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Abstract

In remote sensing, Land Use/Land Cover (LULC) maps constitute important assets for
various applications, promoting environmental sustainability and good resource management.
Although, their production continues to be a challenging task. There are various factors
that contribute towards the difficulty of generating accurate, timely updated LULC maps,
both via automatic or photo-interpreted LULC mapping. Data preprocessing, being a
crucial step for any Machine Learning task, is particularly important in the remote sensing
domain due to the overwhelming amount of raw, unlabeled data continuously gathered
from multiple remote sensing missions. However a significant part of the state-of-the-art
focuses on scenarios with full access to labeled training data with relatively balanced class
distributions. This thesis focuses on the challenges found in automatic LULC classification
tasks, specifically in data preprocessing tasks. We focus on the development of novel
Active Learning (AL) and imbalanced learning techniques, to improve ML performance in
situations with limited training data and/or the existence of rare classes. We also show
that much of the contributions presented are not only successful in remote sensing problems,
but also in various other multidisciplinary classification problems. The work presented
in this thesis used open access datasets to test the contributions made in imbalanced
learning and AL. All the data pulling, preprocessing and experiments are made available at
https://github.com/joaopfonseca/publications. The algorithmic implementations are made
available in the Python package ml-research at https://github.com/joaopfonseca/ml-research.

Keywords: LULC classification; Active Learning; Imbalanced Learning; Synthetic Data; Oversampling;

Sustainable Development Goals (SDG):
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1. Introduction

Accurate LULC maps constitute a unique resource for a variety of applications. Its applications range
from environmental monitoring, land change detection, and natural hazard assessment to agriculture and
water/wetland monitoring (Khatami et al., 2016). However, the production of LULC maps often requires
the involvement of multiple photo-interpreters with specialized skills, making the process expensive,
time-consuming and unsuitable for operational LULC mapping over large areas (Douzas et al., 2019).
Therefore, the manual production of LULC maps are often outdated by the time they are completed,
limiting its value to the analysis past conditions in the area of interest.

An alternative method to address the limitations found in the photo-interpreted approach to produce
LULC maps is automated mapping. This method uses remotely sensed data, especially multi and hyper-
spectral images, to train ML algorithms to automatically detect the different LULC classes. To do this,
the usage of recent supervised learning techniques seems to be a promising path to achieve reliable and
updated maps (Tewkesbury et al., 2015). However, the practical application of this approach is hampered
by several limitations:

1. Human error. The quality of the classifiers produced is heavily dependent on the quality of its
training data. In this case, the training dataset is extracted from manually labeled land cover
patches using typically satellite imagery. The target LULC map’s minimum mapping unit, as well
as the quality of orthophotos and satellite images being used are some of the factors that may lead
to label noise in the training data (Pelletier et al., 2017).

2. High dimensionality. The high dimensionality of multi and hyper-spectral images contain useful
information to improve ML classification tasks. However, it also introduces an additional layer of
complexity and redundancy in classification (Stromann et al., 2020). If the training data is not large
enough, it may cause the classification task to be affected by the curse of dimensionality.

3. Class separability. Some LULC classes sometimes contain overlapping spectral signatures which
makes the separation of the two classes particularly challenging in some cases (Alonso-Sarria et al.,
2019).

4. Infrequent LULC classes. Depending on the region of study, some land cover classes may be more
or less frequent when compared to other regions (W. Feng et al., 2018). However, the accurate
identification of rare classes is often equally or more important than the identification of the
remaining classes. This problem is known, in ML community, as imbalanced learning. As an
example, the classification of a desert region with 3 classes of interest, bare soil, urban and water,
would be an imbalanced learning problem. In this case, a classifier that would predict bare soil for
the entire area of study would have very high overall accuracy scores but would not be useful.

5. Scarcity of labeled data. The increasing number of remote sensing missions in the past decades
are generating large amounts of high quality data. However, only a small portion of this data has
some sort of LULC ground truth and can be used for supervised learning. In these scenarios the
production of automated LULC maps is particularly challenging and involves the usage of techniques
that are able to leverage information from both labeled and unlabeled data and simultaneously
maximize the value of the data annotation process (Siméoni et al., 2020).
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The last two challenges, imbalanced learning (i.e., infrequent LULC classes) and scarcity of labeled data,
are the focus of this dissertation. These two challenges may be addressed in various different ways, all of
which will be discussed throughout the following chapters.

The asymmetry frequently found on LULC class distributions affects the performance of ML classifiers.
In this scenario, during the ML classifier’s learning phase, the minority classes contribute less to the
minimization of accuracy, the typical objective function, biasing the classifier towards the most frequent
classes. The possible approaches to deal with imbalanced learning can be divided into three main
groups (Fernández et al., 2013):

1. Cost-sensitive solutions. These methods use a cost matrix to adjust the misclassification cost to
benefit the minority classes.

2. Algorithmic-level solutions. These methods introduce algorithmic solutions to improve the learning
process on the minority classes.

3. Resampling solutions. They modify the training data to balance the class distribution by removing
observations from the majority class(es) or adding observations belonging to the minority class(es).

The last set of methods, resampling solutions, benefit from their simplicity. This type of approach does
not require domain knowledge to define a cost matrix and does not require specialized classifiers. These
methods can be further divided into (1) Oversampling, where an algorithm generates artificial observations
belonging to the minority class, (2) Undersampling, where an algorithm removes observations belonging to
the majority class or (3) Hybrid approaches, which combine oversampling and undersampling together. In
this thesis, we will focus on oversampling methods and generalize these as a corner case of augmentation
methods for tabular data in later chapters. In Section 1.1 this topic is discussed to a greater extent.

The second challenge discussed in this dissertation is the implementation of useful ML algorithms in
environments with scarce availability of labeled data. There are three different types of techniques to
address this problem, all of which fall between supervised and unsupervised learning:

1. Semi-supervised Learning. Uses both labeled and unlabeled data in the training phase to improve
the classifier’s performance (Ouali et al., 2020). It pushes the decision boundaries of classifiers
to regions with lower density of observations while maximizing the performance over the labeled
training dataset (Chapelle et al., 2009).

2. Self-supervised Learning. Uses unlabeled data to perform secondary/pretext tasks to learn rep-
resentations of the input space (Grill et al., 2020). These methods typically use neural network
architectures (X. Liu et al., 2021).

3. Active Learning. Iteratively samples the most informative/representative observation out of a pool
of unlabeled data in order to be labeled and included into the training dataset (Budd et al., 2021).
This approach attempts to optimize the classifier’s performance with as least data as possible.

The last method, Active Learning, benefits from the possibility of including different techniques into its
pipeline, including the former two. It is therefore one of the main focus of this thesis. In Section 1.2 this
topic is discussed to a greater extent.

1.1. Data Augmentation

Data Augmentation methods expand the training dataset by introducing new and informative observa-
tions (Behpour et al., 2019). For this reason, oversampling is often considered a special case of data
augmentation. The production of artificial data may be done via the introduction of perturbations on
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the input (Zhong et al., 2020), feature (DeVries & Taylor, 2017) or output space (Behpour et al., 2019).
According to Shorten and Khoshgoftaar (2019) data augmentation methods may be divided into Heuristic
and Neural Network-based approaches. In addition, they may also be distinguished based on its data
generation policy, whether local (considers a local/specific subset of the dataset) or global (considers the
overall distribution of the training dataset). Figure 1.1 shows the general taxonomy of Heuristic Data
Augmentation methods. However, we consider this taxonomy to be incomplete; a more complete taxonomy
is proposed in Chapter 2. Finding the appropriate Data Augmentation method generally depends on
the domain (DeVries & Taylor, 2017), whereas few studies discuss which methods are more appropriate
according to the domain (Iwana & Uchida, 2021; Shorten & Khoshgoftaar, 2019; Wong et al., 2016).

SMOTE

Random 
Erasing Translation Cropping Flipping

G-SMOTE B-SMOTE K-SMOTE

Domain 

specific

Domain

agnostic

Heuristic

Data Augmentation

Examples

Examples

Global Augm.

Legend:

Local Augm.

Figure 1.1.: Schema containing a general Heuristic Data Augmentation taxonomy.

Heuristic approaches attempt to generate new and relevant observations through the application a
predefined procedure, usually incorporating some degree of randomness (Kashefi & Hwa, 2020). Since
these methods typically occur in the input space, they require less data and computational power when
compared to Neural Network methods. Neural Network approaches, on the other hand, map the original
input space into a lower-dimensional representation, known as the feature space (DeVries & Taylor, 2017).
The generation of artificial data occurs in the feature space and is reconstructed into the input space.
Although these methods allow the generation of less noisy data in high-dimensional contexts and more
plausible artificial data, they are significantly more computationally intensive. Considering the scope
of this thesis, the computational power available for this experiment and the breadth of datasets used
in the different experimental procedures, we will focus on domain-agnostic heuristic data augmentation
methods.

While some techniques may depend on the domain, others are domain-agnostic. For example, Random
Erasing (Zhong et al., 2020), Translation, Cropping and Flipping are image data-specific augmentation
methods. Other methods, such as most of the variants of the Synthetic Minority Oversampling TEchnique
(SMOTE) (Chawla et al., 2002), may be considered domain agnostic. However, SMOTE methods
were originally developed as oversamplers, whose goal is to balance the class frequencies of the target
variable in the training dataset and address the class imbalance bias. Therefore, oversampling methods
may be considered a subset of Data Augmentation. Data Augmentation strategies may follow varying
augmentation strategies, which do not necessarily depend on the target class distribution. An example
of the differences among general data augmentation and oversampling generation strategies is shown in
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Figure 1.2.

# Obs.

Target Classes

Original Oversampling Augmentation

a b c a b c a b c

Figure 1.2.: Examples of data augmentation Strategies. The salmon-colored bars represent artificial data
using the normal oversampling (center group) and an example of augmentation (right group)
strategies.

The simplest approach found in the literature is randomly duplicating existing training observations. As
a non-informed data generation method, although simple to implement, it increases the risk of overfitting
and generally performs worse than other informed heuristic methods (Douzas et al., 2019).

The SMOTE method generates artificial data via the linear interpolation between a random observation
and one of its k-nearest neighbors (also randomly selected) (Chawla et al., 2002). Although simple and
effective, it also contains several limitations which motivated the development other variants, discussed
below. Specifically, its selection mechanism does not consider the global structure of the dataset while
its generation mechanism introduces little variability into the training dataset (Douzas & Bacao, 2019).
Borderline-SMOTE (B-SMOTE) (Han et al., 2005) improves the selection mechanism by attributing
a larger importance to the observations closer to the decision boundaries. The selected observations
are used to run the SMOTE method in order to produce better defined decision boundaries. A more
recent improvement of the selection mechanism is K-means SMOTE (K-SMOTE) (Douzas et al., 2018).
This method uses a clustering-based approach to overcome imbalances between and within classes, while
considering the densities of each region of the input space.

Figure 1.3.: Examples of data generation using SMOTE and G-SMOTE. In this example, both G-
SMOTE’s deformation and truncation parameters assume values around 0.5.

G-SMOTE (Douzas & Bacao, 2019) modifies SMOTE’s generation mechanism. Instead of generating an
observation as a linear combination between 2 others, it generates observations within an hypersphere
defined using the selected observation as its center and one of its nearest neighbors as its boundary. The
hypersphere contains two hyperparameters, the truncation and deformation factors, which limit the area
of the hypersphere. The difference between SMOTE and G-SMOTE is shown in Figure 1.3.
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1.2. Active Learning

Supervised ML algorithms typically perform well in contexts where labeled data is abundant and accessible.
However, in a practical setting, finding this data is frequently a challenging task. Depending on the
domain, collecting large volumes of data may not be feasible since the labeling of such data becomes
labor and time intensive and may involve domain experts throughout the process (Cao et al., 2020). AL
maximizes a classifier’s performance while annotating as least observations as possible. It assumes that
observations within the same dataset have a different contribution to the training of ML classifiers (Ren
et al., 2021). Consequently, the data annotation cost can be minimized via the annotation of the most
valuable observations within an unlabeled input space. The goal is to iteratively maximize the classification
performance of ML algorithms while minimizing the required amount of training data to reach a certain
performance threshold (Shrivastava & Pradhan, 2021). It allows the implementation of ML classifiers
with a good performance and minimal effort when compared to randomly selecting data or labeling the
entire unlabeled dataset (Ren et al., 2021). Therefore, it addresses the labeling problem in scenarios with
a limited budget, time, or availability of labeled data.

AL methods may be divided into 2 different stages, initialization and iteration. Figure 1.4 shows a diagram
that represents the typical AL initialization. Assuming the AL task is initialized without any previously
labeled data, it is typically composed of 3 steps (Fonseca et al., 2021a):

1. Collection of an unlabeled dataset, where the procedure depends on the domain of application.

2. Selection of an initial data subset. Typically, when there is no a priori labeled dataset, the initial
data subset is randomly picked from the unlabeled dataset.

3. Data labeling. The supervisor is presented with the data subset, where its goal is to label each
observation. Some of the research refers to the supervisor as the oracle (Aghdam et al., 2019; Yoo
& Kweon, 2019).

Unlabeled 

Dataset

Initial Data

Selection

Supervisor

(Data Labeling)

Initial Training 
Dataset

Figure 1.4.: Diagram depicting an AL initialization.

Once an initial training dataset is set up, the iterative process of AL takes place. An AL iteration is
completed once a new batch of labeled data is added to the training dataset. A standard AL process
is shown in Figure 1.5 and is composed of the following steps (T. Su et al., 2020; Sverchkov & Craven,
2017):
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1. Setting up a classification algorithm and uncertainty criterion. The classifier is trained using the
labeled dataset (i.e., the Current Training Dataset), and is used to predict the class membership
probabilities of the observations found in the unlabeled dataset. The class probabilities are passed
into an Uncertainty Criterion, which will return the classification uncertainty of the classification
algorithm for each unlabeled observation. The combination of the classifier, along with the uncertainty
criterion is sometimes referred to as the Query/Acquisition function (del Rosario et al., 2020).

2. Selecting the top N observations. Since it is not possible to determine a priori whether the classifier’s
prediction is correct or not, the N observations with highest uncertainty may have been unknowingly
correctly classified. However, regardless of the classification quality, these observations are expected
to provide the most meaningful information to train the classifier in the next iteration.

3. Labeling the selected N observations and updating the current training dataset with the new training
observations. The selected observations from the unlabeled dataset are presented to the supervisor,
which is responsible for manually labeling the observations. The new (labeled) training observations
are added to the training dataset and the iteration is completed.

Unlabeled 

Dataset

Current Training 
Dataset

Select top N 
Observations

New Training 
Observations

Classifier Uncertainty 
Criterion

Uncertainty 
Criterion

Supervisor

(Data Labeling)

Predict

Train

Append

Query/Acquisition Function

Figure 1.5.: Diagram depicting an AL iteration. In the first iteration, the training set collected during the
initialization process becomes the “Current Training Dataset”.

Two common challenges found in AL implementations are the consistency and efficiency of AL in practical
scenarios (Kottke et al., 2017). On the one hand, the consistency problem refers to the high variance in
performance (regarding classification and data selection) over different initializations (i.e., different initial
training datasets) of active learners. On the other hand, the efficiency problem refers to the maximization
of the quality of the collected data over a run. Therefore, a good active learner is capable of having a
consistent performance over different initializations while ensuring the production of high-performing
classifiers with the least possible amount of data. There are various factors that may affect the consistency
and efficiency of the AL framework: (1) Human error during data labeling (J. Li et al., 2020), (2)
Non-informative initial training dataset (Nguyen & Smeulders, 2004) and (3) Lack of an appropriate
uncertainty criterion (del Rosario et al., 2020). AL research has typically been focused on the specification
of uncertainty criteria, as well as domain-specific applications. Query functions can be divided into two
different categories (Gu et al., 2021; Kumar & Gupta, 2020):

1. Informative-based query strategies. These strategies use the classifier’s output to assess the im-
portance of each observation towards the performance of the classifier. These strategies focus
on quantifying the class uncertainty of the unlabeled observations. Since these techniques do
not account for the relationships between the unlabeled observations and treats each observation
independently (Fu et al., 2013).
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2. Representative-based query strategies. These strategies estimate the optimal set of observations that
will optimize the classifier’s performance. This strategy contains 3 main approaches: Density-based,
Diversity-based and Exploration of graph structures. Although this method addresses the problem of
sampling bias and redundant instance selection, these strategies typically require more observations
in order to reach the desired classification performance (Kumar & Gupta, 2020).

Although there are significant contributions towards the development of more robust query functions
and classifiers in AL, modifications to AL’s basic structure are rarely explored. In (Yoo & Kweon, 2019)
the authors introduce a loss prediction module in the AL framework to replace the uncertainty criterion.
This model implements a second classifier to predict the expected loss of the unlabeled observations
(using the actual losses collected during the training of the original classifier) and return the unlabeled
observations with the highest expected loss. Although this contribution is specific to neural networks
(and more specifically, to deep neural networks), they were able to significantly improve the efficiency of
data selection in AL. In (Siméoni et al., 2020) the authors propose the usage of semi-supervised learning
during both the initialization of the AL and the iterative process as well. However, this method was
proposed specifically for deep learning applications.

A query strategy/function encompasses all the steps prior to the data labeling within an AL iteration.
They focus on finding the observations’ informativeness, representativeness or both (Gu et al., 2021;
Kumar & Gupta, 2020). Representative query strategies are generally less efficient in data selection than
Informative query strategies (Kumar & Gupta, 2020). However, recent research often use representative
approaches alongside informative approaches (Gu et al., 2021; Samat et al., 2016). Representative query
strategies are explored via 3 main approaches (Kumar & Gupta, 2020):

1. Density-based, which select representative observations from high density regions. (S. J. Huang
et al., 2014; Ienco et al., 2013; X. Li et al., 2012) used a density-based approach using clustering
algorithms to select the observations closest to the centroid of each cluster.

2. Diversity-based, which select the N observations at each iteration that maximize the diversity in
the training data. The diversity-based approach was developed to avoid the selection of redundant
observations in batch-mode learning (Brinker, 2003).

3. Graph-based, which find the most representative nodes and edges of a graph network (Jia et al.,
2019). Since these methods are specific to graph network data, they have a more limited applicability.

Informative query strategies, unlike representative query strategies, do not account for the structure of the
unlabeled dataset. As a result, this type of strategy may lead to the inefficient selection of observations
(i.e., redundant observations with similar profiles) (Kumar & Gupta, 2020). Research on more robust
selection criteria attempts to address the efficiency problem. This is motivated by the importance of
the selection criteria in AL’s iterative process (del Rosario et al., 2020). Specifically, Settles (Settles,
2011) observed that in some datasets informative query strategies fail to outperform the random selection
of observations. Generally, the Random Selection query method is used as a baseline. This method
disregards the class membership probabilities produced by the classifier and returns N random points
from the dataset without following any specific criteria.

A frequently used query strategy is Uncertainty Sampling, originally proposed in (Lewis & Gale, 1994).
Using this method, the estimation of an observation’s uncertainty is based on the target class with the
highest probability (pa, according to the classifier) and the uncertainty is calculated as 1− pa. However,
since this method dismissed the classifier’s predictions on the remaining labels, the Breaking Ties criterion
was proposed to address this limitation for multiclass problems (Luo et al., 2005). This method uses the
two target classes with highest probability (pa and pb, according to the classifier) and the uncertainty is
calculated as pa− pb (in this case, the lower the output value, the higher the uncertainty). Recent variants
of the Breaking Ties criterion, such as the Modified Breaking Ties, attempted to fix some limitations of
the original method (J. Li et al., 2012; W. Liu et al., 2018).
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Another common informative query strategy is the calculation of Shannon’s Entropy. This metric measures
the level of uncertainty based on the probabilities of a set of possible events. Its formula is given by
H(p) = −∑n

i=0 pi log2 pi, having p as the set of probabilities of all target classes. The application of
the Entropy uncertainty criterion is also frequently applied in Deep Active Learning (Aghdam et al.,
2019). Other Entropy-based methods were also developed for more specific applications. For example, an
ensemble querying approach known as Entropy Querying-by-Bagging uses the predictions of all estimators
to find the maximum entropy of each observation (Abe, 1998).

The Query by Committee (QBC) strategy was developed to address ensemble classifiers. It is a disagreement
based strategy that attempts to maximize the information gain at each iteration by computing the
disagreement of the predictions over the estimators that form the ensemble. The Entropy Querying-
by-Bagging and Query-by-Boosting methods are also ensemble strategies. Query by boosting and
bagging methods were found to achieve a good performance over various datasets (Melville & Mooney,
2004), while the performance between the two strategies appears to differ significantly across various
scenarios (Bloodgood, 2018).

Other classifier-specific query strategies were also developed for different applications. However, these
methods have the disadvantage of depending on the classifier being used. For example, Margin Sampling is
a well studied strategy that uses a Support Vector Machine as its classifier in order to select the unlabeled
observations closest to its decision boundaries (Kumar & Gupta, 2020). Although, since this method is
known to lead to the excessive selection of observations in dense regions (X. Zhou et al., 2014), it was
improved in various ways. In (X. Zhou et al., 2014) the authors extend this strategy by applying the
manifold-preserving graph reduction algorithm beyond the normal Margin Sampling method.

1.3. Research Questions

This dissertation aims to explore and develop new domain-agnostic methods, leveraged by synthetic data
generation techniques, while showing their effectiveness in difficult classification problems, specifically
LULC classification. The main research questions (RQ) and goals of this dissertation are the following:

1. What are the main research lines in synthetic data generation?

• Development of a literature review to study existing synthetic data generation methods and
the core fields where they are being used.

2. How can one oversample data with both continuous and categorical features?

• Development of an improved oversampling method to be used with mixed data types.

3. How can the quality and consistency of automatic LULC mapping be enhanced?

• Exploration of imbalanced learning methods in the context of LULC.

4. How can efficient automated LULC mapping be achieved with limited availability of ground-truth
data?

• Development of an improved active learning framework in the remote sensing domain using
artificial data generation.
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1.4. Main Objectives

This research aims to apply and develop new data preprocessing techniques to LULC classification, with a
focus on AL and oversampling techniques. The main objective is to optimize ML classifiers’ performance
with minimal labeled data and/or imbalanced learning scenarios. This objective was decomposed into four
research questions. We start by performing a literature review of synthetic data generation techniques
(RQ1). Second, we propose a new oversampling method for datasets with both continuous and categorical
features (RQ2). Third, we apply a state-of-the-art oversampling method to understand its effect in LULC
classification tasks (RQ3). Finally, we modify the AL framework to include a generator and optimize its
augmentation policy to reduce the amount of labeled data required for ML classifiers to reach a satisfactory
performance (RQ4).

Each contribution towards the different RQs is divided into different studies. All chapters refer to a
different RQ with the exception Chapters 5 and 6, which refer to RQ3. The structure of this dissertation
is shown in Table 1.1.

RQ1 aims to investigate and consolidate data augmentation methods. This was done by conducting a
literature review to understand the main areas of application of synthetic data generation and identify the
generation mechanisms available for this purpose. To do this, we conducted an extensive literature search,
compiled the knowledge collected in related literature reviews, and analyzed several data generation
techniques and areas of application. This approach resulted in a compilation of the most important and
current research in the field, allowing both researchers and practitioners to use this work as a starting
point for their own work. Finally, the development of this work represents a crucial step to identify new
opportunities within the field and addressing the remaining research questions. The results of this work is
available in Chapter 2.

One of the main limitations uncovered in RQ1 (see Chapter 2) is the lack of oversampling methods
applicable to datasets containing categorical features. In fact, only two oversamplers were found to be
well-suited for oversampling data with mixed data types, SMOTENC (Chawla et al., 2002) and random
oversampling. However, in a practical setting, datasets with mixed feature types are common but the
methods available are outdated. RQ2 is addressed with the modification of a state-of-the-art oversampling
method by mixing its data generation mechanism with the one found in SMOTENC.

Several relevant methods found in Chapter 2 will be used for posterior work. Specifically, we address RQ3
using a heuristic data augmentation method, K-means SMOTE (Douzas et al., 2018), as described in
Chapter 4. Since datasets produced for LULC classification often contain irrelevant, redundant, noisy
and/or unreliable data, knowledge discovery is hindered and ultimately leads to the poor training of
predictors. Consequently, data preprocessing becomes an important contribution to the quality of the
predictors developed. In this case, we used K-means SMOTE to oversample minority regions belonging to
the same land cover class. This was motivated by the challenges faced in producing automated LULC maps
using a training dataset with rare classes. In this scenario, the spectral signature of a given class often
depends on its geographical distribution and the time of the year the image was captured. Cluster-based
oversamplers, such as K-means SMOTE, allow for a more accurate generation of minority samples, since
it can identify and isolate variations in spectral signatures within a land cover class.

At a later stage, in RQ4, we addressed a different instance of the problem of rare land cover classes in
the training dataset. Specifically, in a context of limited sample-collection budget, the collection of the
most informative samples capable of optimally increasing the classification accuracy of a LULC map is
of particular interest (T. Su et al., 2020). Active learning attempts to minimize the human-computer
interaction involved in photo-interpretation by selecting the data points to include into the annotation
process. Although, current state-of-the-art techniques are mostly focused on the improvement of the
acquisition function. We study this problem via the modification of the typical AL framework. We focus
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on the usage of data augmentation techniques and an augmentation policy optimizer to improve the
quality of the data generated. These modifications are presented in Chapters 5 and 6:

• Chapter 5 introduces the generator component into the typical AL framework.

• Chapter 6 introduces the augmentation policy optimizer, while generalizing the generator component
for augmentation policies beyond oversampling strategies.

1.5. Methods

The methodology used for all contributions follows a similar approach, with exception to the work
presented in Chapter 2. It is composed as follows:

1. Collection of a large number of (LULC or multidisciplinary) classification datasets.

2. Identification of related literature and limitations to be addressed.

3. Design and implementation of contributions.

4. Definition and implementation of experimental settings.

5. Analysis of results and statistical significance testing.

6. Publish results.

The methodological approach to the proposed doctoral work is depicted in Figure 1.6. All of the work
presented was developed while ensuring full reproducibility. Contributions at the algorithm-level are
implemented in the Python open-source package ML-Research. At the time of writing, the ML-Research
package has been downloaded 12 thousand times via the Python Package Index (pypi/pip) and Anaconda
(conda-forge channel).

1.6. Path of Research

Each chapter corresponds to a paper (either published or under submission), all of which primarily focused
on AL and imbalanced learning, with exception to Chapter 2. All of these research outputs are available
at this GitHub repository, along with the LATEX scripts, data, source code (for data pulling, preprocessing,
experiments and analysis), experiments’ raw outputs and analysis outputs (figures, tables and diagrams).
The current stage of the studies is presented in Table 1.1.

This dissertation uses synthetic data generation as the core concept throughout its development. The
contributions presented in each chapter can be split between domain specificity (agnostic versus LULC-
specific) and base technique (oversampling versus AL). Chapter 2 presents a comprehensive literature
review of the central concept of the dissertation, synthetic data generation. Chapter 3 proposes a
domain-agnostic oversampling technique, to address the problem of datasets with mixed data types (i.e.,
containing both metric and non-metric features). Chapter 4 applies an oversampling technique to LULC
classification problems. Chapter 5 proposes an AL framework using synthetic data generation applied to
LULC classification. Section 6 modifies and improves the AL framework proposed in the previous chapter
and ensure its effectiveness over several different domains.
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Figure 1.6.: Structure and methodological approach used in this dissertation.

Chapter RQ Study Name Current stage

2 1 Tabular and Latent Space Synthetic Data Generation: A
Literature Review Under Review

3 2 Geometric SMOTENC: A geometrically enhanced drop-in
replacement for SMOTENC Under Review

4 3
Improving Imbalanced Land Cover Classification with K-
means SMOTE: Detecting and Oversampling Distinctive
Minority Spectral Signatures

Published in the jour-
nal Information

5 4
Increasing the Effectiveness of Active Learning: Introduc-
ing Artificial Data Generation in Active Learning for Land
Use/Land Cover Classification

Published in the jour-
nal Remote Sensing

6 4 Improving Active Learning Performance Through the Use
of Data Augmentation

Published in Interna-
tional Journal of In-
telligent Systems

Table 1.1.: Publication stage of the studies developed in the scope of the doctoral program.
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2. Tabular and Latent Space Synthetic Data
Generation: A Literature Review

The generation of synthetic data can be used for anonymization, regularization, oversampling,
semi-supervised learning, self-supervised learning, and several other tasks. Such broad
potential motivated the development of new algorithms, specialized in data generation for
specific data formats and Machine Learning (ML) tasks. However, one of the most common
data formats used in industrial applications, tabular data, is generally overlooked; Literature
analyses are scarce, state-of-the-art methods are spread across domains or ML tasks and
there is little to no distinction among the main types of mechanism underlying synthetic
data generation algorithms. In this paper, we analyze tabular and latent space synthetic
data generation algorithms. Specifically, we propose a unified taxonomy as an extension
and generalization of previous taxonomies, review 70 generation algorithms across six ML
problems, distinguish the main generation mechanisms identified into six categories, describe
each type of generation mechanism, discuss metrics to evaluate the quality of synthetic data
and provide recommendations for future research. We expect this study to assist researchers
and practitioners identify relevant gaps in the literature and design better and more informed
practices with synthetic data.

Keywords: Synthetic Data; Data Augmentation; Oversampling; Regularization; Privacy

2.1. Introduction

Tabular data consists of a database structured in tabular form, composed of columns (features) and rows
(observations) (Yoon et al., 2020). It is one of the most commonly used data structures within a wide
range of domains. However, ML techniques developed for tabular data can be applied to any type of
data; input data, regardless of its original format, can be mapped into a manifold, lower-dimensional
abstraction of the input data and mapped back into its original input space (DeVries & Taylor, 2017;
Kingma, Welling, et al., 2019). This abstraction is often referred to as embeddings, encodings, feature
space, or latent space. In this paper, we will refer to this concept as latent space.

Synthetic data is obtained from a generative process based on properties of real data (Assefa et al., 2020).
The generation of synthetic data is essential for several objectives. For example, it is used as a form of
regularizing ML classifiers (i.e., data augmentation) (Y. Wang et al., 2021). One form of anonymizing
datasets is via the production of synthetic observations (i.e., synthetic data generation) (Patki et al.,
2016). In settings where only a small portion of training data is labeled, some techniques generate artificial
data using both labeled and unlabeled data with a modified loss function to train neural networks (i.e.,
semi-supervised learning) (Laine & Aila, 2017). In imbalanced learning contexts, synthetic data can
be used to balance the target classes’ frequencies and reinforce the learning of minority classes (i.e.,
oversampling) (Fonseca et al., 2021a). Some active learning frameworks use synthetic data to improve
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data selection and classifier training (Y.-Y. Kim et al., 2021). Other techniques employ data generation
to train neural networks without labeled data (i.e., self-supervised learning) (Grill et al., 2020).

The breadth of these techniques spans multiple domains, such as facial recognition (Lv et al., 2017),
Land Use/Land Cover mapping (Douzas et al., 2019), medical image processing (Yi et al., 2019), Natural
Language Processing (NLP) (S. Y. Feng et al., 2021) or credit card default prediction (Alam et al.,
2020). Finding appropriate data generation techniques varies according to the domain and data type. In
addition, several synthetic data generation methods are specific to the domain, data type, or target ML
task. Generally, these methods rely on the domain data’s structure and are not easily transferable to
tabular data.

Overall, synthetic data generation techniques for tabular data are not as explored as image or text data,
despite their popularity and ubiquity (Fakoor et al., 2020). Furthermore, these techniques are invariant
to the original data format; they can be applied to both the latent space (DeVries & Taylor, 2017) or
tabular data. On one hand, data generation in the latent space uses a generative model to learn a
manifold, lower-dimensional abstraction over the input space (Kingma, Welling, et al., 2019). At this
level, any tabular data generation mechanism can be applied and reconstructed into the input space if
necessary. On the other hand, synthetic data generation on tabular data can be applied to most problems.
Although, the choice of generation mechanism depends on (1) the importance of the original statistical
information and the relationships among features, (2) the target ML task, and (3) the role synthetic
data plays in the process (i.e., anonymization, regularization, class balancing, etc.). For example, when
generating data to address an imbalanced learning problem (i.e., oversampling), the relationships between
the different features are not necessarily kept, since the goal is to reinforce the learning of the minority
class by redefining an ML classifier’s decision boundaries. If the goal is to anonymize a dataset, perform
some type of descriptive task, or ensure consistent model interpretability, statistical information must be
preserved.

Depending on the context, evaluating the quality of the generated data is a complex task. For example,
for image and time series data, perceptually small changes in the original data can lead to large changes
in the Euclidean distance (Assefa et al., 2020; Theis et al., 2016). The evaluation of generative models
typically accounts primarily for the performance in a specific task, since good performance in one criterion
does not imply good performance on another (Theis et al., 2016). However, in computationally intensive
tasks it is often impracticable to search for the optimal configurations of generative models. To address
this limitation, other evaluation methods have been proposed to assist in this evaluation, which typically
use statistical divergence metrics, averaged distance metrics, statistical similarity measurements, or
precision/recall metrics (Alaa et al., 2022; Chundawat et al., 2022). The relevant performance metrics
found in the literature are discussed in Section 2.6.

2.1.1. Motivation, Scope and Contributions

We focus on data generation techniques in the tabular and latent space (i.e., embedded inputs) with a
focus on classification and associated ML problems. Related literature reviews are mostly focused on
specific algorithmic or domain applications, with little to no emphasis on the core generative process. For
this reason, these techniques often appear “sandboxed”, even though there is a significant overlap between
them. There are some related reviews published since 2019. (Assefa et al., 2020) provides a general
overview of synthetic data generation for time series data anonymization in the finance sector. (Hernandez
et al., 2022) reviews data generation techniques for tabular health records anonymization. (Raghunathan,
2021) reviews synthetic data anonymization techniques that preserve the statistical properties of a dataset.
(Sauber-Cole & Khoshgoftaar, 2022) reviews GAN-based oversampling methods for tabular data, with a
focus on cybersecurity and finance. (Nalepa et al., 2019) reviews data augmentation techniques for brain-
tumor segmentation. (Bayer et al., 2021) distinguishes augmentation techniques for text classification into
latent and data space, while providing an extensive overview of augmentation methods within this domain.
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However, the taxonomy proposed and latent space augmentation methods are not necessarily specific to
the domain. (Shorten et al., 2021), (Chen et al., 2021), (S. Y. Feng et al., 2021) and (P. Liu et al., 2020)
also review data augmentation techniques for text data. (Sampath et al., 2021) reviews GAN architectures
for imbalanced learning in computer vision tasks. (Yi et al., 2019) review Generative Adversarial Network
architectures for medical imaging. (X. Wang et al., 2020) reviews face data augmentation techniques.
(Shorten & Khoshgoftaar, 2019), (Khosla & Saini, 2020) and (Khalifa et al., 2021) discuss techniques for
image data augmentation. (Iwana & Uchida, 2021) and (Wen et al., 2021) also review time series data
augmentation techniques. (T. Zhao et al., 2022) review data augmentation techniques for graph data.
The analysis of related literature reviews 1 is shown in Table 2.1.

This literature review focuses on generation mechanisms applied to tabular data across the main ML
techniques where tabular synthetic data is used. We also discuss generation mechanisms used in the latent
space, since the generation mechanisms in tabular data and latent space may be used interchangeably.
In addition, we focus on the ML perspective of synthetic data, as opposed to the practical perspective;
according to the practical perspective, synthetic data is used as a proxy of real data when it is inaccessible,
essential, and a secondary asset for tasks like education, software development, or systems demonstra-
tions (Mannino & Abouzied, 2019). The ML perspective focuses on the generation of synthetic data based
on existing, naturally occurring data to either improve a ML task or replace the original data.

The different taxonomies of synthetic data generation established in the literature follow a similar
philosophy but vary in terminology and are often specific to the technique discussed. Regardless, it is
possible to establish a broader taxonomy without giving up on specificity. This study provides a joint
overview of the different data generation approaches, domains, and ML techniques where data generation is
being used, as well as a common taxonomy across domains. It extends the analyses found in these articles
and uses the compiled knowledge to identify research gaps. We compare the strengths and weaknesses of
the models developed within each of these fields. Finally, we identify possible future research directions to
address some of the limitations found. The main contributions of this paper are summarized below:

• Bridge different ML concepts that use synthetic data generation techniques (Sections 2.2 and 2.4);

• Propose a synthetic data generation/data augmentation taxonomy to address the ambiguity in the
various taxonomies proposed in the literature (Section 2.3);

• Characterize all the relevant data generation methods using the proposed taxonomy (Sections 2.3
and 2.4);

• Consolidate the current generation mechanisms across the different techniques and methods to
evaluate the quality of synthetic data generation (Sections 2.5 and 2.6);

• Highlight the main challenges of synthetic data generation and discuss possible future research
directions (Sections 2.7 and 2.8).

2.1.2. Bibliometric Data Collection

Considering the goals determined in this study, the literature collection is more complex than usual;
the wide range of domains and ML problems where synthetic data is used involved considering different
naming conventions for the same concepts. In addition, it involved the identification of such domains and
ML problems and checking for less popular mechanism combinations (some of which do not show up in
any general query, unless purposefully looked up). To achieve this, we followed a 2-step approach:

1Results obtained using Google Scholar, limited to articles published since 2019, using the search
query (“synthetic data generation” OR “oversampling” OR “imbalanced learning” OR “data aug-
mentation”) AND (“literature review” OR “survey”). Retrieved on August 11th, 2022. More articles were
added later whenever found relevant.
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Table 2.1.: Related literature reviews published since 2019. A field containing “—” indicates that the
corresponding literature review does not focus on a particular data type, ML problem or
domain.

Reference Data type ML problem Domain Observations

(Assefa et al.,
2020) — Data privacy Finance

Analysis of applications, motivation
and properties of synthetic data for
anonymization.

(Hernandez et
al., 2022) Tabular Data privacy Healthcare Focus on GANs.

(Raghunathan,
2021) Tabular Data privacy Statistics

Focus on general definitions such as dif-
ferential privacy and statistical disclosure
control.

(Sauber-Cole &
Khoshgoftaar,
2022)

Tabular Imbalanced
Learning Various Focus on oversampling with GANs in cy-

bersecurity and finance.

