560 research outputs found

    ON DESIGN OF SELF-TUNING ACTIVE FILTERS

    Get PDF
    In this paper, we present one approach in design of self-tuning all-pass, band-pass, low-pass and notch filters based on phase control loops with voltage-controlled active components and analyze their stability as well. The main idea is to vary signal delay of the filter and in this way to achieve phase correction. The filter phase characteristics are tuned by varying the transconductance of the operational transconductance amplifier or capacitance of an MOS varicap element, which are the constituents of filters. This approach allows us to implement active filters with capacitance values of order of pF, making the complete filter circuit to be amenable for realization in CMOS technology. The phase control loops are characterized by good controllable delay over the full range of phase and frequency regulation, high stability, and short settling (locking) time. The proposed circuits are suitable for implementation as a basic building RF function block, used in phase and frequency regulation, frequency synthesis, clock generation recovery, filtering, selective amplifying etc

    Trade-off and Design optimization of the Notch filter for ultralow power ECG application

    Get PDF
    ECG acquisition, several leads combined with signals from different body parts (i.e., from the right wrist and the left ankle) are utilized to trace the electric activity of the heart. ECG acquisition board translates the body signal to six leads and processes the signal using a low-pass filter (LPF) and SAR ADC. The acquisition board is composed of: an instrumentation amplifier, a high-pass filter, a 60-Hz notch filter, and a common-level adjuster. But miniaturization or need of portable devices for measuring Bio-Potential parameters has led to design of IC’s for biomedical application with ultra-low power Because of miniaturization i.e. use of lower technology nodes has led to non-idealities which reduces the attenuation of Common Mode to differential component i.e. not CMRR. Because of this demerit the power line interference signal can’t be assumed as a common mode signal. Hence we need to design a power line interference filter to avoid the contamination of the signal

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    An analog approach to interference suppression in ultra-wideband receivers

    Get PDF
    Because of the huge bandwidth of Ultra-Wideband (UWB) systems, in-band narrowband interference may hinder receiver performance. In this dissertation, sources of potential narrowband interference that lie within the IEEE 802.15.3a UWB bandwidth are presented, and a solution is proposed. To combat interference in Multi-Band OFDM (MB-OFDM) UWB systems, an analog notch filter is designed to be included in the UWB receive chain. The architecture of the filter is based on feed-forward subtraction of the interference, and includes a Least Means Squared (LMS) tuning scheme to maximize attenuation. The filter uses the Fast Fourier Transform (FFT) result for interference detection and discrete center frequency tuning of the filter. It was fabricated in a 0.18 õm process, and experimental results are provided. This is the first study of potential in-band interference sources for UWB. The proposed filter offers a practical means for ensuring reliable UWB communication in the presense of such interference. The Operational Transconductance Amplifier (OTA) is the predominant building block in the design of the notch filter. In many cases, OTAs must handle input signals with large common mode swings. A new scheme for achieving rail-to-rail input to an OTA is introduced. Constant gm is obtained by using tunable level shifters and a single differential pair. Feedback circuitry controls the level shifters in a manner that fixes the common mode input of the differential pair, resulting in consistent and stable operation for rail-to-rail inputs. As the new technique avoids using complimentary input differential pairs, this method overcomes problems such as Common Mode Rejection Ratio (CMRR) and Gain Bandwidth (GBW) product degradation that exist in many other designs. The circuit was fabricated in a 0.5õm process. The resulting differential pair had a constant transconductance that varied by only ñ0.35% for rail-to-rail input common mode levels. The input common mode range extended well past the supply levels of ñ1.5V, resulting in only ñ1% fluctuation in gm for input common modes from -2V to 2V

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    Design of an Active Harmonic Rejection N-Path Filter for Highly Tunable RF Channel Selection

