preservation
very efficiently.

5.3 Notations and Definitions

Quantified Updates.

For a concise notation we abbreviate parallel quantified updates of the
form (see Def. 2.16 on page 34 and Sections 2.3.2.1 and 2.4.4)

for x̄1; true; f1(x̄1) := g1(x̄1) || . . . || for x̄1; true; fn(x̄n) := gn(x̄n)
(5.6)

where f1, . . . , fn ∈ F ⊂ FSymnr, and g1, . . . , gn ∈ G ⊂ FSym, by

F := G

The correspondence between function symbols F ⊂ FSymnr and func-
tion symbols G ⊂ FSym will be clear from the context. The update
overrides the interpretation of each function f ∈ F by the correspond-
ing function g ∈ G for all argument values of the function f . Therefore

110

5.3. Notations and Definitions

an update of the form (5.6) is technically equivalent to the substitution
[f1/g1, . . . , fn/gn]. Substitutions can be used when implementing the
technique described in Section 5.4.3 in other tools than KeY. We prefer
to use updates because they can be combined with other updates lead-
ing to a uniform notation. Furthermore, using updates possibly allows
us to generalize the approach where more general guards than true are
used in (5.6).

Modifier Sets and Anonymising Updates.

Following the notation in Section 2.4.6.2, M represents a modifier
set and VM represents the corresponding anonymising update. If the
elements of M are restricted to the form 〈true, f(t1, . . . , tn)〉 with
f(t1, . . . , tn) ∈ Terms, then we use the notation

M := Msk

to represent an anonymising update for the modifier set M . The update
replaces each function symbol f of 〈true, f(x)〉 ∈M by a fresh (Skolem)
function symbol fsk ∈Msk ⊂ FSymr of the same type.

Anonymous updates enable us to replace programs by abstractions.
Consider the formula a 6 b→ 〈m();〉(c > 0→ a < b+ c). If it is known
that the method m terminates and modifies only c, then the modal
operator can be replaced by the anonymous update {c := csk} resulting
in the formula a 6 b → {c := csk}(c > 0 → a < b + c). Update
application then yields a 6 b → (csk > 0 → a < b + csk) which
simplifies to true.

Occurrences of Sequents and Formulas in a Proof Tree.

A branch of a proof tree consists of sequents and is represented by the
notation

S0, . . . , Sn

where S0 is the root of the proof tree, Sn is the leaf of the branch and
Si+1 is the premiss of a rule applied at Si, with i ∈ N0. We use the nota-
tion Si to refer either (a) to the unique occurrence of the sequent in the
proof tree, (b) to the branch on which Si occurs, or (c) to the formula
that the sequent represents. The distinction between these cases will
be made clear in the respective context, e.g., by writing “the branch
Si”. A sequent Si represents the formula

∧
Γi →

∨
∆i where Γi is the

antecedent and ∆i is the succedent of Si. We use the notation
∧
Γi and

111

5. Deducing the Existence of Software Faults when Using Contracts∨
∆i also to represent the context formulas at the sequent Si according

to Definition 2.34 (page 46). The context formulas are defined by the
rule application at the sequent Si. The distinction will be made clear
in the respective context.

Definition 5.2. Definition of a contract rule premiss occurrence (PO).
Given a branch S0, . . . , Sn of a proof tree, let Si ∈ {S0, . . . , Sn} be an
occurrence of a sequent on the branch on which a contract rule was
applied. Then:

− PO1Si, PO2Si, and PO3Si denote respectively the 1st, 2nd, and 3rd
premiss of the contract rule application at the sequent Si.

− PO12Si is the union PO1Si ∪ PO2Si .

5.4 Techniques for Validity Preservation Analysis

Proving the validity preservation of a branch is a sub-problem of Algo-
rithm 1. The algorithm tries to show the correctness of a program and
in case of verification failure it tries to show program incorrectness and
guides the user to find the problem. If a verification condition at the
leaf of a proof tree branch is falsifiable, i.e., it has a counterexample,
then we check if the branch is validity preserving (Def. 4.4, page 87). In
Section 4.4.1 we have explained that contract rules are the critical rules
that may destroy validity preservation of a branch. If validity preserva-
tion can be proved, then it is sound to conclude that the target program
does not satisfy its specification. The user then knows that they could
not have chosen a better loop invariant or method contract to succeed
the verification attempt and instead they should fix the fault in the
program or its specification.

Remark 5.3. Checking validity preservation of branches or of rules,
which stem from a rule schema that is not validity preserving, is an
undecidable problem. Hence, by the term “checking” that we use in
the following sections we refer to a proof attempt of a property.

5.4.1 Systematic Analysis of Validity Preservation

A verification attempt of a program with multiple method calls and
loops results in multiple applications of contract rules in a proof tree.
In such a proof tree, contract rules are applied on subbranches on which

112

5.4. Techniques for Validity Preservation Analysis

contract rules have already been applied. Algorithm 2 is a simple algo-
rithm which systematically checks (see Remark 5.3) validity preserva-
tion of a branch. This algorithm is used by Algorithm 1 (page 86).

Algorithm 2 checkValidityPreservation(B)
Require: All applied rules but the contract rules are known to be falsifiability

preserving. B is a branch from a failed proof attempt.

1: let (S0, . . . , Sn) = B

2: for i = n− 1 to 0 do

3: if i = 0 /*i.e., the root is reached */ then

4: return (true,“If Sn has a counterexample, then a fault exists (on the

symbolic execution trace of branch B).”)

5: else if a contract rule was applied at Si then

6: if Si+1 ∈ PO12Si
/*i.e., 1st or 2nd premiss of contract rule app*/ then

7: return (unknown, The appropriate description from Table 5.1)

8: else if Si+1 is PO3Si
/*i.e., 3rd premiss of contract rule app*/ then

9: Try to prove validity preservation from Sn to Si, i.e. VPSn
Si

10: if proof of VPSn
Si

does not succeed then

11: return (unknown,“Contract at node (i) is too weak to deduce

program incorrectness.”)

12: end if

13: end if

14: end if

15: end for

The input to Algorithm 2 is an open proof branch B that is pro-
vided by Algorithm 1 (Line 7). The output of Algorithm 2 is a tuple,
where the first value of the tuple is true iff B is validity preserving
and the second value of the tuple is a message for the user. The loop
(Line 2) iterates from the leaf Sn of the branch B to the root S0 of the
proof tree. If Premiss 1 or 2 of a contract rule is encountered (Line 6),
then the algorithm terminates with instructions for the user according
to Table 5.1. The main part is the validity preservation analysis of Pre-
miss 3 of a contract rule application in Line 9. In the following section
different techniques are described for proving the validity preservation
of this premiss. If validity preservation was proved at each contract rule
application, then B is validity preserving according to Lemma 4.8 and
the algorithm terminates in Line 4. If Sn is a falsifiable sequent, then
S0 is falsifiable and if S0 has the form (5.1) then the target program is
incorrect. Otherwise, if proving � VPSn fails, then the algorithm may
return further information for the user to proceed.

113

5. Deducing the Existence of Software Faults when Using Contracts

Approach 1 Approach 2 Approach 3

Fig. 5.3. Three approaches for proving the validity preservation of branch S4; A

contract rule was applied at S1.

5.4.2 Three Approaches for Validity Preservation Analysis

In this section we describe three approaches for validity preservation
checking3, where the second approach is an improvement of the first
approach and the third approach is an improvement of the second ap-
proach. The first two approaches are applicable for checking the validity
preservation of any proof branch while the third is applicable only for
branches constructed from the third premiss of a contract rule. In this
section we use the abbreviations from Table 5.1 (page 106).

Figure 5.3 illustrates the three approaches. The proof tree represents
the proof tree of the verification attempt of the target program. The
branch Sn represents an open proof branch. The solid arrows represent
the implications of the validity preservation conditions that have to be
proven and the dashed arrows represent validity preservation require-
ments that are established implicitly by Algorithm 2. The approaches
are described in the following sections.

Preparing an Example.

For the explanation of the approaches and for explaining why the sec-
ond and third approach are improvements of their predecessors we use
an example that is described in the following. Let the sequent Si which
is defined as

3 see Remark 5.3

114

5.4. Techniques for Validity Preservation Analysis

x′
.= x, y > 0︸ ︷︷ ︸
pre

=⇒ 〈x=x+y;︸ ︷︷ ︸
ABC

〉x > x′︸ ︷︷ ︸
post

(5.7)

be the current sequent at which a contract rule is applied. The program
variables x′, y ∈ FSymr and x ∈ FSymnr are of type int. The contract
rules discussed so far (see Table 5.2, page 104) are applicable only to a
method call or a loop, respectively. In order to keep the examples small
we omit the introduction of a method m(){x=x+y;} and an object to
which the method and program variables belong. Instead we introduce
the following contract rule which follows the same principles as the
rules in Table 5.2.

pre⇒ UpreB
pre⇒ U(preB → 〈B〉postB)
pre⇒ UV(postB → 〈C〉post)
pre⇒ U〈BC〉post

(5.8)

Note that the contract is applied after the program part A has been
symbolically executed. Hence, U represents the state-change performed
by A and A does not occur in the rule.

In the sequent (5.7) the update U and the program parts A and C
are empty. The program B consists of the statement x=x+y; for which
we choose the contract

(x′ .= x︸ ︷︷ ︸
preB

, y > 0 ∨ x .= x′︸ ︷︷ ︸
postB

, {〈true, x〉}︸ ︷︷ ︸
M

, total) (5.9)

Application of the contract rule (5.8) on the sequent (5.7) with the
contract (5.9) yields the following three sequents.

pre︷ ︸︸ ︷
x′

.= x, y > 0 =⇒

UpreB︷ ︸︸ ︷
x′

.= x PO1Si

x′
.= x, y > 0 =⇒ (

preB︷ ︸︸ ︷
x′

.= x→ 〈
B︷ ︸︸ ︷

x=x+y;〉

postB︷ ︸︸ ︷
(y > 0 ∨ x .= x′)) PO2Si

x′
.= x, y > 0 =⇒

UVM︷ ︸︸ ︷
{x := xsk}(

postB︷ ︸︸ ︷
(y > 0 ∨ x .= x′)→

〈C〉post︷ ︸︸ ︷
x > x′) PO3Si = Si+1

The sequents PO1Si and PO2Si (see Def. 5.2, page 112) can be proven.
A proof attempt of PO3Si fails, however, with the open proof branches4

S1
n and S2

n (see Figure 5.4). A counterexample for S1
n is, e.g., I(x′) =

4 Note that the notation Si also identifies branches in a proof tree (see Section 5.3).

115

5. Deducing the Existence of Software Faults when Using Contracts

∗
...

∗
...

S1
nz }| {

x′
.
= x, y > 0 =⇒ xsk > x

...

. . . ,y > 0, y > 0 ∨ xsk
.
= x =⇒ . . .

S2
nz }| {

x′
.
= x, y

.
= 0, xsk

.
= x =⇒ xsk > x

. . . ,y > 0, xsk
.
= x =⇒ y > 0, . . .
...

. . . ,¬y > 0 =⇒ . . .

x′
.
= x, y > 0, y > 0 ∨ xsk

.
= x =⇒ xsk > x cut

x′
.
= x, y > 0 =⇒(y > 0 ∨ xsk

.
= x) → xsk > x

x′ .
= x, y > 0 =⇒ (y > 0 ∨ xsk

.
= x′)→ xsk > x′

x′
.
= x, y > 0 =⇒ {x := xsk}((y > 0 ∨ x .

= x′)→ x > x′) : Si+1

Si = (5.7)

Fig. 5.4. Failed proof attempt of the verification condition Si

I(x) = I(xsk) = I(y) = 1, and for S2
n, e.g., I(x′) = I(x) = I(xsk) =

I(y) = 0.
Both branches are provided as input to Algorithm 2 at a time, in

order to check their validity preservation. In the following we look at
the three approaches to check the validity preservation in Line 9 of the
algorithm.

Approach 1: Checking the Validity Preservation of a Rule Premiss

Algorithm 2 iterates through the sequents Si of a branch and ensures
� VPSnSi (see Def. 4.4) from the leaf Sn to the root S0. If � VPSnSi+1

is

ensured in iteration n− i, then in order to ensure � VPSnSi in the next

iteration it is sufficient to ensure that � VPSi+1

Si
holds. This follows

from Lemma 4.8 (see Section 4.4.1) which states that if the sequents
of a proof tree branch B are validity preserving rule premisses, then
B is validity preserving. Hence, it is sufficient to check for each rule
premiss on a branch that it is a validity preserving rule premiss in
order to ensure the validity preservation of the branch (see Approach 1
of Figure 5.3, page 114).

This approach is to prove in Line 9 of Algorithm 2 (page 113) the
formula VPSi+1

Si
, i.e.,

Si → Si+1 (5.10)

This is also the approach that we have followed in Section 4.4.1
(page 92) in order to show that the rules of KeY’s calculus are va-
lidity preserving except for the contract rules. Applying this technique

116

5.4. Techniques for Validity Preservation Analysis

∗
...

∗
...

A counterexample is, e.g., I(x′) = I(x) = I(xsk) = 0,

I(y) = I(xsk2) = 1
Γz }| {

x′
.
= x, y > 0, y > 0 ∨ xsk

.
= x′,

y > 0 ∨ xsk2
.
= x′

=⇒ ¬xsk2 > x′,

∆z }| {
xsk > x′

... Similar to part of Figure 5.4 and similar to the lower

part of this proof tree. Resulting formulas are bold.
Γ =⇒ {x := xsk2}((y > 0 ∨ x

.
= x′) → ¬x > x′),∆

Using the contract rule (5.8) with the contract (5.7), Pre-

misses 1 and 2 close. Continuing with Premiss 3.

Γ =⇒ [x=x+y;]¬x > x′,∆

〈x=x+y;〉x > x′, Γ =⇒ ∆ dL

∗
...

(x′ .
= x ∧ y > 0) → 〈x=x+y;〉x > x′, Γ =⇒ ∆

(5.7),

Γz }| {
x′

.
= x, y > 0, y > 0 ∨ xsk

.
= x′ =⇒

∆z }| {
xsk > x′

(5.7), x′
.
= x, y > 0 =⇒(y > 0 ∨ xsk

.
= x′) → xsk > x′

(5.7) =⇒(x′ .
= x ∧ y > 0) → ((y > 0 ∨ xsk

.
= x′)→ xsk > x′)

(5.7)| {z }
Si

=⇒ (x′
.
= x ∧ y > 0)→ {x := xsk}((y > 0 ∨ x .

= x′)→ x > x′)| {z }
Si+1

Fig. 5.5. Failed proof attempt of the validity preservation of the third premiss of a

contract rule application (Approach 1); dL abbreviates the rule schema diamondLeft

shown in Table 2.6.

to the proof branches S1
n and S2

n of the proof tree in Figure 5.4 re-
veals, however, a limitation of this technique. The validity preservation
condition VPSi+1

Si
is not valid and yields the open proof tree shown in

Figure 5.5. The reason why validity preservation does not hold in this
case is disclosed along the description of Approach 2.

Approach 2: Checking the Validity Preservation of a Sequence of
Sequents

The validity preservation condition VPSi+1

Si
that was used in the first

approach is a general condition of a rule premiss. In this approach (see
Approach 2 of Figure 5.3) the formula VPSnSi which is

Si → Sn (5.11)

is proven. The formula is proven explicitly rather than implicitly as
it is the case in the first approach where the induction principle of
Lemma 4.8 (page 92) is used. The advantage is that VPSnSi is a weaker

117

5. Deducing the Existence of Software Faults when Using Contracts

condition than VPSi+1

Si
, i.e. VPSnSi implies VPSi+1

Si
, and it is sufficient to

prove VPSnSi in Algorithm 2.
An intuitive explanation of the two approaches is the following.

Formula (5.10) can be rewritten as

¬Si+1 → ¬Si (5.12)

This formula can be read as: every counterexample of Si+1 is also a
counterexample for Si. The formula Si+1 is, however, not simplified and
it may have counterexamples resulting from many case distinctions.
Proving ¬Si for all those counterexamples of ¬Si+1 is, however, not
required because it is sufficient if the implication (5.12) holds only for
counterexamples of one branch leaf, i.e., S1

n or S2
n in Figure 5.5. This

weaker property is expressed by Formula (5.11) as it can be rewritten
to the equivalent formula

¬Sn → ¬Si

Figures 5.6 and 5.7 illustrate the problem of the first approach and the
advantage of the second approach. Figure 5.6 shows the failed proof
attempt of the validity preservation condition VPS

1
n
Si

which is not valid.
This condition considers counterexamples of S1

n which are not neces-
sarily counterexamples of Si. In contrast, Figure 5.7 shows a successful
proof of the validity preservation condition VPS

2
n
Si

. Hence, the coun-
terexamples of S2

n are also counterexamples of Si. Approach 1 could
not succeed because it tried to proof validity preservation for both
cases. As it is sufficient to prove the validity preservation of one branch
Approach 2 is superior to Approach 1.

The condition VPSnSi expresses that all counterexamples of Sn are
counterexamples of Si. It seams that an even weaker condition is to
show that for a single counterexample X represented as a formula
it holds that � X → ¬Si. However, as mentioned in Section 4.3.2
(page 89), the leaves of a proof tree in KeY already represent coun-
terexamples, or models of the negated sequent, if they are falsifiable
(see [Rümmer, 2007]). Therefore, if the proof tree is expanded suffi-
ciently, then � ¬Sn → ¬Si is equivalent to � X → ¬Si.

Remark 5.4. Validity preservation of the third contract rule premiss
checks the strength property of the contract. For instance, when using
the contract

118

5.4. Techniques for Validity Preservation Analysis

∗
...

∗
...

A counterexample is, e.g., I(x′) = I(x) = I(xsk) = 0,

I(y) = I(xsk2) = 1
Γz }| {

x′
.
= x, y > 0,y > 0 ∨ xsk2

.
= x′ =⇒ ¬xsk2 > x′,

∆z }| {
xsk > x

... Similar to part of Figure 5.4 and similar to the lower

part of Figure 5.5
Γ =⇒ {x := xsk2}((y > 0 ∨ x

.
= x′) → ¬x > x′),∆

Using the contract rule (5.8) with the contract (5.7), Pre-

misses 1 and 2 close. Continuing with Premiss 3.

Γ =⇒ [x=x+y;]¬x > x′,∆ dL

Γz }| {
x′

.
= x, y > 0, 〈x=x+y;〉x > x′ =⇒

∆z }| {
xsk > x

...

∗
...

(x′ .
= x ∧ y > 0) → 〈x=x+y;〉x > x′| {z }

Si

=⇒ x′ .
= x ∧ y > 0 → xsk > x| {z }

S1
n

Fig. 5.6. Failed proof attempt of the validity preservation of the branch S1
n (Ap-

proach 2); dL abbreviates the rule schema diamondLeft shown in Table 2.6.

(x′ .= x, x
.= x′ + y, {〈true, x〉}, total)

then validity preservation can be proved for any open proof branch
with Approach 1 and 2.

Remark 5.5. The Approaches 1 and 2 can be applied to check the va-
lidity preservation of any rule premiss or branch independently of what
rules were applied.

Approach 3: Towards a Special Validity Preservation Condition

In Section 5.2 we have argued that it is especially important to check
the validity preservation of branches which are extensions of the third
premiss of a contract rule. Approach 2 can be further improved for this
particular case resulting in the third approach. In the third approach
the validity preservation condition VPSnSi is replaced by the special va-
lidity preservation condition SVPSnSi in Line 9 of Algorithm 2. Similarly
as in Approach 2, the special validity preservation condition expresses
the validity preservation condition of a branch it improves the perfor-
mance of proving the condition.

The problem of the condition VPSnSi is the occurrence of the sequent
Si in the condition (see the Figures 5.5, 5.6, and 5.7). When proving the

119

5. Deducing the Existence of Software Faults when Using Contracts

∗
...

∗
...

∗
. . . , false =⇒ . . .
Γz }| {

. . . , y
.
= 0, y > 0 =⇒ . . .

∗
Γ, xsk2

.
= x′ =⇒ true,∆

Γ, xsk2
.
= x′ =⇒ ¬x′ > x′,∆

Γ,xsk2
.
= x′ =⇒ ¬xsk2 > x′,∆

Γ,y > 0 ∨ xsk2
.
= x′ =⇒ ¬xsk2 > x′,∆

... Similar to part of Figure 5.4 and similar to the lower

part of Figure 5.5
Γ =⇒ {x := xsk2}((y > 0 ∨ x

.
= x′) → ¬x > x′),∆

Using the contract rule (5.8) with the contract (5.7), Pre-

misses 1 and 2 close. Continuing with Premiss 3.

Γ =⇒ [x=x+y;]¬x > x′,∆ dL

Γz }| {
x′

.
= x, y

.
= 0, xsk

.
= x, 〈x=x+y;〉x > x′ =⇒ y > 0,

∆z }| {
xsk > x

...

∗
...

(x′ .
= x ∧ y > 0) → 〈x=x+y;〉x > x′| {z }

Si

=⇒ (x′
.
= x ∧ y .

= 0 ∧ xsk
.
= x)→ (xsk > x)| {z }

S2
n

Fig. 5.7. Successful proof attempt of the validity preservation of the branch S2
n

(Approach 2); dL abbreviates the rule schema diamondLeft shown in Table 2.6.

condition VPSnSi , then all the rule applications that were necessary for
deriving the sequent Sn from the sequent Si may have to be repeated.
This includes the contract rule that was applied at Si, the symbolic
execution of the program part C, i.e., the program part following the
program abstraction, and first-order reasoning with arithmetics.

The idea behind the special validity preservation condition is to
somehow reuse information that was computed on the branch Sn and
to construct SVPSnSi without an explicit occurrence of Si. Common to
the proof trees of Figures 5.5, 5.6, and 5.7 is that the contract rule is
used with the contract (5.7) and then a sequence of rule applications
follows that is “similar to part of Figure 5.4 and similar to the lower
part of Figure 5.5”. These proof steps repeat computation that was
done during the verification attempt. Regarding the leaf of the open
branches in Figures 5.5 and 5.6, as well as the 5th sequent5 of Figure 5.7,
one can see that these proof steps result in the sub-sequent, i.e. subsets
of the antecedent and succedent,

. . . , y > 0 ∨ xsk2
.= x′ =⇒ ¬xsk2 > x′, . . . (5.13)

5 counting from the root of the proof tree

120

5.4. Techniques for Validity Preservation Analysis

which is derived from the formula

{x := xsk2}((y > 0 ∨ x .= x′)→ ¬x > x′) (5.14)

This sub-sequent is in a way similar to the sub-sequent

. . . , y > 0 ∨ xsk
.= x′ =⇒ xsk > x′, . . . (5.15)

occurring in S2
n of the verification attempt (see Figure 5.4, page 116).

Formula 5.15 is derived from the formula

{x := xsk2}((y > 0 ∨ x .= x′)→ x > x′) (5.16)

that occurs in Si+1 of the verification attempt. In order to omit the
repetition of rule applications the idea is to construct Formula (5.13)
from Formula (5.15). Seemingly, the Skolem functions, e.g. xsk, have to
be replaced by new Skolem functions, e.g. xsk2. A problem is, however,
that the respective sub-formula xsk > x′ in (5.15), which stems from
the postcondition, occurs negated in (5.13). In general case this formula
cannot be syntactically determined in Sn, because it may be replaced
by combinations with other formulas. The reason for this negation is
that in VPSnSi , i.e. Si → Sn, the sequent Si occurs negated w.r.t. Sn
because (Si → Sn) ≡ (¬Si ∨ Sn). How to reuse information from a
proof attempt of Si for ¬Si is a non-trivial question. Checking the
condition Sn → Sn obviously does not make sense. The solution to this
problem is presented in the following section.

5.4.3 Special Validity Preservation Condition

5.4.3.1 The Approach

This section describes our main contribution of this chapter. We check
with a special validity preservation condition whether contracts that
are used in contract rule applications on a given branch are strong
enough to reveal a software fault. A conventional proof of the formula
VPSnSi , i.e. Si → Sn, that ensures validity preservation of branch Sn,
would require a transformation of the program in Si into a first-order
logic formula requiring, e.g., symbolic execution. Instead, we regard the
(sub) branch Si, . . . , Sn that is created by the verification attempt as
a test run of the target program with symbolic values and we reuse
information contained in this branch to prove its validity preservation.

121

5. Deducing the Existence of Software Faults when Using Contracts

In this way verification and software fault detection are truly unified
in one computation. This is achieved by replacing in Line 9 of Al-
gorithm 2 (page 113) the formula VPSnSi with the more sophisticated
formula SVPSnSi that is defined next. This section makes extensive use
of abbreviations described in Section 5.3 (page 110).

Definition 5.6. Let (S0, . . . , Sn) = B be a branch and Si with 0 6 i <
n be a sequent that has either the form (case 1):

Γi =⇒ U〈πpω〉ϕ,∆i

or the form (case 2):
Γi =⇒ U [πpω]ϕ,∆i

and on Si a contract rule is applied with the contract (prep, postp,M,
total) in case 1 and (prep, postp,M, partial) in case 2 (see Table 5.2,
page 104). Let M ⊇ Mod(p) (see Def. 2.50, page 66). Si+1 is the
3rd branch of the contract rule, i.e. Si+1 = PO3Si. Let M1 ⊂ FSymnr

denote the new Skolem functions that are introduced in the anonymising
update at Si+1 for the modified locations M . Let M2 ⊂ FSymnr denote
new Skolem functions for the modified locations M .

The special validity preservation condition SVPSnSi is the conjunction
of

(({M1 := M2}Sn) ∧ U{M := M2}postp)→ Sn (5.17)

¬Sn → U〈πpω〉true (only in case 2) (5.18)

Theorem 5.7. Assuming that R is the contract rule applied at Si with
0 6 i < n; the 1st and 2nd premisses of R are proven; and � VPSnSi+1

holds, then
� SVPSnSi implies � VPSnSi

Theorem 5.7 is the key for using the formula SVP to prove the va-
lidity preservation of a branch that contains occurrences of the third
premiss of contract rules. The implication of the theorem is that the
formula SVPSnSi , or even just Formula (5.17) as described below, can
replace the formula VPSnSi , i.e. Si → Sn, in Line 9 of Algorithm 2. In
contrast to VPSnSi , the formula SVPSnSi contains no program parts, or it
contains only program parts that have not yet been symbolically exe-
cuted on the branch with the leaf Sn. This is achieved because SVPSnSi
has no occurrence of 〈πω〉ϕ containing the rest of the program following

122

5.4. Techniques for Validity Preservation Analysis

p. Since SVPSnSi is mainly built from formulas occurring in Sn, all the
symbolic execution and first-order logic reasoning that took place up
to Sn (by a verification attempt) is reused . These properties of SVPSnSi
support the idea of unified verification and software fault detection.
This approach is depicted as Approach 3 in Figure 5.3 (page 114) with
n = 4.

The main sub-formula of SVPSnSi is (5.17). This formula extends the
leaf Sn of a branch B with the conjunction (({M1 := M2}Sn)∧U{M :=
M2}postp) that is mainly built from an updated version of Sn and the
postcondition from the contract rule applied at Si. In Figure 5.3 this
formula is represented by S′4. Intuitively speaking, the two updates
create copies of the result of the computation that was performed on
B such that the conjunction replaces in VPSnSi the sequent Si.

Example. We construct the special validity preservation condition based
on the verification attempt shown in Figure 5.4 (page 116). Similarly
as in the case of Approach 2, a proof of validity preservation using SVP
succeeds for the branch S2

n but not for the branch S1
n. From the branch

S2
n we get

{M1 := M2}S2
n = {xsk := xsk2}((x′

.= x ∧ y .= 0 ∧ xsk
.= x)→ xsk > x)

= (x′ .= x ∧ y .= 0 ∧ xsk2
.= x)→ xsk2 > x

where xsk2 ∈ FSymnr is a new symbol of type int and

U{M := M2}postp = {x := xsk2}(y > 0 ∨ x .= x′)
= y > 0 ∨ xsk2

.= x′

Hence, the special validity preservation condition SVPS
2
n
Si

is given by

((x′ .= x ∧ y .= 0 ∧ xsk2
.= x)→ xsk2 > x) ∧ (y > 0 ∨ xsk2

.= x′)
=⇒

(x′ .= x ∧ y .= 0 ∧ xsk
.= x)→ xsk > x

and is proven in Figure 5.8. As one can see the contract rule applications
and the repetitive parts in the proof trees of Figures 5.5, 5.6, and
5.7 do not exist in the proof tree of Figure 5.8. The reason is that
the information that was obtained through similar proof steps in the
verification attempt has been reused by the construction of SVPS

2
n
Si

.

�

123

5. Deducing the Existence of Software Faults when Using Contracts

∗
. . . , false =⇒ . . .

. . . , y > 0, y
.
= 0 =⇒ . . .

∗
x > x,EQ =⇒ x > x

...
{M1:=M2}S2

n simplified using EQz }| {
((x

.
= x ∧ y .

= y ∧ x .
= x)→ x > x), EQ =⇒ x > x

... using the equations EQ

. . . ,

EQz }| {
xsk2

.
= x′, x′

.
= x, xsk

.
= x, y

.
= 0 =⇒ xsk > x

{M1 := M2}S2
n,y > 0 ∨ xsk2

.
= x′, x′

.
= x, y

.
= 0, xsk

.
= x =⇒ xsk > x

{M1 := M2}S2
n, y > 0 ∨ xsk2

.
= x′ =⇒(x′ .

= x ∧ y
.
= 0 ∧ xsk

.
= x) → xsk > x

Fig. 5.8. Proof of the special validity preservation condition for branch S2
n (Ap-

proach 3)

Formula (5.18) in Definition 5.6 ensures that in case of a verification
attempt for showing partial correctness of a program non-terminating
programs are recognized as correct programs (see Lemma 2.26, page 42).
In practice, however, even if a partial correctness proof is created non-
terminating programs are regarded usually as incorrect. Partial cor-
rectness proofs are often created for simplicity, i.e., to omit proving of
program termination. By ignoring the formula, non-terminating pro-
grams in partial correctness proofs are regarded as incorrect which is
not sound but usually a welcome behavior. Formula (5.18) can therefore
be regarded as optional.

We regard the requirement that the 1st and 2nd branch of the re-
spective contract rule application, i.e. PO12S , must be closed, as a
minor problem. This is because trying to close these branches is part
of the verification process in Algorithm 1 so that no additional work is
done for software fault detection. If the branches PO12S are not proven,
then Algorithm 2 provides hints for the user on how to proceed. The
second requirement, i.e. � VPSnSi+1

, is ensured by an induction principle
of the loop in the algorithm: as the loop iterates the program variable i
is decreased and the validity of VPSnSn−1

,VPSnSn−2
, . . . ,VPSnSi+1

is ensured.

5.4.3.2 Soundness Proof

In this section we prove the correctness of Theorem 5.7. Before pro-
ceeding to the proof some lemmas are prepared for the proof.

124

5.4. Techniques for Validity Preservation Analysis

Lemmas

Lemma 5.8. Let F,G,H ∈ Formulae. The following statement holds

� F → G implies (� G→ H implies � F → H) (5.19)

Proof. The statement 5.19 can is equivalent to the statement

(� F → G and � G→ H) implies � F → H (5.20)

which expresses the transitivity of implication which is a propositional
fact.

�

Lemma 5.9. Let F,G,H ∈ Formulae. The following statement holds

� F → G implies � (F ∧H)→ (G ∧H) (5.21)

Proof. We consider two cases. If H ≡ true (case 1), then statement 5.21
simplifies to

� F → G implies � F → G (5.22)

which is true. Otherwise, if H ≡ false (case 2), then statement 5.21
simplifies to

� F → G implies true (5.23)

which is true as well. �

Lemma 5.10. Following the notation of Definition 5.6, if � VPSnSi+1
,

then the following formula is valid.

¬Sn → (
∧
Γi ∧ ¬

∨
∆i) (5.24)

Note that Γi and ∆i are the context formulas of Si (see Table 5.2 on
page 104).

Proof. According to Table 5.2, Γi = Γi+1, ∆i = ∆i+1, and

Si+1 ≡ (
∧
Γi+1 → (φ ∨

∨
∆i+1)) (5.25)

where φ ∈ Formulae.
Starting with the assumption � VPSnSi+1

the validity of Formula
(5.24) is derived.

125

5. Deducing the Existence of Software Faults when Using Contracts

Si+1 → Sn Assumption � VPSnSi+1

¬Sn → ¬Si+1 Contraposition
¬Sn → ¬(

∧
Γi+1 → (φ ∨

∨
∆i+1)) Formula (5.25)

¬Sn → (
∧
Γi+1 ∧ ¬(φ ∨

∨
∆i+1)) Negation of an implication

¬Sn → (
∧
Γi+1 ∧ φ ∧ ¬

∨
∆i+1) Negation of a disjunction

¬Sn → (
∧
Γi+1 ∧ ¬

∨
∆i+1) Weakening

¬Sn → (
∧
Γi ∧ ¬

∨
∆i) Γi = Γi+1, ∆i = ∆i+1, (Table 5.2)

�

Proof of Theorem 5.7

In this proof the formula SVPSnSi (see Def. 5.6) is constructed from a
formula that is equivalent to VPSnSi while making use of the assumptions
in Theorem 5.7. The construction of SVPSnSi ensures that SVPSnSi implies
VPSnSi . The proof is divided into two parts. In the first part we use a
contract rule in order to derive conditions from VPSnSi . In the second
part an alternative formula for the main condition is constructed.

Part I By Definition 4.4, VPSnSi is equivalent to Si → Sn which is equiv-
alent to

¬Sn → ¬Si (5.26)

The assumption of the theorem, that the rule R that is applied at Si
with 0 6 i < n is a contract rule, implies that Si has the syntactical
form

Γi =⇒ U〈[πpω]〉ϕ,∆i

Thus, VPSnSi is equivalent to

¬Sn → ¬(

Si︷ ︸︸ ︷∧
Γi → (U〈[πpω]〉ϕ ∨

∨
∆i)) (5.27)

¬Sn → (
∧
Γi ∧ ¬(U〈[πpω]〉ϕ ∨

∨
∆i)) (5.28)

¬Sn → (
∧
Γi ∧ ¬

∨
∆i ∧ ¬ (U〈[πpω]〉ϕ)) (5.29)

Since ¬〈[πpω]〉ϕ ≡ [〈πpω〉]¬ϕ (Lemma 2.26, page 42) and ¬Uφ ≡ U¬φ
(Lemm 2.45, page 56), we obtain by a equivalence transformations

¬Sn → ((
∧
Γi ∧ ¬

∨
∆i) ∧ U [〈πpω〉]¬ϕ) (5.30)

126

5.4. Techniques for Validity Preservation Analysis

This formula is equivalent to the conjunction of the following two for-
mulas

¬Sn → (
∧
Γi ∧ ¬

∨
∆i) (5.31)

¬Sn → U [〈πpω〉]¬ϕ (5.32)

Due to the assumption � VPSnSi+1
of the theorem, Lemma 5.10 implies

that the Formula (5.31) is valid.
There are syntactically two cases of Formula (5.32) depending on

the concrete modality [〈πpω〉]. If in (5.27) the modal operator [πpω]
was used, which is the case 2 in Definition 5.6, then the modal operator
in Formula (5.32) is 〈πpω〉. In this case we use Lemma 2.26 to separate
the program termination problem from the rest of the condition and
obtain

¬Sn → U(〈πpω〉true ∧ [πpω]¬ϕ) (5.33)

which is equivalent to the conjunction of the following two formulas.

¬Sn → U〈πpω〉true (5.34)

¬Sn → U [πpω]¬ϕ (5.35)

Formula (5.34) is the condition (5.18) in Definition 5.6. If in (5.27) the
modal operator 〈πpω〉 was used, which is the case 1 in the definition,
then the modal operator in Formula (5.32) is [πpω] and therefore in
this case (5.32) and (5.35) are identical and the condition (5.18) in
Definition 5.6 is not required.