(Bayer et al.,
2021) Text Classification — Distinguish 100 methods into 12 groups.

(Shorten et al.,
2021) Text Deep Learning — General overview of text data augmenta-

tion.
(Chen et al.,
2021) Text Few-shot Learn-

ing — Augmentation techniques for machine
learning with limited data

(S. Y. Feng et
al., 2021) Text — — Overview of augmentation techniques and

applications on NLP tasks.

(P. Liu et al.,
2020) Text — Various

Analysis of industry use cases of data aug-
mentation in NLP. Emphasis on input
level data augmentation.

(Nalepa et al.,
2019) Image Segmentation Medicine Analysis of algorithmic applications on a

2018 brain-tumor segmentation challenge.
(Sampath et al.,
2021) Image Imbalanced

Learning — Emphasis on GANs.

(Yi et al., 2019) Image — Medicine Emphasis on GANs.

(X. Wang et al.,
2020) Image Deep Learning —

Regularization techniques using facial im-
age data. Emphasis on Deep Learning
generative models.

(Shorten &
Khoshgoftaar,
2019)

Image Deep Learning — Emphasis on data augmentation as a reg-
ularization technique.

(Khosla & Saini,
2020) Image — — Broad overview of image data augmenta-

tion. Emphasis on traditional approaches.
(Khalifa et al.,
2021) Image — Various General overview of image data augmenta-

tion and relevant domains of application.
(Iwana &
Uchida, 2021) Time series Classification — Defined a taxonomy for time series data

augmentation.

(Wen et al.,
2021) Time series Various —

Analysis of data augmentation methods
for classification, anomaly detection and
forecasting.

(T. Zhao et al.,
2022) Graph Various — Graph data augmentation for supervised

and self-supervised learning.
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1. Collection of related literature reviews/surveys/systematic studies: Allowed us to understand which
domains and ML problems to discuss, naming conventions (for example, latent vs. embeddings vs.
econdings vs. feature space; or synthetic vs. anonymized vs. augmented vs. artificial vs. resampled
data), differences in taxonomies across domains, and importance of this study. Based on the rate at
which research is being developed in ML, we considered exclusively studies from 2019 onward since
any literature review prior to this date can be deemed outdated and overlapping with more recent
literature reviews.

2. Individual queries according to specific domains, ML problems, concepts, and taxonomy proposed.
The large amount of queries performed at this stage involved a case-by-case screening of the studies’
relevancy, searching through the bibliographies of existing papers as well as papers citing the original
study and the inclusion of studies that were a priori known by the authors.

The studies included in this literature review were collected from Google Scholar. Compared to other
sources, such as Scopus, Web of Science, Dimensions or OpenCitation’s COCI, several studies found Google
Scholar to be the most complete source for literature search. According to (Martin-Martin et al., 2021), it
contains 88% of all citations, many of which are not found in other sources, and contains 89% to 94% of
the citations found by the remaining sources. Another study found even higher disparities (Martin-Martin
et al., 2018); Google Scholar found 93% to 96% of citations across all areas, far more complete than the
remaining options, and found 95% and 92% of Web of Science’s and Scopus’ citations, respectively. Since
a large percentage of the journals/repositories considered are high-impact journals, conference proceedings,
or well-known repositories, it is reasonable to assume all the targeted studies were readily available via
Google Scholar.

2.1.3. Paper Organization

The rest of this paper is organized as follows: Section 2.2 defines and formalizes the different concepts, goals,
trade-offs, and motivations related to synthetic data generation. Section 2.3 defines the taxonomy used to
categorize all the algorithms analyzed in this study. Section 2.4 analyses all the algorithms using synthetic
data generation, distinguished by learning problem. Section 2.5 describes the main generation mechanisms
found, distinguished by generation type. Section 2.6 reviews performance evaluation methods of synthetic
data generation mechanisms. Section 2.7 summarizes the main findings and general recommendations
for good practices on synthetic data usage. Section 2.8 discusses limitations, research gaps, and future
research directions. Section 2.9 presents the main conclusions drawn from this study.

2.2. Background

In this section, we define basic concepts, common goals, trade-offs, and motivations regarding the
generation of synthetic data in ML. We define synthetic data generation as the production of artificial
observations that resemble naturally occurring ones within a certain domain, using a generative model. It
requires access to a training dataset, a generative process, or a data stream. However, the constraints
imposed on this process largely depend on the target ML task. For example, to generate artificial data
for regularization purposes in supervised learning (i.e., data augmentation) the training dataset must be
annotated. The production of anonymized datasets using synthetic data generation requires synthetic
datasets to be different from the original data while following similar statistical properties. Domain
knowledge may also be necessary to encode specific relationships among features into the generative
process.
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2.2.1. Relevant Learning Problems

The breach of sensitive information is an important barrier to the sharing of datasets, especially when it
concerns personal information (Dankar & Ibrahim, 2021). One solution for this problem is the generation
of synthetic data without identifiable information. Generally speaking, ML tasks that require data with
sensitive information are not compromised when using synthetic data. The experiment conducted by
(Patki et al., 2016) using relational datasets showed that in 11 out of 15 comparisons (≈ 73%), practitioners
performing predictive modelling tasks using fully synthetic datasets performed the same or better than
those using the original dataset. Optionally, anonymized synthetic data may be produced with theoretical
privacy guarantees, using differential privacy techniques. This topic is discussed in Section 2.4.1.

A common problem in the training of ML classifiers is their capacity to generalize (C. Zhang et al., 2021)
(i.e., reduce the difference in classification performance between known and unseen observations). This is
particularly true for deep neural networks since they require the estimation of high amounts of parameters.
Data augmentation is a common method to address this problem for any type of ML classifier. The
generation of synthetic observations increases the range of the input space used in the training phase and
reduces the difference in performance between known and new observations. Although other regularization
methods exist, data augmentation is a useful method since it does not affect the choice in the architecture
of the ML classifier and does not exclude the usage of other regularization methods. In domains such as
computer vision and NLP, data augmentation is also used to improve the robustness of models against
adversarial attacks (Morris et al., 2020; Zeng et al., 2020). These topics are discussed in higher detail in
Section 2.4.2.

In supervised learning, synthetic data generation is often motivated by the need to balance target class
distributions (i.e., oversampling). Since most ML classifiers are designed to perform best with balanced
datasets, defining an appropriate decision boundary to distinguish rare classes becomes difficult (Sáez
et al., 2016). Although there are other approaches to address imbalanced learning, oversampling techniques
are generally easier to implement since they do not involve modifications to the classifier. This topic is
discussed in higher detail in Section 2.4.3.

In supervised learning tasks where labeled data is not readily available, but can be labeled, an Active
Learning (AL) method may be used to improve the efficiency of the labeling process. AL aims to reduce
the cost of producing training datasets by finding the most informative observations to label and feed
into the classifier (Fonseca et al., 2021b). In this case, the generation of synthetic data is particularly
useful to reduce the amount of labeled data required for a successful ML project. This topic is discussed
in Section 2.4.4.

Two other techniques reliant on synthetic data generation are Semi-supervised Learning (Semi-SL) and
Self-Supervised Learning (Self-SL). The former leverages both labeled and unlabeled data in the training
phase, simultaneously, while several methods apply perturbations on the training data as part of the
training procedure (Van Engelen & Hoos, 2020). The latter, Self-SL, is a technique used to train neural
networks in the absence of labeled data. Several Semi-SL and Self-SL methods use synthetic data
generation as a core element. These methods are discussed in Sections 2.4.5 and 2.4.6.

2.2.2. Problem Formulation

The original dataset, D = DL ∪ DU , is a collection of real observations and is distinguished according
to whether a target feature exists, DL = ((xi, yi))

l
i=1, or not, DU = (xi)

u
i=1. All three datasets, D,

DL and DU consist of ordered collections with lengths l + u, l and u, respectively. Synthetic data
generation is performed using a generator, fgen(x; τ) = xs, where τ defines the generation policy (i.e.,
its hyperparameters), x ∈ D is an observation and xs ∈ Ds is a synthetic observation. Analogous to D,
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the synthetic dataset, Ds, is also distinguished according to whether there is an assignment of a target
feature, Ds

L = ((xsj , y
s
j ))

l′

j=1
, or not, Ds

U = (xsj)
u′

j=1
.

Depending on the ML task, it may be relevant to establish metrics to measure the quality of Ds. In this
case, a metric fqual(Ds,D) is used to determine the level of similarity/dissimilarity between D and Ds. In
addition, a performance metric to estimate the performance of a model on the objective task, fper, may be
used to determine the appropriateness of a model with parameters θ, i.e., fθ. The generator’s goal is to
generate Ds with arbitrary length, given D ∼ P and Ds ∼ Ps, such that Ps ≈ P, xi ̸= xj∀xi ∈ D∧xj ∈ Ds.
fgen(x; τ) attempts to generate a Ds that maximizes either fper, fqual, or a combination of both.

2.3. Data Generation Taxonomy

The taxonomy proposed in this paper is a combination of different definitions found in the literature,
extended with other traits that vary among domains and generation techniques. Within image data
studies, (Shorten & Khoshgoftaar, 2019) and (Khalifa et al., 2021) divide data augmentation techniques
into “basic” or “classical” approaches and deep learning approaches. In both cases, the former refers to
domain-specific generation techniques, while the latter may be applied to any data structure. (Iwana
& Uchida, 2021) proposes a time-series data augmentation taxonomy divided into four families: (1)
Random transformation, (2) Pattern mixing, (3) Generative models, and (4) Decomposition. Except for
generative models, the majority of the methods presented in the remaining families are well-established
and domain-specific. (Hernandez et al., 2022) defines a taxonomy for synthetic tabular data generation
approaches divided into three types of approaches: (1) Classical, (2) Deep learning, and (3) Others. Most
taxonomies follow similar definitions while varying in terminology or distinction criteria. In addition,
all taxonomies with categories defined as “basic”, “traditional”, or “classical” use these to characterize
domain-specific transformations.

Within the taxonomies found, none of them consider how a generation mechanism employs D into the
generation process or, if applicable, the training phase. However, it is important to understand whether a
generation mechanism randomly selects x and a set of close neighbors, thus considering local information
only, or considers the overall dataset or data distribution for the selection of x and/or generation of xs.
Our proposed taxonomy is depicted in Figure 2.1. It characterizes data generation mechanisms using four
properties:

1. Architecture. Defines the broader type of data augmentation. It is based on domain specificity,
architecture type, or data transformations using a heuristic or random perturbation process. Data
generation based on data sampling from a probability function is considered probability-based.
Generation techniques that apply a form of random perturbation, interpolation, or geometric
transformation to the data with some degree of randomness are considered randomized approaches.
Typical, domain-specific data generation techniques are considered domain-specific approaches.
These techniques apply transformations to a data point leveraging relationships in the structure of
the data (which is known a priori). Generative models based on neural network architectures are
defined as network-based. These architectures attempt to either generate observations in the latent
space and/or by producing observations that are difficult to distinguish from the original dataset.

2. Application level. Refers to the phase of the ML pipeline where the generative process is included.
Generative models are considered internal if used alongside the primary ML task, whereas models
used before the development of the primary ML task are considered external.

3. Scope. Considers the usage of the original dataset’s properties. Generative models that consider the
density of the data space, statistical properties of D, or attempt to replicate/manipulate specific
relationships found in D are considered to have a global scope, whereas generative models that
consider a single observation and/or a set of close neighbors are considered to have a local scope. On
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Figure 2.1.: General taxonomy of data generation mechanisms proposed in this paper.

the one hand, generative models with a local scope do not account for Ps but allow for the generation
of xs within more precise regions in the latent/input space. On the other hand, generative models
with a global scope have a higher capacity to model Ps but produce xs with less precision within
the latent/input space.

4. Data space. Refers to the type of data representation used to apply the generative model. Gener-
ation mechanisms can be applied using the raw dataset (i.e., on the input space), an embedded
representation of the data (i.e., on the latent space), or based on the target feature (i.e., on the
output space). Although some studies discuss the need to generate synthetic data on the input
space (Dankar & Ibrahim, 2021; Patki et al., 2016), various studies successfully apply synthetic data
generation techniques on a latent space.

Throughout the analysis of the different types of generation mechanisms, all relevant methods were
characterized using this taxonomy and listed in Table 6.1.

Table 2.2.: Summary of the synthetic data generation methods discussed in this work. A field containing
“—” indicates that the it is either not applicable to the corresponding method, and/or applies
its own unique approach.

Algorithm ML Problem Type Architecture Level Data Space Scope

SDV Anon. PDF Probabilistic External Input Global
MST DP PGM Probabilistic External Input Global

MWEM DP Other Probabilistic External Input Global
MWEM-PGM DP PGM Probabilistic External Input Global

PrivBayes DP PGM Probabilistic External Input Global
DPGAN DP GAN Network External Latent Global

DPCTGAN DP GAN Network External Latent Global
PATE-GAN DP GAN Network External Lat. + Out. Global

Continued on next page
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Table 2.2.: Summary of the synthetic data generation methods discussed in this work. A field containing
“—” indicates that the it is either not applicable to the corresponding method, and/or applies
its own unique approach.

Algorithm ML Problem Type Architecture Level Data Space Scope

PATECTGAN DP GAN Network External Lat. + Out. Global
FEM DP Perturb. Probabilistic External Input Global
RAP DP Perturb. Probabilistic External Input Global
PDF — PDF Probabilistic External Input Global

Kamino DP PDF Probabilistic External Input Global
RON-GAUSS DP PDF Probabilistic Internal Latent Global

HDMM DP Perturb. Probabilistic External Input Global
DualQuery DP Other Probabilistic External Input Global

ROS(E) Ovs Perturb. Randomized External Input Local
SMOTE Ovs Linear Randomized External Input Local

SMOTENC Ovs Linear Randomized External Input Local
SMOTEN Ovs — — External Input Local

Borderline-SMOTE Ovs Linear Randomized External Input Local
G-SMOTE Ovs Geometric Randomized External Input Local
ADASYN Ovs Linear Randomized External Input Local

KernelADASYN Ovs PDF Probabilistic External Input Local
MOKAS Ovs Other Network External Latent Global

SOMO Ovs Linear Net.+Rand. External Input Global
G-SOMO Ovs Geometric Net.+Rand. External Input Global

GMM-SENN Ovs PDF Probabilistic External Input Global
GMF-SMOTE Ovs Linear Randomized External Input Global

C-VAE Ovs AE Network External Latent Global
Safe-level SMOTE Ovs Linear Randomized External Input Local

LR-SMOTE Ovs Linear Randomized External Input Global
K-means SMOTE Ovs Linear Randomized External Input Global

DBSMOTE Ovs Linear Randomized External Input Local
CGAN Ovs GAN Network External Latent Global

K-means CTGAN Ovs GAN Network External Latent Global
SMOTER Ovs + Reg Linear Randomized External Input Local

G-SMOTER Ovs + Reg Linear Randomized External Input Local
RACOG Ovs PGM Probabilistic External Input Global

wRACOG Ovs PGM Probabilistic External Input Global
RWO Ovs PGM Probabilistic External Input Global

PDFOS Ovs PDF Probabilistic External Input Global
Mixup DA Linear Randomized External In.+Out. Local

M-Mixup DA Linear Network Internal Lat.+Out. Global
NL-Mixup DA Geometric Randomized External In.+Out. Local

AE-DA DA AE Network External In./Lat.+Out. Local
MODALS DA — Network Internal Latent Global

LSI DA AE Network External Lat.+Out. Global
Gibbs DA PGM Probabilistic External Input Global

MedGAN DA GAN Network External Latent Global
GANBLR DA PGM Probabilistic External Input Global

Table-GAN DA GAN Network External Latent Global
CTGAN DA GAN Network External Latent Global

TVAE DA AE Network External Latent Global
AE DA AE Network External Latent Global

InfoMixup AL Linear Network Internal Lat.+Out. Global
VAEACGAN AL AE Network Internal Latent Global

AL-G-SMOTE AL Geometric Randomized Internal Input Local

Continued on next page
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Table 2.2.: Summary of the synthetic data generation methods discussed in this work. A field containing
“—” indicates that the it is either not applicable to the corresponding method, and/or applies
its own unique approach.

Algorithm ML Problem Type Architecture Level Data Space Scope

DAE Semi-SL AE Network Internal Input Global
Π-model Semi-SL Perturb. Randomized Internal In.+Lat. Local

Mean Teacher Semi-SL Perturb. Randomized Internal In.+Lat. Local
ICT Semi-SL Linear Randomized Internal Input Local

Mixmatch Semi-SL Linear Randomized Internal Input Local
SDAT Semi-SL AE+PDF Net.+Prob. Internal Latent Global

MCoM Semi-SL Linear Randomized Int.+Ext. Inp.+Lat. Global
C-Mixup Semi/Self-SL AE+Lin. Net+Rand. Internal Latent Global

VIME Semi/Self-SL Perturb. Randomized Internal Input Local
SubTab Self-SL Perturb. Rand.+Prob. Internal Input Local

Scarf Self-SL Perturb. Randomized Internal Input Local
A-SFS Self-SL Perturb. Randomized Internal Input Local

2.4. Algorithmic Applications

In this section, we discuss the data generation mechanisms for the different contexts where they are
applied. We emphasize the constraints in each problem that condition the way generation mechanisms
are used. The literature search was conducted with the Google Scholar database, using multiple keywords
related to each learning problem. Additional studies were collected by checking the citing and cited
articles of each study found initially. The related work discussed in these studies was used to check for
additional missing methods. Although a larger preference was given to studies published in or after 2019,
our analysis includes relevant papers from previous years, including seminal/classical publications in the
field. All the steps involved in the literature collection were conducted manually and individually for each
learning problem.

2.4.1. Privacy

Synthetic data generation is a technique used to produce synthetic, anonymized versions of datasets (Dankar
& Ibrahim, 2021). It is considered a good approach to share sensitive data without compromising
significantly a given data mining task (N. Park et al., 2018; Taub et al., 2018). Dataset anonymization
via synthetic data generation attempts to balance disclosure risk and data utility in the final synthetic
dataset. The goal is to ensure observations are not identifiable and the relevant data mining tasks are not
compromised (P. Li et al., 2018; Singh & Batten, 2017).

The generation of synthetic datasets allows a more flexible approach to implement ML tasks. To do this,
it is important to guarantee that sensitive information in D is not leaked into Ds. Differential privacy
(DP), a formalization of privacy, offers strict theoretical privacy guarantees (Rosenblatt et al., 2020).
A differentially private generation mechanism produces a synthetic dataset, regulated by the privacy
parameter ϵ, with statistically indistinguishable results when using either D or neighboring datasets
D′ = D\{x}, for any x ∈ D. A synthetic data generation model (fgen) guarantees (ϵ, δ)-differential privacy
if ∀S ⊆ Range(fgen) all D,D′ differing on a single entry (Hardt et al., 2012):

Pr[fgen(D) ∈ S] ≤ eϵ · Pr[fgen(D′) ∈ S] + δ (2.1)
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In this case, ϵ is a non-negative number defined as the privacy budget. A lower ϵ guarantees a higher level
of privacy but reduces the utility of the produced synthetic data. DP synthetic data is especially appealing
since it is not affected by post-processing; any ML pipeline may be applied on Ds while maintaining
(ϵ, δ)-differential privacy (Dwork, Roth, et al., 2014).

Choosing an appropriate Differentially Private (DP) synthetic data generation technique is generally
challenging and depends on the task to be developed (if known) and the domain. However, marginal-based
algorithms appear to perform well across various tests (Tao et al., 2021). A well-known method for the
generation of DP synthetic datasets is the combination of the Multiplicative Weights update rule with the
Exponential Mechanism (MWEM) (Hardt et al., 2012). MWEM is an active learning-style algorithm
that maintains an approximation of Ds. At each time step, MWEM selects the worst approximated
query (determined by a scoring function) using the Exponential Mechanism and improves the accuracy
of the approximating distribution using the Multiplicative Weights update rule. A known limitation of
this method is its lack of scalability. Since this method represents the approximate data distribution in
datacubes, this method becomes infeasible for high-dimensional problems (McKenna et al., 2019). This
limitation was addressed with the integration of a Probabilistic Graphical Model-based (PGM) estimation
into MWEM (MWEM-PGM) and a subroutine to compute and optimize the clique marginals of the PGM,
along with other existing privacy mechanisms (McKenna et al., 2019). Besides MWEM, this method
was used to modify and improve the quality of other DP algorithms: PrivBayes (J. Zhang et al., 2017),
HDMM (McKenna et al., 2018) and DualQuery (Gaboardi et al., 2014).

PrivBayes (J. Zhang et al., 2017) addresses the curse of dimensionality by computing a differentially
private Bayesian Network (i.e., a type of PGM). Instead of injecting noise into the dataset, they inject
noise into the lower-dimensional marginals. The high-dimensional matrix mechanism (HDMM) (McKenna
et al., 2018) mechanism is designed to efficiently answer a set of linear queries on high-dimensional data,
which are answered using the Laplace mechanism. The DualQuery algorithm (Gaboardi et al., 2014) is
based on the two-player interactions in MWEM and follows a similar synthetic data generation mechanism
as the one found in MWEM.

FEM (Vietri et al., 2020) follows a similar data generation approach as MWEM. It also uses the exponential
mechanism and replaces the multiplicative weights update rule with the follow-the-perturbed-leader (FTPL)
algorithm (Kalai & Vempala, 2005). The Relaxed Adaptive Projection (RAP) algorithm (Aydore et al.,
2021) uses the projection mechanism (Nikolov et al., 2013) to answer queries on the private dataset using
a perturbation mechanism and attempts to find the synthetic dataset that matches the noisy answers as
accurately as it can.

Kamino (Ge et al., 2021) introduces denial constraints in the data synthesis process. It builds on
top of the probabilistic database framework (De Sa et al., 2019; Suciu et al., 2011), which models a
probability distribution function (PDF) and integrates denial constraints as parametric factors, out of
which the synthetic observations are sampled. RON-GAUSS (Chanyaswad et al., 2019) combines the
random orthonormal (RON) dimensionality reduction technique and synthetic data sampling using either
a Gaussian generative model or a Gaussian mixture model. The motivation for this model stems from the
Diaconis-Freedman-Meckes effect (Meckes, 2012), which states that most high-dimensional data projections
follow a nearly Gaussian distribution. Since RON-GAUSS includes a feature extraction step (using RON)
and the synthetic data generated is not projected back into the input space, we consider RON-GAUSS an
internal approach to the ML pipeline.

The Maximum Spanning Tree (MST) algorithm (McKenna et al., 2021) is a marginal estimation-based
approach that produces differentially private data. It uses the Private-PGM mechanism (McKenna et al.,
2019) that relies on the PGM approach to generate synthetic data. PGM models are most commonly
used when it is important to maintain the pre-existing statistical properties and relationships between
features (Young et al., 2009).
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Another family of DP synthetic data generation techniques relies on the usage of Generative Adversarial
Networks (GAN). DPGAN (L. Xie et al., 2018) modifies the original GAN architecture to make it
differentially private by introducing noise to gradients during the learning procedure. This approach was
also applied on a conditional GAN architecture directed towards tabular data (CTGAN) (L. Xu et al.,
2019), which resulted in the DPCTGAN (Rosenblatt et al., 2020) algorithm. Another type of GAN-based
DP data synthesis method is based on the combination of a GAN architecture and the Private Aggregation
of Teacher Ensembles (PATE) (Papernot et al., 2017) approach. Although the PATE method generates a
DP classifier, it served as the basis for PATE-GAN (Jordon et al., 2018), a DP synthetic data generation
mechanism. PATE-GAN replaces the discriminator component of a GAN with the PATE mechanism,
which guarantees DP over the generated data. The PATE mechanism is used in the learning phase to train
an ensemble of classifiers to distinguish real from synthetic data. As a second step, the predicted labels
are passed (with added noise) to another discriminator, which is used to train the generator network.

Finally, there are also popular synthetic data-based anonymization approaches to perform anonymization
without DP guarantees. For example, the Synthetic Data Vault (SDV) (Patki et al., 2016) anonymizes
databases using Gaussian copula models to generate synthetic data. However, this method allows the
usage of other generation mechanisms. A posterior extension of SDV was proposed to generate data using
a CTGAN (L. Xu et al., 2019) and to handle sequential tabular data using a conditional probabilistic
auto-regressive neural network (K. Zhang, Patki, & Veeramachaneni, 2022).

2.4.2. Regularization

When the training data is clean, labeled, balanced, and sampled from a fixed data source, the resulting ML
classifier is expected to achieve good generalization performance (Benning & Burger, 2018). However, if
one or more of these assumptions do not hold, the ML model becomes prone to overfitting (Bartlett et al.,
2021). Regularization techniques are used to address problems like overfitting, small training dataset,
high dimensionality, outliers, label noise, and catastrophic forgetting (Domingos, 2012; Halevy et al.,
2009; Salman & Liu, 2019; Z. Xie et al., 2021). One of these techniques is data augmentation. It is used
to increase the size and variability of a training dataset, by producing synthetic observations (Van Dyk
& Meng, 2001; Wong et al., 2016). Since it is applied at the data level, it can be used for various
types of problems and classifiers (Behpour et al., 2019). Although data augmentation is commonly
used and extensively studied in computer vision (Shorten & Khoshgoftaar, 2019) and natural language
processing (S. Y. Feng et al., 2021), its research on tabular data is less common.

Mixup (H. Zhang et al., 2018) consists of a linear interpolation between two randomly selected observations
and their target feature values, (xi, yi), (xj , yj) ∈ DL, such that given λ ∼ Beta(α, α), xs = λxi+(1−λ)xj
and ys = λyi + (1− λ)yj , where α is a predetermined hyperparameter. This method was the source of
Manifold Mixup (M-Mixup) (Verma et al., 2019). It generates synthetic data in the latent space of a
neural network classifier’s hidden layers. Another Mixup-based data augmentation approach, Nonlinear
Mixup (NL-Mixup) (Guo, 2020), applies a nonlinear interpolation policy. In this case, Λ is a set of mixing
policies sampled from a beta distribution applied to each feature. This approach modifies the original
mixup approach to generate data within a hyperrectangle/orthotope: xs = Λ⊙ xi + (1− Λ)⊙ xj , where
⊙ denotes the Hadamard product.

(X. Feng et al., 2020) proposed an autoencoder-based data augmentation (AE-DA) approach where the
training of the autoencoder is done for each target class, non-iteratively, which reduces the amount of
time required compared to the batch processing approach. The decoding weights of an autoencoder are
scaled and linearly combined with an observation from another class using a coefficient that follows a
beta distribution. The latter step varies from typical interpolation-based approaches since this coefficient
is usually drawn from a uniform distribution.

The Modality-Agnostic Automated Data Augmentation in the Latent Space model (MODALS) (Cheung &
Yeung, 2020) leverages on the concept discussed by (DeVries & Taylor, 2017), as well as the Latent Space
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Interpolation method (LSI) (X. Liu et al., 2018) and M-Mixup (Verma et al., 2019). However, MODALS
introduces a framework for data augmentation internally. It contains a feature extraction step, trained
using a combination of adversarial loss, classification loss, and triplet loss, where latent space generation
mechanisms are applied. The classifier is trained using the original and the synthetic observations
generated in the latent space. In this study, the authors discuss the difference transform augmentation
method (among others already described in this study). It generates within-class synthetic data by
selecting a xc and two random observations within the same class, xi, xj , to compute xs = xc + λ(xi− xj).
In addition, they also experiment with Gaussian noise and Hard example extrapolation, determined by
xs = xc + λ(xc − µ), where µ is the mean of the observations within a given class.

In the model distillation approach proposed in (Fakoor et al., 2020) the student model is trained
with synthetic data generated with Gibbs sampling. Although Gibbs sampling is infrequently used in
recent literature, two oversampling methods using Gibbs sampling appear to achieve state-of-the-art
performance (B. Das et al., 2014). However, probabilistic-based approaches for data augmentation are
uncommon; there are some methods proposed for the more specific case of oversampling, but no more
related methods for data augmentation were found.

A well-known approach to GAN-based data augmentation is Table-GAN (N. Park et al., 2018). It
utilizes the vanilla GAN approach to the generation of synthetic data. However, vanilla GAN does not
allow the controlled generation of synthetic data given conditional attributes such as the target feature
values in supervised learning tasks and may be the cause for aggravated categorical feature imbalance.
These limitations were addressed with the CTGAN (L. Xu et al., 2019) algorithm, which implements the
conditional GAN approach to tabular data. Another GAN-based architecture, MedGAN (Armanious et al.,
2020), can also be adapted for tabular data and is used as a benchmark in related studies (e.g., (L. Xu
et al., 2019; Y. Zhang et al., 2021)). When compared to the remaining GAN-based approaches, MedGAN’s
architecture is more complex and generally underperforms in the experiments found in the literature. The
GANBLR (Y. Zhang et al., 2021) modifies vanilla GAN architectures with a Bayesian network as both
generator and discriminator to create synthetic data. This approach benefits from its interpretability and
reduced complexity while maintaining state-of-the-art performance across various evaluation criteria.

Another less popular approach for network-based synthetic data generation is autoencoder architectures.
TVAE, proposed in (L. Xu et al., 2019), achieved state-of-the art performance. It consists of the VAE
algorithm with an architecture modified for tabular data (i.e., 1-dimensional). However, as discussed by
the authors, this method contains limitations since it is difficult to achieve DP with AE-based models
since they access the original data during the training procedure, unlike GANs. (Delgado & Oyedele,
2021) studies the impact of data augmentation on supervised learning with small datasets. The authors
compare four different AE architectures: Undercomplete, Sparse, Deep, and Variational AE. Although all
of the tested AE architectures improved classification performance, the deep and variational autoencoders
were the best overall performing models.

2.4.3. Oversampling

Since most supervised ML classifiers are designed to expect classes with similar frequencies, training
them over imbalanced datasets can result in limited classification performance. With highly skewed
distributions in DL, the classifier’s predictions tend to be biased towards overrepresented classes (Fonseca
et al., 2021a). For example, one can predict correctly with over 99% accuracy whether credit card accounts
were defrauded using a constant classifier. One way to address this issue is via oversampling (Douzas et al.,
2019), which can be considered a specific setting of data augmentation. It is an appropriate technique
when, given a set of n target classes, there is a collection Cmaj containing the majority class observations
and Cmin containing the minority class observations such that DL =

⋃n
i=1Ci. The training dataset DL is

considered imbalanced if |Cmaj | > |Cmin|. An oversampler is expected to generate a Ds
L =

⋃n
i=1C

s
i that
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guarantees |Ci ∪Cs
i | = |Cmaj |,∀i ∈ {1, . . . , n}. The model fθ will be trained using an artificially balanced

dataset D′
L = DL ∪ Ds

L.

Random Oversampling (ROS) is considered a classical approach to oversampling. It oversamples minority
classes by randomly picking samples with replacement. It is a bootstrapping approach that, if generated
in a smoothed manner (i.e., by adding perturbations to the synthetic data), is also known as Random
Oversampling Examples (ROSE) (Menardi & Torelli, 2014). However, the random duplication of
observations often leads to overfitting (Krawczyk, 2016).

The Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) attempts to address the
data duplication limitation in ROS with a two-stage data generation mechanism:

1. Selection phase. A minority class observation, xc ∈ Cmin, and one of its k-nearest neighbors,
xnn ∈ Cmin, are randomly selected.

2. Generation phase. A synthetic observation, xs, is generated along a line segment between xc and
xnn: xs = αxc + (1− α)xnn, α ∼ U(0, 1).

Although the SMOTE algorithm addresses the limitations in ROS, it brings other problems, which
motivated the development of several SMOTE-based variants (Douzas & Bacao, 2019): (1) it introduces
noise when a noisy minority class observation is assigned to xc or xnn, (2) it introduces noise when xc and
xnn belong to different minority-class clusters, (3) it introduces near duplicate observations when xc and
xnn are too close and (4) it does not account for within-class imbalance (i.e., different input space regions
should assume different importance according to the concentration of minority class observations).

Borderline-SMOTE (Han et al., 2005) modifies SMOTE’s selection mechanism. It calculates the k-nearest
neighbors for all minority class observations and selects the ones that are going to be used as xc in
the generation phase. An observation is selected based on the number of neighbors belonging to a
different class, where the observations with no neighbors belonging to Cmin and insufficient number of
neighbors belonging to Cmaj are not considered for the generation phase. This approximates the synthetic
observations to the border of the expected decision boundaries. Various other methods were proposed
since then to modify the selection mechanism, such as K-means SMOTE (Douzas et al., 2018). This
approach addresses within-class imbalance and the generation of noisy synthetic data by generating data
within clusters. The data generation is done according to each cluster’s imbalance ratio and dispersion
of minority class observations. DBSMOTE (Bunkhumpornpat et al., 2012) also modifies the selection
strategy by selecting as xc the set of core observations in a DBSCAN clustering solution.

The Adaptive Synthetic Sampling approach (ADASYN) (Haibo He et al., 2008) uses a comparable
approach to Borderline-SMOTE. It calculates the ratio of non-minority class observations within the
k-nearest neighbors of each x ∈ Cmin. The number of observations to be generated using each x ∈ Cmin

as xc is determined according to this ratio; the more non-minority class neighbors an observation contains,
the more synthetic observations are generated using it as xc. The generation phase is done using the
linear mechanism in SMOTE. However, this approach tends to aggravate the limitation (1) discussed
previously. A second version of this method, KernelADASYN (Tang & He, 2015), replaces the generation
mechanism with a weighted kernel density estimation. The weighing is done according to ADASYN’s
ratio and the synthetic data is sampled using the calculated Gaussian Kernel function whose bandwidth
is passed as an additional hyperparameter.

Modifications to SMOTE’s generation mechanism are less common and generally attempt to address
the problem of noisy synthetic data generation. Safe-level SMOTE (Bunkhumpornpat et al., 2009)
truncates the line segment between xc and xnn according to a safe level ratio. Geometric-SMOTE (G-
SMOTE) (Douzas & Bacao, 2019) generates synthetic data within a deformed and truncated hypersphere
to also avoid the generation of near-duplicate synthetic data. It also modifies the selection strategy to
combine the selection of majority class observations as xnn to avoid the introduction of noisy synthetic
data.
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LR-SMOTE (Liang et al., 2020) modifies both the selection and generation mechanisms. The set of
observations to use as xc contains the misclassified minority class observations using an SVM classifier,
out of which the potentially noisy observations are removed. The k-means clustering method is used
to find the closest observations to the cluster centroids, which are used as xc. The observations with a
higher number of majority class neighbors are more likely to be selected as xnn. Although the generation
mechanism synthesizes observations as a linear combination between xc and xnn, it restricts or expands
this range by setting α ∼ U(0,M), where M is a ratio between the average euclidean distance of each
cluster’s minority class observations to xc and the euclidean distance between xc and xnn.

The Minority Oversampling Kernel Adaptive Subspaces algorithm (MOKAS) (Lin et al., 2017) adopts
a different approach when compared to SMOTE-based mechanisms. It uses the adaptive subspace
self-organizing map (ASSOM) (Kohonen, 1996) algorithm to learn sub-spaces (i.e., different latent spaces
for each unit in the SOM), out of which synthetic data is generated. The synthetic data is generated
using a lower dimensional representation of the input data to ensure the reconstructed data is different
from the original observations. Overall, the usage of SOMs for oversampling is uncommon. Another two
examples of this approach, SOMO (Douzas & Bacao, 2017) and G-SOMO (Douzas et al., 2021) use a
similar approach as K-means SMOTE. In the case of G-SOMO, the SMOTE generation mechanism is
replaced by G-SMOTE’s instead.

Oversampling using GMM was found in a few recently proposed algorithms. GMM-SENN (Xing et al.,
2022) fits a GMM and uses its inverse weights to sample data, followed by the application of SMOTEENN
to leverage the Edited Nearest Neighbors (ENN) methods as a means to reduce the noise in the training
dataset. The GMM Filtering-SMOTE (GMF-SMOTE) (Z. Xu et al., 2022) algorithm applies a somewhat
inverse approach; a GMM is used to detect and delete boundary samples, while the synthetic data is
generated with SMOTE.

The contrastive learning-based VAE approach proposed in (Dai et al., 2019), designed for oversampling,
was adapted from the architecture proposed in (Abid & Zou, 2019). They address a limitation found in
most oversampling methods, where these methods focus almost exclusively on the distribution of the
minority class, while largely ignoring the majority class distribution. Their VAE architecture uses two
encoders trained jointly, using both a majority and a minority class observation. The synthetic observation
is generated by sampling from one of the sets of latent variables (which follows a Gaussian distribution)
and projecting it into the decoder.

Another set of network-based methods that fully replace SMOTE-based mechanisms is GAN-based
architectures. One example of this approach is CGAN (Douzas & Bacao, 2018). It uses an adversarial
training approach to generate data that approximates the original data distribution and is indistinguishable
from the original dataset (according to the adversarial classifier). A more recent GAN-based oversampler,
K-means CTGAN (An et al., 2021) uses a K-means clustering method as an additional attribute to train
the CTGAN. In this case, cluster labels allow the reduction of within-class imbalance. These types of
approaches benefit from learning the overall per-class distribution, instead of using local information
only. However, GANs require more computational power to train, their performance is sensitive to the
initialization, and are prone to the “mode collapse” problem.

Statistical-based oversampling approaches are less common. Some methods, such as RACOG and
wRACOG (B. Das et al., 2014) are based on Gibbs sampling, PDFOS (Gao et al., 2014) is based on
probability density function estimations and RWO (H. Zhang & Li, 2014) uses a random walk algorithm.
Although oversampling for classification problems using continuous features appears as a relatively well-
explored problem, there is a general lack of research on oversampling using nominal features or mixed data
types (i.e., using both nominal and continuous features) and regression problems. SMOTENC (Chawla
et al., 2002) introduces a SMOTE adaptation for mixed data types. It calculates the nearest neighbors of
xc by including in the Euclidean distance metric the median of the standard deviations of the continuous
features for every nominal feature value that is different between xc and xnn. The generation is done
using the normal SMOTE procedure for the continuous features and the nominal features are determined
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with their modes within xc’s nearest neighbors. The SMOTEN (Chawla et al., 2002) is an oversampling
algorithm for nominal features only. It uses the nearest neighbor approach proposed in (Cost & Salzberg,
1993) and generates xs using the modes of the features in xc’s nearest neighbors. Solutions to oversampling
in regression problems are generally also based on SMOTE, such as SMOTER (Torgo et al., 2013) and
G-SMOTER (Camacho et al., 2022).

