
DISSERTATION

zur

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

Improved imbalanced classification through
convex space learning

Promotionsgebiet Systembiologie und Bioinformatik

Fakultät für Informatik und Elektrotechnik

UNIVERSITÄT ROSTOCK

vorgelegt von

SAPTARSHI BEJ

geboren am 24. Juli, 1991, Bardhaman, West Bengal, Indien

Betreuer: Professor Olaf Wolkenhauer
Universität Rostock

Rostock, August 2021
https://doi.org/10.18453/rosdok_id00003503

https://doi.org/10.18453/rosdok_id00003503

Gutachter: Prof. Olaf Wolkenhauer
Lehrstuhl Systembiologie & Bioinformatik,
Universität Rostock
email: olaf.wolkenhauer@uni-rostock.de

Prof. Jan Baumbach
Zentrum für Bioinformatik,
Universität Hamburg
email: jan.baumbach@uni-hamburg.de

Prof. Carsten Ullrich
Steinbeis Hochschule, Berlin,
Direktor Künstliche Intelligenz,
CENTOGENE GmbH
email: carsten.ullrich@centogene.com

Verteidigung: Dezember 16, 2021

iii

.

“ Stay hungry, Stay foolish ”

– Steve Jobs

iv

.

This thesis is dedicated to my father Dr. Debkumar Bej,

who has always motivated me to enrich myself with knowledge

AND

to my mother Usha Rani Sen,

who has always cared for my well-being, ahead of everything

v

Acknowledgements

First, I would like to express my heartfelt gratitude to my supervisor, Prof. Olaf Wolkenhauer. Olaf, thank
you for teaching me so much about research starting from the very minute details, investing a lot of your time
in lengthy discussions. Starting from kindling my interest in data science, you have guided me through every
small step, yet providing me with ample freedom and motivation to find my own path. I hope, I can keep on
learning from you for a long time to come to enrich myself as a researcher and more importantly, as a person.

Next, I would like to thank my colleagues Markus Wolfien, Shailendra Gupta, Suchi Smita, Ali-Salehzadeh
Yazdi, Krishna Pal Singh, Faiz Muhammad Khan, Martin Schram, Kristian Schulz, Andrea Bagnacani, Mariam
Nassar, Peggy Sterling, Tom Gebhardt, Narek Davtyan, Julia Scheel, David Brauer and Matti Hoch from the
Department of Systems Biology and Bioinformatics (SBI), for creating a fantastic environment for research,
continuously learning through discussions and sharing. Discussions with Markus were especially helpful at
several stages of the thesis. Thank you for the tedious proof-readings and valuable suggestions for our articles.
Shailendra, Andrea, Suchi, Krishna, Marin, Faiz and Ali have also been kind enough to discuss several enjoyable
topics, academic or otherwise, on many occasions. I also had the pleasure of working with David and Narek
during their masters thesis, which proved to be good learning opportunities for me. I want to thank Tom for
helping me out with several documents and bureaucracy-related issues. Thank you, Kristian, for participating
in my research and helping me with coding. Thank you, Peggy for always helping me with all the official queries
that I had. Finally, special thanks to all those colleagues of me, who lent me their office keys whenever I forgot
mine (must be at least equal to the number of pages in this thesis).

Part of the work was supported by the EU Social Fund (ESF/14-BM-A55-0024/18, ESF/14-BM-A55-0027/18,
ESF/14-BM-A55-0028/18), the “Deutsche Forschungsgemeinschaft” - DFG (DA1296/6-1), the German Heart
Foundation (F/01/12), the FORUN Program of Rostock Medical University (889001/889003), the Josef and Käthe
Klinz Foundation (T319/29737/2017), the Damp Foundation (2016-11), and the Federal Ministry of Education
and Research - BMBF (VIP+00240, 01ZX1709, BMBF FK 031L0106C). I acknowledge support by the German
Network for Bioinformatics (de.NBI) & de.STAIR.

I would like to thank my collaborators from University of Kiel, Prof. David Ellinghaus, Sören Mucha,
Florian Uellendahl-Werth and Eike Matthias Wacker for providing me with the opportunity to learn a little
biology. My heartfelt thanks to Prof. Ria Baumgrass and her PhD student Yen Hoang, discussions with whom
have a very important role in this thesis. I acknowledge to my old friend Dr. Jit Sarkar and his supervisor
Dr. Partha Chakrabarty for building a fruitful and enjoyable collaboration with me. I thank my Masters Thesis
guide Prof. Anirban Banerjee and Prof. Satyaki Mazumder from my alma mater for encouraging and supporting
me during my pre-PhD days.

I would like to thank my friends Vicky S. Ekanthalu, Anju Mohanan for inviting me over many delicious
dinners and providing me with company. I wish you a lifetime of happiness together. My friends Igor
Pokhotelov, Sankha Subhra Pal, Michael Schubert, Atefeh Habibpourmoghadam, and Sourodeep Biswas, thank
you for spending several enjoyable moments with me. Thank you, my old friends Gonnabattula Siddartha and
Prashant Srivastava for giving me company with good food, nice discussions, and gaming. Looking back on
more than ten years of knowing her, I would like to take this opportunity to express my heartfelt gratitude to
Shukla Sarkar, who has always supported me at a very personal level during my most difficult times. I hope
you know what a delightful person you are.

Finally, I want to acknowledge my parents, who have always advised me to enrich myself in terms of
knowledge. Thank you for always showing me the way, being great teachers, and always prioritising my
education and well-being over anything else.

vii

Abstract
Imbalanced datasets are abundant in several real-life classification problems where

Machine Learning (ML) finds its application. Such problems are characterised by classes
with an unequal distribution of samples over several classes. For imbalanced datasets
during the training process, the ML models encounter a larger number of majority class
samples and, thus, tends to become biased towards the majority class.

One of the principal disadvantages of the SMOTE algorithm is its tendency to
over-generalise the minority class. This causes the associated classifiers to misclassify the
majority class data points. Moreover, evidence from recent comparative studies reveals that
the performance of the extensions of the SMOTE algorithm vary depending on the classifiers
they are implemented with.

In this thesis, these limitations of SMOTE-based oversampling algorithms are addressed
through the novel idea of convex space learning. In an analytical explanation behind the idea,
we show that SMOTE-based oversampling algorithms generate synthetic samples with high
variance in a minority class data neighbourhood. I developed the LoRAS algorithm that
can model the convex space of the minority class using multiple convex combinations of
shadowsamples in a minority class neighbourhood.

To address the issue of classifier dependence of SMOTE-based oversampling algorithms,
I proposed the ProWRAS algorithm. By controlling the variance of the synthetic samples, as
well as a proximity-weighted clustering system of the minority class data, the ProWRAS
algorithm improves the performance, compared to algorithms that generate synthetic
samples through modelling high dimensional convex spaces of the minority class. Most
importantly, the performance of ProWRAS with proper choice of oversampling schemes, is
independent of the classifier used.

The success of the proposed algorithms has been demonstrated using rigorous
benchmarking studies for over thirty publicly available datasets. The most challenging
datasets are chosen with several well-defined criteria such as high imbalance, high
dimensionality, and high absolute imbalance, ensuring impartiality in the benchmarking
studies. From the benchmarking studies, where the proposed algorithms are compared with
over ten SMOTE-based algorithms including some models with best known performance,
for diverse performance measures, it is comprehensively established that the proposed
algorithms can out-perform state-of-the-art algorithms.

ix

Zusammenfassung
Unausgewogene Datensätze sind in mehreren realen Klassifizierungsproblemen,

in denen Maschinelles Lernen (ML) seine Anwendung findet, häufig anzutreffen.
Solche Probleme sind durch Klassen mit einer ungleichen Verteilung der Proben
auf mehrere Klassen gekennzeichnet. Bei unausgewogenen Datensätzen treffen die
ML-Modelle während des Trainingsprozesses auf eine gröSSere Anzahl von Stichproben
der Mehrheitsklasse und neigen daher dazu, in Richtung der Mehrheitsklasse verzerrt zu
werden.
Einer der Hauptnachteile des SMOTE-Algorithmus ist seine Tendenz zur
Übergeneralisierung der Minderheitenklasse. Dies führt dazu, dass die zugehörigen
Klassifikatoren Datenpunkte der Mehrheitsklasse falsch klassifizieren. Darüber
hinaus zeigen aktuelle Vergleichsstudien, dass die Leistung der Erweiterungen
des SMOTE-Algorithmus in Abhängigkeit von den Klassifikatoren, mit denen sie
implementiert werden, variiert. In dieser Arbeit werden diese Einschränkungen der
SMOTE-basierten Oversampling-Algorithmen durch die neuartige Idee des konvexen
Raumlernens angegangen. In einer analytischen Erklärung hinter der Idee zeigen wir, dass
SMOTE-basierte Oversampling-Algorithmen synthetische Stichproben mit hoher Varianz in
einer Minderheitenklassen-Datenumgebung erzeugen. Ich habe den LoRAS-Algorithmus
entwickelt, der den konvexen Raum der Minderheitenklasse mit mehreren konvexen
Kombinationen von Schattensamples in einer Minderheitenklassen-Nachbarschaft
modellieren kann.
Um das Problem der Klassifikatorabhängigkeit von SMOTE-basierten
Oversampling-Algorithmen zu lösen, habe ich den ProWRAS-Algorithmus
vorgeschlagen. Durch die Steuerung der Varianz der synthetischen Stichproben
sowie eines näherungsgewichteten Clustersystems der Daten der Minderheitenklasse
verbessert der ProWRAS-Algorithmus die Leistung im Vergleich zu Algorithmen, die
synthetische Stichproben durch Modellierung hochdimensionaler konvexer Räume
der Minderheitenklasse erzeugen. Am wichtigsten ist jedoch, dass die Leistung von
ProWRAS bei richtiger Wahl der Oversampling-Schemata unabhängig vom verwendeten
Klassifikator ist. Der Erfolg der vorgeschlagenen Algorithmen wurde durch strenge
Benchmarking-Studien für über dreiSSig öffentlich verfügbare Datensätze nachgewiesen.
Die anspruchsvollsten Datensätze werden nach mehreren wohldefinierten Kriterien
ausgewählt, wie z. B. hohe Ungleichheit, hohe Dimensionalität und hohe absolute
Ungleichheit, um die Unparteilichkeit in den Benchmarking-Studien zu gewährleisten.
Aus den Benchmarking-Studien, in denen die vorgeschlagenen Algorithmen mit mehr
als zehn SMOTE-basierten Algorithmen, einschlieSSlich einiger Modelle mit der besten
bekannten Leistung, für verschiedene LeistungsmaSSe verglichen werden, wird umfassend
festgestellt, dass die vorgeschlagenen Algorithmen die State-of-the-Art-Algorithmen
übertreffen können.

x

xi

Theses

• The reason behind over-generalization of the synthetic minority class by SMOTE is the
high variance in the SMOTE generated synthetic samples.

• Controlling the variance while generating synthetic samples can improve
classification. To establish a mathematical rigour, I provided a theoretical proof
for the same.

• Using UMAP as a dimension reduction step to assign minority neighbourhoods
improves classifier performances for high dimensional datasets.

• LoRAS improves the minority classification, compromising less on the majority
classification.

• LoRAS can be used to automatize supervised annotation of rare-cell types from
single-cell data. The more overlap between the clusters, the more profitable it is, to
use synthetic oversampling.

• ProWRAS algorithm to customize synthetic sample generation based not only on the
input data but also, on the classifier of choice, using convenient combinations of
parameter choices. This leads to data and classifier specific sample generation and
thereby reduces benchmarking efforts.

• An empirical measure of classifier independence is defined subjective to a
benchmarking study, can measure the relative superiority of an oversampling
algorithm considering its overall performance over all classifiers and datasets.