According to the assumption in Theorem 5.7 the contract rule R
was applied on Si. The appropriate contract rule of Figure 5.2 is now
applied on (5.35) with the same contract (prep, postp,M, term), where
term ∈ {total, partial}, that was applied on the sequent Si. This results
in three proof obligations written as formulas rather than sequents:

1: ¬Sn → Uprep (5.36)
2: ¬Sn → UV2

M (prep → [p]postp) (5.37)
3: ¬Sn → UV2

M (postp → ¬[πω]ϕ) (5.38)

The assumption that PO1Si is proven means that
∧
Γi → (Uprep ∨∨

∆i), or equivalently

(
∧
Γi ∧ ¬

∨
∆i)→ Uprep (5.39)

127

5. Deducing the Existence of Software Faults when Using Contracts

is valid. Formula (5.31) is valid as well (Lemma 5.10). From the validity
of Formulas (5.31) and (5.39) and the transitivity of implication we
conclude that Formula (5.36) is valid.

Similarly, the assumption that PO2Si is proven means that∧
Γi → (UV1

M (prep → [p]postp) ∨
∨
∆i) (5.40)

is valid. This is equivalent to the validity of

(
∧
Γi ∧ ¬

∨
∆i)→ UV1

M (prep → [p]postp) (5.41)

where V1
M is the anonymising update (Def. 2.52, page 68) for the mod-

ifier set M that was introduced at PO2Si during the verification at-
tempt. From the validity of Formula (5.31) by Lemma 5.10, the validity
of Formula (5.41), and the transitivity of implication we conclude that

¬Sn → UV1
M (prep → [p]postp) (5.42)

is valid. Formula (5.42) differs from Formula (5.37) only by the Skolem
functions in the anonymising updates introduced for M , i.e. V1

M versus
V2
M . Hence Formula (5.37).

We conclude that under the assumptions of the theorem the con-
junction of (5.34) and (5.38) implies VPSnSi . This argument uses the
correctness of the rule R (see Rule 5.8 on page 115), which is a gen-
eralization of the loop invariant and method contract rules (Section
2.4.6.3).

Part II In (5.38) the sub-formula ϕ may contain program parts, i.e.
modal operators, that are already symbolically executed on the current
branch. The goal in the second part of the proof is to construct an
equivalent formula to (5.38) that is based on the sequent Sn and does
not contain the formula ϕ.

Equivalence transformations of (5.38) yield:

(¬UV2
M (postp → ¬[πω]ϕ))→ Sn (5.43)

(

Φ︷ ︸︸ ︷
UV2

M (postp ∧ [πω]ϕ))→ Sn (5.44)

Next we replace the sub-formula Φ in (5.44) by an equivalent or weaker
formula Φ′. This replacement is sound because the substitution is per-
formed on the premiss of the implication so that the resulting formula
is stronger or equivalent to (5.44), i.e.,

128

5.4. Techniques for Validity Preservation Analysis

� Φ→ Φ′ implies (� Φ′ → Sn implies � Φ→ Sn) (5.45)

The correctness of this statement is proved as Lemma 5.8. In the fol-
lowing steps we construct the formula Φ→ Φ′. The construction starts
with the assumption of Theorem 5.7 that the statement

� VPSnSi+1
(5.46)

holds. The validity of the following statements is based on this as-
sumption. By Definition 4.4 the statement (5.46) is equivalent to (we
use sequents for a compact notation):

� Si+1 =⇒ Sn (5.47)

The sequent Si+1 has the form Γi+1 =⇒ UV1
M (postp → [πω]ϕ), ∆i+1 as

it is the 3rd premiss of the contract rule application at Si, i.e. PO3Si .
Note that according to Figure 5.2 (page 104), Γi = Γi+1 and ∆i = ∆i+1.

The implication Si+1 =⇒ Sn can be rewritten by equivalence trans-
formation as

¬Sn =⇒ ¬Si+1

¬Sn =⇒ ¬(
∧
Γi+1 → (UV1

M (postp → [πω]ϕ) ∨
∨
∆i+1))

¬Sn =⇒ ¬(
∧
Γi → (UV1

M (postp → [πω]ϕ) ∨
∨
∆i))

¬Sn =⇒ (
∧
Γi ∧ ¬

∨
∆i) ∧ ¬UV1

M (postp → [πω]ϕ)

¬Sn =⇒ ¬UV1
M (postp → [πω]ϕ) (see Lemma 5.10)

UV1
M (postp → [πω]ϕ) =⇒ Sn

Statement (5.47) is therefore equivalent to the statement

� UV1
M (postp → [πω]ϕ) =⇒ Sn (5.48)

Let M1 ⊂ FSym be the Skolem functions that were introduced with
the anonymising update V1

M in sequent Si+1. Let M2 ⊂ FSym be the
Skolem functions that were introduced with the anonymising update
V2
M in (5.37) and (5.38). The anonymising updates are defined as

V1
M = {M := M1} and V2

M = {M := M2}

By extending both sides of the sequent (5.48) with the update {M1 :=
M2} (see Lemma 2.27) we obtain:

129

5. Deducing the Existence of Software Faults when Using Contracts

� {M1 := M2}UV1
M (postp → [πω]ϕ) =⇒ {M1 := M2}Sn (5.49)

Recall that the validity of the statements is based on the assumption
that � VPSnSi+1

holds. The statement (5.48) which is equivalent to the
assumption (5.46) on page 129 implies the statement (5.49).

The rule R ensures that the Skolem functions in M1 cannot occur
in U and they cannot occur in postp → [πω]ϕ. This is because M1 is
introduced by the rule application while U and postp → [πω]ϕ exist
already before the rule application. Thus, the following are equivalence
transformations

{M1 := M2}U

V1
M︷ ︸︸ ︷

{M := M1}(postp → [πω]ϕ) =⇒ {M1 := M2}Sn
U{M1 := M2}{M := M1}(postp → [πω]ϕ) =⇒ {M1 := M2}Sn
U{M1 := M2 ||M := M2}(postp → [πω]ϕ) =⇒ {M1 := M2}Sn

U {M := M2}︸ ︷︷ ︸
V2
M

(postp → [πω]ϕ) =⇒ {M1 := M2}Sn

The last step is an equivalence transformation according to Lemma 2.42
(page 52) because M1 does not occur in postp → [πω]ϕ. Hence, state-
ment (5.49) is equivalent to

� UV2
M (postp → [πω]ϕ) =⇒ {M1 := M2}Sn (5.50)

Let {M1 := M2}Sn = S′n. Extending the sequent with the formula
UV2

Mpostp yields

� (UV2
M (postp → [πω]ϕ)) ∧ (UV2

Mpostp) =⇒ S′n ∧ UV2
Mpostp (5.51)

which is sound according to Lemma 5.9. Simplification of (5.51) yields

� (UV2
M ((postp → [πω]ϕ) ∧ postp)) =⇒ S′n ∧ UV2

Mpostp (5.52)

� UV2
M (postp ∧ [πω]ϕ) =⇒ S′n ∧ UV2

Mpostp (5.53)

The formula UV2
M (postp ∧ [πω]ϕ) is equivalent to Φ. Thus, the sought-

after formula Φ′ is S′n ∧ UV2
Mpostp (see the statement (5.45)). By

substituting Φ′ for Φ in (5.44) and expanding the abbreviations S′n and
V2
M the formula Φ′ → Sn is given by

({M1 := M2}Sn ∧ U{M := M2}postp)→ Sn (5.54)

130

5.5. Example

We conclude that under the assumptions of the theorem, validity of
the conjunction of (5.34) and (5.54), which is the SVPSnSi according to
Definition 5.6, implies the validity of VPSnSi .

�

5.5 Example

In this section we prove that the method sqrtA from Figure 5.1
(page 102) does not satisfy its specification. This section is divided
into a verification attempt and validity preservation checking accord-
ing to Algorithm 1. For checking the validity preservation of an open
proof branch Sn the special validity preservation condition SVPSnSi (see
Section 5.4.3) is used which is constructed from Sn and a sequent Si
on which a contract rule was applied.

5.5.1 Verification Attempt

We use the same simplified translation of the JML specification of the
method sqrtA as in Section 4.3.2 on page 89 (let X2 denote X ∗X):

Γ︷ ︸︸ ︷
x > 0, 0 6= null =⇒ {}[r=o.sqrtA(x)]

ϕ︷ ︸︸ ︷
(r2 6 x ∧ (r + 1)2 > x) : S0

Applying symbolic execution rules results in the sequents

Γ =⇒ [π i=0;while(

c︷ ︸︸ ︷
i*i<=x){i=i+1;}return i; ω]ϕ : S1

Γ =⇒ {i := 0}[π while(c){i=i+1;}return i; ω]ϕ : S2

Applying the loop invariant rule with the contract

(

I︷ ︸︸ ︷
(i− 1)2 6 x ∨ i .= 0,

I∧¬c∗︷ ︸︸ ︷
((i− 1)2 6 x ∨ i .= 0) ∧ i2 > x,

M︷ ︸︸ ︷
{〈true, i〉}, partial)

yields the following three premisses

1: Γ =⇒
U︷ ︸︸ ︷

{i := 0}

I︷ ︸︸ ︷
(i− 1)2 6 x ∨ i .= 0 (PO1S2

)
2: Γ =⇒ {i := 0}{i := isk1}(I ∧ c∗ → [i=i+1]I) (PO2S2

)
3: Γ =⇒ {i := 0}{i := isk1}(I ∧ ¬c∗ → [π return i; ω]ϕ) (PO3S2

= S3)

131

5. Deducing the Existence of Software Faults when Using Contracts

x > 1 + isk1 ∗ (−2),

(isk1)2 > 0,

isk1 > 1,

(isk1)2 > 1 + x,

(isk1)2 6 isk1 ∗ 2 + x− 1,

x > 0

=⇒

Fig. 5.9. Open branch Sn resulting from a verification attempt of the method sqrtA;

A counterexample of this sequent is, e.g., I(x) = 1, I(isk1) = 2.

The abbreviations PO1S2
, PO2S2

, and PO3S2
are defined in Defini-

tion 5.2 (page 112). The premisses PO1S2
and PO2S2

are provable.
Running this example with the KeY tool yields one open branch

Sn, with n > 3, that extends the branch S3. The sequent Sn is shown
in Figure 5.9 and is copied directly from the KeY tool with adapted
notation. Note that the succedent of Sn is empty. A counterexample of
this sequent is, e.g., I(x) = 1, I(isk1) = 2. The verification attempt has
failed at this point and the user does not know the reason for the failure.
The description of the example continues in the following section.

5.5.2 Checking Validity Preservation

The sequent Sn cannot be proved by the verification system. The next
step is to check if Sn is actually falsifiable which can be done by the user,
an SMT solver, or the method described in Chapter 6. The sequent Sn
turns out to be falsifiable.

According to Definition 5.6, SVPSnS2
is the conjunction of the Formu-

las (5.17) and (5.18) (see page 122). Note that also the side condition
that PO1S2

and PO2S2
are proven must be checked. This was, however,

done as part of the verification attempt (see Section 5.5.1).
The role of Formula (5.18) is to prevent the provability of SVPSnS2

in
case the target program does not terminate because non-termination
implies program correctness when using the modal operator [], (case 2
in the definition). In practice the reason for using the modal operator []
is, however, often to simplify a verification attempt. Even when using
the modal operator [] the user may implicitly regard non-terminating
programs as incorrect. For terminating programs this formula causes a
computationally expensive proof obligation. For these reasons the user
may ignore Formula (5.18) if they understand the difference.

The important formula to be proven is (5.17), which has the form

132

5.6. Evaluation

{ U︷ ︸︸ ︷
i := 0}{

M :=M2︷ ︸︸ ︷
i := isk2}

I∧¬c∗︷ ︸︸ ︷
((i− 1)2 6 x ∨ i .= 0) ∧ i2 > x) ∧ {

M1:=M2︷ ︸︸ ︷
isk1 := isk2}Sn


→ Sn

in our example. The sequent Sn has the form Γn =⇒, which is equiv-
alent to ¬Γn. The formula can therefore be rewritten by equivalence
transformations as

({isk1 := isk2}¬Γn ∧ {i := isk2}((i− 1)2 6 x ∨ i .= 0) ∧ i2 > x)→ ¬Γn

(Γn ∧ ((isk2 − 1)2 6 x ∨ isk2
.= 0) ∧ (isk2)2 > x)→ Γ ′n (5.55)

where Γ ′n is obtained by applying the update {isk1 := isk2} on Γn.
SVPSnS2

simplifies therefore to a first-order logic formula that is built
based on the leaf node Sn and the post condition of the contract. The
approach is implemented in KeY which proves Formula (5.55) auto-
matically in approximately 230 proof steps.

The user now knows that choosing a different contract would not
have lead to a successful verification attempt because the program or
the requirement specification has to be fixed. By looking at the used
symbolic execution rules the trace can be read as the program execution
trace that reveals the software fault.

5.6 Evaluation

For experiments and evaluation of the techniques described in this the-
sis we have used examples from a banking software. The banking soft-
ware was used in case studies on verification [Burdy et al., 2003] and
JML-based validation [du Bousquet et al., 2004]. In this system the
bank customer can check his or her accounts as well as make money
transfers between accounts. The customer can also set some rules for
periodical money transfer. Figure 5.10 (page 138) shows a part of the
case study source code. The source code contains JML annotations
such as method contracts, class invariants, and loop invariants and is
therefore suitable for our experiments.

133

5. Deducing the Existence of Software Faults when Using Contracts

The goals of the experiments were to check how often validity preser-
vation can be proved in practice, and how big is the computational over-
head of validity preservation checking with respect to the verification
attempt. We have implemented the Approaches 2 and 3 of Figure 5.3
(page 114) in the KeY tool. In addition we have implemented the pos-
sibility to prove the validity preservation of a branch directly without
any optimizations. The latter approach, which we call Approach X in
the following, is to prove the formula S0 → Sn, where S0 is the root
and Sn is the leaf of the selected branch (see Def. 4.4). The approach
of the evaluation is to compare the number of rules applied during
a verification attempt (VA Rules) with the additional number of rule
applications required to prove validity preservation (Approach Rules).
We are interested only in unsuccessful verification attempts because
branches of closed proofs are trivially validity preserving.6 Since the
original methods can be verified with KeY, we have introduced faults
into the methods or their specifications. In the following the modified
methods are annotated with ’*’. The results of our experiments are
shown in Table 5.2.

The columns entitled Overhead compare the number of rule appli-
cations of the respective approach with the number of rule applications
of the verification attempt. All rules were applied automatically. Ap-
proach X requires in average 106% rule applications compared to the
verification attempt. Approach 2, with 45%, requires less than half
of the computational resources required by Approach X. Approach 3
checks the special validity preservation (SVP) condition and reuses
most of the information that was computed during the verification at-
tempt. In Line 13 of Table 5.2 the proof attempt with Approach 3 did
not succeed. This is because the SVP condition is not equivalent to the
validity preservation condition of a branch (see Theorem 5.7). However,
in most cases the SVP condition was proved and required only 10% of
the resources that were used during the verification attempt.

In addition to this main result, Table 5.2 confirms also another ex-
pectation we had. First we explain the rows of the table in more detail.
The verification attempts in Lines 1, 3, 7, 11, 13 were stopped by the au-
tomatic proof search strategy of KeY when using the standard settings.
This strategy applies quantifier instantiation rules until (i) a certain in-
stantiation criteria is met and (ii) no other rules can be applied except

6 If the leaf of a branch Sn is true, then the validity preservation condition VPSn
S0

is S0 → true, which is a valid.

134

5.6. Evaluation

VA Approach X Approach 2 Approach 3

Method Ln. P Rules Rules Overhead Rules Overhead Rules Overhead

isValidBank*
1 1022 1572 154% 677 66% 204 20%

2 1 1122 1578 141% 682 60% 200 18%

isValACC*

3 1972 3411 173% 1139 57% 256 13%

4 3 2072 2694 130% 817 39% 178 8%

5 3 2072 3470 167% 1177 56% 267 13%

6 5 2172 2738 126% 805 37% 178 8%

getRef*

(see Fig. 5.10)

7 1447 1986 137% 1075 74% 310 21%

8 7 1547 1482 95% 424 27% 139 9%

9 7 1547 2134 138% 1081 69% 336 22%

10 9 1647 2102 127% 770 46% 301 18%

BOcreate*
11 4706 2073 44% 854 18% 117 2%

12 11 4806 2055 43% 848 17% 114 2%

BOcreate** 13 4396 5190 118% 3428 77% - -

Avg. Overhead 106% 45% 10%

Table 5.2. Overhead of validity preservation checking with respect to verification;

VA: verification attempt; Ln.: line number or experiment id; P: predecessor, i.e.,

the verification attempt that was extended; Approach X: direct proof of the formula

S0 → Sn; Rules: number of calculus rules applied; Overhead: number of rules applied

by the approach with respect to the number of rules applied during the verification

attempt; two different faults were introduced into B0create* and B0create**

for unrestricted quantifier instantiations and the cut rule. The cut rule
introduces case distinctions into the proof tree and in this way the crit-
ical state space of proof obligations is narrowed. Intuitively this means
that more concrete initial program states are regarded. KeY’s model
search strategy [Rümmer, 2008] uses the cut rule and automatically
chooses case distinctions. By continuing the verification attempts with
the model search strategy the other lines in the table were obtained.
The column P shows the predecessor relationship, e.g., the proof tree
generated by the verification attempt in Line 1 is extended in Line 2 by
100 rule applications. Our observation is that using the model search
strategy, i.e., introduction of case distinctions with the cut rule, the
efficiency of the approaches is increased. This can be seen when com-
paring the results in one line with the results in the predecessor line.
The model search strategy yields in several cases a payoff in the total
number of rules applied during the verification attempt and validity
preservation proving. For instance, extending the proof tree of Line 7
with 100 rules yields the situation in Line 8, where Approach X needs

135

5. Deducing the Existence of Software Faults when Using Contracts

1482 instead of 1986 rule applications, Approach 2 needs 424 instead
of 1075 rule applications, and Approach 3 needs 139 instead of 310 rule
applications.

5.7 Related Work

The techniques described in this chapter are an extension of [Gladisch,
2008a] where we describe a test case generation technique for full feasi-
ble (program) branch coverage. In [Gladisch, 2008a] branch coverage is
ensured if contracts satisfy a strength condition. In this work we have
extended this idea resulting in the special validity preservation condi-
tion (SVP). Checking validity preservation for contract rules is also
possible with the strength condition of a contract. However, the SVP
can be viewed as a customized strength condition for a contract that
is weaker and therefore valid in far more cases than the more general
strength condition given in [Gladisch, 2008a]. Furthermore, in contrast
to the strength condition defined in [Gladisch, 2008a], SVP reuses sym-
bolic execution that has already been performed. The latter property
is the reason why we argue that our approach unifies verification and
software fault detection.

While our approach starts with a verification attempt, the approach
in [Rümmer and Shah, 2007] tries to show program incorrectness by
starting at the root of the proof tree with a formula that express pro-
gram incorrectness. Thus, in contrast to our approach the approach in
[Rümmer and Shah, 2007] can only show program incorrectness.

Another related work that unifies verification and fault detection
very closely is Synergy [Gulavani et al., 2006] that is an extensions of
the Lee-Yannakakis algorithm [Lee and Yannakakis, 1992] and is an
improvement to SLAM [Ball and Rajamani, 2001] and BLAST [Hen-
zinger et al., 2002]. While these approaches are based on abstraction
and refinement, our approach is optimized for underlying verification
techniques that are based on symbolic execution or weakest precondi-
tion computation. Furthermore, the approaches [Gulavani et al., 2006],
[Henzinger et al., 2002], and [Leino and Logozzo, 2005] are more con-
cerned with the automatic generation of annotations while in our work
theorem proving and the challenges with user-provided loop invariants
and method contracts are in focus. The latter applies also to [Claessen
and Svensson, 2008] where in contrast to our work explicit program
execution is used and also other reasons for proof failure than program

136

5.8. Summary and Conclusion

error are considered. The main concern in [Claessen and Svensson, 2008]
is, however, finding the right program input to detect a fault while in
our approach we reason about the existence of such an input.

Approaches that start with a verification attempt and in case of
failure generate counterexamples for the unproved verification condi-
tions are e.g. Spec# [Barnett et al., 2005], VCC [Schulte et al., 2007],
Caduceus/Krakatoa [Filliâtre and Marché, 2007], Bogor/Kiasan [Deng
et al., 2006a]. These approaches have the problem that a counterex-
ample for a verification condition has an ambiguous meaning, i.e., the
used contracts can be too weak or the target program has an error. Our
contribution in contrast deals with this problem and therefore extends
the existing approaches.

5.8 Summary and Conclusion

The techniques described in this chapter extend existing approaches
that try to verify a program and in case of verification failure gener-
ate counterexamples for verification conditions. In contrast to existing
approaches our approach allows us to conclude the existence of a soft-
ware fault from falsifiable verifications even if contract rules were used
during the verification attempt. Furthermore, checking the existence of
a software fault after the verification attempt does not require explicit
program testing, symbolic execution, or weakest precondition compu-
tation. Instead we reuse information obtained from the verification at-
tempt to reason about the existence of a software fault. In this way
our technique unifies verification and software fault detection. We have
implemented and successfully tested three of the described approaches
on some methods of a small banking software. For proving the validity
preservation of a branch Approach 2 added 45% and Approach 3 added
only 10% of computational overhead after a failed verification attempt.

137

5. Deducing the Existence of Software Faults when Using Contracts

JAVA + JML

1 /* Copyright (c) 2002 GEMPLUS group. */

2 public class AccountMan_src {

3 private /*@ spec_public @*/ Vector LocalVector;

4 /*@ private invariant LocalVector != null;

5 private invariant LocalVector.elementCount >= 0;

6 private invariant

7 (\forall int i;0 <= i && i <= LocalVector.elementCount;

8 (LocalVector.elementData[i] instanceof Account) &&

9 (LocalVector.elementData[i]!=null)); @*/

10 ... // field and method declarations

11 /*@ public normal_behavior

12 requires true;

13 ensures (\exists int i; i >= 0 && i< LocalVector.elementCount &&

14 ((Account)(LocalVector.elementData[i])).accountnum == Acc)

15 ==> (\result != null && \result.accountnum == Acc);

16 ensures (!(\exists int i; i >= 0 && i<LocalVector.elementCount &&

17 ((Account)(LocalVector.elementData[i])).accountnum == Acc))

18 ==> \result == null;

19 modifies \nothing;

20 nullable

21 @*/

22 protected Account getRef(int Acc) {

23 int i = 0;

24 Account accn = null;

25 Account temp = null;

26 /*@ modifies i, accn, temp ;

27 loop_invariant (\exists int k ; k >=0 && k <i &&

28 ((Account)(LocalVector.elementData[k])).accountnum == Acc)

29 ==> (accn != null && accn.accountnum == Acc);

30 loop_invariant (!(\exists int i; i >= 0 &&

31 i < LocalVector.elementCount &&

32 ((Account)(LocalVector.elementData[i])).accountnum == Acc))

33 ==> accn == nul;

34 loop_invariant i >=0 && i <= LocalVector.elementCount; @*/

35 while (i < LocalVector.size()) {

36 temp = (Account) LocalVector.elementAt(i);

37 if (temp.getAccountnum() == Acc){ accn = temp; }

38 i++;

39 }

40 return accn;

41 }}

JAVA + JML

Fig. 5.10. Excerpt from the banking case study showing the declaration and the

specification of the field LocalVector and the method getRef

138

6

Counterexample Generation for

Verification Conditions with

Quantifiers

6.1 Introduction

Showing the satisfiability of a first-order logic (FOL) formula means to
show the existence of an interpretation in which the formula evaluates
to true. This is an important and long studied problem in different ap-
plication domains such as formal software verification, software testing,
and artificial intelligence. In software verification and testing the mod-
els, i.e. interpretations, are used as counterexamples to debug programs
and specifications and to generate test data, respectively. The approach
that we suggest is to use programs to represent partial models and to
use formal verification in order to evaluate quantified formulas to true.

The technique described in this chapter is a model generation tech-
nique which is a sub-component of our software-fault detection ap-
proach described in Chapter 4. This technique is required in order to
generate counterexamples for verification conditions that could not be
proved during a verification attempt. If a verification condition has a
counterexample and the branch of the proof tree on which the verifica-
tion condition occurs is validity preserving (see Chapters 4 and 5), then
the target program does not satisfy its specification. Hence, a software
fault is detected and the counterexample helps finding the fault because
it represents the initial state of the program run that reveals the fault.
The generation of counterexamples is further important in counterex-
ample guided abstraction refinement (CEGAR) [Clarke et al., 2000]
and for checking the consistency, i.e. contradiction-freeness, of axioms
and of preconditions in specifications.

Satisfiability modulo theory (SMT) solvers are considered as the
state-of-the-art techniques for showing satisfiability of FOL formulas

6. Counterexample Generation for Quantified Verification Conditions

JAVA + JML

1 /*@ public normal_behavior

2 @ requires next!=null && prev!=null && next!=prev

3 @ && (\forall int k; true ; 0<=next[k] && next[k] < prev.length)

4 @ && (\forall int l; 0<=l && l<next.length; next[l]==l);

5 @ ensures (\forall int j; 0<=j && j<next.length; prev[next[j]]==j);

6 @ modifies prev[*]; @*/

7 public void link(){

8 /*@ loop_invariant (\forall int x; 0<=x && x <= i; prev[next[x]]==x)

9 && (0<=i && i<=next.length) ; modifies prev[*],i; @*/

10 for(int i=0;i<next.length;i++){ prev[next[i]]=i; }

11 }

JAVA + JML

Fig. 6.1. An example of a JAVA method (of class MyCls) with a Jml specification

that is not verifiable because the underlined formula should be x < i instead of x 6 i

and to generate models for FOL formulas. A major bottleneck is, how-
ever, the handling of quantifiers (see, e.g., [Déharbe and Ranise, 2009;
Moskal et al., 2008; Ge et al., 2009; Nieuwenhuis et al., 2007]). SMT
solvers can often create models for quantified formulas if one theory
is involved. Verification conditions, however, usually include quanti-
fied formulas belonging to the combinations of multiple theories. Such
verification conditions lead to problems that are not in the decidable
fragments of the solvers. In such cases an SMT solver returns the result
unknown, which means that the solver cannot determine if the formula
is satisfiable or not.

As a motivating example, assume we want to show the satisfiability
of the formula

∀x.(x > 0→ prev(next(x)) = x) (6.1)

where prev and next are uninterpreted function symbols. The formula
stems from an unproved verification condition. Some state-of-the-art
SMT solvers – concretely we have tested Z3 [de Moura and Bjørner,
2008], CVC3 [Barrett and Tinelli, 2007], Yices [Dutertre and de Moura,
2006b,a] – are in contrast to the here described technique not capable
of to solve this formula. The reason is that this formula is not in the
decidable fragment of the solvers because it combines arithmetics, un-
interpreted functions, and quantification. We will use this example to
demonstrate our approach in this chapter.

140

6.1. Introduction

∀x : int.(x 6 −1 ∨ x > 1 + i0 ∨ get0(prev(self), acc[](next(self), x)
.
= x),

∀x : MyCls.(prevAtPre(x)
.
= prev(x)),

∀x : MyCls.(x
.
= null ∨ ¬created(x) ∨ ¬a(x)

.
= null),

∀x : MyCls.(x
.
= null ∨ ¬created(x) ∨ ¬next(x)

.
= null),

∀x : MyCls.(x
.
= null ∨ ¬created(x) ∨ ¬prev(x)

.
= null),

∀x : int.acc[](next(self), x) > 0),

∀x : int.acc[](next(self), x) 6 −1 + length(prev(self))),

∀x : int.(l 6 −1 ∨ l > length(next(self)) ∨ acc[](next(self), x)
.
= x),

. . . =⇒ . . .

Fig. 6.2. Quantified formulas in a sequent resulting from a failed verification at-

tempt of the code in Figure 6.1; 21 additional ground formulas are abbreviated by

’. . .’

Verification conditions with quantified formulas occur frequently as
we have already motivated in Section 4.4.2 (page 98). Whenever an ob-
ject field of a class type is declared in a class C, then according to JML’s
semantics KeY generates a formula which states that for all objects of
C the field is not null. Hence, a quantified formula is introduced into
verification conditions even if it was not explicitly defined by the user.
Similarly, if a class invariant is declared in C, then a formula is gen-
erated which states that the invariant holds for all objects of C (see
Figure 4.3, page 98).

If in a verification condition a single sub-formula occurs that is not in
the decidable fragment of an SMT solver, then the SMT solver cannot
be used for counterexample generation of the verification condition. In
order to see how severe this problem is in practice consider the example
in Figure 6.1. The method link initializes the array prev such that
prev[next[i]]=i for all indices i of the array next, i.e., the method
creates a doubly linked list based on arrays. A verification attempt of
the method with KeY fails with an open proof branch. Figure 6.2 shows
the quantified formulas occurring in the verification condition of the
proof branch. Although the verification condition is falsifiable an SMT
solver cannot generate a counterexample because it contains quantified
formulas with uninterpreted and arithmetic function symbols.

We propose a model generation technique that is not explicitly re-
stricted to a specific class of formulas. Consequently, the technique is
not a decision procedure, i.e., it may not terminate. However, it can
solve more general formulas than SMT solvers can solve in cases where
it terminates. The proposed technique is also capable of generating
only partial interpretations that satisfy only the quantified formulas,

141

6. Counterexample Generation for Quantified Verification Conditions

and return a residue of ground formulas that is to be shown satisfiable.
Ground formulas are formulas without quantifiers. In this mode the
technique acts as a pre-computation step for SMT solvers to eliminate
quantifiers. Quantifier elimination in this sense is sound for showing sat-
isfiability but not for refutational or validity proofs. However, for the
handling of quantifiers in refutational and validity proofs powerful in-
stantiation based techniques already exist. These can be combined with
the proposed technique in order to create semi-decision procedures.

While model generation is not a new idea, the novelties of our ap-
proach are (1) the choice of language to represent (partial) interpre-
tations, (2) the technique for the construction of models, and (3) the
means to evaluate (quantified) formulas under these interpretations.
Since satisfiability solving and model generation for ground formulas
is already well studied, we concentrate on the handling of quantified
formulas.

This chapter is a combination of the papers [Gladisch, 2010b] and
[Gladisch, 2010a]. The first paper presents the theory of the approach
with a soundness proof. The second paper describes the algorithm,
applies it to test data generation, and provides an evaluation and com-
parison of the algorithm to SMT solvers. These contributions are all
included in this chapter.

6.1.1 Background and Related Work

One has to distinguish between different quantifiers in different con-
texts, namely between those that can be Skolemized and those that
cannot be Skolemized. For instance, in an attempt to show the validity
of the formula ∀x.ϕ(x), the variable x can be Skolemized, i.e. replaced
by a fresh constant, because all symbols of the signature are implic-
itly universally quantified in this context. When showing the validity
of ∃x.ϕ(x), Skolemization is not possible. In contrast, when showing
satisfiability, Skolemization is allowed for ∃x.ϕ(x) but not for ∀x.ϕ(x).
Thus, assuming the formulas being in prenex form, the tricky cases
are the handling of (a) existential quantification when showing validity
and (b) universal quantification when showing satisfiability. In order to
handle case (a) some instantiation(s) of the quantified formulas can be
created hoping to complete the proof. Soundness is preserved by any
instantiation. The situation in case (b) is, however, worse when using
instantiation-based methods because these methods are sound only if
a complete instantiation of the quantified formula is guaranteed.

142

6.1. Introduction

A popular instantiation heuristic is E-matching [Moskal et al., 2008]
which was first used in the theorem prover Simplify [Detlefs et al., 2005].
E-matching is, however, not complete in general. In general a quantified
formula ∀x.ϕ(x) cannot be substituted by a satisfiability preserving
conjunction ϕ(t0) ∧ . . . ∧ ϕ(tn) where t0 . . . tn are terms computed via
E-matching. For this reason, Simplify may produce unsound answers
(see also [Kiniry et al., 2006]) as shown in the following example.

∀h.∀i.∀v.select(store(h, i, v), i) = v (6.2)

∀h.∀j.0 6 select(h, j) ∧ select(h, j) 6 232 − 1 (6.3)

Formula (6.2) is an axiom of the theory of arrays and (6.3) speci-
fies that all array elements of all arrays have values between 0 and
232 − 1. The first axiom is used to specify heap memory in [Moskal,
2009]. Formula (6.3) seems like a useful axiom to specify that all val-
ues in the heap memory have lower and upper bounds, as it is the
case in computer systems. However, the conjunction (6.2) ∧ (6.3) is
unsatisfiable, which can be easily seen when considering the following
instantiation [h := store(h0, k, 232), j := k], (see [Moskal, 2009]). Sim-
plify, however, produces a counterexample for ¬((6.2) ∧ (6.3)), which
means that it satisfies the false formula (6.2)∧ (6.3). E-matching may
be used for sound satisfiability solving when a complete instantiation of
quantifiers is ensured. For instance, completeness of instantiation via E-
matching has been shown for the Bernays-Schönfinkel class in [Ge and
de Moura, 2009]. An important fragment of FOL for program speci-
fication which allows a complete instantiation is the Array Property
Fragment [Bradley et al., 2006]. E-matching is used in state-of-the-art
SMT solvers such as Z3 [de Moura and Bjørner, 2008], CVC3 [Barrett
and Tinelli, 2007], Yices [Dutertre and de Moura, 2006b,a], and oth-
ers (see [de Moura and Bjørner, 2007]). Formula (6.1) which is solvable
with our technique is, however, neither in the Bernays-Schönfinkel class
nor in the Array Property Fragment.

Another set of approaches for finding instantiations of quantified
formulas is based on free-variables (see e.g. [Giese, 2001]). These ap-
proaches focus, however, on validity or respectively unsatisfiability
proofs and not on satisfiability solving. More precisely, they do not
guarantee a complete instantiation of quantifiers.

Satisfiability of a formula can be shown by weakening the formula
with existential quantifiers and then showing its validity, instead of sat-
isfiability. This idea is followed in [Rümmer and Shah, 2007] for proving

143

6. Counterexample Generation for Quantified Verification Conditions

the existence of a state that reveals a software fault. For instance, let
φ(t) be a formula with an occurrence of the term t, then the approach
generates the formula ∃x.{t := x}φ(t).1 This transformation is repeated
also for other terms of φ. The approach uses then free variables for com-
puting instantiations of the existentially quantified variables.

Model generation theorem provers (MGTP) are similar to SMT
solvers as their underlying technique is DPLL lifted to FOL. For in-
stance, the theorem prover Darwin [Baumgartner et al., 2006] is an
instantiation-based prover which is sound and complete for the unsat-
isfiability of FOL without theories. For the satisfiability part it decides
Bernays-Schönfinkel formulas. In [Ahrendt, 2001] a complete model
generator is described but similarly as in the case of the theorem prover
Simplify the method is not sound for model generation. The idea is to
generate likely representations of models and let the user decide if the
models are correct or not. Saturation-based provers based on superpo-
sition, e.g. SPASS [Horbach and Weidenbach, 2009a,b; Althaus et al.,
2009], can be instantiated to decision procedures for some decidable
fragments of first-order logic.

Quantified constraint satisfaction problem (QCSP) solvers, e.g.,
[Gent et al., 2005], primarily regard the finite version of the satisfi-
ability problem, whereas our approach handles infinite domains. Some
of the work, e.g. [Benhamou and Goualard, 2000], also considers con-
tinues domains, however, these techniques do not handle uninterpreted
function symbols other than constants. The finite domain version of
the satisfiability problem in first-order logic is handled by finite model
finding methods such as [Zhang and Zhang, 2004].

Different model building techniques are described in [Ricardo et al.,
2004]. The authors distinguish between enumeration-based methods
corresponding to the above mentioned instantiation techniques and
deduction-base methods which are in the main focus of their book. De-
ductive methods produce syntactic representations of models in some
logical language. Nitpik which is a counter example generator for Is-
abelle/HOL uses first-order relational logic (FORL) [Blanchette, 2010].
FORL extends FOL with relational calculus operators and the transi-
tive closure. The approach we propose is a deduction-based method
which differs from existing approaches in the representation and gen-
eration of models.

