21 research outputs found

    G-SOMO : an oversampling approach based on self-organized map oversampling and geometric SMOTE

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsTraditional supervised machine learning classifiers are challenged to learn highly skewed data distributions as they are designed to expect classes to equally contribute to the minimization of the classifiers cost function. Moreover, the classifiers design expects equal misclassification costs, causing a bias for underrepresented classes. Thus, different strategies to handle the issue are proposed by researchers. The modification of the data set managed to establish since the procedure is generalizable to all classifiers. Various algorithms to rebalance the data distribution through the creation of synthetic instances were proposed in the past. In this paper, we propose a new oversampling algorithm named G-SOMO, a method that is inspired by our previous research. The algorithm identifies optimal areas to create artificial data instances in an informed manner and utilizes a geometric region during the data generation to increase variability and to avoid correlation. Our experimental setup compares the performance of G-SOMO with a benchmark of effective oversampling methods. The oversampling methods are repeatedly validated with multiple classifiers on 69 datasets. Different metrics are used to compare the retrieved insights. To aggregate the different performances over all datasets, a mean ranking is introduced. G-SOMO manages to consistently outperform competing oversampling methods. The statistical significance of our results is proven

    Comparing the performance of oversampling techniques for imbalanced learning in insurance fraud detection

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsAlthough the current trend of data production is focused on generating tons of it every second, there are situations where the target category is represented extremely unequally, giving rise to imbalanced datasets, analyzing them correctly can lead to relevant decisions that produces appropriate business strategies. Fraud modeling is one example of this situation: it is expected less fraudulent transactions than reliable ones, predict them could be crucial for improving decisions and processes in a company. However, class imbalance produces a negative effect on traditional techniques in dealing with this problem, a lot of techniques have been proposed and oversampling is one of them. This work analyses the behavior of different oversampling techniques such as Random oversampling, SOMO and SMOTE, through different classifiers and evaluation metrics. The exercise is done with real data from an insurance company in Colombia predicting fraudulent claims for its compulsory auto product. Conclusions of this research demonstrate the advantages of using oversampling for imbalance circumstances but also the importance of comparing different evaluation metrics and classifiers to obtain accurate appropriate conclusions and comparable results

    Oversampling for Imbalanced Learning Based on K-Means and SMOTE

    Full text link
    Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.Comment: 19 pages, 8 figure

    Comparing the performance of oversampling techniques in combination with a clustering algorithm for imbalanced learning

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceImbalanced datasets in supervised learning are considered an ongoing challenging task for standard algorithms, seeing as they are designed to handle balanced class distributions and perform poorly when applied to problems of the imbalanced nature. Many methods have been developed to address this specific problem but the more general approach to achieve a balanced class distribution is data level modification, instead of algorithm modifications. Although class imbalances are responsible for significant losses of performance in standard classifiers in many different types of problems, another aspect that is important to consider is the small disjuncts problem. Therefore, it is important to consider and understand solutions that not only take into the account the between-class imbalance (the imbalance occurring between the two classes) but also the within-class imbalance (the imbalance occurring between the sub-clusters of each class) and to oversample the dataset by rectifying these two types of imbalances simultaneously. It has been shown that cluster-based oversampling is a robust solution that takes into consideration these two problems. This work sets out to study the effect and impact combining different existing oversampling methods with a clustering-based approach. Empirical results of extensive experiments show that the combinations of different oversampling techniques with the clustering algorithm k-means – K-Means Oversampling - improves upon classification results resulting solely from the oversampling techniques with no prior clustering step