    Get PDF
    As the number of wireless devices in the world increases, so does the demand for flexible radio receiver architectures capable of operating over a wide range of frequencies and communication protocols. The resonance-based channel-select filters used in traditional radio architectures have a fixed frequency response, making them poorly suited for such a receiver. The N-path filter is based on 1960s technology that has received renewed interest in recent years for its application as a linear high Q filter at radio frequencies. N-path filters use passive mixers to apply a frequency transformation to a baseband low-pass filter in order to achieve a high-Q band-pass response at high frequencies. The clock frequency determines the center frequency of the band-pass filter, which makes the filter highly tunable over a broad frequency range. Issues with harmonic transfer and poor attenuation limit the feasibility of using N-path filters in practice. The goal of this thesis is to design an integrated active N-path filter that improves upon the passive N-path filter’s poor harmonic rejection and limited outof- band attenuation. The integrated circuit (IC) is implemented using the CMRF8SF 130nm CMOS process. The design uses a multi-phase clock generation circuit to implement a harmonic rejection mixer in order to suppress the 3rd and 5th harmonic. The completed active N-path filter has a tuning range of 200MHz to 1GHz and the out-ofband attenuation exceeds 60dB throughout this range. The frequency response exhibits a 14.7dB gain at the center frequency and a -3dB bandwidth of 6.8MHz

    Analysis and Design Methodologies for Switched-Capacitor Filter Circuits in Advanced CMOS Technologies

    Get PDF
    Analog filters are an extremely important block in several electronic systems, such as RF transceivers, data acquisition channels, or sigma-delta modulators. They allow the suppression of unwanted frequencies bands in a signal, improving the system’s performance. These blocks are typically implemented using active RC filters, gm-C filters, or switched-capacitor (SC) filters. In modern deep-submicron CMOS technologies, the transistors intrinsic gain is small and has a large variability, making the design of moderate and high-gain amplifiers, used in the implementation of filter blocks, extremely difficult. To avoid this difficulty, in the case of SC filters, the opamp can be replaced with a voltage buffer or a low-gain amplifier (< 2), simplifying the amplifier’s design and making it easier to achieve higher bandwidths, for the same power. However, due to the loss of the virtual ground node, the circuit becomes sensitive to the effects of parasitic capacitances, which effect needs to be compensated during the design process. This thesis addresses the task of optimizing SC filters (mainly focused on implementations using low-gain amplifiers), helping designers with the complex task of designing high performance SC filters in advanced CMOS technologies. An efficient optimization methodology is introduced, based on hybrid cost functions (equation-based/simulation-based) and using genetic algorithms. The optimization software starts by using equations in the cost function to estimate the filter’s frequency response reducing computation time, when compared with the electrical simulation of the circuit’s impulse response. Using equations, the frequency response can be quickly computed (< 1 s), allowing the use of larger populations in the genetic algorithm (GA) to cover the entire design space. Once the specifications are met, the population size is reduced and the equation-based design is fine-tuned using the more computationally intensive, but more accurate, simulation-based cost function, allowing to accurately compensate the parasitic capacitances, which are harder to estimate using equations. With this hybrid approach, it is possible to obtain the final optimized design within a reasonable amount of computation time. Two methods are described for the estimation of the filter’s frequency response. The first method is hierarchical in nature where, in the first step, the frequency response is optimized using the circuit’s ideal transfer function. The following steps are used to optimize circuits, at transistor level, to replace the ideal blocks (amplifier and switches) used in the first step, while compensating the effects of the circuit’s parasitic capacitances in the ideal design. The second method uses a novel efficient numerical methodology to obtain the frequency response of SC filters, based on the circuit’s first-order differential equations. The methodology uses a non-hierarchical approach, where the non-ideal effects of the transistors (in the amplifier and in the switches) are taken into consideration, allowing the accurate computation of the frequency response, even in the case of incomplete settling in the SC branches. Several design and optimization examples are given to demonstrate the performance of the proposed methods. The prototypes of a second order programmable bandpass SC filter and a 50 Hz notch SC filter have been designed in UMC 130 nm CMOS technology and optimized using the proposed optimization software with a supply voltage of 0.9 V. The bandpass SC filter has a total power consumption of 249 uW. The filter’s central frequency can be tuned between 3.9 kHz and 7.1 kHz, the gain between -6.4 dB and 12.6 dB, and the quality factor between 0.9 and 6.9. Depending on the bit configuration, the circuit’s THD is between -54.7 dB and -61.7 dB. The 50 Hz notch SC filter has a total power consumption of 273 uW. The transient simulation of the circuit’s extracted view (C+CC) shows an attenuation of 52.3 dB in the 50 Hz interference and that the desired 5 kHz signal has a THD of -92.3 dB

    Polyphase filter with parametric tuning

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso
    corecore