1 Assuming that the top-level symbol of t is a non-rigid function symbol

144

6.2. The Basic Idea of our Approach

Quantifier elimination techniques, in the traditional sense, replace
quantified formulas by equivalent ground formulas, i.e. without quan-
tifiers. Popular methods are, e.g., the Fourier-Motzkin quantifier elimi-
nation procedure for linear rational arithmetic and Cooper’s quantifier
elimination procedure for Presburger arithmetic (see, e.g., [Ghilardi,
2003] for more examples). These techniques are, in contrast to the pro-
posed technique, not capable of eliminating the quantifier in, e.g., (6.1).
Since first-order logic is only semi-decidable, equivalence preserving
quantifier elimination is possible only in special cases. The transforma-
tion of formulas by our technique is not equivalence preserving. The
advantage of our technique is, however, that it is not restricted to a
certain class of formulas. Hence, our approach can solve formulas that
other approaches cannot solve.

6.2 The Basic Idea of our Approach

The basic idea of our approach is to generate a partial FOL model
in which a quantified formula that we want to eliminate evaluates to
true. A set of quantified formulas can be eliminated, i.e. evaluated to
true, by successive extensions of the partial model. This approach can
be continued also on ground formulas to generate complete models.
While this basic idea is simple, the interesting questions are: how to
represent the interpretations, how to generate (partial) models, and
what calculus is suitable in order to evaluate formulas under those
(partial) interpretations.

The approach that we suggest is to use programs to represent partial
models and to use formal verification in order to evaluate the quantified
formulas to true. Our approach is to regard a given quantified formula
ϕ as a postcondition and to generate for ϕ a program p such that the
final states of p satisfies ϕ. Thus, one of our contributions is a program
generation technique.

For example, in order to solve Formula (6.1), we could generate the
following program (assuming, e.g., JAVA-like syntax and semantics):

for(i=0;true;i++){ next[i]=new T(); next[i].prev=i; }
(6.4)

and then prove the validity of the dynamic logic formula2

〈(6.4)〉(6.1) (6.5)
2 The formula 〈(6.4)〉(6.1) can be read as the weakest precondition wp((6.4),(6.1)).

145

6. Counterexample Generation for Quantified Verification Conditions

If Formula (6.5) is valid, then according to Definition 2.25 there is a
state S such that the program (6.4) terminates in a state S′ in which the
Formula (6.1) is true. If the verification calculus is capable to prove this
formula, then effectively the quantified formula is eliminated because it
is replaced by the formula true and a partial interpretation represented
in form of a program is obtained. Hence, the satisfiability problem is
replaced by a program generation and verification problem.

A typical programming language such as JAVA is, however, not di-
rectly suitable for this task. A syntactical problem is that function and
predicate symbols are usually not representable in such languages. A
more severe problem is that for the verification of programs with loops,
loop invariants have to be generated.

We found that a language and a calculus that are suitable for our
purpose are KeY’s updates and the update simplification calculus built
into KeY. Quantified updates can represent models for many quantified
formulas. However, since (quantified) updates are less expressive than a
turing-complete while-language the updates simplification calculus can
fully automatically reduce FOL formulas with updates to pure FOL
formulas. Loop invariants do not have to be generated for the verifica-
tion step. Another important advantage of updates is that updates are
syntactically and semantically closer to first-order logic than general
programming languages. The latter aspect simplifies the generation of
updates from formulas.

6.3 Model Generation by Iterative Update Construction

6.3.1 The Goal and the Challenges

In order to show the satisfiability of a formula φin, our approach is to
generate an update u, such that � {u}φin. If such an update exists,
then φin is satisfiable and the update represents a set of models of φin.

The main contribution of this chapter is a technique for generating
(partial) models for quantified formulas. As this work was developed in
the context of KeY we regard the model generation problem of a quanti-
fied formula ∀x.φ(x) in a sequent ϕ = (Γ,∀x.φ(x) =⇒ ∆). The formula
φ(x) ∈ FmlFOL denotes a formula with an occurrence of the variable
x ∈ VSym and Γ,∆ ⊂ FmlFOL.3 Such sequents occur frequently as

3 Note that KeY can transform all DL formulas that contain no programs into FOL

formulas.

146

6.3. Model Generation by Iterative Update Construction

open branches of failed proof attempts after symbolic execution and
update simplification have been applied. The reason for proof failure is
often unclear and it is desired to determine if ϕ has a counterexample,
i.e., if a model exists for ¬ϕ. The goal is therefore given by the following
problem description.

Remark 6.1. In this chapter we often use the sequent notation to rep-
resent the equivalent formulas according to Definition 2.29.

Problem 6.2. Given a sequent (Γ,∀x.φ(x) =⇒ ∆) the goal is to gen-
erate an update u such that (see Remark 6.1):

({u}(Γ,∀x.φ(x) =⇒ ∆)) ≡ (Γ ′, true =⇒ ∆′) (6.6)

where Γ ′ and ∆′ are obtained by applying {u} on the formulas of the
sets Γ and ∆, respectively.

If this problem is solved by a technique for given formulas, then this
technique can be applied iteratively to all quantified formulas occurring
in Γ and∆ resulting in a sequent Γ ′′ =⇒ ∆′′ that consists only of ground
formulas. Note that this problem is undecidable in the general case
because otherwise the satisfiability problem of first-order logic formulas
would be decidable. A technique for solving this problem can also be
used to build models for ground formulas but we concentrate mainly
on the harder problem – the removal of quantified formulas from a
sequent. Note that non-Skolemizable quantified formulas occurring in
the succedent ∆ are those with existential quantifiers and they can be
moved to the antecedent Γ using the following equivalence:

(Γ =⇒ ∃x.φ(x), ∆) ≡ (Γ,∀x.¬φ(x) =⇒ ∆)

We have implemented different algorithms that follow this approach.
Unfortunately, only in rare cases the Problem 6.2 was solved by early
algorithms we have developed. Based on experiments with these algo-
rithms we have identified two important problems that we state in form
of the following informal proposition.

Proposition 6.3. a) In general cases of ∀x.φ(x), it is necessary to
somehow analyze the semantic properties about the matrix φ(x) and
to construct the update u based on this information in order to satisfy
� {u}∀x.φ(x).

147

6. Counterexample Generation for Quantified Verification Conditions

b) The KeY theorem prover is often not sufficiently powerful to au-
tomatically simplify (Γ ′, {u}∀x.φ(x) =⇒ ∆′) to (Γ ′, true =⇒ ∆′) if
� {u}∀x.φ(x) and u is a quantified update.

The problem (a) of Proposition 6.3 requires some systematic method
that analyzes the semantic properties of the matrix φ(x). This is be-
cause the formula φ(x) can have an arbitrary propositional structure
or contain literals with semantic dependencies. For instance, in the
formula ∀x.(f(x) > x ∧ g(x) < f(x)) the function g depends on the
function f , and the function f depends on the variable x. Some possi-
bilities to analyze the semantic properties of φ(x) are to test instances
of φ(x) or to use free variables (see, e.g., [Giese, 2001]). We have exper-
imented with the latter approach and could solve problem (a) in some
cases.

The reason for problem (b) is that in order to simplify the matrix
φ(x) the sequent calculus requires semantic information about φ(x)
to be available on the sequent level, i.e., in the formulas Γ ∪ ∆. For
instance, the calculus presented in Section 2.4 is not capable to evaluate
the quantified formula in the sequent ∀x.(A → (A ∨ B)) =⇒ to true4.
This is because propositional rules are not applicable on the quantified
formula and the only applicable rule is quantifier instantiation, which
does not eliminate the quantified formula either.

6.3.2 The Solution

We have implemented an algorithm that solves both problems of Propo-
sition 6.3 and is capable to solve Problem 6.10 in many cases. The algo-
rithm is described in Section 6.4. In this section we provide a theorem
that formalizes the crucial problem simplification technique of the al-
gorithm. The simplification technique is the core of the algorithm and
we therefore prove the soundness of this simplification.

For the construction of the updates it is sometimes necessary to
introduce and axiomatize fresh function symbols. For instance, it may
be desired to introduce a fresh function notZero ∈ FSymnr with the
axiom ¬(notZero .= 0). With this axiom it is, e.g., possible to write

4 The KeY tool implements a more powerful calculus than presented in this thesis

and it is capable of evaluating the quantified formula to true. It reaches, however,

its limitations when more complex matrices are encountered because this kind of

evaluation does not follow the idea of the sequent calculus.

148

6.3. Model Generation by Iterative Update Construction

an update a := b + notZero, with a, b ∈ TrmFOL, expressing a gen-
eral assignment to a with a value different from b. Each update ui is
therefore associated with an axiom αi. Note that several axioms can be
combined to one axiom by using a conjunction.

Definition 6.4. Given a sequent ϕ = (Γ,∀x.φ(x) =⇒ ∆), where Γ,∆ ⊂
FmlFOL and φ(x) ∈ FmlFOL is a formula with an occurrence of x ∈
VSym. Let m ∈ N, u0, . . . , um ∈ Updates; and formulas α0, . . . , αm ∈
FmlFOL. The formulas ψm, ϕ′m, ϕm ∈ Formulae, for m ∈ N, are defined
recursively as:
• ϕ0 = (Γ,∀x.φ(x) =⇒ ∆) ϕm+1 = αm → {um}ϕm
• ϕ′0 = (Γ, true =⇒ ∆) ϕ′m+1 = αm → {um}ϕ′m
• ψ0 = (Γ =⇒ ∀x.φ(x), ∆) ψm+1 = αm → {um}ψm
Definition 6.4 can be seen as an abstract search technique where the

sequence of updates um ; . . . ;u0, m ∈ N, has to be found for solving
the Problem 6.2. The updates um ; . . . ;u0 constitute the update u in
Problem 6.2 and ϕ0 ≡ ϕ is the original sequent that is to be shown
falsifiable. In the following theorem we assume γ = ∀x.φ(x).

Theorem 6.5. Let S be the set of partial models (see Def. 2.6). Let
ϕ = (Γ, γ =⇒ ∆) and ψm, ϕ

′
m, ϕm ∈ Formulae be defined according to

Definition 6.4, then

i. � ψm ↔ (ϕ′m ↔ ϕm)
ii. If there is sm ∈ S such that sm � ¬ϕm, then there exists s ∈ S with
s = valsm(um; . . . ;u1)(sm) and s � ¬ϕ.

The theorem is proven in Section 6.3.3.
The theorem describes under what condition a sequence (not se-

quent) of update and axiom pairs (u0, α0), . . . , (um, αm) evaluates a
quantified formula to true; and the theorem describes how this sequence
represents a partial model.

Formula ¬ϕ is the formula for which a model shall be generated.
Statement (ii) of Theorem 6.5 states that if there is a model sm ∈ S
for a formula ¬ϕm, according to Definition 6.4, then from sm a model
for ¬ϕ can be derived by evaluation of the updates u0, . . . , um. Hence,
¬ϕm can be used to show the satisfiability of ¬ϕ.

For instance, let ϕ ≡ (¬a = b), then a suitable pair (u0, α0) to
construct ϕ1 is, e.g. (a := b, true). In this case ϕ1 has the form true→
{a := b}(¬a = b) which can be simplified to false. Hence, any state
s1 ∈ S satisfies s1 � ¬ϕ1 which implies that ¬ϕ is satisfiable and a

149

6. Counterexample Generation for Quantified Verification Conditions

model s ∈ S for ¬ϕ is s = vals1(a := b)(s1). Note, that choosing
an update is a problem for which no general uniform solution exists,
e.g., the pair (b := a, true) or the pair (a := 1 || b := 1, false) are also
suitable candidates. We provide heuristics for finding such updates in
Section 6.5.

An important property of the statement (ii) for the construction
of an update search procedure is that soundness of the statement is
preserved by any pair (u, α). I.e., in principle random updates could
be tried-out by a search procedure. For instance, consider the pair
(a := 1 || b := 2, true) or the pair (a := b, false) where neither of them
represents a model of ϕ, with ϕ ≡ (¬a = b). In both cases ϕ1 evaluates
to true. Hence, there is no s1 ∈ S such that s1 � ¬ϕ1 and therefore
statement (ii) makes no implication regarding the satisfiability of ¬ϕ.

Based on statement (i) an algorithm can be constructed for the
generation of models for ground formulas. The challenge is, however,
to generate a model that satisfies a quantified formula that cannot be
Skolemized. If ψm is valid then the model generation problem for ¬ϕm
can be replaced by the model generation problem for ¬ϕ′m because ϕm
and ϕ′m are equivalent. Considering Definition 6.4, the statement (i) is
interesting because in ϕ′m the quantified formula is eliminated, i.e., it
is replaced by true. Together with statement (ii), ¬ϕ′m can be used to
generate a model for ¬ϕ.

The problem is to check if ϕ′m ≡ ϕm, which is a generalization of
Problem 6.2. Theorem 6.5 states that the problem ϕ′m ≡ ϕm can be
solved by a validity proof of ψm. This allows solving the problems de-
scribed in Proposition 6.3 because the quantified formula in ψm occurs
negated with respect to ϕm and can therefore be Skolemized. For in-
stance, let ϕm = (∀x.φ(x) =⇒), then ψm = (=⇒ ∀x.φ(x)). In contrast to
ϕm, the latter can be simplified to (=⇒ φ(sk)), where sk ∈ FSymr is the
Skolem function. When ψm is Skolemized, then it is (a) easy to analyze
the semantics of φ(sk) and (b) the propositional structure of φ(sk) can
be flattened to the sequent level which is necessary to simplify quan-
tified updates. In this way both problems described in Proposition 6.3
are solved. For instance, the calculus described in Section 2.4 is not
capable to simplify ({u}∀x.(A→ (A∨B)) =⇒) to (true =⇒) but it can
simplify (=⇒ {u}∀x.(A → (A ∨ B))) to (=⇒ true), for any update u.
More examples showing these advantages are provided in the following
sections such as Example 6.9 on page 157.

150

6.3. Model Generation by Iterative Update Construction

The approach can be generalized for the generation of models for
ground formulas by using the more general Definition 6.6 instead of
Definition 6.4 in Theorem 6.5.

Definition 6.6. Given a sequent ϕ = (Γ, γ =⇒ ∆), where γ ∈ FmlFOL

and Γ,∆ ⊂ FmlFOL. Let m ∈ N, u0, . . . , um ∈ Updates; and the formu-
las α0, . . . , αm ∈ FmlFOL. The formulas ψm, ϕ′m, ϕm ∈ Formulae, for
m ∈ N, are defined recursively as:
• ϕ0 = (Γ, γ =⇒ ∆) ϕm+1 = αm → {um}ϕm
• ϕ′0 = (Γ, true =⇒ ∆) ϕ′m+1 = αm → {um}ϕ′m
• ψ0 = (Γ =⇒ γ,∆) ψm+1 = αm → {um}ψm

6.3.3 Soundness Proof of Theorem 6.5

Lemma 6.7. Let A,B,C ∈ Formulae. The formula following is a valid

(A→ (B ↔ C))↔ ((A→ B)↔ (A→ C)) (6.7)

Proof. Consider the two cases: A evaluates to true and A evaluates to
false. The two resulting formulas

(B ↔ C) ↔ (B ↔ C)
and

true ↔ (true↔ true)

are obviously tautologies. �

Proof of Theorem 6.5

The proof of Theorem 6.5 is based on induction on m.

Induction Base (m = 0) (i) Validity of

(Γ =⇒ ∀x.φ(x), ∆︸ ︷︷ ︸
ψ0

)↔ ((Γ, true =⇒ ∆︸ ︷︷ ︸
ϕ′0

)↔ (Γ,∀x.φ(x) =⇒ ∆︸ ︷︷ ︸
ϕ0

)) (6.8)

can be shown by using propositional transformation rules. Using the
abbreviations Φ = ¬Γ ∨∆ and C = ∀x.φ(x), Formula 6.8 rewrites to:

(C ∨ Φ)↔ (Φ↔ (C → Φ)) (6.9)

We consider the two cases: C evaluates to true and C evaluates to false.
This results in the following two formulas

151

6. Counterexample Generation for Quantified Verification Conditions

true ↔ (Φ↔ Φ)
and

Φ ↔ (Φ↔ true)

which are obviously tautologies.

(ii) Since ϕ0 = ϕ and s = s0 statement (ii) is trivially true.

Induction Step (m→ m+ 1) (i) Assuming � ψm ↔ (ϕ′m ↔ ϕm), we
want to show that � ψm+1 ↔ (ϕ′m+1 ↔ ϕm+1). If the statement

� ψm ↔ (ϕ′m ↔ ϕm) (6.10)

holds, then according to Lemma 2.27 (page 43) the following statement
holds for any um ∈ Updates.

� {um}(ψm ↔ (ϕ′m ↔ ϕm)) (6.11)

Using Lemma 2.45 this is equivalent to

� {um}ψm ↔ ({um}ϕ′m ↔ {um}ϕm) (6.12)

For any α ∈ FmlFOL, statement (6.12) implies

� α→ ({um}ψm ↔ ({um}ϕ′m ↔ {um}ϕm)) (6.13)

Using Lemma 6.7 the following equivalent statements are obtained.

� (α→ {um}ψm)↔ (α→ ({um}ϕ′m ↔ {um} ϕm)) (6.14)
� (α→ {um}ψm)↔ ((α→ {um}ϕ′m)↔ (α → {um}ϕm))(6.15)

Statement 6.15 is equivalent to � ψm+1 ↔ (ϕ′m+1 ↔ ϕm+1).

(ii) Assuming that statement (ii) of the theorem holds for some
m > 0 we show that it holds also for m+ 1. Assume there is sm+1 ∈ S
such that sm+1 � ¬ϕm+1. By propagating the negation of ¬ϕm+1 to
the inside of the formula, loosely speaking, we obtain the equivalent
formula ϕ̂m ∈ Formulae that can be recursively defined as

ϕ̂0 = ¬(Γ, true =⇒ ∆) ϕ̂m+1 = (αm ∧ {um}ϕ̂m)

Hence, sm+1 � ¬ϕm+1 is equivalent to sm+1 � ϕ̂m+1 which is equiv-
alent to sm+1 � (αm ∧ {um}ϕ̂m). There is sm ∈ S with sm =

152

6.4. The Model Search Algorithm

valsm+1(um)(sm+1) such that sm � αm ∧ ϕ̂m and therefore sm � ϕ̂m.
Since ϕ̂m is equivalent to ¬ϕm we have sm � ¬ϕm.

According to the induction hypothesis there exists s ∈ S with
s = valsm(um; . . . ;u1)(sm) such that s � ¬ϕ. Because of sm =
valsm+1(um)(sm+1), we conclude that if sm+1 � ¬ϕm+1, then there ex-
ists s ∈ S with s = valsm+1(um+1;um; . . . ;u1)(sm+1) such that s � ¬ϕ.

�

6.4 The Model Search Algorithm

Preliminaries

The basic idea of Algorithm 3 is to generate a partial FOL model
in which a quantified formula that we want to eliminate evaluates to
true. A set of quantified formulas is eliminated, i.e. evaluated to true,
by successive extensions of the partial model. This approach can be
continued also on ground formulas to generate complete models. The
technique requires a theorem prover for FOL and an implementation of
updates and the update simplification calculus. In the following we give
general requirements of the theorem prover which are satisfied, e.g., by
KeY.

Definition 6.8. Procedure Th. The procedure Th represents a theo-
rem prover.

• Given a formula ϑ ∈ Formulae as input, Th(ϑ) returns a set Θ ⊂
FmlFOL.
• Each ϑ′ ∈ Θ is a disjunction consisting of literals and quantified

formulas.
• Θ �A ϑ, where A is the set of new symbols introduced by Th. (see

Def. 2.12, page 32)
• For all ϑ′ ∈ Θ the following holds � (¬ϑ′)→ (¬ϑ).

The requirement that the theorem prover accepts as input DL for-
mulas is an over-approximation because the only extension of FOL
needed is the update language. In order to handle FOL formulas with
updates, an update simplification preprocessor can be combined with
an off-the-shelf theorem prover. The second requirement means that if
Th terminates with a set of open proof branches, i.e. unproved proof
obligations, then at least the propositional structure of formulas must

153

6. Counterexample Generation for Quantified Verification Conditions

be simplified. The third and fourth requirements prevent the loss of se-
mantic information during proving. The requirement Θ �A ϑ expresses
soundness of Th and implies that if Θ = ∅, then � ϑ holds. The last
requirement coincides with the requirement that the branches Θ are
validity preserving (see Section 4.4.1).

The KeY tool satisfies these requirements. A sequent can be seen
as a disjunction, where the formulas in the antecedent are negated. In
the following sections we assume that the set Θ returned by Th consists
of sequents and we include sequents into the set FmlFOL as syntactic
sugar.

In this chapter two algorithms are described. Algorithm 3, which
is described in this section, extracts information from (quantified) for-
mulas for update construction and invokes the theorem prover Th to
verify {u}ϕ. Algorithm 3 queries Algorithm 4 to construct candidate
updates based on information obtained from Algorithm 3. Algorithm 4
is described in Section 6.6. In order to keep the pseudo-code small we
use indeterministic choice points, marked by the keyword choose, and
assume a backtracking control-flow w.r.t. to these choice points. In this
way we also separate the basic algorithm from concrete search heuris-
tics. If a choice at a choice point cannot be made, e.g., when trying
to select an element of an empty set, then the algorithm backtracks or
terminates with the result “unknown” resp. “∅”.

Description of Algorithm 3

Assume we want to generate a model satisfying the input formula φin.
The Algorithm 3 reformulates this problem as counterexample genera-
tion for ¬φin which is represented by ϕ′ (Line 1). In Line 4 the algorithm
attempts to show � ϕ′. If ϕ′ is valid, then Φ = ∅ and the algorithm
stops because ϕ′ has no counterexample and φin is unsatisfiable. The
other case is that the proof attempt of ϕ′ results in a set of open, i.e.
unproved, proof obligations Φ (Line 5). In this case it is unknown if
a model of φin exists or not. The proof obligations Φ result from case
distinctions in the proof structure created by Th and contain valuable
information because they describe situations in which ϕ′ potentially
has counterexamples.

In Line 5 the algorithm selects a formula ϕ ∈ Φ. The goal is to
create a counterexample for ϕ, i.e. to satisfy ¬ϕ, in order to sat-
isfy φin. Ground formulas should be preferred at this choice point
because they can be efficiently checked by a ground procedure such

154

6.4. The Model Search Algorithm

Algorithm 3 modelSearch(φin)
1: ϕ′ := ¬φin
2: solution := ⊥
3: loop

4: Φ := Th(ϕ′)

5: choose ϕ ∈ Φ
6: if ϕ is ground then

7: if GROUNDPROC(¬ϕ) = (“sat”, groundmodel) then

8: return (“sat”, groundmodel, solution)

9: else

10: backtrack or return (“unknown”, ⊥, ⊥)

11: end if

12: end if

13: normalize ϕ such that all quantified formulas appear in the antecedent of ϕ

14: choose a quantified formula ∀x.φ(x) in ϕ, i.e., let ϕ = (Γ,∀x.φ(x) =⇒ ∆)

15: ϕ′ := (Γ, true =⇒ ∆)

16: ψ := (Γ =⇒ ∀x.φ(x),∆)

17: Ψ := Th(ψ)

18: while Ψ 6= ∅ do

19: choose ψ′ ∈ Ψ
20: Υ := formulaToUpdate(ψ′) (see Section 6.6)

21: choose (u, α) ∈ Υ
22: solution := append (u, α) to solution

23: ϕ′ := (α→ {u}ϕ′)
24: ψ := (α→ {u}ψ)

25: Ψ := Th(ψ)

26: end while

27: end loop

as an SMT solver. Otherwise, we assume ϕ is not ground. After
normalization at Line 13 the antecedent of ϕ contains at least one
universally quantified formula and all formulas of the succedent are
ground. This normalization can be easily achieved by the equivalence
(Γ =⇒ ∃x.φ(x), ∆) ≡ (Γ,∀x¬φ(x) =⇒ ∆). A counterexample for ϕ
must satisfy the formulas in the antecedent, i.e. Γ and ∀x.φ(x). The
algorithm selects a quantified formula ∀x.φ(x) from the antecedent of
ϕ (Line 14) for which a model is generated in the following.

The core idea of this algorithm is to generate an update u, such that
{u}∀x.φ(x) evaluates to true, and in this way to eliminate the quantified
formula. The weakest condition under which ∀x.φ(x) evaluates to true
in ϕ can be expressed as

155

6. Counterexample Generation for Quantified Verification Conditions

(Γ,∀x.φ(x) =⇒ ∆︸ ︷︷ ︸
ϕ

)↔ (Γ, true =⇒ ∆︸ ︷︷ ︸
ϕ′

) (6.16)

which simplifies by equivalence transformations to

Γ =⇒ ∀x.φ(x), ∆︸ ︷︷ ︸
ψ

(6.17)

Any model of (6.17) is also a model of (6.16). This means that in states
which satisfy (6.17) the quantified formula ∀x.φ(x) can be replaced by
true. This corresponds to the statement (i) for m = 0 of Theorem 6.5
that we show here for convenience.

(i) � ψm ↔ (ϕ′m ↔ ϕm)

Hence, in Line 15 the formula ϕ′ is constructed where the quantified
formula is replaced by true. Substituting ϕ by ϕ′ in subsequent compu-
tation is sound only if (6.16) or equivalently (6.17) is valid. Therefore
formula (6.17) is assigned to ψ in Line 16 and is checked by Th in
Line 17. If ψ can be proved, then the algorithm continues in Line 4
where ϕ′ (now without the quantified formula) is used instead of ϕ.
Otherwise, if the proof of (6.17) of does not close (Line 17), then the
result is a set of proof obligations Ψ .

The formulas Ψ (Line 19) describe potential states in which ∀x.φ(x)
does not evaluate to true. The goal is therefore to construct an update u
(Line 20) such that for each formula ψ′ ∈ Ψ , � {u}ψ′. If this is the case,
then also � {u}ψ which allows us to eliminate the quantified formula
by the equivalence (6.16). Instead of satisfying this condition in one
step, our heuristic is rather to extend u iteratively. In each iteration
of the inner loop one formula ψ′ ∈ Ψ is selected in Line 19 and Ψ is
updated in Line 25 until Ψ eventually decreases to ∅.

The goal of the inner loop is to generate an update u and a formula
α (Line 20) and to check if

α→ {u}ψ (6.18)

evaluates to true. Formula 6.18 (see Line 24) is a weakening of (6.17).
The procedure formulaToUpdate which is described in Section 6.6 gen-
erates candidate pairs (u, a) that are likely to satisfy (6.18).5 In (6.17),
5 Note that since the procedure formulaToUpdate uses only one formula ψ′ ∈ Ψ to

construct the pair (u, α), Formula (6.18) may not evaluate to true. In this case

the inner loop continues iteration and unsolved formulas ψ′ ∈ Ψ reappear in the

next iteration to be solved.

156

6.4. The Model Search Algorithm

respectively (6.18), the quantified formula occurs negated w.r.t. (6.16).
As described in Section 6.3.2 an important consequence of this nega-
tion is that in Lines 17 and 25 the theorem prover can Skolemize the
quantified formula (6.17) resulting in

Γ =⇒ φ(sk), ∆ (6.19)

where sk ∈ FSymr is a fresh symbol. In this way the formula φ(sk)
can be simplified by the calculus and information contained in the
structure of φ(sk) is extracted to the sequent level, i.e., the boolean
structure of φ(sk) is flattened (see 1st and 2nd requirement of Def. 6.8).
This information occurs in the formulas ψ′ ∈ Ψ (Line 19). The task of
generating a pair (u, α) from ψ′ for satisfying (6.18) by the procedure
formulaToUpdate is considerably simpler than generating the pair from
the whole unsimplified quantified formula ∀x.φ(x).

Example 6.9. Let ϕ be defined as

ϕ = (A,∀x. (f(x) > x ∧ g(x) < f(x))︸ ︷︷ ︸
φ(x)

=⇒ B) (6.20)

where A,B ∈ FmlFOL. Generating a model for ϕ in one step is compli-
cated because the quantified formula cannot be Skolemized. In contrast,
in

ψ = (A =⇒ ∀x.φ(x), B)

the quantified formula is negated (because (F =⇒) ≡ (=⇒ ¬F)) and
can therefore be Skolemized. Th(ψ) yields

Ψ = {(A =⇒ f(sk) > sk,B), (A =⇒ g(sk) < f(sk), B)}

The structure of each ψ′ ∈ Ψ is simpler than the structure of ψ. The
procedure formulaToUpdate can then generate, e.g., the following up-
dates with axioms to satisfy the formulas in Ψ respectively:

{((for x; true; f(x) := x+ 1), true),
((for x; true; g(x) := f(x)− 1), true)}

Note that the procedure formulaToUpdate generates more general up-
dates than are necessary for the satisfaction of Ψ because the goal is to
satisfy ψ as described above.

�

157

6. Counterexample Generation for Quantified Verification Conditions

Checking Formula (6.18) (on page 156) as described above is important
because it is equivalent to

(α→ {u}ϕ)↔ (α→ {u}ϕ′) (6.21)

which in turn is a weakening of (6.16). Accordingly, in Line 23 the
formula ϕ′ is updated. If (6.18) is valid, which is checked in Line 25,
then the inner loop terminates and the outer loop continues execu-
tion. Hence, the original counterexample generation problem for ϕ is
replaced by the counterexample generation problem for α → {u}ϕ′
where the quantified formula is eliminated, i.e. replaced by true. This
is sound because if (6.18) is valid, then (6.21) is valid and therefore a
counterexample for α→ {u}ϕ′ is a counterexample for α→ {u}ϕ. The
latter implies that ϕ has a counterexample as well which is formalized
by statement (ii) of Theorem 6.5.

6.5 Heuristics for Update Construction from Formulas

While Section 6.3 describes a general sound framework for model gen-
eration, in this section we study how to generate a partial model for one
selected formula γ in a sequent ϕ = (Γ, γ =⇒ ∆). In particular we give
an intuition of how quantified updates can be constructed in order to
satisfy quantified formulas. The described heuristics can then be used
to iteratively extend the partial model for all formulas in the sequent.
Important to note is that soundness of Theorem 6.5 is preserved by
any sequence of update and axiom pairs. Hence, unsoundness cannot
be introduced by any of the heuristics.

Definition 6.10. Update Construction. Let γ ∈ FmlFOL be the cur-
rently selected formula for which a partial model is to be created and
which is a sub-formula in a sequent ϕ = (Γ, γ =⇒ ∆). Further, let
ψ = (Γ =⇒ γ,∆) and ϕ′ = (Γ =⇒ ∆).

The goal of update construction from the formula γ is to create a
pair (u, α), with u ∈ U and α ∈ Fml, such that

• � α→ {u}ψ, and
• there is some s ∈ S with s � ¬(α→ {u}ϕ′)

The first condition ensures that � (α → {u}ϕ) ↔ (α → {u}ϕ′)
which corresponds to statement (i) of Theorem 6.5. The second condi-
tion satisfies, in combination with the first condition, the assumption

158

6.5. Heuristics for Update Construction from Formulas

in the statement (ii) of the theorem. The second condition ensures
that, e.g. the trivial pair ({}, false) is not used to satisfy the first con-
dition. In this case � false → {}ψ but there is no s ∈ S satisfying
s � ¬(false→ {}ϕ′).

The sequent ψ is equivalent to ψ0 and ϕ′ is equivalent to ϕ′0, accord-
ing to Definition 6.6 (page 151). In the model search algorithm each
time a pair (um, αm) is constructed, new formulas ϕ′m+1, ϕ

′
m+1, and

ψm+1 are generated according to Definition 6.6. These formulas must
be simplified by Th to ϕ, ψ and, ϕ′, respectively, such that a new for-
mula γ ∈ FmlFOL can be selected for update construction. We assume
that ϕ is an open branch of Th, i.e. ϕ ∈ Th, and it is therefore simplified
according to Definition 6.8. Hence, γ is either a literal or a quantified
formula. In the following subsections, case distinctions are made on the
structure of γ.

6.5.1 Update Construction from Ground Formulas

In the following we ignore the context formulas Γ and ∆, i.e., we assume
that Γ = ∆ = ∅. Since ϕ′ ≡ (∅ =⇒ ∅) ≡ false the second condition of
Definition 6.10 is satisfied if α ≡/ false.

Handling of Equalities

Assume t1, t2 ∈ TrmFOL are location terms (see Def. 2.16, page 34). If
γ is of the form

t1 = l or l = t1

where l is a literal, then the pair (t1 := l, true) should be created
because it satisfies the first condition of Definition 6.10 as � true →
{t1 := l}(t1

.= l ∧ l .= t1). If γ is of the form

t1 = t2

then a choice has to be made between the pairs (t1 := t2, true) and
(t2 := t1, true). In both cases the first condition of Definition 6.10 is
satisfied as � true → {t1 := t2}(t1

.= t2) and � true → {t2 := t1}(t1
.=

t2). The particular choice has influence on the rest of the partial model
construction.

Equality between terms can in some cases also be established, if
the terms share the same top-level function symbol and have location
terms as arguments. For instance, let f(t1), f(t2) ∈ TrmFOL and f ∈
FSymr, then � α → {u}(f(t1) = f(t2)) can be satisfied by the pair
(t1 := t2, true) or by (t2 := t1, true).

159

6. Counterexample Generation for Quantified Verification Conditions

Handling of Arithmetic Expressions

Let t1, t2 ∈ TrmFOL be arithmetic expressions composed of rigid and
non-rigid function symbols. Several solutions exist to satisfy � α →
{u}(t1

.= t2). Consider for instance the polynomial equation

2 ∗ a+ b ∗ c = d− e

where a, b, c, d, e ∈ TrmFOL are location terms. There are five most
general updates evaluating this equation to true. These can be obtained
by solving the polynomial equation for one of the location terms at a
time. Our implementation enumerates those solutions during update
search. An example for one of the solutions is

(a := (d− e− b ∗ c)/2, true)

Note that a, b, c, d, e are not restricted to constants, i.e., terms consist-
ing of a unary function.

Handling of Inequalities

Let t1, t2 ∈ TrmFOL where t1 is a location term. An inequation

¬t1
.= t2

can be satisfied, e.g., by the pair (t1 := t2 + 1, true). A more general
update is, however, t1 := t2 + notZero, where notZero ∈ FSymnr is
a fresh-symbol representing a value different from 0. This is where the
axiom part of a pair comes into play. A more general solution for the
formula t1 6= t2 is the pair

(t1 := t2 + notZero,¬(notZero = 0))

This pair satisfies both conditions of Definition 6.10. We allow the
constant notZero to be non-rigid, so that during model generation its
value can be further concretized.

Inequations of the form
t1 < t2

can be handled by introducing a fresh symbol gtZero ∈ FSymnr with
the axiom gtZero > 0.

160

6.5. Heuristics for Update Construction from Formulas

6.5.2 Update Construction from Quantified Formulas

Our approach to create models for quantified formulas is to generate
quantified updates. For example, the quantified formula

∀x.x > a→ f(x) = g(x) + x (6.22)

is satisfiable in any state after execution of the quantified update

for x; x > a; f(x) := g(x) + x (6.23)

i.e., � {(6.23)}(6.22). Notice the similar syntactical structure between
(6.22) and (6.23). Another solution is

for x; x > a; g(x) := f(x)− x (6.24)

for which holds � {(6.24)}(6.22). It is easy to see that a translation can
be generalized for other simple quantified formulas. Furthermore, the
heuristics and case distinctions described in Section 6.5.1 can be reused
to handle different arithmetic expressions and relations. For instance
the formula

∀x.f(x) > x→ (g(x) < f(x))

evaluates to true after execution of any of the following updates (with
axioms)

(for x; f(x) > x; g(x) := f(x) + gtZero , gtZero > 0)
(for x; ¬(g(x) < f(x)); f(x) := x− gtZero , gtZero > 0)

The update simplification calculus may in some cases introduce new
quantified formulas (see Lemma 2.43). In such cases our approach has
to be applied either recursively on the new quantified formulas or the
heuristic has to choose different updates in a search procedure to pre-
vent the introduction of new quantified formulas.