• Rigorous modelling of the minority class to construct synthetic samples with
appropriate variance depending on input data and classifier of choice; termed as
convex space learning can improve imbalance classification.

xiii

Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Theses xi

List of Figures xx

List of Tables xxiii

List of Abbreviations xxv

Summary and outline of the thesis 1

1 Classification problems with imbalanced datasets 5

1.1 Challenges of imbalanced classification in real-life scenarios 5

1.1.1 Imbalanced datasets in bio-medicine . 6

1.1.2 Imbalanced datasets in security and business management 7

1.1.3 Imbalanced datasets in engineering and technology 8

1.2 Common machine learning approaches for imbalanced classification problems 8

1.2.1 Data level approaches . 9

1.2.2 Algorithm level approaches . 12

2 Performance measures for imbalanced datasets 15

2.1 Preliminary performance measures . 15

2.2 Common performance measures for imbalanced datasets 17

2.2.1 Precision, Recall and F1-Score . 17

2.2.2 Other popular performance measures 20

2.3 Receiver operating characteristic curve and precision recall curve 22

2.4 Wilcoxon’s signed rank test for model comparison 25

xiv

3 Oversampling Techniques for convex space modelling 29

3.1 SMOTE algorithm and its limitations . 29

3.1.1 Criticisms of the SMOTE algorithm . 30

3.2 Some early extensions of the SMOTE algorithm 31

3.2.1 Borderline based oversampling . 31

3.2.2 Weighting minority class samples . 33

3.3 Integration of SMOTE with unsupervised learning 35

3.3.1 SMOTE with clustering algorithms . 35

3.3.2 SMOTE with dimension reduction algorithms 37

3.3.3 Oversampling technique integrating multiple approaches 39

3.4 Comparative studies between oversampling algorithms 40

3.4.1 Some state-of-the-art extensions of SMOTE 41

4 Improving convex space modelling with the LoRAS algorithm 43

4.1 Modelling the convex space of minority class 43

4.1.1 Geometric interpretation of convex space modelling 43

4.1.2 Analytical explanation for convex space modelling 44

4.2 LoRAS algorithm . 46

4.3 Benchmarking studies for LoRAS algorithm . 47

4.3.1 Datasets used . 47

4.3.2 Study protocols . 49

4.4 Improving classifier performance using LoRAS 52

4.5 Significance of the LoRAS algorithm . 55

4.6 Integrating LoRAS with the UMAP algorithm 57

4.7 Benchmarking studies for LoRAS UMAP algorithm 57

4.8 Improved performance of LoRAS UMAP algorithm 59

5 Automated annotation of rare cell populations 63

5.1 Applying LoRAS in a biological context . 63

5.1.1 Using single-cell technology for the identification of rare cells 63

5.1.2 Using machine learning algorithms to generate cell types in silico . . . 64

5.2 Datasets and methodologies . 65

5.2.1 Use case preparation . 65

5.2.2 sc-SynO: Transferring the LoRAS algorithm to single-cell data 67

xv

5.3 sc-SynO can detect rare cell types . 68

5.3.1 sc-SynO can detect extremely rare glial cells 70

5.3.2 Sc-SynO achieves a low FN rate for the identification of proliferative
cardiomyocytes . 71

5.3.3 Sc-SynO can detect rare-cell populations from large-scale datasets . . . 73

5.4 Importance and applicability of sc-SynO . 74

6 Classifier-independent oversampling using the ProWRAS algorithm 77

6.1 Classifier dependence of oversampling models 77

6.1.1 Study protocols . 77

6.1.2 Pilot study confirming classifier dependence of oversampling 81

6.2 ProWRAS algorithm . 84

6.3 Classifier independent performance of ProWRAS 89

6.4 Interpretations and applicability of the ProWRAS oversamping approach . . 91

Concluding remarks 97

Bibliography 99

A Implementation for the integrated LoRAS algorithms 109

B Implementation for the ProWRAS algorithm 113

C Complexity of the ProWRAS algorithm 121

C.1 Assumptions . 121

C.2 Estimations . 122

D Curriculum Vitae 125

E Publications 129

E.1 Articles published/accepted in peer-reviewed journals relevant to this thesis 129

E.2 Other published/accepted articles in peer reviewed journals 130

E.3 Published/Accepted articles in conference proceedings 131

E.4 Articles in peer-review and other independent articles 131

Declaration of Authorship 137

xvii

List of Figures

1.1 Figure showing general working principle of a machine learning algorithm . 6

1.2 Figure showing the difference between two data level approaches:
Undersampling and Oversampling . 9

2.1 Figure showing several combinations of precision and recall to calculate A:
Harmonic mean and B: Arithmetic mean. 19

2.2 Figure showing several combinations of precision and recall to calculate
Fβ-Score, for A: β = 5 and B: β = 1/5. 20

2.3 Figure showing A: Receiver Operating Characteristic (ROC) curve and B:
Precision Recall (PR) curve for an imbalanced test dataset for which a
hypothetical classifier performance described in Table 2.1. The region shaded
in blue in each diagram represents the Area Under the Curve (AUC). The
arrows indicate the direction in which the AUC (region shaded in blue) would
expand in case of a better classifier. 24

2.4 Figure showing A: Receiver Operating Characteristic (ROC) curve and B:
Precision Recall (PR) curve for a balanced subset of an imbalanced test
dataset for which a hypothetical classifier performance described in Table 2.1.
Note that the ROC-AUC in the balanced case is significantly lower than the
imbalanced case shown in Figure 2.3. The PR-AUC however changes very
little compared to the imbalanced case and is thus a more robust performance
measure on imbalanced datasets. 26

3.1 Figure demonstrating minority class over generalisation by the SMOTE
algorithm, which is considered to be one of the key limitations of SMOTE . . 30

4.1 Figure showing the idea of LoRAS to control the variance of the synthetic
samples generated from the minority class. Compared to SMOTE, LoRAS can
generate low-variance synthetic samples which can be intuitive interpreted
as synthetic samples generated closer to the average point or centroid in
a minority class data neighbourhood. LoRAS thus prevent classifiers from
confusing them to majority class samples. 46

xviii

4.2 Figure showing the philosophies of SMOTE and LoRAS oversampling
algorithms. While smote generates synthetic samples from convex
combination of two close minority class samples, LoRAS generates synthetic
samples from random convex combination of multiple shadowsamples in a
minority class data neighbourhood. 48

4.3 Figure showing for Principal Component Analysis plot of ozone dataset for
baseline data and oversampled data with several oversampling strategies
for the ozone_level dataset. The boxed region in each subplot shows a
neighbourhood of outliers and how each oversampling strategy generates
synthetic samples in that neighbourhood. 56

5.1 Visualization of the workflow, demonstrating a step-by-step explanation for a
sc-SynO analysis. a) Several or one snRNA-Seq or scRNA-Seq fastq datasets
can be used as an input. Here, cell population of interest are identified and
provide raw or normalized read counts of this specific population. This
can be done with any single-cell analysis workflow, e.g., Seurat. b) Further
information are extracted for cluster annotation that serve as improved input
for the subsequent training with sc-SynO. c) Based on the data input, the
underlying LoRAS [Bej 2021] synthetic oversampling algorithm of sc-SynO
is utilized to generate new cells around the former origin of cells to increase
the size of the minority sample. d) The trained Machine Learning classifier is
validated on the trained, pre-annotated dataset to evaluate the performance
metrics of the actual model. The sc-SynO model is now ready to identify the
learned rare-cell type in novel data. This figure was solely created by the
authors. 64

5.2 Comparison of the Allen Brain Atlas mice data of the whole dataset from
(https://celltypes.brain-map.org/) and the reanalysis. The 119_Pvalb
Vipr2 cluster, consisting in total of 1,720 cells, was chosen as a rare-cell type
of interest. The sc-SynO input was 624 cells of this cell type obtained from the
first 300,000 cells in the data. 66

5.3 Figure showing a comparison between the distribution of synthetic cells
(purple) generated by sc-SynO and original input cells (blue) for model training. 70

5.4 Comparison of the baseline classification and sc-SynO visualized as mean
outcome for the used quality parameter: F1-Score (grey), Precision (blue), and
Recall (purple). Detailed results can be obtained in Table 5.3. I observe that
in every case, sc-SynO improves the recall compared to the Baseline model
(see dotted boxes in the figure). This ensures that oversampling with sc-SynO
improves the detection rate of rare-cell types. 72

https://celltypes.brain-map.org/

xix

5.5 Validation of the sc-SynO model for the first use case of cardiac glial cell
annotation. a) UMAP representation of the manually clustered Bl6 dataset
of Wolfien et al. [Wolfien Cardiovascular Research 2020]. Predicted cells of
sc-SynO are highlighted in blue, cells not chosen are grey. b) UMAP
representation of the manually clustered dataset of Vidal et al. [Vidal 2019].
Predicted cells of sc-SynO are highlighted in blue, cells not chosen are grey. c)
Average expression of the respective top five cardiac glial cell marker genes
for both validation sets, including the predicted clusters and those in proximity. 72

5.6 Validation of the sc-SynO model for the second use case of proliferative
cardiomyocyte annotation. a) UMAP representation of the manually
clustered single-nuclei dataset of Linscheid et al. [Linscheid 2019]. Predicted
cells of sc-SynO are highlighted in blue (based on top 20 selected features in
the training model), red (based on top 100 selected features in the training
model) cells not chosen are grey. b) UMAP representation of the manually
clustered dataset of Vidal et al. [Vidal 2019]. Predicted cells of sc-SynO
are highlighted in blue (based on top 20 selected features in the training
model), red (based on top 100 selected features in the training model) cells not
chosen are grey. c) Average expression of the respective top five proliferative
cardiomyocyte marker genes for both validation sets, including the predicted
clusters and those in proximity. 73

6.1 Illustration of the working principle of the ProWRAS algorithm. ProWRAS
used a proximity based partitioning system to find clusters in the minority
class. For each cluster, it then uses one of four oversampling schemes shown
in the figure. 78

6.2 Figure showing results for the pilot study. Every heatmap for a respective
classifier shows the number of datasets for which the oversampling model in
the i-th row performs equally or better (by F1-Score) than the model in the j-th
column. For example, for the gradient boosting classifier LoRAS performs
equally or better than SMOTE for 10 out of 14 datasets. Note that, none of the
oversampling models perform consistently well for all the classifiers. 82

6.3 Illustration of the working principle of the ProWRAS algorithm. ProWRAS
used a proximity based partitioning system to find clusters in the minority
class. For each cluster, it then uses one of four oversampling schemes shown
in the figure. The key to success of the ProWRAS algorithm is its ability to
rigorously model the convex space through controlling the variance of the
synthetic samples. 87

6.4 Figure showing results for the final study. Every heatmap for the respective
classifier shows the number of datasets for which the oversampling model in
the i-th row performs equally or better (by F1-Score) than the model in the j-th
column. Note that, ProWRAS performs consistently well for all the classifiers. 89

xx

6.5 Summarising oversampling schemes/strategies used by the investigated
oversampling models and their respective influence on the classifier
performance. For example, SMOTE generates samples with a “High local
variance” scheme and works well for Gradient Boosting and Random Forest.
Since the ProWRAS algorithm has access to all four oversampling schemes,
its performance can be made independent of the chosen classifier. 93

xxi

List of Tables

2.1 Table showing an example of predictions of a hypothetical classifier on 10
data points and thereby calculating TPR, FPR, precision and recall from
the same. The column Predicted Prob shows the predicted probabilities of
belonging to a positive class for 10 data points by some hypothetical classifier. 23

4.1 Table showing some statistics for the datasets studied in for the benchmarking
of LoRAS. For each dataset, the feature of the dataset that led us to its choice
for this study is marked in bold. 50

4.2 This table shows the details of the parameter settings for the oversampling
algorithms used by us for the experiment. The second column is the size
of the oversampling neighbourhood, and the same size is chosen for all the
oversampling models for each dataset in the analysis. The last three columns
are specific to LoRAS parameters. 51

4.3 Table showing balanced accuracy/F1-Score for several oversampling
strategies (Baseline, SMOTE, SVM-SMOTE, Borderline1 SMOTE, Borderline2
SMOTE, ADASYN and LoRAS column-wise respectively) for all 14 datasets
of interest for ML learning models producing the best average F1 score over
all oversampling strategies and baseline training for respective datasets. . . . 53

4.4 Table showing the average balanced accuracy/F1-Score of the selected
models for datasets with the highest imbalance ratios and high-dimensional
datasets separately . 53

4.5 Table showing p-values for comparison of LoRAS against the other
oversampling algorithms, in terms of both the performance measures used:
F1-Score and balanced accuracy. 54

4.6 Table showing W+/W−/R for comparison of LoRAS against the other
oversampling algorithms, in terms of both the performance measures used:
F1-Score and balanced accuracy. 55

4.7 Table showing balanced accuracy/F1-Score for several oversampling
strategies (Baseline, SMOTE, SVM-SMOTE, MOT2LD, DBSMOTE, CURE
SMOTE, SOMO, LoRAS t-SNE, and LoRAS-UMAP) for all 14 benchmarking
datasets . 60

4.8 Table showing the results of Wilcoxon’s signed rank test for comparison of
LoRAS-UMAP with other oversampling algorithms. 61

xxii

5.1 Key statistics of the datasets used during this study. The column
’Oversampling nbd’ shows the number of nearest neighbours considered for
each minority class data points to generate synthetic samples 67

5.2 Table showing comparisons among several feature preselection scenarios in
terms of run time and efficiency in detection of glial cells for two different
validation datasets (VD 1 & 2) . 69

5.3 Table showing F1-Scores/Precision/Recall for sc-SynO against baseline
classification for the two ML classifiers (LR and kNN) and for several
numbers of pre-selected features (Marker genes). 119_Pvalb represents a
small subpopulation of the Allen Brain atlas. 71