2.4.4. Active Learning

AL is an informed approach to data collection and labeling. In classification problems, when |DU | ≫ |DL|
and it is possible to label data according to a given budget, AL methods will search for the most informative
unlabeled observations. Once labeled and included in the training set, these observations are expected
to improve the performance of the classifier to a greater extent when compared to randomly selected
observations. AL is an iterative process where an acquisition function facq(x, fθ) : DU → R computes
a classification uncertainty score for each unlabeled observation, at each iteration. facq provides the
selection criteria based on the uncertainty scores, fθ and the labeling budget (Y.-Y. Kim et al., 2021).

One way to improve an AL process is via the generation of synthetic data, since the generation of
informative, labeled, synthetic observations reduces the amount of data labeling required to achieve a
certain classification performance. In this case, synthetic data is expected to improve classification with a
better definition of the classifier’s decision boundaries. This allows the allocation of the data collection
budget over a larger area of the input space. These methods can be divided into AL with pipelined data
augmentation approaches and AL with within-acquisition data augmentation (Y.-Y. Kim et al., 2021).
Pipelined data augmentation is the more intuitive approach, where at each training phase the synthetic
data is produced to improve the quality of the classifier and is independent of facq. In (Fonseca et al.,
2021b), the pipelined approach in tabular data achieves superior performance compared to the traditional
AL framework using the G-SMOTE algorithm and the oversampling generation policy. Other methods,
although developed and tested on image data, could also be adapted for tabular data: in the Bayesian
Generative Active Deep Learning framework (Tran et al., 2019) the authors propose VAEACGAN, which
uses a VAE architecture along with an auxiliary-classifier generative adversarial network (ACGAN) (Odena
et al., 2017) to generate synthetic data.

The Look-Ahead Data Acquisition via augmentation algorithm (Y.-Y. Kim et al., 2021) proposes an
acquisition function that considers the classification uncertainty of synthetic data generated using a
given unlabeled observation, instead of only estimating the classification uncertainty of the unlabeled
observation itself. This approach considers both the utility of the augmented data and the utility of
the unlabeled observation. This goal is achieved with the data augmentation method InfoMixup, which
uses M-Mixup (Verma et al., 2019) along with the distillation of the generated synthetic data using
facq. The authors additionally propose InfoSTN, although the original Spatial Transform Networks
(STN) (Jaderberg et al., 2015) were originally designed for image data augmentation.

2.4.5. Semi-supervised Learning

Semi-supervised learning (Semi-SL) techniques modify the learning phase of ML algorithms to leverage
both labeled and unlabeled data. This approach is used when |DU | ≫ |DL| (similarly to AL settings),
but additional labeled data is too difficult to acquire. In recent years, the research developed in this
area directed much of its focus to neural network-based models and generative learning (Van Engelen &
Hoos, 2020). Overall, Semi-SL can be distinguished between transductive and inductive methods. In this
section, we will focus on synthetic data generation mechanisms in inductive, perturbation-based Semi-SL
algorithms, applicable to tabular or latent space data.
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The ladder network (Rasmus et al., 2015) is a semi-supervised learning architecture that learns a manifold
latent space using a Denoising Autoencoder (DAE). The synthetic data is generated during the learning
phase; random noise is introduced into the input data and the DAE learns to predict the original
observation. Although this method was tested with image data, DAE networks can be adapted for tabular
data (Sattarov et al., 2022).

The Π-model simultaneously uses both labeled and unlabeled data in the training phase (Samuli & Timo,
2017). Besides minimizing cross-entropy, they add to the loss function the squared difference between two
input-level transformations (Gaussian noise and other image-specific methods) in the network’s output
layer. Mean Teacher algorithm (Tarvainen & Valpola, 2017) built upon the Π-model, which used the
same types of augmentation. The Interpolation Consistency Training (ICT) (Verma et al., 2022) method
combined the mean teacher and the Mixup approach, where synthetic observations are generated using
only the unlabeled observations and their predicted label using the teacher model. In Mixmatch (Berthelot
et al., 2019), the Mixup method is used by randomly selecting any pair of observations and their true
labels (if it’s a labeled observation) or predicted label (if it’s unlabeled).

The Semi-SL Data Augmentation for Tabular data (SDAT) algorithm (Fang et al., 2022) uses an
autoencoder to generate synthetic data in the latent space with Gaussian perturbations. The Contrastive
Mixup (C-Mixup) (Darabi et al., 2021) algorithm generates synthetic data using the Mixup mechanism
with observation pairs within the same target label. The Mixup Contrastive Mixup algorithm (MCoM) (X.
Li et al., 2022) proposes the triplet Mixup method using three observations where xs = λixi + λjxj +
(1 − λi − λj)xk, where λi, λj ∼ U(0, α), α ∈ (0, 0.5] and xi, xj and xk belong to the same target class.
The same algorithm also uses the M-Mixup method as part of the latent space learning phase.

2.4.6. Self-supervised Learning

Self-supervised learning (Self-SL), although closely related to Semi-SL, assumes DL = ∅. These models
focus on representation learning using DU via secondary learning tasks, which can be adapted to multiple
downstream tasks (X. Liu et al., 2021). This family of techniques allows the usage of raw, unlabeled data,
which is generally cheaper to acquire when compared to processed, curated, and labeled data. Although
not all Self-SL methods rely on data augmentation (e.g., STab (Hajiramezanali et al., 2022)), the majority
of state-of-the-art tabular Self-SL methods use data augmentation as a central concept for the training
phase.

The value imputation and mask estimation method (VIME) (Yoon et al., 2020) is a Semi-SL and Self-
SL approach that introduces Masking, a tabular data augmentation method. It is motivated by the
need to generate corrupted, difficult-to-distinguish synthetic data in a computationally efficient way
for Self-SL training. They replace with probability pm the feature values in xi with another randomly
selected value of each corresponding feature. To do this, the authors use a binomial mask vector
m = [m1, . . . ,md]

⊥ ∈ {0, 1}d, mj ∼ Bern(pm), observation xi and the noise vector ϵ (i.e., the vector of
possible replacement values). A synthetic observation is produced as xs = (1 − m) ⊙ xi + m ⊙ ϵ. A
subsequent study that proposed the SubTab (Ucar et al., 2021) framework presents a multi-view approach;
analogous to cropping in image data or feature bagging in ensemble learning. In addition, the authors
propose an extension of the masking approach proposed in VIME by introducing noise using different
approaches: Gaussian noise, swap-noise (i.e., the approach proposed in VIME) and zero-out noise (i.e.,
randomly replace a feature value by zero).

The Self-supervised contrastive learning using random feature corruption method (Scarf) (Bahri et al.,
2022) uses a similar synthetic data generation approach as VIME. Scarf differs from VIME by using
contrastive loss instead of the denoising auto-encoder loss used in VIME. A-SFS (Qiu et al., 2022) is a
Self-SL algorithm designed for feature extraction. It achieved higher performance compared to equivalent
state-of-the-art augmentation-free approaches such as Tabnet (Arik & Pfister, 2021) and uses the masking
generation mechanism described in VIME.
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2.5. Generation Mechanisms

In this section, we provide a general description of the synthetic data generation mechanisms found in
the learning problems in Section 2.4. Table 2.3 summarizes the assumptions and usage of the generation
mechanisms across the selected works and learning problems.

Table 2.3.: Analysis of synthetic data generation mechanisms.
Type Mechanism Smoothness Manifold Priv. Reg. Ovs. AL Semi-SL Self-SL

Perturbation

Random ✓ ✓ × × ✓ × × ×
Laplace ✓ ✓ ✓ × × × × ×
Gaussian ✓ ✓ ✓ ✓ × × ✓ ✓
Swap-noise × × × × × × ✓ ✓
Zero-out noise × × × × × × × ✓

PDF
Gaussian Gen. × ✓ ✓ × ✓ × × ×
Gaussian Mix. × ✓ ✓ × ✓ × × ×
KDE × ✓ × × ✓ × × ×

PGM
Bayesian Net. × × ✓ ✓ × × × ×
Gibbs × × × ✓ ✓ × × ×
Random Walk × × × × ✓ × × ×

Linear

Between-class Int. × ✓ × ✓ × ✓ ✓ ×
Within-class Int. ✓ ✓ × ✓ ✓ ✓ ✓ ×
Extrapolation ✓ ✓ × ✓ ✓ × × ×
Hard Extra. ✓ ✓ × ✓ ✓ × × ×
Inter.+Extra. ✓ ✓ × × ✓ × × ×
Difference Transf. ✓ ✓ × ✓ × × × ×

Geometric
Hypersphere ✓ ✓ × × ✓ ✓ × ×
Triangular ✓ ✓ × × × × ✓ ×
Hyperrectangle × ✓ × ✓ × × × ×

Neural nets. GAN × × ✓ ✓ ✓ ✓ × ×
AE × × × ✓ ✓ ✓ ✓ ×

Others Exponential M. × × ✓ × × × × ×
Reconstruction err. × × × × ✓ × × ×

We focus on 2 key conditions for the data generation process, smoothness, and manifold space (adapted
from the background in (Van Engelen & Hoos, 2020)). The smoothness condition requires that if two
observations xi, xj are close, then it’s expected that yi, yj have the same value. The manifold condition
requires synthetic data generation to occur within local Euclidean topological spaces. Therefore, a
generation mechanism with the smoothness requirement also requires a manifold, while the opposite is
not necessarily true.

In the remaining subsections, we will describe the main synthetic data generation mechanisms found in
the literature, based on the studies discussed in Section 2.4.

2.5.1. Perturbation Mechanisms

The general perturbation-based synthetic data generation mechanism is defined as xs = xi + ϵ, where
ϵ is the noise vector sampled from a certain distribution. The random perturbation mechanism can be
thought of as the non-informed equivalent of PGMs and PDFs. It samples |ϵ| values from a uniform
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Figure 2.2.: Examples of synthetic observations generated with different masking approaches.

distribution, i.e., ei ∼ U(·, ·),∀ei ∈ ϵ, while the minimum and maximum values depend on the context
and level of perturbation desired, typically centered around zero.

Laplace (commonly used in DP algorithms) and Gaussian perturbations sample ϵ with ei ∼ Lap(·, ·) and
ei ∼ N (·, ·), respectively. Within the applications found, in the presence of categorical features, these
methods tend to use n-way marginals (also known as conjunctions or contingency tables (Gaboardi et al.,
2014)) to ensure the generated data contains variability in the categorical features and the distribution
of categorical feature values follows some given constraint. Although various other distributions could
be used to apply perturbations, the literature found primarily focuses on introducing noise via uniform,
Laplace, and Gaussian distributions.

Masking modifies the original perturbation-based approach by introducing a binomial mask vector,
m = [m1, . . . ,md]

⊥ ∈ {0, 1}d,mi ∼ Bern(pm) and the generation mechanism is defined as xs = (1−m)⊙
xi+m⊙ ϵ (Yoon et al., 2020). The ϵ variable is defined according to the perturbation used. The Gaussian
approach generates the noise vector as ϵ = xi + ϵ′, where e′i ∼ N (·, ·), ∀e′i ∈ ϵ′. The swap-noise approach
shuffles the feature values from all observations to form ϵ, while the zero-out noise approach sets all ϵ
values to zero. Intuitively, the masking technique modifies an observation’s feature values with probability
pm, instead of adding perturbations over the entire observation. Figure 2.2 shows a visual depiction of the
masking technique.

2.5.2. Probability Density Function Mechanisms

The Gaussian generative model, despite being infrequently used when compared to the remaining
Probability Density Function mechanisms discussed in this subsection, is an essential building block
for these mechanisms. In particular, we focus on the multivariate Gaussian approach, which follows
near-Gaussian distribution assumptions, which is rarely reasonable on the input space. However, for high-
dimensional data, it is possible to motivate this approach via the Diaconis-Freedman-Meckes effect (Meckes,
2012), which states that high-dimensional data projections generally follow a nearly Gaussian distribution.
The Gaussian generative model produces synthetic data from a Gaussian distribution xs ∼ N (µ,Σ),
where µ ∈ Rd is a vector with the features’ means and Σ ∈ Rd×d is the covariance matrix. It follows the
following density function (Chanyaswad et al., 2019):

f(x) =
1√

(2π)ddet(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.2)

Consequently, to define a Gaussian generative model it is only necessary to estimate the dataset’s mean
and covariance matrix.

A Gaussian mixture model (GMM) comprises several Gaussian distributions that aim to represent subpop-
ulations within a dataset. Its training procedure allows the model to iteratively learn the subpopulations
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Figure 2.3.: Examples of PDF mechanisms fitted to a mock dataset. Legend: (a) Original dataset, (b)
Gaussian generative model, (c) Gaussian Mixture Model and (d) Gaussian Kernel Density
Estimation.

using the Expectation Maximization algorithm. A GMM becomes more appropriate than the Gaussian
generative model when the data is expected to have more than one higher-density region, leading to a
poor fit of unimodal Gaussian models.

Kernel Density Estimation (KDE) methods use a kernel function to estimate the density of the dataset’s
distribution at each region of the input/latent space. Despite the various kernel options, the Gaussian
kernel is commonly used for synthetic data generation (Tang & He, 2015). The general kernel estimator is
defined as follows:

p̂(x) =
1

N + h

N∑
i=1

K

(
x− xi

h

)
(2.3)

Where N = |D|, h is a smoothing parameter known as bandwidth and K is the kernel function. The
Gaussian kernel is defined as follows:

Gi(x) = K

(
x− xi

h

)
=

1

(
√
2πh)d

exp
(
−1

2

(x− xi)
T (x− xi)

h

)
(2.4)

Therefore, the Gaussian KDE approach can also be expressed as p̂(x) = 1
N+h

∑N
i=1Gi(x), while the data

is sampled from the estimated probability distribution. Figure 2.3 shows a visualization of the PDF
mechanisms discussed, applied to a mock dataset.

2.5.3. Probabilistic Graphical Models

A Bayesian network can be thought of as a collection of conditional distributions. It represents the joint
probability distribution over the cross-product of the feature domains in D. It is a directed acyclic graph
that represents D’s features as nodes and their conditional dependencies as directed edges. The set of
features pointing directly to feature v ∈ V, d = |V | via a single edge are known as the parent variables,
pa(v). A Bayesian network calculates p(x) as the product of the individual density functions, based on
the conditional probabilities of the parent variables:
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p(x) =
∏
v∈V

p(xv|xpa(v)) (2.5)

Since the construction of a directed acyclic graph can be labor intensive, different ML approaches were
developed for the learning of these structures (Y. Yu et al., 2019). Bayesian networks can be used for
synthetic data generation when the relationship between variables is known (or can be learned) and when
the data is high-dimensional, making the sampling process non-trivial.

Random walk algorithms comprise the general process of iterating through a set of random steps. Although
uncommon, random walk approaches may be used to sample data. The random walk approach described
in (H. Zhang & Li, 2014) uses the Gaussian noise mechanism over minority class observations to create
synthetic observations. The Gibbs sampling mechanism also performs a random walk by iterating through
sampled feature values.

Gibbs sampling is a Markov Chain Monte Carlo algorithm that iteratively samples a synthetic observation’s
feature values. It is a suitable method to sample synthetic data from a Bayesian network. The process
starts with an initial observation selected from D, x0, and is used to begin the sampling process. In its
original format, the sampling of each feature value v in xsi is conditioned by xsi−1 and the feature values
already sampled from xsi , such that xsi,v ∼ p(xsi,v|xsi,1, . . . , xsi,v−1, x

s
i−1,v+1, . . . , x

s
i−1,d). Therefore, Gibbs

sampling is a special case of the Metropolis-Hastings algorithm.

2.5.4. Linear Transformations

Linear interpolation mechanisms can be split into two subgroups: between and within-class interpolation.
Both mechanisms follow a similar approach; they use a scaling factor λ, typically sampled from either
U(0, 1) or Beta(α, α):

xs = λxi + (1− λ)xj = xj + λ(xi − xj) (2.6)

The within-class interpolation mechanism selects two observations from the same class, while the between-
class interpolation mechanism selects two observations from different classes and also interpolates the
one-hot encoded target classes yi and yj . However, the approach to select observations might vary
according to the ML task and data generation algorithm. For example, most SMOTE-based methods
select a center observation and a random observation within its k-nearest neighbors belonging to the same
class, while the Mixup method selects two random observations, regardless of their class membership.

The observation-based linear extrapolation mechanism modifies Equation 2.6 such that xs = xi+λ(xi−xj),
while the hard extrapolation mechanism uses the mean of a class’ observations, µc and a randomly selected
observation to generate xs = xci + λ(xci − µc). Some methods also combine both interpolation and
extrapolation. This can be achieved using Equation 2.6 and modifying λ’s range to either decrease its
minimum value below zero or increase its maximum value above one.

The difference transform mechanism uses two observations to compute a translation vector (multiplied by
the scaling factor λ) and apply it to a third observation:

xs = xi + λ(xj − xk) (2.7)

Although there are various linear transformation mechanisms in the literature, the majority of the studies
applied linear interpolation mechanisms. Within-class interpolation was frequently found in oversampling
methods, while between-class interpolation was found most often in regularization methods. A depiction
of the linear transformation mechanisms found in the literature is presented in Figure 2.4.
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Figure 2.4.: Examples of linear transformation mechanisms. Legend: (a) Between-class interpolation, (b)
Within-class interpolation, (c) Observation-based extrapolation, (d) Hard extrapolation, (e)
Combination of interpolation and extrapolation and (f) Difference transform.
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Figure 2.5.: Examples of geometric transformation mechanisms. Legend: (a) hypersphere mechanism, (b)
triangular mechanism and (c) hyperrectangle mechanism.

2.5.5. Geometric Transformations

Overall, geometric transformation mechanisms were not frequently found in the literature. They are
primarily used to develop Mixup or SMOTE-based variants. Figure 2.5 shows a visual example of the
related mechanisms.

The hypersphere mechanism generates data within a distorted, n-dimensional hyper spheroid. It is formed
using an observation to define the center of the geometry and another to define its edge. It is defined with
two hyperparameters, the deformation factor, αdef ∈ [0, 1], and the truncation factor, αtrunc ∈ [−1, 1]. The
deformation factor deforms the hypersphere into an elliptic shape, where αdef = 1 applies no deformation
and αdef = 0 creates a line segment. The truncation factor limits the generation area of the hyper spheroid
within a subset of the hypersphere, where αtrunc = 0 applies no truncation, αtrunc = 1 uses the half of the
area between the two selected observations and αtrunc = −1 uses the opposing area. In Figure 2.5a, the
two generation areas were formed using approximately αtrunc = αdef = 0.5.

The triangular mechanism selects three observations to generate xs = λixi+λjxj +(1−λi−λj)xk, where
λi, λj ∼ U(0, α), α ∈ (0, 0.5]. The hyperrectangle mechanism uses an approach similar to Equation 2.6.
However, the scaling factor is changed into a scaling vector, Λ = [λ1, . . . , λd] ∈ [0, 1]d, λi ∼ Beta(α, α),
where α is a hyperparameter used to define the Beta distribution. A synthetic observation is generated
with xs = Λ⊙ xi + (1− Λ)⊙ xj , where ⊙ denotes the Hadamard product. This operation originates a
generation area like the ones presented in Figure 2.5c.
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2.5.6. Neural Networks

Generative Adversarial Network (GAN) architectures are structured as a minimax two-player game
composed of two models, a generator, and a discriminator. Both models are trained simultaneously
throughout the learning phase, to learn to generate data with similar statistical properties when compared
to the original data. The generative model captures the data distribution, while the discriminator estimates
the probability of an observation coming from the training data. The goal of the generator model is to
produce synthetic observations that are capable of fooling the discriminator, making it difficult for the
discriminator to distinguish real from synthetic observations. Although they were originally developed in
an unsupervised learning setting (Goodfellow et al., 2020), subsequent contributions proposed GANs with
several different architectures, for semi-SL, supervised learning (for both regularization and oversampling),
and reinforcement learning.

An autoencoder (AE) is a type of neural network architecture that learns manifold representations of
an input space. These models are typically trained by regenerating the input and are designed with a
bottleneck in the hidden layers that correspond to the learned latent space. It contains two parts, an
encoder, and a decoder. The encoder transforms the input data into lower-dimensional representations
(i.e., the latent space), while the decoder projects these representations into the original input space.
Since it was first proposed (Ackley et al., 1985), many variants were developed for multiple applications.
However, based on the literature found, the variational AE architecture appears to be the most popular
approach.

2.6. Evaluating the Quality of Synthetic Data

The vast majority of synthetic data generation models are evaluated on an ML utility basis. Compared
to research on the development of actual synthetic data generation algorithms, there is a general lack
of research on the development of metrics to evaluate their quality beyond performance metrics such as
Overall Accuracy (OA) or F1-score. One motivation to do this is the ability to anticipate the quality of
the data for the target task before training an ML classifier, which may be expensive and time-consuming.
This is a challenging problem since the usefulness of synthetic data generators depends on the assumptions
imposed according to the dataset, domain, and ML problem (Chundawat et al., 2022). This section focuses
on the main evaluation approaches found in the literature beyond classification performance, as well as
recently proposed methods. For a more comprehensive analysis of performance metrics for synthetic data
evaluation, the reader is referred to (Dankar et al., 2022) and (Theis et al., 2016).

The GANBLR model (Y. Zhang et al., 2021) was evaluated on three aspects: (1) ML utility, (2) Statistical
similarity, and (3) Interpretability. In (L. Xu et al., 2019), the authors evaluate the CTGAN and TVAE
models using a likelihood fitness metric (to measure statistical similarity) and ML efficacy (i.e., utility).
(Hittmeir et al., 2019) evaluate synthetic data generators using a 2-step approach: Similarity comparison
and data utility. According to (Alaa et al., 2022), the evaluation of generative models should quantify
three key aspects of synthetic data:

1. Fidelity. Synthetic observations must resemble real observations;

2. Diversity. Synthetic observations should cover D’s variability;

3. Generalization. Synthetic observations should not be copies of real observations;

Ensuring these properties are met will secure the objectives defined in Section 2.2.2: Ps ≈ P and
xi ̸= xj∀xi ∈ D ∧ xj ∈ Ds. However, this is a relatively recent consideration that was not commonly
found in the literature. The only study found to explicitly address all three aspects was (Alaa et al.,
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2022), although all other studies and metrics discussed in Section 2.6.1 address (implicitly or explicitly) at
least one of these aspects.

The effective evaluation of synthetic data generation methods is a complex task. Good performance on
one evaluation method does not necessarily imply a good performance on the primary ML task, results
from different evaluation methods seem to be independent, and evaluating the models directly onto the
target application is generally recommended (Theis et al., 2016). Therefore, each evaluation procedure
must be carefully implemented and adapted according to the use case.

2.6.1. Quantitative Approaches

The Kullback-Leibler (KL) divergence (and equivalently the log-likelihood) is a common approach to
evaluate generative models (Theis et al., 2016). Other commonly used metrics, like Parzen window
estimates, appear to be a generally poor quality estimation method and are not recommended for most
applications (Theis et al., 2016). KL divergence is defined as follows:

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(2.8)

Where X is a probability space, P and Q are estimated probability distributions based on P and Ps,
respectively. The KL divergence is a non-symmetric measurement that represents how a reference
probability distribution (P ) differs from another (Q). A DKL close to zero means Q is similar to P .
However, metrics like the KL divergence or the log-likelihood are generally difficult to interpret, do not
scale well for high dimensional data, and fail to highlight model failures (Alaa et al., 2022). Another
related metric, used in (Z. Zhao et al., 2021), is the Jensen-Shannon (JS) divergence. It consists of a
symmetrized and smoothed variation of the KL divergence. Having M = P+Q

2 , it is calculated as:

DJS(P ||Q) =
DKL(P ||M) +DKL(Q||M)

2
(2.9)

The Wasserstein Distance is another relevant metric to estimate the distance between two distribution
functions. It was also used to develop GAN variants since it improves the stability in the training of
GANs (Goncalves et al., 2020; Gulrajani et al., 2017).

In past literature, the propensity score was considered an appropriate performance metric to measure the
utility of masked data (Woo et al., 2009). This metric is estimated using a classifier (typically a logistic
regression) trained on a dataset with both the original and synthetic data, using as a target the source
of each observation (synthetic or original). The goal of this classifier is to predict the likelihood of an
observation being synthetic. Therefore, this approach guarantees observation-level insights regarding the
faithfulness of each observation. (Woo et al., 2009) suggest a summarization of this metric, also defined
as the propensity Mean Squared Error (pMSE) (Chundawat et al., 2022):

Up = pMSE =
1

N

N∑
i=1

(p̂i − c)2 (2.10)

Where N = |D∪Ds|, c = |Ds|
N and p̂i is the estimated propensity score for observation i. When a synthetic

dataset is indistinguishable from real data, pMSE will be close to zero. Specifically, when the data source
is indistinguishable, the expected pMSE is given by (Snoke et al., 2018):
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E(pMSE) =
(k − 1)(1− c)2c

N
(2.11)

Where k is the number of parameters in the logistic regression model (including bias). When the synthetic
dataset is easily distinguishable from the original dataset, Up will be close to (1− c)2. (Dankar & Ibrahim,
2021), established a generally consistent, weak negative correlation between Up and OA.

(Chundawat et al., 2022) proposed TabSynDex to address the lack of uniformity of synthetic data
evaluation, which can also be used as a loss function to train network-based models. It is a single metric
evaluation approach bounded within [0, 1] that consists of a combination of (1) the relative errors of basic
statistics (mean, median, and standard deviation), (2) the relative errors of correlation matrices, (3) a
pMSE-based index, (4) a support coverage-based metric for histogram comparison and (5) the performance
difference in an ML efficacy-based metric between models trained on real and synthetic data.

The three-dimensional metric proposed by (Alaa et al., 2022) presents an alternative evaluation approach.
It combines three metrics (α-Precision, β-Recall, and Authenticity) for various application domains. It
extends the Precision and Recall metrics defined in (Sajjadi et al., 2018) into α-Precision and β-Recall,
which are used to quantify fidelity and diversity. Finally, the authenticity metric is estimated using a
classifier that is trained based on the distance (denoted as d) between xs and its nearest neighbor in D,
xi∗ ; if d(xs, xi∗) is smaller than the distance between xi∗ and its nearest neighbor in D\{xi∗}, xs will likely
be considered unauthentic. This approach provides a threefold perspective over the quality of Ds and
allows a sample-level analysis of the generator’s performance. Furthermore, there is a relative trade-off
between the two metrics used to audit the generator and the synthetic data; a higher α-Precision score
will generally correspond to a lower Authenticity score and vice versa.

A less common evaluation approach is to attempt to replicate the results of studies using synthetic
data (Benaim et al., 2020; El Emam, 2020; Rosenblatt et al., 2022). Another method is the computation
of the average distance among synthetic observations and their nearest neighbors within the original
dataset (Hittmeir et al., 2019). The Confidence Interval Overlap and Average Percentage Overlap metrics
may be used to evaluate synthetic data specifically for regression problems (Karr et al., 2006; Khan et al.,
2022).

2.6.2. Visual and Qualitative Approaches

One of the qualitative approaches found in the literature is the comparison of the features’ distributions
with synthetic data and the original data using histogram plots (Hittmeir et al., 2019). This comparison
can be complemented with the quantification of these distribution differences (El Emam, 2020). A
complementary approach is the comparison of correlation matrices via heat map plots (Hittmeir et al.,
2019).

Another way to assess the quality of synthetic data is to evaluate individual, synthetic data points and
collect subjective evaluations by domain experts (El Emam, 2020). The goal of such a test is to understand
whether domain experts are able to distinguish synthetic from real data, which could be quantified with
classification performance metrics. A low classification performance implies synthetic data that is difficult
to distinguish from real data.

2.7. Discussion

The generation of tabular and latent space synthetic data has applications in multiple ML tasks and
domains. Specifically, we found six areas that were shown to benefit from synthetic data: data privacy,
regularization, oversampling, active learning, semi-supervised learning, and self-supervised learning.
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Synthetic data may be used either as an accessory task to improve an ML model’s performance over a
primary task (e.g., regularization and oversampling), an intermediate task (e.g., feature extraction), or
as a final product itself (e.g., data anonymization). The analysis of data generation algorithms for each
relevant learning problem led to the proposal of a general-purpose taxonomy primarily focused on the
underlying mechanisms used for data generation. We characterized every algorithm discussed in this work
into four categories: (1) architecture, (2) application level, (3) data space, and (4) scope. The successful
implementation of synthetic data generation generally requires a few considerations:

1. Ensuring the dataset’s features are comprised within similar, fixed boundaries. For example, any
method using a neighbors-based approach will rely on distance measurements (typically the Euclidean
distance), which is sensitive to the scale of the data and a nearest-neighbors estimation may vary
depending on whether the data was scaled a priori. This can be achieved with data scaling.

2. Various generation mechanisms require a manifold. There are two approaches to address non-
manifold input data: (1) Adopt methods sensitive to the presence of non-metric features, or (2)
project the input data into a manifold (i.e., a latent space).

3. The smoothness assumption is prevalent in linear and perturbation-based data generation mechanisms.
If a classification problem has low class separation and it is difficult to solve, the choice in the design
of the generator algorithm is also difficult. Generally, generation algorithms with a global scope
might adapt better to classification problems with low separability. On the other hand, problems
with higher separability might require a definition of more uniform decision boundaries to prevent
overfitting, which can be achieved with generation algorithms with a local scope.

4. Considering the trade-off between performance and computational power. It is generally understood
that computationally-intensive approaches tend to produce synthetic data with higher quality. When
trained properly, neural network mechanisms typically lead to synthetic data that is more difficult
to distinguish compared to the remaining approaches. Geometric mechanisms have also achieved
good results but often require careful tuning of their hyperparameters. Linear and perturbation
mechanisms do not require much training and use fewer hyperparameters but have been known for
often producing low diversity synthetic data (vis a vis the original dataset).

This work focused primarily on the mechanisms used to generate synthetic observations; preprocessing,
learning phase design, latent space learning, and ML task-specific contributions were secondary objectives
for analysis. Consequently, understanding how the constraints within each task condition the choice and
design of the synthetic data generator is a subject of future work.

Throughout the analysis of the literature, we identified six types of generation mechanisms and discuss
more specific methods used in classical and state-of-the-art techniques. Techniques for data privacy
via synthetic data rely primarily on perturbation mechanisms, PDFs, PGMs, and Neural networks.
Regularization approaches frequently employ linear perturbation mechanisms. Other less commonly used
mechanisms are PGMs, Neural network approaches, geometric, and perturbation mechanisms. Various
Oversampling algorithms have been proposed using each of the mechanisms found. However, the most
prevalent mechanisms used were linear-based. AL methods rarely employ synthetic data. The few studies
found employ primarily linear and geometric mechanisms, and a minority used AE models for latent
space augmentation. Most Semi-SL methods used perturbation and linear mechanisms, while geometric
mechanisms are rarely used. All tabular Self-SL methods used perturbation mechanisms.

Designing an approach to measure the quality of synthetic data depends on the target ML problem.
A holistic evaluation approach for synthetic data should consider the analysis of (1) ML utility, (2)
Statistical similarity, and (3) interpretability. The analysis of statistical similarity can be further divided
into (1) fidelity, (2) diversity, and (3) generalization. However, balancing the analysis between these three
perspectives is not a straightforward task. For example, duplicating a dataset to form a synthetic dataset
will result in the best possible fidelity and diversity, but bad generalization. Overall, there is a paucity of
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research into the development of comprehensive analyses of synthetic data, as well as understanding the
balance between the different types of analyses.

2.8. Future Work

As discussed throughout our analysis, it appears that synthetic data generation research is generally
isolated within ML problems and/or domains. Given the breadth and complexity of input-level and latent-
level data generation mechanisms, it is increasingly important to find an a priori approach to efficiently
determine appropriate data generation policies and techniques. However, the complexity of this task is
determined by various factors: different data types, ML problems, model architectures, computational
resources, performance metrics, and contextual constraints. Auto-augmentation and meta-learning aim to
address this challenge and are still subject to active research.

Latent space learning. It is understood that, if learned properly, the latent space is expected to be
convex and isotropic. In that case, using linear generation techniques in the latent space would produce
synthetic data without introducing noise (Cheung & Yeung, 2020). However, it is unclear which types of
model/architectures and training procedures contribute to the learning of a good latent space according
to the context. Furthermore, we found a limited amount of research on tabular data augmentation using
auto-encoder architectures. Although there are studies performing data augmentation on tabular data in
various domains (Delgado & Oyedele, 2021), defining the architecture and learning phase of an AE is not
an intuitive task. Generally, autoencoders are used to learn a manifold for more complex data types. As
long as the method used to generate the latent space is appropriate, the methods discussed in this study
could be used in the latent space regardless of the type of data.

The quality of synthetic data generation in high-dimensional scenarios appears as a prevailing limitation in
various applications, especially within linear and geometric mechanisms. This limitation can be addressed
with dimensionality reduction techniques (Roccetti et al., 2021), as well as latent space learning. However,
research on data generation in the latent space is mostly focused on GAN architectures, which require
significant computational power. Other methods to learn manifold latent spaces could be explored to
address this limitation.

Selection of generation mechanisms. It remains an open question which generation mechanisms,
or types of mechanisms, create better synthetic data (Cheung & Yeung, 2020). Although there is
not necessarily a one-size-fits-all solution, a general set of rules of thumb could be explored, such as
understanding how certain characteristics of a problem will affect the choice of the generation policy,
which types of mechanisms are more appropriate for different types of dataset, ML model architecture,
domains, and target ML problem, or the trade-offs between the different types of generation mechanism.
A better understanding of the relationship between recently proposed methods for evaluating synthetic
data (as discussed in Section 2.6) and the performance over the target ML problem might contribute to
answering this question. Furthermore, determining the use cases, quality, and general performance of data
generation on the input, latent, and output space should be further developed. Finally, it is still unclear
why synthetic data generation works for each of the ML tasks discussed. Research on this topic lacks
depth and fails to address the theoretical underpinnings (Dao et al., 2019; S. Y. Feng et al., 2021).

Data privacy. The evaluation of anonymization techniques lacks standardized, objective, and reliable
performance metrics and benchmark datasets to allow an easier comparison across classifiers to evaluate
key aspects of data anonymization (resemblance, utility, privacy, and performance). These datasets should
contain mixed data types (i.e., a combination of categorical, ordinal, continuous, and discrete features) and
the metrics should evaluate the performance of different data mining tasks along with the anonymization
reliability. This problem appears to be universal across domains. For example, (Hernandez et al., 2022)
observed the lack of a universal method or metric to report the performance of synthetic data generation
algorithms for tabular health records. Therefore, in order to facilitate the usage of these techniques in
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industry domains, these benchmarks must also be realistic. (Rosenblatt et al., 2020) attempts to address
this problem by proposing a standardized evaluation methodology using standard datasets and real-world
industry applications.

Regularization in supervised learning. Unlike data privacy solutions, studies on data augmentation
techniques generally do not consider the similarity/dissimilarity of synthetic data. The study of quality
metrics for supervised learning may reduce computational overhead and experimentation time. Only one
study related to the relationship between quality metrics and performance in the primary ML task was
found in (Dankar & Ibrahim, 2021), which was done only for the pMSE metric.

Consistency and interpretability. Neural network mechanisms typically involve a higher computational
cost compared to the remaining types of mechanisms. This problem is further aggravated by their
inconsistent performance, since different initializations may result in very different performances. This
problem may be observed in (Douzas & Bacao, 2018). More generally, representing training data in the
latent space raises the challenge of interpretability; the ability to interpret latent space representations
could guide the design of data generation techniques.

Ensembles of generation mechanisms. In non-tabular data domains, a common approach for data
augmentation is the combination of several data augmentation methods to increase the diversification of
synthetic data. This is true for both text classification (Bayer et al., 2021) and image classification (Grill
et al., 2020). However, for tabular data, no studies were found that discuss the potential of ensembles
of generation mechanisms on tabular data, i.e., understanding how selecting with different probabilities
different generation mechanisms to generate synthetic data would affect the performance of the primary
ML task. The formalization and analysis carried out in this work, regarding the different types of synthetic
data generation mechanisms and quality metrics for latent and tabular synthetic data at an observation
level, may facilitate this work.

Oversampling. Various oversampling methods have been proposed to address imbalanced learning
limitations. However, there is still a major limitation in the literature regarding the oversampling of
datasets with mixed data types or with exclusively non-metric features at the input space. In addition,
research on oversampling using PDFs or PGMs is scarce.

Tabular few-shot learning. To the best of our knowledge, research on few-shot learning for tabular data
is infrequent. Few-shot learning research using synthetic data generation techniques has been extensively
developed using image (Cubuk et al., 2019; A. Zhao et al., 2019) and text data (J. Zhou et al., 2021),
but they are rarely adapted or tested for tabular data. One of the few studies found achieved a good
performance in both few-shot and zero-shot learning through the adaptation of a Large Language model
for tabular data (Hegselmann et al., 2022).

Fairness and bias. Oversampling does not seem to be a relevant source of bias in behavioral research and
does not appear to have an appreciably different effect on results for directly versus indirectly oversampled
variables (Hauner et al., 2014). However, most oversampling methods do not account for the training
dataset’s distribution, which is especially important for features with sensitive information (e.g., gender
or ethnicity). Therefore, the application of oversampling methods on user data may further increase the
bias in classification between genders or ethnicity groups.

Finally, various synthetic data generation algorithms are research-based, and might not be usable or
feasible to be implemented by practitioners (Bayer et al., 2021). One way to address this problem is to
publish the code developed, and ideally make them available as open-source libraries for out-of-the-box
usage.
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2.9. Conclusions

This literature review analyses various synthetic data generation-based algorithms for tabular data, with
a focus on external-level applications. Since synthetic data generation is a crucial step for various ML
applications and domains, it is essential to understand and compare which techniques and types of
algorithms are used for each of these problems. The usage of synthetic data is an effective approach to
better prepare datasets and ML pipelines for a wide range of applications and/or address privacy concerns.
Our work proposed a taxonomy based on four key characteristics of generation algorithms, which was
used to characterize 70 data generation algorithms across six ML problems. This analysis resulted in the
categorization and description of the generation mechanisms underlying each of the selected algorithms
into six main categories. Finally, we discussed several techniques to evaluate synthetic data, as well as
general recommendations and research gaps based on the insights collected throughout the analysis of the
literature.