The initial example of this chapter, i.e. Formula (6.1), can be solved
by the following quantified update application which the KeY system
simplifies to true.

{(for x1; x1 > 0; next(x1) := x1);
(for x2; x2 > 0; prev(next(x2)) := x2)}(6.1)

161

6. Counterexample Generation for Quantified Verification Conditions

6.5.3 Weakening of Updates

The more locations are assigned specific values by the update u, i.e.,
the bigger the set of semantic updates vals(u) is (see Section 2.3.2.1
on page 37), the higher is the probability that the first condition of
Definition 6.10 (page 158) is satisfied but not the second.

Example 6.11. In this example we show the effect of different updates
on the conditions of Definition 6.10. We do not show the semantic
updates, as it is easier to read the syntactical updates.

Let

ϕ = (

Γ︷ ︸︸ ︷
g(1) .= 1,

γ︷ ︸︸ ︷
∀x.f(x) .= g(x) =⇒)

ϕ′ = (g(1) .= 1, true =⇒)
ψ = (g(1) .= 1 =⇒ ∀x.f(x) .= g(x))

Attempt 1. Using the pair (

u︷ ︸︸ ︷
f(1) := g(1),

α︷︸︸︷
true) the second condition of

Definition 6.10 which is given by

there is s ∈ S with s � ¬(
α︷︸︸︷

true→ {
u︷ ︸︸ ︷

f(1) := g(1)}
ϕ′︷ ︸︸ ︷

¬(g(1) .= 1 ∧ true)

is satisfied. It can be simplified to

there is some s ∈ S with s � g(1) .= 1

However, the first condition of Definition 6.10 which is given by

�

α︷︸︸︷
true→ {

u︷ ︸︸ ︷
f(1) := g(1)}

ψ︷ ︸︸ ︷
(g(1) .= 1→ ∀x.f(x) .= g(x))

is not satisfied. The problem is that the update does not ensure that
for all values of x the equation f(x) .= g(x) holds.
Attempt 2. Now we increase the set of semantic updates vals(u) by
choosing the pair ((for x; true; f(x) := g(x)), true). In this case both
conditions of Definition 6.10 are satisfied. Here we only show the condi-
tions without showing their proofs as their validity is easy to see. The
first condition is in this case

� true→ {for x; true; f(x) := g(x)}(ψ)

162

6.5. Heuristics for Update Construction from Formulas

It can be proved because {for x; true; f(x) := g(x)}∀x.f(x) .= g(x)
evaluates to true. The second condition is

there is some s ∈ S with s � ¬(true→ {for x; true; f(x) := g(x)}ϕ′)

It is easy to see that it holds because {for x; true; f(x) := g(x)}ϕ′ ≡ ϕ′
and ϕ′ is satisfiable.
Attempt 3. Making the update more specific may result in the violation
of the second condition. For instance, when using the pair

((

u︷ ︸︸ ︷
for x; true; f(x) := 1 || g(x) := 1), true)

the first condition of Definition 6.10 is satisfied because the formula
{for x; true; f(x) := 1 || g(x) := 1}∀x.f(x) .= g(x) evaluates to true.
The semantic update is in this case bigger than in Attempt 2 of this
example because it additionally fixes the interpretation of the function
symbol g. The second condition of Definition 6.10 is in this case

there is some s ∈ S with s � ¬(true→ {u}
ϕ′︷ ︸︸ ︷

¬(g(1) .= 0 ∧ true))

which simplifies to

there is some s ∈ S with s � 1 .= 0

Hence, it is not satisfied.
A balance has to be kept between the specificity and generality of

the update in order to satisfy both conditions.

�

When choosing the update u the goal is to keep the set vals(u) small
such that only the interpretation of locations is fixed that is necessary
to satisfy the first condition. Similarly, if α is strong, e.g. false, then
the first condition is trivially satisfied but the second condition is false.
Hence, the goal is to make α as weak as possible.

A general heuristic to make updates less restrictive is to use the con-
text formulas Γ and ∆ in the guard of quantified updates. For instance,
let (u, α) be a pair such that, � α → {for x; guard; u}(Γ =⇒ γ,∆).
The update can be restricted to a smaller set of locations by extending
the guard as follows

163

6. Counterexample Generation for Quantified Verification Conditions

for x; guard ∧ (
∧
Γ ∧ ¬

∨
∆); u (6.25)

The formula {(6.25)}(α → (Γ =⇒ γ,∆)), remains valid. The new up-
date is restricted only to the state described by the sequent Γ =⇒ ∆
which increases the probability of satisfying the second condition of
Definition 6.10. Furthermore, as the update is part of a sequence of up-
dates u0, . . . , um in the model search algorithm, the restriction reduces
the global influence of u on the whole sequence u0, . . . , um.

6.6 Update Generation for Satisfying Quantified
Formulas

Algorithm 4 formulaToUpdate(ψ′)
1: let sk = the Skolem function of ψ′

2: let (Γ =⇒ ∆) = ψ′

3: let (Γsk =⇒ ∆sk) ⊂ (Γ =⇒ ∆) (according to the description)

4: choose ϑsk ∈ (¬Γsk ∪∆sk) (negation is applied to each element in Γ)

5: choose ϑ′sk ∈ solve(ϑsk)

6: choose (u, α) ∈ concretize(ϑ′sk)

7: choose (u′, α) ∈ toQuanUpd(sk, (u, α), (Γsk =⇒ ∆sk), ϑsk)

8: choose (u′′, α′) ∈ injectiveSubTerms((u′, α))

9: return (u′′, α)

In this section we describe Algorithm 4 which is based on the
ideas described in Section 6.5. The algorithm is used by Algorithm 3
(page 155) to construct updates for satisfying quantified formulas. Ac-
cording to Section 6.4 this algorithm receives as input a sequent ψ′ that
is an open proof obligation of Th(ψ). Algorithm 4 is queried for each
open proof obligation and is expected to generate an update with an
axiom (u, α) that is likely to satisfy the conditions in Definition 6.10.

As each pair (u, α) satisfies one of the open proof obligations ψ′ ∈
Th(ψ), a series of such pairs eventually satisfies Formula (6.18) (see
page 156) if the inner loop of Algorithm 3 terminates. Algorithm 4
returns a set of alternative solutions for each sequent ψ′. Recall that
soundness of the approach is guaranteed by any pair (u, α) because the
inner loop of Algorithm 3 does not terminate until a model is generated
for ψ.

164

6.6. Update Generation for Satisfying Quantified Formulas

According to Definition 6.8 the sequent ψ′ has been simplified such
that all formulas on the sequent level are either quantified formulas
or atoms. We are interested in atoms that were derived from ∀x.φ(x).
Therefore our heuristic is to categorize those atoms in ψ′ as highly
relevant for the construction of the update u that have an occurrence
of the Skolem symbol sk, that was introduced in (6.19). Let ψ′sk be
defined as

Γsk =⇒ ∆sk

such that it coincides with ψ′, except that all quantified formulas
and formulas that do not contain an occurrence of sk are removed
in ψ′sk (Line 3 of Algorithm 4). Hence, all formulas in Γsk and ∆sk

are ground formulas with an occurrence of sk. Following the Ex-
ample 6.9 (page 157), (Γsk =⇒ ∆sk) is either (=⇒ f(sk) > sk) or
(=⇒ g(sk) < f(sk)).

The goal is to create an update u such that � ({u}ψ′sk). Note that
({u}ψ′sk) → ({u}ψ′). In order to evaluate {u}ψ′sk to true the update
u must either evaluate an atom in Γsk to false, or an atom in ∆sk to
true. We refer to the chosen atom, whose interpretation we want to
manipulate, as the core atom and it corresponds to the formula γ in
Definition 6.10. Let ϑsk denote the chosen core atom (Line 4). The
task is to construct a function update u such that {u}ϑsk evaluates
true. This task is divided into two steps realized by the algorithms
solve (Line 5) and concretize (Line 6).

Generation of Updates from Core Atoms

Definition 6.12. The procedure solve has the property that given an
atom ϑsk, whose top-level symbol is a relation R ∈ PSym, it constructs
a set of atoms Θ and for each atom ϑ′sk ∈ Θ :

• ϑ′sk = R′(f(t1, . . . , tn), v), i.e. syntactic equivalence
• ϑ′sk ≡ ϑsk, i.e. semantics

where R′ ∈ PSymr, f ∈ FSymnr, f 6= sk, and t1, . . . , tn, v ∈ TrmFOL.

The procedure solve creates normal forms from core atoms. For
example, for the formula ϑsk = (f(sk) + 3 < g(sk) − sk), with “<”∈
PSym, f, g ∈ FSymnr, the procedure solve may generate, e.g., the
following set:

{f(sk) < (g(sk)− sk − 3), g(sk) > (f(sk) + 3 + sk)} (6.26)

165

6. Counterexample Generation for Quantified Verification Conditions

In the first core atom of this set R′ =“<” and in the second core atom
R′ =“>”. Note that the procedure solve is part of our heuristic and
the resulting set is not strictly defined, it may also be empty. Some
core atoms may not be solvable by the procedure but the more results
the procedure solve produces the better is the chance of generating a
suitable update.

Definition 6.13. The procedure concretize has the property that given
an atom of the form R(f(t1, . . . , tn), v), with R ∈ PSymr, f ∈ FSymnr,
and t1, . . . , tn, v ∈ TrmFOL, it creates a set of pairs (u, α), with
u ∈ Updates, α ∈ FmlFOL, such that:

• u = (f(t1, . . . , tn) := value), where value ∈ TrmFOL

• α→ {u}R(f(t1, . . . , tn), v) evaluates to true

The procedure concretize creates for a given normalized core atom
ϑ′sk an update u that evaluates {u}ϑ′sk to true. E.g., if the normalized
core atom is of the form t1

.= t2, using infix notation, then the result
of the procedure concretize is simply ((t1 := t2), true). In some cases
it is desired to introduce fresh symbols and to axiomatize them for the
construction of the term value. Such axiomatizations are collected in
the formula α.

For example, using the normalized core atom ϑ′sk = (f(sk) <
(g(sk) − sk − 3)) from the solution set of the previous example, the
procedure concretize may produce, e.g., the following solution:

{(f(sk) := (g(sk)− sk − 3) + sk2︸ ︷︷ ︸
u

), sk2 < 0︸ ︷︷ ︸
α

} (6.27)

where sk2 ∈ FSymr is a fresh constant. Using this solution, we can
evaluate α→ {u}ϑ′sk as follows

sk2 < 0→ {f(sk) := (g(sk)− sk − 3) + sk2}(f(sk) + 3 < g(sk)− sk)
sk2 < 0→ (g(sk)− sk − 3) + sk2 + 3 < g(sk)− sk
sk2 < 0→ sk2 < 0

Any term (2∗c−sk−3)+Z, where Z is a negative integer literal, is also
an admissible solution of the procedure. However, the introduction of
the fresh constant sk2 with the axiom sk2 < 0 is a more general solution
than using Z. If the top-level symbol of the core atom is “ .=” and it
occurs in the antecedent Γ , i.e., effectively it means “ 6=”, then a fresh
symbol sk3 ∈ FSymr may be introduced with the axiom ¬(sk3

.= 0).
The next step uses the result computed by the procedures solve

and concretize in order to create a quantified update (Line 7).

166

6.6. Update Generation for Satisfying Quantified Formulas

Update Generalization by Conversion to Quantified Updates

Definition 6.14. The procedure toQuanUpd has the property that given
a tuple (u, α), with u ∈ Updates and α ∈ FmlFOL, a sequent Γsk =⇒
∆sk, a core atom ϑ′sk, and a Skolem function sk, it creates the pair
(u′, α) where u′ ∈ Updates has the form (let z ∈ VSym)

for z; guard; u[sk\z]

where guard = ¬((Γsk\{ϑsk}) =⇒ (∆sk\{ϑsk}))[sk\z].

The substitution [sk\z] deskolemizes all formulas and terms in or-
der to quantify functions and predicates at those argument positions
as they were quantified in the original quantified formula (see (6.17)
vs. (6.19) on page 156). The guard ¬((Γsk\{ψsk}) =⇒ (∆sk\{ψsk}))
restricts the application of the update in order create small models as
explained in Section 6.5.3.

For example, assume we want to construct an update that evaluates
the formula

∀x.(x > 4→ (f(x) + 3 < g(x)− x))

to true. Algorithm 3 invokes Algorithm 4 with the following sequent
ψ′:

sk > 4 =⇒ f(sk) + 3 < g(sk)− sk

Let f(sk) + 3 < g(sk)− sk be the core atom ϑsk chosen in Line 4, then
according to the previous examples procedures solve and concretize
produce the intermediate result (6.27) that serves as input to the pro-
cedure toQuanUpd. We obtain the guard

¬(({sk > 4}\{ϑsk}) =⇒ ({ψsk}\{ψsk}))[sk\z]

which simplifies to ¬(z > 4 =⇒) and then to z > 4. The final result of
the procedure toQuanUpd for this example is the (u, α)-pair:

((for z; z > 4; f(z) := (g(z)− z − 3) + sk2), sk2 < 0)

Updating of Sub-Terms

In order to solve formulas such as (6.1) on page 140, another heuristic
is required. If we create an update of the form

for x; guard; f(g(x)) := h(x) (6.28)

167

6. Counterexample Generation for Quantified Verification Conditions

that is supposed to evaluate, e.g., ∀x.f(g(x)) = h(x) to true, then
usually the intention is that f is assigned different values at different
argument positions. This does not happen, however, if the function g
is not injective. For instance if ∀x.g(x) = 0, then the update (6.28) just
assigns a value to f(0). Our heuristic is to create another update that
is applied before (6.28) and that ensures injectivity of the argument
of the updated function. In this example the argument is g and the
updated function is f .

Definition 6.15. The procedure injectiveSubTerms has the property
that given an update

for x; guard; f(τx) := tx

where guard ∈ FmlFOL, f ∈ FSymnr, and τx, tx ∈ TrmFOL are terms
with an occurrence of x ∈ FSym, it creates a set of tuples such that
every tuple (u′′, α), with α ∈ FmlFOL and u′′ ∈ Updates:

� α→ {u′′}{for x; guard; f(τx) := tx}(∀x.(guard→ f(τx) .= tx))

For example, a possible solution of injectiveArgs for (6.28) is

(for z; guard[x\z]; g(z) := z, true)

A more general solution is to introduce a fresh function symbol fsk ∈
FSymnr, axiomatize it with ∀x.∀y.x 6= y → fsk(x) 6= fsk(y), and assign
it to g, i.e. . . . g(z) := fsk(z). The axiom introduces a new quantified
formula for which another update has to be created in order to evaluate
this formula to true. In each step a more specific partial model has to
be created until eventually no axioms with quantifiers are introduced.
Hence, this technique has to be applied recursively on the arguments
of locations.

6.7 From Updates to a Test Preamble

In this section we would like to argue shortly, that the model generation
approach described in this chapter is suitable not only for deductive
software fault detection but also for test generation. A counterexample
for a verification condition represents an initial program state for a
program execution that reveals a fault. Hence, such counterexamples
are useful for test generation as described in Part III of this thesis.

168

6.8. Evaluation

. . .

{for x : MyCls; (next(x)
.
= null ∧ ¬a(x)

.
= null ∧ . . .); created(x) := false}

{for x : MyCls; (a(x)
.
= 0 ∧ ¬x .

= null); created(x) := false}
{for x : int; (b > 1 + x ∧ x 6 −1); acc[](next(self)) := −1 + c2}
{for x : int; x 6 −1; i := acc[](next(self))− c0 ∗ −1 + c1}
{for x : int; (x > 0 ∧ x > 1 + i0); acc[](next(self)) := length(prev(self)) + c0}
{for x : int; (acc[](next(self), x) = x ∧ x 6 i0 ∧ . . .); get0(prev(self), x) := x}

Fig. 6.3. A subset of generated updates satisfying the quantified formulas in Fig-

ure 6.2

The choice of using updates to represent models of quantified for-
mulas is very convenient for test preamble generation. A test preamble
is part of a test driver whose goal is to initialize the program under test
with a desired program state. Updates can be viewed as a small impera-
tive programming language with some special constructs. An algorithm
that converts updates to a test preamble has to follow the semantics of
updates. Conversion of function updates to assignments and sequential
updates to statements is trivial. Parallel updates were not created by
our algorithm. Quantified updates are converted to loops. If a quanti-
fied update quantifies over integers, then the integer bounds have to be
determined. If the update quantifies over objects, then an approxima-
tion of the semantics is to iterate over all objects that were created by
the preamble. This solution is, however, only an approximation as it
does not initialize objects that are created later on during the execution
of the program under test and the ordering � of the Kripke Structure
K� has to be reflected in the test preamble.

6.8 Evaluation

We have implemented our algorithm, i.e., the combination of Algo-
rithms 3 and 4, in an experimental version of the KeY tool. The tech-
nique is currently realized as an interactive model generator, i.e., the
implementation proposes candidate updates to be selected by the user.
The reason for this is two-fold. On the one hand, the interaction with
the algorithm enables us to study heuristics for the model generation as
well as to identify and understand limitations of the algorithm. On the
other hand, it is the paradigm of the KeY tool to combine automation
and interaction. A full automation of the model generator is of course
possible by making random choices from the list of candidate updates.

169

6. Counterexample Generation for Quantified Verification Conditions

Classes with invariants T A B

Account 4 4 4

AccountMan src 5 5 2

Currency src 2 2 2

SavingRule 4 2 2

SpendingRule 4 2 2

Transfers src 3 3 2

Total 22 18 14

Methods with Specifications T A B

AccountMan src::IsValid() 6 5 2

AccountMan src::B0delete() 6 5 2

AccountMan src::isValidBank() 5 4 2

AccountMan src::isValAcc() 5 5 2

AccountMan src::getRef() 5 3 2

Total 27 22 10

Table 6.1. Evaluation of the model generation algorithm applied to a banking

software with Jml specifications; T: total number of quantified formulas in one con-

junction that occurred as test data constraints; A, B: maximum number of quantified

formulas solved in a conjunction; A: our model generation algorithm; B: SMT solvers

In order to test the algorithm we have used several examples from
different sources. In the beginning, we have used hand-crafted formulas
in order to test and develop the algorithm. A crucial improvement was
achieved by utilising statement (i) of Theorem 6.5 that allows Skolem-
ization of the quantified formulas by reformulation of the problem (see
Sections 6.3.2 and 6.4). Earlier approaches to generate models without
the statement were not successful.

Table 6.1 shows a JAVA method with a Jml specification. A verifi-
cation attempt of the method results in a set of open proof obligations.
One of them is shown in Figure 6.2 that we abbreviate as ϕ. Figure 6.3
shows a part of an iterative update application, i.e., the updates are
applied in a sequence, that describes a model for ¬ϕ and was generated
by the implementation of our approach.

To test our algorithm on more realistic tests, we applied it to the
banking software described in Section 5.6 (page 133). The banking soft-
ware contains Jml specifications with quantified formulas. When apply-
ing our deductive software fault detection approach, then verification
conditions with the quantified formulas are encountered in the proof
tree. Our goal was to test for how many of these formulas our algorithm
can generate models. Table 6.1 shows some of the results.

The left sub-table of Table 6.1 shows numbers of quantified formu-
las that stem from class invariants of the respective classes and the
right sub-table shows numbers of quantified formulas that stem from
method preconditions and loop invariants. Note that additional quan-
tified formulas are generated for declared fields in a class and for class
invariants as described in Sections 6.1 and 4.4.2. The column T shows

170

6.9. Conclusions and Future Work

the total number of quantified formulas that occurred in the verifica-
tion conditions in a conjunction, i.e., a complete model must satisfy
the whole conjunction. Columns A and B show the maximum number
of quantified formulas that we found solvable in one conjunction. We
have tested our algorithm and SMT solvers with different combina-
tions of the quantified formulas in one conjunction, where goal was to
solve the biggest conjunction. Column A shows the results of our algo-
rithm and column B shows respectively the best result achieved by any
of the SMT solvers Z3, CVC3, and Yices. The evaluation shows that
our algorithm can solve quantified formulas that state-of-the-art SMT
solvers cannot solve. Furthermore, our algorithm was able to generate
models for almost all of the quantified formulas when it was applied to
the quantified formulas in separation, i.e., not in a conjunction. This
simplification did not make an improvement on the SMT side.

6.9 Conclusions and Future Work

We have proposed a model generation approach for quantified first-
order logic (FOL) formulas that is based on update construction and
verification. The language we propose for representing models is KeY’s
update language. The advantage of using updates is the possibility to
express models for quantified formulas via quantified updates, and the
availability of a powerful calculus for simplifying formulas with updates
to FOL formulas. In particular, no loop invariants have to be generated
in order to simplify quantified updates.

We have identified problems (Proposition 6.3) that occur, when the
approach is implemented according to the basic description. Theorem
6.5 provides a solution to these problems. The theorem allows us to re-
formulate the basic model generation approach for quantified formulas
into a semantically equivalent approach without the problems described
in Proposition 6.3.

Based on Theorem 6.5 and Definitions 6.4 and 6.6 we have derived
Algorithm 3 for model generation. The technique can be used in two
ways. On the one hand, it can be used as a pre-computation step to
SMT solvers by restricting the computation of the formulas ψm, ϕ′m,
and ϕm to Definition 6.4. In this case the technique eliminates quan-
tified formulas and leaves a residue of ground formulas or alternative
quantified formulas to be solved by a different method, e.g. an SMT
solver. On the other hand, the technique can be used stand-alone for

171

6. Counterexample Generation for Quantified Verification Conditions

model generation by using the general Definition 6.6 and modifying the
algorithm accordingly.

The technique described in this chapter is a necessary ingredient
of our general approach described in Chapter 4. The general approach
requires to generate counterexamples for verification conditions. SMT
solvers are, however, not powerful enough to generate counterexam-
ples from verification conditions generated by KeY. The problem is
the combination of quantifiers, arithmetic functions, and uninterpreted
function. The technique described in this chapter addresses this prob-
lem successfully. Our experiments show that it can generate counterex-
amples for formulas that SMT solvers cannot solve.

What formulas can be solved by our general approach depends on
the chosen language for model representation, the theorem prover in
use, and the heuristics for model construction. Quantified formulas are
suitable to represent models for certain kinds of quantified formulas.
They are, however, not sufficient to represent models of inductively
defined functions. Future work is to extension our approach in this
direction.

172

Part III

Verification-based Test Generation Techniques

7

Verification-based Test Generation

7.1 Introduction

Overview

Software testing the most popular approach for gaining confidence in
the correct behavior of software and for software fault detection. The
third part of this thesis is dedicated to test generation approaches and
techniques which extend the formal verification and fault detection ap-
proach described in the previous parts. Technically, these test genera-
tion techniques are also based on the techniques of the previous chapters
and therefore an integration of verification, deductive fault detection,
and testing is achieved in one tool and method.

In this chapter we describe two approaches for verification-based
test generation (VBT). Common to these approaches is that they start
with a verification attempt, which generates a proof tree, in order to
extract abstract test cases from the program. The approaches differ in
the second step where the actual tests are generated. The first approach
and technique was proposed in [Engel and Hähnle, 2007] where it was
called VBT.1 The technique generates executable JUnit tests directly
within KeY. We have reimplemented and extended the technique to
a large extend and describe in this chapter a new version of it. The
second approach is a tool-chain approach that we have proposed in
[Beckert and Gladisch, 2007]. We generalize the name VBT to include
both approaches.

1 In standard terminology [IEE, 1990] the term verification-based testing has a

different meaning and is not connected to formal software verification.

7. Verification-based Test Generation

Fig. 7.1. Three use-cases of VBT

Motivation and Use-Cases of VBT

By using verification we can prove the correctness of a program with
respect to a specification. On the other hand, software faults can be de-
tected deductively based on a failed proof attempt. Hence, the question
arises why testing should be integrated into verification and deductive
fault detection. We regard three use-cases in which VBT complements
verification and deductive fault detection. These are summarized in
Figure 7.1.

The first use-case is finding software faults. Tests are helpful to
find software faults because when a program is executed in its runtime
environment, i.e. not symbolically, then a program debugger can be
utilised. Program debuggers are powerful tools that enable the user to
follow the program control flow at different levels of granularity and
they enable the inspection of the program state. A strength of program
debuggers is also that the user reads the source code as it is executed
which is helpful for understanding it. When the deductive software
fault detection approach (see Chapter 4) detects the existence of a
software fault, then it additionally provides two kinds of information: a
program execution trace which reveals the fault, and a counterexample
which represents the initial state of the program revealing the fault.
The representation is abstract and hardly readable by an inexperienced
user. However, this information can be used to initialize a program in
its runtime environment enabling to use a program debugger.

176

7.1. Introduction

The second use-case of testing is to further increase the confidence
in the correct behavior of a program even if verification of the program
was successful. It is usually not practical to rigorously apply formal
verification to all relevant components that are responsible for the be-
havior of the program. These components, such as the compiler, the
hardware, and the software environment of the program, are, however,
involved when the program is tested. Hence, testing complements ver-
ification where the latter has a principal deficiency. After all, proofs
cannot substitute tests. A figurative example is that even if engineers
have proved using mathematical models that an airplane should have
the desired aerodynamic properties, passengers will not be seated in
the airplane before it has undergone numerous test flights.

The third use-case is regression testing. Regression testing is used to
ensure that modifications made to software, such as adding new features
or changing existing features, do not worsen (regress) existing software
features that should not change. As software evolves existing tests can
be quickly repeated for regression testing. The construction of proofs
on the other hand is more expensive and therefore it is reasonable to
run a set of tests before proceeding to a verification attempt after the
software has been modified.

Hence, in the first use-case a single test or a small number of focused
tests is generated if the verification has failed. If the deductive fault
detection attempt was successful, it is already known in advance that
the test(s) must fail. A successful verification attempt on the other
hand leads to the second and third use-case. Contrary to the first use-
case, in the second and third use-cases a high code coverage by the
tests is desired. A high coverage can also be achieved because in this
case the program has been fully symbolically executed and a maximum
of information about the program and case distinctions in the program
is available.

Properties of VBT

Different software testing techniques exist for all kinds of software, for
different sizes of software, for different phases of the software life cycle,
and for testing different kinds of properties. It is therefore clear that
there is no overall best testing technique. VBT can be used as a pure
test generation tool which uses the underlying verification technology
without the intention to verify a program. However, we regard VBT
primarily as an extension of the verification and deductive fault detec-
tion approach for the use-cases shown in Figure 7.1. This is because the

177

7. Verification-based Test Generation

strengths and weaknesses of VBT are related to those of the underly-
ing verification tool. VBT is best applicable to programs that could in
principle be verified with the underlying verification technology. These
programs are usually much smaller than those programs that are typi-
cally tested by traditional testing techniques. In contrast to traditional
approaches, VBT can check more complex properties of programs that
can be expressed in first-order logic and also the code coverage that
can be achieved with VBT is higher.

Tests generated with VBT check whether the program violates its
functional requirement specification. Generally, testing can also be used
to detect other problems of a program such as high resource consump-
tion or non-termination of the program. VBT, however, does not check
these properties explicitly because they are not part of the requirement
specification. The test result is independent of whether termination or
non-termination of the program is required. If the user is interested in
whether the program terminates they have to observe the testing pro-
cess. The same applies to the resource consumption such as memory
consumption and computation time.

The described VBT techniques generate unit tests. Unit testing
plays a major role in the software development process and it is en-
couraged by different software development processes such as Extreme
Programming (XP) [zEx]. A unit is a small testable part of an applica-
tion which explores a particular aspect of the behavior of the unit. In
the object-oriented paradigm a unit is a class. In the context of VBT
we regard, however, a method as a unit. We chose the finer granular-
ity of units due to the high complexity of formal verification, which is
the basis of VBT, and the high complexity of the properties that are
typically checked.

7.2 Related Work

Testing has been influenced in the last decade by formal methods.
Prominent examples of such formal techniques are symbolic execution,
theorem proving, satisfiability solving, and the usage of formal spec-
ifications and program annotations such as loop and class invariants.
Formal testing techniques can achieve a high code coverage or they
can generate a low number of tests that very likely exhibit software
faults. Such techniques generate test data constraints which are first-
order logic (FOL) formulas. These constraints are constructed from

178

7.2. Related Work

path conditions, specifications, and program annotation and describe
program paths that are hard to be tested randomly.

The application of symbolic execution to test case generation has
been proposed in the 1970s [King, 1974, 1976; Clarke, 1976]. This ap-
proach has gained much attraction in the last decade [Meudec, 2001;
Zhang et al., 2004; Xie et al., 2005; Deng et al., 2006b]. Symbolic ex-
ecution requires, however, full access to the source code or machine
code in order to guarantee full structural code coverage. To overcome
this problem symbolic execution has been combined with concrete ex-
ecution [Sen et al., 2005; Cadar et al., 2008; Tillmann and de Halleux,
2008; Pasareanu et al., 2008]. The approach, which is called concolic
execution or dynamic symbolic execution by different research groups,
achieves a high code coverage. Concolic, respectively, dynamic symbolic
execution is not used for software verification – except as an add-on to
support verification [Vanoverberghe et al., 2008] – because it does not
guarantee the exploration of all program states. However, in the con-
text of verification, method contracts and loop invariants are usually
available which allow solving the same problem as will be described in
Section 7.4.2. Due to this different setting, in the following we regard
test generation techniques which are based on verification tools.

Some verification tools have extensions for test case generation that
we call, hereafter, VBT extensions. A VBT extension for Spec# [Bar-
nett et al., 2005], respectively for the underlying verification engine
Boogie [Barnett et al., 2006], has been developed in [Billeter, 2008]. The
tool generates tests from counterexamples of verification conditions. It
shares similar ideas with our approach such as the generation of test in-
puts using loop invariants. ESC/Java2 [Cok and Kiniry, 2004] is a static
checker that can automatically prove properties that go beyond simple
assertions. A VBT extension of ESC/Java2 is Check’n’Crash [Smarag-
dakis and Csallner, 2007]. It generates JUnit tests for assertions that
could not be proved using ESC/Java2. In this way, false warnings
featured by ESC/Java2 are filtered out. HOL-TestGen [Brucker and
Wolff, 2007] is a test generation tool extending the theorem prover Is-
abelle/HOL [Wenzel et al., 2008] which is frequently used for program
verification. HOL-TestGen uses a tableaux calculus for deriving tests
from specifications. Bogor/Kiasan combines symbolic execution, model
checking, theorem proving, and constraint solving to support design-
by-contract reasoning of object-oriented software [Deng et al., 2006b].
Its extension that we categorize as VBT is KUnit [Deng et al., 2007].

179

7. Verification-based Test Generation

The tool focuses on heap-intensive JAVA programs and uses a lazy ini-
tialization algorithm with backtracking. The algorithm is capable of
exploring all execution paths up to a bound on the configurations of
the heap. KUnit then generates test data for each path and creates
JUnit test suites. VBT extensions have also been realized for various
model checkers [Gargantini et al., 2003; Beyer et al., 2004; Visser et al.,
2004]. Finally, the VBT extension of the KeY tool has been originally
proposed in [Engel and Hähnle, 2007; Beckert and Gladisch, 2007] and
was extended in later works [Gladisch, 2008a; Engel et al., 2008; Glad-
isch et al., 2010].

The VBT technique of KeY, hereafter just VBT, differs from other
approaches in the formalism and in the way how techniques were re-
alized. The technical features of the tools whose development is con-
tinued, including KeY, are continuously extended. Hence, we omit a
comparison of these features. Important about VBT is its underlying
theory and technology which is based on deductive fault detection. This
allows us to give coverage guarantees when loop invariants and method
contracts are used and to generate tests which are guaranteed to detect
faults. Specific advantages of different techniques underlying VBT are
described in the respective sections.

7.3 Overview of the VBT Approaches in KeY

In the following we describe two approaches for verification-based test
generation (VBT). Common to these approaches is the first phase
where they start with a verification attempt and extract abstract test
cases from the generated proof tree. The approaches differ in the sec-
ond phase where the actual tests are generated. Figure 7.2 shows an
overview of the two phases as well as of the two approaches. Although
the description of the approaches is JAVA-specific in the following sec-
tions, we belief that they can also be applied to other programming lan-
guages that follow similar ideas as JAVA. Table 7.1 contains a description
of software engineering terms that are important in this chapter.

The input to KeY is a JAVA method with its requirement specifica-
tion, hereafter method under test (MUT). As it is the case in the de-
ductive fault detection approach (see Chapter 4), the VBT approaches
start with the creation of a proof tree structure. The proof tree is used
to derive different test cases. As described in Section 2.4.5, the branches
of the proof tree mimic the execution of the program with symbolic val-

180

7.3. Overview of the VBT Approaches in KeY

Term Description

black-box testing Testing that ignores the internal mechanism of a system

or component and focuses solely on the outputs generated

in response to selected inputs and execution conditions.

path condition A formula that describes initial states of the MUT that

lead to the execution of the specific program path.

(program) branch A sequence of statements that may or may not be exe-

cuted depending on a condition.

(program) path A complete run, from the beginning to the end, through

a given method or sequence of statements

test case A set of test inputs, execution conditions, and expected

results developed for a particular objective, such as to

exercise a particular program path or branch.

(test) coverage The degree to which a given test or set of tests executes

a program or specification.

test data Values or the assignment of values used to initialize a

program for a test. A partial model represents test data

and vice versa.

test data constraint A formula that test data has to satisfy.

(test) oracle Code that is executed after the execution of the MUT and

that determines for the final state of the MUT whether

it satisfies the requirement specification of the MUT.

(test) preamble Code that is executed before the execution of the MUT

and initializes the MUT with test data.

test suite A set of test cases or a set of executable tests.

unit testing Testing of individual software units or groups of related

units.

white-box testing Testing that takes into account the internal mechanism

of a system or component.

Table 7.1. Software engineering terms relevant for verification-based testing. The

descriptions differ slightly from the definitions in the Standard Glossary of Software

Engineering Terms [IEE, 1990]. Words in braces are optional.

ues. Case distinctions in the program are reflected as branches of the
proof tree; these may also be implicit distinctions like, e.g., raising of
exceptions (see also Remark 2.46 on page 58). Soundness of the system
ensures that all paths through the MUT are analyzed, except for parts
where the user chooses to use abstraction (see Section 2.4.6). Thus, cre-
ating tests for proof branches that were created using bounded symbolic
execution ensures full feasible bounded path coverage (see Def. 7.2) of
the regarded program part of the MUT, i.e., all paths of the symbol-
ically executed program parts will be tested. Creating tests for proof

181

7. Verification-based Test Generation

Fig. 7.2. Overview of two verification-based test generation approaches in KeY

branches that were created using abstraction, i.e. using contract rules,
can ensure full feasible branch coverage (see Def. 7.3) of the regarded
program part of the MUT, i.e., all program branches of the symbolically
executed program parts may be tested depending on the properties of
the abstraction, i.e. contracts. Each proof branch on which symbolic
execution rules were applied contains a path condition. The path con-
dition is a formula that describes initial states of the MUT that lead
to the execution of the specific program path.

Definition 7.1. If a path (see Table 7.1) cannot be executed because its
path condition (see Table 7.1) is contradicting for all inputs, i.e. it is
false, then the path, respectively the path condition, is called infeasible.
Otherwise, the path, respectively the path condition, is feasible. A feasi-
ble or infeasible program branch (see Table 7.1) is defined analogously.

Definition 7.2. Let BP be the set of paths of a method or a sequence of
statements P which are bound by the number of method invocations and
loop iterations. A test suite T satisfies the full feasible bounded path
coverage for P if every feasible path (see Def. 7.1) of BP is executed
by at least one test of T .

182

7.3. Overview of the VBT Approaches in KeY

Definition 7.3. Let BB be the set of branches of a method or a se-
quence of statements P . A test suite T satisfies the full feasible branch
coverage for P if every feasible branch (see Def. 7.1) of BB is executed
by at least one test of T .

