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ABSTRACT 

Traditional supervised machine learning classifiers are challenged to learn highly skewed 
data distributions as they are designed to expect classes to equally contribute to the 
minimization of the classifiers cost function. Moreover, the classifiers design expects equal 
misclassification costs, causing a bias for underrepresented classes. Thus, different strategies 
to handle the issue are proposed by researchers. The modification of the data set managed 
to establish since the procedure is generalizable to all classifiers. 
 
Various algorithms to rebalance the data distribution through the creation of synthetic 
instances were proposed in the past.  In this paper, we propose a new oversampling 
algorithm named G-SOMO, a method that is inspired by our previous research. The 
algorithm identifies optimal areas to create artificial data instances in an informed manner 
and utilizes a geometric region during the data generation to increase variability and to 
avoid correlation.  
 
Our experimental setup compares the performance of G-SOMO with a benchmark of 
effective oversampling methods. The oversampling methods are repeatedly validated with 
multiple classifiers on 69 datasets. Different metrics are used to compare the retrieved 
insights. To aggregate the different performances over all datasets, a mean ranking is 
introduced.  
 
G-SOMO manages to consistently outperform competing oversampling methods. The 
statistical significance of our results is proven. 
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1 INTRODUCTION
Learning from imbalanced datasets remains a challenge for supervised machine learning classifiers and therefore
needs to be addressed by the research community. Class imbalance refers to classification problems where the
target class is unequally distributed and therefore algorithms trained with imbalanced data tend to be heavily
biased towards the majority class [Hoens and Chawla, 2013]. The paper on hand will present an effective way
to deal with imbalanced datasets, the focus hereby is set on highly skewed binary datasets. Commonly known
domains dealing with these challenges are fraud detection, medical diagnosis, risk management, airborne
imagery, face recognition and of forecasting of ozone levels [Akbani et al., 2004].

Datasets with an unequally distributed target class are identified by their Imbalance Ratio (IR). The class
represented by most of the instances is named the majority class, while the other class is the minority class
[Chawla et al., 2003]. The Imbalance Ratio is defined as the ratio between the majority class and each of
the minority classes. It is important to notice that the data imbalance is an integral part of the problem
itself, implying that the cost of a false negative prediction is usually much larger than the cost of a false
positive. Considering a machine learning based system to make medical decisions, if the model predicts a
patient to carry a disease, even though the patient is healthy, the wrong decision will be revealed in further
medical examinations. On the other hand, if the model classifies the patient to be healthy, even though the
individual carries a disease, tremendous harm is caused [Wan et al., 2014]. Therefore, we can see that the
correct classification of the minority class is usually more important than the correct prediction of the majority
class.

There are two main explanations for the poor ability to learn from imbalanced data sets. The first reason to
explain this behavior is, that during the training process of the model the instances of the minority classes
contribute less to the minimization of the algorithms cost function. As a result, the model has a higher
incentive to classify new instances as majority instances, since there is a higher chance of a correct classification.
Second, due to the limited number of samples, the model faces difficulties to differentiate between outliers
and important instances. This implies that the ability to create a decent model is not just dependent on the
machine learning algorithm and its parameters, but also from the data itself and its imbalance ratio

Unlearned practitioners who trained models on imbalanced data might be lead to false conclusions while
validating their models based on their accuracy. Accuracy is a measure that is heavily biased towards the
majority class, the metric might imply a decent score, even though none of the minority classes are correctly
classified. Assuming a dataset with 99% majority instances and only 1% minority instances, the model
accuracy would still be 99% without classifying a single minority instance correctly. To address this concern,
other validation metrics have to be selected that consider the importance of the minority class. A more detailed
outline of the chosen metrics follows in section 5.1 ’Metrics’.

In general, there are three different options to handle an imbalanced data set [Fernández et al., 2013]. The
first option is the modification of the dataset itself, hereby one can create new synthetic data instances to
the minority classes by over-sampling or remove existing data instances from the majority instances through
under-sampling. Both approaches can also be combined to a hybrid approach, the general objective of the
approaches is to minimize the skewed distribution of the classes within the dataset and to shift the classes
towards an equal distribution. The second option is to adjust the cost function of the supervised learning
algorithm. During the training process, the model will be heavily penalized for falsely classified minority class
instances. The latter implies to modify the training process and create explicit algorithms to handle the class
imbalance. The third approach focuses on the modification of algorithms that reinforce the learning towards
the minority class. We decided to tackle the challenge of imbalanced datasets by oversampling. The reasons
to modify the dataset and not the algorithm is that after the dataset modification any supervised machine
learning algorithm can be used, without any further modification. With our proposed algorithm we focus on
oversampling since it provides the advantage that none of the majority instances need to be removed and no
valuable information is vanished, as it might happen through under-sampling.

The method presented in this paper extends the Self-Organizing Map Oversampling algorithm by making use of
the Geometric SMOTE algorithm. SOMO is a cluster based algorithm that leverages the Self-Organizing map
algorithm and managed to outperform related algorithms over various datasets [Douzas and Bacao, 2017b].
The algorithm preserves the topology while reducing the dimensionality to a two-dimensional representation.
The emerging clusters are used to create minority instances within, but also between neighboring minority
clusters by leveraging the SMOTE algorithm. The algorithm presented in this paper utilizes the procedure of
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the SOMO algorithm and replaces the SMOTE algorithm with the Geometric SMOTE algorithm. G-SMOTE
generates synthetic samples in a geometric region of the input space, around each selected minority instance.
G-SMOTE also proved significant improvements in the generated data quality [Douzas and Bacao, 2017a].
Due to the combination of both algorithms, the naming choice of the algorithm proposed by us is G-SOMO,
Geometric Self-Organizing Map Oversampling.