Despite the extensive research developed on several methods for synthetic data generation, there are
still open questions regarding the theoretical underpinnings of synthetic data adoption for each of the
techniques, as well as limitations in the different types of generation mechanisms and evaluation procedures.
However, the empirical work presented in the literature shows significant performance improvements and
promising research directions for future work.

This chapter was published as: Fonseca, J., Bacao, F. (2023). Tabular and latent space synthetic
data generation: a literature review. Journal of Big Data, 10(1), 115. https://doi.org/10.1186/s40537-023-
00792-7
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3. Geometric SMOTE for Imbalanced Datasets
with Nominal and Continuous Features

Imbalanced learning can be addressed in 3 different ways: resampling, algorithmic modifi-
cations and cost-sensitive solutions. Resampling, and specifically oversampling, are more
general approaches when opposed to algorithmic and cost-sensitive methods. Since the
proposal of the Synthetic Minority Oversampling TEchnique (SMOTE), various SMOTE
variants and neural network-based oversampling methods have been developed. However,
the options to oversample datasets with nominal and continuous features are limited. We
propose Geometric SMOTE for Nominal and Continuous features (G-SMOTENC), based on a
combination of G-SMOTE and SMOTENC. Our method modifies SMOTENC’s encoding and
generation mechanism for nominal features while using G-SMOTE’s data selection mechanism
to determine the center observation and k-nearest neighbors and generation mechanism for
continuous features. G-SMOTENC’s performance is compared against SMOTENC’s along
with two other baseline methods, a State-of-the-art oversampling method and no oversampling.
The experiment was performed over 20 datasets with varying imbalance ratios, number of
metric and non-metric features and target classes. We found a significant improvement
in classification performance when using G-SMOTENC as the oversampling method. An
open-source implementation of G-SMOTENC is made available in the Python programming
language.

Keywords: Imbalanced Learning; Oversampling; SMOTE; Data Generation; Nominal Data

3.1. Introduction

Various Machine Learning (ML) tasks deal with highly imbalanced datasets, such as fraud transactions
detection, fault detection and medical diagnosis (Tyagi & Mittal, 2020). In these situations, predicting
false positives is often a more acceptable error, since the class of interest is usually the minority class (Vut-
tipittayamongkol et al., 2021). However, using standard ML classifiers on imbalanced datasets induces
a bias in favor of the classes with the highest frequency, while limiting the predictive power on lower
frequency classes (S. Das et al., 2018; López et al., 2013). This effect is known in the ML community as
the Imbalanced Learning problem.

Imbalanced learning involves a dataset with two or more target classes with varying class frequencies.
The minority class is defined as the class with the least amount of observations and the majority class is
the one with the highest amount of observations (Kaur et al., 2019). There are three main approaches to
address imbalanced learning (Fernández et al., 2013):

1. Cost-sensitive solutions attribute a higher misclassification cost to the minority class observations
to minimize higher cost errors;
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2. Algorithmic level solutions modify ML classifiers to improve the learning of the minority class;

3. Resampling solutions generate synthetic minority class observations and/or remove majority class
observations to balance the training dataset;

Since it is an external approach to imbalanced learning, the latter method becomes particularly useful.
It dismisses the required domain knowledge to build a cost matrix and the technical complexity or
knowledge to apply an imbalanced learning-specific classifier. Resampling can be done via undersampling,
oversampling, or hybrid approaches (Tarekegn et al., 2021). In this paper, we will focus on oversampling
approaches.

The presence of nominal features in imbalanced learning tasks limits the options available to deal with
class imbalance. Even though it is possible to use encoding methods such as one-hot or ordinal encoding to
convert nominal features into numerical, applying a distance metric on mixed-type datasets is questionable
since the nominal feature values are unordered (Lumijärvi et al., 2004). In this case, one possible approach
is to use models that can handle different scales (e.g., Decision Tree). However, this assumption may be
limiting since there are few ML algorithms where this condition is verified. Another possible approach
is transforming the variables to meet scale assumptions (Lumijärvi et al., 2004). This method was
explored in the algorithm Synthetic Minority Oversampling Technique for Nominal and Continuous
features (SMOTENC) (Chawla et al., 2002) (explained in Section 3.2).

In the presence of datasets with mixed data types, using most of the well-known resampling algorithms
becomes unfeasible. This happens because these methods consider exclusively continuous data; they
were not adapted to also use nominal features. Specifically, since the proposal of SMOTE, various other
SMOTE-variants have been developed to address some of its limitations. Although, there was not a
significant development in research to oversample datasets with both nominal and continuous features.

In this paper, we propose Geometric SMOTE for Nominal and Continuous features (G-SMOTENC). It
generates the continuous feature values of a synthetic observation within a truncated hyper-spheroid with
its nominal feature values using the most common value of its nearest neighbors. In addition, G-SMOTENC
uses G-SMOTE’s data selection strategy and SMOTENC’s approach to find the center observation’s
nearest neighbors. G-SMOTENC is a generalization of both SMOTENC and G-SMOTE (Douzas & Bacao,
2019). With the correct hyperparameters, our G-SMOTENC implementation can mimic the behavior of
SMOTE, SMOTENC, or G-SMOTE. It is available in the open-source Python library “ML-Research” and
is fully compatible with the Scikit-Learn ecosystem. These contributions can be summarized as follows:

1. We propose G-SMOTENC, an oversampling algorithm for datasets with nominal and continuous
features;

2. We test the proposed oversampler using 20 datasets and compare its performance to SMOTENC,
Random Oversampling, Random Undersampling and a State-of-the-art oversampler;

3. We provide an implementation of G-SMOTENC in the Python programming language;

The rest of this paper is structured as follows: Section 3.2 describes the related work and its limitations,
Section 3.3 describes the proposed method (G-SMOTENC), Section 3.4 lays out the methodology used to
test G-SMOTENC, Section 3.5 shows and discusses the results obtained in the experiment and Section 3.6
presents the conclusions drawn from this study.

3.2. Related Work
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A classification problem contains n classes, having Cmaj as the set of majority class observations (i.e.,
observations belonging to the most common target class) and Cmin as the set of minority class observations
(i.e., observations belonging to the least common target class). Typically, an oversampling algorithm will
generate synthetic data in order to ensure |C ′

min| = |Cmaj | = |Ci|, i ∈ {1, . . . , n}.
Since the proposal of SMOTE, other methods modified or extended SMOTE to improve the quality of the
data generated. The process of generating synthetic data using SMOTE-based algorithms can be divided
into two distinct phases (Fernández et al., 2018):

1. Data selection. A synthetic observation, xgen, is generated based on two existing observations. A
SMOTE-based algorithm employs a given heuristic to select a non-majority class observation as the
center observation, xc, and one of its nearest neighbors, xnn, selected randomly. For the case of
SMOTE, xc is randomly selected from each non-majority class.

2. Data generation. Once xc and xnn have been selected, xgen is generated based on a transformation
between the two selected observations. In the case of SMOTE, this transformation is a linear
interpolation between the two observations: xgen = αxc + (1− α)xnn, α ∼ U(0, 1).

Modifications to the SMOTE algorithm can be distinguished according to the phase where they were applied.
This distinction is especially relevant for the case of oversampling on datasets with mixed data types since
it raises the challenge of calculating meaningful distances and k-nearest neighbors among observations.
For example, State-of-the-art oversampling methods, such as Borderline-SMOTE (Han et al., 2005),
ADASYN (Haibo He et al., 2008), K-means SMOTE (Douzas et al., 2018) and LR-SMOTE (Liang et al.,
2020) modify the data selection mechanism and show promising results in imbalanced learning (Fonseca
et al., 2021a). However, these algorithms select xc using procedures that include calculating each
observation’s k-nearest neighbors or clustering methods, which are not prepared to handle nominal data.

Modifications to SMOTE’s generation mechanism are uncommon. A few oversampling methods, such
as Safe-level SMOTE (Bunkhumpornpat et al., 2009) and Geometric-SMOTE (Douzas & Bacao, 2019)
proposed this type of modification and have shown promising results (Douzas et al., 2019). However, these
methods are also unable to handle datasets with nominal data. Other methods attempt to replace the
SMOTE data generation mechanism altogether using different Generative Adversarial Networks (GAN)
architectures (W. Jo & Kim, 2022; Koivu et al., 2020; Salazar et al., 2021). Network-based architectures,
however, are computationally expensive to train and sensitive to the training initialization. It is also
difficult to ensure a balanced training of the two networks involved and tuning their hyperparameters is
often challenging or unfeasible (Gonog & Zhou, 2019).

As discussed in Section 3.1, research on resampling methods with mixed data types is scarce. The original
paper proposing SMOTE also proposed SMOTE for Nominal and Continuous (SMOTENC), an adaptation
of SMOTE to handle datasets with nominal and continuous features (Chawla et al., 2002). To determine
the k-nearest neighbors of xc, the Euclidean distance is modified to include the median of the standard
deviations of the continuous features for every nominal feature with different values. Once xc and xnn are
defined, the continuous feature values in xgen are generated using the SMOTE generation mechanism.
The nominal features are given the most common values occurring in the k-nearest neighbors.

Recently, a new SMOTE-based oversampling method for datasets with mixed data types, SMOTE-
ENC (Mukherjee & Khushi, 2021), was proposed. This method modifies the encoding mechanism for
nominal features used in the SMOTENC algorithm to account for nominal features’ change of association
with minority classes. The Multivariate Normal Distribution-based Oversampling for Numerical and
Categorical features (MNDO-NC) (Ambai & Fujita, 2019) uses the original MNDO method (Ambai
& Fujita, 2018) along with the SMOTENC encoding mechanism to find the values of the categorical
features for the synthetic observation. However, the results reported in the paper showed that MNDO-
NC was consistently outperformed by SMOTENC, which led us to discard this approach from further
consideration.
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Alternatively to SMOTE-based methods, it is possible to use non-informed over and undersampling
methods for datasets with nominal and continuous features, specifically Random Oversampling (ROS) and
Random Undersampling (RUS). These methods consist of randomly duplicating minority class observations
(in the case of ROS), which can lead to overfitting (Batista et al., 2004; S. Park & Park, 2021), or randomly
removing majority class observations (in the case of RUS), which may lead to underfitting (Bansal &
Jain, 2021).

3.3. Proposed Method

We propose G-SMOTENC to oversample imbalanced datasets with both nominal and continuous features.
Our method builds on top of G-SMOTE’s selection and generation mechanisms coupled with a modified
version of SMOTENC. It attributes less importance to the nominal features (relative to the continuous
features) when computing distances among observations compared to SMOTENC. However, this method
can be extended with further modifications to the nominal data encoding and selection mechanisms in
future work.

Similar to G-SMOTE being an extension of SMOTE, G-SMOTENC is also an extension of SMOTENC since
any method or ML pipeline using the SMOTENC generation mechanism can replace it with G-SMOTENC
without any further modifications. The proposed method is described in pseudo-code in Algorithm 1.
The functions SelectionMechanism and GenerationMechanism are described in Algorithms 2 and 3,
respectively.

Algorithm 1: G-SMOTENC.
Given: Dataset with binary target classes Cmin and Cmaj

Input: Cmaj , Cmin, αsel, αtrunc, αdef

Output: Cgen

1 begin
2 N ← |Cmaj | − |Cmin|
3 Cgen ← ∅
4 while |Cgen| < N do
5 xc, xnn, Xnn ← SelectionMechanism(Cmaj , Cmin, αsel)
6 xgen ← GenerationMechanism(xc, xnn, Xnn, αtrunc, αdef )
7 Cgen ← Cgen ∪ {xgen}

G-SMOTENC’s implementation involves additional considerations regarding the management of the
nominal features. During the selection mechanism (identified as the function SelectionMechanism), the
nominal features are encoded using the one-hot encoding technique, while the non-zero constant assumes
the value of the median of the standard deviations of the continuous features in Cmin, divided by two.
This encoding mechanism varies from the one in SMOTENC in order to attribute less weight to the
nominal features relative to the continuous features.

The selection strategy, αsel, as well as Cmin and Cmaj are used to determine a central observation, xc,
its nearest neighbors, Xnn, and one of its nearest neighbors, xnn ∈ Xnn. Xnn is calculated using the
euclidean distance and both the continuous and encoded nominal features. The outcome of this step is
dependent on the choice of αsel:

1. If αsel = minority , Xnn will consist of xc’s k -nearest neighbors within Cmin;

2. If αsel = majority , Xnn will consist of xc’s nearest neighbor within Cmaj ;
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Figure 3.1.: A visual depiction of G-SMOTENC. In this example, αtrunc is approximately 0.5 and αdef is
approximately 0.4.

3. If αsel = combined , Xnn will consist of the union between xc’s k -nearest neighbors within Cmin

and xc’s nearest neighbor within Cmaj , i.e., Cmin,k ∪ Cmaj,1. In this case, xnn is selected using the
majority class observation within Xnn as well as another randomly selected nearest neighbor, such
that xnn = argmin(||xnnmin − xc||, ||xnnmaj − xc||);

Unlike in the original G-SMOTE generation mechanism, Xnn is used in the to determine the nominal
feature values of xgen based on the mode of these features within Xnn. G-SMOTENC’s generation
mechanism (identified as GenerationMechanism) uses two hyperparameters to generate the continuous
features in xgen: the truncation factor, αtrunc, and the deformation factor, αdef . They are generated by
forming a hyper-sphere with center xc and is modified according to the parameters:

1. αtrunc truncates the hyper-sphere to induce the generation of the artificial instance within a subset
of the hypersphere. It varies between 1 and -1, where 1 would split the generation area in half and
use the area between xc and xnn, -1 achieves the same effect and uses the other semi-hyper-sphere,
and 0 applies no truncation.

2. αdef deforms the hyper-sphere as shown in Figure 3.1. It varies between 0 and 1, where 0 applies no
deformation and 1 fully deforms the hyper-sphere into a line segment, corresponding to e//.

Figure 3.1 depicts the effect of those hyperparameters in the data selection and generation phases. For an
in-depth explanation of these hyperparameters, the reader is referred to (Douzas & Bacao, 2019).

3.3.1. Selection Mechanism

The data selection mechanism is preceded by the numerical encoding of the nominal features. It combines
the selection mechanisms of SMOTENC and G-SMOTE, as shown in Algorithm 2. The selection mechanism
inherits the minority, majority, and combined mechanisms proposed in G-SMOTE. The nominal features
in the minority and majority class observations, Cmaj and Cmin are first encoded using a one-hot encoding
approach and replacing the constant 1 with the median of the standard deviations of the continuous
features in Cmin divided by 2. The nearest-neighbors (Xnn) of xc are determined based on αsel, which
are passed on to the generation mechanism to determine the nominal features’ values of xgen in the
generation mechanism. Simultaneously, xnn is randomly selected from Xnn and will be used to generate
xgen’s continuous features’ values.
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Algorithm 2: G-SMOTENC’s selection mechanism.
Input: Cmaj , Cmin, αsel

Output: xc, xnn, Xnn

1 Function CatEncoder(Cmaj, Cmin):
2 S ← Standard deviations of the continuous features in Cmin

3 σmed ← median(S)
4 forall i ∈ {maj,min} do
5 forall f ∈ CT

i do
6 if f is nominal then
7 f ′ ← OneHotEncode(f)× σmed/2
8 C ′

i ← (CT
i \ f)T

9 C ′
i ← (C ′T

i ∪ f ′)T

10 return C ′
maj , C

′
min

11 Function Surface(αsel, xc, Cmaj, Cmin):
12 if αsel = minority then
13 xnn ∈ Cmin,k // One of the k-nearest neighbors of xc from Cmin

14 Xnn ← Cmin,k

15 if αsel = majority then
16 xnn ∈ Cmaj,1 // Nearest neighbor of xc from Cmaj

17 Xnn ← Cmaj,1

18 if αsel = combined then
19 xnnmin ∈ Cmin,k

20 xnnmaj ∈ Cmaj,1

21 xnn ← argmin(||xnnmin − xc||, ||xnnmaj − xc||)
22 Xnn ← Cmin,k ∪ Cmaj,1

23 return xnn, Xnn // Xnn is the set of k-nearest neighbors

24 begin
25 C ′

maj , C
′
min ← CatEncoder(Cmaj , Cmin)

26 xc ∈ C ′
min // Randomly select xc from C ′

min

27 xnn, Xnn ← Surface(αsel, x
c, C ′

maj , C
′
min)

28 Reverse encoding of nominal features in xc, xnn and Xnn
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3.3.2. Generation Mechanism

G-SMOTENC’s generation mechanism is shown in Algorithm 3. It divides the generation of xgen into two
parts: (1) generation of continuous feature values and (2) generation of nominal feature values. First, the
nominal features from xc and xnn are discarded. Afterward, the continuous features are generated using
G-SMOTE’s generation mechanism; within a hyper-spheroid defined with αtrunc and αdef , which allows
the non-linear generation of synthetic observations between xc and xnn. Finally, the nominal feature
values are generated by the mode of each feature within the observations in Xnn.

3.4. Methodology

This section describes how the evaluation of G-SMOTENC was performed. We describe the datasets
used in the experiment, their source and preprocessing steps executed in Section 3.4.1. The resampling
and classification methods used to analyze G-SMOTE’s performance are listed in Section 3.4.2. The
performance metrics used are defined in Section 3.4.3. Finally, the experimental procedure is described in
Section 3.4.4.

3.4.1. Experimental Data

The datasets used in this experiment were extracted from the UC Irvine Machine Learning Repository.
All of the datasets are publicly available and cover a range of different domains. The criteria to select
the datasets ensured that all datasets are imbalanced and contained non-metric features (i.e., ordinal,
nominal or binary). These datasets are used to show how the performance of different classifiers varies
across over/undersamplers.

All datasets were initially preprocessed manually with minimal manipulations. We removed features
and/or observations with missing values and identified the non-metric features. The second stage of
preprocessing was done systematically. It starts with the generation of artificially imbalanced datasets
with different Imbalance Ratios (IR =

|Cmaj |
|Cmin| ). For each original dataset, we create its more imbalanced

versions at intervals of 10, while ensuring that |Cmin| ≥ 15. The sampling strategy was determined
for class n ∈ {1, . . . , n, . . . ,m} as a linear interpolation using |Cmaj | and |C ′

min| =
|Cmaj |
IRnew

, as shown in
equation 3.1.

|Ci|imb = min(
|C ′

min| − |Cmaj |
n− 1

.|Ci|+ |Cmax|, |Ci|) (3.1)

The new, artificially imbalanced dataset, is formed by sampling observations without replacement from
each Ci such that C ′

i ⊆ Ci, |C ′
i| = |Ci|imb. The artificially imbalanced datasets are marked with its

imbalance ratio as a suffix in Table 3.1.

The datasets (both original and artificially imbalanced versions) are then filtered to ensure all datasets
have a minimum of 500 observations. The remaining datasets with a number of observations larger
than 5000 are randomly sampled to match this number of observations. Afterward, we remove target
classes with a frequency lower than 15 observations for each remaining dataset. Finally, the continuous
and discrete features are scaled to the range [0, 1] to ensure a common range between all features. The
description of the resulting datasets is shown in Table 3.1.
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Algorithm 3: G-SMOTENC’s generation mechanism.
Input: xc, xnn, Xnn, αtrunc, αdef

Output: xgen

1 Function Hyperball():
2 vi ∼ N (0, 1)
3 r ∼ U(0, 1)
4 xgen ← r1/p

(v1,...,vp)
||(v1,...,vp)||

5 return xgen

6 Function Vectors(xc, xnn, xgen):
7 e// ← xnn−xc

||xnn−xc||
8 x// ← (xgen · e//)e//
9 x⊥ ← xgen − x//

10 return x//, x⊥

11 Function Truncate(xc, xnn, xgen, x//, αtrunc):
12 if |αtrunc − x//| > 1 then
13 xgen ← xgen − 2x//

14 return xgen

15 Function Deform(xgen, x⊥, αdef ):
16 return xgen − αdefx

⊥

17 Function Translate(xc, xgen, R):
18 return xc +Rxgen

19 Function GenNominal(Xnn):
20 xgennom = ∅
21 forall f ∈ (Xnn)T do
22 if f is nominal then
23 xgennom ∪ {mode(f)} // Ties are decided with random selection

24 return xgennom

25 begin
26 Discard nominal features from xc and xnn

27 xgen ← Hyperball()

28 x//, x⊥ ← V ectors(xc, xnn, xgen)

29 xgen ← Truncate(xc, xnn, xgen, x//, αtrunc)

30 xgen ← Deform(xgen, x⊥, αdef )
31 xgen ← Translate(xc, xgen, ||xnncont − xc||)
32 xgennom ← GenNominal(Xnn)
33 xgen ← xgen ∪ xgennom
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Table 3.1.: Description of the datasets collected after data preprocessing. The sampling strategy is similar
across datasets. Legend: (IR) Imbalance Ratio

Dataset Metric Non-Metric Obs. Min. Obs. Maj. Obs. IR Classes

Abalone 1 7 4139 15 689 45.93 18
Adult 8 6 5000 1268 3732 2.94 2

Adult (10) 8 6 5000 451 4549 10.09 2
Annealing 4 6 790 34 608 17.88 4

Census 24 7 5000 337 4663 13.84 2
Contraceptive 4 5 1473 333 629 1.89 3

Contraceptive (10) 4 5 1036 62 629 10.15 3
Contraceptive (20) 4 5 990 31 629 20.29 3
Contraceptive (31) 4 5 973 20 629 31.45 3
Contraceptive (41) 4 5 966 15 629 41.93 3

Covertype 2 10 5000 20 2449 122.45 7
Credit Approval 9 6 653 296 357 1.21 2
German Credit 13 7 1000 300 700 2.33 2

German Credit (10) 13 7 770 70 700 10.00 2
German Credit (20) 13 7 735 35 700 20.00 2
German Credit (30) 13 7 723 23 700 30.43 2
German Credit (41) 13 7 717 17 700 41.18 2

Heart Disease 5 5 740 22 357 16.23 5
Heart Disease (21) 5 5 735 17 357 21.00 5

3.4.2. Machine Learning Algorithms

The choice of classifiers used in the experimental procedure was based on their type (tree-based, nearest
neighbors-based, linear model and ensemble-based), popularity and consistency in performance. We used
Decision Tree (DT), a K-Nearest Neighbors (KNN) classifier, a Logistic Regression (LR) and a Random
Forest (RF).

Given the lack of existing oversamplers that address imbalanced learning problems with mixed data types,
the amount of benchmark methods used is also limited. We used three appropriate, well-known methods
and one state-of-the-art oversampling method: SMOTENC, RUS, ROS and SMOTE-ENC. Table 3.2
shows the hyperparameters used for the parameter search described in Section 3.4.4.

3.4.3. Performance Metrics

The choice of the performance metric plays a critical role in assessing the effect on classification tasks.
The typical performance metrics, e.g., Overall Accuracy (OA), are intuitive to interpret but are often
inappropriate to measure a classifier’s performance in an imbalanced learning context (Sun et al., 2009).
For example, to estimate an event that occurs in 1% of the dataset, a constant classifier would obtain an
OA of 0.99 and still be unusable. However, this metric is still reported in some of our results to maintain
interpretability.
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Table 3.2.: Hyperparameter definition for the classifiers and resamplers used in the experiment.

Classifier Hyperparameter Values

DT min. samples split 2
criterion gini
max depth 3, 6

LR maximum iterations 10000
multi-class One-vs-All
solver saga
penalty None, L1, L2

KNN # neighbors 3, 5
weights uniform
metric euclidean

RF min. samples split 2
# estimators 50, 100
Max depth 3, 6
criterion gini

Resampler

SMOTENC # neighbors 3, 5
SMOTE-ENC # neighbors 3, 5
G-SMOTENC # neighbors 3, 5

deformation factor 0.0, 0.25, 0.5, 0.75, 1.0
truncation factor -1.0, -0.5, 0.0, 0.5, 1.0
selection strategy “combined”, “minority”, “majority”

RUS replacement False
ROS (no applicable parameters)

Recent surveys consider Geometric-mean (G-mean), F1-score (F-score), Sensitivity = TP
FN+TP and

Specificity = TN
TN+FP appropriate and common performance metrics in imbalanced learning contexts (Jap-

kowicz, 2013; Jeni et al., 2013; Rout et al., 2018). G-mean and F-score are defined in Equations 3.2
and 3.3, respectively.

G-mean =

√
Sensitivity × Specificity (3.2)

F-score = 2× Precision×Recall

Precision+Recall
(3.3)

They are calculated as a function of the number of False/True Positives (FP and TP) and False/True
Negatives (FN and TN), with Precision = TP

TP+FP and Recall = TP
TP+FN . This led us to use, along with

OA, both F-score and G-mean as the main performance metrics for this study.

3.4.4. Experimental Procedure

The experimental procedure was applied similarly to all combinations of resamplers, classifiers and
hyperparameter combinations across all datasets. The evaluation of the models’ performance was tested
using a 5-fold Cross-Validation (CV) approach. The mean performance in the test set is calculated
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Figure 3.2.: Experimental procedure used in this study.

over the five folds and three different runs of the experimental procedure for each combination of
resampling/classifier hyperparameters. For each dataset, we select the results of the hyperparameters
that optimize the performance of a resampler/classifier. Figure 3.2 shows a diagram of the experimental
procedure described.

A CV run consists of a stratified partitioning (i.e., each partition contains the same relative frequencies of
target labels) of the dataset into five parts. A given resampler/classifier combination with a specific set of
hyperparameters is fit and tested five times, using one of the partitions as a test set and the remaining
ones as the training set. In the ML pipeline defined for each run, the nominal features are one-hot encoded
after oversampling and before passing the data to the classifier. The estimated performance consists of
the average classification performance across the five tests and three runs (i.e., a total of 15 tests).

3.4.5. Software Implementation

The algorithmic implementation of G-SMOTENC was written using the Python programming language
and is available in the open-source package ML-Research (Fonseca et al., 2021b), along with other
utilities used to produce the experiment and outputs used in Section 3.5. In addition, the packages
Scikit-Learn (Pedregosa et al., 2011), Imbalanced-Learn (Lemaître et al., 2017) and Research-Learn
were also used in the experimental procedure to get the implementations of the classifiers, benchmark
over/undersamplers and run the experimental procedure. The original SMOTE-ENC implementation was
retrieved from the authors’ GitHub repository. The Latex code, Python scripts (including data pulling
and preprocessing, experiment setup and analysis of results), as well as the datasets used, are available in
this GitHub repository.

3.5. Results & Discussion

In this section, we present the experimental results. We focus on the comparison of classification
performance using oversamplers whose generation mechanism is compatible with datasets containing
both nominal and continuous features. The experimental results were analyzed in two stages: (1) in
Section 3.5.1 we analyze mean rankings and absolute performances and in Section 3.5.2 we show the
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results of our statistical analysis. Section 3.5.3 discusses the main insights extracted by analyzing the
experimental results.

3.5.1. Results

Table 3.3 presents the mean rankings of CV scores between the different combinations of oversamplers,
metrics and classifiers. These results were calculated by assigning a ranking score for each oversampler
from 1 (best) to 4 (worst) for each dataset, metric and classifier.

Table 3.3.: Mean rankings over the different datasets, folds and runs used in the experiment.
Classifier Metric G-SMOTENC NONE SMOTENC ROS RUS SMOTE-ENC

DT OA 1.66 ± 0.13 1.61 ± 0.27 3.58 ± 0.20 4.68 ± 0.15 5.42 ± 0.27 4.05 ± 0.23
DT F-Score 1.32 ± 0.11 3.84 ± 0.40 3.13 ± 0.20 4.32 ± 0.19 5.47 ± 0.23 2.92 ± 0.34
DT G-Mean 1.68 ± 0.24 5.84 ± 0.09 2.82 ± 0.21 2.95 ± 0.32 4.26 ± 0.32 3.45 ± 0.30

KNN OA 2.50 ± 0.17 1.37 ± 0.28 4.21 ± 0.25 3.34 ± 0.35 5.68 ± 0.22 3.89 ± 0.15
KNN F-Score 1.37 ± 0.16 3.95 ± 0.35 3.11 ± 0.29 3.47 ± 0.36 5.53 ± 0.23 3.58 ± 0.23
KNN G-Mean 1.74 ± 0.17 5.84 ± 0.12 2.89 ± 0.23 3.76 ± 0.33 3.00 ± 0.45 3.76 ± 0.23
LR OA 2.74 ± 0.19 1.37 ± 0.28 3.08 ± 0.21 4.34 ± 0.30 5.74 ± 0.17 3.74 ± 0.28
LR F-Score 2.11 ± 0.24 4.53 ± 0.35 2.37 ± 0.28 3.47 ± 0.32 5.21 ± 0.27 3.32 ± 0.38
LR G-Mean 2.13 ± 0.26 6.00 ± 0.00 3.61 ± 0.21 2.11 ± 0.23 3.32 ± 0.40 3.84 ± 0.28
RF OA 1.82 ± 0.11 1.24 ± 0.09 3.97 ± 0.16 4.32 ± 0.21 5.92 ± 0.06 3.74 ± 0.22
RF F-Score 1.32 ± 0.13 5.05 ± 0.31 3.16 ± 0.22 3.05 ± 0.31 5.37 ± 0.14 3.05 ± 0.27
RF G-Mean 1.68 ± 0.22 5.79 ± 0.21 3.26 ± 0.28 2.47 ± 0.30 3.89 ± 0.35 3.89 ± 0.19

Table 3.4 presents the mean CV scores. Except for the OA metric, G-SMOTENC either outperformed or
matched the remaining oversamplers.

Table 3.4.: Mean scores over the different datasets, folds and runs used in the experiment
Classifier Metric G-SMOTENC NONE SMOTENC ROS RUS SMOTE-ENC

DT OA 0.74 ± 0.05 0.75 ± 0.04 0.68 ± 0.04 0.66 ± 0.04 0.58 ± 0.04 0.65 ± 0.04
DT F-Score 0.56 ± 0.04 0.52 ± 0.04 0.54 ± 0.04 0.52 ± 0.04 0.48 ± 0.04 0.51 ± 0.04
DT G-Mean 0.69 ± 0.03 0.60 ± 0.02 0.68 ± 0.03 0.67 ± 0.03 0.65 ± 0.03 0.66 ± 0.03

KNN OA 0.69 ± 0.04 0.73 ± 0.05 0.67 ± 0.04 0.69 ± 0.05 0.57 ± 0.04 0.68 ± 0.05
KNN F-Score 0.53 ± 0.04 0.50 ± 0.04 0.52 ± 0.04 0.52 ± 0.04 0.46 ± 0.04 0.51 ± 0.04
KNN G-Mean 0.66 ± 0.03 0.58 ± 0.03 0.64 ± 0.03 0.62 ± 0.03 0.65 ± 0.03 0.63 ± 0.03
LR OA 0.68 ± 0.05 0.75 ± 0.04 0.68 ± 0.05 0.66 ± 0.05 0.58 ± 0.04 0.67 ± 0.04
LR F-Score 0.54 ± 0.04 0.52 ± 0.04 0.54 ± 0.04 0.53 ± 0.04 0.48 ± 0.04 0.52 ± 0.04
LR G-Mean 0.69 ± 0.02 0.60 ± 0.03 0.68 ± 0.02 0.69 ± 0.03 0.67 ± 0.03 0.67 ± 0.03
RF OA 0.74 ± 0.04 0.76 ± 0.04 0.69 ± 0.04 0.69 ± 0.04 0.59 ± 0.04 0.68 ± 0.05
RF F-Score 0.57 ± 0.04 0.48 ± 0.04 0.55 ± 0.04 0.55 ± 0.04 0.49 ± 0.04 0.53 ± 0.04
RF G-Mean 0.70 ± 0.02 0.57 ± 0.02 0.68 ± 0.03 0.69 ± 0.03 0.68 ± 0.03 0.68 ± 0.02

3.5.2. Statistical Analysis

It is necessary to use methods that account for the multiple comparison problem to conduct an appropriate
statistical analysis in an experiment with multiple datasets. Based on the recommendations found
in (Demšar, 2006), we applied a Friedman test followed by a Holm-Bonferroni test for post-hoc analysis.
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In Section 3.4.3 we explained that OA, although easily interpretable, is not an appropriate performance
metric for imbalanced learning problems. Therefore, the statistical analysis was developed using the
two imbalance-appropriate metrics used in the study: F-Score and G-Mean. Based on the Friedman
test (Friedman, 1937), there is a statistically significant difference in performance across resampling
methods. The results of this test are shown in Table 3.5. The null hypothesis is rejected in all cases.

Table 3.5.: Results for the Friedman test. Statistical significance is tested at a level of α = 0.05. The null
hypothesis is that there is no difference in the classification outcome across resamplers.

Classifier Metric p-value Significance

DT F-Score 2.2e-10 True
DT G-Mean 1.2e-10 True

KNN F-Score 2.3e-09 True
KNN G-Mean 9.4e-10 True
LR F-Score 2.1e-07 True
LR G-Mean 9.7e-11 True
RF F-Score 8.5e-12 True
RF G-Mean 2.0e-10 True

We performed a Holm-Bonferroni test to understand whether the difference in the performance of G-
SMOTENC is statistically significant to the remaining resampling methods. The results of this test are
shown in Table 3.6. The null hypothesis is rejected in 33 out of 40 trials.

Table 3.6.: Adjusted p-values using the Holm-Bonferroni test. Statistical significance is tested at a level of
α = 0.05. The null hypothesis is that the benchmark methods perform similarly to the control
method (G-SMOTENC).

Classifier Metric NONE SMOTENC ROS RUS SMOTE-ENC

DT F-Score 1.5e-04 1.5e-04 7.3e-06 1.2e-06 1.0e-01
DT G-Mean 5.6e-07 2.7e-03 2.8e-02 3.9e-04 2.3e-02

KNN F-Score 6.4e-04 2.2e-04 7.2e-04 6.4e-04 5.9e-06
KNN G-Mean 1.6e-05 9.6e-03 6.5e-03 2.0e-01 3.5e-03
LR F-Score 4.0e-03 6.1e-01 9.2e-03 3.6e-04 5.6e-02
LR G-Mean 1.6e-07 4.0e-04 8.6e-01 2.4e-01 4.7e-03
RF F-Score 1.7e-06 2.4e-04 8.0e-03 1.7e-06 8.0e-03
RF G-Mean 3.8e-06 8.8e-03 2.5e-01 2.3e-02 1.7e-03

3.5.3. Discussion

The results reported in Section 3.5.1 show that G-SMOTENC consistently outperforms the remaining
oversampling approaches. Based on the two metrics appropriate for imbalanced learning problems, G-Mean
and F-Score, in the average rankings shown in Table 3.3 G-SMOTENC was only outperformed once by a
small margin. Unlike the results reported in (Mukherjee & Khushi, 2021), SMOTE-ENC’s performance
was rarely superior to SMOTENC’s.

The relative difference in the classifiers’ performance is better visible in Table 3.4. Using an RF classifier,
for example, the impact of using G-SMOTENC compared to no oversampling improves, on average, 13
percentual points on G-mean and nine percentual points using F-Score.
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The difference in performance between oversamplers was found to be statistically significant across
classifiers and performance metrics in the Friedman test. The p-values of this test are reported in Table 3.5.
The superiority of G-SMOTENC was confirmed with the results from the Holm-Bonferroni test shown in
Table 3.6. This test showed that G-SMOTENC outperformed with statistical significance the remaining
resamplers in 82.5% of the comparisons done.
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Figure 3.3.: Average ranking of oversamplers over different characteristics of the datasets used in the
experiment. Legend: IR — Imbalance Ratio, Classes — Number of classes in the dataset,
M/NM ratio — ratio between the number of metric and non-metric features, E(F-Score) —
Mean F-Score of dataset across all combinations of classifiers and oversamplers.

The results from this experiment expose some well-known limitations of SMOTE, which become particularly
evident with SMOTENC. Specifically, the lack of diversity in the generated data and, on some occasions,
the near-duplication of observations discussed in (Douzas & Bacao, 2019) may be a possible explanation
for the performance of SMOTENC being comparable to ROS’ performance, visible in Figure 3.3. In this
figure, three groups of resampling methods with comparable performance are visible: (1) G-SMOTENC,
the top-performing method, (2) SMOTENC, ROS and SMOTE-ENC, where SMOTE-ENC has the most
inconsistent behavior and (3) RUS and no oversampling, the worst-performing approaches. In addition,
G-SMOTENC’s superiority seems invariable to the dataset’s characteristics, with little overlap with the
remaining benchmark methods.

3.6. Conclusion

This paper presented G-SMOTENC, a new oversampling algorithm that combines G-SMOTE and
SMOTENC. This oversampling algorithm leverages G-SMOTE’s data selection and generation mechanisms
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into datasets with mixed data types. This was achieved by encoding and generating nominal feature values
using SMOTENC’s approach. The quality of the data generated with G-SMOTENC was tested over 20
datasets with different imbalance ratios, metric/non-metric feature ratios and number of classes. These
results were compared to no oversampling, SMOTENC, Random Oversampling, Random Undersampling
and SMOTE-ENC using a Decision Tree, K-Nearest Neighbors, Logistic Regression and Random Forest
as classifiers.

G-SMOTENC can be seen as a drop-in replacement of SMOTENC, since when αtrunc = 1, αdef = 1 and
αsel = minority, SMOTENC is reproduced. G-SMOTENC has three additional hyperparameters that
allow for greater customization of the selection and generation mechanisms. However, determining the
optimal parameters a priori (i.e., with reduced parameter tuning) is a topic for future work.

The results show that G-SMOTENC performs significantly better when compared to its more popular
counterparts (SMOTENC, Random Oversampling and Random Undersampling), as well as a recently
proposed oversampling algorithm for mixed data types (SMOTE-ENC). This performance improvement
is related to G-SMOTENC’s selection mechanism, which finds a safer region for data generation, along
with its generation mechanism which increases the diversity of the generated observations compared to
SMOTENC. The G-SMOTENC implementation used in this study is available in the open-source Python
library “ML-Research” and is fully compatible with the Scikit-Learn ecosystem.