The path conditions as well as the precondition from the specifica-
tion constitute test data constraints which represent the test cases. A
test data constraint has to be satisfied in the pre-state of the MUT
when executing a concrete test. The extraction of the test data con-
straints from the proof tree is described in Section 7.4. The test data
constraints are then used in the second phase of both approaches.

JUnit Test Generation

This VBT approach generates executable JUnit2 [Tahchiev et al., 2010]
tests in the second phase (see Figure 7.2). JUnit is a popular test ex-
ecution framework for JAVA which allows to execute a set of tests and
generate test reports.

To create a concrete test which satisfies the test data constraint ob-
tained from the first phase, a model generator is required. The challenge
of model generation in the context of VBT is to generate models for
quantified formulas that may stem from the requirement specification
and contracts such as loop invariants. In Chapter 6 we have described a
model generation technique that is suitable for this task.3 Hence, also
in the use-cases 2 and 3 shown in Figure 7.1, this VBT approach is
technically based on deductive fault detection techniques. The model
generator described in Chapter 6 represents models in form of updates.
This is a welcome feature of the model generator because this represen-
tation is close to an imperative programming language which simplifies
the generation of a test preamble.

The test preamble is a sequence of statements that initialize the
program state in which the MUT is executed. The model which is
generated by the model generator is therefore the input to the test
preamble generator. The test preamble is the first part executed by
each test driver (see Section 7.5.1).

2 http://www.junit.org
3 For the experimental results reported in this part of this thesis we have used

the model generator described in [Engel and Hähnle, 2007; Engel, 2006] which is

based on the theorem prover Simplify [Detlefs et al., 2005].

183

http://www.junit.org

7. Verification-based Test Generation

The test driver is a method which represents a test of the test suite.
It prepares the initial state of the test, executes the MUT, and checks
the final state after the execution of the MUT with a test oracle.

Tool-chaining

In the tool-chain approach the test data constraints obtained in the
first phase are used to structurally enhance the requirement specifica-
tion of the MUT. The enhanced specification is then used as input for
black-box testing tools. If the black-box testing tool creates a test for
each precondition of the enhanced specification, then the approach is
effectively a white-box testing approach.4 In this way, (1) the black-box
testing method can use information about the program’s structure that
is contained in the specification, and (2) we get a separation of concerns
and a clear interface between program analysis on the one hand and
test-case generation and execution on the other hand.

The technique described in Chapter 6 should be used in order elimi-
nate quantified formulas from the test data constraints. The generation
of concrete test data satisfying the remaining formulas is left to the
black-box testing tool.

7.4 Extraction of Test Cases from a Proof Tree

Verification-based test generation is a flexible technique with respect
to the complexity of the test generation and the resulting quality of the
tests. It supports a spectrum between the generation of random tests
and tests that are guaranteed to reveal software faults. The quality
of the tests depends on the extend of the proof tree construction and
on the selection of test data constraints, i.e., formulas that have to be
satisfied by test data. For instance, the simplest test is a random test
that is generated if test data is derived from a proof tree which consists
only of the root sequent. The most sophisticated kind of test which is
a test that guarantees the detection of a software fault is derived from
a falsifiable leaf of a validity preserving proof branch (see Chapter 4).

4 If the black-box testing tool does not make use of the additional information in

the enhanced specification, then the approach can also be considered as a white-

box testing approach. In this case, however, the additional information is useless

and structural coverage of the MUT is not ensured.

184

7.4. Extraction of Test Cases from a Proof Tree

The branches of the proof tree represent different test cases. Any
formula in the proof tree can be used as a test data constraint. How-
ever, depending on which formulas are chosen for the test data con-
straints different specification conditions, program branches, or paths
are tested. The sequents in the proof tree express properties of the an-
alyzed program. Hence, a test of a property of the program is a test of
a formula in the proof tree. Sequents that contain parts of the MUT
typically have the form (see Section 2.4.5, page 56)

Γ =⇒ U〈p〉φ,∆ (7.1)

where p is either the MUT, a part of the MUT, or it may be empty. The
latter is the case if symbolic execution has terminated. The formula

U〈p〉φ (7.2)

expresses a property of the MUT that has to be satisfied (at least)
in every state in which the remaining sub-sequent (i.e., subsets of the
antecedent and succedent)

Γ =⇒ ∆ (7.3)

is not satisfied. Hence, in order to test if Formula (7.2) holds when
the MUT is executed the MUT has to be executed in a state which
satisfies the negation of sequent (7.3). Otherwise, the sequent 7.1 is
trivially satisfied even if 7.2 is false. Thus negation of sequent (7.3), or
equivalently the formula ∧

Γ ∧ ¬
∨
∆ (7.4)

is the test data constraint.
Recall from Section 2.4.5 that the update and the modal operator of

Formula (7.2) represent a particular execution path of the MUT. The
formulas in Γ and ∆ contain the precondition of the requirement spec-
ification and the path condition that leads to this particular execution
point of the MUT. Hence, for any path and for any branch of the MUT
a test can be generated that executes the particular path or branch.

Assume we want to generate a test for the method m(). In order to
derive a test for m() from a proof branch, VBT requires that a sequent
of the form

Γ =⇒ U0〈m();〉φ,∆ (7.5)

185

7. Verification-based Test Generation

occurs on the proof branch. This is a normal form of sequents which
occur before and during symbolic execution (see Section 2.4.5). The
sequent is important in order to determine the update U0 which has to
be evaluated before the execution of m().

Let (S, ρ) be a Kripke structure (see Section 2.3.2) and let s0, s1, s2 ∈
S. The Sequent (7.5) expresses that if

∧
Γ ∧ ¬

∨
∆ is true in s0 and

s1 = vals0(U0)(s0)

then after the execution of m() in s1, the state s2 is reached with

ρ(s1, m(), s2)

in which s2 � φ. Hence, s1 (and not s0) is the state in which the MUT
has to be executed.

In the following we describe how to derive tests of different quality
or precision.

7.4.1 Black-Box or Specification-based Test Cases

Black-box tests, or specification-based tests, are derived from a proof
tree that is generated by using all calculus rules except for the sym-
bolic execution rules. The remaining rules such as propositional rules
and arithmetic rules operate on the precondition of the requirement
specification. Applying the rules results in a proof tree with proposi-
tional and arithmetic case distinctions on the formulas in Γ and ∆.
These formulas stem from the precondition of the requirement specifi-
cation. The leaves of the proof tree have the form

Γ =⇒ U0〈m();〉φ,∆

Consider the following example.

JAVA + JML (7.1)
1 /*@ public normal_behavior

2 requires x>=0; ensures \result==x;
3 also

4 requires x<0; ensures \result==-x; @*/
5 int abs(x){...}

JAVA + JML

186

7.4. Extraction of Test Cases from a Proof Tree

KeY features the possibility to combine two pre- and postcondition
pairs in one verification condition. The verification condition for the
method abs is

(x > 0 ∨ x < 0)︸ ︷︷ ︸
Γ

→ {x′ := x}〈r=abs(x’)〉
(
∧ (x > 0→ r

.= x)
(x < 0→ r

.= −x)

)
︸ ︷︷ ︸

φ

According to JML semantics, formal parameters that occur in the en-
sures clause are evaluated in the pre-state of the method. In this ex-
ample the formal parameter is x ∈ FSymnr. In order to follow the JML
semantics KeY replaces the formal parameter with a new symbol (here
x′ ∈ FSymnr). In this way the value of the formal parameter x is not
changed by symbolic execution and it can be used in the postcondition
to refer to the pre-state of the MUT. A combination of the precondi-
tions in a conjunction x > 0 ∧ x < 0 would result also in a correct
verification condition according to the JML semantics. However, the
disjunction in the antecedent is needed for deriving the desired test
cases as will become clear in the following.

The proof tree for this verification condition without using symbolic
execution rules is:

Γ1︷ ︸︸ ︷
x > 0 =⇒ {x′ := x}〈r=abs(x’)〉φ

Γ2︷ ︸︸ ︷
x < 0 =⇒ {x′ := x}〈r=abs(x’)〉φ

x > 0 ∨ x < 0 =⇒ {x′ := x}〈r=abs(x’)〉φ
=⇒(x > 0 ∨ x < 0) → {x′ := x}︸ ︷︷ ︸

U0

〈r=abs(x’)〉φ

(7.6)
The two branches represent test cases and are the result of the disjunc-
tion in the antecedent. The leaves of the branches contain the test data
constraints which are x > 0 for the left branch and x < 0 for the right
branch. After initializing x with a value that satisfies one constraint
the effect of the update {x′ := x} has to be taken into account before
testing if 〈r=abs(x’)〉φ is satisfied.

7.4.2 White-box Test Cases

7.4.2.1 General Derivation of White-box Test Cases

White-box tests execute specific paths or branches of the MUT. There-
fore the MUT is symbolically executed in order to obtain path condi-
tions. The symbolic execution rules must ensure that case distinctions

187

7. Verification-based Test Generation

in the program are made explicit as case distinctions in the proof tree.
For instance, the rule

=⇒ {x := if x < 0 then x else −x}〈π ω〉φ
=⇒ 〈π if(x<0){x=-x;} ω〉φ

which could be included in the calculus in addition to the ifElseSplit
rule (see Figure 2.5, page 57) does not reflect the branches of the if-
statement as branches in the proof tree. Hence, if a test case is derived
from every branch of a proof tree and the rule above was used in the
construction of the proof tree, then possibly only one of the branches of
the if-statement will be covered by a test case. Therefore, simplification
rules which do not reflect the structural information of the program in
the proof tree must be omitted.

The path conditions obtained by symbolic execution are part of the
test data constraints. Additionally the test data constraints contain the
precondition of the requirement specification as in the specification-
based testing approach, see Section 7.4.1 on page 186. Thus, the white-
box test cases satisfy the precondition of the requirement specification.

In principle any formula in the proof tree can be used as a test data
constraint. However, depending on which formulas are chosen for the
test data constraints different paths are taken through the MUT or
different conditions of the program or specification are satisfied. The
test data constraints for white-box tests are derived from sequents of
the form of Formula (7.1) (page 185), i.e.,

Γ =⇒ U〈p〉φ,∆

where p is either a part of the MUT or p is empty. The test data
constraint is given by the negation of (7.3), i.e.,∧

Γ ∧ ¬
∨
∆

and ensures the execution of the program path that was also sym-
bolically executed during proof construction. If p is empty, then the
execution of the program path is completely determined by the test
data constraint.

188

7.4. Extraction of Test Cases from a Proof Tree

B1

Γ1z }| {
x < 0 =⇒ {x′ := x || r := −x}〈〉φ

x < 0 =⇒ {x′ := x}{r := −x′}〈〉φ
x < 0 =⇒ {x′ := x}〈π return -x’;}〉φ

x′ < 0 =⇒ {x′ := x}〈...〉φ
{x′ := x}x′ < 0 =⇒ {x′ := x}〈...〉φ

B2z}|{
∗
...

=⇒
∆2z }| {
x < 0, {x′ := x || r := x}〈〉φ

...

¬{x′ := x}x′ < 0 =⇒ . . .

=⇒ {x′ := x}〈
πz }| {

MF(r,C,o){if(x<0){x=-x;}return x ;}〉φ
=⇒ {x′ := x}〈r=abs(x’)〉r .

= x| {z }
φ

Fig. 7.3. Proof tree for deriving white-box test cases

Consider the example in Listing 7.2.

JAVA + JML (7.2)
1 /*@ public normal_behavior

2 requires true; ensures \result ==x; //Fault in spec.

3 @*/
4 void abs(x){
5 if(x < 0){ x = -x;}
6 return x;
7 }

JAVA + JML

A verification attempt of the method abs in Listing 7.2 yields the
proof tree with the branches B1 and B2 shown in Figure 7.3. The
two branches of the proof tree represent test cases. The test data con-
straints are extracted from the last sequent on the branch which has
the form of Formula (7.1). In Figure 7.3 these sequents are, for B1

Γ1︷ ︸︸ ︷
x < 0 =⇒ {x′ := x || r := −x}〈〉φ

and for B2

=⇒
∆2︷ ︸︸ ︷
x < 0, {x′ := x || r := x}〈〉φ

The test data constraints in form of Formula (7.3) are given by Γ1 and
¬∆2, respectively. A test derived from the branch B2 will succeed and

189

7. Verification-based Test Generation

JAVA + JML (7.3)

void foo1(int n){

int i=0;

/*@ loop_invariant 0<=i && i<=n;

modifies i;

@*/

while(i < n){

if(i==10){ A();}

B();

i++;

}

if(i==20){ C(); }

}

JAVA + JML

JAVA + JML (7.4)

int i;

/*@ public normal_behavior

requires i<=n; ensures i==n;

modifies i; @*/

void D(int n){

while(i < n){ ... }

}

void foo2(int n){

D(n);

if(i==20){ C(); }

}

JAVA + JML

Fig. 7.4. Examples of programs for which bounded symbolic execution may not

achieve branch coverage

a test derived from the branch B1 will detect the fault. For instance,
x
.= −1 satisfies the test data constraint of the branch B1 and results in

the return value 1 of the method abs which contradicts the requirement

ensures \result==x;

7.4.2.2 Utilising Contracts for Full Feasible Branch Coverage

When finite unfolding of method calls and loops is used during symbolic
execution, the user does not have to provide method contracts or loop
invariants. This technique is also known as bounded symbolic execu-
tion. When using VBT as an extension to verification (see Figure 7.1,
page 176), then method contracts and loop invariants are typically
available. Furthermore, the proof tree generated by the verification at-
tempt can be directly reused for test case derivation.

In [Gladisch, 2008a] we have shown that method contracts and loop
invariants, hereafter contracts, can be used to create test cases that are
likely to be missed by bounded symbolic execution. In some cases the
latter requires an exhaustive inspection of all execution paths which is
infeasible in the presence of complex methods and impossible in the
presence of loops, because loops represent infinitely many paths.

Figure 7.4 shows examples of programs for which branch coverage
is hard to be achieved using bounded symbolic execution. In order to

190

7.4. Extraction of Test Cases from a Proof Tree

execute A() (Listing 7.3) the loop body has to be entered at least 11
times and in order to execute C() it has to be executed exactly 20 times.
In similar programs these numbers could be much larger or be the result
of complex expressions requiring an exhaustive inspection of all paths
in order to find the case where the branch conditions are satisfied. A
similar situation is in Listing 7.4 where an exhaustive inspection of D()
may be required to find a path such that after the execution of D() the
branch condition i

.= 20 holds.
When using the contract rules (see Section 2.4.6) during proof con-

struction, test data constraints can be derived from the proof tree solv-
ing the described problem. If the contracts are strong enough, the test
data constraints ensure the execution of desired feasible branches (a)
after loops and method calls or (b) within loops. In case (a) the test
data constraint is extracted from the third branch of the contract rule
application. It is extracted in the same way as described before, i.e.,
a sequent of the form of Formula (7.1) (e.g., on page 185) has to be
located in the proof tree from which the test data constraint of the
form of Formula (7.3) is extracted. In case (b) the test data constraint
is extracted from the second branch of the loop invariant rule, i.e.,
the branch constructed from Premiss 2 of the rule. On this branch a
sequent of the form

Γ =⇒ UVM [b′]I,∆ (7.7)

has to be located – in analogy to the Formula (7.1) on other branches
– where b′ is the loop body, part of the loop body, or it is empty. The
test data constraint is given in this case by the formula∧

Γ ∧ ¬
∨
∆ (7.8)

which is analogous to the Formula (7.3).

Strength of Contracts

Whether the contract is strong enough to ensure that the test data
constraint has the desired properties can be checked in an obvious way,
namely by formalizing and proving the desired property. Checking the
strength of the contract is not part of the test data generation process.
The strength property can be used to prove that full feasible branch
coverage is achieved when using a particular contract.

For the program parts we use the notation that we have used also
in Table 5.1. Let

191

7. Verification-based Test Generation

pre→ U [ABC]post

be the verification condition at the root of the proof tree, where B
is the loop or method call, and A and C are other statements. Let σ
be the contract of B, let ψ be the condition that has to be satisfied
immediately after B in order to execute the desired branch in C, and let
ϕσ be the test data constraint extracted from the proof tree according
to the above description. The contract of B is strong enough, i.e., such
that ϕσ ensures the satisfaction of ψ after the execution of AB, iff:

� ϕσ → U [AB]ψ (7.9)

Condition 7.9 is a property of the contract because it is the only variable
component in this statement.

Similarly, one can formalize the strength condition of a loop in-
variant for ensuring the execution of a branch within the loop. The
condition in this case is

� ϕσ → UVM [AB ′B ′′]ψ (7.10)

where VM is the anonymising update generated from the modifier set
of σ (see Def. 2.52) and ψ is the condition that has to be satisfied at
the beginning of an arbitrary loop iteration in order to executed the
desired branch within the loop. The program part B′ is the program
part that is abstracted by the loop invariant, i.e., it is a prefix of loop
iterations before the termination of the loop. The program part B′′ is
the part of the loop body before the branch condition in the loop is
checked that leads to the desired branch within the loop. For instance,
for the loop of Listing 7.3 (page 190), B′ is a prefix of the form

if(i==10)A();B();i++;...;if(i==10)A();B();i++; (7.11)

the branch condition for the branch A() is i==10, and B′′ is empty.
A generalization of B′ for arbitrary loop iterations is possible. Further
details can be found in [Gladisch, 2008a].

Example

Figure 7.5 shows a proof tree constructed from the method foo1 of
Listing 7.3. Branch B1 is built from Premiss 1 of the loopInv rule (see
Table 2.5) and the Branches B2,1 and B3,1 are build from Premisses 2
and 3 of the rule, respectively. The anonymising update VM is derived

192

7.4. Extraction of Test Cases from a Proof Tree

B1

...

B2,1

UVM (I ∧ i < n ∧ i .= 10) =⇒ . . .
...

...

=⇒ UVM (I ∧ i < n→
[if(i==10){A();}...]I)

...

B3,1

UVM (I ∧ i > n ∧ i .= 20) =⇒ . . .
...

...

=⇒ UVM (I ∧ i > n→
[if(i==20){C();...]φ)

...

=⇒ {i := 0}| {z }
U

[while(i<n){if(i==10){A();...}if(i==20)...]φ

...

=⇒ [foo1(int n)]φ

Fig. 7.5. Proof tree with test data constraints obtained by using the loop invariant

rule

from the modifier set of the loop invariant and is given by VM = {i :=
isk}, where isk ∈ FSym is a fresh symbol.

The test data constraints are derived from the leaves of the proof
tree shown in Figure 7.5. The leaf of branch B2,1 is the sequent

U︷ ︸︸ ︷
{i := 0}

VM︷ ︸︸ ︷
{i := isk}(

I︷ ︸︸ ︷
0 6 i ∧ i 6 n∧i < n ∧ i .= 10) =⇒ [A();...]I

(7.12)
According to Formulas (7.7) and (7.8) the test data constraint derived
from this sequent is

U︷ ︸︸ ︷
{i := 0}

VM︷ ︸︸ ︷
{i := isk}(

I︷ ︸︸ ︷
0 6 i ∧ i 6 n∧i < n ∧ i .= 10) (7.13)

which simplifies to
(isk < n ∧ isk

.= 10)

and implies n > 10.
The strength condition (7.10) is provable in this case. For test gener-

ation it is not necessary to prove or to generate the strength condition.
However, the fact that it is provable implies that if the test data con-
straint is satisfied, i.e. n > 10, then A() will be executed in Listing 7.3.

The test data constraint derived from B3,1 is

U︷ ︸︸ ︷
{i := 0}

VM︷ ︸︸ ︷
{i := isk}(

I︷ ︸︸ ︷
0 6 i ∧ i 6 n∧i > n ∧ i .= 20)

193

7. Verification-based Test Generation

It simplifies to
(isk

.= n ∧ isk
.= 20)

which implies that if n .= 20, then C() will be executed in Listing 7.3.
This is correct because the strength condition (7.9) is provable in this
case as well.

Similarly test data constraints can be obtain in order to execute C()
for Listing 7.4.

7.4.3 Test Cases with Fault Detection Guarantee

The branch B2 of the proof tree shown in Figure 7.3 on page 189 does
not close because the code in Listing 7.2 has a fault. The deductive
fault detection approach described in Chapter 4 can detect the fault
and provide an initial state of the MUT that reveals it. Such test cases
are derived in the use-case 1 of Figure 7.1. Revealing the fault means
that the postcondition will not be satisfied after the execution of the
MUT. In principle a test oracle can be used in this case which returns
false. We formalize this in the following theorem.

Theorem 7.4. Let S0, . . . , Sn be a branch of a proof tree where Sn has
the form

Γn =⇒ ∆n

and S0 has the form
Γ0 =⇒ U0〈p〉φ,∆0

If Algorithm 1 (see Chapter 4, page 86) has detected a fault on the
branch S0, . . . , Sn, then any test satisfying the test data constraint∧

Γn ∧ ¬
∨
∆n (7.14)

leads to an execution of p such that the postcondition φ is violated or
p does not terminate.

Proof. If Algorithm 1 has detected a fault on the branch S0, . . . , Sn,
this means that a) Sn has a counterexample, and b) the branch is
validity preserving, i.e. � S0 → Sn (see Section 4.4.1, page 92). Validity
preservation of the branch can also be expressed as � ¬Sn → ¬S0.
Formula (7.14) is the negation of Sn. Hence, every partial model S
(see Definitions 2.6 and 2.19) of (7.14) is also a partial model of ¬S0,
respectively a counterexample of S0. It cannot be that S � U0〈p〉φ

194

7.5. Generation of Executable JUnit Tests

Fig. 7.6. Generation of executable JUnit tests

because then S would not be a counterexample of S0 (see Def. 2.29).
Hence, it is necessarily the case that S 2 U0〈p〉φ which means that
after the execution of p the postcondition φ is violated or p does not
terminate (see also Def. 2.25 and Lemma 2.26 on page 42). �

7.5 Generation of Executable JUnit Tests

This section describes techniques for the generation of executable JU-
nit tests which are based on the test cases, or test data constraints,
obtained in first phase (see Section 7.4). This approach is shown in
Figure 7.6.

The original version of this VBT approach was developed by En-
gel [Engel, 2006]. From the time [Engel, 2006] was published KeY has
evolved requiring changes to the original implementation as well as ex-
tensions for handling new features of KeY such as quantified updates
and a different translation from JML specifications to verification con-
ditions. In the following sub-sections we describe new techniques for
the generation of JUnit tests that were developed by the author of this
thesis, if not stated otherwise.

A JUnit test suite consists of a set of test drivers which execute the
MUT. A test driver is a method with the following structure.

195

7. Verification-based Test Generation

JAVA

1 //Test preamble

2 //Invocation of the MUT

3 //Test oracle

JAVA

In the following we describe a test preamble generator and two test
oracle generators. Hence, these sub-sections are technically oriented.

7.5.1 Test Preamble Generation

The test preamble is the part of a test driver that initializes the state in
which the MUT is executed. It initializes the MUT with the respective
test data of each branch at a time and ensures the execution of the
program paths represented in the proof tree.

In Section 7.4 we have described how to obtain test data constraints
which are the input to a model generator to generate test data. As
described in Section 6.7 (page 168), the model generator presented
in Chapter 6 can be used to generate test data. In this approach a
models, respectively the assignment of test data to memory locations,
is syntactically represented in form of updates. The task of the preamble
generator is to convert the updates into a JAVA program. For this task
the following problems have to be solved.

a) Function symbols have to be represented in the test driver.
b) Parallel and quantified updates have to be transformed into sequen-

tial programs.
c) Objects have to be created.
d) Read and write access to private and protected object fields must

be enabled.

7.5.1.1 Representing Function Symbols in JAVA

An update assigns a value to a function for a specific argument value.
If the update was generated by the calculus rule assignment (see Ta-
ble 2.5), the location term is an assignable JAVA expression. Hence, in
this case the function is a program variable, an object field, or an array.

Updates not generated by the assignment rule may assign values
to functions that are not constructs declared in the program. A typical
example of this situation is storing the value of an expression in the
pre-state of the MUT in a temporary function in order to refer to it

196

7.5. Generation of Executable JUnit Tests

in the post-state of the MUT. For example, in Listings 7.1 and 7.2 of
Section 7.4 (page 186) the temporary function x′ is used to store the
value of the formal parameter x in the pre-state of the MUT. In such
cases, where a unary function symbol is used, the function symbol can
be modelled by a program variable. In practice, however, also function
symbols with arity greater than zero are relevant for test generation as
shown in the following example.

JAVA + JML (7.5)
1 Object[] a;
2 /*@ public normal_behavior

3 requires a!=null;
4 ensures (\forall int i;0<=i && i<=a.length();
5 (\exists int j;0<=j && j<=a.length();
6 \old(a[i]) == a[j]));
7 modifies a[*]; @*/
8 void sort(){...}

JAVA + JML

Listing 7.5 specifies that after executing the method sort() the
array a has the same elements as before the execution.5 Hence, in
order to make a comparison of the array in the pre-state and the post-
state of the MUT, the old values of the array elements have to be stored.
For this purpose KeY creates from Listing 7.5 a verification condition
of the form 7.5 (page 185), i.e. Γ =⇒ U0〈m();〉φ,∆, with the update U0

defined as

aPre := a || for x0, x1; true; getPre(x0, x1) := x0[x1] (7.15)

where aPre, getPre ∈ FSymnr, [] ∈ FSymr (see Def. 2.2, page 24),
x0, x1 ∈ VSym, and the typing of the symbols is (see Def. 2.2)

α(aPre) = α(a) = Object[]

α(getPre) = ((Object[], int), Object)
α(x0) = Object[]

α(x1) = int

The function aPre stores the old reference to the array (object) and the
function getPre stores the array elements of all arrays of type Object[].

5 The multiplicity and sortedness of the array elements is not specified.

197

7. Verification-based Test Generation

The expression \old(a[i]) in the postcondition of the specification is
therefore translated to getPre(aPre, i). Hence, function symbols with
arity greater than zero have to be modelled in JAVA. �

A general way to represent a first-order logic function over a finite
domain in JAVA is to use a hashmap. A function with multiple argu-
ments can be represented as a hashmap with one argument that returns
another hashmap with one argument. If the argument is of type int,
also an array can be used to represent the function.

7.5.1.2 Transformation of Updates to a JAVA Program

As described in the beginning of Section 7.5.1, updates represent the as-
signment of test data to memory locations. In the previous sub-section
we have described that updates are also used to store the old values of
expressions in order to make them accessible after the execution of the
MUT. Therefore, updates occurring before the MUT must be treated
as a prefix program of the MUT. The resulting program should exhibit
the same state change that is expressed by the update or an approxima-
tion of it. In some cases it is not possible or not desired to transform an
update into an equivalent JAVA program. This is for instance the case if
the update performs an infinite state change such as the update (7.15)
on page 197.

The update language consists of five constructs (see Def. 2.16).
Update applications can be reduced to the other constructs using
Lemma 2.42. Throughout this section we define and explain the trans-
formation function τ which transforms an update to another update
or to JAVA statements. We do not define the transformation function
strictly mathematically. This is because not all updates can be trans-
formed into equivalent JAVA programs and there are also different pos-
sibilities and room for creativity how to realize the transformation.

Function and Sequential Updates

Function updates and sequential updates can be transformed trivially
to a sequence of assignments in JAVA. However, not all updates have to
be transformed to the program. If it is known that a function symbol
cannot be accessed during the execution of the MUT or the test oracle,
the update can be ignored. Hence, the transformation function τ for
function updates and sequential updates is defined as follows.

198

7.5. Generation of Executable JUnit Tests

Definition 7.5. The transformation function τ : Updates→ (Updates∪
Programs), where Programs denotes the set of sequences of JAVA

statements, has the following properties.
Let (f(t1, . . . , tn) := t), u1, u2 ∈ Updates be function updates.

• The transformation τ(f(t1, . . . , tn) := t) is defined as:
− an empty statement, if f(t1, . . . , tn) does not represent any of the

following: a program variable, an object field, the array access
operator, a temporary symbol as described in Section 7.5.1.1, or
a temporary symbol introduced by τ as described in this section;

− otherwise, it is defined as a program p which
− ensures that 〈p〉f(t1, . . . , tn) .= t holds and t is not changed,
− uses the JAVA representation of f(t1, . . . , tn) and t as de-

scribed in Section 7.5.1.1,
− uses the techniques described in Section 7.5.1.4 to access the

memory locations,
− uses the techniques for object creation described in Sec-

tion 7.5.1.3.
• The transformation τ(u1 ;u2) yields the sequential program τ(u1);
τ(u2).

Parallel Updates

The transformation of parallel updates without quantified updates has
been described in [Engel, 2006]. The approach is to transform a parallel
update into a sequential update before it is transformed into a program.
The approach requires that no sequential update occurs as a sub-update
of the parallel update which can be achieved with Lemma (2.41). It
ensures that the arguments of both, the location terms and the value
terms of all function updates that occur below the parallel update, are
evaluated in the pre-state of the update (see Def. 2.23).

For instance, consider the sequential update

f(a) := b ; g(f(a)) := f(a) (7.16)

Assume that s is the state in which the update is evaluated, then lo-
cation term argument a and the value term b of the first update are
evaluated in s. However, the location term argument and value term
f(a) are evaluated in the state vals((7.16))(s). In contrast, when the
update (7.16) is replaced by the parallel update

f(a) := b || g(b) := b (7.17)

199

7. Verification-based Test Generation

the location term arguments and value terms are all evaluated in s.
The evaluation point of the location term arguments and the value

terms has to be respected as the following example shows. The formula
(let P ∈ PSym)

{a := f(a) || f(a) := a}P (a, f(a)) (7.18)

is equivalent to
P (f(a), a)

If the parallel update in Formula (7.18) is replaced by a sequential up-
date, the semantics of the formula is changed as shown by the following
simplification steps

{a := f(a) ; f(a) := a}P (a, f(a))
≡ {a := f(a) || f({a := f(a)}a) := {a := f(a)}a} (Lem. 2.41)
≡ {a := f(a) || f(f(a)) := f(a)}P (a, f(a))
≡ P (f(a), f(a))

In order to transform a parallel update into a sequential update, the
approach is to store the values of the location term arguments and the
value terms in temporary function symbols. Continuing the example,
the update of Formula (7.18) can be transformed into the following
sequential update

a′ := a ; a := f(a′) ; f(a′) := a′

which is equivalent to the update in (7.18) except for the modification
of the temporary function a′ ∈ FSymnr.

A more general transformation of parallel updates to sequential up-
dates is given in the following definition.

Definition 7.6. Let u ∈ Updates be in update normal form (see
Def. 2.37):

u = (for x̄1; φ1; f1(t̄1) := s1 || . . . || for x̄n; φn; fn(t̄n) := sn)

The transformation τ(u) is defined as

τ(uprefix ;u′)

where uprefix ∈ Updates is defined as the sequential update

200

7.5. Generation of Executable JUnit Tests

(for x̄1; φ1; (t′1 := t̄1 ; s′1 := s1)) ; ... ; (for x̄1; φ1; (t′n := t̄n ; s′n := sn))

and u′ ∈ Updates is defined as the sequential update

(for x̄1; φ1; f1(t′1) := s′1) ; . . . ; (for x̄n; φn; fn(t′n) := s′n)

�

In the definition the update uprefix stores the values of the terms t̄i and
si with 1 6 i 6 n in the pre-state of the update u. The values are stored
in the constants t′i and s′i which are used in the update u′. The update
u′ is the sequential version of u which ensures that the arguments of the
location term and the value term are not influenced by the sequence.
This is because t′i and s′i cannot be modified by u′.

Quantified Updates

A quantified update of the form (for x; true; u) can be informally seen
as an infinite composition of parallel updates of the form u+∞ || ... ||u−∞
where each sub-update has its own variable assignment for x. A quanti-
fied update of the form (for x; φ; u) allows a sub-update to be effective
only if φ is true for the particular assignment of x. For instance, the
quantified update

for x; 0 6 x 6 2; f(x) := x

is equivalent to the update

f(2) := 2 || f(1) := 1 || f(0) := 0

Hence, it seems reasonable to transform a quantified update into a
loop statement which iterates over the values of x, and to use an if-
statement to check whether φ is satisfied before executing the sub-
update. Since loops are executed sequentially a conversion from the
parallel composition to a sequential composition of updates is necessary.
This conversion can be achieved with the approach followed at the
beginning of Section 7.5.1.2 (see page 199). Based on this intuition we
extend the transformation function τ for quantified updates as follows.

Definition 7.7. Let K� be a Kripke structure. Let

u = (for x̄; φ; f(t̄) := s)

The transformation τ(u) is defined as

201

7. Verification-based Test Generation

τ(QUpToLoop�(uprefix); QUpToLoop�(u′))

where uprefix ∈ Updates is defined as

for x̄; φ; (t′ := t̄ ; s′ := s)

u′ ∈ Updates is defined as

for x̄; φ; f(t′) := s′

and QUpToLoop� represents a JAVA program in form of Algorithm 5.
The sets domφ

xi with 1 6 i 6 m contain all values of the variables xi
for which φ is satisfiable.

Algorithm 5 QUpToLoop�(µ)
Require: µ ∈ Updates has the form (for x1, . . . , xm; φ; u).

1: for all x1 ∈ domφ
x1 respecting the order relation � do

2:
...

3: for all xn ∈ domφ
xm

respecting the order relation � do

4: if φ then

5: τ(u)

6: end if

7: end for

8:
...

9: end for

�

In Definition 7.7 a general transformation is given which converts a
quantified update with a function sub-update to a schema for a sequen-
tial program. Similarly as in Definition 7.6, the update uprefix evaluates
the terms t̄ and s in the pre-state of the update u. The values are stored
in the constants t′ and s′ allowing to break the parallelism of u. The
update u′ is the sequential version of u.

Algorithm 5 is a program schema. An implementation of a loop
which iterates over all elements in domφ

xi is, however, not practical or
not possible in several cases. The problem of the transformation is the
domain of the quantification.

One problem is that if the domain is infinite, Definition 7.7 may
yield an infinite loop or a loop that iterates, e.g., over all JAVA integer

202

7.5. Generation of Executable JUnit Tests

values. This is for instance the case with the quantified variable x1 in
the update (7.15) which we have defined in Section 7.5.1.1 as

aPre := a || for x0, x1; true; getPre(x0, x1) := x0[x1]

A practical transformation can be achieved if the formula φ restricts
the domain of quantification to a finite set. This is for instance the case
if φ specifies upper and lower bounds in case of quantification over the
integer domain.

Another problem is to handle quantification over the domain of JAVA

objects as it is, e.g., the case with the variable x0 in the update (7.15).
The problem is that it is not possible to determine and access all ob-
jects of the Java Virtual Machine. Furthermore, JAVA CARD DL uses
constant domain semantics, which implies that the domain of quan-
tification includes all created objects as well as objects that are not
created yet. Accessing the latter kind of objects is not possible in JAVA.

Fortunately, quantified updates such as (7.15), which create a copy
of memory locations for later use, can be handled in a special way. The
functions which are assigned values by the update do not occur in the
program but only in the postcondition of the MUT. Hence, it is possible
to look-up which expressions need to be evaluated with respect to the
pre-state of the MUT.

For instance, \old(a[x]) is the only expression in Listing 7.5 that
refers to the function [] : Object[]× int→ Object in the pre-state of
the MUT. Using this information the update (7.15) can be transformed
to

aPre := a || for x0, x1; x0
.= a; getPre(x0, x1) := x0[x1] (7.19)

Hence, quantification over all JAVA objects of type Object[] is not
required. From the postcondition of Listing 7.5 upper and lower bounds
for the quantification of x1 can be determined. The update (7.20) can
be transformed to the parallel update

aPre := a ||
for x0, x1; x0

.= a ∧ 0 6 x1 6 a.length︸ ︷︷ ︸
φ

; getPre(x0, x1) := x0[x1]

(7.20)
This update can be transformed into a sequential program by using
Definition 7.7.

What the example does is reducing the domains of quantification
domφ

x0 and domφ
x1 to finite sets. The reduction of the quantification

203

7. Verification-based Test Generation

domains implemented in KeY is technical and hence is not explained
here any further. However, with these reductions quantified updates
occurring in practice are transformed into a correct test preamble.