6.1 Table showing the ProWRAS oversampling scheme used for every dataset
and for every classifier. HGV: High global variance, LGV: Low global
variance, HLV: High local variance, LLV: Low local variance. Column 2-5
show the oversampling scheme for which ProWRAS works best for respective
datasets and classifiers. Furthermore, the table shows some statistics for the
datasets. The last six datasets form Set II. 81

6.2 Table showing F1-Score/κ- Score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO,
LoRAS) for 14 Set-I benchmarking datasets for GB classifier. 83

6.3 Table showing F1-Score/κ- Score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO,
LoRAS) for 14 Set-I benchmarking datasets for RF classifier. 83

6.4 Table showing F1-Score/κ- Score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO,
LoRAS) for 14 Set-I benchmarking datasets for kNN classifier. 83

6.5 Table showing F1-Score/κ- Score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO,
LoRAS) for 14 Set-I benchmarking datasets for LR classifier. 83

6.6 Table showing the I -scores for different oversampling algorithms for the
pilot study. 84

6.7 Table showing F1-Score/κ- Score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, LoRAS,
ProWRAS) for all 20 benchmarking datasets for Gradient Boosting classifier.
The column on the right shows the performance of the ProWRAS algorithm
over all datasets. Observe in the last row that the average performance of
ProWRAS is superior to all other oversampling algorithms. 90

xxiii

6.8 Table showing F1-Score/κ- Score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, LoRAS,
and ProWRAS) for all 20 benchmarking datasets for Random Forest classifier.
The column on the right shows the performance of the ProWRAS algorithm
over all datasets. Observe that, in the last row that the average performance
of ProWRAS is superior to all other oversampling algorithms. 90

6.9 Table showing F1-score/κ- score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS,
and ProWRAS) for all 20 benchmarking datasets for k-Nearest neighbours
classifier. The column on the right shows the performance of the ProWRAS
algorithm over all datasets. Observe that, in the last row that the average
performance of ProWRAS is superior to all the other oversampling algorithms. 91

6.10 Table showing F1-score/κ- score for several oversampling strategies
(Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS,
and ProWRAS) for all 20 benchmarking datasets for Logistic Regression
classifier. The column on the right shows the performance of the ProWRAS
algorithm over all datasets. Observe that, in the last row that the average
performance of ProWRAS is superior to all the other oversampling algorithms. 92

6.11 Table showing the results of Wilcoxon’s signed rank test for comparison
of ProWRAS with other oversampling algorithms. The p-values in the
table quantify the statistical significance of the improvement achieved by
ProWRAS over each oversampling model. Higher value of W+, shows
that how superior performance of ProWRAS for higher number of datasets.
Higher value of R shows better reliability of the results. 92

6.12 Table showing the I -scores for different oversampling algorithms for the
final benchmarking experiments. 92

xxv

List of Abbreviations

TP True Positive
TN True Negative
FN False Negative
FP False Positive
TPR True Positive Rate
FPT False Positive Rate
MCC Matthews Correlation Coefficient
ROC Receiver Operating Curve
AUC Area Underthe Curve
PR Precision Recall
SMOTE Synthetic Minority Oversampling TEchnique
ADASYN Adaptive Synthetic Oversampling
ProWSYN Proximity Weighted Synthetic Oversampling
SOMO Self Organising Map Oversampling
MOT2LD Minority Oversampling Techniquebasedon Local Densities in Low-Dimensional Space
MWMOTE Majority Weighted Minority Oversampling Technique
DBSMOTE Density Based SMOTE
LoRAS Localized Random Affine Shadowsampling
ProWRAS Proximity Weighted Random Affine Shadowsampling
sc-SynO single cell- Synthetic Oversampling
ML Machine Learning
GB Gredient Boosting
LR Logistic Regression
kNN k-Nearest Neighbours
RF Random Forest
AB AdaBoost
NB Naïve Bayes
SVM Support Vector Machine
UMAP Uniform Manifold APproximation
t-SNE t-Stochastic Neighbourhood Embedding
SOM Self Organizing Map
CURE Clustering Using REpresentatives
DBSCAN Density Based Spatial Clustering of Applications with Noise
HGV High Global Variance
HLV High Local Variance
LGV Low Global Variance
LLV Low Local Variance

1

Summary and outline of the thesis

Summary

Imbalanced datasets are abundant in several real-life classification problems where
Machine Learning (ML) finds its application. Such problems are characterised by classes
with an unequal distribution of samples over several classes. For imbalanced datasets
during the training process, the ML models encounter a larger number of majority class
samples and, thus, tends to become biased towards the majority class. Starting from the
vastly popular SMOTE algorithm, rigorous research over the past two decades has resulted
in a family of oversampling algorithms that rely on modelling the convex space of the
minority class, generate synthetic samples from the modelled convex space and improve
classifier performances on imbalanced datasets.

One of the principal disadvantages of the SMOTE algorithm is its tendency to
over-generalise the minority class. This causes the associated classifiers to misclassify the
majority class data points. Moreover, evidence from recent comparative studies reveals that
the performance of the extensions of the SMOTE algorithm vary depending on the classifiers
they are implemented with.

In this thesis, these limitations of SMOTE-based oversampling algorithms are addressed
through the novel idea of convex space learning. In an analytical explanation behind the idea,
we show that SMOTE-based oversampling algorithms generate synthetic samples with high
variance in a minority class data neighbourhood. I developed the LoRAS algorithm that
can model the convex space of the minority class using multiple convex combinations of
shadowsamples in a minority class neighbourhood. The LoRAS algorithm also learns the
latent manifold structure of the minority class data manifold, to identify precise minority
class data neighbourhoods, using several state-of-the-art manifold learning techniques.

To address the issue of classifier dependence of SMOTE-based oversampling algorithms,
I proposed the ProWRAS algorithm. By controlling the variance of the synthetic
samples, as well as a proximity-weighted clustering system of the minority class data,
the ProWRAS algorithm improves the performance, compared to algorithms that generate
synthetic samples through modelling high dimensional convex spaces of the minority class.
ProWRAS is multi-schematic, employing four oversampling schemes, each of which has
its unique way to model the variance of the generated data. The proximity weighted
clustering approach of ProWRAS allows one to generate low variance synthetic samples
only in borderline clusters to avoid overlap with the majority class. Most importantly, the
performance of ProWRAS with proper choice of oversampling schemes, is independent of
the classifier used.

2

The success of the proposed algorithms has been demonstrated using rigorous
benchmarking studies for over thirty publicly available datasets. The most challenging
datasets are chosen with several well-defined criteria such as high imbalance, high
dimensionality, and high absolute imbalance, ensuring impartiality in the benchmarking
studies. From the benchmarking studies, where the proposed algorithms are compared with
over ten SMOTE-based algorithms including some models with best known performance,
for diverse performance measures, it is comprehensively established that the proposed
algorithms can out-perform state-of-the-art algorithms.

In addition to benchmark datasets, I applied the algorithms to experimental biological
data, for which I have collaborated with research groups in the life sciences. In summary,
the convex space modelling based algorithms, LoRAS and ProWRAS, can be highly effective
tools for handling imbalanced classification problems.

Outline of the thesis

Chapter 1 addresses several challenges related to imbalanced data classification. The
chapter first provides instances of real-life scenarios from different fields, where imbalanced
classification problems are relevant. With discussions over several popular approaches that
are used to solve the challenges relevant to imbalanced classification, such as data level
and algorithm level approaches, the chapter is concluded. The next chapter is therefore
dedicated to understand and justify proper choice of performance measures for the studies
presented in this thesis.

Chapter 2 explains, why performance measures used in regular classification problems,
are often irrelevant for imbalanced classification problems and then proceeds with the
discussion of popular choices of metrics for imbalanced classification problems and
describes several performance measures apt for imbalanced datasets, along with analytical
explanations for the applicability of these measures. The chapter closes with a discussion on
the relevance of the Wilcoxon’s signed rank test. The next chapter presents developments
in the field of synthetic oversampling through convex space modelling in the context of
imbalanced classification problems.

Numerous SMOTE-based algorithms over the past two decades has resulted in a family
of oversampling algorithms that rely on modelling the convex space of the minority
class, generate synthetic samples from the modelled convex space and improve classifier
performances on imbalanced datasets. Chapter 3 presents relevant algorithms from this
family of oversampling algorithms that have been instrumental in this research, starting
from the SMOTE algorithm. Describing early extensions of the SMOTE algorithm in
the beginning, the chapter covers extensions of SMOTE which integrate the algorithm
with other unsupervised ML algorithms. Finally, the chapter is concluded with recent
comparative studies on SMOTE extensions. The next chapter discusses my research work
on improving synthetic sample generation through convex space modelling by introducing
the LoRAS algorithm.

Chapter 4 introduces the LoRAS algorithm. The algorithm relies on a more precise
modelling of the convex space minority class data compared to its predecessors. Firstly

3

provides a geometric interpretation and an analytical explanation behind the rationale of the
approach adopted by LoRAS for convex space modelling, followed by presenting a detailed
description and pseudocode of the algorithm. Next, I discuss the integration of the LoRAS
algorithm with the state-of-the art dimension reduction algorithm UMAP. This leads to the
LoRAS UMAP algorithm. The protocols and datasets used for the benchmarking studies for
LoRAS and LoRAS UMAP algorithms are then described. The next chapter is focused on a
bioinformatics application of the LoRAS algorithm.

Chapter 5 presents the LoRAS-based, sc-SynO tool designed for automated annotation
of rare cell populations from single-cell data. The chapter first discusses briefly the
single-cell technology. Next, the chapter describes the preprocessing techniques for
preparation of the data for the study, followed by detailed protocol of the study. Results of
data-based experiments in the effectiveness of the tool in detecting and thereby annotating
two rare cell populations follow. Finally, the chapter is concluded through discussions
on the applicability and importance of sc-SynO. This problem of classifier dependence of
oversampling algorithms is addressed in the next chapter, which introduces the ProWRAS
oversampling algorithm.

Chapter 6 presents the ProWRAS algorithm, a multi-schematic and
classifier-independent extension of the LoRAS algorithm. Firstly, the chapter discusses an
independent benchmarking study showing that performance of oversampling algorithms
are indeed classifier dependent. Given numerous oversampling algorithms and classifiers to
choose from, a proper choice of an oversampling algorithm and classifier for an imbalanced
dataset is challenging. Analysing the philosophies of several oversampling algorithms, it
is possible to identify generic oversampling schemes followed by common oversampling
algorithms. The ProWRAS algorithm is designed to integrate such oversampling schemes
under a single umbrella. I demonstrate through rigorous benchmarking studies that the
ProWRAS algorithm, with proper choice of parameters, can adapt to classifier specific
oversampling schemes and thereby perform in a classifier-independent way. After this
chapter, the concluding remarks follow.

5

Chapter 1

Classification problems with
imbalanced datasets

This introductory chapter addresses several aspects and challenges related to
imbalanced data classification. Firstly, I provide instances of real-life scenarios from
different fields, where imbalanced classification problems are relevant. Thereby, the chapter
establishes the motivation behind the research presented in this thesis. Finally, with some
discussions over several popular approaches that are used to solve the challenges relevant
to imbalanced classification such as data level and algorithm level approaches, the chapter
is concluded.

1.1 Challenges of imbalanced classification in real-life scenarios

Imbalanced datasets are abundant in real-life classification problems, where Machine
Learning (ML) finds its application. Such problems are characterised by classification
problem-based datasets with an unequal distribution of samples over several classes. The
class(es) with a higher number of samples are called majority class(es) and the class(es) with
a lower number of samples are called minority class(es). The ratio between the number of
instances in majority and the minority class is known as the imbalance ratio.

Imbalanced datasets are known to adversely affect ML based classifiers [Chawla 2002].
These classifiers are designed to learn patterns from data. When trained with sufficiently
large volume of data, such classifiers, based on the choice of parameters, construct
hypothetical inter-class decision boundaries that help them distinguish between the classes
present in the data. Every classifier has a different strategy of constructing the decision
boundaries. Moreover, the decision boundary depends on the chosen values of parameters
for the classifier. The decision boundary is usually constructed near the borderline of the
classes. The borderline is the hypothetical region in the data space which is shared by
samples from two classes. Intuitively, the more well-defined the borderline region is, in
terms of separation among classes, the easier it is for a classifier to construct a decision
boundary. After a classification model is trained, it is tested on unseen data. The model
decides on the classes of test data, depending on which decision region (based on its
training) the test data points find themselves in. Thus, one may conclude that, the better
the training experience of the model, the better is its ability to make decisions.

