
 

i 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

A PERFORMANCE COMPARISON OF OVERSAMPLING 
METHODS FOR DATA GENERATION IN 

 IMBALANCED LEARNING TASKS 

Samrat Jayanta Dattagupta 

Dissertation report presented as partial requirement for 
obtaining the Master’s degree in Statistics and Information 
Management  
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157640263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

NOVA Information Management School 

Instituto Superior de Estatística e Gestão de Informação 

Universidade Nova de Lisboa 

 

A PERFORMANCE COMPARISON OF OVERSAMPLING METHODS FOR 

DATA GENERATION IN IMBALANCED LEARNING TASKS 

by 

Samrat Jayanta Dattagupta 

 
 
 
 
 
 
 
 
 
 
 
 
Dissertation report presented as partial requirement for obtaining the Master’s degree in Statistics 
and Information Management, with a specialization in Marketing Research and CRM 
 
 
 
Advisor / Co Advisor: Prof. Fernando Bação 
Co Advisor: Georgios Douzas 
 

 
 
 
 
 
 
 
 

 
November 2017 

 



 

3 
 

DEDICATION 

I dedicate this work to my family and friends who have supported me throughout the master´s 
program and the thesis writing process.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 
 

ACKNOWLEDGEMENT 

 
I would like to thank my supervisors Dr. Fernando Bação and Georgios Douzas for their constant 
motivation and encouragement and for sharing their expert knowledge on this subject with me. 
Without their patience and dedication for my learning, it would not have been possible for me to 
complete this process. I hope we can collaborate in the future as well. 
 
I would also like to thank Dr. Rute Sofia, Director of Copelabs, who allowed me to manage time from 
my full time job to work on this dissertation.  I acknowledge and thank my other colleagues as well, 
for valuable feedback on improving my technical writing skills.  
 
Finally, I would like to thank all my teachers and staff at Nova IMS for creating and maintaining this 
excellent institution of higher learning which encourages its students to develop their intellectual 
minds and train them to soar high in their professional as well as personal lives. 

 

 

 

 

 

 

 

 

 

 



 

5 
 

ABSTRACT 

Class Imbalance problem is one of the most fundamental challenges faced by the machine learning 

community. The imbalance refers to number of instances in the class of interest being relatively low, 

as compared to the rest of the data. Sampling is a common technique for dealing with this problem. 

A number of over - sampling approaches have been applied in an attempt to balance the classes.  

This study provides an overview of the issue of class imbalance and attempts to examine some 

common oversampling approaches for dealing with this problem. In order to illustrate the 

differences, an experiment is conducted using multiple simulated data sets for comparing the 

performance of these oversampling methods on different classifiers based on various evaluation 

criteria. In addition, the effect of different parameters, such as number of features and imbalance 

ratio, on the classifier performance is also evaluated. 
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1. INTRODUCTION 

Imbalanced learning may be defined as the learning process from data distributions involving severe 

skews which hinders the process of information extraction and development of effective decision 

boundaries. This raises critical issues for any system involving a learning process in context of 

research as well as real world applications. Classification is an important task for knowledge 

discovery and pattern recognition. In supervised learning, the performance of a classifier is 

dependent on its ability to correctly classify the target values. Learning from imbalanced data is a 

major concern for the classifier to efficiently perform this task. Imbalance in a data set occurs when 

at least one of the classes of the target value is severely under-represented compared to the 

other(s). The issue of imbalance may occur between one majority and one minority class (Two class 

problem) or one majority and several minority classes (Multi-class problem). The level of imbalance, 

also called Imbalance Ratio, may range from 1:10 to 1:1000 or more.  

 

This study attempts to provide the practitioners with a deeper understanding of the available 

solutions to imbalance learning problem at the data level, through some available oversampling 

method. We aim to clarify which, among the most popular oversampling algorithms, provides the 

best results. The goal of the experiment conducted is as follows:  

 Compare four commonly used oversampling methods and evaluate their effect on three 

different classifiers using appropriate performance criteria 

 Observe the behavior of oversampling methods on multiple simulated data sets with 

Imbalance Ratio ranging from high to low  

 Understand the effect of different data set parameters such as number of features on the 

oversampling methods 

With these experiments we hope to provide a basis for a more informed decision-making when 

oversampling methods are needed, to improve results in classification problems  

 