Finally, in cases where a sufficient reduction of a quantification do-
main is not possible, KeY performs instantiations of the quantified up-
date with primitive values or object references that occur in the test
data constraint

∧
Γ∧¬

∨
∆ (see Formula (7.3), page 185). This approach

yields, however, only an approximation of the updates that does not
guarantee soundness of the test driver, i.e., the initial state of the MUT
may not satisfy the test data constraint.

7.5.1.3 Object Creation

Primitive values assigned by updates are represented as terms and can
be trivially transformed into JAVA expressions. In contrast, a reference
to a JAVA object of type A is an identifier in JAVA CARD DL which is
retrieved by the injective function A::get : integer→ A (see Def. 2.2).
For instance, a partial interpretation of a program variable o : A is
represented in the output of the model generator as an update of the
form (o := A::get(t)), where t ∈ TrmFOL. Simply transforming each
such update into an assignment o=new A(); is not correct. This is
because the two updates may assign the same reference to different
program variables, e.g.,

o1 := A::get(t1) ; o2 := A::get(t2)

with t1 ≡ t2 but two calls of the new operator would result in two
different objects, i.e. 〈o1=newA();o2=newA()〉¬o1 .= o2. The solution
proposed in [Engel, 2006] is to perform equivalence analysis of the
value terms which ensures that the same object reference is used for all
equivalent object identifier terms A::get(t). We propose an alternative
solution that is more technically oriented but is simpler to implement.

Definition 7.8. Let u ∈ Updates be a function update of the form

o := A::get(t)

The transformation τ(o := t) is defined as

A tmp = getObjectA(t); τ(o := tmp)

where tmp is a new program variable of type A. The method getObjectA
is defined as

204

7.5. Generation of Executable JUnit Tests

JAVA

1 public static A getObjectA(int id){
2 if(hm.contains(id)){ return hm.get(id); }
3 else {hm.put(id, newObjA()); return getObjectA(id); }
4 }

JAVA

where hm is a static hashmap which maps int to A, and newObjA()
creates a new instance of class A.

The method getObjectA() returns an instance of class A and ensures
injectivity with respect to the parameter id.

Creating an instance of a class automatically is generally not a trivial
task if the class has no public default constructor. The problem is
that using a non-default constructor may require a recursive search
procedure in order to initialize parameters of a non-default constructor
with references to other objects. Therefore this task is abstracted by
the method newObjA() in Definition 7.8. In [Engel, 2006] the problem
was solved by creating a copy of the whole program under test and
extending all class definitions with public default constructors. We use
in contrast the Objenesis API [Walnes et al.] which solves this problem
without the necessity to modify the original program and is used by
the method newObjA().

7.5.1.4 Read and Write Access to Private and Protected
Object Fields

Enabling read and write access to private and protected object fields
is a technical JAVA issue.6 In [Engel, 2006] this problem is solved by
creating a copy of the whole program under test and extending all
class definitions with get and set methods for each private or protect
field. These methods enable the desired read and write access. In ad-
dition each class is equipped with a public standard constructor (see
Section 7.5.1.3). This approach is useful for testing programs in the
JAVA dialects JAVA CARD or Java ME where JAVA’s Reflection API is
not available.

We have extended VBT to generate test drivers which access pri-
vate and protected fields via JAVA’s Reflection API. This approach has
6 The terms private and protected refer to the JAVA modifiers private and

protected, respectively.

205

7. Verification-based Test Generation

several advantages that we describe in the following. For further infor-
mation on JAVA’s Reflection API we refer the reader to the available
online reference.

An advantage of using the reflection API rather than extending
the program under test (PUT) with set and get methods is that the
PUT is not modified, and thus the original program is tested. Another
advantage of our approach is that it allows to access memory locations
that otherwise cannot be accessed when using set and get methods.
This is for instance the case if the source code is not available or if it
is not appropriate to modify the library classes. Such cases occur if the
state of instances of library classes has to be initialized with test data.

Consider for instance the following code that may occur in the MUT.

JAVA (7.6)
1 Vector v;.
2 ..
3 if(v.get(1)==2){...}

JAVA

The MUT contains a conditional statement on the outcome of a library
method. The class Vector of the Java Runtime Environment (JRE) de-
clares a protected array elementData which stores the elements of each
instance of the class. The techniques of VBT described so far yield a
model in which elementData[1] has to be initialized with the value 2.
However, an assignment to elementData[1] in the test preamble can-
not be created due to the visibility restrictions of the field. Extending
the declaration of the class Vector with a suitable set would require
to use a custom JRE which is especially not suitable in the use-case 2
of Figure 7.1.

7.5.2 Test Oracle Generation

In order to check if the MUT meets its specification a test oracle is ex-
ecuted after running the MUT. The test oracle evaluates the postcon-
dition of the MUT in its post-state. Ideally the test oracle is a decision
procedure for the postcondition in the post-state of the MUT. There
are at least three principle limitations when generating a test oracle.
The first is that first-order logic is semi-decidable and therefore not
every postcondition can be transformed into an oracle deciding it. The
second is the problem of handling postconditions that express proper-
ties of infinitely many memory locations, e.g. ∀x.a[x] = 0. Accessing

206

7.5. Generation of Executable JUnit Tests

infinitely many memory locations leads to a non-terminating program.
The third is that not all objects of the JVM may be known to the test
oracle which is required, e.g., to evaluate the formula ∃a.a.length .= 1.

Since the state of the JVM is determined by finitely many memory
locations which store concrete values from finite sets the question arise
what causes the above mentioned problems. Any formula that depends
only on the memory locations and values of the JVM is decidable.
The problem is that in the context of verification the user sometimes
expresses properties for the sake of simpler specification that go beyond
the JVM state. For instance, it is easier to specify (and possibly to
verify) ∀x.a[x] = 0 rather than ∀x.(0 ≤ x ∧ x ≤ a.length) → a[x] = 0.
The oracle may also not be able to decide a postcondition in a concrete
JVM state because theoretically the postcondition may contain some
arbitrary FOL formula expressing a property that is not related to the
state of the JVM. Hence, in practice the user has to understand the
limitations of the test oracle generator and design the postcondition
accordingly.

In the following we describe two techniques, respectively approached,
for test oracle generation. For accessing object fields we assume that
the techniques described in Section 7.5.1.4 are used.

7.5.2.1 Approach 1

A simple approach is to convert recursively each sub-formula of the
postcondition into a method. Each of these methods evaluates one log-
ical operator. For instance, the formula φ0 defined as φ1∧φ2 is converted
into a method of the form:

JAVA

1 public static boolean subFormula0(...){
2 boolean b1 = subFormula1(...);
3 boolean b2 = subFormula2(...);
4 return b1 && b2;
5 }

JAVA

Obvious translations are performed for the other propositional oper-
ators. Quantification is restricted to the bounded integer domain and
is handled with for-loops. In order to determine the lower and upper
bounds for the quantified variable the implementation described in [En-
gel and Hähnle, 2007; Engel, 2006] restricts quantified formulas to one

207

7. Verification-based Test Generation

of the following two forms.

∀x.((lower 6 x ∧ x 6 upper)→ φ)

∃x.((lower 6 x ∧ x 6 upper) ∧ φ)

We have weakened this restriction. The matrix of the quantified formula
is not restricted anymore to a certain syntactical form. Instead, by
traversing the structure of the postcondition literals have to be found
which determine the lower and upper bounds of the quantified variable.
If several terms are found expressing lower and upper bounds, then
the smallest interval is computed at runtime of the test oracle. This
generalization has been developed in scope of the minor thesis [Bender,
2010].

7.5.2.2 Approach 2

In this approach the deductive fault detection techniques described in
Part II of this thesis is used to implement a test oracle. The implemen-
tation of this approach is still in development. The test oracle is given
as Algorithm 6.

Algorithm 6 testOracleφ()
1: p =stateToProgφ()

2: return tryToVerifyOrToFindABug((
V
Γ ∧ ¬

W
∆)→ U〈p〉φ) (see Sec. 4.3.1)

The assumptions in the definition of Algorithm 6 are:

• φ ∈ Formulae is the postcondition of the requirement specification.
• Γ =⇒ U〈〉φ,∆ is sequent from which the current test has been

derived according to Section 7.4, i.e., the symbolic execution of the
MUT has terminated and

∧
Γ ∧ ¬

∨
∆ is the test data constraint.

• stateToProgφ() is a method returning a JAVA program which cap-
tures the values of memory locations that are relevant for φ.

When using the test oracle defined by Algorithm 6, VBT performs
almost the same steps as the deductive fault detection approach does
which is described in Chapter 4. The difference is that that the symbolic
execution of the MUT is by-passed with the execution in its runtime-
environment.

208

7.6. Tool-chain Approach for Test Generation

Fig. 7.7. White-box testing by combining structural specification enhancement and

black-box testing

Algorithm 6 can be considered as a general test oracle allowing to
prove complex first-order logic formulas. The method stateToProgφ()
translates the state of the JVM to a JAVA CARD DL state in order to
evaluate the postcondition in KeY. If φ accesses either infinitely many
memory locations or memory locations that cannot be accessed, these
methods do not terminate or do not exist. A similar problem exists for
the translation of quantified updates where the JAVA CARD DL state is
translated into the JVM state (see Section 7.5.1.2, page 201).

The program p overrides the memory locations which are assigned
in U with the actual values from the JVM. For instance, if in the initial
state of the MUT a ≡ 0 and after the execution of the MUT a ≡ 1, then
U〈p〉φ is given by {a := 0 || . . .}〈a=1;...〉φ. Note that p must assign
concrete values to the memory locations in order to be independent
from U . Otherwise the concatenation of U and 〈p〉 would describe the
result of double execution of the MUT.

7.6 Tool-chain Approach for Test Generation

In Section 7.3 we have given an overview of two test generation ap-
proaches. Common to both approaches is the first phase where test
cases are extracted from a proof tree (see Section 7.4). In this sec-
tion we describe the second phase of the tool-chain approach which
is an alternative to the JUnit test generation approach described in
Section 7.5.

Verification and testing tools can benefit from each other when being
combined. However, they do not offer interfaces providing information

209

7. Verification-based Test Generation

that could be used for the other task. The solution that we propose
in this section is to use specifications that encode structural informa-
tion of programs for interfacing (see Figure 7.7). The specifications
are in between program analysis and deductive verification on one side
and test-case generation on the other side. On both sides, there are
tools that can produce specifications respectively take them as input
for test-case generation. Tools that do not immediately offer the re-
quired interface can be extended with little effort. In the following we
use the term requirement specification in order to distinguish the user-
provided specification of desired semantic properties from generated
specifications in our approach.

The test data constraints which are obtained as described in Sec-
tion 7.4 are used in this approach in order to structurally enhance
the requirement specification of the MUT. The structurally enhanced
specification (hereafter, enhanced specification) is then used as input
to a black-box testing tool (e.g. [Cheon et al., 2008; Parasoft; Kosma-
tov et al., 2004; Legeard et al., 2002]). Thus, (1) the black-box testing
method can make use of information about the program’s structure
that is contained in the specification, and (2) we separate concerns and
get a clear interface between program analysis on the one hand and
test-case generation and execution on the other hand, which allows the
combination of different tools. If the black-box testing tool generates a
test for each test data constraint contained in the enhanced specifica-
tion, then effectively it generates white-box tests.

7.6.1 Generation of the Enhanced Specification in JML

We have extended KeY with a utility for deriving the enhanced speci-
fication from a proof tree. The implementation follows the description
in [Beckert and Gladisch, 2007] where we had a slightly different view
on the approach than in Figure 7.7. Figure 7.8 shows the implemented
approach which extracts a specification from the source code – also
known as specification mining – and combines the extracted specifi-
cation with the requirement specification. The extracted specification
carries structural information of the MUT’s source code. The result-
ing enhanced specification has the form shown in Listing 7.7 where
req is the requirement specification and the other parts constitute the
extracted specification.

210

7.6. Tool-chain Approach for Test Generation

Fig. 7.8. White-box testing by combining specification mining and black-box testing

JAVA + JML (7.7)
1 /*@ req
2 also

3 requires c1; ensures e1;
4 also

5 ...
6 also

7 requires cn; ensures en;
8 *@/

JAVA + JML

The JML expressions c1, . . . , cn are test data constraints according
to the description of Section 7.4. The difference of the approach shown
in Figure 7.8 with respect to the approach shown in Figure 7.7 is that in
addition to the test data constraints also the postconditions e1, . . . , en
are generated – justifying the term extracted specification. These post-
conditions describe the post-state of the MUT that was computed by
symbolic execution and must not be confused with the postcondition
of the requirement specification provided by the user. If an extracted
precondition is satisfied, the respective postconditions must be satis-
fied as well, otherwise the symbolic execution does not comply with
the execution of the MUT in its runtime-environment. Hence, the ex-
tracted postconditions can be considered as a feature but they are not
as important as the preconditions are. The postconditions can be set
to true because the actual requirement is checked by the postcondi-
tion of the specification req. This insight has led us to the newer view

211

7. Verification-based Test Generation

of the approach depicted in Figure 7.7. Nevertheless, we give a short
description of the postcondition extraction technique.

The postconditions are computed from the update U that is in front
of the DL formula that is in the focus of symbolic execution (see Sec-
tion 7.4). In order to generate a meaningful postcondition, the sym-
bolic execution of the MUT must have terminated, i.e., the program
p in Formula (7.1) has to be empty. Otherwise, the update does not
represent the final state of the MUT and in this case we simply chose
the postcondition true.7 We assume that the update is in normal form
(see Def. 2.37) and it represents a final state of the MUT. Updates
containing terms which cannot be evaluated in the postcondition at
runtime are ignored or replaced by alternative equivalent terms. For
instance, updates to (local) program variables and formal parameters
are ignored.

A functional update of the form t := s is transformed into a JML-
expression of the form

t==\old(s)

where t and s are JML-representations of the terms t and s respectively.
Parallel updates with different top-level function symbols are translated
into a conjunction of JML-equations. For instance, the update a :=
1 || b := 2 is translated into the expression:

a==1 && b==2

Parallel updates with the same top-level function symbol on the other
hand are translated into a disjunction of JML-equations. For instance,
the update o.a := 1 ||u.a := 2 is translated into the JML expression

o.a==1 || u.a==2

In order to handle both cases, function updates with the same top-level
function symbol are first grouped together and treated in a disjunction
while groups of function updates with different top-level symbols are
treated in a conjunction. For instance, the update o.a := 1 ||u.b :=
2 ||u.a := 3 || o.b := 4 is translated into the JML expression

(o.a==1 || u.a==3) && (u.b==2 || o.b==4)

Quantified updates did not exist at the time of the implementation and
were therefore not treated.
7 Note that an update represents state changes and it represents states in combi-

nation with the context formulas.

212

7.6. Tool-chain Approach for Test Generation

7.6.2 Example and Experiments

We have applied the approach shown in Figure 7.8 to several small
programs. One of them is the method sqrt – the running example in
this thesis – that we use as an example in the following.

Example

The first step of the approach is to generate a proof tree for the method
sqrt and to extract test cases from it according to Section 7.4. . Sec-
tion 4.3.2 describes the construction of a proof tree for the method
sqrt using finite loop unwinding. In Figure 4.2 on page 91 we have
shown the proof tree which has for instance the branch B1 on which
symbolic execution has terminated. The sequent containing the test
data constraint and the final update on this branch is

x > 0, o 6= null, 0 6 x, 1 > x =⇒
{i := 1 || r := 1}〈〉(r2 6 x ∧ (r + 1)2 > x) (7.21)

According to Section 7.4 the test data constraint is in this case:

x
.= 0 ∧ o 6= null ∧ 0 6 x ∧ 1 > x (7.22)

In the second step the enhanced specification is generated and a
black-box testing tool is applied. Continuing the example, the test data
constraint (7.22) is translated into JML and is used as one precondi-
tion of the extracted specification (see Listing 7.7 on page 211). The
postcondition extracted from the update in the sequent (7.21) is

r
.= 1

where the function symbol r is translated into the JML expression
\result. The function update i := 1 is ignored because it determines
the values of a (local) program variable which cannot be evaluated in
the postcondition at runtime. This technique is applied also to other
branches of the proof tree.

For the extraction of the specification from the method sqrt we
have performed several loop unwindings. KeY’s output containing the
enhanced specification is shown in Figure 7.9. Lines 3-5 show the re-
quirement specification which is the same as in Figure 3.1. The ex-
tracted specification is found in the Lines 6-20. In most cases, i.e. in

213

7. Verification-based Test Generation

JAVA + JML

1 public class TestC extends C {

2 ... //Constructors and other methods

3 /*@ public normal_behavior

4 requires x>=0;

5 ensures \result * \result <= x && (\result+1) * (\result+1)>x;

6 also

7 requires true && x <= 15 && x >= 9 && !(this == null);

8 ensures \result == \old((int)(4));

9 also

10 requires true && x >= 16 && !(this == null);

11 ensures true ;

12 also

13 requires true && x <= 8 && x >= 4 && !(this == null);

14 ensures \result == \old((int)(3));

15 also

16 requires true && x <= 3 && x >= 1 && !(this == null);

17 ensures \result == \old((int)(2));

18 also

19 requires true && x == 0 && !(this == null);

20 ensures \result == \old((int)(1));

21 @*/

22 public int _test_sqrt(int x){ return sqrt(x); }

23 }

JAVA + JML

Fig. 7.9. Generated wrapper class with a structurally enhanced specification

Lines 8, 14, 17, and 20, a postcondition was generated because sym-
bolic execution on the respective proof tree branches has terminated.
In Line 11 the trivial postcondition true is used instead.

The enhanced specification does not specify the method sqrt di-
rectly, but instead, it specifies the wrapper method test sqrt (see
Line 22). In this way the specification and source code file of the method
sqrt do not have to be modified for the purpose of testing. The black-
box tool is then applied to the wrapper method. If the black-box test-
ing tool generates a test for each pre- and postcondition pair, then the
structural code coverage of the MUT is achieved.

Experiments

We have applied this technique also to bigger programs. Figure 7.10
shows one of the smallest pre- and postcondition pairs extracted from

214

7.6. Tool-chain Approach for Test Generation

JML

1 requires true && this.root.value == value &&

2 this.root.left.value <= -1 + value &&

3 (\forall Node n;true;(n == null|| n.left == null ||

4 n.left.value <= -1 + n.value)) &&

5 (\forall Node n;true;(n == null || n.left == null ||

6 n.left.parent == n)) &&

7 (this.root.right == null || false) &&

8 (\forall Node n;true;(n == null|| n.right == null||

9 n.right.value >= 1 + n.value)) &&

10 (\forall Node n;true;(n == null || n.right == null ||

11 n.right.parent == n)) &&

12 !(this.root.right.value >= 1 + value) && !(this == null) &&

13 !(this.root == null);

14 ensures true;

JML

Fig. 7.10. Excerpt from a large structurally enhanced specification

a method of a binary search tree example. The whole enhanced speci-
fication was over 50 lines long. The size of the specification depends on
the extent of the proof tree construction. This can be influenced, e.g.,
by the number of loop unwinding or the amount of quantifier instan-
tiations. Generally such specifications are not suitable for reading but
only for automatic processing.

In order to check if a black-box testing tool can handle the generated
specifications we have used the black-box testing tool JET [Cheon et al.,
2008]. It combines random test data generation with constraint solving.
The tool was able to parse the enhanced specification and generate tests
revealing faults that we have manually injected in different branches
of the MUT. Unfortunately, it is not clear if a test was created for
each pre- and postcondition pair of the enhanced specification. We
assume, however, that it is easy to extend black-box testing tools with
such coverage metrics. JML was developed by the formal verification
community and therefore automatic JML black-box testing tools are
rare. We have additionally used KeY as a black-box testing tool (see
Sections 7.4 and 7.5) for the sake of demonstrating the feasibility of the
approach. The generated enhanced specification was loaded back into
KeY which has then generated the expected white-box tests without
symbolic execution of the program.

215

7. Verification-based Test Generation

Remark 7.9. If the MUT has a fault and the extracted postconditions is
strong enough, e.g., it is not just true, then the extracted specification
contains this fault as well. In principle, these faults can be detected
by checking the consistency of the enhanced specification, because in
case of a fault the extracted specification contradicts the requirement
specification. However, the extracted specification may not reflect the
behavior of the MUT completely and this approach would result in a
purely deductive approach which would contradict our goal to test the
MUT.

7.7 Experience with VBT and Conclusions

In this chapter we have described how test cases can be derived from a
proof tree and we have described two approaches and techniques which
use the test cases in order to generate executable tests.

The test generation capabilities are based on the creation of a proof
tree for a formula expressing program correctness. Therefore it natu-
rally extends the deductive software fault detection approach described
in Part II of the thesis. The advantages and limitations of VBT are
connected to the underlying verification technique. The typical size of
programs that can be verified is much smaller than the typical size of in-
dustrial programs. However, VBT features different levels of program
analysis resulting in a spectrum between black-box tests, white-box
tests, and tests which are guaranteed to reveal software faults. The
user can chose to what extent the program is symbolically executed
and if they want to use method contracts and loop invariants or not.
Hence, VBT can be adapted to the needs and skills of the user. The
more precise the program analysis is the closer are the advantages and
restrictions of VBT to verification and deductive software fault detec-
tion. Due to this relationship we have described three use-cases in which
VBT is strong. Those use-cases extend or complement the verification
and deductive fault detection process.

The VBT utility of the KeY tool which generates executable JUnit
tests out of the box is frequently used by researchers of the KeY team
and by others for teaching and research. Hence, the utility is used in
practice. It has been original developed by Engel [Engel and Hähnle,
2007; Engel, 2006]. However, in this chapter we have described new
techniques developed by the author of this thesis which differ from the
original implementation. Each time the implementation is modified or

216

7.7. Experience with VBT and Conclusions

extended it undergoes a set of regression tests. The regression tests
consist of a set of different algorithms which served as a case study
in [Engel and Hähnle, 2007; Engel, 2006]. Hence, the case study was
repeated for the new version of the utility. VBT has been tested on
algorithms such as operations on tree structures, sorting algorithms
and other small algorithms, as well as on programs consisting of 10
to 20 JAVA classes. In most cases we have generated test cases using
bounded symbolic execution without contracts. The result was that
full feasible branch coverage was achieved for the mentioned algorithms
when choosing a loop unwinding depth of 2 or 3. Scalability of bounded
symbolic execution is limited because with a loop unwinding depth of 2
the symbolic execution did not terminate for programs consisting of 10
to 20 JAVA classes. Hence, in the latter case the coverage of the program
parts that were not symbolically executed was not guaranteed. The
results show that full feasible branch coverage and full feasible bounded
path coverage can be achieved in practice. The coverage is achieved
if the program branches and paths are represented in the proof tree
of the underlying verification technique which usually requires to use
method contracts and loop invariants. If method contracts and loop
invariants are written for VBT, then the time and effort to achieve full
feasible branch coverage is slightly lower than for verification, because
in contrast to verification the correctness of the program does not have
to be ensured.

The tool-chain approach uses specifications for interfacing the
verification-based test case generation or specification mining tool with
a black-box testing tool. In this way, (1) the black-box testing method
can make use of information about the program’s structure that is con-
tained in the specification, and (2) we achieve a separation of concerns
and a clear interface between program analysis on the one hand and
test-case generation and execution on the other hand, which allows
the combination of different tools. If the structurally enhanced speci-
fication encodes the path conditions of a program and the black-box
testing tool generates a test for each pre- and postcondition pair of
the specification, then effectively white-box tests are generated. The
enhanced specification consists of pre- and post-conditions expressed
in classical first-order logic. Since that is the basis for specification lan-
guages such as the JML, Spec#, OCL, or Z, simple syntactic changes
are sufficient to generate the appropriate input for a particular testing
tool. We have tested this approach with several small programs and the

217

7. Verification-based Test Generation

black-box testing tool JET [Cheon et al., 2008]. The experiments show
that the extracted specification becomes very large and is unreadable
for non-trivial programs. Nevertheless, JET was able to parse and eval-
uate the the enhanced specification quickly. We have additionally used
KeY as the black-box testing tool to be sure that a test is generated
for each pre- and postcondition pair of the extracted specification. In
this way we have achieved the same coverage as with the out-of-the-box
VBT approach.

Our experiments show that the two VBT approaches can generate
executable test suites with a high test coverage if the MUT is fully
symbolically executed or if contracts are provided which are sufficiently
strong. If only bounded symbolic execution is used without contracts
to generate test cases, then scalability of the approach is more limited
and depends on speed and memory consumption of the verification tool
to perform symbolic execution. The implementation of the two VBT
approaches is not yet fully connected with the techniques described in
Part II of this thesis because VBT was developed before that. Future
work is therefore to improve this connection.

218

8

Generating Regression Unit Tests

Using a Tool-Chain Approach

8.1 Introduction

In Chapter 7 we have described three use-cases in which unit testing
complements verification and deductive fault detection (see Figure 7.1).
One of them is regression testing and is the topic of this chapter. For
this purpose we have enhanced the verification-based test generation
approach (VBT) described in previous chapters with a tool-chain. To
generalize our method in this chapter we refer by verification-based test
generation techniques not only to the techniques described in Chap-
ter 7 but also to other techniques that follow similar ideas. With VBT
techniques we refer to general test generation techniques which derive
tests in the context of verification and that achieve high code cover-
age. The underlying verification techniques can use symbolic execution
and theorem proving but also techniques based on model checking, e.g.
[Gargantini et al., 2003; Beyer et al., 2004; Visser et al., 2004], can be
regarded as VBT techniques.

Motivation

Regression testing means to rerun a set of tests. The goal of regression
testing is to check if the program under test (PUT) fulfills its require-
ments after the program or its environment has been changed. It is used
during the software development process and during the maintenance
phase. The maintenance phase is estimated to comprise at least 50%
of the total software development expenses [van Vliet, 2000]. Regres-
sion tests usually consist of a set of unit tests. The advantage of using
unit testing is that test selection and test prioritization techniques, e.g.
[Graves et al., 1998; Chen et al., 2002; Harrold et al., 2001], can be

8. Generating Regression Unit Tests Using a Tool-Chain Approach

used. These techniques select a subset of the unit tests to test only
those units that are potentially affected by the software change. An
important principle of unit testing is to test units in isolation. The re-
garded units in this chapter are JAVA classes. The behavior of classes,
usually may depend on other classes – some of them may not even exist
yet. Mock objects [Mackinnon et al., 2001] are often used to solve this
problem. They expose the same behavior as the original classes for a
subset of input situations. Replacing calls to the other classes by mock
objects results in isolated unit tests.

Testing techniques are powerful for detecting software faults and for
gaining some degree of confidence that the program under test (PUT)
behaves correctly in its runtime environment. VBT techniques use in-
formation gained from a verification attempt. This enables the gener-
ation of targeted tests to reveal software faults or tests that exhibit
a high code coverage. Thus, both verification and testing techniques
can profit when being combined. Yet, we can even go a step further
in combining both approaches. We found that more traditional test-
ing techniques have complementary strengths to VBT techniques. One
such technique is capture and replay (CaR), whose strengths are the
generation of isolated unit tests [Pasternak et al., 2009; Saff et al., 2005]
and regression test oracles [Pasternak et al., 2009; Xie, 2006; Elbaum
et al., 2009].

Approach and Contributions

We propose an approach for the automatic generation of unit and re-
gression tests in the context of verification. Our goal is to improve test
suites that are generated by VBT tools and CaR tools in separation.
The proposed approach maintains the high test coverage provided by
VBT tools while at the same time it reduces the complexity of the tests
through automatic generation of mock objects. Using mock objects fa-
cilitates the isolation of the unit under test. Some existing CaR tools
enable to create mock objects. On the other hand, CaR tools do not
provide means to achieve high code coverage, and can therefore benefit
from being combined with coverage guaranteeing tools such as VBT
tools. The advantage of using VBT tools is that the verification pro-
cess can be used to ensure that only correct behavior is captured by
the CaR tool.

Research related to regression testing often focuses on test selection
and test prioritization techniques, e.g. [Graves et al., 1998; Harrold

220

8.2. Complementary Strengths of the Regarded Techniques

et al., 2001]. Our focus in this chapter is different. We exploit the syn-
ergies of combining VBT and CaR tools for unit regression testing. We
identified that high code coverage and isolation are separate issues.
They can be achieved independently using the two groups of tech-
niques which have complementary strengths. Therefore we concluded
that those groups of techniques are ideal candidates for the following
tool-chain. The first phase produces, for a given system, unit tests with
high code coverage. The second phase captures the various executions
of the program, monitored by the output of the first phase. The output
of the second phase is a set of unit tests with high coverage, which uses
mock objects to test the units, in isolation.

The main contributions of this chapter are described in Sections 8.2
to 8.4. We identify what the complementary strengths of VBT and
CaR techniques are (Section 8.2). In Section 8.3 we present a novel
tool-chain approach for unit regression testing in the context of verifi-
cation and unit regression testing in general. To the best of our knowl-
edge, this tool-chain has not been considered with VBT tools so far.
We have implemented a concrete tool-chain using KeY’s verification-
based test generator and the CaR tool GenUTest resulting in the tool-
chain KeYGenU. By applying KeYGenU to the banking application
described in Section 5.6 we provide a proof of concept of our approach
(Section 8.4). The advantages and possible limitations of the approach
are then discussed in Sections 8.3.2, 8.4.3, and 8.6. The other sections
are related work (Section 8.5) and conclusions (Section 8.6).

This chapter is based on the paper [Gladisch et al., 2010] but it has
been reduced to the contributions of the author of this thesis.

8.2 Complementary Strengths of the Regarded
Techniques

In Section 8.1 we have described the complementary strengths of ver-
ification and testing in general. Both approaches should be combined
in order to achieve reliable software and in order to optimize the ver-
ification and testing process. In this section we describe, by means of
simple examples, advantages and disadvantages of CaR tools and cov-
erage guaranteeing tools like VBT tools that are more specific to our
tool-chain approach.

221

8. Generating Regression Unit Tests Using a Tool-Chain Approach

Regression Test Oracles

Code that checks whether the result of a test-run is as expected is called
test oracle (see Section 7.5.2, page 206). A regression-test oracle checks
if the result is the same as in a previous version of the tested software.

Suppose there exists a well functioning application P. Let evalExam(int
points, int id) be one of the methods of P returning a boolean value.

JAVA (8.1)
1 public class Exam{
2 boolean[] passed;
3 public boolean evalExam(int points, int id){
4 boolean res=false;
5 if(points > 50){
6 res=true;
7 }
8 passed[id] = res;
9 return res;

10 }}

JAVA

Suppose that P has no regression test oracles and that P has been
changed. Regression testing should be performed to avoid regression
faults. A CaR tool (e.g., [Pasternak et al., 2009; Elbaum et al., 2009])
can be used to create regression tests for the system. When executing
evalExam(40,2), for example, the CaR tool captures the return value
of this method which is false. It then creates a unit test that executes
evalExam(40,2) and compares the result with the previously observed
value false. If, at the course of changes, the user mistakenly changes
Line 4 to res=true;, the generated test will detect the fault as the
return value is true and it differs from the previously captured return
value false.

Assume now that the user enters a mistake in Line 6 rather than
in Line 4, by changing Line 6 to res=false;. Then the generated unit
tests do not detect the fault, because the execution of this branch was
not captured.

Code Coverage

Using a VBT tool on the very same program produces a unit test
suite with a high code coverage, i.e., a test is generated for both ex-
ecution paths through evalExam. In order to create meaningful tests

222

8.2. Complementary Strengths of the Regarded Techniques

using the VBT tool, the user has to provide a requirement specification
for evalExam. In our example we use the following JML requirement
specification:

JAVA + JML (8.2)
1 /*@ public normal_behavior

2 ensures \result==(points>50?true:false);@*/
3 public boolean evalExam(int points, int id){..}

JAVA + JML

Let us assume now that Line 4 has been changed to res=true; or
that Line 6 has been changed to res=false;. In both cases the unit
test suite generated by the VBT tool detects the fault.

By contrast, some CaR regression testing tools do not require writ-
ing a requirement specification, or even writing unit tests in advance,
but there is a coverage problem with using CaR tools – unit tests are
created only for the specific program run executed by the user or by a
system test.

Testing in Isolation

Suppose the user changes the implementation of the method evalExam()
by replacing the array boolean[] passed by a database management
system. Line 8 is replaced by passedDB.write(id,res); that updates
the database.

JAVA (8.3)
1 public boolean evalExam(int points, int id){
2 boolean res=false;
3 if(points > 50){
4 res=true;
5 }
6 passedDB.write(id,res);
7 return res;
8 }

JAVA

The strength of VBT tools is the generation of test inputs that
ensure a high test coverage. The tests, however, are not isolated unit
tests because the execution of evalExam leads to the execution of write.

Some existing CaR tools (e.g., [Saff et al., 2005; Pasternak et al.,
2009]) can automatically create unit tests, using mock objects (see Sec-
tion 8.3.1). This enables to perform unit testing in isolation, which in

223

8. Generating Regression Unit Tests Using a Tool-Chain Approach

Fig. 8.1. The creation of a tool-chain and its application to unit regression testing

this case means that the generated unit test results in the execution of
the method evalExam but not of write. Instead of calling the method
write the generated mock object is activated which mimics a subset of
input and output behavior of the database.

8.3 The Proposed Approach

We have analyzed the advantages and the problems of verification-
based testing (VBT) tools and of capture and replay (CaR) tools sep-
arately. VBT tools support the verification process by helping to find
software faults. They can generate test cases with high code coverage.
These tools, however, usually generate neither mock objects nor regres-
sion test oracles that are based on previous program executions. CaR
tools are strong at abstracting complicated program behavior and at
automatically generating regression-test oracles. The CaR tools, how-
ever, can do this only for specific program runs, that have to be pro-
vided somehow. In contrast, VBT tools can generate program inputs
for distinct program runs.

From this analysis it becomes clear that these kinds of tools should
be combined into a tool-chain. Thus, the output of the VBT tool serves
as input to the CaR tool, as shown in Figure 8.1. Our approach consists
of two steps. In the first one the user tries to verify the program P us-
ing a verification tool that supports VBT. When a verification attempt
fails, VBT is activated to generate a unit test suite JT for P. The so
generated tests help in debugging P and the process is repeated until P
is verifiable. When the verification succeeds the VBT tool is activated
to generate a test suite JT that ensures coverage of the code of P. The
generated test suite consists of one or more executable programs that
are provided as input to the CaR tool. Thus, when JT is executed the

224

8.3. The Proposed Approach

execution of the code under test is captured. The CaR tool in turn cre-
ates another unit test suite – JT’. If the CaR tool replays the observed
execution of each test, consequently the high code coverage of JT is
preserved by JT’. Furthermore, JT’ benefits from the improvements
that are gained by using the CaR tool. Depending on the capabilities
of the CaR tool this can be the isolation of units and the extension
of tests with regression-test oracles. Hence the tool-chain employs the
strengths of both kinds of tools involved. The test suite JT’ can then
be used to regression test P’ that is the next development version of P.

8.3.1 Building a Tool-chain

Step I

The goal of this step is to ensure the correctness of the code and to
generate the test suite JT that ensure a high execution coverage. We
propose to use verification tools with their VBT extensions. Such tools
are, e.g., KeY [Engel and Hähnle, 2007; Beckert and Gladisch, 2007],
KUnit [Deng et al., 2007], Check’n’Crash [Smaragdakis and Csallner,
2007], the VBT extension of Spec# [Billeter, 2008], or extensions of
model checkers [Gargantini et al., 2003; Beyer et al., 2004; Visser et al.,
2004] (see Section 7.2). Some of these tools do not generate tests with a
high coverage but rather they generate a small number of tests that are
likely to reveal faults. Hence, in order to achieve a high coverage such
tools have to be adjusted to generate tests also from path conditions
of program branch which have been previously verified. One possibility
to achieve that is to set the postcondition to false after the successful
verification and then to run the VBT tool again.

Step II

The goal of the second step is to further improve the test suite JT using
a CaR tool. When JT is executed, the CaR tool executes and captures
each path through the method, generating JT’, a test suite for the PUT
with the same coverage provided by JT. Depending on the used CaR
tool, JT’ may be a unit test suite supporting isolation or it may be
extended with regression-test oracles.