    a literature review

    Get PDF
    Fonseca, J., & Bacao, F. (2023). Tabular and latent space synthetic data generation: a literature review. Journal of Big Data, 10, 1-37. [115]. https://doi.org/10.1186/s40537-023-00792-7 --- This research was supported by two research grants of the Portuguese Foundation for Science and Technology (“Fundação para a Ciência e a Tecnologia”), references SFRH/BD/151473/2021 and DSAIPA/DS/0116/2019, and by project UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC).The generation of synthetic data can be used for anonymization, regularization, oversampling, semi-supervised learning, self-supervised learning, and several other tasks. Such broad potential motivated the development of new algorithms, specialized in data generation for specific data formats and Machine Learning (ML) tasks. However, one of the most common data formats used in industrial applications, tabular data, is generally overlooked; Literature analyses are scarce, state-of-the-art methods are spread across domains or ML tasks and there is little to no distinction among the main types of mechanism underlying synthetic data generation algorithms. In this paper, we analyze tabular and latent space synthetic data generation algorithms. Specifically, we propose a unified taxonomy as an extension and generalization of previous taxonomies, review 70 generation algorithms across six ML problems, distinguish the main generation mechanisms identified into six categories, describe each type of generation mechanism, discuss metrics to evaluate the quality of synthetic data and provide recommendations for future research. We expect this study to assist researchers and practitioners identify relevant gaps in the literature and design better and more informed practices with synthetic data.publishersversionpublishe

    A performance comparison of oversampling methods for data generation in imbalanced learning tasks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMClass Imbalance problem is one of the most fundamental challenges faced by the machine learning community. The imbalance refers to number of instances in the class of interest being relatively low, as compared to the rest of the data. Sampling is a common technique for dealing with this problem. A number of over - sampling approaches have been applied in an attempt to balance the classes. This study provides an overview of the issue of class imbalance and attempts to examine some common oversampling approaches for dealing with this problem. In order to illustrate the differences, an experiment is conducted using multiple simulated data sets for comparing the performance of these oversampling methods on different classifiers based on various evaluation criteria. In addition, the effect of different parameters, such as number of features and imbalance ratio, on the classifier performance is also evaluated

    Improved imbalanced classification through convex space learning

    Get PDF
    Imbalanced datasets for classification problems, characterised by unequal distribution of samples, are abundant in practical scenarios. Oversampling algorithms generate synthetic data to enrich classification performance for such datasets. In this thesis, I discuss two algorithms LoRAS & ProWRAS, improving on the state-of-the-art as shown through rigorous benchmarking on publicly available datasets. A biological application for detection of rare cell-types from single-cell transcriptomics data is also discussed. The thesis also provides a better theoretical understanding behind oversampling

    Oversampling for imbalanced learning based on k-means and smote

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsLearning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language

    Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE

    Get PDF
    Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm, as well as any other oversampling method based on the SMOTE mechanism, generates synthetic samples along line segments that join minority class instances. In this paper we propose Geometric SMOTE (G-SMOTE) as a enhancement of the SMOTE data generation mechanism. G-SMOTE generates synthetic samples in a geometric region of the input space, around each selected minority instance. While in the basic configuration this region is a hyper-sphere, G-SMOTE allows its deformation to a hyper-spheroid. The performance of G-SMOTE is compared against SMOTE as well as baseline methods. We present empirical results that show a significant improvement in the quality of the generated data when G-SMOTE is used as an oversampling algorithm. An implementation of G-SMOTE is made available in the Python programming language.authorsversionpublishe

    The Role of Synthetic Data in Improving Supervised Learning Methods: The Case of Land Use/Land Cover Classification

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information ManagementIn remote sensing, Land Use/Land Cover (LULC) maps constitute important assets for various applications, promoting environmental sustainability and good resource management. Although, their production continues to be a challenging task. There are various factors that contribute towards the difficulty of generating accurate, timely updated LULC maps, both via automatic or photo-interpreted LULC mapping. Data preprocessing, being a crucial step for any Machine Learning task, is particularly important in the remote sensing domain due to the overwhelming amount of raw, unlabeled data continuously gathered from multiple remote sensing missions. However a significant part of the state-of-the-art focuses on scenarios with full access to labeled training data with relatively balanced class distributions. This thesis focuses on the challenges found in automatic LULC classification tasks, specifically in data preprocessing tasks. We focus on the development of novel Active Learning (AL) and imbalanced learning techniques, to improve ML performance in situations with limited training data and/or the existence of rare classes. We also show that much of the contributions presented are not only successful in remote sensing problems, but also in various other multidisciplinary classification problems. The work presented in this thesis used open access datasets to test the contributions made in imbalanced learning and AL. All the data pulling, preprocessing and experiments are made available at https://github.com/joaopfonseca/publications. The algorithmic implementations are made available in the Python package ml-research at https://github.com/joaopfonseca/ml-research
    corecore