Following this introduction, we will outline related methods that proved to be efficient in the second chapter.
Subsequently, we will expound the shortcomings of classifiers and explain our motivation for the oversampling
method G-SOMO in chapter three. In the fourth chapter, we will discuss the G-SOMO algorithm in detail and
present each step individually. The following chapter Research Methodology covers our experimental pipeline
to validate the performance of our proposed method. We will present our significant results in chapter six.
The last chapter will summarize our findings and provides a prospect for further research
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2 RELATED WORK
The section outlines the current state of the art over-sampling methods. Over-sampling methods generate
synthetic examples for the minority class and add them to the training set, therefore additional information is
created. In contrast to over-sampling, under-sampling methods reduce samples of the majority class to estab-
lish a class balance This implies that information is excluded, which might affect the learning process negatively
when the data set is small. Both methods have shown to be effective, depending on the problem addressed
[Chawla et al., 2002]. More information on under-sampling methods can be found in [Ganganwar, 2012] and
[Yen and Lee, 2006]. Synthetic data instances can be created uninformed, by randomly duplicating minority in-
stances or informed, by identifying areas where oversampling is deemed to be most effective [Last et al., 2017].

The modest form of oversampling is Random Oversampling (ROS). ROS is an uninformed approach, which
randomly selects minority samples and duplicates them exactly without any selection criteria. The method
stands out through its simplicity, but proved to increase the risk of overfitting enormously, since the same
information is used multiple times during the training process, no instances that clarify the decision boundaries
are created.

The most popular approach among practitioners in the domain of oversampling is SMOTE, introduced in
2002. The algorithm chooses a random minority instance and identifies its k nearest neighboring minority
instances. The parameter k is chosen beforehand. A synthetic instance is created on a random point along a
line segment joining the selected minority instance and one of its neighbors [Chawla et al., 2002]. Depending
upon the amount of over-sampling required, neighbors from the k nearest neighbors are randomly chosen.
Figure 1 constitutes the process of SMOTE.

Figure 1: SMOTE Algorithm, inspired by [Schubach et al., 2017]

Compared to ROS the synthetic samples are more generalizable and therefore the high risk of overfitting is
reduced. However, SMOTE has several drawbacks. First, the algorithm randomly selects a minority instance for
oversampling with uniform probability. Hereby it manages to tackle between-class imbalance, while within-class
imbalance is ignored. Areas that were highly populated by minority samples will expand, while smaller areas
of minority samples will remain sparse [Prati et al., 2004b]. Second, the algorithm promotes the generation of
noisy samples. When selecting a noisy sample and the linear interpolation to the nearest neighbor is created, a
new noisy sample might be created, due to the great distance between them. It can not distinguish overlapping
class regions from safe areas [Bunkhumpornpat et al., 2009].

To tackle the problems of SMOTE several modifications were created. SMOTE + Edited Nearest Neighbor
removes any misclassified instances after the creation of synthetic samples, by applying the edited nearest
neighbor rule [Maria, 2004]. Safe-Level SMOTE applies a weight degree to differentiate between noisy and
safe instances [Bunkhumpornpat et al., 2009]. Furthermore, G-SMOTE manages to extend the linear inter-
polation of SMOTE by introducing a geometric region where the data generation process occurs. Thereby,
the algorithm increases the data variability and prevents additional correlation between the created samples
[Douzas and Bacao, 2017a]. Further algorithms like Borderline-SMOTE [Han et al., 2005], MWMOTE (Ma-
jority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning) [Barua et al., 2014],
ADASYN and its variation KernelADASYN [Tang and He, 2015] are trying to avoid noisy samples and focus
on hard to learn instances. Hereby, the borderline samples of the classes are identified to use the informative
minority class instances.
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The prior algorithms focus exclusively on between-class imbalance [Nekooeimehr and K. Lai-Yuen, 2015]. The
second challenge is an informed approach, the within-class-imbalance. Within-class-imbalance refers to iden-
tifying sparse or dense clusters of minority or majority instances. To tackle this challenge, different clustering
based oversampling methods have been proposed to identify areas, where oversampling is most effective.
These methods are segmenting the instances and then apply traditional oversampling methods specific to each
segment.

Cluster SMOTE utilizes the k-means cluster algorithm, to identify clusters with a specific threshold of minority
instances, before applying SMOTE within these clusters [Cieslak et al., 2006]. In addition, K-means and
SMOTE applies a similar approach, but also considers the density within the clusters by assigning samples
weights. A high sampling weight corresponds to a low density of minority samples and yields more generated
samples [Last et al., 2017]. Furthermore, multiple suggestions for the Hyperparameter selection are provided.
DBSMOTE provides another approach to cluster based over-sampling, by applying the density-based DBSCAN
algorithm to discover arbitrarily shaped clusters to create artificial data instances along the shortest path from
each minority class instance to a pseudo-centroid of the cluster [Bunkhumpornpat et al., 2011]. A-SUWO uses
a hierarchical clustering approach and adaptively determines the size to oversample each sub-cluster using its
classification complexity and cross-validation [Nekooeimehr and K. Lai-Yuen, 2015].

The Self Organizing Map Oversampling (SOMO) algorithm applies a self-organizing map to create a two-
dimensional representation of the multidimensional input space and creates inter- and intra-cluster synthetic
samples based on the underlying manifold structure [Douzas and Bacao, 2017b]. The algorithm transforms
the input in a two-dimensional space of clusters and applies the SMOTE over-sampling algorithm to generate
synthetic instances in the minority clusters and between neighboring minority clusters. The densities in and
between the clusters are also taken into account by utilizing the average Euclidean distance. The algorithm
stands out through its ability to not only oversample the identified clusters, but also between neighboring
minority clusters since those areas are also safe and effective for data generation.

Besides clustering based algorithms, further over-sampling algorithms evolved, that are based on ensemble
methods like SMOTEBoost [Chawla et al., 2003] and DataBoost-IM [Guo and Viktor, 2004]. The boosting
process is used to identify hard to learn instances, which are used to separately generate synthetic examples
for the majority and minority classes [Guo and Viktor, 2004].
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3 MOTIVATION
The section briefly outlines the challenges and shortcomings of competitive oversampling methods and clarifies
the motivation for our proposed algorithm G-SOMO

A classifiers performance is significantly influenced by the positioning of the instances in the dataset. As
outlined in figure 2, the instances of a class can be spread over the boundaries of the majority class, which
complicates the classifiers task [Tang and Gao, 2007]. This is a common challenge in real-world problems.
The different types of instances can be seen as safe and unsafe instances, while the latter also differentiate
between borderline and outlier instances [Sáez et al., 2016].