In [Saff et al., 2005], test factoring is described that turns system
tests into isolated unit tests by creating mock objects. For the captur-
ing phase a wrapper class is created that records the program behavior
to a transcript, and the replay step uses a mock class that reads from

225

8. Generating Regression Unit Tests Using a Tool-Chain Approach

the transcript. The approach addresses complications that arise from
field access, callbacks, object passing across boundaries, arrays, native
method calls, and class loaders. The generation of mock objects is also
supported by KUnit. The approaches, however, have different prop-
erties because in the latter approach mock objects are created from
specifications instead of from runtime executions.

Some VBT tools can generate test oracles from the specifications
that are used in the verification process. Such oracles are suitable for
regression testing. Yet, not all parts of the system that are executed
by JT may be specified. Our approach can be even applied if no test
oracles are generated for JT. In this case a CaR tool like Orstra [Xie,
2006] can be used. During the capturing phase, Orstra collects object
states to create assertions for asserting behavior of the object states. It
also creates assertion that check return values of public methods with
non-void returns. The assertions are then checked when the system is
modified. In [Elbaum et al., 2009], a CaR approach is presented that
creates regression tests from system tests. Components of the exercised
system that may influence the behavior of the targeted unit are cap-
tured. A test harness is created that establishes the pre-state of the unit
that was encountered during system test execution. From that state,
the unit is replayed and differences with the recorded unit poststate
are detected.

GenUTest [Pasternak et al., 2009] is a CaR tool featuring both ca-
pabilities, i.e., the creation of isolated unit tests and the creation of
regression-test oracles. It is described in Section 8.4.1.

8.3.2 Advantages and Limitations

We regard our approach from two perspectives. On the one hand, CaR
tools can be used to further increase the quality of VBT. On the other
hand, CaR tools can benefit from being combined with VBT tools. The
VBT generated tests can be used to drive program’s execution to ensure
the coverage of the whole code. From this perspective our approach
can be generalized by allowing general coverage ensuring tools for the
first phase. However, for CaR tools, such as [Elbaum et al., 2009; Xie,
2006; Pasternak et al., 2009], it is important that during the capture
phase only correct program behavior is observed – and this can be best
ensured when a verification tool is used in the first phase.

The approach combines also the limitations of the involved tools.
CaR-based regression testing tools can discover changes in the behavior

226

8.3. The Proposed Approach

Fig. 8.2. The traditional test selection (left) versus our approach (right)

when a program is modified, but they can not distinguish between
intentional and not intentional changes. Another problem occurs with
CaR tools that generate mock entities. It is often unclear under what
preconditions the behavior of a mock entity is valid when the mock
entity is executed in a state not previously observed by the CaR tool.
Some advantages and limitations are specific to the particular tools and
techniques. So are also the choice of the test target and mock objects.
We advise the reader to refer to the referenced publications.

Verification tools are typically applicable to much smaller programs
than testing tools. Our approach targets therefore at quality assurance
of small systems that are safety or security critical. Building a tool-
chain adds complexity to the verification process. We expect, however,
a payoff on the workload when the target system is modified and the
quality of the software has to be maintained. Most VBT techniques are
based on symbolic execution which is a challenging issue. Considering
Listing 8.3 of Section 8.2, when symbolic execution reaches Line 8 the
source code of write() may not be available or it may be too com-
plicated for symbolic execution. Typically, in such situation method
contracts that abstract the method call can be provided. Alternatively
techniques such as [Tillmann and de Halleux, 2008] can be used that
combine symbolic execution and runtime-execution.

Regression testing techniques such as [Harrold et al., 2001], for ex-
ample, are often concerned with test selection and test prioritization.
The goal is to reduce the execution time of the regression test suite
and thus to save costs. Graves et al. [Graves et al., 1998] describe test
selection techniques for given regression test suites. They reduce the
scope of the PUT that is executed by selecting a subset of the test
suite. Our approach provides an alternative partitioning of the PUT
(Figure 8.2) that can reduce its tested scope and should be considered

227

8. Generating Regression Unit Tests Using a Tool-Chain Approach

in combination with test selection techniques. Instead of reducing the
number of tests, parts of the program are substituted by mock entities.

Graves et al. state that most regression test selection techniques are
not designed to be safe [Graves et al., 1998]. Safe regression test se-
lection techniques guarantee that the selected subset contains all test
cases in the original test suite that can reveal regression faults [Graves
et al., 1998]. By executing only the unit tests of classes that have been
modified a safe and simple selection technique should be obtained. Re-
gression faults that result from interactions between objects of different
classes can be detected by unmocked execution where required.

8.4 KeYGenU

We have implemented a concrete tool-chain according to Figure 8.1,
called KeYGenU and have applied it to several test cases. In this section
we describe the tool GenUTest, and provide an example to demonstrate
our ideas.

8.4.1 GenUTest

GenUTest is a prototype tool that generates unit tests [Pasternak et al.,
2009]. The tool captures and logs inter-object interactions occurring
during the execution of JAVA programs. The recorded interactions are
then used to generate JUnit tests and mock-object like entities called
mock aspects. These can be used independently by developers to test
units in isolation. The comprehensiveness of the generated unit tests
depends on the software execution. Software runs covering a high per-
centage generate in turn unit test with similar code coverage. Hence,
GenUTest cannot guarantee a high coverage.

Figure 8.3 presents a high level view of GenUTest’s architecture
and highlights the steps in each of the three phases of GenUTest: the
capture phase, the generation phase, and the test phase. In the cap-
ture phase the program is modified to include functionality to capture
its execution. When the modified program executes, inter-object in-
teractions are captured and logged. The interactions are captured by
utilizing AspectJ1, the most popular Aspect-Oriented Programming ex-
tension for the JAVA language. The generation phase utilizes the log to
generate unit tests and mock aspects, mock-object like entities. In the
1 http://www.eclipse.org/aspectj

228

http://www.eclipse.org/aspectj

8.4. KeYGenU

Fig. 8.3. Overview of capture and replay implemented in GenUTest [Pasternak

et al., 2009]

test phase, the unit tests are used by the developer to test the code of
the program.

8.4.2 A Detailed Example

For our experiments we have applied KeYGenU to the banking software
described in Section 5.6. Figure 8.4 presents a part of the banking
software that we use as an example to describe KeYGenU in detail.

The first step is to load the banking application into KeY and to se-
lect a method for symbolic execution; following the code excerpt in Fig-
ure 8.4, this is either transfer() or registerSpendingRule(). KeY
generates a JUnit test suite from the obtained proof tree. It consists
of a test method for every execution path of the method under test.
Thus, the test suite provides a high test coverage. Figure 8.5 shows one
of the generated test methods for testing the method transfer(). In
Lines 2–4 variables are declared and assigned initial values; Lines 5–9
assign test data to variables and fields; in Line 12 the method un-
der test is executed; and in Line 16 the test oracle, implemented as
subformula5(), is evaluated.

229

8. Generating Regression Unit Tests Using a Tool-Chain Approach

JAVA + JML

1 /* Copyright (c) 2002 GEMPLUS group. */

2 package banking; import ...;

3 public class Transfers_src {

4 protected MyRuleVector rules=new MyRuleVector();

5 private AccountMan_src accman;

6 ... //field and method declarations

7 /*@ requires true;

8 modifies rules.size(), Rule.nbrules ;

9 ensures ((account <0 || spending_account <0)

10 && (threshold > 0 && period >= 0))==> \result==3;

11 ensures (threshold<=0 && period>=0 && account>=0

12 && spending_account >=0)==> \result==5;

13 ensures (threshold>0 && period<0 && account>=0

14 && spending_account>=0) ==> \result==6;

15 ...

16 signals (Exception e) false; @*/

17 public int registerSpendingRule(String date, int account,

18 int threshold, int spending_account, int period) {

19 if (account<0||spending_account<0) return 3;

20 Account account1 = accman.getRef(account);

21 Account account2 = accman.getRef(spending_account);

22 if ((account1==null)||(account2==null)) return 3;

23 if (threshold <= 0) return 5;

24 if (period < 0) return 6;

25 Rule rule=new SpendingRule (date,account,

26 threshold,spending_account,period,accman);

27 ...

28 }

29 /*@ requires true;

30 ensures (amount<=0 ==> \result==1); @*/

31 public int transfer(int from_account,int to_account, int amount){

32 Account fromAccount = accman.getRef(from_account);

33 Account toAccount = accman.getRef(to_account);

34 if(fromAccount!=null && toAccount!=null && amount > 0) {

35 if(amount < fromAccount.getBalanceamount()){

36 fromAccount.debit(amount);

37 toAccount.credit(amount);

38 return 0;

39 }else

40 return 1;

41 }

42 return 1;

43 } }//class declaration

JAVA + JML

Fig. 8.4. Excerpt from the banking case study

230

8.4. KeYGenU

JAVA

1 public void testcode0 () {

2 /** variable declarations **/

3 int from_account=0; int to_account=0; int res=0; int _to_account=0;

4 int _from_account=0; int _amount=0; int amount=0;

5 Throwable exc=null; Transfers_src o=null;

6

7 /** test data initialization **/

8 int testData0=2; int testData1=2;

9 o = new Transfers_src();

10 o._setrulesMyRuleVector(new MyRuleVector());

11 o._setaccmanAccountMan_src(new AccountMan_src());

12 from_account=testData0; to_account=testData1; _amnt=amount;

13 _from_account=from_account; _to_account=to_account;exc=null;

14

15 /** method under test **/

16 try {

17 res=o.transfer(_from_account,_to_account,_amnt);

18 } catch (java.lang.Throwable e) { exc=e; }

19

20 /** test oracle **/

21 StringBuffer buffer=new StringBuffer();

22 boolean _oracleResult=subformula5(amount,exc,res,buffer);

23 assertTrue(buffer.toString(),_oracleResult);

24 }

JAVA

Fig. 8.5. JUnit test method generated by KeY

This test suite is the data that is exchanged from KeY to GenUTest.
It is, however, a fully functioning test suite and should be executed be-
fore the continuation of the tool-chain, in order to automatically detect
program faults with respect to the JML-specification. In particular, this
step turned out to be important because KeY is very good at detecting
implicit program branches caused by, e.g., NullPointerExceptions,
but on the other hand GenUTest expects the executed code not to
throw any exception during capturing phase. Thus, we have either ex-
tended the specifications, stating that certain fields are non-null, or we
simply have removed from the test suite generated by KeY those test
method that have detected exceptions.

231

8. Generating Regression Unit Tests Using a Tool-Chain Approach

JAVA

1 @Test public void testtransfer1(){

2 AccountMan_src AccountMan_src_11; MyRuleVector MyRuleVector_8;

3 TestGeneric0 TestGeneric0_1; Transfers_src Transfers_src_4;

4 int intRet;

5

6 setSection("TestGeneric0",1,2);

7 TestGeneric0_1 = new TestGeneric0();

8 setSection("Transfers_src",4,37);

9 Transfers_src_4= new Transfers_src();

10 setSection("MyRuleVector",40,67);

11 MyRuleVector_8 = new MyRuleVector();

12 setSection("Transfers_src",68,73);

13 Transfers_src_4._setrulesMyRuleVector(MyRuleVector_8);

14 setSection("AccountMan_src",76,129);

15 AccountMan_src_11 = new AccountMan_src();

16 setSection("Transfers_src",132,137);

17 Transfers_src_4._setaccmanAccountMan_src(AccountMan_src_11);

18 setSection("Transfers_src",140,149);

19 intRetVal5 = Transfers_src_4.transfer(2,2,0);

20 assertEquals(intRet,1);

21 }

JAVA

Fig. 8.6. JUnit test method generated by GenUTest

Capturing code of GenUTest is weaved-in into the KeY-generated
test methods, such as in Figure 8.5, by running the test suite as an
AspectJ application in the Eclipse IDE. After the capturing phase,
GenUTest produces another JUnit test suite consisting of test meth-
ods like, e.g., in Figure 8.6, and mock aspects such as in Figure 8.7.
As expected, the coverage of the KeYgenerated tests is preserved by
the GenUTest-generated tests; for instance, changes to any of the re-
turn values of the method registerSpendingRule() or the method
transfer() have been detected.

Figure 8.6 presents the test method generated by GenUTest. The
method invocations that were observed during the capture phase are re-
played in Lines 4-14. GenUTest tries to minimize this code using some
static analysis. The calls to setSection() are important for choos-
ing the correct mock aspect as explained below. In Line 14 the actual
method under test is called and its return value is compared in Line

232

8.4. KeYGenU

AspectJ

1 pointcut restriction(): !adviceexecution() &&

2 this(Transfers_src) && !target(Transfers_src);

3 Account around(int param1):call(banking.AccountMan_src.getRef(int))

4 && args(param1) && restriction() {

5 MockAspectHandler.Section currentSection =

6 MockAspectHandler.getInstance().getClassSection("Transfers_src");

7 if (currentSection.start == 884 && currentSection.end == 905){

8 if (currentSection.statementCounter==1){

9 currentSection.statementCounter++;

10 Account Account_157 = new Account();

11 if(reflectionCompare(param1,1)!=0){ return proceed(param1); }

12 return Account_157;

13 }}.../* commented out case distinctions */...}

AspectJ

Fig. 8.7. Mock aspect generated by GenUTest for the method getRef()

15 with the value that was observed during capturing phase. Thus, a
regression test is performed.

In our experiments the calls to the methods getRef(), debit(),
credit(), and getBalanceamount() (see Figure 8.4) were replaced, as
expected, by mock aspect invocations, because these methods belong
to classes different from the current class Transfers src. For instance,
Lines 2-4 in Figure 8.7 match the call to getRef() and Lines 7-11 check
which occurrence of getRef in the call tree is currently processed, as
different invocations may yield different return values. Line 11 checks
if the given parameter value of getRef() has been actually observed
during the capturing phase by using the reflection API. If this is not the
case, then the original code is invoked with the current parameter value
via the AspectJ keyword proceed, as shown in Line 11. Otherwise, the
previously recorded return value is returned in Line 12, and thus unit
testing in isolation is performed.

8.4.3 A Short Evaluation

We have tested KeYGenU on several use cases. It has automatically
generated isolated unit-regression tests for classes of a banking appli-
cation. Using the KeY-generated tests we have found several faults in
the application with respect to the provided JML-specification. This

233

8. Generating Regression Unit Tests Using a Tool-Chain Approach

result confirms the observations made in [Burdy et al., 2003; du Bous-
quet et al., 2004] that the available specification was incomplete; e.g.,
many errors were caused by throwing Null PointerException s that
should have been excluded by appropriate method preconditions. We
have therefore either extended the specification or ignored these error-
detecting test cases, as our focus was on regression testing. KeYGenU
generated also unit tests for an old version of some software. Then, the
unit tests have been executed with newer versions of the software. The
discrepancies have been examined to determine if they uncover regres-
sion faults. GenUTest generated a test suite that was able to detect
changes to any branch of the tested methods, confirming the high test
coverage.

Regarding scalability, KeYGenU generates in some cases a huge
amount of unit tests. One of the reasons is that GenUTest generates
tests not only for the method under test but also for the test code gen-
erated by KeY. For instance, the KeY-generated test oracle uses the
class StringBuffer in order to collect debugging information about
the evaluation of the post condition. This in turn resulted in over a
hundred tests for the class StringBuffer. Also the selection of pro-
gram paths is not optimized yet. Symbolic execution may lead to too
many unwindings of loops producing many tests – some of which may
be redundant, i.e., there may be more than one test that exercises the
class under test in the same manner. These can be removed using the
techniques described in [Xie et al., 2004].

8.5 Related Work

In Section 8.3.1 we described tools representing VBT techniques [Engel
et al., 2008; Deng et al., 2007; Smaragdakis and Csallner, 2007; Visser
et al., 2004] as well as tools that represent CaR techniques [Paster-
nak et al., 2009; Saff et al., 2005; Xie, 2006; Elbaum et al., 2009]. In
Section 8.3.2 we related our work to test selection and prioritization
techniques [Graves et al., 1998; Harrold et al., 2001]. Furthermore, a
recent work that also automatically generates regression unit-tests is
DiffGen [Taneja and Xie, 2008]. In this approach the PUT is instru-
mented with additional branches and then a coverage-based test gener-
ation tool is used to detect regression faults. In contrast, the approach
presented in [Godlin and Strichman, 2009] suggests to use a verifica-
tion tool for proving an equivalence relation between two version of a

234

8.6. Conclusion and Future Work

program. These approaches differ from ours as they do not use CaR
techniques. In [Xie, 2006] the usage of a coverage guaranteeing tool
is considered in combination with the CaR tool Orstra. However, the
approaches used in [Godlin and Strichman, 2009; Xie, 2006] do not
consider the generation of isolated unit tests and they do not provide
means to guarantee that during capture phase the observed program
behavior is correct.

Besides creating an approach for regression unit testing, our goal
was also to investigate the combination of dynamic (runtime execu-
tion based) and static (symbolic execution based) analysis tools. Ernst
[Nimmer and Ernst, 2001] and Smaragdakis et al. [Smaragdakis and
Csallner, 2007] discuss the synergies and differences between static and
dynamic analysis. The strength of static analysis is data generality and
precision of code coverage, whereas the strength of dynamic analysis is
speed of program execution and handling of black-box behavior with-
out providing abstractions. While in [Tillmann and de Halleux, 2008],
for example, static and dynamic analysis are combined in a rather co-
herent way, we suggest a tool-chain approach whose strength is the
simplicity of the interface between the tools and their independence.
Another tool-chain approach where KeY is used to obtain high code
coverage has been realized in [Beckert and Gladisch, 2007]. However,
while in [Beckert and Gladisch, 2007] a JML-specification is exchanged
between the tools, in the here presented approach a unit test suite is
exchanged from the VBT tool to the CaR tool.

8.6 Conclusion and Future Work

We have described an approach for automatic generation of unit tests
that can also be used for regression testing. We aim at achieving high
coverage of the tested code while testing each unit in isolation. This
is accomplished by creating a tool-chain that combines two tools, a
verification-based testing (VBT) and a capture and replay (CaR) test
generation tool. We first run a VBT tool to generate tests for each path
in a given system. This achieves a high coverage of the code, as desired.
These tests are then used as input to a CaR tool that turns the tests
into truly isolated unit tests by creating mock-object like entities. The
advantage of using VBT tools is that the verification process can be
used to ensure that only correct behavior is captured by the CaR tool.

235

8. Generating Regression Unit Tests Using a Tool-Chain Approach

To examine our ideas we have implemented KeYGenU a concrete
tool- chain consisting of the VBT tool KeY and the CaR tool GenUTest.
The tests that we have executed provide a proof of concept. The inte-
gration of different tools may, however, cause some additional work. For
example, in the case of KeYGenU the fact that both tools have been
developed independently caused some difficulties. Running the tools in
combination has revealed some faults in each of the tools that have
been fixed and that helped to improve both tools. GenUTest creates
tests only for methods that return a value and only the returned value
is analyzed by the generated regression tests. A considerable improve-
ment would be to handle also void methods, e.g., by analyzing the state
of the object on which the method was invoked.

Verification tools, such as KeY, are typically applicable to much
smaller programs than testing tools. The scalability of the approach is
bound by the scalability of the particular VBT and CaR tools. Our ap-
proach targets therefore at quality assurance of small systems that are
safety or security critical. Building the proposed tool-chain adds com-
plexity to the verification process. The expected payoff on the workload
is, however, when the target system is modified and the quality of the
software has to be maintained.

236

9

Conclusions

State of the Art and Contributions

Deductive verification tools are primarily used to show the correctness
of software but they are not specialized for software fault detection.
The ability to detect software faults is important to increase the effi-
ciency of software verification. We have shown how a verification tool
can be specialized also for software fault detection. We have developed
a common approach, theory, and methodology that combines verifica-
tion, deductive software fault detection, and testing in a unified way.
Such combinations existed only in the context of model checking or ab-
stract interpretation but not for the here regarded family of verification
techniques. The latter deal with more expressive formalisms and more
complex verification goals.

The development of the approach has led us to the discovery of
fundamental problems with quantifiers and contract rules that have
not been solved before. We have developed novel techniques that han-
dle these problems effectively. We have also shown that dynamic logic
with updates and KeY’s sequent calculus, which combines FOL theo-
rem proving and symbolic execution, has many other applications than
just software verification.

Testing and the usage of program debuggers helps in finding faults
that were detected deductively, and testing increases the confidence
in the correct behavior of software even if the software has been ver-
ified. We have developed several test generation technique based on
verification and deductive fault detection that have different properties
regarding test coverage, the ability to expose faults, and scalability.
These techniques can generate specification-based tests, tests with full

9. Conclusions

feasible bounded path coverage, tests with full feasible branch cover-
age, tests that are guaranteed to find faults, isolated unit tests, and
regression tests. We have described the strengths and limitations of
these techniques.

Researcher that work either in the field of, verification, model gen-
eration, or testing, are often not aware of the challenges in the other
respective fields, and they are often not aware of the solutions that
the other respective fields may offer. We have studied these fields and
explored synergies between them. We hope to have contributed to a
better understanding of the problems and possibilities when combining
techniques from the different fields and help to bringing these fields and
researchers together.

All these techniques have been implemented as prototypes in the
KeY tool and their effectiveness or feasibility has been shown. The step
from the prototypes to an industrial tool could not be done in the scope
of this PhD thesis and remains future work.

In the following paragraphs we summarize the three parts of this
thesis in more detail and describe future work.

Part I

This thesis describes novel techniques for extending formal software
verification tools with fault detection capabilities. The underlying veri-
fication tool in focus of this thesis is the KeY tool which was described in
Part I. The KeY tool has been developed during the last 10 year by re-
search groups in Koblenz, Karlsruhe, and Gothenburg (Sweden). Its un-
derlying formalism is Dynamic Logic with a sequent calculus enabling
a Hoare-style verification approach. While the details of the presented
techniques were specific for the KeY tool we belief that they can also
be realized for other verification tools which follow similar paradigms.
These tools verify programs on the source code level rather than an ab-
stract representation of the program. Such tools are, for example, VCC
[Cohen et al., 2009], Spec# [Barnett et al., 2005], Why/Krakatoa/Ca-
duceus [Filliâtre and Marché, 2007], ESC/Java2 [Chalin et al., 2005], as
well as the proof assistants PVS [Owre et al., 1996] and Isabelle/HOL
[Wenzel et al., 2008] in some of their applications. Techniques used
by such tools are typically symbolic execution or weakest precondition
computation, and theorem proving.

238

Part II

When a program is correct with respect to its specification and anno-
tations such as method contracts, class invariants, and loop invariants
are strong enough, then verification tools can prove the correctness
of the program usually automatically. The problem is getting to the
point where all these conditions are satisfied. Programs and specifica-
tions usually have faults and annotations are often not strong enough
to close a proof. Due to the semi-decidability of first-order logic it is
often not known, if the construction of the proof should be continued
or not. An unclosed proof structure does not necessarily mean that a
problem exists because continuing the proof attempt may perhaps lead
to a successful proof.

Applying the techniques described in Part II of this thesis can help
to detect software faults and to interrupt proof attempts which can-
not succeed. These techniques reuse information from the verification
attempt to reduce the additional computational overhead. By using
deduction to conclude the existence of faults also the underlying tech-
nology of the verification tools is reused. The result is a symbiosis of
verification and fault detection.

In order to deduce the existence of a fault based on an open proof
tree two conditions have to be checked: (1) an open proof branch has
to be validity preserving and (2) the leaf of the proof branch must have
a counterexample. Checking these conditions is hard because condi-
tion (1) requires the handling of program abstractions such as method
contracts, class invariants, and loop invariants, and condition (2) re-
quires the handling of first-order logic quantifiers. In some cases ver-
ification tools generate counterexamples when a verification attempt
fails. However, a counterexample does not necessarily imply that the
target program has a fault because the problem may be that inap-
propriate program abstractions were used. This problem is solved by
checking the condition (1) for which we have developed a very efficient
technique. During experiments with this technique we found that SMT
solvers, which are typically used to generate counterexamples, are often
not powerful enough to check condition (2). The problem is the han-
dling of quantified formulas in the context of model generation. This is
a long-studied problem for which we have developed a new technique
that is powerful enough for our needs.

Despite the positive results of our model generation technique for
quantified formulas this technique is not yet mature. Future work is to

239

9. Conclusions

study the heuristics for update construction, increase the automation
of the technique, and to extend the approach for handling recursively
defined functions. For checking the condition (1) we have developed a
very efficient special validity preservation condition. The construction
of this condition depends on the heap model used by KeY. Future
work is to adapt this technique also to other heap models such as
in Boogie [Barnett et al., 2006], where the heap is represented by a
function symbol.

Part III

Our approach does not only detect faults but it also provides differ-
ent information such as a program input, a program execution trace,
and an executable test helping the user to find the fault. The tests
generated with our approach described in Part III of the thesis can be
executed with a program debugger. Using a program debugger enables
the user to follow the program execution that reveals a fault and to
inspect the program states. The tests are not only important if the
existence of a fault was deduced, they are important even if the pro-
gram verification was successful. A figurative example is that even if
engineers have proved that an airplane should have the desired aerody-
namic properties, passengers will not be seated in the airplane before it
has undergone numerous test flights. In practice it is often very hard or
even not practical to apply a formal verification process completely to
the program, the compiler, and its environment consisting of software
and hardware. These components are, however, engaged when software
testing is applied.

The tests generated by the verification-based test generation ap-
proach (VBT) benefit from the detailed information contained in a
proof tree which is obtained by verification and deductive fault detec-
tion. Case distinctions in the program are reflected as branches of the
proof tree; these may also be implicit distinctions such as raising of
exceptions. The proof tree contains the path conditions of the program
paths. Hence, tests derived from the proof tree exhibit a high cover-
age of the specification and the program code giving the user a higher
confidence in the correct functioning of the program. Tests can also be
derived from specific branches which are, e.g., guaranteed to contain a
fault. We have reused an existing implementation of VBT and modi-
fied and extended it with additional techniques. The implementation
generates executable JUnit test suites out-of-the-box and is used by
research teams for research and teaching.

240

We have also developed approaches which combine verification and
VBT with more traditional testing tools such as black-box testing tools
and capture & replay (CaR) tools. The path conditions contained in
the proof tree can be exported into a JML specification. Combining the
so generated specification with a black-box testing tool, which ensures
a certain specification coverage, results in white-box tests. One advan-
tage of this approach is that a clear interface is established between
program analysis on the one hand and test generation on the other
hand. Another advantage is that both the verification tool and black-
box tool can benefit from reusing each other technical capabilities. This
is also the case when combining VBT tools with CaR tools. We have
built a tool-chain consisting of KeY and the CaR tool GenUTest. The
latter uses dynamic program analysis and can transform program runs
into isolated unit tests with test oracles which compare old program
executions with new ones. KeY on the other hand yields tests with high
coverage and correct execution if the program is verified. The resulting
tool-chain of KeY and GenUTest yields isolated unit tests with high
coverage which are ideal for unit regression testing.

The approaches and techniques have been developed almost in the
reverse order as presented in this thesis. Starting with approaches for
test generation we found that more fundamental problems have to be
solved leading to the techniques described in Part II of the thesis.
Therefore the implementation of VBT uses a model generator based
on Simplify [Detlefs et al., 2005] rather than the model generator de-
veloped in Chapter 6. Future work is therefore to apply the new model
generator for test data generation. Another future work is to update
VBT to handle a wider scope of specification language features used
in the verification community. Finally, since the development of black-
box testing tools and capture & replay tools is ongoing it would be
interesting to build new tool-chains and examine their properties.

241

References

IEEE standard glossary of software engineering terminology. IEEE-
STD 610.12-1990, 1990. (Cited on pages 175 and 181.)

Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.
(Cited on page 5.)

Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. A
specification language. In On the Construction of Programs, pages
343–410. Cambridge University Press, 1980. (Cited on page 73.)

Wolfgang Ahrendt. Deduktive Fehlersuche in Abstrakten Datentypen.
PhD thesis, Universität Karlsruhe, Fakultät für Informatik, 2001.
(Cited on page 144.)

Wolfgang Ahrendt, Andreas Roth, and Ralf Sasse. Automatic valida-
tion of transformation rules for Java verification against a rewriting
semantics. In Geoff Sutcliffe and Andrei Voronkov, editors, Pro-
ceedings, 12th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Montego Bay, Jamaica, vol-
ume 3835 of LNCS, pages 412–426. Springer, Dec 2005. (Cited on
pages 44 and 47.)

Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Super-
position modulo linear arithmetic sup(la). In Silvio Ghilardi and
Roberto Sebastiani, editors, Proceedings, Frontiers of Combining
Systems, 7th International Symposium, FroCoS 2009, Trento, Italy,
volume 5749 of LNCS, pages 84–99. Springer, 2009. (Cited on
page 144.)

Thomas Ball and Sriram K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN 2001, Workshop on
Model Checking of Software, volume 2057 of LNCS, pages 103–122.
Springer, 2001. (Cited on page 136.)

References

Michael Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs,
K. Rustan M. Leino, Wolfram Schulte, and Herman Venter. The
Spec# programming system: Challenges and directions. In Verified
Software: Theories, Tools, Experiments (VSTTE 2005), volume 4171
of LNCS, pages 144–152. Springer, 2005. (Cited on pages II, 5, 137,
179, and 238.)

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs
0002, and K. Rustan M. Leino. Boogie: A modular reusable veri-
fier for object-oriented programs. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal
Methods for Components and Objects, 4th International Symposium
(FMCO 2005), volume 4111 of LNCS, pages 364–387. Springer, 2006.
(Cited on pages 68, 179, and 240.)

Mike Barnett. The Spec# programming system: An overview. In
Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet,
and Traian Muntean, editors, Proceedings, Construction and Analy-
sis of Safe, Secure, and Interoperable Smart Devices (CASSIS), vol-
ume 3362 of LNCS, pages 27–48. Springer, 2004. (Cited on page 73.)

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings, Computer Aided Verification, 19th
International Conference, CAV 2007, volume 4590 of LNCS, pages
298–302. Springer, 2007. (Cited on pages 6, 8, 11, 98, 140, and 143.)

Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implement-
ing the model evolution calculus. International Journal on Artificial
Intelligence Tools, 15(1):21–52, 2006. (Cited on page 144.)

Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart
Cards: Programming and Security. Revised Papers, Java Card 2000,
International Workshop, Cannes, France, volume 2041 of LNCS,
pages 6–24. Springer, 2001. (Cited on page 34.)

Bernhard Beckert and Christoph Gladisch. White-box testing by com-
bining deduction-based specification extraction and black-box test-
ing. In Yuri Gurevich and Bertrand Meyer, editors, Proceedings,
Tests and Proofs, First International Conference, TAP 2007, Zurich,
Switzerland, volume 4454 of LNCS, pages 207–216. Springer, 2007.
(Cited on pages V, 13, 14, 16, 18, 110, 175, 180, 210, 225, and 235.)

Bernhard Beckert and Vladimir Klebanov. Must program verifica-
tion systems and calculi be verified? In Proceedings, 3rd Inter-
national Verification Workshop (VERIFY), Workshop at Federated

244

References

Logic Conferences (FLoC), Seattle, USA, pages 34–41, 2006. (Cited
on pages 44 and 47.)

Bernhard Beckert and André Platzer. Dynamic logic with non-rigid
functions: A basis for object-oriented program verification. In U. Fur-
bach and N. Shankar, editors, Proceedings, International Joint Con-
ference on Automated Reasoning, IJCAR, Seattle, USA, volume 4130
of LNCS, pages 266–280. Springer, 2006. (Cited on pages 47, 93,
and 94.)

Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Ver-
ification of Object-Oriented Software: The KeY Approach, volume
4334 of LNCS. Springer, 2007. (Cited on pages II, 5, 9, 21, and 22.)

Markus Bender. Generating efficient test oracles from specifications.
Minor thesis, Universität Koblenz-Landau, Institute of Computer
Science, August 2010. (Cited on page 208.)

Frédéric Benhamou and Frédéric Goualard. Universally quantified in-
terval constraints. In Rina Dechter, editor, Principles and Practice
of Constraint Programming - CP 2000, 6th International Confer-
ence, Singapore, volume 1894 of LNCS, pages 67–82. Springer, 2000.
(Cited on page 144.)

Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala,
and Rupak Majumdar. Generating tests from counterexamples. In
Proceedings, 26th Annual International Conference on Software En-
gineering, ICSE 2004. IEEE Computer Society Press, 2004. (Cited
on pages 180, 219, and 225.)

Jürg Billeter. Counterexample execution. Master project report, ETH
Zürich, Department of Computer Science, August 2008. (Cited on
pages 179 and 225.)

Jasmin Christian Blanchette. Relational analysis of (co)inductive pred-
icates, (co)algebraic datatypes, and (co)recursive functions. In Gor-
don Fraser and Angelo Gargantini, editors, Proceedings, Tests and
Proofs, 4th International Conference, TAP 2010, Málaga, Spain,
volume 6143 of LNCS, pages 117–134. Springer, 2010. (Cited on
page 144.)

Egon Börger and Robert F. Stärk. Abstract State Machines. A Method
for High-Level System Design and Analysis. Springer, 2003. (Cited
on page 5.)

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decid-
able about arrays? In E. Allen Emerson and Kedar S. Namjoshi, ed-
itors, Proceedings, Verification, Model Checking, and Abstract Inter-

245

References

pretation, 7th International Conference, VMCAI 2006, Charleston,
SC, USA, volume 3855, pages 427–442. Springer, 2006. (Cited on
pages 8 and 143.)

Achim D. Brucker and Burkhart Wolff. Test-sequence generation with
HOL-TestGen with an application to firewall testing. In Yuri Gure-
vich and Bertrand Meyer, editors, Tests and Proofs, First Interna-
tional Conference, TAP 2007, Zurich, Switzerland, volume 4454 of
LNCS, pages 149–168. Springer, 2007. (Cited on page 179.)

Richard Bubel, Reiner Hähnle, and Benjamin Weiss. Abstract inter-
pretation of symbolic execution with explicit state updates. In Frank
de Boer, Marcello M. Bonsangue, and Eric Madelaine, editors, Post
Conf. Proc. 6th International Symposium on Formal Methods for
Components and Objects, FMCO, volume 5751 of LNCS, pages 247–
277. Springer-Verlag, 2009. (Cited on pages 7 and 110.)

Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet cor-
rectness: A developer-oriented approach. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
International Symposium of Formal Methods Europe, Pisa, Italy,
volume 2805 of LNCS, pages 422–439. Springer, 2003. (Cited on
pages 133 and 234.)

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: Automatically generating inputs of death.
ACM Trans. Inf. Syst. Secur., 12(2):10:1–10:38, 2008. (Cited on
pages 9 and 179.)

Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Be-
yond assertions: Advanced specification and verification with JML
and ESC/Java2. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, Formal Methods
for Components and Objects, 4th International Symposium, FMCO
2005, Amsterdam, The Netherlands, volume 4111 of LNCS, pages
342–363. Springer, 2005. (Cited on pages II, 5, 73, and 238.)

Yanping Chen, Robert L. Probert, and D. Paul Sims. Specification-
based regression test selection with risk analysis. In Darlene A.
Stewart and J. Howard Johnson, editors, Proceedings of the 2002
conference of the Centre for Advanced Studies on Collaborative Re-
search (CASCON), pages 175 – 182. IBM Press, 2002. (Cited on
page 219.)

Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Java Series. Addison-Wesley, 2000. (Cited on

246

References

page 21.)
Yoonsik Cheon, Antonio Cortes, Gary T. Leavens, and Martine Ce-

berio. Integrating random testing with constraints for improved
efficiency and diversity. In Proceedings of the Twentieth Interna-
tional Conference on Software Engineering & Knowledge Engineering
(SEKE’2008), San Francisco, CA, USA, pages 861–866. Knowledge
Systems Institute Graduate School, 2008. (Cited on pages 210, 215,
and 218.)