Consider a direct marketing campaign that may provide a positive return on investment by engaging 

the most suitable customers [16]. It is beneficial for both the company and the customers to connect 

the right individual to a particular offer tailor made for that segment. Since the number of people 

who are most likely to be interested in a particular offer is generally quite low compared to the 

entire list of customers, it is difficult for a classifier to positively identify such individuals. The struggle 

for machine learning algorithms in such a scenario is that they are generally well trained over the 

majority class but do not perform very well for the minority class, so the minority class suffers a 

higher rate of misclassification. The cost of misclassification of the minority class is also high for the 

company, because it is the class of interest from the perspective of the marketing campaign. Thus, 

there is a severe need to be able to identify these minority instances for such cases and also use 

proper assessment criteria to evaluate the classifier performance when applied to imbalanced data. 
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There are several other examples where learning from imbalance data may improve the performance 

of a classifier such as fraud detection in finance [3], network intrusion [6] and equipment failure 

detection in telecommunication [23], product categorization in retail [27] and detection of defective 

products on the assembly line. [20]. Identification of rare or even unknown particles in experimental 

high energy physics [19] and medical diagnostics has also greatly benefitted from imbalanced 

learning methods. One such situation is the early detection of diseases by using pattern recognition , 

like the classification of pixels in mammogram images as possibly cancerous [21], since number of 

disease cases is generally much lower than healthy. Detection of oil spills using radar images from 

satellite is another field where the value of understanding minority class instances better, has proved 

to be useful [14]. In addition to these, data imbalance has been reported in microarray research, 

response modelling, remote sensing and scene classification [13]. There has also been some work in 

the case of unsupervised learning for the purpose of segmentation based on clustering with regard to 

market basket analysis for super-market. [26] 

 

Sampling methods are popular techniques for handling the task of imbalanced learning. Among the 

two types of sampling methods i.e. under-sampling and oversampling, oversampling is generally the 

preferred method due to the information loss in under-sampling even though oversampling may lead 

to overfitting [9]. Apart from stand-alone sampling methods there have also been attempts to 

integrate ensemble learning and data-cleaning techniques to the sampling methodology. In terms of 

the different evaluation criteria used to compare the performance of these methods, threshold 

techniques as well as ranking metrics have been known to provide better understanding than 

standard accuracy measures such as mean square error and misclassification rate. 

 

This study is divided into the following sections: Section 2 is dedicated to related work, Section 3 

describes the Class imbalance problem from different levels; Section 4 describes the different 

oversampling methods and gives an overview of the metrics used for evaluation of results; Section 5 

provides the methodology of the experiment that is conducted including the different parameters; 

while Section 6 shows the results obtained from the experiment. Finally, Section 7 provides the 

conclusion and also discusses the limitations and scope for future work.    
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2. LITERATURE REVIEW 

In order to familiarize the readers with some other studies that have attempted to perform similar 

research as this one, we shall review the related work on this topic in this section. There have been 

several approaches to solving the class imbalance problem many of which involve sampling 

approaches. This study focuses on four oversampling methods commonly used with imbalance 

learning problems. These methods are Random oversampling, which randomly over-samples 

instances for the minority class, SMOTE which creates synthetic instances for the minority class, and 

two of its variations Borderline-SMOTE and ADASYN. A detailed overview of these methods and the 

three metrics used in this study, F-measure and G-mean and AUC, is provided in Section 4.  

 

Some other known oversampling methods include Cluster-SMOTE [6] which uses k-means algorithm 

to find clusters in the minority class by boosting the examples in the specific region and k-means 

SMOTE [30] which improves upon this by identifying clusters where generation of synthetic data is 

most likely to be effective. CURE-SMOTE [29] generates synthetic examples after first using CURE 

algorithm to clean the outliers and remove noise prior to the clustering based oversampling process. 

Self-Organizing Map-based Oversampling(SOMO) [31] produces a two-dimensional representation of 

the input apace for the purpose of generating artificial data. Other oversampling techniques, like 

SMOTEBoost [32] using the AdaBoost algorithm changes the weight and balances the skewness of 

the minority class distribution. There are also methods such as SMOTE+ENN [2] and SMOTE+Tomek 

[2] which use neighborhood cleaning methods like edited nearest neighbor and Tomek´s link to clean 

the space after the oversampling process. More recently new approaches have been proposed by F. 

Bação, G. Douzas et al. [37] [38]. This is not an exhaustive list of oversampling methods, but it 

provides an overview of some notable work. Since the comparison of oversampling methods is a 

major part of our study, we also provide some examples of previous studies related to this topic.  

 

Ceislak, Chawla and Striegel [6] compared the performance of SMOTE and Cluster SMOTE techniques 

while generating rules using RIPPER on network intrusion data sets. Batista, Prati, Monrad [2] 

performed a study on 13 data sets from UCI with different degrees of imbalance and show 

oversampling methods to perform well on data sets with few positive examples, and particularly 

note the performance of random oversampling method on data sets with comparatively larger 

number of majority examples. They also proposed two methods- SMOTE+ENN and SMOTE+Tomek 

and analyzed their behavior against other resampling techniques for dealing with imbalanced data 

sets. Ajinkya More [18] performed a survey of various resampling techniques including Random 

Oversampling, SMOTE, Borderline-SMOTE etc. on a synthetic data set and concluded SMOTE+ENN 

with a combination of Logistic Regression classifier and Balance Cascade to be the best performer in 

terms of Precision for the majority class and Recall for the minority class.  
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V.Lopez et al. [17] compared SMOTE, Borderline-SMOTE, ADASYN, DB-SMOTE and some other 

methods using three classifiers C4.5 Decision Tree, Support Vector Machine and k Nearest Neighbor 

and evaluated the performance in each case using AUC criteria on 66 data sets available on KEEL data 

set repository. They observed SMOTE and SMOTE+ENN as the top methods and Borderline-SMOTE 

and ADASYN to be quite robust and used a Shaffer post hoc test for analyzing statistical significance. 