Figure 2: Challenging data formations, inspired by [Sáez et al., 2016].

Safe instances are located in the homogeneous regions and populated by the examples from one class only
[Rodriguez et al., 2012]. They are clearly separated from examples of other classes. Most classifiers are able to
correctly identify those instances [Prati et al., 2004a]. Instances that are not clearly separated are considered
unsafe ones like borderline instances and outliers [Kubat and Matwin, 2000]. Borderline instances are placed in
the boundary region between classes, where instances of multiple classes overlap [Sáez et al., 2016]. Outliers
are isolated distinct instances, also termed as noise.

Learning algorithms are challenged when they are confronted with overlapping areas between classes, especially
unsafe instances. Therefore, oversampling algorithms should be able to carefully consider in which areas to
create artificial instances and which areas to ignore. Inefficiencies that were observed with SMOTE and
similar algorithms are the generation of noisy instances penetrating the area of majority classes, as well as the
generation of nearly duplicated examples. Noisy examples can be created when applying k-nearest neighbor
approaches, since they can either choose a noisy instance as a starting point or select a noisy instance as nearest
neighbor, as seen in figure 3a and 3b. Similar or nearly duplicated instances are created while generating new
artificial instances within the borders of a minority cluster since they do not help to strengthen the decision
boundary and might lead to overfitting, as it can be seen in figure 3c. Figure 3d outlines the case, in which
the parameter k is too high and individuals from another cluster are selected.

Figure 3: Shortcomings of SMOTE, inspired by [Douzas and Bacao, 2017b]
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The Self-Organizing Map Oversampling (SOMO) algorithm improved the selection criteria of the minority
class samples, which are used to generate synthetic examples. Through the synthetic data generation in and
between neighboring minority clusters, as well as the consideration of the density, the algorithm also manages
to generate the synthetic instances in more productive areas of the data space [Douzas and Bacao, 2017b].
Therefore, the generation of noisy examples is avoided. SOMO manages to identify efficient oversampling
areas, the generation of synthetic instances is then handled by the SMOTE algorithm, which still provides
several drawbacks. Challenges, as outlined in figure 3d, are prevented through the previous generation of
clusters, nevertheless, the SMOTE algorithm introduces a high correlation between the samples, since it only
creates synthetic instances that are on the line segment between two instances.

Geometric SMOTE (G-SMOTE) extends the linear interpolation mechanism by introducing a geometric region,
in which the data generation process occurs [Douzas and Bacao, 2017a]. Therefore, the algorithm extends the
linear interpolation mechanism and provides a geometric region in which the data generation occurs. Figure
4 illustrates the idea behind the data generation based on a geometric region, instead of on the line segment.

Figure 4: Synthetic data generation based on a geometric region, inspired by [Douzas and Bacao, 2017a]

Besides utilizing a geometric region for the data generation, G-SMOTE also introduced the majority selection
strategy, which successfully prevents the scenario shown in figure 3a, 3b and 3d. The majority selection strategy
prevents the creation of synthetic instances between two minority instances if the distance to a majority instance
is shorter. Instead, the synthetic minority instance is created between the initially selected minority instance
and the majority instance that had a shorter distance, as it can be seen in figure 4. G-SMOTE proved to
significantly increase the performance of SMOTE.

SOMO provides an efficient process to identify areas that should be populated with minority instances, but
lacks the improvements provided by G-SMOTE. On the other hand, G-SMOTE exploits an intelligent and
efficient approach to generate synthetic instances, but lacks the ability to identify attractive regions for syn-
thetic instances. In this paper we propose a combination of both techniques, leveraging the benefits of both
algorithms.
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4 PROPOSED METHOD
The previous section outlined the inefficiencies of the SMOTE algorithm, as well as of SOMO and G-SMOTE.
The proposed method G-SMOTE manages to tackle them, by utilizing the best characteristics of both algo-
rithms.

• G-SOMO manages to improve the selection criteria by leveraging Self-Organizing Maps.

• The method considers the density, based on the average Euclidean distances, in and between clusters
when creating artificial data instances.

• G-SOMO creates synthetic instances within a geometric region, avoiding correlation between the in-
stances.

• Through the combined selection strategy, the creation of noisy examples is avoided. This should already
be prevented through the preselection of minority clusters, but still provides an advantage, in case the
parameters to cluster were not selected carefully.

The proposed method consists of three stages. Initially, a Self-Organizing Map (SOM) is applied to the normal-
ized input data set. The SOM algorithm creates mappings of high dimensional data space into low-dimensional
space in such a way that the topological relations of the input patterns are preserved [Köküer et al., 2007].
To train a SOM, the Euclidean distance between the input vector and all neural weights has to be calculated.
The Neuron that has the shortest distance to the input vector (the winner) is chosen and its weights are
slightly modified to the direction represented by the input vector. Afterward, the neighboring neurons are
taken and their weights are modified in the same direction [Brocki and Korzinek, 2007]. Due to SOMs ability
to preserve topological relations from high dimensional input spaces, insights in the underlying data structure
can be retrieved by analyzing the (usually) two-dimensional output map. In the second stage of the algorithm,
the filtered clusters are defined, clusters where the minority class is dominating over the majority class. A
weighted approach is used to create synthetic instances in the filtered clusters and also between neighboring
filtered clusters. The last stage of the algorithm is marked by the creation of synthetic instances within the
identified formations. The synthetic data generation is based on a geometric region, that is formed between
the current minority instance and its selected neighbor. The shape of the geometric region varies, depending
on its hyperparameter. Synthetic instances are created within the geometric region, avoiding the creation on
a line segment as suggested by SMOTE.