6 Chapter 1. Classification problems with imbalanced datasets

FIGURE 1.1: Figure showing general working principle of a machine learning algorithm

The training experience, however, largely depends on the volume of data used during
training. Naturally, the more data used for training, the more patterns are detected by the
classifiers and the better is its decision-making ability. For imbalanced datasets during
the training process, the ML models encounter a larger number of majority class samples
and, thus, tends to become biased towards the majority class. This limits the classification
models to form a proper decision boundary, resulting to misclassify minority class samples
as the majority class for unseen test data. Every real-life data is likely to have at least a little
imbalance in it. However, the bigger the imbalance ratio, the more challenging it becomes
for the classifiers to learn patterns from that data. To quote Krawczyk: “Despite intense
works on imbalanced learning over the last two decades there are still many shortcomings in existing
methods and problems yet to be properly addressed” [Krawczyk 2016]. Here, we provide several
instances of imbalanced classification problems arising in several real-life research domains
that have been discussed in [Fernández 2018].

1.1.1 Imbalanced datasets in bio-medicine

Imbalanced datasets are abundant in several subdomains of biomedical research,
such as diagnosis, prognosis, and monitoring, and thereby, digital health in general
[Fernández 2018].

Among several instances of imbalanced datasets used in diagnostic research, is a
research work on lung nodule detection from computer tomography images. Pulmonary
nodules, an important indicator for early-stage lung cancer diagnosis, are present in only
a few images, thus creating an imbalanced classification problem [Cao 2014]. Another
research classifies malign and benign thyroid nodules instead of lung nodules. Only
a few patients have malign nodules, making the classification problem an imbalanced
one [Acharya 2016]. One more such instance is based on breast cancer detection from
thermography images [Krawczyk 2015]. Several more of such examples can be found in
Fernandez et al. on diverse diagnostic studies based on polyp detection from colonoscopic
images, breast cancer detection from MRI images, detection of diabetes and chronic kidney
diseases [Fernández 2018].

As an example of imbalanced dataset in context of prognosis, one might consider a
research work dedicated to screening of patents who may be suffering from osteoporosis
[Bach 2017]. Another example is a research work to build a donor-receptor allocation system
for possible liver transplantation. The model predicts graft survival after transplantation

1.1. Challenges of imbalanced classification in real-life scenarios 7

is conducted, thus providing a decision support on whether the transplantation can be
successful [Pérez-Ortiz 2017].

In the front of general digital health, for example, a research work predicts postoperative
life expectancy of lung cancer patients. This kind of research can act as a decision support
system for clinicians to decide on whether it is safe to consider a patient for a surgery
[Zięba 2014]. Another work developed a system to predict the duration of admission
of a patient to an emergency department of a hospital. Patients staying for a longer
duration consume more resources. Such a decision support system can improve resource
management of the hospital [Azari 2015].

In the field of bioinformatics, a research work by Yang et al. investigates the applicability
of their algorithm on several bioinformatic problems such as: miRNA identification, protein
localization prediction, promoter identification from DNA sequences and kinase substrate
prediction from protein phosphorylation profiling [Yang 2014]. Another instance in this
research domain deals with contact map prediction, a part of protein structure prediction
where there are very few positive class instances [Triguero 2015]. Protein classification
problem was addressed by Dai et al. , where a multi-class classification problem was
reduced to multiple binary class problems to obtain multiple imbalanced datasets for
classification [Dai 2015]. One more example from bioinformatic research where imbalance
classification problem arises is based on cell-recognition problem, where mitotic cells are
detected in HEp-2 images obtained after an indirect immunofluorescent assay. Most cells
are in the interphase state, making mitosis detection an imbalanced classification problem
[Iannello 2014].

1.1.2 Imbalanced datasets in security and business management

Imbalanced datasets are also abundant in several security-related and business
management contexts. The has been a lot of research in the field of fraud detection.
Lucas et al. states: “credit card transactions data suffer from a strong imbalance regarding
the class labels, which needs to be considered either from the classifier perspective or
from the data perspective (less than 1% of the transactions are fraudulent transactions).
There is a significant difference in fraud ratio between e-commerce and face-to-face
transactions. We observe in the Belgian credit card transactions dataset that there are 4
fraudulent transactions for 10.000 face-to-face transactions and 3 fraudulent transactions
for 1000 e-commerce transactions. The class imbalance is 17 times stronger for the
face-to-face transactions than for the e-commerce transactions. E-commerce and face-to-face
transactions are very different paradigms and therefore are studied separately in this work,
moreover classifier efficiencies are measured on the two types of transactions [Lucas 2019].”

Another research work analyses a fraud detection problem in a car insurance company,
also based on an imbalanced dataset. The authors worked with a car company to acquire
a dataset for their study. They describe the problem as: “One of the factors affecting the
price of car insurance policies is the large amount of fraudulent reports that a company
is not able to detect is. The company has to assume all the increase in costs produced
by this fraud, and, as a consequence, the insurance policies become more expensive. The

8 Chapter 1. Classification problems with imbalanced datasets

experts in the companies think that at least 10% or 15% of the produced reports are
fraudulent, and, however, about 5% of them is detected. So the databases in insurance
companies have the following characteristics: the examples labelled as fraudulent belong to
the minority class (class imbalance) and, on the other hand, they are the only 100% reliable
data, because among the examples labelled as not fraudulent there are some fraudulent
examples that the company has not been able to detect. Therefore the information provided
to the algorithm is not correct which makes the machine learning problem difficult to solve
[Pérez 2005].” Besides the security reason, imbalanced datasets are relevant to the field
of business management in other contexts, such as customer churn prediction. Effendy
etal. states “Customer churn is a major problem that is found in the telecommunications
industry because it affects the company’s revenue. At the time of the customer churn
is taking place, the percentage of data that describes the customer churn is usually low.
Unfortunately, the churn data is the data which have to be predicted earlier. The lack of
data on customer churn led to the problem of imbalanced data. The imbalanced data caused
difficulties in developing a good prediction model.”

1.1.3 Imbalanced datasets in engineering and technology

In the field of engineering, imbalanced datasets are abundant in fault detection. There
are usually fewer instances of faulty goods and in several contexts detecting the faulty
products are important. For example, there are several research articles on the detection of
defects in semiconductors from image datasets or consideration of power system short-term
voltage stability assessment [Fernández 2018].

Another such example is wind turbine failure prediction. The importance of the task lies
in the fact that most of the operational costs of wind farms are due to their maintenance and
the distance between farms and industrial areas. Automatically monitoring, diagnosing and
predicting the state of wind turbines effectively reduce maintenance costs [Fernández 2018].

Moreover, imbalanced data prevails in the research domain of software fault detection
and network data analysis. For network data analysis, the problem of differentiating P2P
botnet network traffic from normal traffic. The problem was imbalance because there were
more normal traffic examples than abnormal (botnet) traffic ones [Fernández 2018].

Imbalanced classification problems are also common in wireless sensor networks. Patel
et al. confirms that “Very few works have concentrated on handling of imbalanced data
in WSNs. When the data are generated by wide range of sensors, continuously, there is
every chance that the data generated from some of these sensors may be discrete; thereby,
generated data from those sensors can be sparse. This makes the dataset generated from
these sensors imbalanced [Patel 2020].”

1.2 Common machine learning approaches for imbalanced
classification problems

Broadly, machine learning approaches that are used as remedies to imbalanced
classification problems can be categorised into two types: data level approaches and

1.2. Common machine learning approaches for imbalanced classification problems 9

Original data Undersampling Original data Overrsampling

Minority class

Majority class

Number of majority class is reduced to

match number of minority class

samples

Number of minority class is increased

to match number of majority class

samples by synthetic sample

generation

FIGURE 1.2: Figure showing the difference between two data level approaches: Undersampling and
Oversampling

algorithm level approaches [Fernández 2018]. This section provides a brief overview and
some examples for both types of approaches.

1.2.1 Data level approaches

The strategy of data level approach is to cleverly manipulate the data to learn from
imbalanced datasets. It can again be categorised into two broad categories: oversampling
and undersampling.

Oversampling approaches are characterised by synthetic minority class sample
generation to improve the learning experience of the classifiers. One of the first
oversampling approaches used to add Gaussian noise to minority class samples to generate
synthetic samples [Lee 2000]. More and more complex approaches gradually came into
being. One prominent direction of synthetic oversampling that is most relevant to this thesis
is the convex space modelling of the minority class. This direction of research was pioneered
by the SMOTE algorithm [Chawla 2002], which is still probably the most popular algorithm
for synthetic sample generation. Since this thesis is closely related to these categories of
algorithms, they are discussed in detail in Chapter 3.

A more recent trend in the research on imbalanced datasets is to generate synthetic
samples, aiming to approximate the latent data manifold of the minority class data space.
In [Bellinger 2018], a general framework for manifold-based oversampling, especially for
high-dimensional datasets, is proposed for synthetic oversampling. The method has been
successfully applied in [Bellinger 2016] to deal with gamma-ray spectra classification. It
produces a synthetic set S of n instances in the manifold-space by randomly sampling
n instances from the PCA-transformed reduced data space. In order to produce unique

10 Chapter 1. Classification problems with imbalanced datasets

samples on the manifold, they apply i.i.d. additive Gaussian noise to each sampled instance
prior to adding it to the synthetic set S, controlling the distribution of the noise through
the Gaussian distribution parameters. The synthetic Gaussian instances are then mapped
back to the feature space to produce the final synthetic samples [Bellinger 2018]. Another
scheme, using auto-encoders to oversample from an approximated manifold, has also been
discussed in [Bellinger 2018]. This approach selects random minority class samples by
adding Gaussian noise to them, and using the auto-encoder framework first maps them
non-orthogonally off the manifold and then maps them back orthogonally on the manifold
[Bellinger 2018].

Generative Adversarial Networks (GANs) can be considered as a breakthrough in the field
of synthetic sample generation. Introduced in 2014, this generative network can be viewed
as a competition among a generator NN and a discriminator NN [Goodfellow 2014]. The
generator network creates synthetic samples from random noise, whereas the discriminator
network tries to detect whether a sample is synthetic. During training steps, feedback from
the discriminator network is fed into the generator network, helping it to produce more
convincing synthetic samples. Instances of combining Variational AutoEncoder (VAE) and
GANs can be found [Blum 2018]. State-of-the-art models applying GANs to oversample for
imbalanced datasets are Generative Adversarial Minority Oversampling [Mullick 2019] and
Conditional GAN (CGAN) [Douglas 2018].

GANs, on the other hand, also come with some limitations [Li 2018]. In addition to
being a complicated model, GANs are infamous for being difficult to train and sensitive
to small changes in hyperparameters [Mescheder 2018]. A typical source of instability is
the discriminator rapidly overpowering the generator (overpowering effect) which leads
to problems such as vanishing gradients or mode collapse [Sajjadi 2018]. The problem of
vanishing gradient corresponds to the inability to model to effectively tune parameters
by gradient descent while training. Complex models suffer from this problem, where in
the initial hidden layers, the weights and biases of the Neural Network (NN) stop getting
optimised during the training process. The mode collapse problem is the tendency of GANs
not to generate synthetic data uniformly from the learnt latent space. Because of these
problems, the use of GANs is still limited to mostly image-based datasets in imbalanced
classification. For feature-based tabular datasets, mostly researchers rely on conventional
oversampling methods, because of the simplicity of the approach and its effectiveness in
training predictive models even with comparatively less amount of data.

Undersampling is a very popular data level approach of dealing with imbalanced
datasets. An imbalanced dataset has excess majority class instances, which makes it difficult
for classifiers to learn patterns from the data. The strategy of undersampling approach is to
reduce the imbalance by removing excess data points from the majority class. This approach
may be suitable when a sufficient number of minority class data points are already available.
The most obvious way of doing this is, of course, randomly deleting majority class instances
to rebalance the data. This technique is called Random Under Sampling (RUS). However,
the problem with this is, there is always a risk of deleting data points that could be useful or
important for the classification. Thus, it might be valuable to determine which data points
to retain and which to remove during an undersampling process. Several algorithms and
techniques have been developed using the approach of undersampling. Some of them

1.2. Common machine learning approaches for imbalanced classification problems 11

decide which data points to retain after undersampling, while some of them determine
which data points to delete.

The Nearest Neighbour rule (NN rule) is to assign a label to an unlabelled data based
on the label of its nearest neighbour. However, to decide on the label of an unlabelled data
point, one must search the whole training set, which makes it computationally expensive.
This motivates the Condensed Nearest Neighbour rule (CNN rule). The CNN rule retains
the core philosophy of the NN rule, but searches for the nearest neighbour of an unlabelled
data point in a subset of the whole training set. This subset is chosen such that it can still
assign a correct label for all unlabelled data points. Several approaches have been explored
to solve the problem of finding such a subset.