Cen, Liaw and Brieman [5] compared one sided sampling, SMOTE, SMOTEBoost, SHRINK against 

Balanced Random forest and Weighted Random Forest using 6 data sets by comparing performance 

using Recall, Precision, F-measure, G-mean and Weighted Accuracy .They find the random forest 

methods to perform well in the given settings.  Bach and Werner [33] studied various under sampling 

and oversampling methods in analysis of imbalanced data on Osteoporosis and noted highest 

efficiency achieved by the SMOTE combined with Random Forest classifier.  

 

Bing Zhu et al. [34] used 11 churn data sets from various sources for benchmarking resampling 

strategies for churn prediction. Among the oversampling methods they used ADASYN, Borderline-

SMOTE, Random Oversampling and SMOTE on four classifiers Logistic Regression, C4.5 Decision Tree, 

Support Vector Machine and Random Forest. Based on their study they recommended suitable 

sampling strategies for each combination of classifier evaluation metric. Rozita and Bahram [35] 

investigated imbalance ratio of 13 sets of real data using four resampling techniques including 

Borderline SMOTE and SMOTE on J48 and naive Bayes classifiers using four performance metrics 

TPrate, TNrate, Gmean and AUC. They concluded that oversampling approach works better than 

undersampling when data sets are severely imbalanced. Julien and Edmundo [36] studied synthetic 

oversampling for Twitter imbalanced sentiment analysis. They used ADASYN, SMOTE and Borderline 

SMOTE on three publicly available twitter data sets with the decision tree and l1 penalized logistic 

regression, evaluating them by Overall Accuracy and F1 measures. 

 

It is interesting to note here that although there have been previous studies that have compared the 

different oversampling techniques using various evaluation criteria, the attempt to understand the 

effect of specific dataset parameters and evaluation at different levels of imbalance are limited. This 

study attempts to provide the readers with valuable insights regarding this part.  
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3. CLASS IMBALANCE PROBLEM 

Imbalanced class data has been found in a number of different domains and often considered an 

integral problem of the learning process. The class imbalance may either occur due to the relative 

proportion of examples belonging to each class being low (relative rarity) or the absolute number of 

examples belonging to each class available for learning being low (absolute rarity). There is also a 

distinction for between-class imbalance which refers to imbalance occurring only due to the 

minority class, and within-class imbalance which refers to rare cases present within either the 

minority or the majority class [11]. These rare cases lead to small disjuncts [25] for classifiers which 

are formed of small number of training examples. Small disjuncts have much higher error rates than 

large disjuncts and tend to become problematic for the classifier [22]. It is also interesting to note 

that rare classes are often made up of rare cases.The nature of the imbalanced learning problem can 

be categorized into three varieties: problem-definition level, data level and algorithm level. [24] .  

3.1.  PROBLEM DEFINITION LEVEL ISSUE 

The problem definition level issue refers to poor understanding on behalf of the practitioner by using 

assessment metrics which are not suitable for evaluating classifiers working on imbalanced data in 

order to find an optimal classifier. This has special importance because of the cost of errors being 

asymmetric and skewed, which violate the assumption of general classifier metrics that errors have 

uniform cost. Thus traditional evaluation metrics such as total accuracy are not sufficient in this case. 

This is counter-beneficial for the design of an optimal classifier if the proper metrics that are to be 

used for its evaluation, are not understood during development. There are also cases found in 

unsupervised learning being affected by imbalanced data causing problems for the metrics used for 

association rule mining. One example is observed in the case where association rules involving rare 

items [26] are not likely to be generated, even though it may be of interest for the practitioner. 

Several evaluation metrics like AUC, F-score and G-mean have been proposed to provide better 

evaluation of classifiers.  

3.2. DATA LEVEL ISSUE 

The data level issue means lack of sufficient available training data for classification. While relative 

rarity is generally attributed to lack of proper problem definition or limitations of the algorithm for 

learning, absolute rarity is an issue associated with the data level. Absolute rarity in a data set 

severely impacts the classification of minority class examples. Less number of instances for the 

minority class in training data hampers the ability of classifier to learn from these examples and 

results in the minority class examples being misclassified. Studies [25] have shown the error rate for 

the rare cases to increase with decrease in sample size and higher misclassification rate for rare cases 

compared to common cases. The rare cases also cause small disjuncts in the classifier which have 

higher error rate than large disjuncts. The minority classes which tend to be made up of these rare 
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cases and small disjuncts are thus harder to learn for the classifier compared with the majority class 

