814 research outputs found

    Novelty detection with self-organizing maps for autonomous extraction of salient tracking features

    Get PDF
    International audienceIn the image processing field, many tracking algorithms rely on prior knowledge like color, shape or even need a database of the objects to be tracked. This may be a problem for some real world applications that cannot fill those prerequisite. Based on image compression techniques, we propose to use Self-Organizing Maps to robustly detect novelty in the input video stream and to produce a saliency map which will outline unusual objects in the visual environment. This saliency map is then processed by a Dynamic Neural Field to extract a robust and continuous tracking of the position of the object. Our approach is solely based on unsupervised neural networks and does not need any prior knowledge, therefore it has a high adaptability to different inputs and a strong robustness to noisy environments

    Variable Resolution & Dimensional Mapping For 3d Model Optimization

    Get PDF
    Three-dimensional computer models, especially geospatial architectural data sets, can be visualized in the same way humans experience the world, providing a realistic, interactive experience. Scene familiarization, architectural analysis, scientific visualization, and many other applications would benefit from finely detailed, high resolution, 3D models. Automated methods to construct these 3D models traditionally has produced data sets that are often low fidelity or inaccurate; otherwise, they are initially highly detailed, but are very labor and time intensive to construct. Such data sets are often not practical for common real-time usage and are not easily updated. This thesis proposes Variable Resolution & Dimensional Mapping (VRDM), a methodology that has been developed to address some of the limitations of existing approaches to model construction from images. Key components of VRDM are texture palettes, which enable variable and ultra-high resolution images to be easily composited; texture features, which allow image features to integrated as image or geometry, and have the ability to modify the geometric model structure to add detail. These components support a primary VRDM objective of facilitating model refinement with additional data. This can be done until the desired fidelity is achieved as practical limits of infinite detail are approached. Texture Levels, the third component, enable real-time interaction with a very detailed model, along with the flexibility of having alternate pixel data for a given area of the model and this is achieved through extra dimensions. Together these techniques have been used to construct models that can contain GBs of imagery data

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisiĂłn del estado del arte sobre la segmentaciĂłn de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Improving the Performance of K-Means for Color Quantization

    Full text link
    Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, k-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to initialization. In this paper, we investigate the performance of k-means as a color quantizer. We implement fast and exact variants of k-means with several initialization schemes and then compare the resulting quantizers to some of the most popular quantizers in the literature. Experiments on a diverse set of images demonstrate that an efficient implementation of k-means with an appropriate initialization strategy can in fact serve as a very effective color quantizer.Comment: 26 pages, 4 figures, 13 table

    Narrative through texture: shaping sound through abstract painting in my practice of ambient music

    Get PDF
    In an aesthetic of ambient music, this research investigates the creation of musical narrative through texture. The author finds varying results by experimenting with two ways of shaping sound; shaping sound with the use of controllers and designing sound through the aid of abstract paintings. This research focuses on the collaboration with Dutch painter Martijn den Ouden. The author discovers meaningful similarities between den Ouden’s abstract paintings and his music and derives novel compositional ideas from strategies in musical mapping. These ideas are explored in the accompanying album Expired Sceneries, a collection of four pieces, each relating to one of the paintings. The strategies involved in the process of composing this album are discussed and evaluated in this submission with the help of audio examples

    NP-SOM: network programmable self-organizing maps

    Get PDF
    International audienceSelf-organizing maps (SOM) are a well-known and biologically plausible model of input-driven self-organization that has shown to be effective in a wide range of applications. We want to use SOMs to control the processing cores of a massively parallel digital reconfigurable hardware, taking into account the communication constraints of its underlying network-on-chip (NoC) thanks to bio-inspired principles of structural plasticity. Although the SOM accounts for synaptic plasticity, it doesn't address structural plasticity. Therefore we have developed a model, namely the NP-SOM (network programmable self-organizing map), able to define SOMs with different underlying topologies as the result of a specific configuration of the associated NoC. To gain insights on a future introduction of advanced structural plasticity rules that will induce dynamic topological modifications, we investigate and quantify the effects of different hardware-compatible topologies on the SOM performance. To perform our tests we consider a lossy image compression as an illustrative application

    The Fractal Analysis of the Images and Signals in Medical Diagnostics

    Get PDF
    In the present chapter, we summarize our results concerning fractal analysis of some medical data. The aim of this study is to identify the inherent human body “chaotic” dynamics and insufficient disclosure of the physical essence of the processes observed, depending on the extent of developing a pathology that is characterized by a decrease or increase in the degree of complexity and as a consequence—randomness, for which, in some cases, hidden fractal. The proposed approach based on identifying the presence of the properties of self‐similarity can be useful in preliminary clinical trials for the diagnosis of cancerous epithelial diseases, blood, and liver in the initial stage, the analysis of digital images, the structure of correlations biomedical parameters, as well as in the study of pathologies of the central nervous system—the neurological, neurodegenerative disorders, psychiatric disorders, and may be the basis for the development of the interface “brain‐computer”, on the basis of electroencephalography and magnetoencephalography. Additional measures are proposed to study the presence of self‐similar properties in the form of self‐similarity and magnitude SRGB ratio (area of a triangle in the coordinate system of the properties)
    • 

    corecore