In the context of undersampling, the goal is to find such a subset S′ of the actual training
set S, so that the overall performance of a classifier improves. This is precisely the rationale
behind the US-CNN algorithm. In this algorithm, firstly, all minority class data points and
a single majority class data point are moved to the set S′. Now it considers the remaining
data points in S as unlabelled data points and the data points in S′ are training data points.
The algorithm then uses the NN rule to label the data points in S. Since the labels of the
all the members of S are actually known, one can verify whether they are correctly labelled
after this process. The misclassified data points from S are then moved to S′. The rationale
behind this step is that, for the correctly classified data points in S (which were all majority
class data points), the S′ used for training was enough. All correctly classified data point in
S, thus already had a majority class data point as its nearest neighbour and moving some
more majority class data points from S to S′ will still keep a majority class data point as their
nearest neighbour. Ultimately, the selected data points in S′ are enough to label all members
of S correctly. So this undersampling approach decides which data points to retain from the
majority class. Now we look at an approach that decides, which majority class data points
to delete.

Imbalanced classification problems often encounter datasets, such that there is a large
overlap between the majority and minority class. The more the overlap between the majority
and minority class, the more difficult it gets for a classifier to construct a decision boundary.
This leads to several misclassifications on application of the trained classifier to the test data.
The Tomek-links are data points that are typically lie in these overlapping regions between
the minority and the majority class [So 1976].

Definition 1. A Tomek-link (in the context of a binary classification problem) is defined as, a pair of
data points x and y, such that x and y are not both from Cmaj or Cmin and there is no other data point
z for which d(x, z) < d(x, y) or d(y, z) < d(x, y).

Thus, a Tomek-link typically represents data points that are either in the borderline
region of minority or majority classes or data points that are surrounded by more instances
of the opposite class. Removing such instances are known to clean up the boundary region
of the two classes, helping a classifier to create a cleaner decision boundary [So 1976].

Based on the concept of Tomek-Links, researchers have also constructed more complex
data preprocessing schemes. For example, one such study focuses on not only on removing
the samples in the borderline but also the outliers and redundant data points [Devi 2017].

12 Chapter 1. Classification problems with imbalanced datasets

The outliers in this context are the majority class instances that are close to many minority
class instances. Redundant data points, on the other hand, are the majority class instances
that are not outliers and that are too similar to each other and thus may contain redundant
information. To determine redundancy, pairwise similarity among data points is calculated
using three different similarity measures. For a redundant pair of data points, the one
with the lesser contribution factor is eliminated. The contribution factor is calculated from
likelihood of a data point to belong to its class [Devi 2017].

To further improve the model in a follow-up research, the concept of boosting has also
been integrated to Tomek-link-based undersampling [Kumar 2019]. Boosting is a common
concept in ML, used frequently in the context of imbalanced datasets, to improve classifier
performances by using an ensemble of weak learners. The weak learners to learn in steps,
trying to correct its mistakes made in a past step. For this model, the boosting algorithm
AdaBoost is used. Note that the concept of Boosting is also used along with the RUS method
(RUS-Boost) [Seiffert 2008].

1.2.2 Algorithm level approaches

Algorithm level approaches are characterised by clever manipulation of the classifiers
themselves to improve classifier performance for imbalanced datasets. One of the prominent
directions of research in this domain is cost sensitive learning. Such algorithms are sensitive
to different costs associated to several entities of the classification problem. For example,
given a dataset, costs can be associated with features or classes of the relevant dataset. A
cost imposed on features could ensure that classifiers are able to utilise the best possible set
of features for learning, while the cost imposed on classes could ensure that the classifier
will focus more on avoiding misclassification of samples belonging to classes with higher
weights [Fernández 2018].

In the context of imbalanced classification, cost sensitive algorithms impose costs
on classes. Higher costs are imposed on minority classes to ensure that classifiers
avoid misclassification of minority class data points. Intuitively, for regular classification
problems, loss functions assign a value of zero to correctly classified instances and a value
of one to incorrectly classified instances while training. The goal of the training procedure
is to minimise the overall loss. However, this loss function assigns the same cost for the
wrong classification of instances from every class. When the data is highly imbalanced and
the classifier has a lot of training examples from the majority class, this loss function gets
minimised easily, hence biased towards the majority class instances and unable to classify
the minority class instances [Fernández 2018].

Cost sensitive learning employs a modified loss function with different costs associated
to each class. Minority classes are assigned with higher penalisation cost compared to the
majority classes. Then the loss cannot be minimised easily without a better learning of
the minority class by the classifier. The costs assigned to the classes can be decided by
domain experts. However, it might be difficult to use cost-sensitive algorithms in the case of
multi-label problems, regression, or time series analyses. There have been instances where
cost sensitive learning is adopted for several classifiers such as Support Vector Machines
(SVM), Artificial neural networks, etc. [Fernández 2018]

1.2. Common machine learning approaches for imbalanced classification problems 13

Another prominent algorithm level approach is ensemble learning. The main
philosophy of these kinds of approaches is to improve classification by constructing several
classifiers or weak learners, whose combinations help in the final decision-making. The
two most prominent algorithms of this type are bagging (bootstrap aggregating) and boosting
algorithms. Bagging algorithms consist of several classifiers with different bootstrapped
replicas of the original training dataset. To train each classifier in an ensemble of classifiers,
a new dataset is created by randomly drawing instances from the dataset with replacement.
Each classifier in the ensemble, thus, gets trained on a different set of data so that together,
they can capture the diversity, present in the dataset. When an instance unseen by the model
is classified, all these classifiers vote on which class it should belong, and the class with the
majority of votes is chosen to be the class of the unseen instance.

The principal idea behind boosting is to train a series of weak classifiers sequentially,
such that a certain weak classifier tries to rectify the misclassifications done by the previous
weak classifier during training. A commonly used boosting algorithm is AdaBoost. The
weak learners in the AdaBoost classifier are formed by decision trees. The first decision
tree is trained with the training data of samples all carrying equal weight. It first trains
on a pool of data. Then it tests itself on the same training data, trying to determine how
much of the training data it can classify correctly already from its experience. Then, the
misclassified data points are identified and weights are assigned to these data points. After
this, the next decision tree is trained on this weighted data, to ensure that the weak classifier
gets more efficient in classifying the weighted data. This process is repeated iteratively to
enhance the efficiency of the weak classifier. AdaBoost picks its weak learners t in such a
fashion that each newly added weak learner is able to infer something new about the data.
To implement this idea, AdaBoost maintains a weight distribution D among all data points.
Each data point xi is assigned a weight D(xi) indicting its importance. When measuring
a weak learners performance, AdaBoost takes into consideration each data points weight.
A misclassified high-weight point will contribute more to the overall weighted error than
a misclassified low-weight data point. To get a low weighted error, a weak learner must
focus on high-weight data points and try to predict them correctly. The final classification
decision of AdaBoost algorithm is achieved by assigning to each weak learner a confidence
value βt, which depends on the weak learners performance on its assigned task and then
consider a weighted vote of the weak classifiers. Sometimes, for handling imbalanced
classification problems, combinations of data level and algorithm level approaches are also
used [Chawla 2003].

Besides the inefficiency of classifiers to learn from imbalanced data as discussed in this
chapter, deciding upon a proper performance measure to interpret classifier performances
is also a challenge in this research domain. The next chapter is therefore dedicated to
understand and justify proper choice of performance measures for the studies presented
in this thesis.

15

Chapter 2

Performance measures for imbalanced
datasets

Deciding on proper performance metrics is one of the cornerstones of building reliable
imbalanced classification models. This chapter explains, why performance measures used
in regular classification problems, are often irrelevant for imbalanced classification problems
and then proceeds with the discussion of popular choices of metrics for imbalanced
classification problems. In addition to describing the metrics, I present my interpretation
and analysis on the pros and cons of these metrics in this chapter. Finally, the chapter closes
with a discussion on the relevance of the Wilcoxon’s signed rank test, a statistical test used
in the research presented in this thesis, for comparing performance of multiple models.

2.1 Preliminary performance measures

A ML model gains experience from training data by “learning” underlying patterns
present in the training data. After the training, the model is tested on unseen data
(test/validation data), to see how well it performs based on the experience gathered during
the training step. But how can one quantify the performance of ML models? Note that,
for supervised learning models, the labels or ground truths are always known to us.
Therefore, for such problems, it is possible to compare the model predictions with the
known labels to get an idea about how efficient the model is. For classification problems
based on imbalanced datasets, especially, these performance measures have context-specific
significance, which I will explore in this chapter.

ML model predictions can come in several forms. For example, in the case of k-Nearest
Neighbour, the outputs are directly in the class of the nearest neighbour. For Naïve Bayes
(NB) model or the Logistic regression (LR) model obtained for each test data point, the
probabilities of their association to each class. Some models such as linear regression might
associate a numerical score with the test data point instead of associating it directly with a
class. However, ultimately, these predictions can all be transferred to predicting classes. For
example, consider applying a NB model to a binary class problem (with classes A and B).
While testing the model, for some test data points, its probability of belonging to class A
and class B can be obtained. The sum of these probabilities will always be one. One can,
thus, always choose the class A or B, such that the test data point has a higher probability of

16 Chapter 2. Performance measures for imbalanced datasets

belonging to that class. If the probability of belonging to both classes is equal, then one can
choose a class randomly for the test data point. For a classification problem, a very useful
way to visualise the test results is in the form of a Confusion Matrix [Olson 2008].

Definition 2. For a classifier dealing with a classification problem with n classes, one can write the
results of the classification task on the test data in form of a n× n matrix C such that:

1. The diagonal elements of the matrix contain the number of correct prediction for classes
1, . . . , n, respectively

2. An arbitrary non-diagonal element Cij of C, is the number of test data points whose
label(ground truth) is class i, but predicted wrongly by the classifier as class j.

For a binary class problem, the confusion matrix is 2 × 2. Usually, in a binary
classification problem, one class is labelled as a positive class and the other one a negative
class. In such a case, the confusion matrix is viewed as:

C =

(︄
True negative (TN) False positive (FP)
False negative (FN) True positive (TP)

)︄
(2.1)

Note that, the terms False Negative and False Positive can be confusing. To be clear, False
Negatives are the test data points who actually belong to the positive class but are falsely
predicted as the negative class. In other words, the negative predictions of the classifier
which are actually false. The False positives are just the opposite. From now on, the
abbreviations mentioned in Matrix 2.1 will be used for all these terms. Note that, in statistical
hypothesis testing, FP and FN are associated with Type I and Type II errors, respectively.
Depending on the confusion matrix C, several quantities can be defined that can measure
the model performances in several contexts. The most obvious and widely used of these
quantities is the accuracy measure.

Definition 3. Given a confusion matrix C, by applying a certain classifier on a test dataset relevant
to a classification problem, the accuracy of the classifier in general is defined as: ΣiCii

Σi,jCij
[Olson 2008].

In other words, the accuracy measure is just the ratio of correct predictions made by
the classifier. The accuracy measure is often written as a percentage. While in general, this
measure is widely used to measure the efficiency of a classifier, it is usually unsuitable for
imbalanced datasets.

To understand why an accuracy measure is unsuitable for an imbalanced dataset, let
us consider an example. Consider an imbalanced dataset with the ratio of negative class
instances to positive class instance is 9 : 1. Since the test dataset is a random subset sampled
from these datasets, let us assume ideally that the ratios of the positive and negative classes
are maintained in the test dataset as well. Let us assume that the test dataset has 100 data
points such that, the positive class has 10 data points while the negative class has 90 data
points. Now a classifier f can learn the patterns in the highly abundant negative class much
better from the training data. Usually, in such a case, it is observed that the classifier f can
predict all 90 negative class data points from the test data precisely, but hardly predicts the 10

2.2. Common performance measures for imbalanced datasets 17

positive class data points from the test data correctly. However, predicting the 90 negative
class data points correctly produces an accuracy score for the classifier to be at least 90%.
Thus, even though the classification for the positive class is an extremely poor the classifier
f , it can achieve a misleadingly high accuracy. For this reason, several other performance
measures become relevant in case of imbalanced datasets. The most rudimentary remedy
for this problem, would be a measure, popularly known as balanced accuracy [García 2009].

Definition 4. Given a confusion matrix C, by applying a certain classifier on a test dataset relevant
to a classification problem, the balanced accuracy of the classifier is defined as: 1

n Σn
i=1

Cii
ΣjCj

, where n
is the number of classes in the dataset.

In other words, the balanced accuracy is the average of the ratios of correct predictions
for every individual class. Just like the accuracy measure, the balanced accuracy is also often
written as a percentage. For the example considered before, if it is assumed that all 90 of the
majority class examples are correctly predicted by the classifier and none of the 10 minority
class data points are correctly classified, then the balanced accuracy is 50%. Note that this is
because for the majority class the proportion of correct predictions is 1 and for the minority
class the proportion of correct predictions is 0, which makes the average proportion 0.5.
However, balanced accuracy is still not among the most popular performance measures for
imbalanced datasets.