4.1 G-SOMO ALGORITHM
The G-SOMO algorithm is the efficient combination of the SOMO and G-SMOTE algorithm, introduced
in [Douzas and Bacao, 2017b] and [Douzas and Bacao, 2017a]. The complete G-SOMO algorithm is listed
below.
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Algorithm 1: Pseudo code for G-SOMO implementation
G-SOMO algorithm(args):
Input : Smaj (Set of majority class samples)

Smin (Set of minority class samples)
Nintra (Total intracluster number to be generated)
Ninter (Total intercluster number to be generated )
filtered_clusterratio (Treshold to identify a cluster as filtered)
inter_intra_clusterratio (Ratio of inter- and intracluster generated samples)
SOMparameters (Parameters of SOM algorithm )
αtrunc and αdef (Parameters to form the geometric region)

Algorithm
1. Normalize the data and train a SOM on the input data set, S = Smin ∪ Smaj .
2. Identify each node in the map as a cluster, where cl describes all clusters {1,2,...,N2

Grid}. NGrid is the
dimension of the grid, one of the SOM parameters.

3. Define the number of minority instances as n+i and the number of majority instances as n−i for each
cluster i ∈ cl.

4. Calculate the imbalance ratio IRi for each cluster i ∈ cl as IRi =
n+i + 1

n−i + 1
.

5. Identify the filtered set clf of cluster labels as clf = {i ∈ cl : IRi > filtered_clusterratio.
6. In each filtered cluster i ∈ cl calculate the average Euclidean distance disti across all pairs of positive
class instances belonging to the cluster.

7. Calculate the density factor for each filtered cluster as deni =
n+i

dist2i
.

8. Identify the density factor of each filtered neighboring units i and j as denij = deni + denj for each
combination of i, j ∈ clf .

9. Define the sampling weights
9.1 Calculate the intracluster weights as wintra =

1/deni∑
i∈clf

1/deni

9.2 Calculate the intercluster weights as winter =
1/deni,j∑

i,j∈clf
1/deni,j

10. Define the number of artificial instances to be created
10.1 For each filtered cluster generate wintra,i ·Nintra artificial minority samples
10.2 For each neighborhood combination of filtered clusters i,j generate wintra,ij ·Ninter artificial
minority samples

11. for each filtered minority cluster formation and neighborhood formation do
11.1 Shuffle Sminf , where Sminf are the minority instances of the current formation
repeat

11.2.1 Select xcenter from Sminf

11.2.2 Apply the combined selection strategy
11.2.3 Generate a random point inside the unit-hypersphere centered at the origin of the input
space

11.2.4 Truncate the current unit hyper sphere
11.2.5 Deform the unit hyper sphere to a hyper spheroid
11.2.6 Rescale the created sample xgen

11.2.7 Add the sample xgen to the set of generated instances in the current formation
until Ninstances of synthetic minority instances are created in the current formation;

end
Output: X’ (oversampled matrix of observations)
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4.2 EXPLANATION OF G-SOMO
The G-SOMO algorithm relies on filtered clusters, which are areas where a specific minority class dominates
over the majority class. These regions can be considered as safe areas for the generation of minority samples.
Outliers or noisy examples should belong to non-filtered clusters and are therefore ignored. The density and
weights of each filtered cluster are calculated to create new instances in each filtered cluster (intracluster) and
between filtered clusters that are neighbors on the topological output map of the SOM algorithm (intercluster).
The geometric region used for the data generation increases the variety of the generated instances.

Parameters: The G-SOMO algorithm requires the following parameters. Smaj representing the instances
of the majority class, while Smin represents the instances of the minority class. Nintra is the absolute
number of artificial instances that will be created within clusters, Ninter represents the absolute number of
artificial instances that are created between neighboring filtered clusters. Nintra and Ninter are obtained by
the total number of artificial samples split by the inter_intra_clusterratio, which describes the distribution
of the total amount of artificial samples to be generated between the inter and intracluster process. The
filtered_clusterratio has to be defined between 0 and 1, describing the threshold to accept a cluster as
filtered. One notable SOM parameter is the size of the grid, which describes the number of nodes and
therefore clusters. Typical parameters to form the geometric region such as αtrunc and αdef are required,
their function will be explained in the corresponding steps.

Step 1: The first step of the algorithm is to normalize the input data and apply the SOM algorithm with the
provided parameter. The data is normalized that each feature has a mean of 0 and a variance of 1. This step
is necessary to assure that each feature is aligned on the same scale when assigning the best matching unit by
utilizing the Euclidean distance during the training phase of the SOM algorithm. After normalizing the data,
the correct size of the grid has to be chosen, which is a crucial parameter of the G-SOMO algorithm. The
high dimensional input space will be transformed into a two-dimensional grid that consists of N2

Grid clusters,
which are used to identify safe areas for the data generation process. The challenge hereby is to select a
value allowing to discriminate between sparse and dense minority class areas. A very small value will not be
able to identify subclusters, the identified clusters will have a very large size of instances. Assuming a uniform
distribution, one can set the threshold to

√
|Smin| to ensure that each cluster contains on average one minority

class, but the assumption of the distribution is unreliable for real-world problems. High values of NGrid will
result in more smaller sized clusters, which might lead to filtered clusters in areas that we would usually like
to ignore, because they are considered outliers.

√
|Smaj | provides a reasonable upper bound for NGrid. The

optimal value for NGrid is dependent on the characteristics of the data set and can only be approximated in
an experimental approach.

Step 2 - 5: The filtered clusters are identified by their Imbalance Ratio IRi =
n+i + 1

n−i + 1
, where n+i is the

number of instances belonging to the minority class and n−i are the instances of the majority class. Clusters
having a higher ratio than the given filtered_clusterratio threshold are considered to be filtered clusters of
the current class. The parameter filtered_clusterratio is usually set to 0.5. The G-SOMO extension will
not create any artificial instances if no filtered clusters are identified. In this case, the minority instances are
sparse and the distinction between noisy and informative instances is not possible. One possibility hereby is
to increase the parameter NGrid to create more clusters.