[12]. Sampling methods are a common technique for solving the problem at the data level. Several 

oversampling, under-sampling and combination methods have been proposed by the scientific 

community for tackling this issue. Active learning and other information acquisition strategies have 

also demonstrated efficiency when dealing with class imbalance at the data level. [7]  

3.3.  ALGORITHM LEVEL ISSUE 

The algorithm level issue concerns the inability of algorithms to optimize learning for target 

evaluation criteria in the imbalanced case, which are quite different from standard evaluation 

metrics such as accuracy. The search heuristics used by most common classification algorithms, 

especially the ones involving greedy search and divide-and-conquer strategies, are inadequate for 

identifying highly accurate rare cases and thus perform poorly for minority classes. Inductive bias of 

the classifier also plays a role with respect to small disjuncts and rare classes, as the bias is used to 

encourage generalization and avoid overfitting. Classification algorithm based on greedy search 

heuristics encounter problems with relative rarity because random occurrences obscure the 

associations that are rare but meaningful. Divide and conquer strategies encounter problems with 

relative rarity as well as absolute rarity due to repeated partitioning that leads to data fragmentation 

[8]. Further research may look into developing algorithms specifically conditioned for treating 

imbalanced data. 

3.4. SOLUTIONS FOR THE ISSUES 

The research efforts towards dealing with the class imbalance problem have been reported to 

address the three aspects of nature of the problem, the possible solutions and the proper evaluation 

measures of classifier performance in the presence of imbalanced data. There have been several 

different approaches for tackling the issue of learning from imbalanced data such as cost-sensitive 

learning methods, kernel-based learning methods, active learning methods and sampling methods. 

However, sampling is still one of the most popular approaches. Other techniques such as redefining 

the problem and using proper evaluation of metrics have also been suggested as well as using 

algorithms with inductive biases and searching methods more suited for imbalanced data. The ideal 

solution would perhaps be to find and implement solutions for each of the different levels specifically 

but in practice this may not feasible. In such cases, practitioners may often resort to using sampling 

methods despite the limitations of such an approach.  
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4. SAMPLING METHODS AND EVALUATION CRITERIA 

Sampling is the most commonly used data level approach to deal with class imbalance. The sampling 

process alters the training set in such a way as to create a more balanced class distribution. Sampling 

methods can be divided into under sampling and oversampling. Under-sampling reduces number of 

examples from the majority class whereas oversampling adds new synthetic examples to the 

minority class during the training phase. There is also a distinction between random and heuristic 

approaches. In addition to standard oversampling and under sampling there are techniques which 

perform a combination of both these methods. Some ensemble methods based on sampling 

techniques have also been developed for learning in data sets that exhibit class imbalance.  

4.1. OVERSAMPLING METHODS 

Oversampling methods replicate the values of the minority class either in a random manner or part 

of an informative process. The increase in number of minority instances attempt to make the class 

more balanced but generating and adding these new instances increase the risk of overfitting. 

Several methods have been developed in order to make the oversampling method more informative 

and reduce the chances of overfitting. In this study we wish to provide a better understanding of the 

following commonly used oversampling methods: 

4.1.1. Random Oversampling 

The Random oversampling method operates by replicating the randomly selected set of examples 

from the minority class, so that the majority class does not have over bearing presence during the 

training process. Since the sampling process is random, it becomes difficult for the decision function 

to find a clear borderline between the two classes. Therefore, although it is widely used, Random 

oversampling might be ineffective at improving recognition of the minority class by a large margin. 

Some potential drawbacks of Random oversampling include increase in training time for the classifier 

and over-fitting on account of duplication of examples of the minority class as the class imbalance 

ratio becomes worse. However, other oversampling methods have been built based on this method. 

4.1.2. Synthetic Minority Oversampling (SMOTE) 

Synthetic minority oversampling technique (SMOTE) algorithm creates artificial data based on the 

feature space similarities between existing minority class by introducing non-replicated minority 

class. The introduction of the new examples effectively serves to change the bias of the learner, 

forcing a more general bias, but mainly for the minority class. The new minority instances are 

extrapolated and created out of existing minority class imbalances using k-NN algorithm. The 

neighbors from the k-NN are randomly chosen based on the amount of over sampling that is 

required. Addition of these synthetically generated minority class instances make the class 

distributions more balanced. [4] . It has been noted that although SMOTE seems to work well with 
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low dimensional data, the effectiveness in the case of high dimensional data is less impressive. This is 

due to the fact that SMOTE is not able to manage the bias in the majority class for the classifier 

where the data is high dimensional. Another drawback of the SMOTE algorithm is over generalization 

of the minority class space. Similar to Random Oversampling method SMOTE has also been used to 

build other oversampling methods. 

4.1.3. Borderline-SMOTE 

Borderline-SMOTE is based on the SMOTE method, as the name implies, and has two variations 

Borderline SMOTE1 and Borderline SMOTE2. The method over-samples the minority examples only 

near the borderline and their nearest neighbors of the same class. The difference between the two 

versions is that borderline-SMOTE2 uses both the positive nearest neighbors and negative nearest 

neighbors [10]. Compared to regular SMOTE, borderline-SMOTE does not create synthetic examples 

for noise instances, but concentrates its effort near the borderline, which in turn helps the decision 

function to create better boundaries between classes. In terms of performance, borderline-SMOTE 

has also been reported to perform better than SMOTE. 