This chapter was published as: Fonseca, J., Bacao, F. (2023). Geometric SMOTE for imbal-
anced datasets with nominal and continuous features. Expert Systems with Applications, 234, 121053.
https://doi.org/10.1016/j.eswa.2023.121053
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4. Improving Imbalanced Land Cover
Classification with K-means SMOTE:
Detecting and Oversampling Distinctive
Minority Spectral Signatures

Land cover maps are a critical tool to support informed policy development, planning,
and resource management decisions. With significant upsides, the automatic production of
Land Use/Land Cover maps has been a topic of interest for the remote sensing community
for several years, but it is still fraught with technical challenges. One such challenge is
the imbalanced nature of most remotely sensed data. The asymmetric class distribution
impacts negatively the performance of classifiers and adds a new source of error to the
production of these maps. In this paper, we address the imbalanced learning problem,
by using K-means and the Synthetic Minority Oversampling TEchnique (SMOTE) as an
improved oversampling algorithm. K-Means SMOTE improves the quality of newly created
artificial data by addressing both the between-class imbalance, as traditional oversamplers do,
but also the within-class imbalance, avoiding the generation of noisy data while effectively
overcoming data imbalance. The performance of K-means SMOTE is compared to three
popular oversampling methods (Random Oversampling, SMOTE and Borderline-SMOTE)
using seven remote sensing benchmark datasets, three classifiers (Logistic Regression, K-
Nearest Neighbors and Random Forest Classifier) and three evaluation metrics using a 5-fold
cross-validation approach with 3 different initialization seeds. The statistical analysis of the
results show that the proposed method consistently outperforms the remaining oversamplers
producing higher quality land cover classifications. These results suggest that LULC data can
benefit significantly from the use of more sophisticated oversamplers as spectral signatures
for the same class can vary according to geographical distribution.

Keywords: LULC Classification; Imbalanced Learning; Oversampling; Data Augmentation; Clustering

4.1. Introduction

The increasing amount of remote sensing missions granted the access to dense time series (TS) data
at a global level and provides up-to-date, accurate land cover information (Drusch et al., 2012). This
information is often materialized through Land Use and Land Cover (LULC) maps. While Land Cover
maps define the biophysical cover found on the surface of the earth, Land Use maps define how it is
used by humans (Fritz et al., 2017). Both Land Use and Land Cover maps constitute an essential asset
for various purposes, such as land cover change detection, urban planning, environmental monitoring
and natural hazard assessment (Khatami et al., 2016). However, the timely production of accurate and
updated LULC maps is still a challenge within the remote sensing community (Wulder et al., 2018). LULC
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maps are produced based on two main approaches: photo-interpreted by the human eye, or automatic
mapping using remotely sensed data and classification algorithms.

While photo-interpreted LULC maps rely on human operators and can be more reliable, they also present
some significant disadvantages. The most important disadvantage is the cost of production, in fact
photo-interpretation consumes significant resources, both in terms of money and time. Because of that,
they are not frequently updated and not suitable for operational mapping over large areas. Finally, there
is also the issue of overlooking rare or small-area classes, due to factors such as the minimum mapping
unit being used.

Automatic mapping with classification algorithms based on machine-learning (ML) have been extensively
researched and used to speed up and reduce the costs of the production process (Gavade & Rajpurohit,
2019; Kaur et al., 2019; Khatami et al., 2016). Improvements in classification algorithms are sure to have
significant impact in the efficiency with which remote sensing imagery is used. Several challenges have
been identified in order to improve automatic classification:

1. Improve the ability to handle high-dimensional datasets, in cases such as Multi-spectral TS composites
high-dimensionality increases the complexity of the problem and creates a strain on computational
power (Stromann et al., 2020).

2. Improve class separability, as the production of an accurate LULC map can be hindered by the
existence of classes with similar spectral signatures, making these classes difficult to distinguish
(Alonso-Sarria et al., 2019).

3. Resilience to mislabelled LULC patches, as the use of photo-interpreted training data poses a threat
to the quality of any LULC map produced with this strategy, since factors such as the minimum
mapping unit tend to cause the overlooking of small-area LULC patches and generates noisy training
data that may reduce the prediction accuracy of a classifier (Pelletier et al., 2017).

4. Dealing with rare land cover classes, due to the varying levels of area coverage for each class. In this
case using a purely random sampling strategy will amount to a dataset with a roughly proportional
class distribution as the one on the multi/hyperspectral image. On the other hand, the acquisition of
training datasets containing balanced class frequencies is often unfeasible. This causes an asymmetry
in class distribution, where some classes are frequent in the training dataset, while others have little
expression (W. Feng et al., 2019; R. Wang et al., 2019).

The latter challenge is known, in machine learning, as the imbalanced learning problem (Chawla et al.,
2004). It is defined as a skewed distribution of instances found in a dataset among classes in both binary
and multi-class problems (Abdi & Hashemi, 2016). This asymmetry in class distribution negatively
impacts the performance of classifiers, especially in multi-class problems. The problem comes from the
fact that during the learning phase, classifiers are optimized to maximize an objective function, with
overall accuracy being the most common one (Maxwell et al., 2018). This means that instances belonging
to minority classes contribute less to the optimization process, translating into a bias towards majority
classes. As an example, a trivial classifier can achieve 99% overall accuracy on a binary dataset where 1%
of the instances belong to the minority class if it classifies all instances as belonging to the majority class.
This is an especially significant issue in the automatic classification of LULC maps, as the distribution of
the different land-use classes tends to be highly imbalanced. Therefore, improvements in the ability to
deal with imbalanced datasets will translate into important progress in the automatic classification of
LULC maps.

There are three different types of approaches to deal with the class imbalance problem (Fernández et al.,
2013; Kaur et al., 2019):
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1. Cost-sensitive solutions. Introduces a cost matrix to the learning phase with misclassification costs
attributed to each class. Minority classes will have a higher cost than majority classes, forcing the
algorithm to be more flexible and adapt better to predict minority classes.

2. Algorithmic level solutions. Specific classifiers are modified to reinforce the learning on minority
classes. Consists on the creation or adaptation of classifiers.

3. Resampling solutions. Rebalances the dataset’s class distribution by removing majority class
instances and/or generating artificial minority instances. This can be seen as an external approach,
where the intervention occurs before the learning phase, benefitting from versatility and independency
from the classifier used.

Since resampling strategies represent a set of methods that are detached from classifiers by operating at
the data level, they allow the use of any off the shelf algorithm, without the need for any type of changes
or adaptions to the algorithm. Specifically, in the case of oversampling (defined below), the user is able to
balance the dataset’s class distribution by without the loss of information, which is not the case with
undersampling techniques. This is a significant advantage especially considering that most users in remote
sensing are not expert machine learning engineers.

Within resampling approaches there are three subgroups of approaches (Fernández et al., 2013; Kaur
et al., 2019; Luengo et al., 2020):

1. Undersampling methods, which rebalance class distribution by removing instances from the majority
classes.

2. Oversampling methods, which rebalance datasets by generating new artificial instances belonging to
the minority classes.

3. Hybrid methods, which are a combination of both oversampling and undersampling, resulting in the
removal of instances in the majority classes and the generation of artificial instances in the minority
classes.

Resampling methods can be further distinguished between non-informed and heuristic (i.e., informed)
resampling techniques (Fernández et al., 2013; García et al., 2016; Luengo et al., 2020). The former
consist of methods that duplicate/remove a random selection of data points to set class distributions
to user-specified levels, and are therefore a simpler approach to the problem. The latter consists of
more sophisticated approaches that aim to perform over/undersampling based on the points’ contextual
information within their data space.

The imbalanced learning problem is not new in machine learning but its relevancy has been growing,
as attested by (Haixiang et al., 2017). The problem has also been addressed in the context of remote
sensing (Douzas et al., 2019). In this paper, we propose the application of a recent oversampler based on
SMOTE (Chawla et al., 2002), the K-means SMOTE (Douzas et al., 2018) oversampler, to address the
imbalanced learning problem in a multiclass context for LULC classification using various remote sensing
datasets. Specifically, we use seven land use datasets commonly used in research literature, that vary
among agricultural and urban land use. The K-means SMOTE algorithm couples two different procedures
in the generation of artificial data. The algorithm starts by grouping the instances into clusters by using
the K-means algorithm; next, the generation of the artificial data is done using the SMOTE algorithm,
taking into consideration the distribution of majority/minority cases in each individual cluster. The idea
of starting with a clustering procedure before the data generation phase is important in remote sensing
because the spectral signature of the different classes can change significantly based on the geographical
area in which it is represented. In other words, the spectral signature of a specific class can vary greatly
depending on the geography, meaning that often we will be facing within-class imbalance (Japkowicz,
2001).
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In fact, we can decompose class imbalance into two different types: between-class imbalance and within-
class imbalance (Douzas et al., 2018; T. Jo & Japkowicz, 2004). While the first refers to the overall
asymmetry between majority and minority classes, the second results from the fact that in different
areas of the input space there might be different levels of imbalance. Depending on the complexity of
the input space, different subclusters of minority and majority instances may be present. In order to
achieve a balance between minority and majority instances, these subclusters should be treated separately.
Assuming that the role of a classifier is to create rules in such a way that it is able to isolate the different
relevant sub-concepts that represent both the majority and minority classes, the classifier will create
multiple disjunct rules that describe these concepts. If the input space is simple and the classes’ instances
are grouped together in a unique cluster, the classifier will only need to create (general) rules that comprise
large portions of instances belonging to the same class. To the contrary, if the input space is complex and
scatters through multiple small clusters, the classifier will need to learn a more complex set of (specific)
rules, which can be seen in Figure 4.1. It is important to note that small clusters can happen both in the
minority and majority class, although they will tend to be more frequent in the minority class due to its
underrepresentation.

Majority class instance

Minority class instance

Figure 4.1.: Example of a complex input space. In this example, a classifier would need to separate the
minority class’ samples across 4 distinguishable clusters (A, B, C and D).

The efficacy of K-means SMOTE is tested using different types of classifiers. To do so, we employ both
commonly used and/or state-of-the-art oversamplers as benchmarking methods: Random oversampling
(ROS), SMOTE and Borderline-SMOTE (B-SMOTE) (Han et al., 2005). Also as a baseline score we
include classification results without the use of any resampling method.

This paper is organized in 5 sections: section 4.2 provides an overview of the state-of-art, section 4.3
describes the proposed methodology, section 4.4 covers the results and discussion and section 4.5 presents
the conclusions taken from this study.

This paper’s main contributions are:

• Propose a cluster-based multiclass oversampling method appropriate for LULC classification and
compare its performance with the remaining oversamplers in a multiclass context with seven
benchmark LULC classification datasets. Allows us to check the oversamplers’ performance across
benchmark LULC datasets.

• Introducing a cluster-based oversampling algorithm within the remote sensing domain, as well as
comparing its performance with the remaining oversamplers in a multiclass context.

• Make available to the remote sensing community the implementation of the algorithm in a Python
library and the experiment’s source code.
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4.2. Imbalanced Learning Approaches

Imbalanced learning has been addressed in three different ways: over/undersampling, cost-sensitive
training and changes/adaptations in the learning algorithms (Kaur et al., 2019). These approaches impact
different phases of the learning process, while over/undersampling can be seen as a pre-processing step,
cost-sensitive and changes in the algorithm imply a more customized and complex intervention in the
algorithms. In this section, we focus on previous work related with resampling methods, while providing a
brief explanation of cost-sensitive and algorithmic level solutions.

All of the most common classifiers used for LULC classification tasks (Gavade & Rajpurohit, 2019;
Khatami et al., 2016) are sensitive to class imbalance (Blagus & Lusa, 2010). Algorithm-based approaches
typically focus on adaptations based on ensemble classification methods (Mellor et al., 2015) or common
non-ensemble based classifiers such as Support Vector Machines (Shao et al., 2014). In (Lee et al., 2016),
the reported results show that algorithm-based methods have comparable performance to resampling
methods.

Cost-sensitive solutions refer to changes in the importance attributed to each instance through a cost
matrix (Cui et al., 2019; Dong et al., 2017; C. Huang et al., 2016). A relevant cost sensitive solution
(C. Huang et al., 2016) uses the inverse class frequency (i.e., 1/|Ci|, where Ci refers to the frequency of
class i) to give higher weight to minority classes. Cui et al. (Cui et al., 2019) extended this method
by adding a hyperparameter β to class weights as (1− β)/(1− β|Ci|). When β = 0, no re-weighting is
done. When β → 1, weights are the inverse of the frequency class matrix. Another method (Dong et al.,
2017) explores adaptations of Cross-entropy classification loss by adding different formulations of class
rectification loss.

Resampling (over/undersampling) is the most common approach to imbalanced learning in machine
learning in general and remote sensing in particular (W. Feng et al., 2019). The generation of artificial
instances (i.e., augmenting the dataset), based on rare instances, is done independently of any other step
in the learning process. Once the procedure is applied, any standard machine learning algorithm can
be used. Its simplicity makes resampling strategies particularly appealing for any user (especially the
non-sophisticated user) interested in applying several classifiers, while maintaining a simple approach.
It is also important to notice that over/undersampling methods can also be easily applied to multiclass
problems, common in LULC classification tasks.

4.2.1. Non-informed resampling methods

There are two main non-informed resampling methods. Random Oversampling (ROS) generates artificial
instances through random duplication of minority class instances. This method is used in remote sensing
for its simplicity (Hounkpatin et al., 2018; Sharififar et al., 2019), even though its mechanism makes the
classifier prone to overfitting (Krawczyk, 2016). (Hounkpatin et al., 2018) found that using ROS returned
worse results than keeping the original imbalance in their dataset.

A few of the recent remote sensing studies employed Random Undersampling (RUS) (Ferreira et al., 2019),
which randomly removes instances belonging to majority classes. Although it’s not as prone to overfitting
as ROS, it incurs into information loss by eliminating instances from the majority class (W. Feng et al.,
2019), which can be detrimental to the quality of the results.

Another disadvantage of non-informed resampling methods is their performance-wise inconsistency across
classifiers. ROS’ impact on the Indian Pines dataset was found inconsistent between Random Forest
Classifiers (RFC) and Support Vector Machines (SVM) and lowered the predictive power of an artificial
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Majority class instance

Minority class instance

Selected instance

Nearest Neighbors

Selected nearest neighbor

Generated instance

Figure 4.2.: Example of SMOTE’s data generation process. SMOTE randomly selects instance −→x and
randomly selects one of its k-nearest neighbors −→y to produce −→z . Noisy instance −→r was
generated by randomly selecting −→q and randomly selecting its nearest neighbor −→p from a
different minority class cluster. Noisy instance −→c was generated by randomly selecting the
noisy minority class instance −→a and one of its nearest neighbors

−→
b .

neural network (ANN) (Maxwell et al., 2018). Similarly, RUS is found to generally lead to a lower overall
accuracy due to the associated information loss (Maxwell et al., 2018).

4.2.2. Heuristic methods

The methods presented in this section appear as a means to overcome the insufficiencies found in non-
informed resampling. They use either local or global information to generate new, relevant, non-duplicated
instances to populate the minority classes and/or remove irrelevant instances from majority classes. In a
comparative analysis between over- and undersamplers’ performance for LULC classification (W. Feng
et al., 2018) using the rotation forest ensemble classifier, authors found that oversampling methods
consistently outperform undersampling methods. This result led us to exclude undersampling from our
study.

SMOTE (Chawla et al., 2002) was the first heuristic oversampling algorithm to be proposed and has been
the most popular one since then, likely due to its fair degree of simplicity and quality of generated data.
It takes a random minority class sample and introduces synthetic instances along the line segment that
join a random k minority class nearest neighbor to the selected sample. Specifically, a single synthetic
sample −→z is generated within the line segment of a randomly selected minority class instance −→x and one
of its k nearest neighbors −→y such that −→z = α−→x + (1− α)−→y , where α is a random real number between 0
and 1, as shown in Figure 4.2.

A number of studies implement SMOTE within the LULC classification context and reported improvements
on the quality of the trained predictors (Bogner et al., 2018; Jozdani et al., 2019). Another study proposes
an adaptation of SMOTE on an algorithmic level for deep learning applications (Zhu et al., 2020). This
method combines both typical computer vision data augmentation techniques, such as image rotation,
scaling and flipping on the generated instances to populate minority classes. Another algorithmic
implementation is the variational semi-supervised learning model (Cenggoro et al., 2018). It consists of a
generative model that allows learning from both labeled and unlabeled instances while using SMOTE to
balance the data.
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Despite SMOTE’s popularity, its limitations have motivated the development of more sophisticated
oversampling algorithms (Douzas & Bacao, 2017, 2019; Douzas et al., 2018; Haibo He et al., 2008; Han
et al., 2005; L. Ma & Fan, 2017). (Douzas & Bacao, 2019) identify four major weaknesses of the SMOTE
algorithm, which can be summarized as:

1. Generation of noisy instances due to random selection of a minority instance to oversample. The
random selection of a minority instance makes SMOTE oversampling prone to the amplification of
existing noisy data. This has been addressed by variants such as B-SMOTE (Han et al., 2005) and
ADASYN (Haibo He et al., 2008).

2. Generation of noisy instances due to the selection of the k nearest neighbors. In the event an
instance (or a small number thereof) is not noisy but is isolated from the remaining clusters, known
as the "small disjuncts problem" (Holte et al., 1989), much like sample

−→
b from Figure 4.2, the

selection of any nearest neighbor of the same class will have a high likelihood of producing a noisy
sample.

3. Generation of nearly duplicated instances. Whenever the linear interpolation is done between two
instances that are close to each other, the generated instance becomes very similar to its parents
and increases the risk of overfitting. G-SMOTE (Douzas & Bacao, 2019) attempts to address both
the k nearest neighbor selection mechanism problem as well as the generation of nearly duplicated
instances problem.

4. Generation of noisy instances due to the use of instances from two different minority class clusters.
Although an increased k could potentially avoid the previous problem, it can also lead to the
generation of artificial data between different minority clusters, as depicted Figure 4.2 with the
generation of point −→r using minority class instances −→p and −→q . Cluster-based oversampling methods
attempt to address this problem.

This last issue, the generation of noisy instances due to the existence of several minority class clusters, is
particularly relevant in remote sensing. It is frequent that instances belonging to the same minority class
can have different spectral signatures, meaning that they will be clustered in different parts of the input
space. For example, in the classification of a hyperspectral scene dominated by agricultural activities,
patches relating to urban areas may constitute a minority class. These patches frequently refer to different
types of land use, such as housing regions, small gardens, asphalt roads, etc., all these containing different
spectral signatures. In this context, the use of SMOTE will lead to the generation of noisy instances of the
minority class. This problem can be efficiently mitigated through the use of a cluster-based oversampling
method. According to our literature review cluster-based oversampling approaches have never been applied
in the context of remote sensing. On the other hand, while there are references of the application of
cluster-based oversampling in the context of machine learning (Douzas & Bacao, 2017; Douzas et al., 2018;
L. Ma & Fan, 2017; Santos et al., 2015), the multiclass case is rarely addressed, which is a fundamental
requirement for the application of oversampling in the context of LULC.

Cluster-based oversampling approaches introduce an additional layer to SMOTE’s selection mechanism,
which is done through the inclusion of a clustering process. This ensures that both between-class data
balance and within-class balance is preserved. The self-organizing map oversampling (SOMO) (Douzas &
Bacao, 2017) algorithm transforms the dataset into a 2-dimensional input, where the areas with the highest
density of minority samples are identified. SMOTE is then used to oversample each of the identified areas
separately. ClUstered REsampling SMOTE (CURE-SMOTE) (L. Ma & Fan, 2017) applies a hierarchical
clustering algorithm to discard isolated minority instances before applying SMOTE. Although it avoids
noise generation problems, it ignores within-class data distribution. Another method (Santos et al., 2015)
uses K-means to cluster the entire input space and applies SMOTE to clusters with the fewest instances,
regardless of their class label. The label of the generated instance is copied from one of its parents. This
method cannot ensure a balanced dataset since class imbalance is not specifically addressed, but rather
dataset imbalance.
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Majority class instance
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Selected instance

Nearest Neighbors

Selected nearest neighbor

Generated instance

Figure 4.3.: Example of K-means SMOTE’s data generation process. Clusters A, B and C are selected
for oversampling, whereas cluster D was rejected due to its high imbalance ratio. The
oversampling is done using the SMOTE algorithm and the k nearest neighbors selection only
considers instances within the same cluster.

K-means SMOTE (Douzas et al., 2018) avoids noisy data generation by modifying the data selection
mechanism. It employs k-means clustering to identify safe areas using cluster-specific Imbalance Ratio (IR,
defined by count(Cmajority)

count(Cminority)
) and determine the quantity of generated samples per cluster based on a density

measure. These samples are finally generated using the SMOTE algorithm. The K-means SMOTE’s
data generation process is depicted in Figure 4.3. Note that the number of samples generated for each
cluster varies according to the sparsity of each cluster (the sparser the cluster is, the more samples will be
generated) and a cluster is rejected if the cluster’s IR surpasses the threshold. Therefore, this method can
be combined with any data generation mechanism, such as G-SMOTE. Also K-means SMOTE includes
the SMOTE algorithm as a special case when the number of clusters is set to one. Consequently, K-means
SMOTE returns results as good as or better than SMOTE.

Although no other study was found to implement cluster-based oversampling, another study (Douzas et al.,
2019) compared the performance of SMOTE, ROS, ADASYN, B-SMOTE and G-SMOTE in a highly
imbalanced LULC classification dataset. The authors found that G-SMOTE consistently outperformed
the remaining oversampling algorithms regardless of the classifier used.

4.3. Methodology

The purpose of this work is to understand the performance of K-means SMOTE as opposed to other
popular and/or state-of-the-art oversamplers for LULC classification. This is done using 7 datasets with
predominantly land use information, along with 3 evaluation metrics and 3 classifiers to evaluate the
performance of oversamplers. In this section we describe the datasets, evaluation metrics, oversamplers,
classifiers and software used as well as the procedure developed.

4.3.1. Datasets

The datasets used were extracted from publicly available hyperspectral scenes. Information regarding each
of these scenes is provided in this subsection. The data collection and preprocessing pipeline is shown in
Figure 4.4 and is common to all hyperspectral scenes:
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Figure 4.4.: Data collection and preprocessing pipeline.

1. Data collection of publicly available hyperspectral scenes. The original hyperspectral scenes and
ground truth data were collected from a single publicly available data repository available here.

2. Conversion of each hyperspectral scene to a structured dataset and removal of instances with no
associated LULC class. This done to reshape the dataset from (h,w, b + gt) into a conventional
dataframe of shape (h ∗ w, b+ gt), where gt, h, w and b represents the ground truth, height, width
and number of bands in the scene, respectively. The pixels without ground truth information are
discarded from further analysis.

3. Stratified random sampling to maintain similar class proportions on a sample of 10% of each dataset.
This is done by computing the relative class frequencies in the original hyperspectral scene (minus
the class representing no ground truth availability) and retrieving a sample that ensures the original
relative class frequencies remain unchanged.

4. Removal of instances belonging to a class with frequency lower than 20 or higher than 1000. This
is done to maintain the datasets to a practicable size due to computational constraints, while
conserving the relative LULC class frequencies and data distribution.

5. Data normalization using the MinMax scaler. This ensures all features (i.e., bands) are in the same
scale. In this case, the data was rescaled between 0 and 1.

Table 4.1 provides a description of the final datasets used for this work, sorted according to its IR.
Figure 4.5 shows the original hyperspectral scene out of which the dataset used in this experiment were
extracted. In the representation of the ground truth of these scenes, the blue regions in the ground truth
of each hyperspectral scene represent unlabeled regions (i.e., no ground truth is available). Particularly, in
the Botswana and Kennedy Space Center scenes the truth was photointerpreted in more limited regions
of the scene. However, the scenes are still represented as they are in order to maintain a standardized
analysis over all datasets extracted for the experiment.

Botswana

The Botswana scene was acquired by the Hyperion sensor on the NASA EO-1 satellite over the Okavango
Delta, Botswana in 2001-2004 at a 30m spatial resolution. Data preprocessing was performed by the
UT Center for Space Research. The scene comprises a 1476× 256 pixels with 145 bands and 14 classes
regarding land cover types in seasonal and occasional swamps, as well as drier woodlands (see Figure 4.5a).
The classes with rare instances are Short mopane and Hippo grass.
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Dataset Features Instances Min. Instances Maj. Instances IR Classes

Botswana 145 288 20 41 2.05 11
Pavia Centre 102 3898 278 879 3.16 7

Kennedy Space Center 176 497 23 80 3.48 11
Salinas A 224 535 37 166 4.49 6

Pavia University 103 2392 89 679 7.63 8
Salinas 224 4236 91 719 7.9 15

Indian Pines 220 984 21 236 11.24 11

Table 4.1.: Description of the datasets used for this experiment.

Pavia Center and University

Both Pavia Center and University scenes were acquired by the ROSIS sensor. These scenes are located in
Pavia, northern Italy. Pavia Center is a 1096× 1096 pixels image with 102 spectral bands, whereas Pavia
University is a 610× 610 pixels image with 103 spectral bands. Both images have a geometrical resolution
of 1.3m and their ground truths are composed of 9 classes each (see Figures 4.5b and 4.5c). After data
preprocessing, the classes with rare instances are Asphalt and Bitumen (the class Shadows was removed
for being too rare for cross validation after random sampling).

Kennedy Space Center

The Kennedy Space Center scene was acquired by the AVIRIS sensor over the Kennedy Space Center,
Florida, on March 23, 1996. Out of the original 224 bands, water absorption and low SNR bands were
removed and a total of 176 bands at a spatial resolution of 18m are used. The scene is a 512× 614 pixel
image and contains a total of 16 classes (see figure 4.5d). The classes with rare instances are hardwood
swamp, slash pine and willow swamp (both hardwood swamp and slash pine were removed for being too
rare for cross validation after random sampling).

Salinas and Salinas-A

These scenes were collected by the AVIRIS sensor over Salinas Valley, California and contain at-sensor
radiance data. Salinas is a 512× 217 pixels image with 224 bands and 16 classes regarding vegetables,
bare soil and vineyard fields (see Figure 4.5e). Salinas-A, a subscene of Salinas, comprises 86× 83 pixels
and contains 6 classes regarding vegetables (see Figure 4.5f). These scenes have a geometrical resolution
of 3.7m. Salinas-A’s minority class has the label “Brocoli_green_weeds_1” and Salina’s minority class
has the label “Lettuce_romaine_6wk”

Indian Pines

The Indian Pines scene (Baumgardner et al., 2015) was collected on June 12, 1992 and consists of AVIRIS
hyperspectral image data covering the Indian Pine Test Site 3, located in North-western Indiana, USA. As
a subset of a larger scene, it is composed of 145× 145 pixels (see Figure 4.5g) and 220 spectral reflectance
bands in the wavelength range 400 to 2500 nanometers at a spatial resolution of 20m. Approximately two
thirds of this scene is composed by agriculture and the other third is composed of forest and other natural
perennial vegetation. Additionally, the scene also contains low density buildup areas. The classes with
rare instances are Alfalfa, Oats, Grass-pasture-mowed, Wheat and Stone-Steel-Towers (which removed for
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Figure 4.5.: Gray scale visualization of a band (top row) and ground truth (bottom row) of each scene
used in this study. (a) Botswana, (b) Pavia Center, (c) Pavia University, (d) Kennedy Space
Center, (e) Salinas, (f) Salinas A, (g) Indian Pines.

being too rare for cross validation after random sampling). After data preprocessing, the classes with rare
instances are Corn, Buildings-Grass-Trees-Drives and Grass-Pasture.

4.3.2. Machine Learning Algorithms

To assess the quality of the K-means SMOTE algorithm, three other oversampling algorithms were used
for benchmarking. ROS and SMOTE were chosen for their simplicity and popularity. B-SMOTE chosen as
a popular variation of the SMOTE algorithm. We also include the classification results of no oversampling
(NONE) as a baseline.

To assess the performance of each oversampler, we use the classifiers Logistic Regression (LR) (Nelder &
Wedderburn, 1972), K-Nearest Neighbors (KNN) (Cover & Hart, 1967) and Random Forest (RF) (Liaw,
Wiener, et al., 2002). This choice was based on the classifiers’ popularity for LULC classification, learning
type and training time (Gavade & Rajpurohit, 2019; Maxwell et al., 2018). Since this is a multinomial
classification task, for the LR classification we adopted a one-versus-all approach for each label. The
predicted label is assigned according to the class predicted with highest probability.
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4.3.3. Evaluation Metrics

Most of the satellite-based LULC classification studies (nearly 80%) employ Overall Accuracy (OA)
and the Kappa Coefficient (Gavade & Rajpurohit, 2019). Although, some authors argue that both
evaluation metrics, even when used simultaneously, are insufficient to fully address the area estimation
and uncertainty information needs (Olofsson et al., 2013; Pontius Jr & Millones, 2011). Other metrics like
User’s Accuracy (or Precision) and Producer’s Accuracy (or Recall) are also common metrics to evaluate
per-class prediction power. These metrics consist of ratios employing the True and False Positives (TP
and FP, number of correctly/incorrectly classified instances of a given class) and True and False Negatives
(TN and FN, number of correctly/incorrectly classified instances as not belonging to a given class). These
metrics are formulated as Precision = TP

TP+FP and Recall = TP
TP+FN . While metrics like OA and Kappa

Coefficient are significantly affected by imbalanced class distributions, F-Score is less sensitive to data
imbalance and a more appropriate choice for performance evaluation (Jeni et al., 2013).

The datasets used present significantly high IRs (see Table 4.1). Therefore, it is especially important to
attribute equal importance to the predictive power of all classes, which does not happen with OA and
Kappa Coefficient. In this study, we employ 3 evaluation metrics: 1) G-mean, since it is not affected by
skewed class distributions, 2) F-Score, as it proved to be a more appropriate metric for this problem when
compared to other commonly used metrics (Jeni et al., 2013), and 3) Overall Accuracy, for discussion
purposes.

• The G-mean consists of the geometric mean of Specificity = TN
TN+FP and Sensitivity (also known

as Recall). For multiclass problems, The G-mean is expressed as:

G-mean =

√
Sensitivity × Specificity

• F-score is the harmonic mean of Precision and Recall. The F-score for the multi-class case can be
calculated using their average per class values (H. He & Garcia, 2009):

F-score = 2
Precision×Recall

Precision+Recall

• Overall Accuracy is the number of correctly classified instances divided by the total amount of
instances. Having c as the label of the various classes, Accuracy is given by the following formula:

Accuracy =

∑
c

TPc∑
c
(TPc + FPc)

In the case of G-mean and F-score, both metrics are computed for each label and their unweighted mean is
calculated (i.e., following a “macro” approach). In this study we assume that all labels have an equivalent
importance for the classification task.

4.3.4. Experimental Procedure

The procedure for the experiment started with the definition of a hyperparameter search grid, where a list
of possible values for each relevant hyperparameter in both classifiers and oversamplers is stored. Based
on this search grid, all possible combinations of oversamplers, classifiers and hyperparameters are formed.
Finally, for each dataset, hyperparameter combination and initialization we use the evaluation strategy

67



Dataset

Validation Set

Training Set

Oversampling

No oversampling

Classifier F-Score

G-Mean

OA

K1

K2

K3

K4

K5

5-fold CV K-SMOTE
RFB-SMOTE
KNN

SMOTE

LR

Random

Train Assess

Predict

Result
Comparison

Figure 4.6.: Experimental procedure. The performance metrics are averaged over the 5 folds across each
of the 3 different initializations of this procedure for a given combination of oversampler,
classifier and hyperparameter definition.

Classifier Hyperparameters Values

LR maximum iterations 10000
KNN # neighbors 3, 5, 8
RF maximum depth None, 3, 6

# estimators 50, 100, 200

Oversampler

K-means SMOTE # neighbors 3, 5
# clusters (as % of number of instances) 1∗, 0.1, 0.3, 0.5, 0.7, 0.9
Exponent of mean distance auto, 2, 5, 7
IR threshold auto, 0.5, 0.75, 1.0

SMOTE # neighbors 3, 5
BORDERLINE SMOTE # neighbors 3, 5

Table 4.2.: Hyper-parameters grid. ∗ One cluster is generated in total, a corner case that mimics the
behavior of SMOTE

shown in Figure 4.6: k-fold cross-validation strategy where k = 5 to train each model defined and save
the averaged scores of each split.

In the 5-fold cross validation strategy, a combination of oversampler, classifier and hyperparameters vector
is fit 5 times per dataset. Before the training phase, the training set (containing 4

5 of the dataset) is
oversampled using one of the methods described (except for the baseline method NONE), creating an
augmented dataset with the exact same number of instances for each class. The newly formed training
dataset is used to train the classifier and the test set (15 of the dataset) is used to evaluate the performance
of the classifier. The evaluation scores are then averaged over the 5 times the process is repeated. The
range of hyperparameters used are shown in table 4.2. The definition of hyperparameters for the K-means
SMOTE oversampler is defined according to the recommendations discussed in the original K-means
SMOTE paper (Douzas et al., 2018).

4.3.5. Software Implementation

The experiment was implemented using the Python programming language, using the Scikit-Learn (Pe-
dregosa et al., 2011), Imbalanced-Learn (Lemaître et al., 2017), Geometric-SMOTE, Cluster-Over-Sampling
and Research-Learn libraries. All functions, algorithms, experiments and results are provided at the
GitHub repository of the project.
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Classifier Metric NONE ROS SMOTE B-SMOTE K-SMOTE

LR Accuracy 0.906 ± 0.039 0.904 ± 0.04 0.904 ± 0.04 0.901 ± 0.04 0.909 ± 0.038
LR F-score 0.891 ± 0.041 0.893 ± 0.042 0.893 ± 0.042 0.890 ± 0.042 0.898 ± 0.04
LR G-mean 0.936 ± 0.025 0.940 ± 0.025 0.940 ± 0.025 0.937 ± 0.025 0.943 ± 0.024

KNN Accuracy 0.879 ± 0.043 0.865 ± 0.048 0.867 ± 0.05 0.862 ± 0.054 0.881 ± 0.045
KNN F-score 0.859 ± 0.05 0.853 ± 0.049 0.861 ± 0.047 0.851 ± 0.053 0.866 ± 0.048
KNN G-mean 0.919 ± 0.03 0.920 ± 0.029 0.926 ± 0.027 0.918 ± 0.03 0.927 ± 0.027
RF Accuracy 0.898 ± 0.032 0.901 ± 0.031 0.900 ± 0.031 0.898 ± 0.032 0.905 ± 0.031
RF F-score 0.879 ± 0.041 0.885 ± 0.037 0.887 ± 0.036 0.883 ± 0.037 0.891 ± 0.036
RF G-mean 0.930 ± 0.024 0.935 ± 0.022 0.937 ± 0.021 0.935 ± 0.021 0.939 ± 0.02

Table 4.3.: Mean cross-validation scores of oversamplers.

4.4. Results & Discussion

When evaluating the performance of an algorithm across multiple datasets, it is generally recommended
to avoid direct score comparisons and use classification rankings instead (Demšar, 2006). This is done by
assigning a ranking to oversamplers based on the different combinations of classifier, metric and dataset
used. These rankings are also used for the statistical analyses presented in Section 4.4.2.

The rank values are assigned based on the mean validation scores resulting from the experiment described
in Section 4.3. The averaged ranking results are computed over 3 different initialization seeds and a 5 fold
cross validation scheme, returning a real number within the interval [1, 5].

The hyperparameter optimization ensures that both oversamplers and classifiers are well adapted to each
of the datasets used in the experiment. Specifically, the optimization of classifiers’ hyperparameters is not
particularly relevant since our focus is to study the relative performance scores across oversamplers. This
will provide insights on the quality of the artificial data generated by each oversampler. The classifiers’
hyperparameter tuning was done to avoid the over/underfitting of classifiers, since they are trained on the
same data subsets along with artificial data generated with different methods.

4.4.1. Results

The mean ranking of oversamplers is presented in Figure 4.7. This ranking was computed by averaging
the ranks of the mean cross-validation scores per dataset, oversampler and classifier. K-means SMOTE
achieves the best mean ranking across datasets with low standard deviation.

The mean cross-validation scores are shown in Table 4.3. As discussed previously in this section, the
disparity of performance levels across datasets makes the analysis of these scores less informative.

The mean cross-validation scores for each dataset are presented in Table A.1 (see appendix). This table
allows the direct comparison of the performance metrics being analysed.

4.4.2. Statistical Analysis

The experiment’s multi-dataset context was used to perform a Friedman test (Friedman, 1937). Table 4.4
shows the results obtained in the Friedman test performed, where the null hypothesis is rejected in all
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Figure 4.7.: Results for mean ranking of oversamplers across datasets.
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cases. The rejection of the null hypothesis implies that the differences between the differences among the
different oversamplers are not random, in other words, these differences are statistically significant.

Classifier Metric p-value Significance

LR Accuracy 9.8e-03 True
LR F-score 2.3e-03 True
LR G-mean 9.8e-04 True

KNN Accuracy 4.3e-03 True
KNN F-score 4.3e-03 True
KNN G-mean 3.0e-03 True
RF Accuracy 5.5e-03 True
RF F-score 2.9e-03 True
RF G-mean 1.8e-04 True

Table 4.4.: Results for Friedman test. Statistical significance is tested at a level of α = 0.05. The null
hypothesis is that there is no difference in the classification outcome across oversamplers.

A Wilcoxon signed-rank test (Wilcoxon, 1945) was also performed to understand whether K-means
SMOTE’s superiority was statistically significant across datasets and oversamplers, as suggested in
(Demšar, 2006). This method is used as an alternative to the paired Student’s t-test, since the distribution
of the differences between the two samples cannot be assumed as normally distributed. The null hypothesis
of the test is that K-means SMOTE’s performance is similar to the compared oversampler (i.e., the
oversamplers used follow a symmetric distribution around zero).

4.4.3. Discussion

The mean rankings presented in Figure 4.7 show that on average, K-means SMOTE produced the best
results for every classifier and performance metric used. This is due to the clustering phase and subsequent
selection of data to be considered for oversampling. By successfully clustering and selecting the relevant
areas in the data space to oversample, the generation of artificial instances is done only in the context of
minority regions that represent well their spectral signature.