2.2 Common performance measures for imbalanced datasets

Recall the confusion matrix described in Equation 2.1. For imbalanced datasets, several
other performance measures can be described using the confusion matrix. I will describe
these performance measures and their significance in this section. For the sake of better
understanding, I will calculate each performance measure based on a simple example
confusion matrix.

C′ =

(︄
75 15
5 5

)︄
From the confusion matrix, it is evident that TN = 75, TP = 5, FP = 15 and FN = 5
from Equation 2.1. Just to recapitulate, the Accuracy of a classification model producing a
confusion matrix C′ is 80% and the balanced accuracy is 66.66%.

2.2.1 Precision, Recall and F1-Score

Definition 5. Given a confusion matrix C, by applying a certain classifier on a test dataset relevant
to a classification problem, the True Positive Rate or sensitivity or recall of the classifier is defined as:

TP
TP+FN [Olson 2008].

In simpler words, sensitivity or recall or True Positive Rate (TPR) is just the ratio of
correct predictions in positive class to the total positive class instances. A high recall score
for a certain classifier means that fewer data points from the class c are wrongly classified.
However, the recall score says nothing about how many data points from other classes were

18 Chapter 2. Performance measures for imbalanced datasets

incorrectly classified as belonging to class c. For the proposed example confusion matrix C′,
the recall would be 5/(5 + 5) = 0.5.

Definition 6. Given a confusion matrix C, by applying a certain classifier on a test dataset relevant
to a classification problem, the precision of the classifier is defined as: TP

TP+FP [Olson 2008].

In simpler words, precision is the ratio of correct predictions in positive class to the
false positive instances [Olson 2008]. Note that, the false positive instances are the negative
instances which are erroneously classified as positive instances by the particular classifier.
A high precision score for a class c in a classification model indicates that, most data points
that are classified as class c were originally labelled as class c by a certain classifier. However,
it says nothing about the number of items from the class c that were not classified correctly.
For the proposed example confusion matrix C′, the precision would be 5/(5 + 15) = 0.25.

It is clear from the discussion so far, that neither precision nor recall alone is enough to
quantify the performance of a classifier in a wholesome way. They however complement
each other and are intricately connected. For a class c, precision and recall together can
quantify not only how well the classification of the data points originally labelled as c are,
but also can quantify how well the classifier performs in avoiding classification of a data
point with label anything but c, as c. For this reason, a particular measure called F-measure
was designed. This is alternatively known as F-Score and F1-Score. The term F1-Score for
discussions henceforth.

Definition 7. F1-Score is defined as the harmonic mean of the precision score and the recall score of
a classifier [Olson 2008].

F1-Score =
2× precision× recall

precision + recall

Given the example confusion matrix C′, the F1-Score is thus 0.33. An interesting question
one can ask here is, while arithmetic mean is much more commonly used. To understand the
reason, let us take a simple example. Let us assume that for a certain classification problem,
the precision of a classifier is 0, but the recall is 1. Note that the arithmetic mean of the
precision and recall in this case is 0.5. However, the Harmonic mean of the precision and
recall is 0.

This means that if one of the measures, precision or recall, has a very high value and
the other, a very low value, then the arithmetic mean overestimates the performance. In the
considered example, the precision is 0, meaning that all the other data points not labelled as
class c are wrongly classified as class c. This makes the point of classification meaningless.
Thus, the harmonic mean of precision and recall produces a higher score for the model
performance when the precision and recall are both high. Thus, F1-Score is a more realistic
performance measure than the arithmetic mean of the precision and recall. Figure 2.1,
demonstrates the phenomenon by taking several combinations of precision and recall and
calculating both the Harmonic mean (see Figure 2.1(A)) and the Arithmetic mean (see Figure
2.1(B)).

Observe from Figure 2.1(A) that F1-Score puts equal weights on precision and recall. This
is because, for example, a model with precision 0.7 and recall 0.9 will have the same F1-Score

2.2. Common performance measures for imbalanced datasets 19

Higher penalty for precision-recall

imbalance

(A)

Lower penalty for precision-recall

imbalance

(B)

FIGURE 2.1: Figure showing several combinations of precision and recall to calculate A: Harmonic
mean and B: Arithmetic mean.

as a model with precision 0.9 and recall 0.7. However, whether precision or recall is more
important is entirely problem dependent. For example, the problem of detecting credit fraud
is considered, the recall of the model would be more important. This is because detecting
fraudulent transactions is more important here, and consequently one would prefer the
FNs to be reasonably low. However, in certain biological applications the scenario could
be entirely different. For example, suppose one seeks to detect from some data whether
a certain therapy will work on some patients. In this case, precision would be a more
important measure. The reason is, it can be dangerous for a patient if a therapy is not likely
to work for that patient and yet, the classifier predicts that it will work. Thus, the FPs are
desired to be reasonably low in this case.
To design a problem-specific performance measure related to precision and recall, one might
thus consider a generalised version of the F1-Score called the Fβ-Score. Fβ-Score uses a
positive real factor β chosen such that recall is β times as important as precision and is a
generalised version of the F1-Score (special case with β=1) [Powers 2011]. Formally, the
Fβ-Score is defined as:

Fβ-Score =
(1 + β2)× precision× recall

β2 × precision + recall

Figure 2.2, shows how the Fβ-Score behaves depending on several combinations of precision
and recall scores for β = 5 (see Figure 2.2(A)) and β = 1

5 (see Figure2.2(B)). Note that, by
definition, a choice of β = 5, implies that recall is 5 times more important than precision. In
Figure 2.2(A), observe that when precision is 0.1 and recall is 1, the Fβ-Score is higher than
when precision is 1 and recall is 0.1. This gives an indication that a higher recall score gets
more preference to a higher precision score. Note that, the converse situation is presented
in Figure 2.2(B).

20 Chapter 2. Performance measures for imbalanced datasets

Higher penalty for lower recall

(A)

Higher penalty for lower precision

(B)

FIGURE 2.2: Figure showing several combinations of precision and recall to calculate Fβ-Score, for
A: β = 5 and B: β = 1/5.

2.2.2 Other popular performance measures

Another performance measure that is also commonly used for imbalanced datasets,
called the G-Mean, or the geometric mean. The G-Mean is defined as the geometric mean of
precision and recall [García 2010].

G-Mean =
√︁

precision× recall

It is thus evident that G-Mean ≥ F1-Score. Note that for the considered example confusion
matrix C′, the G-mean is

√
0.25× 0.5 = .353. Compared to the arithmetic mean of precision

and recall, the F1-Score has the tendency to penalise a model more if there is a high
imbalance between precision and recall, that is if either of them is quite high. The G-mean
is likely to find a balance between the two, which means G-means will not penalise the
model as much as F1-Score for poor precision-recall balance but will not be as lenient as the
arithmetic mean as well. This follows from the well-known inequality:

Arithmetic Mean (AM) ≥ Geometric Mean (GM) ≥ Harmonic Mean (HM)

Another performance measure relevant to imbalanced datasets that is gaining popularity
is the Matthews correlation coefficient (MCC) [Matthews 1975]. Unlike the measures
discussed so far, the range of this measure is [−1, 1]. The scores of 1 and −1 are achieved
in the scenarios of perfect classification and perfect misclassification for all data points,
respectively. A MCC score of 0 indicates that the classifier performance is as good as a
random classification, where the probability of a data point belong to a class is equal.

Definition 8. Given a confusion matrix C, by applying a certain classifier on a test dataset relevant
to a classification problem, the balanced accuracy of the classifier is defined as [Matthews 1975]:

MCC =
TP× TN− FP× FN√︁

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

2.2. Common performance measures for imbalanced datasets 21

The correlation between MCC and the F1-Score increases with the size of the dataset. A
recent study claims ‘The Matthews correlation coefficient (MCC), which is a more reliable
statistical rate which produces a high score only if the prediction obtained good results
in all four confusion matrix categories (true positives, false negatives, true negatives, and
false positives), proportionally both to the size of positive elements and the size of negative
elements in the dataset’ [Chicco 2020]. The experiment they have conducted to come to this
conclusion, involves a given hypothetical dataset with at most 500 samples and all possible
combinations of TPs, TNs, FPs and FNs to form all possible confusion matrices. From these
confusion matrices, they have calculated all possible values of F1-Scores and MCC scores.
Interestingly, it was found that there was a certain confusion matrix for which, the MCC
score was found to be −0.04, but the F1-Score was 0.95 [Chicco 2020]. For this certain case,
number of positive instances were 91 as opposed to 9 negative instances. The TPs, TNs, FPs,
FNs for this case were 90, 0, 0, 1 respectively, which clearly indicates a poor classification
for the negative class. However, it generates a very high F1-Score as the class with fewer
samples is assumed to be the negative class, which in practice this is not usually the case
[Chicco 2020]. When the class with fewer samples is assumed to be the positive class, there is
no strong evidence that the F-1 Score is misleading. Thus, F1-Score can still be used safely if
the minority class is assumed to be the positive class, that is, assume that it is more important
to detect the minority class in the context of a given problem. Note that for the considered
example confusion matrix, C′ the MCC measure is 0.25.
Another performance measure, called the Cohen’s Kappa measure (κ), is also sometimes
used for evaluating the performance of imbalanced datasets [Jeni 2013]. The κ measure was
originally proposed by J.A. Cohen in the field of psychology to compare the judgements
of two evaluators [Cohen 1960]. The κ measure, similar to the MCC measure, can assume
values in the range [−1, 1].

Definition 9. Given a classification problem, the κ measure is formally defined as:

κ =
Po − Pe

1− Pe

where, Po is the measure of the observed agreement among the chosen classifier and the ground truths
of the classification problem. Pe is the measure of agreement by chance, among a chosen classifier and
the ground truths of the classification problem.

To get a better feel of how to calculate the κ measure, let us calculate it for the proposed
example confusion matrix C′. Note that Po is always equivalent to the accuracy measure,
which is 0.8, considering confusion matrix C′. Now, calculating Pe is the tricky part. Note
that the first evaluator, the considered classifier, judges 20%(15 + 5 = 20) of all the samples
to be positive. The second evaluator, the ground truth, judges 10%(5 + 5 = 10) of all the
samples to be positive. Thus, the probability that both evaluators will agree on the positive
classes by chance is 0.2× 0.1 = 0.02. Similarly, the first evaluator, the considered classifier,
judges 80%(75 + 5 = 80) of all the samples to be negative and the second evaluator, the
ground truth, judges 90%(75 + 15 = 90) of all samples to be negative. Thus, the probability
that both evaluators will agree on the positive classes by chance is 0.8× 0.9 = 0.72. Thus,
the total probability of agreement of the evaluators on the positive class and the negative

22 Chapter 2. Performance measures for imbalanced datasets

class is 0.72 + 0.02 = 0.74. Thus, the κ, measure for the considered example matrix C′, is
(0.8− 0.74)/(1− 0.74) = 0.230. However, there is no universally set convention on what
value of κ, which indicates a good enough classification. Just like the Fβ-Score, the κ measure
also has a weighted version, but in case of imbalanced datasets, it has been used quite rarely
[Cohen 1968].

All the performance measures discussed so far have been subject to some criticism
in particular contexts. Due to their simplicity, easy interpretation, F1-Score and G-Mean
are more popularly used in comparative or benchmark studies. However, F1-Score and
G-Mean however concentrate on how good the classification is for a single class. They
are popular because mostly imbalanced classification problems are binary class problems.
For multi-class problems, possibly with multiple minority classes, the κ measures would be
more suitable.

2.3 Receiver operating characteristic curve and precision recall
curve

Classification models are first trained on labelled data and then tested on test data.
When a trained classification model is provided with the test data, ideally, it can predict
the probability of each data point belonging to each class. Consider a binary classification
problem. For each test data point, a classification model will estimate the probability of the
data point to be belonging to the positive class. Conventionally, if this probability is greater
than 0.5, then the data point can be classified as a positive class instance. For example,
consider a k-Nearest Neighbour classifier, for a particular test data point. If k′ of its k nearest
neighbours from the training data are from positive class, then the probability of the test
data point to belong to the positive class can be quantified as k′/k. Note that, this makes the
confusion matrix dependent on the conventional probability threshold 0.5. Which means, if
this threshold varies, a data point classified as a positive instance, which may end up being
classified as a negative instance. Note that, all performance measures defined so far, are
based on the confusion matrix where the quantities TP, TN, FP and FN derived from the
conventional threshold, that is 0.5.