4.1.4. Adaptive Synthetic (ADASYN) 

Adaptive Synthetic (ADASYN) sampling uses a weighted distribution for different minority class 

examples according to their level of difficulty of learning. Although ADASYN is also based on SMOTE, 

in comparison to borderline-SMOTE, ADASYN creates different synthetic samples for the minority 

class depending on its distribution and not just for the borderline instances. In addition to that, 

SMOTE provides equal chance of each minority instance to get selected whereas in ADASYN the 

selection process is based on the minority class distribution. The synthetic samples are created based 

on the majority nearest neighbors via the k-NN method. One drawback of this approach is that it 

does not identify noisy instances, and thus becomes susceptible to outlier values in the dataset. 

Previous studies have demonstrated an improvement in accuracy for both majority and minority 

classes and does not sacrifice one class in preference for another. [9]  

4.2. EVALUATION METRICS 

Measuring the performance of a classifier applied on imbalanced data using traditional metrics such 

as accuracy is difficult since it does not take into account the lower number of instances in the 

minority class Threshold metrics such as Precision and Recall have been used frequently for assessing 

the performance of a classifier in such cases. A combination of these measures, such as F-measure 

and G-mean, are single class focus metrics that use different combinations of specificity and 

sensitivity of the classifiers to give a better indication of performance. Ranking order metrics such 

AUC measure assess a classifiers performance over all imbalance ratios and hence provide a 

summary of the entire range. An overview of these measures in provided below: 
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4.2.1. Area Under the Curve (AUC) 

Area Under the Curve(AUC) is an evaluation method independent of selected threshold and prior 

probabilities. It measures the probability of the classifier assigning a higher rank to a randomly 

chosen positive example than a randomly chosen negative example and represents the performance 

of a classifier averaged over all possible cost ratios. Some limitation of this measure for comparative 

purpose for different classifier may be noted due to the skew-ratio distribution and interpretability. 

[1] The formula for calculating the AUC may be given by the following equation:   

,  

where S0 is the sum of ranks of class 0, n0 are the points of class 0 and n1 are the points of class 1. 

4.2.2. F-measure 

F-measure is a combination of precision and recall where F1 score is the weighted harmonic mean of 

precision and recall of a classifier, such that the best value is 1 i.e. all relevant information has been 

retrieved and worst is 0 i.e. no relevant information was retrieved. It was introduced by [Ethan 

Zhang, Y. Zhang] for information retrieval systems. [28] F1- measure is given by the following 

equation: 

 

 

4.2.3. Geometric Mean 

Geometric Mean(G-mean) is defined as a function of both the sensitivity and specificity of the 

classifier. It was introduced by [15] [Kubat et al.] as measure that takes into account relative balance 

on the positive as well as negative class. The equation is given below: 
 

. 

4.3. DRAWBACK OF SAMPLING METHODS 

The most important drawback of sampling methods is that they have no effect for absolute rarity 

cases involving both rare classes and rare cases. It has also been suggested that since sampling 

approaches artificially balance the data and create a new distribution, the underlying distribution still 

remains imbalanced. Another criticism is that sampling approaches only work on between-class 

imbalance and not within-class imbalance. Compared to other methods which are more powerful in 

dealing with bias of an imbalanced learning problem, sampling approaches do not perform very well. 
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5. METHODOLOGY 

We compare the performance of various oversampling methods on 96 synthetic data sets generated 

using make_classification function from Python Scikit-learn package. The four oversampling methods 

compared are Random Oversampling, SMOTE, Borderline-SMOTE and ADASYN. The nearest neighbor 

was set to 3 for the methods that used the k-NN technique for the oversamplers. The result for the 

case where an oversampling method has not been used on the classifier is reported under No 

Oversampling, which is used as reference for the other methods. 

 

The three classifiers used are Decision Tree, Logistic Regression and Gradient Boosting and the 

evaluation metrics are F1 score, G-mean and AUC. The reason for using different classifiers is to 

provide insights that are not dependent on a particular classifier or hyper- parameter. This motivated 

our choice of using Logistic Regression which does not require any hyper-parameter tuning. We also 

used two other classifiers, Decision Tree and Gradient Boosting, where different kind of hyper-

parameter are present, and hence make the results more likely to be generalized.   

 

The experiment has following parameters:  

 Two sample sizes of 5000 and 10000  

 The number of clusters per class selected at 2, 3, 4 & 5.  

 Three weight classes considered are (0.95, 0.05), (0.98,0.02), (0.992,0.008)  

 Number of features at 5, 10, 50 & 100  

 Logistic Regression with default settings, Gradient boosting with maximum depth at 2,3, 5, 8 

and number of estimators at 10, 50, 80, 100 and Decision Tree with maximum depth 2 & 5 

 Imbalance ratio of the datasets range from 16.79 to 88.29.  