As previously discussed, the direct comparison of performance metrics averaged over various datasets is
not recommended due to the varying levels of performance of classifiers across datasets (Demšar, 2006).
Nonetheless, these results are shown in Table 4.3 to provide a fuller picture of the results obtained in
the experiment. We found that on average K-means SMOTE provides increased performance, regardless

Dataset NONE ROS SMOTE B-SMOTE

Botswana 3.1e-02 3.9e-03 3.9e-03 3.9e-03
Pavia Centre 3.1e-02 3.9e-03 1.2e-02 3.9e-03

Kennedy Space Center 3.1e-02 3.9e-03 2.7e-02 3.9e-03
Salinas A 3.1e-02 3.9e-03 1.2e-02 3.9e-03

Pavia University 3.1e-02 3.9e-03 3.9e-03 3.9e-03
Salinas 3.1e-02 5.5e-02 2.7e-02 3.9e-03

Indian Pines 3.1e-02 3.9e-03 7.8e-03 3.9e-03

Table 4.5.: p-values of the Wilcoxon signed-rank test. Boldface values are statistically significant at a
significance level of α = 0.05.
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of the classifier and performance metric used. More importantly, K-means SMOTE guaranteed a more
consistent performance across datasets and with less variability, which can be attested in Figure 4.7 and
Tables 4.3 and A.1.

As discussed in Subsection 4.3.3, Evaluation Metrics, our results are consistent with the findings in (Olofsson
et al., 2013; Pontius Jr & Millones, 2011). Particularly, we consider the results obtained in our experiment
using Overall Accuracy to be less informative than the results obtained with the remaining performance
metrics, since this metric is affected by imbalanced class distributions. The majority class bias in this
metric can be observed in our experiment in Figure 4.7 with the classifiers LR and KNN, where the
control method (NONE) is only outperformed by K-means SMOTE. This effect is observed with more
detail in Table 4.3, where the benchmark oversamplers are outperformed by the control method in 16
out of 63 tests (approximately 25%). Out of these, most refer to tests using overall accuracy among the
four datasets with highest IR, showing the overall accuracy’s class imbalance bias discussed in (Olofsson
et al., 2013; Pontius Jr & Millones, 2011). The K-means SMOTE oversampler is only outperformed by
the control method in 3 of tests (all of them using overall accuracy). This is an improvement over the
benchmark oversamplers, showing that generally K-means SMOTE is the best choice even when overall
accuracy is used as the main performance metric.

In the majority of the cases, K-means SMOTE was able to generate higher quality data due to the
non-random selection of data spaces to oversample. This can be seen in the performance of the classifiers
trained on top of this data generation step, making it a more informed data generation method in the
context of LULC.

The performance of both oversamplers and classifiers is generally dependent on the dataset being used.
Although both absolute and relative scores between the different oversamplers are dependent on the
choice of metric and classifier, K-means SMOTE’s relative performance is consistent across datasets and
generally outperforms the remaining oversampling methods in 56 of the 63 tests (approximately 89%).
The mean cross-validation results found in Table A.1 show that performance-wise, K-means SMOTE is
always better than or as good as SMOTE, with the exception of 4 situations (representing 6% of the tests
done), in which cases the percentage point difference is neglectable (≤ 0.1 percentage points).

The statistical tests showed that not only there is a statistically significant difference across the oversamplers
used in this problem (found in the Friedman test presented in Table 4.4), but also that K-means SMOTE’s
superior performance is statistically significant at a level of 0.05 in 27 out of 28 tests in the Wilcoxon
signed-rank test shown in Table 4.5 (approximately 96% of the tests performed). This shows that, in
most cases, the usage of k-Means SMOTE improves the quality of LULC classification when compared
to using SMOTE in its original format, which remains the most popular oversampler among the remote
sensing community.

Although the usage of K-means SMOTE successfully captured the spectral signatures of the minority
classes, it was done using K-means, a problem-agnostic clusterer. Consequently, the implementation of this
method using a GIS-specific clusterer that considers the geographical traits of different regions (e.g., using
the sampled pixels’ geographical coordinates), may be a promising direction towards the development of
more appropriate oversampling techniques in the remote sensing domain.

4.5. Conclusion

This research paper was motivated by the challenges faced when classifying rare classes for LULC mapping.
Cluster-based oversampling is especially useful in this context because the spectral signature of a given
class often varies, depending on its geographical distribution and the time period within which the image
was acquired. This induces the representation of minority classes as small clusters in the input space. As a
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result, training a classifier capable of identifying LULC minority classes in the hyper/multi-spectral scene
over different areas or periods becomes particularly challenging. The clustering procedure, performed
before the data generation phase, allows for a more accurate generation of minority samples, as it identifies
these minority clusters.

A number of existing methods to address the imbalanced learning problem were identified and their
limitations discussed. Typically, algorithm-based approaches and cost-sensitive solutions are not only
difficult to implement, but they are also context dependent. In this paper we focused on oversampling
methods due to their widespread usage, easy implementation and flexibility. Specifically, this paper
demonstrated the efficacy of a recent oversampler, K-Means SMOTE, applied in a multi-class context
for Land Cover Classification tasks. This was done with sampled data from seven well known and
naturally imbalanced benchmark datasets: Indian Pines, Pavia Center, Pavia University, Salinas, Salinas
A, Botswana and Kennedy Space Center. For each combination of dataset, oversampler and classifier,
the results of every classification task was averaged across a 5 fold stratification strategy with 3 different
initialization seeds, resulting in a mean validation score of 15 classification tasks. The mean validation
score of each combination was then used to perform the analyses presented in this report.

In 56 out of 63 classification tasks (approximately 89%), K-means SMOTE led to better results than
ROS, SMOTE, B-SMOTE and no oversampling. More importantly, we found that K-Means SMOTE
is always better or equal than the second best oversampling method. K-means SMOTE’s performance
was independent from both the classifier and performance metric under analysis. In general, K-means
SMOTE shows a higher performance among the non tree-based classifiers employed (LR and KNN) when
compared with the remaining oversamplers, where these oversamplers generally failed to improve the
quality of classification. Although these findings are case dependent, they are consistent with the results
presented in (Douzas et al., 2018). The proposed method also had the most consistent results across
datasets, since it produced the lowest standard deviations across datasets in 7 out of 9 cases for both
analyses, either based on ranking or mean cross-validation scores.

The proposed algorithm is a generalization of the original SMOTE algorithm. In fact, the SMOTE
algorithm represents a corner case of K-means SMOTE i.e., when the number of clusters equals to 1. Its
data selection phase differs from the one used in SMOTE and Borderline SMOTE, providing artificially
augmented datasets with less noisy data than the commonly used methods. This allows the training of
classifiers with better defined decision boundaries, especially in the most important regions of the data
space (the ones populated by a higher percentage of minority class instances).

As stated previously, the usage of this oversampler is technically simple. It can be applied to any
classification problem relying on an imbalanced dataset, alongside any classifier. K-means SMOTE is
available as an open source implementation for the Python programming language (see Subsection 4.3.5).
Consequently, it can be a useful tool for both remote sensing researchers and practitioners.

This chapter was published as: Fonseca, J., Douzas, G., Bacao, F. (2021). Improving Imbalanced
Land Cover Classification with K-Means SMOTE: Detecting and Oversampling Distinctive Minority
Spectral Signatures. Information, 12(7), 266. https://doi.org/10.3390/info12070266
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5. Increasing the Effectiveness of Active Learning:
Introducing Artificial Data Generation in
Active Learning for Land Use/Land Cover
Classification

In remote sensing, Active Learning (AL) has become an important technique to collect
informative ground truth data “on-demand” for supervised classification tasks. In spite of its
effectiveness, it is still significantly reliant on user interaction, which makes it both expensive
and time consuming to implement. Most of the current literature focuses on the optimization
of AL by modifying the selection criteria and the classifiers used. Although improvements
in these areas will result in more effective data collection, the use of artificial data sources
to reduce human-computer interaction remains unexplored. In this paper, we introduce
a new component to the typical AL framework, the data generator, a source of artificial
data to reduce the amount of user-labeled data required in AL. The implementation of the
proposed AL framework is done using Geometric SMOTE as data generator. We compare
the new AL framework to the original one using similar acquisition functions and classifiers
over three AL-specific performance metrics in seven benchmark datasets. We show that this
modification of the AL framework significantly reduces cost and time requirements for a
successful AL implementation in all of the datasets used in the experiment.

Keywords: Active Learning; Artificial Data Generation; Land Use/Land Cover Classification; Oversam-
pling; SMOTE

5.1. Introduction

The technological development of air and spaceborne sensors, as well as the increasing number of remote
sensing missions have allowed the continuous collection of large amounts of high quality remotely sensed
data. This data is often composed of multi and hyper spectral satellite imagery, essential for numerous
applications, such as Land Use/Land Cover (LULC) change detection, ecosystem management (Nagai
et al., 2020), agricultural management (Y. Huang et al., 2018), water resource management (X. Wang &
Xie, 2018), forest management, and urban monitoring (Khatami et al., 2016). Despite LULC maps being
essential for most of these applications, their production is still a challenging task (Gavade & Rajpurohit,
2019; Wulder et al., 2018). They can be updated using one of the following strategies:

1. Photo-interpretation. This approach consists of evaluating a patch’s LULC class by a human
operator based on orthophoto and satellite image interpretation (Costa et al., 2020). This method
guarantees a decent level of accuracy, as it is dependent on the interpreter’s expertise and human
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error. Typically, it is an expensive, time-consuming task that requires the expertise of a photo-
interpreter. This task is also frequently applied to obtain ground-truth labels for training and/or
validating Machine Learning (ML) algorithms for related tasks (Costantino et al., 2020; Vermote
et al., 2020).

2. Automated mapping. This approach is based on the usage of a ML method or a combination of
methods in order to obtain an updated LULC map. The development of a reliable automated
method is still a challenge among the ML and remote sensing community, since the effectiveness of
existing methods varies across applications and geographical areas (Gavade & Rajpurohit, 2019).
Typically, this method requires the existence of ground-truth data, which is frequently outdated or
nonexistent for the required time frame (Nagai et al., 2020). On the other hand, employing a ML
method provides readily available and relatively inexpensive LULC maps. The increasing quality
of state-of-the-art classification methods have motivated the application and adaptation of these
methods in this domain (Maxwell et al., 2018).

3. Hybrid approaches. These approaches employ photo-interpreted data to augment the training dataset
and improve the quality of automated mapping (Růžička et al., 2020). It attempts to accelerate the
photo-interpretation process by selecting a smaller sample of the study area to be interpreted. The
goal is to minimize the inaccuracies found in the LULC map by supplying high-quality ground-truth
data to the automated method. The final (photo-interpreted) dataset consists of only the most
informative samples, i.e., patches that are typically difficult to classify for a traditional automated
mapping method (S.-J. Liu et al., 2020).

The latter method is best know as AL. It is especially useful whenever there is a shortage or even absence
of ground-truth data and/or the mapping region does not contain updated LULC maps (T. Su et al.,
2020). In a context of limited sample-collection budget, the collection of the most informative samples
capable of optimally increasing the classification accuracy of a LULC map is of particular interest (T. Su
et al., 2020). AL attempts to minimize the human-computer interaction involved in photo-interpretation
by selecting the data points to include in the annotation process. These data points are selected based
on an uncertainty measure and represent the points close to the decision borders. Afterwards, they are
passed on for photo-interpretation and added to the training dataset, while the points with the lowest
uncertainty values are ignored for photo-interpretation and classification. This process is repeated until a
convergence criterion is reached (Pasolli et al., 2016).

The relevant work developed within AL is described in detail in Section 5.2. This paper attempts to
address some of the challenges found in AL, mainly inherited from automated and photo-interpreted
mapping: mapping inaccuracies and time consuming human-computer interactions. These challenges have
different sources:

1. Human error. The involvement of photo-interpreters in the data labeling step carries an additional
risk to the creation of LULC patches. The minimum mapping unit being considered, as well as the
quality of the orthophotos and satellite images being used, are some of the factors that may lead to
the overlooking of small-area LULC patches and label-noisy training data (Pelletier et al., 2017).

2. High-dimensional datasets. Although the amount of bands (i.e., features) present in multi and
hyper spectral images contain useful information for automated classification, they also introduce an
increased level of complexity and redundancy in the classification step (Stromann et al., 2020). These
datasets are often prone to the Hughes phenomenon, also known as the curse of dimensionality.

3. Class separability. Producing an LULC map considering classes with similar spectral signatures
makes them difficult to separate (Alonso-Sarria et al., 2019). A lower pixel resolution of the satellite
images may also imply mixed-class pixels, which may lead to both lower class separability as well as
higher risk of human error.

75



4. Existence of rare land cover classes. The varying morphologies of different geographical regions
naturally implies an uneven distribution of land cover classes (W. Feng et al., 2018). This is
particularly relevant in the context of AL since the data selection method is based on a given
uncertainty measure over data points whose class label is unknown. Consequently, AL’s iterative
process of data selection may disregard wrongly classified land cover areas belonging to a minority
class.

Research developed in the field of AL typically focus on the reduction of human error by minimizing the
human interaction with the process through the development of more efficient classifiers and selection
criteria within the generally accepted AL framework. Concurrently, the problem of rare land cover
classes is rarely addressed. This is a frequent problem in the ML community, known as the Imbalanced
Learning problem. This problem exists whenever there is an uneven between-class distribution in the
dataset (Chawla et al., 2004). Specifically, most classifiers are optimized and evaluted using accuracy-like
metrics, which are designed to work primarily with balanced datasets. Consequently, these metrics tend
to introduce a bias towards the majority class by attributing an importance to each class proportional to
its relative frequency (Maxwell et al., 2018). As an example, such a classifier could achieve an overall
accuracy of 99% on a binary dataset where the minority class represents 1% of the overall dataset and still
be useless. A number of methods have been developed to deal with this problem. They can be categorized
into three different types of approaches (Fernández et al., 2013; Kaur et al., 2019). Cost-sensitive solutions
perform changes to the cost matrix in the learning phase. Algorithmic level solutions modify specific
classifiers to reinforce learning on minority classes. Resampling solutions modify the training data by
removing majority samples and/or generating artificial minority samples. The latter is independent
from the context and can be used alongside any classifier. Since we are interested in the introduction of
artificial data generation in AL, we will analyze the state-of-the-art on resampling techniques (specifically
oversampling) in Section 5.3.

In this paper, we propose a novel AL framework to address two limitations commonly found in the
literature: minimize human-computer interaction and reduce the class imbalance bias. This is done with
the introduction of an additional component in the iterative AL procedure (the generator) that is used
to generate artificial data to both balance and augment the training dataset. The introduction of this
component is expected to reduce the number of iterations required until the classifier reaches a satisfactory
performance.

This paper is organized as follows: Section 5.1 explains the problem and its context, Sections 5.2 and 5.3
describe the state of the art in AL and Oversampling techniques, Section 5.4 explains the proposed
method, Section 5.5 covers the datasets, evaluation metrics, ML classifiers and experimental procedure,
Section 5.6 presents the experiment’s results and discussion and Section 5.7 presents the conclusions
drawn from our findings.

5.2. Active Learning Approaches

As the amount of unlabeled data increases, the interest and practical usefulness of AL follows that
trend (Kottke et al., 2017). AL is used as the general definition of frameworks aiming to train a learning
system in multiple steps, where a set of new data points are chosen and added to the training dataset each
time (Růžička et al., 2020). Typically, an AL framework is composed of the following elements (Růžička
et al., 2020; T. Su et al., 2020; Sverchkov & Craven, 2017):

1. Unlabeled dataset. Consists of the original data source (or a sample thereof). It is used in
combination with the chooser and the selection criterion to expand the training dataset in regions
where the classification uncertainty is higher. Therefore, the unlabeled dataset is used for both
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producing the initial training dataset by selecting a set of instances for the supervisor to annotate
(discussed in point 3) and calculating the uncertainty map to augment the training dataset.

2. Supervisor. A human annotator (or team of human annotators) to which the uncertainty map is
presented to. The supervisor is responsible for annotating unlabeled instances to be added to the
augmented dataset. In remote sensing, the supervisor is typically a photo-interpreter, as is the case
in (J. Li et al., 2020). Some of the research also refers to the supervisor as the oracle (Aghdam
et al., 2019; Cawley, 2011; Růžička et al., 2020; Yoo & Kweon, 2019).

3. Initial training dataset. It is a small, labeled sample of the original data source used to initiate the
first AL iteration. The size of the initial training sample normally varies between no instances at all
and 10% of the unlabeled dataset (X. Li & Guo, 2013).

4. Current and expanded training dataset. It is the concatenation of the initial training dataset and
the datasets labeled by the supervisor in past iterations (discussed in point 2).

5. Chooser (classifier). Produces the class probabilities for each unlabeled instance.

6. Selection criterion. It quantifies the chooser’s uncertainty level for each instance belonging to the
unlabeled dataset. It is typically based on the class probabilities assigned by the chooser. In some
situations, the chooser and the selection criterion are grouped together under the concept acquisition
function (Růžička et al., 2020) or query function (T. Su et al., 2020). Some of the literature refers
to the selection criterion by using the concept sampling scheme (S.-J. Liu et al., 2020).

Figure 5.1 schematizes the steps involved in a complete AL iteration. For a better context within the
remote sensing domain, the prediction output can be identified as the LULC map. This framework
starts by collecting unlabeled data from the original data source. It is used to generate a random initial
training sample and is labeled by the supervisor. In practical applications, the supervisor is frequently a
group of photo-interpreters (Kottke et al., 2017). The chooser is trained on the resulting dataset and is
used to predict the class probabilities on the unlabeled dataset. The class probabilities are fed into a
selection criterion to estimate the prediction’s uncertainty, out of which the instances with the highest
uncertainty will be selected. This calculation is motivated by the absence of labels in the uncertainty
dataset. Therefore, it is impossible to estimate the prediction’s accuracy in the unlabeled dataset in a
real case scenario. The iteration is completed when the selected points are tagged by the supervisor and
added to the training dataset (i.e., the augmented dataset).

A common challenge found in AL tasks is ensuring the consistency of AL over different initializations (Kottke
et al., 2017). There are two factors involved in this phenomenon. On one hand, the implementation of
the same method over different initializations may result in significantly different initial training samples,
amounts to varying accuracy curves. On the other hand, the lack of a robust selection criterion and/or
classifier may also result in inconsistencies across AL experiments with different initializations. This
phenomenon was observed and documented in a LULC classification context in (Tuia et al., 2011).

The classification method plays a central role in the efficacy of AL. The classifier used should be able to
generalise with a relatively small training dataset. Specifically, deep learning models are used in image
classification due to its capability of producing high quality predictions. Although, to make such models
generalizable the training set must be large enough, making its suitability for AL applications an open
challenge (Bi et al., 2019; Cao et al., 2020; X. Wu et al., 2020). Some studies in the Remote Sensing
domain were developed to address this gap. In (Bi et al., 2019; Cao et al., 2020), the authors propose
a deep learning-based AL approach by training the same Convolutional Neural Network incrementally
across iterations and smoothen the decision boundaries of the model using the Markov Random Field
model and a Best-versus-Second Best labelling approach. This allows the introduction of additional data
variability in the final training dataset. Another study (X. Wu et al., 2020) combined transfer learning,
active classification and segmentation techniques for vehicle detection. By combining different techniques,
they were able to produce a classification mechanism that performed well when the amount of training
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Figure 5.1.: Diagram depicting the typical AL framework.

data is limited. However, the exploration of advanced deep learning classifiers in AL is still limited. In (Hu
et al., 2020), the authors show that deep learning classifiers performs well on LULC classification, but
are still not generalizable for different geographical regions or periods. Specifically, AL methods are still
incapable of providing generalizable deep learning classifiers, which benefit from multiple advantages. The
development of Convolutional Neural Networks with both 2 and 3-dimensional convolutions was explored
in (Roy et al., 2019) and reported superior classification performance on benchmark datasets. However, a
large amount of training data was used to produce the final classification map.

Selecting an efficient selection criterion is particularly important to find the instances closest to the
decision border (i.e., instances difficult to classify) (Shrivastava & Pradhan, 2021). Therefore, many AL
related studies focus on the design of the query/acquisition function (T. Su et al., 2020).

5.2.1. Non-informed selection criteria

Only one non-informed (i.e., random) selection criterion was found in the literature. Random sampling
selects unlabeled instances without considering any external information produced by the chooser. Since
the method for selecting the unlabeled instances is random, this method disregards the usage of a chooser
and is comparatively worse than any other selection criterion. However, random sampling is still a powerful
baseline method (Cawley, 2011).

5.2.2. Ensemble-based selection criteria

Ensemble disagreement is based on the class predictions of a set of classifiers. The disagreement between
all the predictions for a given instance is a common measure for uncertainty, although computationally
inefficient (Pasolli et al., 2016; Růžička et al., 2020). It is calculated using the set of classifications
over a single instance, given by the number of votes assigned to the most frequent class (Shrivastava &
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Pradhan, 2021). This method was implemented successfully for complex applications such as deep active
learning (Růžička et al., 2020).

Multiview (Muslea et al., 2006) consists on the training of multiple independent classifiers using different
views, which correspond to the selection of subsets of features or instances in the dataset. Therefore, it
can be seen as a bootstrap aggregation (bagging) ensemble disagreement method. It is represented by the
maximum disagreement score out of set of disagreements calculated for each view (Shrivastava & Pradhan,
2021). A lower value for this metric means a higher classification uncertainty. Multiview-based maximum
disagreement has been successfully applied to hyper-spectral image classification in (Di & Crawford, 2012)
and (X. Zhou et al., 2014).

An adapted disagreement criterion for an ensemble of k-nearest neighbors has been proposed in (Pasolli
et al., 2016). This method employs a k-nearest neighbors classifier and computes an instance’s classification
uncertainty based on the neighbors’ class frequency using the maximum disagreement metric over varying
values for k. As a result, this method is comparable to computing the dominant class’ score over a
weighted k-nearest neighbors classifier. This method was also used on a multimetric active learning
framework (Z. Zhang et al., 2016).

Another relevant ensemble-based selection criterion is the binary random forest-based query model (T. Su
et al., 2020). This method employs a one-versus-one ensemble method to demonstrate an efficient data
selection method using the estimated probability of each binary random forest and determining the
classification uncertainty based on the probabilities closest to 0.5 (i.e., the least separable pair of classes
are used to determine the uncertainty value). However, this study fails to compare the proposed method
with other benchmark methods, such as random sampling.

5.2.3. Entropy-based criteria

A number of contributions have focused on entropy-based querying. The application of entropy is common
among active deep learning applications (Aghdam et al., 2019), where the training of an ensemble of
classifiers is often too expensive.

Entropy query-by-bagging (EQB), also defined as maximum entropy (S.-J. Liu et al., 2020), is an ensemble
approach of the entropy selection criterion, originally proposed in (Tuia et al., 2009). This strategy uses the
set of predictions produced by the ensemble classifier to calculate those many entropy measurements. The
estimated uncertainty measure for one instance is given by the maximum entropy within that set. EQB
was observed to be an efficient selection criterion. Specifically, (Shrivastava & Pradhan, 2021) applied EQB
on hyper-spectral remote sensing imagery using Support Vector Machines (SVM) and Extreme Learning
Machines (ELM) as choosers, achieving optimal results when combining EQB with ELM. Another study
successfully implemented this method on an active deep learning application (S.-J. Liu et al., 2020).
Another study improved over this method with a normalized EQB selection criterion (Copa et al., 2010).

5.2.4. Other relevant criteria

Margin Sampling is a SVM-specific criterion, based on the distance of a given point to the SVM’s decision
boundary (Shrivastava & Pradhan, 2021). This method is less popular than the remaining methods
because it is limited to one type of chooser (SVMs). One extension of this method is the multiclass
level uncertainty (Shrivastava & Pradhan, 2021), calculated by subtracting the instance’s distance to the
decision boundaries of the two most probable classes (Demir et al., 2011).

The Mutual Information-based (MI) criterion selects the new training instances by maximizing the mutual
information between the classifier and class labels in order to select instances from regions that are difficult
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to classify. Although this method is commonly used, it is frequently outperformed by the breaking ties
selection criterion (J. Li et al., 2011; W. Liu et al., 2018).

The breaking ties (BT) selection criterion was originally introduced in (Luo et al., 2003). It consists of the
subtraction between the probabilities of the two most likely classes. Another related method is Modified
Breaking Ties scheme (MBT), which aims at finding the instances containing the largest probabilities for
the dominant class (J. Li et al., 2012; W. Liu et al., 2018)

Another type of selection criteria identified is the loss prediction method (Yoo & Kweon, 2019). This
method replaces the selection criterion with a predictor whose goal is to estimate the chooser’s loss for a
given prediction. This allows the new classifier to estimate the prediction loss on unlabeled instances and
select the ones with the highest predicted loss.

Some of the literature fails to specify the strategy employed, although inferring it is generally intuitive.
For example, (Ertekin et al., 2007) successfully used AL to address the imbalanced learning problem.
They employed an ensemble of SVMs as the chooser, as well as an ensemble-based selection criterion. All
of the research found related to this topic focused on the improvement of AL through modifications on
the selection criterion and classifiers used. None of these publications proposed significant variations to
the original AL framework.

5.3. Artificial Data Generation Approaches

The generation of artificial data is a common approach to address imbalanced learning tasks (Kaur et al.,
2019), as well as improving the effectiveness of supervised learning tasks (DeVries & Taylor, 2017). In
recent years some sophisticated data generation approaches were developed. However, the scope of this
work is to propose the integration of a generator within the AL framework. To do this, we will focus on
heuristic data generation approaches, specifically, oversamplers.

Heuristic data resampling methods employ local and/or global information to generate new, relevant,
non-duplicate instances. These methods are most commonly used to populate minority classes and
balance the between-class distribution of a dataset. The Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002) is a popular heuristic oversampling algorithm, proposed in 2002. The
simplicity and effectiveness of this method contributes to its prevailing popularity. It generates a new
instance through a linear interpolation of a randomly selected minority-class instance and one of its
randomly selected k-nearest neighbors. The implementation of SMOTE for LULC classification tasks
has been found to improve the quality of the predictors used (Bogner et al., 2018; Jozdani et al., 2019).
Despite its popularity, its drawbacks motivated the development of other oversampling methods (Douzas
& Bacao, 2019).

Geometric SMOTE (G-SMOTE) (Douzas & Bacao, 2019) introduces a modification of the SMOTE
algorithm in the data generation mechanism to produce artificial instances with higher variability. Instead
of generating artificial data as a linear combination of the parent instances, it is done within a deformed,
truncated hyper-spheroid. G-SMOTE generates an artificial instance −→z within a hyper-spheroid, formed
by selecting a minority instance −→x and one of its nearest neighbors −→y , as shown in Figure 5.2. The
truncation and deformation parameters define the shape of the spheroid’s geometry. The method also
modifies the selection strategy for the k-nearest neighbors, accepting the generation of artificial instances
using instances from different classes, as shown in Figure 5.2d. The modification of both selection and
generation mechanisms addresses the main drawbacks found in SMOTE, the generation of both noisy
data (i.e., generate minority class instances within majority class regions) and near-duplicate minority
class instances (Douzas & Bacao, 2019). G-SMOTE has shown superior performance when compared
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Figure 5.2.: Example of G-SMOTE’s generation process. G-SMOTE randomly selects instance −→x and
one of its nearest neighbors −→y to produce instance −→z .

with other oversampling methods for LULC classification tasks, regardless of the classifier sed (Douzas
et al., 2019).

5.4. Proposed Method

Within the literature identified, most of the work developed in the AL domain revolved around improving
the quality of classification algorithms and/or selection criteria. Although these methods allow earlier
convergence of the AL iterative process, the impact of these methods are only observed between iterations.
Consequently, none of these contributions focused on the definition of decision borders within iterations.
The method proposed in this paper modifies the AL framework by introducing an artificial data generation
step within AL’s iterative process. We define this component as the generator and is intended to be
integrated into the AL framework as shown in Figure 5.3.

This modification, by using a new source of data to augment the training set, leverages the data annotation
work conducted by the human operator. The artificial data that is generated between iterations reduces
the amount of labeled data required to reach optimal performance and lower the amount of human labor
required to train a classifier to its optimal performance. This process lowers the annotation and overall
training costs by translating some of the annotation cost into computational cost.

This method leverages the capability of artificial data to introduce more data variability into the
augmented dataset and facilitate the chooser’s training phase with a more consistent definition of the
decision boundaries at each iteration. Therefore, any algorithm capable of producing artificial data, be it
agnostic or specific to the domain, can be employed. The artificial data is only used to train the classifiers
involved in the process and is discarded once the training phase is completed. The remaining steps in the
AL framework remain unchanged. This method addresses the limitations found in the previous sections:

1. The convergence of classification performance should be anticipated with the clearer definition of
the decision boundaries across iterations.

2. Annotation cost is expected to reduce as the need for labeled instances reduces along with the early
convergence of the classification performance.

3. The class imbalance bias observed in typical classification tasks, as well as in AL is mitigated by
balancing the class frequencies at each iteration.
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Figure 5.3.: Proposed AL framework. This paper’s contribution comprises a change in the AL framework
through the introduction of a data generation mechanism, represented as the generator
(marked with C ), which is used to add artificial instances to the training dataset.

Although the performance of this method is shown within a LULC classification context, the proposed
framework is independent from the domain. The high dimensionality of remotely sensed imagery make its
classification particularly challenging when the availability of labeled data is scarce and/or comes at a
high cost, being subjected to the curse of dimensionality. Consequently, it is a relevant and appropriate
domain to test this method.

5.5. Methodology

In this section we describe the datasets, evaluation metrics, oversampler, classifiers, software used and the
procedure developed. We demonstrate the proposed method’s efficiency over 7 datasets, sampled from
publicly available, well-known remote sensing hyperspectral scenes frequently found in remote sensing
literature. The datasets and sampling strategy are described in Subsection 5.5.1. On each of these datasets,
we apply 3 different classifiers over the entire training set to estimate the optimal classification performance,
the original AL framework as the baseline reference and the proposed method using G-SMOTE as a
generator, described in Subsection 5.5.2. The metrics used to estimate the performance of these algorithms
are described in Subsection 5.5.3. Finally, the experimental procedure is described in Subsection 5.5.4.

Our methodology focuses on two objectives: (1) Comparison of optimal classification performance among
active learners and traditional supervised learning and (2) Comparison of classification convergence
efficiency among AL frameworks.
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Dataset Sensor Location Dimension Bands Res. (m) Classes

Botswana Hyperion Okavango Delta 1476 x 256 145 30 14
Salinas A AVIRIS California, USA 86 x 83 224 3.7 6

Kennedy Space Center AVIRIS Florida, USA 512 x 614 176 18 16
Indian Pines AVIRIS NW Indiana, USA 145 x 145 220 20 16

Salinas AVIRIS California, USA 512 x 217 224 3.7 16
Pavia University ROSIS Pavia, Italy 610 x 610 103 1.3 9

Pavia Centre ROSIS Pavia, Italy 1096 x 1096 102 1.3 9

Table 5.1.: Description of the hyperspectral scenes used in this experiment. The column “Res. (m)” refers
to the resolution of the sensors (in meters) that captured each of the scenes.

5.5.1. Datasets

The datasets used were extracted from publicly available repositories containing hyperspectral images
and ground truth data. Additionally, all datasets were collected using the same sampling procedure. The
description of the hyperspectral scenes used in this study is provided in Table 5.1. These scenes were
chosen because of their popularity in the research community and their high baseline classification scores.
Consequently, demonstrating an outperforming method in this context is particularly challenging and
valuable.

The Indian Pines scene (Baumgardner et al., 2015) is composed of agriculture fields in approximately
two thirds of its coverage, low density buildup areas and natural perennial vegetation in the remainder
of its area (see Figure 5.4a). The Pavia Centre and University scenes are hyperspectral, high-resolution
images containing ground truth data composed of urban-related coverage (see Figures 5.4b and 5.4c). The
Salinas and Salinas A scenes contain at-sensor radiance data. As subset of Salinas, the Salinas A scene
contains contains the vegetables fields present in Salinas and the latter is also composed of bare soils and
vineyard fields (see Figures 5.4d and 5.4e). The Botswana scene contains ground truth data composed of
seasonal swamps, occasional swamps, and drier woodlands located in the distal portion of the Delta (see
Figure 5.4f). The Kennedy Space Center scene contains a ground truth composed of both vegetation and
urban-related coverage (see Figure 5.4g).

The sampling strategy is similar to all datasets. The pixels without a ground truth label are first discarded.
All the classes with cardinality lower than 150 are also discarded. This is done to maintain feasible
Imbalance Ratios (IR) across datasets (where IR =

count(Cmaj)
count(Cmin)

). Finally, a stratified sample of 1500
instances are selected for the experiment. The resulting datasets are described in Table 5.2. The motivation
for this strategy is three fold: (1) reduce the datasets to a manageable size and allow the experimental
procedure to be completed within a feasible time frame, (2) ensure the relative class frequencies in the
scenes are preserved and (3) ensure equivalent analyses across datasets and AL frameworks. In this
context, a fixed number of instances per dataset is especially important to standardize the AL-related
performance metrics.

5.5.2. Machine Learning Algorithms

We use two different types of ML algorithms. A data generation algorithm, used to form the generator,
and classification algorithms, used to calculate the classification uncertainties in the unlabeled dataset
and predict the class labels in the validation and test sets.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.4.: Gray scale visualization of a band (top row) and ground truth (bottom row) of each scene
used in this study. (a) Indian Pines, (b) Pavia Centre, (c) Pavia University, (d) Salinas, (e)
Salinas A, (f) Botswana, (g) Kennedy Space Center

Dataset Features Instances Min. Instances Maj. Instances IR Classes

Botswana 145 1500 89 154 1.73 12
Salinas A 224 1500 109 428 3.93 6

Kennedy Space Center 176 1500 47 272 5.79 12
Indian Pines 220 1500 31 366 11.81 12

Salinas 224 1500 25 312 12.48 16
Pavia University 103 1500 33 654 19.82 9

Pavia Centre 102 1500 27 668 24.74 9

Table 5.2.: Description of the datasets collected from each corresponding scene. The sampling strategy is
similar to all scenes.
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Although any method capable of generating artificial data can be used as a generator, the one used in this
experiment is an oversampler, originally developed to deal with imbalanced learning problems. Specifically,
we chose G-SMOTE, a state-of-the-art oversampler.

Three classification algorithms are used. We use different types of classifiers to test the framework’s
performance under varying situations: neighbors-based, linear and ensemble models. The neighbors-based
classifier chosen was K-nearest neighbors (KNN) (Cover & Hart, 1967), a logistic regression (LR) (Nelder
& Wedderburn, 1972) is used as the linear model and a random forest classifier (RFC) (Ho, 1995) was
used as the ensemble model.

The acquisition function is completed by testing three different selection criteria. Random selection is
used as a baseline selection criterion, whereas entropy and breaking ties are used due to their popularity
and independence of the classifier used.

5.5.3. Evaluation Metrics

Since the datasets used in this experiment have an imbalanced distribution of class frequencies, metrics
such as the Overall Accuracy (OA) and Kappa coefficient are insufficient to accurately depict classification
performance (Olofsson et al., 2013; Pontius Jr & Millones, 2011). Instead, metrics such as Producer’s
Accuracy (or Recall) and User’s Accuracy (or Precision) can be used. Since they consist of ratios based
on True/False Positives (TP and FP) and Negatives (TN and FN), they provide per class information
regarding the classifier’s classification performance. However, in this experiment, the meaning and number
of classes available in each dataset varies, making these metrics difficult to synthesize.

The performance metric Geometric mean (G-mean) and F-score are less sensitive to the data imbalance
bias (Jeni et al., 2013; Kubat, Matwin, et al., 1997). Therefore, we employ both of these scorers. G-mean
consists of the geometric mean of Specificity = TN

TN+FP and Sensitivity = TP
TP+FN (also known as

Recall) (Kubat, Matwin, et al., 1997). Both metrics are calculated in a multiclass context considering a
one-versus-all approach. For multiclass problems, the G-mean scorer is calculated as its average per class
values:

G-mean =

√
Sensitivityi × Specificityi

The F-score performance metric is the harmonic mean of Precision and Recall. The two metrics are also
calculated considering a one-versus-all approach. The F-score for the multi-class case can be calculated
using its average per class values (H. He & Garcia, 2009):

F-score = 2
Precision×Recall

Precision+Recall

The comparison of classification convergence across AL frameworks and selection criteria is done using 2
AL-specific performance metrics. Particularly, we follow the recommendations found in (Kottke et al.,
2017). Each AL configuration is evaluated using the Area Under the Learning Curve (AULC) performance
metric. It is the sum of the classification performance values of all iterations. To facilitate the analysis of
the results, we fix the range of this metric between [0, 1] by dividing it with the total amount of iterations
(i.e., the maximum performance area).

The Data Utilization Rate (DUR) (Reitmaier & Sick, 2013) metric consists of the ratio between the
number of instances required to reach a given G-mean score threshold by an AL strategy and an equivalent
baseline strategy. For easier interpretability, we simplify this metric by using the percentage of training
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Figure 5.5.: Experimental procedure. The datasets extracted from hyperspectral scenes are split in 5
folds. 1 of those (e.g., K1) is used to test the optimal performance of AL algorithms and
the classification without AL. The training set is used to iterate AL algorithms and train
classifiers. The validation set is used to test the convergence of AL algorithms. The results
are averaged over the 5 folds across each of the 3 different initializations of this procedure.

data used by an AL strategy to reach the performance threshold, instead of presenting these values as a
ratio of the baseline strategy. The DUR metric is measured at 9 different performance levels, between 0.6
and 0.95 G-mean scores at a 0.05 step.