Let us assume now that some trained classifier produces probability scores of belonging
to the positive class for all test data points, such that all scores are all in the range of [0.4, 0.6].
Now, if a decision threshold of 0.3 to decide on the positive class (i.e. a predictive probability
greater than 0.3 for a test data point implies that data point is predicted to be in the positive
class by the classifier) is considered for constructing a confusion matrix, all test data points
will be predicted as positive class instances. Similarly, if the decision threshold is 0.7, all the
test data points will belong to the negative class. If the classifier predicted the probabilities
of its training experience better, that is, all the positive class samples would be assigned a
high predicted probability (say, more than 0.95) of belonging to the positive class and all the
negative class samples would be assigned a low predicted probability of belonging to the
positive class (say, more than 0.95), then independent of the choice of the decision threshold
(for probability of belonging to the positive class), the classifier would do a reasonably good
job. Thus, ideally, a classifier should be able to learn from the training data irrespective

2.3. Receiver operating characteristic curve and precision recall curve 23

Predicted Prob Labels Threshold TPR/Recall FPR Precision
0.625 1 0.625 0.333 0.00 1
0.483 0 0.483 0.333 0.142 1
0.475 0 0.475 0.333 0.285 0.5
0.412 0 0.412 0.333 0.428 0.333
0.358 1 0.358 0.666 0.428 0.4
0.305 0 0.305 0.666 0.571 0.333
0.275 1 0.275 1 0.571 0.428
0.205 0 0.205 1 0.714 0.3
0.187 0 0.187 1 0.857 0.3
0.125 0 0.125 1 1 0.3

TABLE 2.1: Table showing an example of predictions of a hypothetical classifier on 10 data points and
thereby calculating TPR, FPR, precision and recall from the same. The column Predicted Prob shows
the predicted probabilities of belonging to a positive class for 10 data points by some hypothetical

classifier.

of the choice of the decision threshold. To evaluate how well a classifier achieved this,
is the motivation behind defining the very popular performance measure called Receiver
Operating Characteristic curve (ROC curve) [Fawcett 2006].

To understand the ROC curve, two performance measures based on which the curve is
constructed are relevant. One is the sensitivity or recall or True Positive Rate (TPR) that has
been already discussed is Definition 5. The other one is called specificity.

Definition 10. Given a confusion matrix C, by applying a certain classifier on a test dataset relevant
to a classification problem, the True Negative Rate or specificity of the classifier is defined as: TN

TN+FP .

In simpler words, specificity quantifies the ratio of negative class data points that are
correctly classified by the classifier. Note that for the proposed example confusion matrix
C′, the specificity would be, 75/(75 + 15) = 0.833. Now that the motivation is clear and
the foundation behind ROC curve is established, it is time to discuss the construction of a
ROC curve. A ROC curve is a plot with False Positive Rate (FPR) on the x-axis and TPR
on the y axis. Note that FPR is the same as 1− specificity and TPR is sensitivity. Given a
confusion matrix, one can thus derive the TPR and FPR. But given a decision threshold for
the probability of a test data point belonging to the positive class, one can obtain only one
confusion matrix. Thus, given one such decision threshold, one obtains only one value for
TPR and FPR. Now, if one calculates the confusion matrices for several decision thresholds
ranging from [0, 1], one will obtain an ordered pair of (FPR, TPR) for each of the decision
thresholds. The ROC curve is obtained by plotting all the ordered pairs of (FPR, TPR)
obtained from different decision thresholds and drawing a curve by linear interpolation
among the plotted points.

To demonstrate the idea of a ROC curve, a hypothetical example is presented with the
prediction results of a hypothetical classifier on 10 data points. The predicted probability
(hypothetical) of belonging to the positive class for each of these data points is shown in
the column ‘Predicted Prob’ of the Table 2.1. The column ‘Labels’ show the actual labels
for the dataset. Note that out of 10, there are only 3 data points from the positive class
from the example, labelled as 1. For each of the ‘Threshold’s, one can compute a confusion
matrix given the predicted probabilities and labels. For example, with a threshold of 0.625,
TP = 1, TN = 7, FP = 0 and FN = 2. With these values, one can easily calculate the

24 Chapter 2. Performance measures for imbalanced datasets

FIGURE 2.3: Figure showing A: Receiver Operating Characteristic (ROC) curve and B: Precision
Recall (PR) curve for an imbalanced test dataset for which a hypothetical classifier performance
described in Table 2.1. The region shaded in blue in each diagram represents the Area Under the
Curve (AUC). The arrows indicate the direction in which the AUC (region shaded in blue) would

expand in case of a better classifier.

quantities TPR and FPR for the first threshold. This can be repeated for all the assumed
thresholds to finally calculate the TPRs and FPRs of the respective thresholds as shown
in Table 2.1. The respective ROC curve is plotted in Figure 2.3(A). The red dotted line
in Figure 2.3(A) signifies the expected ROC curve for a random classifier (a classifier that
predicts randomly). Once the ROC curve is obtained, the Area Under the Curve (AUC) is
calculated. The area under the ROC curve (ROC-AUC) for the example is 0.67. Here, I avoid
further discussion on the computational details of how this area is calculated, but rather
focus on what it represents. In Figure 2.3 (A), this is the area of the blue shaded region,
and it quantifies how well the classifier has learnt on the training data, such that it can
make reasonably good predictions on the test data independent of decision thresholds. In
the proposed example, observe that the classifier performance is not very good. Ideally, for
better classification, the blue shaded area can extend in the direction of the arrows towards
the top left corner. For a perfect classifier, the blue shaded region will thus cover the whole
area of the graph and attain a ROC-AUC = 1. Note that this translates to the situation
when the TPR is very high, independent of the value of FPR. Usually when the decision
threshold is low, most samples TPR will be quite high because most positive samples will
be correctly classified with the low threshold. But at the same time, most negative samples
are likely to be wrongly classified, which make the FPR also quite high for low thresholds.
However, the better the classification models can maintain the high TPR with increasing
decision thresholds, the better will be its ROC-AUC.

Another curve, very similar to the ROC curve, is especially relevant for imbalanced
datasets. It is called the Precision-Recall curve (PR curve) [Saito 2015]. The Precision-Recall
curve plots recall(TPR) in the x-axis and precision in the y-axis for several decision

2.4. Wilcoxon’s signed rank test for model comparison 25

thresholds. Similar to ROC-AUC, the AUC of the PR curve (PR-AUC) quantifies how
good the predictions of the classifier are. In the example, note that the PR-AUC attains a
value of 0.57. The PR curve is shown in Figure 2.3(B) along with the AUC in blue shaded
region. The red dotted line in Figure 2.3(B) signifies the expected PR curve for a random
classifier. A good PR-AUC score indicates that the precision of the classifier is always good,
irrespective of the recall. The interpolation used to construct the curve itself from several
(recall, precision) ordered pairs is nonlinear, in contrast to that of the ROC curve, which
follows a linear interpolation.

There are debates on the applicability of the performance measures ROC-AUC and
PR-AUC in the context of imbalanced datasets. Many studies use ROC-AUC as their
evaluation metric since it is one of the most popular performance measures in general (for
example [Bellinger 2018]). However, some data scientists believe that the PR-AUC is more
informative than ROC-AUC in the case of imbalanced datasets [Saito 2015]. This essentially
means that, if the model performance is tested on the balanced subset, in some cases it is
observed that the ROC-AUC is lesser than when it is calculated over the imbalanced test set.
Thus, using the ROC-AUC may lead one to overestimate the model performance if the test
set is imbalanced (which naturally occurs for imbalanced datasets). The PR-AUC does not
show or demonstrate this behaviour, and thus is considered more robust to imbalance in the
test set [Saito 2015]. To visualise this at least heuristically, 6 data points are extracted out of
the 10 data points shown in Table 2.1. 3 of these are of course the minority class data points
with labelled 1. The three other data points are the majority class data points, which can be
roughly described as poorly learned. These are the majority class data points with ‘Predict
prob’ values of 0.475, 0.483 and 0.412. With this balanced dataset, once can create the ROC
and PR plots as shown in Figure 2.4. Observe that for the balanced test dataset, there is a
dramatic decrease in the ROC-AUC value, which is now 0.33. Even more interestingly, the
PR-AUC value 0.59 remains almost unchanged compared to that of the imbalanced case,
where it was 0.57. It can thus be concluded that if the test dataset is imbalanced, which is
more likely to occur during handling imbalanced datasets, it is advisable to use the more
robust measure PR-AUC.

2.4 Wilcoxon’s signed rank test for model comparison

Until now, I have discussed what kinds of performance measures are appropriate to
calculate classifier performance. However, the field of ML is now so dynamic that every
year new algorithms emerge that claim to be better than the state-of-the-art. Usually, the
new algorithms are benchmarked against existing algorithms on several publicly available
datasets. Then the average performance of the algorithms are compared over all datasets to
decide whether the new algorithm beats the state-of-the-art in terms of chosen performance
measures. However, with so many alternative ML algorithms available for almost every
particular problem, now it is not good enough just to show that the new algorithm is better
than the state-of-the-art. It is also important to show that the new algorithm beats the
existing state-of-the-art by a statistically significant margin. For this, one can take the help
of statistical hypothesis testing. A statistical hypothesis is an assertion on a test statistic (a

26 Chapter 2. Performance measures for imbalanced datasets

FIGURE 2.4: Figure showing A: Receiver Operating Characteristic (ROC) curve and B: Precision
Recall (PR) curve for a balanced subset of an imbalanced test dataset for which a hypothetical
classifier performance described in Table 2.1. Note that the ROC-AUC in the balanced case is
significantly lower than the imbalanced case shown in Figure 2.3. The PR-AUC however changes
very little compared to the imbalanced case and is thus a more robust performance measure on

imbalanced datasets.

function of the data, such as mean or standard deviation), that may or may not be true. A
hypothesis test is associated with a null (H0) and an alternative hypothesis (H1). The goal
of a statistical test is to decide whether to reject the null hypothesis. For this, the value of
the test statistic is calculated from the data. Usually the probability distribution of the test
statistic is known and one can calculate a p-value or the probability that of observing a test
statistic as extreme as the obtained value, assuming the null hypothesis is true. If the p-value
is lower than a certain threshold, the null hypothesis is rejected. There are many statistical
tests that are applicable to several types of situations.

The Wilcoxon’s signed rank test can be effectively used to compare an ML model
performance against other ML models, in terms of any number of performance measures
[Wilcoxon 1945, Tarawneh 2020]. This test is effective for comparative studies because it
is safer than parametric tests because it refrains from assuming homogeneity or normal
distribution of data. Therefore, it can be applied to any classifier evaluation measure. The
Wilcoxon test aims to find if a null hypothesis is true or not. The null hypothesis H0 assumes
that there is no significant difference between the classification results (observations)
obtained from two different methods. The null hypothesis is rejected if the p-value of the
Wilcoxon test is less than α = 0.05 [Tarawneh 2020].

The p-value alone is informative enough and does not provide information about
the relationship strength between variables [Tarawneh 2020]. The p-values do not reveal
whether the results are significantly different in favour of an ML model (that is being
benchmarked against others) or against it. For that, it is recommended to use the metrics
W+, W− and R that are calculated using the following steps [Tarawneh 2020]:

2.4. Wilcoxon’s signed rank test for model comparison 27

1. For each data pair of model predictions, the difference between both predictions is
calculated and stored in a vector D, excluding the zero difference values.

2. The signs of the difference is recorded in a sign vector S.

3. The entries in |D| are ranked, forming a vector R′. In case of tied ranks, an average
ranking scheme is adopted. This means, after ranking the entries of |D| are ranked
using integers and then, in case of tied entries, the average of the integer ranks are
considered as the average rank for all the respective tied entries with a specific tied
value.

4. The component-wise product of S and R′ provides us with the vector W, the vector
of the signed ranks. The sum of absolute values of the positive entries in W is W+

and the sum of absolute values of the negative entries in W is W−. After this define,
WR = min{W+, W−}

5. Then the test statistic Z is calculated by the equation

Z =
WR − n(n+1)

4√︂
n(n+1)(2n+1)

24 − Σt3−Σt
48

(2.2)

where n is the number of components in D and t is the number of times some i-th
entry occurs in R′, summed over all such repeated instances.

6. Finally, R is calculated using R = |Z|√
N

, where N is the total number of datasets
compared.

Note that a higher value W+ for an ML model that is being benchmarked against other
models, indicates towards a superior performance of that particular ML model and the value
of R indicates towards how superior (with a higher W+)/ inferior (with a higher W−) the
performance of the ML model of interest is, compared to the other models. Some researchers
have considered ranges of R ≤ 0.1, 0.1 < R ≤ 0.5 and R > 0.5 to be indicators for
small, medium and high degree of change (improvement or deterioration) in the predictive
performance respectively [Tarawneh 2020].

Now that the preliminaries and motivations of the research are established, it is
reasonable to proceed to the state-of-the-art relevant for my research. The next chapter
presents the history and relevance of synthetic oversampling through convex space
modelling in the context of imbalanced classification problems.