Friedman´s test was used to test whether all the learning algorithms performed sufficiently different 

or do they have the same performance (null hypothesis). A k-fold cross validation was used to 

generate the mean CV score and standard deviation with k at 5. This score is used to build a mean 

ranking order for the different methods for all the evaluation criteria.  
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6. RESULTS AND DISCUSSION 

The mean cross validation score and the standard deviation of cross validation have been used for 

building a mean ranking score for these methods as displayed in table1 where 1 indicates the highest 

ranking and hence the best performing method whereas 6 is the lowest ranking or worst performing 

method. The test of significance is performed using Friedman test results. Friedman test concludes 

that null hypothesis is rejected at 0.05 level for all cases which means the three classifiers do not 

have the same performance as seen in table 2. 

 

Classifier Metric No 
oversamplig 

Random 
oversamplig 

SMOTE Borderlie-
SMOTE1 

Borderlie-
SMOTE2 

ADASYN 

DT f1 1.09 2.69 3.83 2.67 4.7 5.98 
GB f1 2.99 1.71 3.71 2.13 4.43 6 
LR f1 1.22 4.33 3.52 2.3 3.65 5.95 
DT G-Mean 4.86 3.72 2.19 2.79 2.03 5.38 
GB G-Mean  5.62 3.29 2.64 2.64 1.69 5.09 
LR G-Mean 5.27 2.75 2.8 2.73 2.4 5.03 
DT ROC AUC 5.09 3.59 2.33 2.96 2.06 4.94 
GB ROC AUC 4.19 3.07 3.17 2.54 2.46 5.54 
LR ROC AUC 2.09 3.5 3.86 2.88 3.05 5.6 

Table 1: Mean ranking of oversampling methods 

 

A closer look at the overall mean ranking results in table1 indicate Borderline-SMOTE2 as the method 

consistently ranking well based on the G-Mean and AUC score for all the three classifiers. However, 

the f1 score does not correspond with this result. In fact, according to the f1 score No oversampling 

is the highest ranking methods for the Decision tree and Logistic Regression classifiers. This may be 

due to the fact that f1 score puts higher emphasis on true positives i.e. the majority class, which the 

classifiers themselves are well equipped to handle without the support from any of the oversampling 

methods. 

 

Classifier Metric p-value 

DT F1 < 0.01 

GB F1 < 0.01 

LR F1 < 0.01 

DT G-Mean  < 0.01 

GB G-Mean < 0.01 

LR G-Mean < 0.01 

DT ROC AUC    0.03 

GB ROC AUC < 0.01 

LR ROC AUC    0.02 
Table 2: Friedman test 

 

The performance of the oversampling methods may also be observed from figure 1 which shows 

Borderline-SMOTE2 to have values closest to 1, which indicates a good performance. It may be 

interesting to note ADASYN performing poorly with the range of values between 5 and 6. It is also 
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interesting to see the large inter-quartile range for No oversampling, indicating the non-uniform 

performance of the classifier in the absence of any oversampling method. 

 

 
Figure 1: Horizontal box plot of oversampling methods 

 

Borderline-SMOTE1 is perhaps the second highest ranked method followed by SMOTE and Random 

oversampling. ADASYN is ranked low consistently for all three classifiers based on the evaluation 

metrics. 

 
Figure 2: Violin plot of oversamplers divided for classifiers and metrics 

The performance indicators are confirmed by the violin plot and point plot in figure 2 and 3 

respectively. The plots also highlight the consistently good performance of Borderline SMOTE2 and 
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poor performance of ADASYN. It may also be noted here that the f1 score results are consistently 

different than the other two indicators. 

 

 

 

 
 

Figure 3: Joint line plot of oversampling methods  

 

The plot in figure 3 is interesting for several reasons. It confirms the earlier observations of ADASYN 

performing consistently poor and the Borderline-SMOTE1 to perform consistently well. Borderline-

SMOTE2 shows comparatively broader interquartile range indicating the variation in performance 

compared to Borderline-SMOTE1. No oversampling has the broadest inter quartile range indicating 

the large variance in each of the classifiers performances while not under the influence of any 

oversampling method. It may also be noted that random oversampling method and SMOTE have 

ranges quite similar to one another.     
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In order to better comprehend the performance of the oversampling methods on the different data 

set parameters, the results have been filtered based on the number of features and the imbalance 

ratio of the simulated data sets. The oversampling methods performing well according to at least two 

out three performance measures have been chosen as the best method for each combination of 

classifier and filter parameter based on the mean CV score and standard deviation as well as ranking. 

The results are displayed in table 3 and 4. 