Step 6 - 8: For each identified filtered cluster, the average Euclidean distance is calculated between the
minority instances. Using the average Euclidean distance, we assign a density factor to each filtered cluster
deni =

n+i

dist2i
. This measure provides information about the distribution of the instances within each cluster

and will be helpful in further stages to assign the correct amount of artificial samples to each cluster. For each
topological neighboring combination of filtered clusters, the density is defined as the sum of both individual
density factors. Filtered clusters that are not topological neighbors, or have no topological neighbors are
excluded from the process. Figure 5a illustrates the SOM Grid with all identified filtered clusters, figure 5b
outlines the topological neighbor structures. In the next step, we calculate the relative weight of each filtered
cluster and each filtered cluster neighborhood relationship by using its density. The weight determines the
number of synthetic samples that will be created in each filtered cluster and between filtered clusters.
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Figure 5: Overview of identified clusters and neighboring relations, inspired by [Douzas and Bacao, 2017b]

Step 9 - 10: The following steps determine an efficient number of synthetic instances for each filtered cluster
and each neighboring relation of filtered clusters. Nintra and Ninter provide the guideline of the total synthetic
instances to be created in the inter and intracluster process. Utilizing the density information, a relative weight
is calculated for each filtered cluster as wintra =

1/deni∑
i∈clf

1/deni
, where 1 divided by the density of the current

cluster is divided by 1 through the sum of all densities of filtered clusters. Hereby, we obtain a relative weight
of each filtered cluster based on the cluster size and the density of each cluster. Nintra times the weight for
each specific filtered cluster results in the amount of artificial data that is generated in each filtered cluster.
Afterwards the weights of the neighboring clusters are calculated as winter =

1/deni,j∑
i,j∈clf

1/deni,j
in a similar

manner as the intra weight calculation. Once each neighborhood relation has a relative weight assigned,
Ninter times the relative weight results in the number of synthetic instances that are created in each filtered
cluster neighboring relation. In case there are no neighborhood relations for a class all the artificial samples
are created through the intracluster process.

Step 11 - 11.2.2: In previous steps, we managed to identify the corresponding number of required synthetic
instances for each filtered cluster formation and each neighboring relation formation. The following process
is applied to each formation individually. The set of minority instances of the current formation is shuffled,
minority instances are repetitively selected, each minority instance can be selected multiple times if the number
of required synthetic instances is higher than the number of minority instances of the formation. The current
selected minority sample of Ninstances is named xcenter. Based on xcenter the combined majority selection
strategy is applied. The combined selection strategy identifies xsurface, the final neighbor of xcenter that is
used for over-sampling by applying the minority and majority selection strategy, both based on a k-nearest
neighbor approach. The minority selection strategy selects a neighbor instance xmin within the k-nearest
minority instances of xcenter, similar to SMOTE. The majority selection strategy selects xmaj , a neighboring
majority instance that has been identified with the identical approach applied to neighboring majority instances.
xsurface is defined as the instance xmin or xmaj that is closer to xcenter, based on its distance. The distance
between xcenter and xsurface is R. Figure 6a outlines the result of the majority and minority selection strategy,
each strategy proposes one nearest neighbor of its class, the combined selection strategy in figure 6b selects
the nearest sample of both selection strategies as xsurface.
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Figure 6: Procedure of the combined selection strategy, inspired by [Douzas and Bacao, 2017a]

Step 11.2.3 - End: To identify the most suitable geometric shape for the data generation process between
xcenter and xsurface, a unit hypersphere is established around xcenter, as it can be seen in figure 7a . This
hypersphere is going to be modified within the next steps. Initially, a random point esphere is created on the
edge of the unit hypersphere, centered around xcenter. Subsequent, esphere is transformed to xgen a random
point along the line segment, uniformly distributed. Step 11.2.4 applies a truncation, a partition of the hy-
persphere, as illustrated in 7b. The parameter αtrunc determines the degree of the truncation, as seen below.
The truncated area is orthogonal to the unit vector e//, where e// defines the direction between xcenter and
xsurface. If αtrunc is bigger than zero, the area that does not include xgen is truncated. In case that xgen is
within the truncated area, the point is reflected on the opposite side of the hypersphere.

Figure 7: Constructing the geometric region, based on the unit hyper sphere, truncation and deformation,
inspired by [Douzas and Bacao, 2017b]

Step 11.2.5 deforms the truncated hypersphere to a hyper spheroid, as it can be seen in 7c The parameter
αdef controls the degree of the deformation. The point xgen is moved to the same extent in the orthogonal
direction to the unit vector e//. The previous steps of truncation and deformation modify the initially uniform
distribution of the new point xgen. Due to the truncation and deformation, we take better account of the
characteristics of xcenter and xsurface, while still having a higher variability than methods based on line
segments, such as SMOTE. In a final step we rescale the point xgen based on xcenter and the distance to
xsurface, R. The rescaled outcome of the forming process can be seen below in figure 8. Xgen is created
within a hypersphere, that was truncated and deformed to a hyper spheroid.
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Figure 8: Rescaled result of geometric construction, inspired by [Douzas and Bacao, 2017b]

The process is repeated in each formation until Ninstances are added to each formation. This results in the
total number of synthetic instances, the sum of Nintra and Ninter. The final output of the G-SOMO algorithm
is the oversampled matrix X’, consisting of the input data set and the added synthetic minority instances.
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5 RESEARCH METHODOLOGY
The objective of a sampling method is the improvement of the classification results. This implies that validation
methods have to be chosen to provide reliable and comprehensive results. The correct metrics have to be
selected to not create misleading improvements as outlined in the next section. To receive comparable results,
all oversampling methods need to be trained with the same classifier algorithms and are compared to the
performance of the classifier algorithm on the same data set without oversampling.