5.5.4. Experimental Procedure

A common practice in methodological evaluations is the implementation of an offline experiment (Kagy
et al., 2019). It consists of using an existing set of labeled data as a proxy for the population of unlabeled
instances. Because the dataset is already fully labeled, the supervisor’s typical annotation process involved
in each iteration is done at zero cost. Each AL and classifier configuration is tested using a stratified
5-fold cross validation testing scheme. For each round, the larger partition is split in a stratified fashion
to form a training and validation set (containing 20% of the original partition). The validation set is used
to evaluate the convergence efficiency of active learners; the chooser’s classification performance metrics
and amount of data points used at each iteration are used to compute the AULC and DUR. Additionally,
within the AL iterative process, the classifier with optimal performance on the validation set is evaluated
using the test set. In order to further reduce possible initialization biases, this procedure is repeated 3
times with different initialization seeds and the results of all runs are averaged (i.e., each configuration
is trained and evaluated 15 times). Finally, the maximum performance lines are calculated using the
same approach. In those cases, the validation set is not used. The experimental procedure is depicted in
Figure 5.5.

To make the AL-specific metrics comparable among active learners, the configurations of the different
frameworks must be similar. For each dataset, the number of instances is constant to facilitate the analysis
of the same metrics.
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Classifier Hyperparameters Values

LR maximum iterations 10000
solver sag
penalty None

KNN # neighbors 5
weights uniform
metric euclidean

RF maximum tree depth None
# estimators 100
criterion gini

Generator

G-SMOTE # neighbors 5
deformation factor 0.5
truncation factor 0.5

Table 5.3.: Hyper-parameter definition for the classifiers and generator used in the experiment.

In most practical AL applications it is assumed that the number of instances in the initial training sample
is too small to perform hyperparameter tuning. Consequently, in order to ensure realistic results, our
experimental procedure does not include hyperparameter optimization. The predefined hyperparameters
are shown in Table 5.3. They were set up based on general recommendations and default settings for the
classifiers and generators used.

The AL iterative process is set up with a randomly selected initial training sample with 15 initial samples.
At each iteration, 15 additional samples are added to the training set. This process is stopped after
49 iterations, once 50% of the entire dataset (i.e., 78% of the training set) is added to the augmented
dataset.

5.5.5. Software Implementation

The experiment was implemented using the Python programming language, along with the Python libraries
Scikit-Learn (Pedregosa et al., 2011), Imbalanced-Learn (Lemaître et al., 2017), Geometric-SMOTE,
Cluster-Over-Sampling and Research-Learn libraries. All functions, algorithms, experiments and results
are provided in the GitHub repository of the project.

5.6. Results & Discussion

The evaluation of the different AL frameworks in a multiple dataset context should not rely uniquely on
the mean of the performance metrics across datasets. (Demšar, 2006) recommends the use of mean ranking
scores, since the performance levels of the different frameworks varies according to the data it is being used
on. Consequently, evaluating these performance metrics solely based on their mean values might lead to
inaccurate analyses. Accordingly, the results of this experiment are analysed using both the mean ranking
and absolute scores for each model. The rank values are assigned based on the mean scores resulting from
three different initializations of 5-fold cross validation for each classifier and active learner. The goal of this
analysis is to understand whether the proposed framework (AL with the integration of an artificial data
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Classifier Evaluation Metric Standard Proposed

KNN F-score 2.00 ± 0.0 1.00 ± 0.0
KNN G-mean 2.00 ± 0.0 1.00 ± 0.0
LR F-score 1.71 ± 0.45 1.29 ± 0.45
LR G-mean 2.00 ± 0.0 1.00 ± 0.0
RF F-score 1.86 ± 0.35 1.14 ± 0.35
RF G-mean 2.00 ± 0.0 1.00 ± 0.0

Table 5.4.: Mean rankings of the AULC metric over the different datasets (7), folds (5) and runs (3) used
in the experiment. This means that the use of G-SMOTE almost always improves the results
of the original framework.

Classifier Evaluation Metric Standard Proposed

KNN F-score 0.762 ± 0.131 0.794 ± 0.123
KNN G-mean 0.864 ± 0.079 0.886 ± 0.073
LR F-score 0.839 ± 0.119 0.843 ± 0.116
LR G-mean 0.907 ± 0.074 0.911 ± 0.071
RF F-score 0.810 ± 0.109 0.819 ± 0.1
RF G-mean 0.890 ± 0.068 0.901 ± 0.059

Table 5.5.: Average AULC of each AL configuration tested. Each AULC score is calculated using the
G-mean scores of each iteration in the validation set. By the end of the iterative process, each
AL configuration used a total of 750 instances of the 960 instances that compose the training
set.

generator) is capable of using less data from the original dataset while simultaneously achieving better
classification results than the standard AL framework, i.e., guarantee a faster classification convergence.

5.6.1. Results

Table 5.4 shows the average rankings and standard deviations across datasets of the AULC scores for
each active learner.

The mean AULC absolute scores are provided in Table 5.5. These values are computed as the mean of the
sum of the scores of a specific performance metric over all iterations (for an AL configuration). In other
words, these values correspond to the average AULC over 7 datasets× 5 folds× 3 initializations.

The average DURs are shown in Table 5.6. They were calculated for various G-mean scores thresholds,
varying at a step of 5% between 60% and 95%. Each row shows the percentage of training data required
by the different AL configurations to reach that specific G-mean score.

G-mean Score Classifier Standard Proposed

0.60 KNN 4.0% 2.1%
0.60 LR 2.2% 2.1%
0.60 RF 2.2% 2.1%
0.65 KNN 5.6% 2.8%
0.65 LR 3.0% 2.7%
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G-mean Score Classifier Standard Proposed

0.65 RF 3.1% 2.6%
0.70 KNN 7.9% 4.1%
0.70 LR 4.2% 4.1%
0.70 RF 4.5% 3.6%
0.75 KNN 13.5% 7.1%
0.75 LR 7.2% 6.6%
0.75 RF 6.6% 5.4%
0.80 KNN 24.4% 16.9%
0.80 LR 13.1% 11.7%
0.80 RF 11.6% 9.2%
0.85 KNN 29.8% 23.6%
0.85 LR 19.8% 18.8%
0.85 RF 23.1% 17.3%
0.90 KNN 41.0% 36.1%
0.90 LR 28.1% 24.8%
0.90 RF 37.1% 30.3%
0.95 KNN 71.3% 69.1%
0.95 LR 45.8% 40.2%
0.95 RF 64.6% 62.2%

Table 5.6.: Mean data utilization of AL algorithms, as a percentage of the training set.

The DUR of the proposed method relative to the baseline method is shown in Figure 5.6. A DUR below
1 means that the proposed framework requires less data to reach the same performance threshold (as
a percentage, relative to the amount of data required by the baseline framework). For instance, in the
upper left graphic we can see that the proposed framework achieves 90% classification using F-score while
using 91% of the amount of data used by the traditional AL framework, in other words 9% less data.

The averaged optimal classification scores are shown in Table 5.7. The maximum performance (MP)
classification scores are shown as a benchmark and represent the performance of the corresponding classifier
using the entire training set.

5.6.2. Statistical Analysis

Classifier Evaluation Metric MP Standard Proposed

KNN F-score 0.838 ± 0.106 0.835 ± 0.115 0.843 ± 0.105
KNN G-mean 0.907 ± 0.063 0.904 ± 0.069 0.912 ± 0.061
LR F-score 0.890 ± 0.084 0.883 ± 0.096 0.887 ± 0.097
LR G-mean 0.935 ± 0.052 0.931 ± 0.059 0.938 ± 0.055
RF F-score 0.859 ± 0.083 0.866 ± 0.081 0.869 ± 0.08
RF G-mean 0.918 ± 0.051 0.921 ± 0.051 0.930 ± 0.043

Table 5.7.: Optimal classification scores. The Maximum Performance (MP) classification scores are
calculated using classifiers trained using the entire training set.
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Figure 5.6.: Mean data utilization rates. The y-axis shows the percentage of data (relative to the baseline
AL framework) required to reach the different performance thresholds.
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Dataset p-value Significance

Botswana 3.8e-03 True
Indian Pines 2.3e-04 True

Kennedy Space Center 1.3e-04 True
Pavia Centre 4.3e-03 True

Pavia University 4.6e-05 True
Salinas 4.6e-05 True

Salinas A 3.0e-03 True

Table 5.8.: Adjusted p-values using the Wilcoxon signed-rank method. Bold values are statistically
significant at a level of α = 0.05. The null hypothesis is that the performance of the proposed
framework is similar to that of the original framework.

The methods used to test the experiment’s results must be appropriate for a multi-dataset context.
Therefore the statistical analysis is performed using the Wilcoxon signed-rank test (Wilcoxon, 1945) as
a post-hoc analysis. The variable used for this test is the data utilization rate based on the G-mean
performance metric, considering the various performance thresholds from Table 5.6.

The Wilcoxon signed-rank test results are shown in Table 5.8. We test as null hypothesis that the
performance of the proposed framework is the same as the original AL framework. The null hypothesis
was rejected in all datasets.

5.6.3. Discussion

This paper expands the AL framework by adding an artificial data generator into its iterative process.
This modification is done to accelerate the classification convergence of the standard AL procedure, which
is reflected in the reduction of the amount of data necessary to reach better classification results.

The convergence efficiency of the proposed method is always higher than the baseline AL framework, with
the exception of one comparison, as shown in Table 5.4 and Figure 5.6. This means the proposed AL
framework using data generation was able to outperform the baseline AL in nearly all scenarios.

The mean AULC scores in Table 5.5 show a significant improvement in the performance of AL when a
generator is used. The mean performance of the proposed framework is always better than the baseline
framework. This improvement is explained by:

1. Earlier convergence of AL, i.e., requiring less data to achieve comparable performance levels. This
effect is shown in Table 5.6, where we found that the proposed framework always uses less data for
similar performance levels, regardless of the classifier used.

2. Higher optimal classification performance, i.e., reaching higher performance levels overall. This
effect is shown in Table 5.7, where we found that using a generator in AL led to a better classification
performance and was capable of outperforming the MP threshold.

Our results show statistical significance in every dataset. The proposed framework had a superior
performance with statistical significance on each dataset at a level of α = 0.05. This indicates that
regardless of the context under which an AL algorithm is used, the proposed framework reduces the
amount of data necessary in the AL’s iterative process.

This paper introduces the concept of applying data a generation algorithm in the AL framework. This
was done with the implementation of a recent state of the art generalization of a popular data generation
algorithm. Although, since this algorithm is based on heuristics, future work should focus on improving
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these results through the design of new data generation mechanisms, at the cost of additional compu-
tational power. In addition, we also noticed significant standard errors in our experimental results (see
Subsection 5.6.1). This indicates that AL procedures seem to be particularly sensitive to the initialization
method, which is still a limitation of AL, regardless of the framework and configurations used. This
is consistent with the findings in (Kottke et al., 2017), which future work should attempt to address.
Although using a generator marginally reduced this standard error, it is not sufficient to address this
specific limitation.

5.7. Conclusion

The aim of this experiment was to test the effectiveness of a new AL framework that introduces artificial
data generation in its iterative process. The experiment was designed to test the proposed method
under particularly challenging conditions, where the maximum performance line is naturally high in most
datasets. The element that constitute the Generator component was set up in a plug-and-play scheme,
without significant tuning of the G-SMOTE oversampler. Using a generator in AL improved the original
AL framework in all scenarios. These results could be further improved through the modification and
more intense tuning of the data generation strategy. In our experiment, artificial data was generated only
to match each non-majority class frequency with the majority class frequency, strictly balancing the class
distribution. Generating a larger amount of data for all classes can further improve these results.

The high performance scores for the baseline AL framework made the achievement of significant improve-
ments over the traditional AL framework under these conditions particularly meaningful. The advantage
of the proposed AL framework is shown in Table 5.6. In most of the presented scenarios there is a
substantial reduction of data necessary to reach a given performance threshold.

The results from this experiment show that using a data generator in the AL framework will improve the
convergence of the method. This framework successfully anticipate the predictor’s optimal performance,
as shown in Tables 5.4, 5.5 and 5.6. Therefore, in a real application, the annotation cost would have
been reduced since less iterations and labeled instances are necessary to reach near optimal classification
performance.

This chapter was published as: Fonseca, J., Douzas, G., Bacao, F. (2021). Increasing the Effectiveness
of Active Learning: Introducing Artificial Data Generation in Active Learning for Land Use/Land Cover
Classification. Remote Sensing, 13(13), 2619. https://doi.org/10.3390/rs13132619

92



6. Improving Active Learning Performance
Through the Use of Data Augmentation

Active Learning (AL) is a well-known technique to optimize data usage in training, through
the interactive selection of unlabeled observations, out of a large pool of unlabeled data, to
be labeled by a supervisor. Its focus is to find the unlabeled observations that, once labeled,
will maximize the informativeness of the training dataset, therefore reducing data related
costs. The literature describes several methods to improve the effectiveness of this process.
Nonetheless, there is a paucity of research developed around the application of artificial data
sources in AL, especially outside image classification or NLP. This paper proposes a new
AL framework, which relies on the effective use of artificial data. It may be used with any
classifier, generation mechanism and data type, and can be integrated with multiple other
state-of-the-art AL contributions. This combination is expected to increase the ML classifier’s
performance and reduce both the supervisor’s involvement and the amount of required labeled
data, at the expense of a marginal increase in computational time. The proposed method
introduces a hyperparameter optimization component to improve the generation of artificial
instances during the AL process, as well as an uncertainty-based data generation mechanism.
We compare the proposed method to the standard framework and an oversampling-based
active learning method for more informed data generation in an AL context. The models’
performance was tested using four different classifiers, two AL-specific performance metrics
and three classification performance metrics over 15 different datasets. We demonstrate that
the proposed framework, using data augmentation, significantly improves the performance of
AL, both in terms of classification performance and data selection efficiency.1

Keywords: Active Learning; Data Augmentation; Oversampling

6.1. Introduction

The importance of training robust ML models with minimal data requirements is substantially increasing (X.
Li et al., 2012; Nath et al., 2021; Sverchkov & Craven, 2017). Although the growing amount of valuable
data sources and formats being developed and explored is affecting various domains (Y. Li et al., 2021),
this data is often unlabeled. Only a tiny amount of the data being produced and stored can be helpful
in supervised learning tasks. In addition, it is often difficult and expensive to label data for specific
Machine Learning (ML) projects, especially when data-intensive ML techniques are involved (e.g., Deep
Learning classifiers) (Nath et al., 2021). In this scenario, labeling the full dataset becomes impractical,
time-consuming and expensive. Two different ML techniques attempt to address this problem: Semi-
Supervised Learning (SSL) and Active Learning (AL). Even though they address the same problem, the

1All the code and preprocessed data developed for this study is available at https://github.com/joaopfonseca/publications/.
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two follow different approaches. SSL focuses on observations with the most certain predictions, whereas
AL focuses on observations with the least certain predictions (Siméoni et al., 2020).

SSL attempts to use a small, predefined set of labeled and unlabeled data to produce a classifier with
superior performance. This method uses the unlabeled observations to help define the classifier’s decision
boundaries (Van Engelen & Hoos, 2020). Simultaneously, the amount of labeled data required to reach
a given performance threshold is also reduced. It is a particular case of ML because it falls between
the supervised and unsupervised learning perspectives. AL, instead of optimizing the informativeness
of an existing training set, expands the dataset to include the most informative and/or representative
observations (Sener & Savarese, 2018). It is an iterative process where a supervised model is trained
and simultaneously identifies the most informative unlabeled observations to increase the performance of
that classifier. The combination of SSL with AL has been explored in the past, achieving state-of-the-art
results (Leng et al., 2013).

Several studies have pointed out the limitations of AL within an Imbalanced Learning context (H. Yu et al.,
2019; H. Zhang et al., 2020). With imbalanced data, AL approaches frequently have low performance, high
computational time, or data annotation costs. Studies addressing this issue tend to adopt classifier-level
modifications, such as the Weighted Extreme Learning Machine (Qin et al., 2021; H. Yu et al., 2019; Zong
et al., 2013). However, classifier or query function-level modifications (See Section 6.2.1) have limited
applicability since a universally good AL strategy has not yet been found (Sener & Savarese, 2018). Other
methods address imbalanced learning by weighing the observations as the function of the observation’s
class imbalance ratio (H. Liu et al., 2021). Alternatively, other techniques reduce the imbalanced learning
bias by combining Informative and Representative-based query approaches (see Section 6.2.1) (Tharwat &
Schenck, 2020). Another approach to deal with imbalanced data and data scarcity, in general, is generating
synthetic data (H. He & Garcia, 2009). This approach has the advantage of being classifier-agnostic, it
potentially reduces the imbalanced learning bias, and also works as a regularization method in data-scarce
environments, such as AL implementations (Y.-Y. Kim et al., 2021). However, most recent studies improve
the AL performance by modifying the design/choice of the classifier and query functions used.

Recently, synthetic data generation techniques gathered attention among ML researchers for its effectiveness
over a wide range of applications: regularization, oversampling, semi-supervised learning, self-supervised
learning, etc. Data augmentation generates synthetic observations to complement naturally occurring
observations. It aims to reinforce the definition of a ML classifier’s decision boundary during the learning
phase and improve the generalization of the algorithm. These techniques have the advantage of being a
data level technique (despite the existence of augmentation methods applied internally in the ML classifier).
Therefore, they can be implemented in a way that will not affect the choice of classifier and does not
exclude the usage of other regularization approaches. In an AL context, the generation of synthetic data
becomes particularly appealing, especially with randomized and statistical-based approaches; it ensures
better model performance with reduced involvement of a human agent, at the expense of a marginal
increase in computational power. In addition, synthetic data is expected to reduce the amount labeled
data required for a good AL implementation.

Figure 6.1 illustrates the difference across AL iterations between the standard AL approach and the
proposed method. Synthetic data allowed for a quicker expansion of the labeled input area at an early
stage of the process, with better defined decision boundaries and near-covergence of the ML classifier’s
performance at the third iteration. Data augmentation influences the choice of unlabeled observations for
labeling into regions where synthetic data is not being able to represent the unlabeled data pool.

6.1.1. Motivation and contributions

The usage of data augmentation in AL is not new. The literature found on the topic (see Section 6.2.3)
focuses on either image classification or Natural Language Processing and uses Deep Learning-based
data augmentation to improve the performance of neural network architectures in AL. These methods,
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(a) (b) (c)

Figure 6.1.: Illustration of the different acquisition processes in AL using a K-Nearest Neighbors classifier
and Shannon’s entropy as the uncertainty estimation function, with five observations being
collected and labeled per iteration. The top row shows the behavior of a standard AL
implementation, while the bottom row shows the behavior of the proposed method. Column
(a), (b) and (c) show the decision boundaries at iterations 1 (after the collection of five
random initial training observations), 2 (with 10 labeled observations) and 3 (with 15 labeled
observations), respectively. The initial labeled dataset for both approaches is the same. The
two classes are distinguished with △ and ×, and are colored as red and blue (respectively) if
they are labeled. The transparent green observations are synthetic observations (bottow row
only).

although showing promising results, represent a limited perspective of the potential of data augmentation
in a real-world setting:

1. Using Deep Learning in an iterative setting requires access to significant computational power.

2. These models tend to use sophisticated data augmentation methods, whose implementation may
not be accessible to non-sophisticated users.

3. They require a significant amount of processing time per iteration and are inappropriate for settings
with limited time budgets.

4. The studies found on the topic are specific to the domain, classifier, and data augmentation method.
In addition, all of the related methods found (except one) focus on either image or natural language
processing classification problems.

Consequently, the direct effect of data augmentation is unclear: these studies implement different neural
network-based techniques for different classification problems, whose performance may be attributed to
various elements within the AL framework.

In this study, we explore the effect of data augmentation in AL in a context-agnostic setting, along with
two different data augmentation policies: oversampling (where the amount of data generated for each class
equals the amount of data belonging to the majority class) and non-constant data augmentation policies
(where the amount of data generated exceeds the amount of data belonging to the majority class in varying
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quantities) between iterations. We start by conceptualizing the AL framework and each of its elements, as
well as the modifications involved to implement data augmentation in the AL iterative process. We argue
that simple, non-domain specific data augmentation heuristics are sufficient to improve the performance
of AL implementations, without the need to resort to deep learning-based data augmentation algorithms.
These contributions can be summarized as follows:

1. We propose a flexible AL framework with pipelined data augmentation for tabular data that may
be adapted for any domain or data type. This implementation is directed towards use cases with
limited computational power and/or processing time.

2. We use a geometric-based data augmentation method for non-network based classifiers and adapt it
to leverage information from the AL process. To the best of our knowledge, most existing methods
use domain/classifier-specific augmentations or the Mixup approach.

3. We provide empirical evidence that the integration of varying data augmentation policies between
iterations in the AL framework not only further reduces the amount of labeled data required, but is
also a viable training strategy for fully supervised learning settings.

When compared to the standard AL framework, the proposed framework contains two additional com-
ponents: the Generator and the Hyperparameter Optimizer. We implement a modified version of the
Geometric Synthetic Minority Oversampling Technique (G-SMOTE) (Douzas & Bacao, 2019) as a data
augmentation method with an optimized generation policy (explained in Section 1.1). We also propose
a hyperparameter optimization module, which is used to find the best data augmentation policy at
each iteration. We test the effectiveness of the proposed method in 15 datasets of different domains.
We implement three AL frameworks (standard, oversampling and varying data augmentation) using
four different classifiers, three different performance metrics and calculate two AL-specific performance
metrics.

The remainder of this manuscript is structured as follows: Section 6.2 introduces relevant topics discussed
in the paper and describes the related work. Section 6.3 elucidates the proposed method. Section 6.4
details the methodology of the study’s experiment. Section 6.5 presents the results obtained from the
experiment, as well as a discussion of these results. Section 6.6 presents the conclusions drawn from this
study.

6.2. Background

In this section we describe the AL problem, data augmentation techniques, and review the literature that
combines AL with data augmentation. Table 6.1 describes the notations used throughout the rest of this
study.

Table 6.1.: Description of all notations and symbols used throughout the manuscript.
Symbol Meaning

fc ML classifier.
xi Observation at index i.

facq(xi; fc) Acquisition function.
faug(xi; τ) Augmentation function.

τ Augmentation policy.
D Data pool. Contains both labeled and unlabeled data.
Dt

lab Labeled data set at iteration t.

Continued on next page
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Table 6.1.: Description of all notations and symbols used throughout the manuscript.
Symbol Meaning

Dt
pool Unlabeled data pool at iteration t.
Dt

new Set of observations from Dt
poolto be labeled and added to Dt+1

lab .
T Iteration budget.
n Annotation budget per iteration.

6.2.1. Active Learning

This paper focuses on pool-based AL methods as defined in (Katz-Samuels et al., 2021). The goal of
AL models is to maximize the performance of a classifier, fc, while annotating as least observations,
xi, as possible. They use a data pool, D, where D = Dlab ∪ Dpool and |Dpool| ≫ |Dlab|. Dpool and Dlab

refer to the sets of unlabeled and labeled data, respectively. Having a budget of T iterations (where
t ∈ {1, 2, . . . , T}) and n annotations per iteration, at iteration t, fc is trained using Dt

lab to produce, for
each xi ∈ Dt

pool, an uncertainty score using an acquisition function facq(xi; fc). These uncertainty scores
are used to annotate the n observations with highest uncertainty from Dt

pool to form Dt
new. The iteration

ends with the update of Dt+1
lab = Dt

lab ∪ Dt
new and Dt+1

pool = Dt
pool \ Dt

new (T. Su et al., 2020; Sverchkov &
Craven, 2017). This process is shown in Figure 6.2. Before the start of the iterative process, assuming
Dt=0

lab = ∅, the data used to populate Dt=1
lab is typically collected randomly from D = Dt=0

pool and is labeled
by a supervisor (Aghdam et al., 2019; Fonseca et al., 2021b; Yoo & Kweon, 2019).

Unlabeled 
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Current Training 
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Select top N 
Observations

New Training 
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Uncertainty 
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(Data Labeling)
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Figure 6.2.: Diagram depicting a typical AL iteration. In the first iteration, the training set collected
during the initialization process becomes the “Current Training Dataset”.

Research focused on AL has typically been focused on the specification of facq (Hospedales et al., 2011)
and domain-specific applications, such as malware detection (Y. Li et al., 2022) or Land Use/Land Cover
classification (J. Li et al., 2020). Acquisition functions can be divided into two different categories (Kumar
& Gupta, 2020; C. Su et al., 2021):

1. Informative-based. These strategies use the classifier’s output to assess the importance of each
observation towards the performance of the classifier (Fu et al., 2013).

2. Representative-based. These strategies estimate the optimal set of observations that will optimize
the classifier’s performance (Kumar & Gupta, 2020).
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Although there are significant contributions toward the development of more robust query functions and
classifiers in AL, modifications to AL’s basic structure are rarely explored. In (Yoo & Kweon, 2019) the
authors introduce a loss prediction module in the AL framework to replace the uncertainty criterion. This
model implements a second classifier to predict the expected loss of the unlabeled observations (using the
actual losses collected during the training of the original classifier) and return the unlabeled observations
with the highest expected loss. However, this contribution is specific to deep neural networks and was
only tested for image classification.

AL techniques may also be used to complement other well-known learning challenges. For example,
security bug report prediction tasks are typically developed in imbalanced learning environment, where
it is necessary to manually label large amounts of data, which may result in mislabeled data (X. Wu
et al., 2021). Another related example is machinery fault diagnostics, where the quality and quantity of
the data collected is often recognized as a bottleneck (W. Zhang et al., 2023). In this case, ML-based
techniques frequently leverage unlabeled data to improve the classification performance (W. Zhang et al.,
2021) and rely on manual data acquisition (M. He & He, 2017). In these examples, the application of
an AL technique could reduce the amount of labeled data required, reduce the strain in the supervisor’s
labeling process and reduce the amount of label noise.

An under explored challenge in the AL literature is the effective handling of different data structures. One
method to address this problem are autoencoder architectures (J. Li et al., 2017) or, in the case of text
data, semantic representation networks (Zheng et al., 2021). However, understanding how to integrate
these two types of methods is a subject of future research. Within other research streams, such as deep
reinforcement learning, some research also focus on optimizing observation efficiency during the learning
process (K. Zhang, Wang, et al., 2022).

6.2.2. Data Augmentation

The standard AL model can be complemented with a data augmentation function, faug(xi; τ), where
τ defines the augmentation policy. In this context, τ refers to the transformation applied and its
hyperparameters and faug produces a modified observation, x̃ ∈ Daug where Daug is the set of modified
observations. This involves the usage of a new set of data, Dt

train = Dt
lab ∪ Dt

aug, to train the classifier.

Data Augmentation methods expand the training dataset by introducing new and informative observations
(Behpour et al., 2019). The production of artificial data may be done via the introduction of perturbations
on the input (Fonseca et al., 2021a), feature (DeVries & Taylor, 2017), or output space (Behpour et al.,
2019). Data Augmentation methods may be divided into two categories (Shorten & Khoshgoftaar, 2019):

1. Heuristic approaches attempt to generate new and relevant observations by applying a predefined
procedure, usually incorporating some degree of randomness (Kashefi & Hwa, 2020). Since these
methods typically occur in the input space, they require fewer data and computational power when
compared to Neural Network methods.

2. Neural Network approaches, on the other hand, map the original input space into a lower-dimensional
representation, known as the feature space (DeVries & Taylor, 2017). The generation of artificial
data occurs in the feature space and is reconstructed into the input space. Although these methods
allow the generation of less noisy data in high-dimensional contexts and more plausible artificial
data, they are significantly more computationally intensive.

While some techniques may depend on the domain, others are domain-agnostic. For example, Random
Erasing (Zhong et al., 2020), Translation, Cropping and Flipping are examples of image data-specific
augmentation methods. Other methods, such as autoencoders, may be considered domain agnostic.
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6.2.3. Data Augmentation in Active Learning

The only AL model found that uses data augmentation outside of the computer vision or NLP domains
implements a pipelined approach, described in (Fonseca et al., 2021b). In this study, the AL model
proposed is applied for tabular data using an oversampling data augmentation policy (i.e., the artificial
data was only generated to balance the target class frequencies). However, this AL model was applied in
a Land Use/Land Cover classification context with specific characteristics that are not necessarily found
in other supervised learning problems. Specifically, these types of datasets are high dimensional and have
limited data variability within each class (i.e., cohesive spectral signatures within classes) due to their
geographical proximity. Furthermore, this method does not allow augmentation policy optimization (i.e.,
every hyperparameter has to be hard-coded a priori).

The Bayesian Generative Active Deep Learning (BGDAL) (Tran et al., 2019) is another example of
a pipelined combination of facq and faug, applied to image classification. BGDAL uses a Variational
AutoEncoder (VAE) architecture to generate artificial observations. However, the proposed model is
computationally expensive, requires a large data pool to train the VAE, and is not only dependent on the
quality of the augmentations performed, but also on the performance of the discriminator and classifiers
used.

The method proposed in (Y.-Y. Kim et al., 2021), Look-Ahead Data Acquisition for Deep Active
Learning, implements data augmentation to train a deep-learning classifier. However, adapting existing
AL applications to use this approach is often impractical and implies the usage of image data since the
augmentations used are image data specific and occur on the unlabeled observations, before the unlabeled
data selection.

The Variational Adversarial Active Learning (VAAL) model (Sinha et al., 2019) is a deep AL approach to
image classification that uses as inputs the embeddings produced by a VAE into a secondary classifier,
working as facq, to predict if xi ∈ D belongs to Dpool. The n true positives with the highest uncertainty are
labeled by the supervisor and Dpool and Dlab are updated as described in Section 6.2.1. The Task-aware
VAAL model (K. Kim et al., 2021) extends the VAAL model by introducing a ranker, which consists of
the Learning Loss module introduced in (Yoo & Kweon, 2019). These models use data augmentation
techniques to train the different neural network-based components of the proposed models. However, the
AL components used are specific image classification, computationally expensive and the analysis of the
effect of data augmentation in these AL models is not discussed.

In (Y. Ma et al., 2020), the proposed AL method was explicitly designed for image data classification,
where a deep learning model was implemented as a classifier, but its architecture is not described, the
augmentation policies used are unknown and the results reported correspond to single runs of the discussed
model. The remaining AL models found implement data augmentation for NLP applications, in (Q. Li
et al., 2021; Quteineh et al., 2020). However, these methods were designed for specific applications within
that domain and are not necessarily transferable to other domains or tasks.

6.3. Proposed Method

Based on the literature found on AL, most of the contributions and novel implementations of AL algorithms
have focused on the improvement of the choice/architecture of the classifier or the improvement of the
uncertainty criterion. In addition, the resulting classification performance of AL-trained classifiers is
frequently inconsistent and marginally improve the classification performance when compared to classifiers
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Figure 6.3.: Diagram depicting the proposed AL iteration. The proposed modifications are comprised
within the red polygon and marked with a boldface “C.”

trained over the entire training set. In addition, there is also significant variability in the data selection
efficiency during different runs of the AL iterative process (Fonseca et al., 2021b).

This paper provides a context-agnostic AL framework for the integration of Data Augmentation within
AL, with the following contributions:

1. Improvement of the AL framework by introducing a parameter tuning stage only using the labeled
dataset available at the current iteration (i.e., no labeled hold-out set is needed).

2. Generalization of the generator module proposed in (Fonseca et al., 2021b) from oversampling
techniques to any other data augmentation mechanism and/or policy.

3. Implementation of data augmentation outside the Deep AL realm, which was not previously found
in the literature.

4. Analysis of the impact of Data Augmentation and Oversampling in AL over 15 different datasets of
different domains, while comparing them with the standard AL framework.

The proposed AL framework is depicted in Figure 6.3. The generator element becomes an additional source
of data and is expected to introduce additional data variability into the training dataset. This aspect should
allow the classifier to generalize better and perform more consistently over unseen observations. However,
in this scenario, the amount of data to generate per class at each iteration is unknown. Consequently, the
hyperparameter tuning step was introduced to estimate the optimal data augmentation policy at each
iteration. In our implementation, this step uses the current training dataset to perform an exhaustive search
over specified generator parameters, tested over a 5-fold cross-validation method. The best augmentation
policy found is used to train the iteration’s classifier in the following step. This procedure is described in
Algorithm 4.

We implemented a simple modification in the selection mechanism of the G-SMOTE algorithm to show
the effectiveness of data augmentation in an AL implementation. We use the uncertainties produced
by facq to compute the probabilities of observations to be selected for augmentation as an additional
parameter. This modification is described in Algorithm 5

This modification facilitates the usage of G-SMOTE beyond its original oversampling purposes. However,
in this paper, the data augmentation strategies are also used to ensure that class frequencies are balanced.
Furthermore, the amount of artificial data produced for each class is defined by the augmentation factor,
αaf , which represents a percentage of the majority class Cmaj (e.g., an augmentation factor of 1.2 will
ensure there are count(Cmaj) × 1.2 observations in every class). In this paper’s experiment, the data
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Algorithm 4: Proposed AL Framework (Single iteration)
Given: t ≥ 1, performance metric fpm
Input: Dpool, Dlab, fc, faug, facq, τgrid, k, n
Output: Dpool, Dlab

1 Function ParameterTuning(fc, faug, τgrid, Dlab, k):
2 p← 0
3 τ ← ∅
4 {D1

lab, . . .Dk
lab} ← Dlab // Dn

lab ∩ Dm
lab = ∅,∀(n,m) ∈ 1, . . . , k

5 forall τ ′ ∈ τgrid do
6 p′ ← ∅
7 forall Di

lab ∈ {D1
lab, . . .Dk

lab} do
8 D′

test ← Di
lab

9 D′
train ← Dlab \ Di

lab

10 D′
train ← faug(D′

train; τ
′)

11 train fc using D′
train

12 p′ ← p′ ∪ {fpm(fc(Dtest))}

13 p′ ←
∑

xi∈p′ xi

k
14 if p′ > p then
15 p← p′

16 τ ← τ ′

17 return τ

18 begin
19 τ ← ParameterTuning(fc, faug, τgrid,Dlab, k)
20 Dtrain ← faug(Dlab; τ)
21 train fc using Dtrain

22 Dnew = argmaxD′
pool⊂Dpool,|D′

pool|=n

∑
x∈D′

pool
facq(x; fc)

23 annotate Dnew

24 Dpool ← Dpool \ Dnew

25 Dlab ← Dlab ∪ Dnew

generation mechanism is similar to the one in (Fonseca et al., 2021b). This factor allows the direct
comparison of the two frameworks and establishes a causality of the performance variations to the data
generation mechanism (i.e., augmentation vs normal oversampling) and hyperparameter tuning steps.
However, in this case, the hyperparameter tuning is solely going to be used for augmentation policy
optimization.

In the proposed framework, we (1) generalize the generator module to accept any data augmentation method
or policy and (2) introduce a hyperparameter tuning module to estimate the optimal data augmentation
policy. This framework was designed to be task-agnostic. Specifically, any data augmentation method
(domain-specific or not) may be applied, as well as any other parameter search method. It is also expected
to be compatible with other AL modifications, including those that do not affect solely the classifier or
uncertainty criterion, such as the one proposed in (Yoo & Kweon, 2019).

6.4. Methodology
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Algorithm 5: G-SMOTE Modified for Data Augmentation in AL

Given: t ≥ 1, Dt
lab ̸= ∅, Dlab = Dmin

lab ∪ D
maj
lab , GSMOTE

Input: Dt
pool, Dt

lab, f
t−1
c , facq, τ

Output: Dt
train

1 Function DataSelection(Dt
lab, facq, f

t−1
c ):

2 U ← ∅
3 P ← ∅
4 ps ∼ U(0, 1)
5 forall xi ∈ Dt

lab do
6 uxi ← facq(xi; f

t−1
c )

7 U ← U ∪ {uxi}
8 forall uxi ∈ U do
9 pxi ←

uxi∑
U +

∑
P

10 P ← P ∪ {pxi}
11 i← argmax(P < ps)
12 return i-th element in Dt

lab

13 begin
14 Dmin

aug ← ∅
15 Dmaj

aug ← ∅
16 αaf , αtrunc, αdef ← τ
17 N ← count(Cmaj)× αaf

18 forall D′
aug ∈ {Dmin

aug ,Dmaj
aug }, D′

lab ∈ {Dmin
lab ,Dmaj

lab } do
19 while |D′

aug| < N do
20 xcenter ← DataSelection(D′

lab, facq, f
t−1
c )

21 xgen ← GSMOTE(xcenter,Dt
lab, αtrunc, αdef )

22 D′
aug ← D′

aug ∪ {xgen}

23 Daug ← Dmin
aug ∪ Dmaj

aug

24 Dt
train ← Dt

lab ∪ Daug

This section describes the different elements included in the experimental procedure. The datasets
used were acquired in open data repositories. Their sources and preprocessing steps are defined in
Subsection 6.4.1. The classifiers used in the experiment are defined in Subsection 6.4.2. The metrics
chosen to measure AL performance and overall classification performance are defined in Subsection 6.4.3.
The experimental procedure is described in Subsection 6.4.4.

The methodology developed serves a two-fold purpose: (1) Compare classification performance once all the
AL procedures are completed (i.e., optimal performance of a classifier trained via iterative data selection)
and (2) Compare the amount of data required to reach specific performance thresholds (i.e., the number
of AL iterations required to reach similar classification performances).

6.4.1. Datasets

The datasets used to test the proposed method are publicly available in open data repositories. Specifically,
they were retrieved from the OpenML and the UCI Machine Learning Repository websites. They were
chosen considering diverse application domains, imbalance ratios, dimensionality and number of target
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Table 6.2.: Description of the datasets collected after data preprocessing. The sampling strategy is similar
across datasets. Legend: (IR) Imbalance Ratio

Dataset Features Instances Minority instances Majority instances IR Classes

Image Segmentation 14 1155 165 165 1.0 7
Mfeat Zernike 47 1994 198 200 1.01 10

Texture 40 1824 165 166 1.01 11
Waveform 40 1666 551 564 1.02 3
Pendigits 16 1832 176 191 1.09 10
Vehicle 18 846 199 218 1.1 4

Mice Protein 69 1073 105 150 1.43 8
Gas Drift 128 1987 234 430 1.84 6

Japanese Vowels 12 1992 156 323 2.07 9
Usps 256 1859 142 310 2.18 10

Gesture Segmentation 32 1974 200 590 2.95 5
Volkert 147 1943 45 427 9.49 10

Steel Plates 24 1941 55 673 12.24 7
Baseball 15 1320 57 1196 20.98 3

Wine Quality 11 1599 10 681 68.1 6

Download 

dataset

Drop missing 
values

Drop non-metric 
features

Return datasetMinMax 

Scaling

Sample dataset

# Obs > 2000
False

True

Figure 6.4.: Data preprocessing pipeline.

classes, all of them focused on classification tasks. The goal is to demonstrate the performance of the
different AL frameworks in various scenarios and domains. The data preprocessing approach was similar
across all datasets. Table 6.2 describes the key properties of the 15 preprocessed datasets where the
experimental procedure was applied.