 
 Decision Tree Gradient Boosting Logistic Regression 

Features 5 SMOTE Borderline_SMOTE2 No Oversampling 

Features 10 SMOTE Borderline_SMOTE2 No Oversampling 

Features 50 Borderline_SMOTE2 Borderline_SMOTE2 No Oversampling 

Features 100 Borderline_SMOTE2 Borderline_SMOTE1 No Oversampling 

Table 3: Filtered results divided by feature size 

 

Table 3 shows the best performing oversampling method for each classifier according to the number 

of features. Boderline_SMOTE2 is the overall top performing method, as expected from the previous 

observations. However, it is interesting to note that for Logistic Regression classifier, using no 

oversampling method seems to be the best solution. Although not explicitly stated in the table, it is 

important to note here that performance of the Borderline-SMOTE2 for Logistic regression classifier 

is quite close to the performance of no oversampling method, especially for the geometric mean and 

AUC score criteria. Another interesting observation here is that for the Decision Tree classifier, 

SMOTE performs well for lower number of features (i.e. 5 and 10) but as the number of features 

increases (i.e. 50 and 100), Boderline-SMOTE2 becomes the preferred method. This may be due to 

the fact that as the number of features increases SMOTE is less sensitive to the number of minority 

instances as compared with the Borderline-SMOTE method, and thus unable to perform well in high 

dimensional cases. 
 Decision Tree Gradient Boosting Logistic Regression 

Imbalance Ratio 1 SMOTE SMOTE No Oversampling 

Imbalance Ratio 2 Borderline_SMOTE2 Borderline_SMOTE2 No Oversampling 

Imbalance Ratio 3 Borderline_SMOTE2 Borderline_SMOTE2 No Oversampling 

Imbalance Ratio 4 Borderline_SMOTE2 Borderline_SMOTE2 Borderline_SMOTE2 

Imbalance Ratio 5 Borderline_SMOTE2 Borderline_SMOTE2 Borderline_SMOTE2 

Table 4: Filtered results divided by Imbalance ratio 

 

Table 4 shows the performance of the best oversampling method for each combination of classifier 

and imbalance ratio of simulated data. Borderline-SMOTE2 performs well as expected from our 

previous findings. It is also interesting to note that for the Gradient boosting and Decision tree 

classifier, SMOTE is the best method initially but later results favor the Borderline-SMOTE2 method. 

Similar observation may also be made for the Logistic Regression classifier where using No 

oversampling is the chosen method initially but later Borderline-SMOTE2 is more preferred.    
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7. CONCLUSION 

This study explores the data level approach of dealing with imbalanced data and shows the 

performance of various oversampling methods for the purpose of treatment of binary class 

imbalanced data. An overview of the various issues found related to class imbalance problem and 

some knowledge about proper evaluation metrics has been presented. Experimental analysis carried 

out on multiple simulated data sets allows to gain insight about the oversampling methods in this 

context. Results indicate that Borderline-SMOTE method to be most efficient for dealing with the 

class imbalance problem and ADASYN to be least effective often performing worse than Random 

Oversampling and No oversampling. It has also been observed that complexity of data, level of 

imbalance, evaluation criteria and choice of classifier, all play crucial role in the evaluation process. 

 

Oversampling uses more examples from the minority class in order to balance the classes, which may 

lead to overfitting. Determining the right threshold to avoid overfitting and prevent information loss 

is a major challenge. It is also important to note that bias introduced toward predicting the 

oversampled class affects the performance of the classifier. However, even with these drawbacks 

sampling methods are still the most feasible option when dealing with issue of absolute rarity since 

relative rarity is generally not considered a problem at the data level.  

 

Further research may evaluate the effect of imbalance on various other classifiers and the 

performance of oversampling methods in handling this problem. 
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[17] Victoria López, Alberto Fernańdez, Salvador Garciá, Vasile Palade, Francisco Herrera. An insight 

into classification with imbalanced data: Empirical results and current trends on using data intrinsic 

characteristics. Information Sciences, 250:113—141, 2013. URL 

http://dx.doi.org/10.1016/j.ins.2013.07.007.  

[18] Ajinkya More. Survey of resampling techniques for improving classification performance in 

unbalanced datasets. , 10000:1—7, 2016. URL http://arxiv.org/abs/1608.06048.  

[19] S.H. Clearwater, E.G. Stern. A rule-learning program in high energy physics event classification. 

Computer Physics Communications, 67(2):159 - 182, 1991. URL 

http://www.sciencedirect.com/science/article/pii/001046559190014C.  

[20] Yanmin Sun. Classification of Imbalanced Data : a Review. International Journal of Pattern 

Recognition and Artificial Intelligence, 23(4):687—719, 2009.  

[21] KEVIN S. WOODS, CHRISTOPHER C. DOSS, KEVIN W. BOWYER, JEFFREY L. SOLKA, CAREY E. 