Selecting a reliable validation technique is a common challenge to assess the generalizability of a classifier.
Oversampling methods can tend to encourage the process of overfitting. Overfitting implies that the classifier
learned the data structure too well and lost its ability to generalize on unseen data. A popular approach to
validate the performance of a classifier is to split the data set into two subsets, one used for the training phase
of the algorithm and the other one remains unseen during the training phase and is only used for validation, the
test set. As a matter of fact, this validation method can even increase the process of overfitting, if the dataset
is not split randomly. Certain characteristics of a feature might only occur in the test set and might not appear
in the train set and vice versa. A more sophisticated method is k-fold Cross-Validation. The data set is split
into k different subsets (also called folds). K-1 subsets are used to train the classifier and the last fold remains
unseen to validate. The process is applied in an iterative manner, such that each fold is used for validation
once. The validation results of each model are averaged afterwards. The process can be repeated multiple
times to avoid bias due to random grouping [Japkowicz, 2013]. An extension to k-fold provides the stratified
k-fold method. In stratified cross-validation, the random folds are chosen such that the class distribution in
each fold is maximally similar to the class distribution in the whole dataset [Vanwinckelen and Blockeel, 2015].
The method successfully avoids the problem of an unequally split dataset, but faces problems if a minority
class is highly underrepresented and does not have enough samples to split them equally in k folds.

5.1 METRICS
The model evaluation is based on different evaluation metrics. Traditional metrics, such as accuracy, show a
strong bias towards the majority class and are recommended to avoid on imbalanced datasets. The overall
accuracy would seem to be precise, even though the model might not perform well on the minority class.
To retrieve more accurate insights on a models performance, one should reflect upon the confusion matrix,
outlined below:

Predicted as Positive Predicted as Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negatives (TN)

Based upon the confusion matrix additional metrics, such as Precision and Recall [Dalianis, 2018] were intro-
duced:

Recall = TP
TP+FN Precision = TP

TP+FP

The evaluation of our experiments is conducted with the following metrics, that are based on the previously
introduced fundamentals. These metrics proved to be reliable for imbalanced learning problems since they
focus on both classes equally independent from their ratio.

• F1 Measure (F1)

The F-measure is described as the harmonic mean between precision and recall, assuming that both
metrics are of equal importance [Guo et al., 2018]. The F1 Score is defined as follows:

F1 Measure = 2 ∗ Precision∗Recall
Precision+Recall
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• Geometric Mean Score (G-Mean)

The geometric mean score, as the name implies, is defined as the geometric mean between True Positive
Rate (TPR) and True Negative Rate (TNR). The g-measure ranges between 0 and 1 and considers the
TPR and TNR with equal importance. The metric is defined as follows:

G−Mean =
√

TP
TP+FN ∗ TN

TN+FP

• Area Under The Curve Receiver Operating Characteristics (AUC - ROC)

The ROC Curve is created by plotting the TPR against the FPR [Hand, 2009]. The AUC score is the
area under that curve. The better the model distinguishes the majority and minority class the better the
final score.

5.2 OVERSAMPLING METHODS
The following section provides an overview of the oversampling methods used as a benchmark to validate the
effectiveness of G-SOMO. The baseline oversamplers are introduced in the second section of the paper and will
therefore not be presented in detail. The oversamplers used for our benchmark results are popular techniques
for binary classification tasks.

The optimal imbalance ratio to oversample is not known and might vary between datasets [Provost, 2018].
Usually, oversamplers are utilized to generate as much minority instances as required to equal the class
distribution. Within our experimental framework, G-SOMO is the only oversampling method that uses an
informative approach to identify effective areas to oversample. In case that no area is identified, the algorithm
will not create any synthetic instances. The oversamplers used in our experimental framework are:

• No Oversampling

• Random Oversampling

• SMOTE

– knn = {3,5}

• G-SOMO

– knn = {3,5},
– truncation_factor = {-1.0, 0.0, 0.25, 1.0},
– deformation_factor = {0.0, 0.5, 1.0},
– Grid_size = {0.2, 0.5}

While the parameters were already introduced during the explanation of the G-SOMO algorithm, it is worth
to outline the Grid_size parameter. Hereby, we determine the number of clusters proportional by the number
of input samples multiplied with the relative Grid_size parameter.

5.3 CLASSIFIERS
Different classifier algorithms are chosen to evaluate the performance of the oversampling methods. It is crucial
to ensure that the obtained results are generalizable to different classifiers and not only to specific ones, due
to the different algorithms characteristics. To reduce biased results only algorithms with a low number of
hyperparameter are chosen. The chosen classifiers are Logistic Regression (LR), K-Nearest Neighbors (KNN),
Decision Tree (DT) and Gradient Boosting Classifier (GBC).
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The Logistic Regression is used to model the outcomes of a categorical dependent variable and predicts the
probabilities for the different possible outcomes based on several independent variables. Fitting a linear model
is an optimization problem which can be solved using simple optimizers which require no hyperparameters to
be set [McCullagh, 1984]

KNN is a popular algorithm, in which a new instance is classified into the class with the most members
present among the k nearest neighbors [Suguna and , 2010]. The hyperparameter k describes the number of
neighbors considered for the classification.

Decision Trees create their classification decisions based on a tree structure that was obtained during the
learning process. The final result is a tree with decision nodes and leaf nodes, where a decision node has two
or more branches and leaf nodes represent the decision.

Gradient boosting is a technique that creates an ensemble of underlying weak learners to perform better than
random guessing. By combining these weak learners based on a weighted majority vote, a committee classifier
dramatically reduces the training and testing error rates [Huang et al., 2007]. The number of trees to create
is a hyperparameter of the algorithm.

All classifiers are trained with different values of hyperparameters, besides the LR, which does not require any
hyperparameter to be set. The following list provides an overview of the classifiers used with its hyperparam-
eters:

• LR

• KNN (k = {3,5})

• DT (max_depth = {3,6})

• GBC (max_depth = {3,6})

5.4 DATASETS
To ensure meaningful and significant insights we evaluated our models on a total of 69 datasets. These
datasets consist of commonly used datasets mainly from UCI Machine Learning repository. In order to reach
this high number of datasets, we randomly undersampled the minority class of some datasets to increase the
Imbalance Ratio. Using this approach, we could create additional and more challenging datasets. Table 1
provides an overview of our datasets, the number of features, instances and their Imbalance Ratio.