Koen Claessen and Hans Svensson. Finding counter examples in induc-
tion proofs. In Bernhard Beckert and Reiner Hähnle, editors, Pro-
ceedings, Tests and Proofs, Second International Conference, TAP
2008, Prato, Italy, volume 4966 of LNCS, pages 48–65. Springer,
2008. (Cited on pages 108, 136, and 137.)

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction refinement. In Pro-
ceedings, Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA,, volume 1855 of LNCS, pages
154–169. Springer, 2000. (Cited on pages 7 and 139.)

L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Softw. Eng., 2:215–222, May 1976. ISSN
0098-5589. (Cited on pages 9 and 179.)

Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan To-
bies. VCC: A practical system for verifying concurrent C. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors, Proceedings, Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, volume
5674 of LNCS, pages 23–42. Springer, 2009. (Cited on pages II, 5,
73, and 238.)

David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and
JML. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis
Lanet, and Traian Muntean, editors, Proceedings, Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices, Interna-
tional Workshop, CASSIS 2004, Marseille, France, volume 3362 of
LNCS, pages 108–128. Springer, 2004. (Cited on page 179.)

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, August 1992. (Cited on
page 7.)

247

References

Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient E-
Matching for SMT solvers. In Frank Pfenning, editor, Proceedings,
Automated Deduction - CADE-21, 21st International Conference on
Automated Deduction, Bremen, Germany, volume 4603 of LNCS,
pages 183–198. Springer, 2007. (Cited on page 143.)

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, volume 4963 of LNCS, pages 337–340.
Springer, 2008. (Cited on pages III, 6, 8, 11, 98, 140, and 143.)

David Déharbe and Silvio Ranise. Satisfiability solving for software
verification. STTT, 11(3):255–260, 2009. (Cited on page 140.)

Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded
symbolic execution for checking strong heap properties of open sys-
tems. In Proceedings, 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE 2006), Tokyo, Japan, pages
157–166. IEEE Computer Society, 2006a. (Cited on page 137.)

Xianghua Deng, Robby, and John Hatcliff. Kiasan: A verification and
test-case generation framework for Java based on symbolic execution.
In Proceedings, Leveraging Applications of Formal Methods, Second
International Symposium, ISoLA 2006, Paphos, Cyprus, pages 137–
137. IEEE Computer Society, 2006b. (Cited on pages 9 and 179.)

Xianghua Deng, Robby, and John Hatcliff. Kiasan/KUnit: Automatic
test case generation and analysis feedback for open object-oriented
systems. In TAICPART-MUTATION ’07: Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Tech-
niques - MUTATION, pages 3–12, Washington, DC, USA, 2007.
IEEE Computer Society. (Cited on pages 179, 225, and 234.)

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005. (Cited
on pages 5, 8, 143, 183, and 241.)

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, NJ, 1976. (Cited on pages III and 33.)

Lydie du Bousquet, Yves Ledru, Olivier Maury, Catherine Oriat, and
Jean-Louis Lanet. Case study in JML-based software validation. In
19th IEEE International Conference on Automated Software Engi-

248

References

neering, ASE 2004, Linz, Austria, pages 294–297. IEEE Computer
Society, 2004. (Cited on pages 133 and 234.)

Bruno Dutertre and Leonardo de Moura. The Yices SMT solver.
Technical report, Computer Science Laboratory, SRI International,
2006a. http://yices.csl.sri.com/tool-paper.pdf. Visited De-
cember 2010. (Cited on pages 6, 8, 11, 98, 140, and 143.)

Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-
arithmetic solver for DPLL(T). In Thomas Ball and Robert B.
Jones, editors, Proceedings, Computer Aided Verification, 18th Inter-
national Conference, CAV 2006, Seattle, WA, USA, volume 4144 of
LNCS, pages 81–94. Springer, 2006b. (Cited on pages 140 and 143.)

Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Matthew
Jorde. Carving and replaying differential unit test cases from system
test cases. IEEE Trans. Software Eng., 35(1):29–45, 2009. (Cited on
pages 220, 222, 226, and 234.)

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Refer-
ence Manual. Addison-Wesley, 1990. (Cited on page 73.)

Christian Engel. Verification based test case generation. Master’s the-
sis, University of Karlsruhe, Institut für Theoretische Informatik,
2006. (Cited on pages 183, 195, 199, 204, 205, 207, 216, and 217.)

Christian Engel and Reiner Hähnle. Generating unit tests from formal
proofs. In Yuri Gurevich and Bertrand Meyer, editors, Proceedings,
Tests and Proofs, First International Conference, TAP 2007, Zurich,
Switzerland, volume 4454 of LNCS, pages 169–188. Springer, 2007.
(Cited on pages 13, 175, 180, 183, 207, 216, 217, and 225.)

Christian Engel, Christoph Gladisch, Vladimir Klebanov, and Philipp
Rümmer. Integrating verification and testing of object-oriented soft-
ware. In Bernhard Beckert and Reiner Hähnle, editors, Proceed-
ings, Tests and Proofs, Second International Conference, TAP 2008,
Prato, Italy, volume 4966 of LNCS, pages 182–191. Springer, 2008.
(Cited on pages V, 14, 18, 180, and 234.)

Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/-
Caduceus platform for deductive program verification. In Werner
Damm and Holger Hermanns, editors, Proceedings, Computer Aided
Verification, 19th International Conference, CAV 2007, Berlin, Ger-
many,, volume 4590 of LNCS, pages 173–177. Springer, 2007. (Cited
on pages II, 5, 137, and 238.)

Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo. Us-
ing SPIN to generate testsfrom asm specifications. In Egon Börger,

249

http://yices.csl.sri.com/tool-paper.pdf

References

Angelo Gargantini, and Elvinia Riccobene, editors, Proceedings, Ab-
stract State Machines, Advances in Theory and Practice, 10th In-
ternational Workshop, ASM 2003, Taormina, Italy, volume 2589 of
LNCS, pages 263–277. Springer, 2003. (Cited on pages 180, 219,
and 225.)

Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation
for quantified formulas in satisfiabiliby modulo theories. In Ahmed
Bouajjani and Oded Maler, editors, Proceedings, Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble,
France, volume 5643 of LNCS, pages 306–320. Springer, 2009. (Cited
on pages 8 and 143.)

Yeting Ge, Clark W. Barrett, and Cesare Tinelli. Solving quantified ver-
ification conditions using satisfiability modulo theories. Ann. Math.
Artif. Intell., 55(1-2):101–122, 2009. (Cited on page 140.)

Ian P. Gent, Peter Nightingale, and Kostas Stergiou. QCSP-Solve: A
solver for quantified constraint satisfaction problems. In Leslie Pack
Kaelbling and Alessandro Saffiotti, editors, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence, Ed-
inburgh, Scotland, UK (IJCAI 2005), pages 138–143. Professional
Book Center, 2005. (Cited on page 144.)

Silvio Ghilardi. Quantifier elimination and provers integration. Electr.
Notes Theor. Comput. Sci., 86(1):22–34, 2003. (Cited on pages 8
and 145.)

Martin Giese. Incremental closure of free variable tableaux. In Rajeev
Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings,
Automated Reasoning, First International Joint Conference, IJCAR
2001, Siena, Italy, volume 2083 of LNCS, pages 545–560. Springer,
2001. (Cited on pages 143 and 148.)

Christoph Gladisch. Verification-based test case generation for full fea-
sible branch coverage. In Antonio Cerone and Stefan Gruner, editors,
Proceedings, Sixth IEEE International Conference on Software Engi-
neering and Formal Methods, SEFM 2008, Cape Town, South Africa,
pages 159–168. IEEE Computer Society, 2008a. (Cited on pages V,
13, 14, 17, 104, 136, 180, 190, and 192.)

Christoph Gladisch. Could we have chosen a better loop invariant or
method contract? In Catherine Dubois, editor, Proceedings, Tests
and Proofs, Third International Conference, TAP 2009, Zurich,
Switzerland, volume 5668 of LNCS, pages 74–89. Springer, 2009.
(Cited on pages V, 13, 17, and 104.)

250

References

Christoph Gladisch. Extending KeY for the Verification of C Programs.
VDM Verlag Dr. Mueller e.K., 2008b. (Cited on page 18.)

Christoph Gladisch. Test data generation for programs with quanti-
fied first-order logic specifications. In Alexandre Petrenko, Adenilso
da Silva Simão, and José Carlos Maldonado, editors, Proceedings,
Testing Software and Systems - 22nd IFIP WG 6.1 International
Conference, ICTSS 2010, Natal, Brazil, volume 6435 of LNCS, pages
158–173. Springer, 2010a. (Cited on pages V, 11, 17, and 142.)

Christoph Gladisch. Satisfiability solving and model generation for
quantified first-order logic formulas. In Bernhard Beckert and Claude
Marché, editors, Conf. Post. Proc., Formal Verification of Object-
Oriented Software International Conference, FoVeOOS 2010, Paris,
France, volume 6528 of LNCS. Springer, 2010b. (Cited on pages V,
11, 17, and 142.)

Christoph Gladisch. How C differs from Java for symbolic program ex-
ecution. In Hendrik Tews, editor, Proceedings, C/C++ Verification
Workshop, Oxford, United Kingdom, Technical Report ICIS-R07015,
Radboud University Nijmegen, Juli 2007. (Cited on page 18.)

Christoph Gladisch. Verification-based test case generation with loop
invariants and method specifications. In Bernhard Beckert und
Reiner Hähnle, editors, Tests and Proofs: Papers Presented at the
Second International Conference, TAP 2008, Prato, Italy, Reports
of the Faculty of Informatics 5/2008, University of Koblenz-Landau,
April 2008c. (Cited on page 18.)

Christoph Gladisch, Shmuel Tyszberowicz, Bernhard Beckert, and
Amiram Yehudai. Generating regression unit tests using a combi-
nation of verification and capture & replay. In Gordon Fraser and
Angelo Gargantini, editors, Proceedings, Tests and Proofs, 4th In-
ternational Conference, TAP 2010, Málaga, Spain, volume 6143 of
LNCS, pages 61–76. Springer, 2010. (Cited on pages V, 16, 17, 180,
and 221.)

Benny Godlin and Ofer Strichman. Regression verification: Proving
the equivalence of similar programs. In Ahmed Bouajjani and Oded
Maler, editors, Proceedings, Computer Aided Verification, 21st Inter-
national Conference, CAV 2009, Grenoble, France, volume 5643 of
LNCS, pages 63–68. Springer, 2009. (Cited on pages 234 and 235.)

James Gosling, Bill Joy, and Guy Steele. The Java Language Specifi-
cation. Addison-Wesley, 1996. (Cited on page 37.)

251

References

Susanne Graf and Hassen Säıdi. Construction of abstract state graphs
with PVS. In Orna Grumberg, editor, Computer Aided Verification,
9th International Conference, CAV ’97, Haifa, Israel, volume 1254
of LNCS, pages 72–83. Springer, 1997. (Cited on page 7.)

Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam A. Porter,
and Gregg Rothermel. An empirical study of regression test selec-
tion techniques. In Proceedings of the 20th international conference
on Software engineering, ICSE 1998, Kyoto, Japan, pages 188–197.
ACM, 1998. (Cited on pages 219, 220, 227, 228, and 234.)

Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V.
Nori, and Sriram K. Rajamani. SYNERGY: a new algorithm for
property checking. In Michal Young and Premkumar T. Devanbu,
editors, Proceedings of the 14th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2005, Port-
land, Oregon, USA, pages 117–127. ACM, 2006. (Cited on page 136.)

John V. Guttag, James J. Horning, and Jeannette M. Wing. The Larch
family of specification languages. IEEE Software, 2(5):24–36, 1985.
(Cited on page 73.)

David Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume II: Extensions of Classical
Logic, chapter 10, pages 497–604. Reidel, Dordrecht, 1984. (Cited on
pages II, 9, 21, 33, 34, 93, and 94.)

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The
MIT Press, London, England, 2000. (Cited on page 21.)

Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang,
Alessandro Orso, Maikel Pennings, Saurabh Sinha, S. Alexander
Spoon, and Ashish Gujarathi. Regression test selection for Java
software. In Proceedings of the 2001 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applica-
tions, OOPSLA 2001, Tampa, Florida, pages 312–326. ACM, 2001.
(Cited on pages 219, 220, 227, and 234.)

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. SIGPLAN Not., 37:58–70, January 2002.
ISSN 0362-1340. (Cited on page 136.)

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, October 1969. (Cited on pages II, 3,
and 34.)

Matthias Horbach and Christoph Weidenbach. Deciding the inductive
validity of for all there exists * queries. In Erich Grädel and Reinhard

252

References

Kahle, editors, Proceedings, Computer Science Logic, 23rd interna-
tional Workshop, CSL 2009, 18th Annual Conference of the EACSL,
Coimbra, Portugal,, volume 5771 of LNCS, pages 332–347. Springer,
2009a. (Cited on page 144.)

Matthias Horbach and Christoph Weidenbach. Decidability results for
saturation-based model building. In Renate A. Schmidt, editor, Pro-
ceedigns Automated Deduction - CADE-22, 22nd International Con-
ference on Automated Deduction, Montreal, Canada, volume 5663 of
LNCS, pages 404–420. Springer, 2009b. (Cited on page 144.)

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol., 11(2):256–290, 2002. (Cited on
page 5.)

KeY-Home. KeY project homepage. At http://www.key-project.
org/. (Cited on pages 2 and 5.)

James C. King. A new approach to program testing. In Clemens Hackl,
editor, IBM Symposium: Programming Methodology, volume 23 of
LNCS, pages 278–290. Springer, 1974. (Cited on pages 9 and 179.)

James C. King. Symbolic execution and program testing. Communi-
cations of the ACM, 19(7):385–394, 1976. (Cited on pages II, 9, 47,
56, and 179.)

Joseph R. Kiniry, Alan E. Morkan, and Barry Denby. Soundness and
completeness warnings in ESC/Java2. In Proc. Fifth Int. Workshop
Specification and Verification of Component-Based Systems, pages
pp. 19–24, 2006. (Cited on page 143.)

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an OS kernel. Commu-
nications of the ACM, 53(6):107–115, Jun 2010. (Cited on page 6.)

Nikolai Kosmatov, Bruno Legeard, Fabien Peureux, and Mark Utting.
Boundary coverage criteria for test generation from formal models.
In Proceedings, Software Reliability Engineering, Saint-Melo, France,
pages 139–150. IEEE Computer Society, 2004. (Cited on page 210.)

G. Leavens and Y. Cheon. Design by contract with JML, 2006. http://
www.eecs.ucf.edu/~leavens/JML//jmldbc.pdf. Visited December
2010. (Cited on page 73.)

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and

253

http://www.key-project.org/
http://www.key-project.org/
http://www.eecs.ucf.edu/~leavens/JML//jmldbc.pdf
http://www.eecs.ucf.edu/~leavens/JML//jmldbc.pdf

References

Daniel M. Zimmerman. JML Reference Manual. Draft Revision
1.200, September 2009. (Cited on page 73.)

David Lee and Mihalis Yannakakis. Online minimization of transition
systems (extended abstract). In Proceedings of the twenty-fourth
annual ACM symposium on Theory of computing, STOC ’92, pages
264–274. ACM, 1992. (Cited on page 136.)

Bruno Legeard, Fabien Peureux, and Mark Utting. Automated bound-
ary testing from Z and B. In Lars-Henrik Eriksson and Peter A.
Lindsay, editors, Proceedings, FME 2002: Formal Methods - Get-
ting IT Right, International Symposium of Formal Methods Europe,
Copenhagen, Denmark, volume 2391 of LNCS, pages 21–40. Springer,
2002. (Cited on page 210.)

Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V
Hypervisor with VCC. In Ana Cavalcanti and Dennis Dams, editors,
Proceedings, FM 2009: Formal Methods, Second World Congress,
Eindhoven, The Netherlands, volume 5850 of LNCS, pages 806–809.
Springer, 2009. (Cited on page 6.)

K. Rustan M. Leino and Francesco Logozzo. Loop invariants on
demand. In Kwangkeun Yi, editor, Proceedings, Programming
Languages and Systems, Third Asian Symposium, APLAS 2005,
Tsukuba, Japan, volume 3780 of LNCS, pages 119–134. Springer,
2005. (Cited on page 136.)

T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: unit test-
ing with mock objects. In Extreme Programming Examined, pages
287–301. Addison-Wesley, 2001. ISBN 0-201-71040-4. (Cited on
page 220.)

Christophe Meudec. ATGen: automatic test data generation using
constraint logic programming and symbolic execution. Softw. Test.,
Verif. Reliab., 11(2):81–96, 2001. (Cited on pages 9 and 179.)

Bertrand Meyer. Design by contract: Making object-oriented programs
that work. In Proceedings, TOOLS 1997: 25th International Confer-
ence on Technology of Object-Oriented Languages and Systems, Mel-
bourne, Australia, page 360. IEEE Computer Society, 1997. (Cited
on pages II, 3, and 73.)

Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991. (Cited on
page 73.)

Micha l Moskal. Satisfiability Modulo Software. PhD thesis, University
of Wroc law, 2009. (Cited on page 143.)

254

References

Michal Moskal, Jakub Lopuszanski, and Joseph R. Kiniry. E-matching
for fun and profit. Electr. Notes Theor. Comput. Sci., 198(2):19–35,
2008. (Cited on pages 98, 140, and 143.)

Peter Müller. Modular Specification and Verification of Object-Oriented
Programs. PhD thesis, FernUniversität Hagen, 2002. (Cited on
page 74.)

Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and
Albert Rubio. Challenges in satisfiability modulo theories. In Franz
Baader, editor, Term Rewriting and Applications, 18th International
Conference, RTA 2007, Paris, France, volume 4533 of LNCS, pages
2–18. Springer, 2007. (Cited on pages 98 and 140.)

Jeremy W. Nimmer and Michael D. Ernst. Static verification of dy-
namically detected program invariants: Integrating Daikon and ES-
C/Java. Electr. Notes Theor. Comput. Sci., 55(2):255–276, 2001.
(Cited on page 235.)

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS:
Combining specification, proof checking, and model checking. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings, Com-
puter Aided Verification, 8th International Conference, CAV ’96,
New Brunswick, NJ, USA, volume 1102 of LNCS, pages 411–414.
Springer, 1996. (Cited on pages II, 5, and 238.)

Parasoft. JTest. http://www.parasoft.com/jtest. Visited December
2010. (Cited on page 210.)

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen
Gundy-Burlet, Michael R. Lowry, Suzette Person, and Mark Pape.
Combining unit-level symbolic execution and system-level concrete
execution for testing NASA software. In Barbara G. Ryder and
Andreas Zeller, editors, Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2008,
Seattle, WA, USA, pages 15–26. ACM, 2008. (Cited on pages 9
and 179.)

B. Pasternak, S. Tyszberowicz, and A. Yehudai. GenUTest: a unit
test and mock aspect generation tool. Journal on Software Tools
for Technology Transfer (STTT), 11(4):273–290, 2009. (Cited on
pages V, 220, 222, 223, 226, 228, 229, and 234.)

Wolfgang Paul. Towards a worldwide verification technology. In
Bertrand Meyer and Jim Woodcock, editors, Proceedings, Veri-
fied Software: Theories, Tools, Experiments, First IFIP TC 2/WG

255

http://www.parasoft.com/jtest

References

2.3 Conference, VSTTE 2005, Zurich, Switzerland, volume 4171 of
LNCS, pages 19–25. Springer, 2005. (Cited on page 6.)

André Platzer. An object-oriented dynamic logic with updates. Mas-
ter’s thesis, University of Karlsruhe, Institut für Theoretische Infor-
matik, September 2004. (Cited on pages 47, 93, and 94.)

Caferra Ricardo, Leitsch Alexander, and Peltier Nicolas. Automated
Model Building, volume 31 of Applied Logic Series. Springer, 2004.
(Cited on page 144.)

Philipp Rümmer. A sequent calculus for integer arithmetic with coun-
terexample generation. In Bernhard Beckert, editor, Proceedings of
4th International Verification Workshop in connection with CADE-
21, VERIFY’07, Bremen, Germany, volume 259 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007. (Cited on pages 44, 60, 92, 96,
and 118.)

Philipp Rümmer. Calculi for Program Incorrectness and Arithmetic.
PhD thesis, Chalmers University of Technology and Göteborg Uni-
versity, Department of Computer Science and Engineering, 2008.
(Cited on pages 44, 53, 55, 60, and 135.)

Philipp Rümmer and Muhammad Ali Shah. Proving programs incor-
rect using a sequent calculus for Java dynamic logic. In Yuri Gurevich
and Bertrand Meyer, editors, Proceedings, Tests and Proofs, First In-
ternational Conference, TAP 2007, Zurich, Switzerland, volume 4454
of LNCS, pages 41–60. Springer, 2007. (Cited on pages 136 and 143.)

David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. Au-
tomatic test factoring for Java. In David F. Redmiles, Thomas
Ellman, and Andrea Zisman, editors, Proceedings, 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2005, Long Beach, CA, USA, pages 114–123. ACM, 2005. (Cited on
pages 220, 223, 225, and 234.)

Wolfram Schulte, X Songtao, Jan Smans, and Frank Piessens. A
glimpse of a verifying C compiler (extended abstract). In C/C++
Verification Workshop, 2007. (Cited on page 137.)

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit
testing engine for C. In Michel Wermelinger and Harald Gall, editors,
Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal (ES-
EC/SIGSOFT FSE), pages 263–272. ACM, 2005. (Cited on pages 9
and 179.)

256

References

Yannis Smaragdakis and Christoph Csallner. Combining static and
dynamic reasoning for bug detection. In Yuri Gurevich and Bertrand
Meyer, editors, Proceedings, Tests and Proofs, First International
Conference, TAP 2007, Zurich, Switzerland, volume 4454 of LNCS,
pages 1–16. Springer, 2007. (Cited on pages 179, 225, 234, and 235.)

Michael J. Spivey. The Z notation : a reference manual (2nd Edition).
Prentice Hall, 1992. (Cited on pages 5 and 73.)

Norihisa Suzuki and David Jefferson. Verification decidability of Pres-
burger array programs. J. ACM, 27(1):191–205, 1980. (Cited on
page 81.)

Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit
in Action, Second Edition. Manning Publications Co., 2010. (Cited
on page 183.)

Kunal Taneja and Tao Xie. DiffGen: Automated regression unit-test
generation. In Proceedings, 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2008, L’Aquila, Italy.
IEEE Computer Society, 2008. (Cited on page 234.)

Nikolai Tillmann and Jonathan de Halleux. Pex-white box test genera-
tion for .NET. In Bernhard Beckert and Reiner Hähnle, editors, Pro-
ceedings, Tests and Proofs, Second International Conference, TAP
2008, Prato, Italy, volume 4966 of LNCS, pages 134–153. Springer,
2008. (Cited on pages 9, 179, 227, and 235.)

Isabel Tonin. Verifying the mondex case study - the KeY approach.
Technical Report ISSN: 1432-7864, Fakultät für Informatik (Fak. f.
Informatik) Institut für Theoretische Informatik (ITI), 2007. (Cited
on page 6.)

Kerry Trentelman. Proving correctness of JavaCard DL taclets using
Bali. In B. Aichernig and B. Beckert, editors, Proceedings, Third
IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2005, Koblenz, Germany. IEEE Computer Society,
2005. (Cited on pages 44 and 47.)

H. van Vliet. Software Engineering: Principles and Practice (2nd ed.).
John Wiley & Sons, Inc., 2000. ISBN 0-471-97508-7. (Cited on
page 219.)

Dries Vanoverberghe, Nikolaj Bjørner, Jonathan de Halleux, Wolfram
Schulte, and Nikolai Tillmann. Using dynamic symbolic execu-
tion to improve deductive verification. In Klaus Havelund, Rupak
Majumdar, and Jens Palsberg, editors, Proceedings, Model Check-
ing Software, 15th International SPIN Workshop, Los Angeles, CA,

257

References

USA, volume 5156 of LNCS, pages 9–25. Springer, 2008. (Cited on
page 179.)

Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input
generation with Java PathFinder. In George S. Avrunin and Gregg
Rothermel, editors, Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2004, Boston,
Massachusetts, USA, pages 97–107. ACM, 2004. (Cited on pages 180,
219, 225, and 234.)

Joe Walnes, Henri Tremblay, and Leonardo Mesquita. Objenesis. http:
//objenesis.googlecode.com/svn/docs/index.html. Visited De-
cember 2010. (Cited on page 205.)

Benjamin Weiß. Predicate abstraction in a program logic calcu-
lus. In Michael Leuschel and Heike Wehrheim, editors, Proceed-
ings, Integrated Formal Methods, 7th International Conference, IFM
2009, Düsseldorf, Germany, volume 5423 of LNCS, pages 136–150.
Springer, 2009. (Cited on pages 7 and 110.)

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Is-
abelle Framework. In Otmane Aı̈t Mohamed, César Muñoz, and
Sofiène Tahar, editors, Proceedings, Theorem Proving in Higher Or-
der Logics, 21st International Conference, TPHOLs 2008, Montreal,
Canada, volume 5170 of LNCS, pages 33–38. Springer, 2008. (Cited
on pages II, 5, 179, and 238.)

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detect-
ing redundant object-oriented unit tests. In Proceedings, 19th IEEE
International Conference on Automated Software Engineering, ASE
2004, Linz, Austria, pages 196–205. IEEE Computer Society, 2004.
(Cited on page 234.)

Tao Xie. Augmenting automatically generated unit-test suites with
regression oracle checking. In Dave Thomas, editor, Proceedings,
ECOOP 2006 - Object-Oriented Programming, 20th European Con-
ference, Nantes, France, volume 4067 of LNCS, pages 380–403.
Springer, 2006. (Cited on pages 220, 226, 234, and 235.)

Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra:
A framework for generating object-oriented unit tests using symbolic
execution. In Proceedings, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Edinburgh, UK, volume 3440 of
LNCS, pages 365–381. Springer, 2005. (Cited on pages 9 and 179.)

zEx. Extreme Programming. http://www.extremeprogramming.org.
Visited December 2010. (Cited on page 178.)

258

http://objenesis.googlecode.com/svn/docs/index.html
http://objenesis.googlecode.com/svn/docs/index.html
http://www.extremeprogramming.org

References

Jian Zhang and Hantao Zhang. Extending finite model searching with
congruence closure computation. In Bruno Buchberger and John A.
Campbell, editors, Proceedings, Artificial Intelligence and Symbolic
Computation, 7th International Conference, AISC 2004, Linz, Aus-
tria, volume 3249 of LNCS, pages 94–102. Springer, 2004. (Cited on
page 144.)

Jian Zhang, Chen Xu, and Xiaoliang Wang. Path-oriented test data
generation using symbolic execution and constraint solving tech-
niques. In Proceedings, 2nd International Conference on Software
Engineering and Formal Methods, SEFM 2004, Beijing, China, pages
242–250. IEEE Computer Society, 2004. (Cited on pages 9 and 179.)

259

Index

Numbers of pages on which notions are defined are typeset in bold face;
if a whole section is dedicated to discussing a notion or concept, the
page numbers of that section are typeset in italics.

anonymising update, 68, 111

antecedent, 44

AspectJ, 228

assignment, 57

auxiliary formula, 105

auxiliary formulas, 101

banking software examples, 133, 170,

229

β, see variable assignment

BFml, 83

black-box test, 15, 186, 210

bounded symbolic execution, 13, 60, 99,

110, 190, 217

Branches, 83

branching rules, 49

bug, see software fault

calculus, 43

capture & replay (CaR), 15, 220, 228

CaR, see capture & replay

class invariant, 73

closed formula, 42

completeness, 46

concolic execution, 179

conditional term, 31, 54

consequence, 32

consistent update, 37

constant, 25

contract, 64, 73, 190, 191

contract rule premiss occurrence, 112

contract rules, 12, 97, 104

counterexample, 6, 11, 32, 88, 98, 104,

139, 194

coverage, 4, 9, 14, 179, 181, 190, 222

full feasible bounded path coverage,

182, 217

full feasible branch coverage, 9, 136,

182, 190, 217

D, see domain

debugger, see program debugger

decision procedure, 8, 83, 141, 206

derivable, derivability, 45

design-by-contract, 3, 73

diverges, 76

DL, see dynamic logic

domain, 28, 75, 144, 198, 202, 202

dynamic dispatch, 60

dynamic logic, 33

dynamic symbolic execution, 179

E-matching, 142

ensures, 76

Index

equality rules, 50

equivalence rule, 93

\exists, 76

falsifiable, falsifiability, 32

first-order logic (FOL), 22

FOL, see first-order logic

\forall, 76

FmlFOL, 27

formulas

of JAVA CARD DL, 35

of Java Card FOL, 27

Formulae, 35

free variables, 27, 35, 52

FSym, 23

function symbols, 25

function update, 34

GenUTest, 221, 228

ground formula, 141, 150, 154

havoc, 68

Hoare triple, logic, 3, 34, 56, 81

I, see interpretation

ifElseSplit, 57

ifExMin . then else , 27, 30, 53

if then else , 27, 30

infeasible branch, path, 62, 182

inReachableState, 26, 29, 76

integer, 24

integerDomain, 24

interpretation, 28, 145

interpreted function, 29

Java Modeling Language, 73

JAVA Virtual Machine (JVM), 82, 203,

208

JAVA CARD DL, 33

Java Card FOL, 22

JML, 210

JUnit, 175, 183, 195

JVM, see JAVA Virtual Machine

KeY, 21

KeY Book, 22

KeYGenU, 221, 228

Kripke structure, 36

leaf node, 45

location term, 35

loop invariant, 7, 12, 64, 74, 104

loop unwinding, 62, 90, 213

loopInv, 69

loop invariant, 76

loopUnwind, 57

mContract, 69

method contract, 7, 12, 104

method frame, 56, 61

method under test (MUT), 180

methodCall, 60

methodEmpty, 57

methodExpand, 57

methodReturn, 57

min�, 28

mock aspect, 228

mock object, 219, 225

modal operator, 33

model generation, 11, 139, 141, 145,

153, 183

modification by a semantic update, 37

modifier set, 66, 111

modifies, 76

MUT, see method under test

node, 45

non-rigid, 35

nullable, 76

\old, 76

oracle, see test oracle

partial correctness, 42, 124

partial model, 28, 145

path condition, 181, 188

post-state, 36

postcondition, 33, 64, 73

pre-state, 36

precondition, 33, 64, 73

predicate symbols, 25

Presburger arithmetic, 43, 144

262

Index

program branch, 181

program debugger, 13, 176

program path, 181

program reduction, 47, see symbolic

execution, 56

rules, 57

program relation, 36

program under test (PUT), 13, 219

proof tree, 44, 45, 48, 85, 184

propositional rules, 48

PSym, 23

PUT, see program under test

quantified update, 110, 201

quantifier instantiation (rules), 48, 142

regression testing, 15, 177, 219

requirement specification, 105

requires, 76

\result, 76

rigid term, formula, 43

rigid, non-rigid, 25

root node, 45

rule, 43, 45, 48

rule conclusion, 45

rule generalization, 46

rule premiss, 45

rule schema, 46

S, see state

satisfiability modulo theories (SMT), 8,

11, 87, 98, 139

satisfiable, satisfiability, 32, 139

semantic update, 37

sequent, 44

side-effect, 35, 60, 73

signature, 23

Skolem function, 33, 68

Skolemization, 33, 142, 150

rules, 48

SMT, SMT solver, see satisfiability

modulo theories

software fault, 3, 81

soundness, 46, 124, 151

special validity preservation (SVP), 121

specification, 64, 73, 210

specification-based test, 13, 186

sqrt, 60, 74, 89, 102, 213

state, 36, 208

succedent, 44

SVP, see special validity preservation

symbolic execution, 9, 43, 47, 56, 179

rules, 57

termination, 42, 64, 124, 178

terms

of JAVA CARD DL, 34

of Java Card FOL, 26

Terms, 34

test case, 181, 184

test coverage, see coverage, 222

test data, 181

test data constraint, 181, 184

test data generation, 183

test driver, 183

test oracle, 181, 183, 206, 221, 226

test preamble, 168, 181, 183, 196

test selection, prioritization, 227

test suite, 181

testing techniques, 178

Th, 153

tool-chain, 14, 184, 209, 225

total correctness, 42

TrmFOL, 26

tryToVerifyOrToFindABug, 86

type hierarchy, 23

typing function, 23

uninterpreted function, 29

unit testing, 178, 219

universe, see domain

unsatisfiable, unsatisfiability, 32

update application, 37, 50, 52

update normal form, 51, 200

Updates, 34

updates, 50, 158, 198

val , see valuation function

valid, validity, 32

validity preservation, 87, 92, 103, 112,

194

263

Index

validity relation, 30, 31, 42

valuation function, 30, 38, 41

value term, 35

variable assignment, 30

variables, 24

VBT, see verification-based testing

verification attempt, 6, 86, 131, 175,

180, 224

verification condition, 3, 5, 11, 56

verification-based testing (VBT), 175,

219

VSym, 23

V T , 83

weakest precondition, 33, 37, 47

well-ordering, 28, 40

white-box test, 13, 187

wp, see weakest precondition

264

	Introduction
	State of the Art and Challenges
	Contributions
	Counterexample Generation from Invalid Verification Conditions with Quantifiers
	Deducing the Existence of Software Faults when Using Program Abstractions
	Verification-based Test Case Generation
	Tool-chain Approaches for Test Generation

	Outline
	Publications of the Author

	Part I Foundations
	The Formalism and Techniques of KeY
	Introduction
	The First-order Logic Java Card FOL
	Syntax
	Semantics

	The Dynamic Logic Java Card DL
	Syntax
	Semantics

	Calculus
	Sequents, Rules, and Proofs
	How Verification Works in KeY
	Calculus Component: First-order Logic Rules
	Calculus Component: Update Simplification Rules
	Calculus Component: Program Reduction Rules
	Calculus Component: Contract Rules

	Java Modeling Language (JML)
	Overview
	Translation of JML Specifications to Dynamic Logic

	Part II Deductive Techniques for Software-fault Detection
	The Deductive Software-fault Detection Approach
	Introduction
	Properties and Ideas of the Deductive Fault-Detection Approach
	The Algorithm
	Description of the Algorithm
	Example

	Validity Preservation and Counterexample Generation
	Validity Preservation
	Counterexample Generation

	Conclusion

	Deducing the Existence of Software Faults when Using Contracts
	Introduction
	What Counterexamples of Contract Rule Premisses Mean
	Notations and Definitions
	Techniques for Validity Preservation Analysis
	Systematic Analysis of Validity Preservation
	Three Approaches for Validity Preservation Analysis
	Special Validity Preservation Condition

	Example
	Verification Attempt
	Checking Validity Preservation

	Evaluation
	Related Work
	Summary and Conclusion

	Counterexample Generation for Quantified Verification Conditions
	Introduction
	Background and Related Work

	The Basic Idea of our Approach
	Model Generation by Iterative Update Construction
	The Goal and the Challenges
	The Solution
	Soundness Proof of Theorem 6.5

	The Model Search Algorithm
	Heuristics for Update Construction from Formulas
	Update Construction from Ground Formulas
	Update Construction from Quantified Formulas
	Weakening of Updates

	Update Generation for Satisfying Quantified Formulas
	From Updates to a Test Preamble
	Evaluation
	Conclusions and Future Work

	Part III Verification-based Test Generation Techniques
	Verification-based Test Generation
	Introduction
	Related Work
	Overview of the VBT Approaches in KeY
	Extraction of Test Cases from a Proof Tree
	Black-Box or Specification-based Test Cases
	White-box Test Cases
	Test Cases with Fault Detection Guarantee

	Generation of Executable JUnit Tests
	Test Preamble Generation
	Test Oracle Generation

	Tool-chain Approach for Test Generation
	Generation of the Enhanced Specification in JML
	Example and Experiments

	Experience with VBT and Conclusions

	Generating Regression Unit Tests Using a Tool-Chain Approach
	Introduction
	Complementary Strengths of the Regarded Techniques
	The Proposed Approach
	Building a Tool-chain
	Advantages and Limitations

	KeYGenU
	GenUTest
	A Detailed Example
	A Short Evaluation

	Related Work
	Conclusion and Future Work

	Conclusions
	References
	Index