PRIEBE, W. PHILIP KEGELMEYER. COMPARATIVE EVALUATION OF PATTERN RECOGNITION 

TECHNIQUES FOR DETECTION OF MICROCALCIFICATIONS IN MAMMOGRAPHY. International Journal 

of Pattern Recognition and Artificial Intelligence, 07(06):1417-1436, 1993. URL 

http://www.worldscientific.com/doi/abs/10.1142/S0218001493000698.  

https://doi.org/10.1007/3-540-45153-6_7
http://doi.acm.org/10.1145/1007730.1007737
https://doi.org/10.1023/A:1007452223027
http://dl.acm.org/citation.cfm?id=3000292.3000304
http://dx.doi.org/10.1016/j.ins.2013.07.007
http://arxiv.org/abs/1608.06048
http://www.sciencedirect.com/science/article/pii/001046559190014C
http://www.worldscientific.com/doi/abs/10.1142/S0218001493000698


 

26 
 

[22] Gary M. Weiss, Haym Hirsh. A Quantitative Study of Small Disjuncts. Proceedings of the 

Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative 

Applications of Artificial Intelligence:665—670, 2000. URL 

http://dl.acm.org/citation.cfm?id=647288.721597.  

[23] Gary M. Weiss, Haym Hirsh. Learning to Predict Rare Events in Event Sequences. Proceedings of 

the Fourth International Conference on Knowledge Discovery and Data Mining:359—363, 1998. URL 

http://dl.acm.org/citation.cfm?id=3000292.3000360.  

[24] Gary M. Weiss. Foundations of Imbalanced Learning. John Wiley & Sons, Inc., 2013. URL 

http://dx.doi.org/10.1002/9781118646106.ch2.  

[25] Gary Weiss. Learning with Rare Cases and Small Disjuncts. , 1998.  

[26] Ya-Han Hu, Yen-Liang Chen. Mining association rules with multiple minimum supports: a new 

mining algorithm and a support tuning mechanism. Decision Support Systems, 42(1):1 - 24, 2006. URL 

http://www.sciencedirect.com/science/article/pii/S0167923604002052.  

[27] Hong Yao, Howard J. Hamilton. Mining Itemset Utilities from Transaction Databases. Data Knowl. 

Eng., 59(3):603—626, 2006. URL http://dx.doi.org/10.1016/j.datak.2005.10.004.  

[28] Ethan Zhang, Yi Zhang. F-Measure. Springer US, 2009. URL https://doi.org/10.1007/978-0-387-
39940-9_483 
 
[29] Ma, L., & Fan, S. (2017). CURE-SMOTE algorithm and hybrid algorithm for feature selection and 
parameter optimization based on random forests. BMC Bioinformatics, 18(1), 169  
https://doi.org/10.1186/s12859-017-1578-z 
 
[30] Last, F., Douzas, G., & Bacao, F. (2012). Oversampling for Imbalanced Learning Based on K-
Means and SMOTE, 1–19. 
 
[31] Douzas, G., & Bacao, F. (2017). Self-Organizing Map Oversampling (SOMO) for imbalanced data 
set learning. Expert Systems with Applications, 82(Japkowicz 2000), 40–52. 
https://doi.org/10.1016/j.eswa.2017.03.073 
 
[32] Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving 
Prediction of the Minority Class in Boosting, 107–119. https://doi.org/10.1007/978-3-540-39804-
2_12 
 
[33] Bach, M., Werner, A., Żywiec, J., & Pluskiewicz, W. (2017). The study of under-and oversampling 
methods’ utility in analysis of highly imbalanced data on osteoporosis. Information Sciences, 384, 
174-190 
 
[34] Zhu, B., & Baesens, B. (2017). Improving Resampling-based Ensemble in Churn Prediction, 79–91. 
 

http://dl.acm.org/citation.cfm?id=647288.721597
http://dl.acm.org/citation.cfm?id=3000292.3000360
http://dx.doi.org/10.1002/9781118646106.ch2
http://www.sciencedirect.com/science/article/pii/S0167923604002052
http://dx.doi.org/10.1016/j.datak.2005.10.004
https://doi.org/10.1007/978-0-387-39940-9_483
https://doi.org/10.1007/978-0-387-39940-9_483
https://doi.org/10.1186/s12859-017-1578-z
https://doi.org/10.1016/j.eswa.2017.03.073
https://doi.org/10.1007/978-3-540-39804-2_12
https://doi.org/10.1007/978-3-540-39804-2_12


 

27 
 

[35] Oskouei, R. J., & Bigham, B. S. (n.d.). Oversampling via Under-Sampling in Strongly Imbalanced 
Data, 1–10. https://doi.org/10.1504/IJAIP.2017.081179 
 
[36] Ah-Pine, J., & Morales, E. P. S. (2016). A study of synthetic oversampling for twitter imbalanced 
sentiment analysis. CEUR Workshop Proceedings, 1646, 17–24. 
 
[37] G Douzas, D., Bacao, F., (2018), Effective data generation for imbalanced learning using 
conditional generative adversarial networks, Expert Systems with Applications 91, 464-471 
 
[38] Douzas, G., Bacao, F., (2017) Geometric SMOTE: Effective oversampling for imbalanced learning 
through a geometric extension of SMOTE arXiv preprint arXiv:1709.07377 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1504/IJAIP.2017.081179