5.5 EXPERIMENTAL FRAMEWORK
Our experimental framework calculates the results of each oversampling method in combination with each
classifier on each dataset based on each hyperparameter of the methods. The combination of all dependencies
is named Grid Search, a search for the best results among all possible combinations. The result of each
combination is obtained by the 5-fold cross-validation, repeated for 5 times, resulting in 25 models for each
combination. Subsequently, the process is repeated for each metric.

A ranking score is applied to compare the performance of the oversampling methods, aggregated over all
datasets. The ranking score for the best performing method is 1, the worst performing methods is 4. The
Friedman test is applied to the ranking results. The Friedman test is used to test differences between groups,
assuming our target variable is categoric. The null hypothesis used in our tests states whether the classifiers
have a similar performance across the oversampling methods and evaluation metrics when they are compared
to their mean ranking.

The implementation of the classifiers and oversamplers are based on the python libraries Scikit-Learn
[Pedregosa et al., 2012] and Imbalanced-Learn [Lemaitre et al., 2016]. The G-SOMO extension is imple-
mented in Python, the code is available upon request.
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Data Sets
Datasets # Features # Instances # Minority In-

stances
# Majority In-
stances

Imbalance Ratio

BREAST TISSUE 9 106 36 70 1.94
BREAST TISSUE (2) 9 88 18 70 3.89
DERMATOLOGY 34 358 20 338 16.9
ECOLI 7 336 52 284 5.46
ECOLI (2) 7 310 26 284 10.92
ECOLI (3) 7 301 17 284 16.71
EUCALYPTUS 8 642 98 544 5.55
EUCALYPTUS (2) 8 593 49 544 11.1
EUCALYPTUS (3) 8 576 32 544 17.0
GLASS 9 214 70 144 2.06
GLASS (2) 9 179 35 144 4.11
GLASS (3) 9 167 23 144 6.26
HABERMAN 3 306 81 225 2.78
HABERMAN (2) 3 265 40 225 5.62
HABERMAN (3) 3 252 27 225 8.33
HEART 13 270 120 150 1.25
HEART (2) 13 210 60 150 2.5
HEART (3) 13 190 40 150 3.75
IRIS 4 150 50 100 2.0
IRIS (2) 4 125 25 100 4.0
IRIS (3) 4 116 16 100 6.25
LED 7 443 37 406 10.97
LED (2) 7 424 18 406 22.56
LIBRAS 90 360 24 336 14.0
LIVER 6 345 145 200 1.38
LIVER (2) 6 272 72 200 2.78
LIVER (3) 6 248 48 200 4.17
MANDELON 1 20 4000 142 3858 27.17
MANDELON 1 (2) 20 3929 71 3858 54.34
MANDELON 1 (3) 20 3905 47 3858 82.09
MANDELON 2 200 3000 105 2895 27.57
MANDELON 2 (2) 200 2947 52 2895 55.67
MANDELON 2 (3) 200 2930 35 2895 82.71
NEW THYROID 1 5 215 35 180 5.14
NEW THYROID 1 (2) 5 197 17 180 10.59
NEW THYROID 2 5 215 35 180 5.14
NEW THYROID 2 (2) 5 197 17 180 10.59
PAGE BLOCKS 0 10 5472 559 4913 8.79
PAGE BLOCKS 0 (2) 10 5192 279 4913 17.61
PAGE BLOCKS 0 (3) 10 5099 186 4913 26.41
PAGE BLOCKS 1 3 10 472 28 444 15.86
PIMA 8 769 268 501 1.87
PIMA (2) 8 635 134 501 3.74
PIMA (3) 8 590 89 501 5.63
SEGMENTATION 16 2310 330 1980 6.0
SEGMENTATION (2) 16 2145 165 1980 12.0
SEGMENTATION (3) 16 2090 110 1980 18.0
VEHICLE 18 846 199 647 3.25
VEHICLE (2) 18 746 99 647 6.54
VEHICLE (3) 18 713 66 647 9.8
VOWEL 13 988 90 898 9.98
VOWEL (2) 13 943 45 898 19.96
VOWEL (3) 13 928 30 898 29.93
WINE 13 178 71 107 1.51
WINE (2) 13 142 35 107 3.06
WINE (3) 13 130 23 107 4.65
YEAST 1 8 1484 429 1055 2.46
YEAST 1 (2) 8 1269 214 1055 4.93
YEAST 1 (3) 8 1198 143 1055 7.38
YEAST 3 8 1484 163 1321 8.1
YEAST 3 (2) 8 1402 81 1321 16.31
YEAST 3 (3) 8 1375 54 1321 24.46
YEAST 4 8 1484 51 1433 28.1
YEAST 4 (2) 8 1458 25 1433 57.32
YEAST 4 (3) 8 1450 17 1433 84.29
YEAST 5 8 1484 44 1440 32.73
YEAST 5 (2) 8 1462 22 1440 65.45
YEAST 6 8 1484 35 1449 41.4
YEAST 6 (2) 8 1466 17 1449 85.24

Table 1: Overview of all 69 datasets.
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6 EXPERIMENTAL RESULTS
For the purpose of a clear distinguishing between the oversampling methods, we introduced a ranking score,
ranging from one to four. More precisely, one represents the best performance, four the worst. In order to
accumulate the retrieved insights, we averaged repetitions on each hyperparameter and on each dataset, as
well as for each of the five repetitions during the cross-validation. The table below illustrates the mean rank
of each oversampler on each metric and each classifier.

Experimental Results
Classifier Metrics No Oversampling Random Over-

sampling
SMOTE G-SOMO

LR ROC AUC 3.014 2.731 2.536 1.717
LR F1 3.347 2.942 2.355 1.355
LR G-SCORE 3.695 2.275 2.021 2.007
KNN ROC AUC 3.079 3.420 2.144 1.355
KNN F1 3.398 2.753 2.5 1.347
KNN G-SCORE 3.782 2.420 1.789 2.007
DT ROC AUC 3.318 2.898 2.311 1.471
DT F1 3.094 2.971 2.594 1.340
DT G-SCORE 3.768 2.521 1.949 1.760
GBC ROC AUC 3.007 3.275 2.565 1.152
GBC F1 3.297 2.920 2.442 1.340
GBC G-SCORE 3.586 2.731 2.050 1.630

Table 2: Overview of results, Mean Ranking for each Classifier and Metric.