The data preprocessing pipeline is depicted as a flowchart in Figure 6.4. The missing values are removed
from each dataset by removing the corresponding observations. This step ensures that the input data
in the experiment is kept as close to its original form as possible. The non-metric features (i.e., binary,
categorical, and ordinal variables) were removed since the application of G-SMOTE is limited to continuous
and discrete features. The datasets containing over 2000 observations were downsampled in order to
maintain the datasets to a manageable size. The data sampling procedure preserves the relative class
frequency of the dataset, in order to maintain the Imbalance Ratio (IR) originally found in each dataset
(where IR =

count(Cmaj)
count(Cmin)

). The remaining features of each dataset are scaled to the range of [−1, 1] to
ensure a common range across features.

The preprocessed datasets were stored into an SQLite database file and is available along with the
experiment’s source code in the project’s GitHub repository (see final remarks regarding data and software
availability).
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6.4.2. Machine Learning Algorithms

We used a total of four classification algorithms and a heuristic data augmentation mechanism. The choice
of classifiers was based on the popularity and family of the classifiers (tree-based, nearest neighbors-based,
ensemble-based and linear models). Our proposed method was tested using a Decision Tree (DT) (C. Wu,
1975), a K-nearest neighbors classifier (KNN) (Cover & Hart, 1967), a Random Forest Classifier (RF) (Ho,
1995) and a Logistic Regression (LR) (Nelder & Wedderburn, 1972). Since the target variables are
multi-class, the LR classifier was implemented using the one-versus-all approach. The predicted class is
assigned to the label with the highest likelihood.

The oversampler G-SMOTE was used as a data augmentation method. The typical data generation
policy of oversampling methods is to generate artificial observations on non-majority classes such that the
number of majority class observations matches those of each non-majority class. We modified this data
generation policy to generate observations for all classes, as a percentage of the number of observations in
the majority class. In addition, the original G-SMOTE algorithm was modified to accept data selection
probabilities based on classification uncertainty. These modifications are discussed in Section 6.3.

Every AL procedure was tested with different selection criteria: Random Selection, Entropy, and Breaking
Ties. The baseline used is the standard AL procedure. As a benchmark, we add the AL procedure
using G-SMOTE as a standard oversampling method, as proposed in (Fonseca et al., 2021b). Our
proposed method was implemented using G-SMOTE as a data augmentation method to generate artificial
observations for all classes, while still balancing the class distribution, as described in Section 6.3.

6.4.3. Evaluation Metrics

Considering the imbalanced nature of the datasets used in the experiment, commonly used performance
metrics such as Overall Accuracy (OA), although being intuitive to interpret, are insufficient to quantify a
model’s classification performance (Jeni et al., 2013). The Cohen’s Kappa performance metric, similar
to OA, is also biased towards high-frequency classes since its definition is closely related to the OA
metric, making its behavior consistent with OA (Fatourechi et al., 2008). However, these metrics
remain popular choices for the evaluation of classification performance. Other performance metrics
like Precision = TP

TP+FP , Recall = TP
TP+FN (also known as Sensitivity) or Specificity = TN

TN+FP are
calculated as a function of True/False Positives (TP and FP) and True/False Negatives (TN and FN)
and can be used on a per-class basis instead. In a multiple dataset scenario with varying amounts of
target classes and meanings, comparing the performance of different models using these metrics becomes
impractical.

Based on the recommendations found in (Jeni et al., 2013; Kubat, Matwin, et al., 1997), we used two
metrics found to be less sensitive to the class imbalance bias, along with OA as a reference for easier
interpretability:

• The Geometric-mean scorer (G-mean) consists of the geometric mean of Specificity and Recall (Kubat,
Matwin, et al., 1997). Both metrics are calculated in a multi-class context considering a one-versus-all
approach. For multi-class problems, the G-mean scorer is calculated as its average per class values:

G-mean =

√
Recall × Specificity
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• The F-score metric consists of the harmonic mean of Precision and Recall. The two metrics are
also calculated considering a one-versus-all approach. The F-score for the multi-class case can be
calculated using its average per class values (Jeni et al., 2013):

F-score = 2× Precision×Recall

Precision+Recall

• The OA consists of the number of TP divided by the total amount of observations. Considering c as
the label for the different classes present in a target class, OA is given by the following formula:

OA =

∑
c

TPc∑
c
(TPc + FPc)

The comparison of the performance of AL frameworks is based on its data selection and augmentation
efficacy. Specifically, an efficient data selection/generation policy allows the production of classifiers with
high performance on unseen data while using as least non-artificial training data as possible. We follow
the recommendations found in (Kottke et al., 2017). To measure the performance of the different AL
setups, the performance of an AL setup will be compared using two AL-specific performance metrics:

• Area Under the Learning Curve (AULC). It is the sum of the classification performance over a
validation/test set of the classifiers trained of all AL iterations. The resulting AULC scores are
fixed within the range [0, 1] by dividing the AULC scores by the total amount of iterations (i.e., the
maximum performance area) to facilitate the interpretability of this metric.

• Data Utilization Rate (DUR) (Reitmaier & Sick, 2013). Measures the percentage of training data
required to reach a given performance threshold, as a ratio of the percentage of training data required
by the baseline framework. This metric is also presented as a percentage of the total amount of
training data, without making it relative to the baseline framework. The DUR metric is measured
at 45 different performance thresholds, ranging between [0.10, 1.00] at a 0.02 step.

6.4.4. Experimental Procedure

The evaluation of different active learners in a live setting is generally expensive, time-consuming, and
prone to human error. Instead, a common practice is to compare them in an offline environment using
labeled datasets (Kagy et al., 2019). Since the dataset is already labeled, the annotation process is done at
zero cost in this scenario. Figure 6.5 depicts the experiment designed for one dataset over a single run.

A single run starts with the splitting of a preprocessed dataset into five different partitions, stratified
according to the class frequencies of the target variable using the K-fold Cross Validation method. During
this run, an active learner or classifier is trained five times using a different partition as the Test set each
time. For each training process, a validation set containing 25% of the subset is created and is used to
measure the data selection efficiency (i.e., AULC and DUR using the classification performance metrics,
specific to AL). Therefore, for a single training procedure, 20% of the original dataset is used as the
validation set, 20% is used as the Test set and 60% is used as the training set. The AL simulations and
the classifiers’ training occur within the training set. However, the classifiers used to find the maximum
performance classification scores are trained over the full training set. The AL simulations are run over a
maximum of 50 iterations (including the initialization step), adding 1.6% of the training set each time
(i.e., all AL simulations use less than 80% of the training set). Once the training phase is completed, the
Test set classification scores are calculated using the trained classifiers. For the case of AL, the classifier
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Figure 6.5.: Experimental procedure flowchart. The preprocessed datasets are split into five folds. One of
the folds is used to test the best-found classifiers using AL and the classifiers trained using
the entire training dataset (containing the remaining folds). The training set is used to run
both the AL simulations as well as train the normal classifiers. The validation set is used to
measure AL-specific performance metrics over each iteration. We use different subsets for
overall classification performance and AL-specific performance to avoid data leakage.

with the optimal validation set score is used to estimate the AL’s optimal classification performance over
unseen data.

The process shown in Figure 6.5 is repeated over three runs using different random seeds over the 15
different datasets collected. The final scores of each AL configuration and classifier correspond to the
average of the three runs and 5-fold Cross-Validation estimations (i.e., the mean score of 15 fits, across 15
datasets).

The hyperparameters defined for the AL frameworks, Classifiers, and Generators are shown in Table 6.3. In
the Generators table, we distinguish the G-SMOTE algorithm working as a normal oversampling method
from G-SMOTE-AUGM, which generates additional artificial data on top of the usual oversampling
mechanism. Since the G-SMOTE-AUGM method is intended to be used with varying parameter values
(via within-iteration parameter tuning), the parameters were defined as a list of various possible values.
The remaining parameters were selected based on knowledge gathered in previous literature and typical
default values for each of the algorithms. This choice was motivated by the impossibility of parameter
tuning in a real-world setting when applying the benchmark AL methods. Although the proposed method
addresses this limitation, we show that exclusively tuning the parameters on the augmentation policy is
already sufficient to achieve superior, statistically significant performance.

6.4.5. Software Implementation
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Table 6.3.: Hyperparameter definition for the active learners, classifiers, and generators used in the
experiment.

Active Learners Hyperparameters Inputs

Standard # initial obs. 1.6%
# additional obs. per iteration 1.6%
max. iterations + initialization 50
evaluation metrics G-mean, F-score, OA
selection strategy Random, Entropy, Breaking Ties
within-iteration param. tuning None
generator None
classifier DT, LR, KNN, RF

Oversampling generator G-SMOTE
Proposed generator G-SMOTE-AUGM

within-iteration param. tuning Grid Search K-fold CV

Classifier

DT min. samples split 2
criterion gini

LR maximum iterations 100
multi-class One-vs-All
solver liblinear
penalty L2 (Ridge)

KNN # neighbors 5
weights uniform
metric euclidean

RF min. samples split 2
# estimators 100
criterion gini

Generator

G-SMOTE # neighbors 4
deformation factor 0.5
truncation factor 0.5

G-SMOTE-AUGM # neighbors 3, 4, 5
deformation factor 0.5
truncation factor 0.5
augmentation factor [1.1, 2.0] at 0.1 step
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The experiment was implemented using the Python programming language, along with the Python
libraries Scikit-Learn (Pedregosa et al., 2011), Imbalanced-Learn (Lemaître et al., 2017), Geometric-
SMOTE (Douzas & Bacao, 2019), Research-Learn and ML-Research libraries. All functions, algorithms,
experiments, and results are provided in the project’s GitHub repository. The original datasets used in
this study are publicly available in open data repositories. They were retrieved from OpenML and the
UCI Machine Learning Repository.

6.5. Results & Discussion

In a multiple dataset experiment, the analysis of results should not rely upon the average performance
scores across datasets uniquely. The domain of application and fluctuations of performance scores between
datasets make the analysis of these averaged results less accurate. Instead, it is generally recommended to
use the mean ranking scores to extend the analysis (Demšar, 2006). Since mean performance scores are
still intuitive to interpret; we will present and discuss both results. The rank values are assigned based on
the mean scores of three different 5-fold Cross-Validation runs (15 performance estimations per dataset)
for each combination of dataset, AL configuration, classifier, and performance metric.

6.5.1. Results

The average rankings of the AL methods’ AULC estimations are shown in Table 6.4. The proposed
method almost always improves AL performance and ensures higher data selection efficiency.

Table 6.4.: Mean rankings of the AULC metric over the different datasets (15), folds (5), and runs (3)
used in the experiment. The proposed method constantly improves the results of the original
framework and, on average, almost always improves the results of the oversampling framework.

Classifier Evaluation Metric Standard Oversampling Proposed

DT Accuracy 2.13 ± 0.96 2.40 ± 0.49 1.47 ± 0.62
DT F-score 2.47 ± 0.81 2.20 ± 0.40 1.33 ± 0.70
DT G-mean 2.73 ± 0.57 1.93 ± 0.44 1.33 ± 0.70

KNN Accuracy 2.07 ± 0.93 2.07 ± 0.68 1.87 ± 0.81
KNN F-score 2.47 ± 0.81 1.87 ± 0.50 1.67 ± 0.87
KNN G-mean 2.87 ± 0.34 1.47 ± 0.50 1.67 ± 0.70
LR Accuracy 2.13 ± 0.88 2.20 ± 0.65 1.67 ± 0.79
LR F-score 2.80 ± 0.40 1.87 ± 0.50 1.33 ± 0.70
LR G-mean 2.80 ± 0.40 1.80 ± 0.54 1.40 ± 0.71
RF Accuracy 2.27 ± 0.85 1.87 ± 0.50 1.87 ± 0.96
RF F-score 2.73 ± 0.57 1.80 ± 0.54 1.47 ± 0.72
RF G-mean 2.87 ± 0.34 1.53 ± 0.50 1.60 ± 0.71

Table 6.5 shows the average AULC scores, grouped by the classifier, Evaluation Metric and AL framework.
The performance of the proposed method is almost always superior when considering the F-score and
G-mean. On some occasions, the average AULC score is significantly improved when compared with the
oversampling AL method.
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Table 6.5.: Average AULC of each AL configuration tested. Each AULC score is calculated using the
performance scores of each iteration in the validation set. By the end of the iterative process,
each AL configuration used a maximum of 80% instances of the 60% instances that compose
the training sets (i.e., 48% of the entire preprocessed dataset).

Classifier Evaluation Metric Standard Oversampling Proposed

DT Accuracy 0.663 ± 0.149 0.658 ± 0.153 0.664 ± 0.155
DT F-score 0.610 ± 0.176 0.612 ± 0.179 0.618 ± 0.181
DT G-mean 0.744 ± 0.129 0.751 ± 0.127 0.755 ± 0.129

KNN Accuracy 0.741 ± 0.160 0.730 ± 0.178 0.734 ± 0.179
KNN F-score 0.678 ± 0.208 0.684 ± 0.211 0.687 ± 0.213
KNN G-mean 0.786 ± 0.152 0.804 ± 0.139 0.804 ± 0.141
LR Accuracy 0.736 ± 0.152 0.723 ± 0.185 0.731 ± 0.184
LR F-score 0.644 ± 0.228 0.673 ± 0.220 0.682 ± 0.221
LR G-mean 0.767 ± 0.162 0.811 ± 0.134 0.814 ± 0.136
RF Accuracy 0.789 ± 0.148 0.786 ± 0.153 0.785 ± 0.156
RF F-score 0.724 ± 0.214 0.735 ± 0.204 0.735 ± 0.205
RF G-mean 0.818 ± 0.150 0.834 ± 0.135 0.833 ± 0.135

The average DUR scores were calculated for various G-mean thresholds, varying between 0.1 and 1.0 at a
0.02 step (45 different thresholds in total). Table 6.6 shows the results obtained for these scores starting
from a G-mean score of 0.6 and was filtered to show the thresholds ending with 0 or 6 only. In most
cases, the proposed method reduces the amount of data annotation required to reach each G-mean score
threshold.

The DUR scores relative to the Standard AL method are shown in Figure 6.6. A DUR below 1 means
that the Proposed/Oversampling method requires less data than the Standard AL method to reach the
same performance threshold. For example, running an AL simulation using the KNN classifier requires
80.7% of the amount of data required by the Standard AL method using the same classifier to reach an
F-Score of 0.62 (i.e., requires 19.3% less data).

The comparison of mean optimal classification scores of AL methods with Classifiers (using the entire
training set, without AL) is shown in Table 6.7. Aside from the case of overall accuracy, the proposed AL
method produces classifiers that almost consistently outperform classifiers using the whole training set
(i.e., the ones labeled as MP).

6.5.2. Statistical Analysis

When checking for statistical significance in a multiple dataset context it is critical to account for the
multiple comparison problem. Consequently, our statistical analysis focuses on the recommendations
found in (Demšar, 2006). Overall, we perform three statistical tests. The Friedman test (Friedman,
1937) is used to understand whether there is a statistically significant difference in performance between
the three AL frameworks. As post hoc analysis, the Wilcoxon signed-rank test (Wilcoxon, 1945) was
utilized to check for statistical significance between the performance of the proposed AL method and the
oversampling AL method across datasets. As a second post hoc analysis, the Holm-Bonferroni (Holm,
1979) method was employed to check for statistical significance between the methods using data generators
and the Standard AL framework across classifiers and evaluation metrics.
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Table 6.6.: AL algorithms’ mean data utilization as a percentage of the training set.

G-mean Score Classifier Standard Oversampling Proposed

0.60 DT 19.8% 18.9% 19.3%
0.60 KNN 18.4% 11.8% 12.8%
0.60 LR 23.0% 9.7% 9.7%
0.60 RF 14.1% 7.7% 7.8%
0.66 DT 23.1% 23.3% 22.9%
0.66 KNN 23.9% 21.7% 21.9%
0.66 LR 25.6% 20.5% 20.5%
0.66 RF 22.0% 17.6% 17.5%
0.70 DT 25.5% 25.0% 24.8%
0.70 KNN 26.8% 24.1% 23.9%
0.70 LR 29.9% 23.6% 23.4%
0.70 RF 23.8% 22.1% 22.3%
0.76 DT 33.4% 30.5% 30.1%
0.76 KNN 34.0% 27.7% 27.3%
0.76 LR 38.0% 27.6% 26.2%
0.76 RF 28.2% 24.5% 24.7%
0.80 DT 48.2% 43.8% 41.2%
0.80 KNN 38.8% 34.4% 34.6%
0.80 LR 43.7% 32.6% 31.3%
0.80 RF 32.4% 27.2% 27.7%
0.86 DT 69.6% 66.5% 64.8%
0.86 KNN 53.9% 52.0% 52.5%
0.86 LR 48.7% 45.3% 45.0%
0.86 RF 43.9% 40.0% 40.0%
0.90 DT 81.2% 79.4% 76.6%
0.90 KNN 60.9% 61.1% 60.4%
0.90 LR 62.1% 62.9% 59.9%
0.90 RF 57.1% 55.7% 56.2%
0.96 DT 100.0% 99.7% 100.0%
0.96 KNN 82.4% 79.7% 77.1%
0.96 LR 86.5% 84.0% 81.8%
0.96 RF 70.8% 71.1% 70.3%

Table 6.8 displays the p-values obtained with the Friedman test. The difference in performance across AL
frameworks is statistically significant at a level of α = 0.05 regardless of the classifier or evaluation metric
being considered.

Table 6.9 contains the p-values obtained with the Wilcoxon signed-rank test. The proposed method
was able to outperform both the standard AL framework, as well as the AL framework using a typical
oversampling policy with statistical significance in 14 and 12 out of 15 datasets, respectively.

The p-values shown in Table 6.10 refer to the results of the Holm-Bonferroni test. The proposed method’s
superior performance was statistically significant in 9 out of 12 cases.

6.5.3. Discussion
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Figure 6.6.: Mean data utilization rates. The y-axis shows the percentage of data (relative to the baseline
AL framework) required to reach the different performance thresholds.

In this paper, we study the application of data augmentation methods through the modification of the
standard AL framework. This is done to further reduce the amount of labeled data required to produce
a reliable classifier, at the expense of artificial data generation. Overall, the proposed method achieves
better and more consistent performance when compared to the remaining benchmark approaches. It was
implemented to focus on the optimization of the data augmentation policy, as well as the introduction of
a more informed AL-based data augmentation approach. The proposed method could be further extended
and achieve an even higher performance by optimizing parameters of the ML classification using the
hyperparameter optimizer. In addition, this framework could be further generalized by searching, within
AL iterations, for the optimal ML classifier as well; at different stages of the data collection procedure
some ML classifiers might be more useful than others. Although the proposed framework significantly
improves the flexibility of AL implementations, we found that even a superficial parameter search is
sufficient to ensure a superior performance when compared to related approaches.

In Table 6.4, we found that the proposed method was able to outperform the Standard AL framework in
all scenarios. Except for the overall accuracy metric, the mean rankings are consistent with the mean
AULC scores found in Table 6.5, while showing performance improvements between the proposed method
and both the standard and oversampling methods. The Friedman test in Table 6.8 showed that the
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Table 6.7.: Optimal classification scores. The Maximum Performance (MP) classification scores are
calculated using classifiers trained using the entire training set.

Classifier Evaluation Metric MP Standard Oversampling Proposed

DT Accuracy 0.732 ± 0.155 0.726 ± 0.157 0.721 ± 0.167 0.727 ± 0.168
DT F-score 0.682 ± 0.194 0.679 ± 0.193 0.679 ± 0.197 0.684 ± 0.200
DT G-mean 0.792 ± 0.138 0.791 ± 0.136 0.797 ± 0.134 0.800 ± 0.137

KNN Accuracy 0.801 ± 0.164 0.799 ± 0.168 0.784 ± 0.183 0.789 ± 0.183
KNN F-score 0.742 ± 0.224 0.744 ± 0.223 0.741 ± 0.223 0.746 ± 0.224
KNN G-mean 0.827 ± 0.160 0.829 ± 0.158 0.839 ± 0.146 0.840 ± 0.147
LR Accuracy 0.778 ± 0.157 0.791 ± 0.158 0.764 ± 0.184 0.773 ± 0.185
LR F-score 0.693 ± 0.243 0.717 ± 0.241 0.718 ± 0.222 0.727 ± 0.226
LR G-mean 0.796 ± 0.171 0.814 ± 0.165 0.839 ± 0.130 0.842 ± 0.137
RF Accuracy 0.827 ± 0.145 0.832 ± 0.148 0.827 ± 0.154 0.829 ± 0.153
RF F-score 0.767 ± 0.215 0.775 ± 0.216 0.781 ± 0.204 0.784 ± 0.204
RF G-mean 0.844 ± 0.148 0.849 ± 0.149 0.863 ± 0.131 0.865 ± 0.131

Table 6.8.: Friedman test results. Statistical significance is tested at a level of α = 0.05. The null
hypothesis is that there is no difference in the classification outcome across oversamplers.

Classifier Evaluation Metric p-value Significance

DT Accuracy 1.1e-15 True
DT F-score 2.4e-31 True
DT G-mean 2.3e-23 True

KNN Accuracy 5.9e-20 True
KNN F-score 8.8e-69 True
KNN G-mean 8.8e-52 True
LR Accuracy 1.1e-30 True
LR F-score 4.0e-98 True
LR G-mean 2.3e-83 True
RF Accuracy 2.8e-26 True
RF F-score 1.8e-88 True
RF G-mean 1.8e-61 True

difference in the performance of these AL frameworks are statistically significant, regardless of the classifier
or performance metric being used.

The proposed method evidenced more consistent data utilization requirements in most of the assessed
G-mean score thresholds when compared to the remaining AL methods, as seen in Table 6.6. For example,
to reach a G-mean score of 0.9 using the KNN and LR classifiers, the average amount of data required
with the Oversampling AL approach increased when compared to the standard approach. However, the
proposed method was able to decrease the amount of data required in both situations. The robustness
of the proposed method is clearer in Figure 6.6. In most cases, this method was able to outperform the
Oversampling method. At the same time, the proposed method also addresses inconsistencies in situations
where the Oversampling method was unable to outperform the standard method.

The statistical analyses found in Tables 6.9 and 6.10 revealed that the proposed method’s superiority was
statistically significant in all datasets except three (Baseball, Usps, and Volkert) and established statistical
significance when compared to the standard AL method for all combinations of classifier and performance
metric, except for three cases regarding the use of the overall accuracy metric. These results show that
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Table 6.9.: Adjusted p-values using the Wilcoxon signed-rank method. Bold values are statistically
significant at a level of α = 0.05. The null hypothesis is that the performance of the proposed
framework is similar to that of the oversampling or standard framework.

Dataset Oversampling Standard

Baseball 5.0e-01 3.4e-01
Gas Drift 3.7e-26 4.6e-57

Gesture Segmentation 1.3e-02 8.7e-04
Image Segmentation 9.6e-18 2.1e-44

Japanese Vowels 2.4e-09 1.6e-32
Mfeat Zernike 1.2e-12 9.5e-40
Mice Protein 6.5e-32 1.5e-61

Pendigits 5.0e-18 2.3e-45
Steel Plates 3.4e-04 1.3e-08

Texture 1.5e-22 6.7e-57
Usps 3.8e-01 2.1e-29

Vehicle 7.4e-11 7.9e-13
Volkert 2.5e-01 1.3e-02

Waveform 8.9e-08 2.6e-02
Wine Quality 3.8e-05 6.1e-03

Table 6.10.: Adjusted p-values using the Holm-Bonferroni method. Bold values are statistically significant
at a level of α = 0.05. The null hypothesis is that the Oversampling or Proposed method
does not perform better than the control method (Standard AL framework).

Classifier Evaluation Metric Oversampling Proposed

DT Accuracy 7.7e-01 1.1e-04
DT F-score 6.3e-02 2.0e-06
DT G-mean 1.0e-08 2.9e-12

KNN Accuracy 1.0e-02 8.5e-01
KNN F-score 7.1e-07 8.3e-13
KNN G-mean 1.9e-11 1.0e-12
LR Accuracy 3.2e-02 8.3e-01
LR F-score 1.5e-09 5.8e-17
LR G-mean 1.9e-13 5.6e-16
RF Accuracy 4.3e-01 4.3e-01
RF F-score 1.4e-11 1.1e-12
RF G-mean 1.5e-10 1.2e-10
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the proposed method increased the reliability of the new AL framework and improved the quality of the
final classifier while using fewer data.

Even though it was not the core purpose of this study, we found that the proposed AL method consistently
outperformed the maximum performance threshold. Specifically, in Table 6.7, the performance of the
classifiers originating from the proposed method was able to outperform classifiers trained using the full
training dataset in 9 out of 12 scenarios. This outcome suggests that the selection of a meaningful training
subset training dataset paired with data augmentation not only matches the classification performance of
ML algorithms, as it also improves them. Even in a setting with fully labeled training data, the proposed
method may be used as a preprocessing technique to further optimize classification performance.

This study discussed the effect of data augmentation within the AL framework, along with the exploration
of optimal augmentation methods within AL iterations. However, the conceptual nature of this study
implies some limitations. Specifically, the large number of experiments required to test the method’s
efficacy, along with the limited computational power available, led to a limited exploration of the grid
search’s potential. Future work should focus on understanding how the usage of a more comprehensive
parameter tuning approach improves the quality of the AL method. In addition, the proposed method
was not able to outperform the standard AL method at 100% of scenarios. The exploration of other,
more complex data augmentation techniques might further improve its performance by producing more
meaningful training observations. Specifically, in this study, we assume that all datasets used follow a
manifold, allowing the usage of G-SMOTE as a data augmentation approach. However, this method
cannot be used in more complex, non-euclidean spaces. In this scenario, the usage of G-SMOTE is not
valid and might lead to the production of noisy data. Deep Learning-based data augmentation techniques
are able to address this limitation and improve the overall quality of the artificial data being generated.
We also encountered significant standard errors throughout our experimental results (see Subsection 6.5.1),
consistent with the findings in (Fonseca et al., 2021b; Kottke et al., 2017). This facet suggests that the
usage of more robust generators did not decrease the standard error of AL performance. Instead, AL’s
performance variability is likely dependent on the quality of its initialization.

6.6. Conclusion and Future Directions

The ability to train ML classifiers is usually limited to the availability of labeled data. However, manually
labeling data is often expensive, which makes the usage of AL particularly appealing for selecting the
most informative observations and reducing the amount of required labeled data. On the other hand,
the introduction of data variability in the training dataset can also be conducted via data augmentation.
However, most, if not all, AL configurations that use some form of data augmentation are domain and/or
task-specific. These methods typically apply deep learning approaches to both classification and data
augmentation. Consequently, they may not apply to other classification tasks or when the available
computational power is insufficient.

In this paper, we proposed a domain-agnostic AL framework that implements Data Augmentation and
hyperparameter tuning. We found that a heuristic Data Augmentation algorithm is sufficient to improve
the data selection efficiency in AL. Specifically, the data augmentation method used almost always
increased AL performance, regardless of the target goal (i.e., optimizing classification or data selection
efficiency). The usage of data augmentation reduced the number of iterations required to train a classifier
with a performance as good as (or better than) classifiers trained with the entire training dataset (i.e.,
without using AL). In addition, the proposed method reduced the size of the training dataset, which is
expanded with artificial data.
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With this revised AL configuration, data selection in AL iterations aims towards observations that optimize
the quality of the artificial data produced. The substitution of less informative labeled data with artificial
data is especially useful in this context since it reduces some of the user interaction necessary to reach a
sufficiently informative dataset. In order to further improve the proposed method, future work should
(1) focus on the development of methods with varying data augmentation policies depending on the
different input space regions, (2) develop augmentation-sensitive query functions capable of avoiding
the unnecessary selection of similar observations from the unlabeled dataset, (3) understand the gap
between randomized data augmentation techniques and neural network/feature space data augmentation
techniques in an AL context better, (4) explore more efficient ways to leverage the information collected
in AL queries for better augmentation strategies and (5) expand the current framework to integrate
alternative learning strategies using unlabeled data, such as self and semi supervised learning techniques.

Finally, the proposed method may be applied to any classification problem where labeled data is not
readily available and an easily accessible unlabeled data pool. For more complex data structures, the
application of this framework will require the learning of a manifold space as an additional preprocessing
step. After that, this AL framework may be used as is.

This chapter was published as: Fonseca, J., Bacao, F. (2023). Improving Active Learning Per-
formance through the Use of Data Augmentation. International Journal of Intelligent Systems, 2023.
https://doi.org/10.1155/2023/7941878
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7. Conclusions

This dissertation focused on addressing 4 main research questions. The main focus of these questions was
to address common scenarios where typical ML techniques will not work as intended: (1) imbalanced
learning and (2) supervised learning with scarcity of labeled data. As a result, the main contributions of
this dissertation are two-fold: (1) an oversampling technique to address the limitation of oversampling on
datasets with mixed data types and (2) an AL framework that relies on synthetic data to reduce data
collection requirements to produce well-performing ML classifiers.

In Chapter 2 we studied the state-of-the-art of synthetic data generation techniques, which was necessary
to proceed to subsequent steps of the work plan. We found several limitations in the literature regarding
latent space learning, selection of generation mechanisms, data privacy mechanisms, analysis of quality of
synthetic data for regularization techniques, consistency and interpretability of generative neural network
methods, ensmble techniques for tabular data, oversampling tabular data with mixed data types, lack of
research of synthetic data generation in tabular few-shot learning and lack of research of the effect of
synthetic data towards model fairness and bias.

The remaining work presented in this dissertation was developed based on these findings. The Geometric-
SMOTENC oversampler proposed in Chapter 3 uses the generation mechanism described in (Douzas
& Bacao, 2019), while encoding the continuous features, calculating the selected observations’ nearest
neighbors and generating the categorical feature values for the synthetic data using the method described
in (Chawla et al., 2002). This method can be considered a generalization of the classical SMOTENC
approach, since a specific parametrization of this algorithm will replicate SMOTENC’s behavior. However,
this method allows a significantly wider array of possibilities and high variability in the synthetic data
being generated. In addition, it may be applied before any type of categorical feature encoding.

In Chapter 4 we used an oversampling method to address the prevailing problem of imbalanced learning
in LULC. A distinctive characteristic of LULC classification is the potential for some classes to contain
significantly different spectral signatures (e.g., two patches of forests or agricultural areas may contain
entirely different types of vegetation, despite having the same class). In this case, clustering-based
synthetic data generation assists in distinguishing these differences within a minority class among clusters
and avoid the generation of noisy synthetic data.

In Chapter 5 we introduce a modification of the typical AL framework in order to address RQ4. To the
best of our knowledge, this was one of the first methods to implement synthetic data into AL using tabular
data. The proposed framework showed a significant reduction of the amount of required labeled data to
reach a given performance threshold. Consequently, this method may be used to reduce the labeling cost
when preparing a training dataset without harming classification performance.

In Chapter 6 we focus on the generalization of the AL framework previously proposed regarding both the
domain of application and data generation policy. We introduce a new component to this framework to
optimize the data generation method within each iteration, broaden the data generation policies employed,
and test the new framework across several datasets from different domains. Overall, this optimized method
to employ synthetic data in AL further reduced the amount of data labeling required to achieve the
same classification performance. In addition, we also found a significant improvement in classification
performance using this approach, even when compared to a classifier trained using the fully labeled dataset.
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The work presented in this dissertation can be further enriched with the application of other methods
that leverage information from unlabeled data, specifically semi-supervised and self-supervised learning
techniques to form a single framework.

The main limitation found in the AL work developed refers to the lack of consistency in the performance
of the proposed frameworks. In addition, these frameworks were tested using only heuristic synthetic data
generation mechanisms. Although several limitations were found in Chapter 2, many of which were not
addressed in this dissertation. Instead, the main research gaps addressed in this dissertation focused on
the problem of imbalanced learning with mixed data types and the improvement of AL efficiency. Future
work should consider improving the reliability and consistency of AL and further increase its efficiency.
More guidance for AL-related future work can be found in Section 6.6. Finally, future work should aim
to better understand how to reduce, or determine (to some degree) a priori the set of parameters for
G-SMOTENC, to achieve near-optimal performance while reducing the computational cost of parameter
optimization. In addition, G-SMOTENC’s encoding mechanism may be extended with more sophisticated
encoding methods. Finally, synthetic data generation literature presents several limitations and possible
future work directions, which can be found in Section 2.8.

Although this dissertation addressed some important open questions found in the literature, several others
must be explored in future work; Chapter 2 discusses such limitations and research gaps into a high level
of detail. Despite the focus on the case of LULC classification, which is particularly challenging due to
its high-dimensionality, all of the methods proposed are entirely generalizable. In addition, all of the
methods proposed/explored achieved a statistically significant superior performance compared to the
state-of-the-art. Overall, the entirety of the work presented is fully replicable, open source, and domain
transferable.
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A. Improving Imbalanced Land Cover
Classification with K-means SMOTE:
Detecting and Oversampling Distinctive
Minority Spectral Signatures

Dataset Classifier Metric NONE ROS SMOTE B-SMOTE K-SMOTE

Botswana LR Accuracy 0.920 0.917 0.920 0.921 0.927
Botswana LR F-score 0.913 0.909 0.913 0.914 0.921
Botswana LR G-mean 0.952 0.950 0.952 0.952 0.956
Botswana KNN Accuracy 0.875 0.862 0.881 0.869 0.889
Botswana KNN F-score 0.859 0.850 0.873 0.859 0.879
Botswana KNN G-mean 0.924 0.918 0.930 0.923 0.933
Botswana RF Accuracy 0.873 0.884 0.877 0.877 0.890
Botswana RF F-score 0.865 0.877 0.872 0.870 0.883
Botswana RF G-mean 0.925 0.933 0.929 0.928 0.936

PC LR Accuracy 0.954 0.955 0.955 0.950 0.956
PC LR F-score 0.944 0.947 0.947 0.941 0.948
PC LR G-mean 0.968 0.972 0.972 0.966 0.973
PC KNN Accuracy 0.926 0.920 0.923 0.924 0.926
PC KNN F-score 0.915 0.909 0.913 0.913 0.915
PC KNN G-mean 0.953 0.955 0.957 0.954 0.957
PC RF Accuracy 0.938 0.941 0.940 0.938 0.942
PC RF F-score 0.928 0.932 0.931 0.928 0.933
PC RF G-mean 0.959 0.964 0.965 0.961 0.965
KSC LR Accuracy 0.904 0.905 0.905 0.899 0.909
KSC LR F-score 0.868 0.873 0.874 0.862 0.877
KSC LR G-mean 0.928 0.932 0.932 0.924 0.934
KSC KNN Accuracy 0.855 0.859 0.862 0.857 0.865
KSC KNN F-score 0.808 0.819 0.827 0.810 0.826
KSC KNN G-mean 0.893 0.901 0.906 0.895 0.905
KSC RF Accuracy 0.860 0.859 0.863 0.859 0.868
KSC RF F-score 0.817 0.815 0.826 0.816 0.832
KSC RF G-mean 0.898 0.899 0.905 0.898 0.907
SA LR Accuracy 0.979 0.981 0.983 0.979 0.984
SA LR F-score 0.976 0.979 0.982 0.977 0.982
SA LR G-mean 0.985 0.988 0.990 0.987 0.989
SA KNN Accuracy 0.987 0.979 0.982 0.983 0.988
SA KNN F-score 0.986 0.979 0.981 0.982 0.987
SA KNN G-mean 0.992 0.989 0.990 0.991 0.993
SA RF Accuracy 0.980 0.983 0.984 0.979 0.985
SA RF F-score 0.979 0.982 0.983 0.978 0.984
SA RF G-mean 0.987 0.988 0.989 0.986 0.990
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Dataset Classifier Metric NONE ROS SMOTE B-SMOTE K-SMOTE

PU LR Accuracy 0.905 0.897 0.897 0.891 0.904
PU LR F-score 0.890 0.894 0.894 0.888 0.898
PU LR G-mean 0.932 0.947 0.947 0.942 0.949
PU KNN Accuracy 0.895 0.867 0.865 0.873 0.895
PU KNN F-score 0.891 0.868 0.868 0.874 0.891
PU KNN G-mean 0.940 0.935 0.936 0.936 0.941
PU RF Accuracy 0.912 0.908 0.907 0.908 0.911
PU RF F-score 0.909 0.906 0.906 0.908 0.909
PU RF G-mean 0.946 0.946 0.948 0.948 0.949

Salinas LR Accuracy 0.990 0.990 0.989 0.990 0.990
Salinas LR F-score 0.985 0.986 0.985 0.985 0.986
Salinas LR G-mean 0.992 0.993 0.992 0.992 0.993
Salinas KNN Accuracy 0.970 0.967 0.969 0.967 0.970
Salinas KNN F-score 0.959 0.957 0.960 0.957 0.960
Salinas KNN G-mean 0.977 0.978 0.981 0.976 0.981
Salinas RF Accuracy 0.984 0.983 0.983 0.983 0.985
Salinas RF F-score 0.979 0.979 0.977 0.978 0.980
Salinas RF G-mean 0.989 0.989 0.989 0.989 0.990

IP LR Accuracy 0.687 0.681 0.680 0.678 0.692
IP LR F-score 0.662 0.663 0.659 0.659 0.674
IP LR G-mean 0.798 0.801 0.798 0.797 0.807
IP KNN Accuracy 0.644 0.602 0.589 0.557 0.632
IP KNN F-score 0.593 0.591 0.603 0.560 0.604
IP KNN G-mean 0.757 0.764 0.782 0.751 0.781
IP RF Accuracy 0.742 0.747 0.747 0.740 0.752
IP RF F-score 0.673 0.704 0.713 0.701 0.714
IP RF G-mean 0.806 0.826 0.835 0.831 0.838

Table A.1.: Mean cross-validation scores for each dataset. Legend: IP - Indian Pines, KSC - Kennedy
Space Center, PC - Pavia Center, PU - Pavia University, SA - Salinas A.
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