Taking a closer look at the averaged mean scores in table 2, one can determine certain characteristics. As
expected, not using any oversampling method provides the worst results among all classifiers and metrics.
Random oversampling performs better on the mean ranking, while SMOTE is superior to both of them.
G-SOMO consistently outperformed other oversampling methods. We may observe that G-SOMO provides
exceptional good mean ranking scores in combination with the metrics ’ROC AUC’ and ’F1’. In one case
SMOTE achieved a better mean score while validation with a Decision Tree on the Geometric-Mean Score.
In total we can see that G-SOMO consistently outperformed other oversampling methods, the results in
combination with Gradient Boosting Classifier can be emphasized.
Based on the insights from table 2 we can conclude, that G-SOMO successfully outperforms other oversampling
methods, proven in combination with various Metrics and Classifiers, averaged over all datasets. Figure 9
underlines the dominance of G-SOMO, the graph provides the aggregated results or each classifier, hereby we
can see that throughout all experiments G-SOMO demonstrates the best performance. Moreover, it highlights
the previously mentioned ranking between all oversampling methods.

Figure 9: Graphical overview of Results, Mean Ranking for each Classifier

Besides the introduced mean ranking, we also analyze the relative differences in the metric scores in depth
since the mean ranking might conceal high variation in specific repetitions. To avoid this scenario we observe
the metrics scores overall results and aggregate them across all datasets and repetitions. To provide a direct
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comparison between the performance of the oversampling methods, the results of G-SOMO are subtracted
of each oversampling methods. The positive or negative difference implies whether the algorithm performed
better or worse than the baseline G-SOMO. The differences are summarized in figure 10. The differences
of the oversampling methods are partitioned across each classifier and each metric. The colored gradation
illustrates the relative difference between the specific oversampling method and the performance of G-SOMO.
The analysis of figure 10 reaffirms the previous insights, the majority of results are negative and therefore
imply worse results than G-SOMO. The poor performance of no oversampling can be noted, the performance
difference is up to 33%, random oversampling performs slightly better, SMOTE is the most challenging
method. As previously recognized, G-SOMO performs exceptionally with the ’ROC AUC’ and ’F1’ measure.
SMOTE manages to perform slightly better in the combination of the Geometric-Mean Score and KNN and
LR classifier. Random Oversampling also performs better than G-SOMO in the combination of the Geometric
Score and LR. Besides these exceptional cases, G-SOMO constantly outperforms all oversampling methods.
The insights retrieved by the performance comparison is consistent with the insights obtained from the mean
rankings.

Figure 10: Average Score of Oversampling methods compared to G-SOMO performance

To prove the significance of our experiments, a Friedman test is applied to our results. The exact results are
shown in table 3. Hereby, we can obtain that the null hypothesis is rejected by far for a significance level
of a=0.05 for all classifiers and metrics. Therefore, we can assume that our obtained results are statistically
significant.

18



Friedman Test
Classifier Metric p-value Significance
LR ROC AUC 2.978464111147552e-09 True
LR F1 1.6016121978014913e-21 True
LR G-SCORE 1.1962255259807236e-18 True
KNN ROC AUC 1.5777728619737928e-24 True
KNN F1 1.2633506344258716e-20 True
KNN G-SCORE 1.8594416543208717e-22 True
DT ROC AUC 4.4812704879505726e-18 True
DT F1 3.587895642878212e-18 True
DT G-SCORE 4.37730518573295e-23 True
GBC ROC AUC 3.6730748169610812e-25 True
GBC F1 1.2458033635808544e-20 True
GBC G-SCORE 5.957134339289162e-21 True

Table 3: Results of Friedman Test.

In general, we can observe that the informed geometric oversampling approach of G-SOMO has proven to be
a successful new approach to handle imbalanced datasets. Our experiments prove the need for oversampling
methods, using no oversampling methods consistently provided the worst results. We have found that Random
Oversampling performs better than no oversampling, and SMOTE ranks second among our comparison in
total. Based on our obtained insights, we determine that G-SOMO clearly outperformed other methods, often
with great differences towards the other oversamplers. However, G-SOMO also requires a more intensive
hyperparameter search, which in turn requires more computational resources.
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7 CONCLUSION
In this paper, we proposed a new oversampling algorithm G-SOMO. The algorithm observes the characteristics
of the multidimensional data input while grouping the input data to identify filtered clusters, where minority
instances dominate. Within these filtered clusters, as well as between neighboring filtered clusters we create
synthetic instances. During the creation of synthetic instances, we apply the combined selection strategy, that
also takes near majority instances into account. The synthetic instances are created in a safe hyper-spheroid.

G-SOMO was evaluated on 69 different datasets and compared to popular oversampling methods. We validated
the performance with different metrics, such as the F1 Score, the G-Score and the AUC-ROC. In order to avoid
overfitting to a specific classifier, we chose multiple ones that differ in their characteristics. Each experiment
is repeated 5 times with a 5-fold cross-validation. We proved the statistical significance of our results by a
Friedman test.

In particular, our empirical results highlight the need for oversampling algorithms. Utilizing no oversampling
method produced the worst results in our mean ranking, simple methods like random oversampling already
increased the performance. The popular method SMOTE performed better than the previous ones, whereas
G-SOMO dominated the ranking and outperformed all other oversamplers.

We are confident that G-SOMO is a new appealing approach for researcher and practitioners working with
imbalanced datasets.

Future work will focus on a more efficient estimation of the algorithms hyperparameter. During our experiments
we noticed the issue to be challenging, through additional research one might identify generalizable charac-
teristics for the parameters based on the datasets characteristics. Additional improvements can be expected
through further research. Alternatively, the behavior of the algorithm on imbalanced datasets with multiple
target classes is worth to explore, little research about oversampling on multiclass classification problems is
made.
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