29

Chapter 3

Oversampling Techniques for convex
space modelling

Synthetic oversampling has been one of the most popular approaches to address the
problem of imbalanced classification. Rigorous research over the past two decades has
resulted in a family of oversampling algorithms that rely on modelling the convex space of
the minority class, generate synthetic samples from the modelled convex space and improve
classifier performances on imbalanced datasets. This chapter presents some relevant
algorithms from this family of oversampling algorithms that have been instrumental in
my research, starting from the SMOTE algorithm. Starting from some early extensions of
the SMOTE algorithm, the chapter proceeds to discuss some extensions of SMOTE which
integrate the algorithm with other unsupervised ML algorithms. Finally, the chapter is
concluded with some SMOTE extensions based on classifier specific frameworks and some
additional state-of-the-art SMOTE extensions.

3.1 SMOTE algorithm and its limitations

I discussed in Chapter 1.2.1 about the popularity of oversampling and undersampling in
handling of the problem of imbalance. Followed the attempt of Lee to generate oversamples
using Gaussian noise in 2000, Chawla et al. proposed with the idea of Synthetic Minority
Oversampling Technique (SMOTE) in 2002 [Lee 2000, Chawla 2002]. SMOTE has been
widely used for handling imbalanced datasets over the last decade. Till date, it is a popular
choice of data scientists to tackle the problem of imbalance. There has also been an immense
amount of research on attempts to improve this technique. To make discussions simpler
for now, imbalanced datasets for binary classification problems are considered, that is,
imbalanced datasets having only a minority and a majority class.

The SMOTE algorithm generates synthetic minority class samples by linear interpolation
of the minority class. The synthetic sample generation approach is quite generic in its
construct and focuses on the feature space of a given dataset. It has been described by
[Chawla 2002] using the following approach:

Let us assume that x1 is an arbitrary minority class sample in an imbalanced dataset
C. Let us denote the set of k the nearest minority class neighbours of x1 by NCmin

k (x1). Let
NCmin

k (x1) be the neighbourhood of the minority class data point x1. Note that, for the sake

30 Chapter 3. Oversampling Techniques for convex space modelling

FIGURE 3.1: Figure demonstrating minority class over generalisation by the SMOTE algorithm,
which is considered to be one of the key limitations of SMOTE

of consistency, these notations are maintained throughout the chapter. Let x2 ∈ NCmin
k (x1),

x′2 ̸= x1 be a random minority class data point. A newly generated synthetic sample is
described by,

S = x1 + u(x2 − x1) (3.1)

where 0 < u < 1. More samples can be generated from NCmin
k (x1) simply by choosing

separate random neighbours of x1 within NCmin
k (x1). Ultimately, this process can be repeated

over all data points in the minority class to generate a population of synthetic samples
from the minority class. Equation 3.1 happens to be the heart and soul of most of the
convex-combination based oversampling techniques existing today.

3.1.1 Criticisms of the SMOTE algorithm

Soon after the SMOTE algorithm was proposed in 2002, researchers started to point out
several of its limitations. There have been research works solely dedicated to rigorous
analysis of the limitations of SMOTE [Blagus 2013]. One of the main limitations of the
SMOTE algorithm is its tendency to over generalise the minority class [Puntumapon 2012].
This means, that the synthetic samples generated by SMOTE often makes classifiers biased
towards the minority class. This improves the minority class classification, of course, but at
a cost of higher number of misclassification of the majority class samples. This jeopardises
the balance of the classification models.

Researchers over the years have provided many explanations for such behaviour of
SMOTE oversampling. For example, while oversampling, SMOTE considers only the
distribution of the minority class and not the majority class. Several algorithms have been
proposed where the minority class distribution is considered relative to the distribution of
the majority class while oversampling [Han 2005, Barua 2013]. Another explanation for the
minority class over-generalisation by SMOTE is that SMOTE treats all the minority class
samples with equal importance. This direction of thought proposes to add weights to the
minority class samples such that they quantify the importance of the samples in context to
the oversampling process.

3.2. Some early extensions of the SMOTE algorithm 31

In their research Blagus et al. points out at an interesting direction in this context. In
this article, they calculate the variance of a SMOTE generated synthetic sample. Following
this research, I construct an analytical framework in Chapter 4.1.2, where I argue about
my interpretation for minority class over-generalisation of the SMOTE algorithm. Intuitive
explanation of the analytical result is that, in imbalanced classification scenarios where the
decision boundaries are not too well-defined, SMOTE-generated synthetic samples having
a high degree of local variance tends to interfere with the majority class. Figure 3.1 shows a
demonstration of the problem.

One more important limitation of SMOTE and SMOTE-based algorithms is their
classifier dependent performance. This means some oversampling algorithms performs
well only with some classifiers. This is evident from recent comparative studies in Blagus et
al. and Kovács et al. [Blagus 2013, Kovács 2019]. I also propose a solution to this problem
in the form of the multi-schematic classifier-independent ProWRAS algorithm in Chapter 6.

3.2 Some early extensions of the SMOTE algorithm

3.2.1 Borderline based oversampling

Borderline-SMOTE is an early attempt to improve on the SMOTE algorithm [Han 2005].
Classifiers, while dealing with classification problems, try to create a decision boundary, a
hypothetical boundary that helps a classifier to separate several classes in some labelled
data. Samples lying close to the decision boundary are in the regions that are harder to
learn for the classifier. For imbalanced datasets, generating a decision boundary is even
more difficult to begin with, due to the scarcity of data points in the minority class. SMOTE
empowers a classifier, to some extent, by generating synthetic minority class data points,
helping the classifier to gather a better experience of the minority class.

The key idea of the Borderline-SMOTE algorithm is to emphasise particularly the
‘confusing’ minority class data points, which are termed as ‘borderline’ samples. These
constitute of the minority class data points that are closer to the majority class data points
and thus, can be more confusing for the classifiers to identify. Unlike SMOTE, which creates
synthetic samples from all the minority class Cmin of a dataset, Borderline-SMOTE creates
synthetic samples from only the borderline minority class data points. Now, let us discuss
how the Borderline-SMOTE detects the borderline samples.

Borderline-SMOTE uses a simple definition for the borderline samples. For a minority
class data point x ∈ Cmin, let NC

l (x) denote the l-nearest neighbours of x is the whole dataset
C. Let m(x) denote the number of members of NC

l (x) that are from the majority class Cmaj,
formally speaking m(x) = |NC

l (x)∩Cmaj|. Borderline-SMOTE algorithm considers x ∈ Cmin

a borderline minority class data point if,

l
2
≤ m(x) < l (3.2)

that is, at least half of the l-neighbours must be majority class data points to qualify as a x
a borderline sample. If m(x) = l, the sample x, is assumed to be an outlier or noise by the

32 Chapter 3. Oversampling Techniques for convex space modelling

algorithm and therefore, the algorithm does not involve it in the oversampling procedure.
Moreover, if m(x) < l

2 , then it is assumed, that the sample x is likely to be far away enough
from the decision boundary or the so-called borderline, and thus can be excluded from the
process of generating oversamples.

After the borderline samples are identified through Equation 3.2, the synthetic samples
are generated by applying SMOTE only on the Borderline samples. Note here that, while
applying SMOTE on the borderline samples a different neighbourhood size k can be
chosen, which is completely unrelated to the neighbourhood size l, chosen to decide on
the borderline samples themselves. Also, while oversampling the borderline samples, the
neighbourhoods are chosen with respect to the minority class only, as witnessed for SMOTE.

It is noteworthy that, Borderline-SMOTE algorithm has a second variant as well, called
Borderline-SMOTE2, which adopts a sightly different strategy. It not only generates
synthetic samples from each sample in the borderline set and its nearest neighbours in Cmin,
but also does that from its nearest neighbours in Cmaj. For a nearest neighbour y ∈ Cmaj of a
borderline data point x, an oversample is generated similarly as described in Equation 3.1.
The only difference is that the randomly chosen u is constrained to be 0 < u ≤ 0.5, to ensure
that this the synthetic sample is located closer to the minority class data point x itself rather
than the majority class data point y.

The Safe-level SMOTE algorithm proposed in [Bunkhumpornpat 2009],
philosophically, is the opposite of the Borderline-SMOTE algorithm. However, instead
of generating oversamples from the borderline regions, as done in Borderline-SMOTE,
Safe-level SMOTE generates synthetic samples from relatively ‘safe’ regions. To determine
how ‘safe’ a minority class data point x ∈ Cmin is, the algorithm uses a quantity called
safe-level ratio for x, which is denoted as r(x). First, another quantity called, safe-level
l(x), is defined for an arbitrary x ∈ Cmin as l(x) = |{NC

m(x) ∩ Cmin}|. This means that,
l(x) quantifies the number of minority class samples among m-nearest neighbours of x in
the whole imbalanced dataset C. Let y ∈ Cmin be a randomly selected sample such that
y ∈ NCmin

m (x). The quantity r(x), for some x ∈ Cmin is defined as

r(x) =
l(x)
l(y)

(3.3)

Note that, if l(y) = 0, then r(x) becomes undefined as per Equation 3.3 and so it is assumed
that r(x) = ∞. For x, y ∈ Cmin and y ∈ NCmin

k (x), a SMOTE generated synthetic sample is
described by Equation 3.1. For SMOTE, the random variable u determines a random point
in the line joining x and y, which is chosen to be a synthetic sample S. In case of Safe level
SMOTE, depending on values of r(x), l(x) and l(y), the value of u is determined.

Firstly, if r(x) = ∞ (implying l(y) = 0) and l(x) = 0, then it is evident that both x and y
are closer to majority class data points in C. For this reason, x is assumed to be an outlier or
noise and is not used to generate oversamples.

Secondly, if r(x) = ∞ (implying l(y) = 0) and l(x) ̸= 0, then it means that x has minority
class data points in its k-neighbourhood in C, but some random minority class neighbour y
of x has no minority class data points in its k-neighbourhood. In this case, u is assumed to
be 0. Thus, no new synthetic samples are generated in this case as well.

3.2. Some early extensions of the SMOTE algorithm 33

Thirdly, if r(x) = 1 (implying l(x) = l(y)), u is chosen in exactly the same fashion as
done in SMOTE, that is, u is randomly chosen such that 0 < u < 1. Note that, in this, there
is no clear effort of restricting the samples to the safe region since it is not deterministic
whether x or y is a safer minority class data point. In the fourth case, if r(x) > 1 (implying
l(x) > l(y)), indicating that x is surrounded by more minority class neighbours compared
to y, and thus x is more ‘safe’. In this, u is chosen randomly such that 0 < u ≤ 1

r(x) . This
ensures that the synthetic sample S is generated closer to x, since, x is more safe.

Finally, if r(x) < 1 (implying l(x) < l(y)), indicating that y is surrounded by more
minority class neighbours compared to x, and thus y is more ‘safe’. In this, u is chosen
randomly such that 1− r(x) ≤ u < 1. This ensures that the synthetic sample S is generated
closer to x.

3.2.2 Weighting minority class samples

ADASYN is also one of the earlier attempts to develop the SMOTE algorithm [He 2008].
The Borderline-SMOTE algorithm concentrates on oversampling from the minority class
samples that are too close to the majority class samples or are in “borderline” between
the majority and minority class. This might cause the algorithm to ignore other important
portions of the minority class data space. This causes the oversampled data distribution
of the minority class to be too dense in the borderline regions, while too sparse in the
other regions. The key idea of ADASYN algorithm is to “adaptively” decide the number
of synthetic samples to be generated from each minority class data point, depending on
their importance in improving the learning capability of a classifier. This importance factor
is again determined by the number of nearest neighbour a given minority class data points
that are actually from the majority class.

The number of synthetic samples to be generated is decided by the balancing factor β.
The number of synthetic samples to be generated is thus defined by equation.

Smin = (Cmaj − Cmin)β (3.4)

After this, a weight distribution D(x) is defined for every x ∈ Cmin. To define D(x), first a
quantity r is defined by the equation

r(x) =
δ

k
(3.5)

such that δ = |{y : y ∈ Nk(x) ∩ Cmaj}|, or simply the number of majority class samples
among the k-nearest neighbours of x. Once for all x ∈ Cmin, the quantity r(x) is calculated,
r(x) is normalised to give it the form of a distribution, thereby creating the distribution
D(x). Formally speaking,

D(x) =
r(x)

Σx∈Cminr(x)
(3.6)

The distribution D(x) quantifies the importance of a given minority class sample x. Finally,
how many synthetic samples are to be generated from a given minority class data point x is

34 Chapter 3. Oversampling Techniques for convex space modelling

given by

g(x) = D(x)Smin (3.7)

Finally using the principle of SMOTE, ADASYN generates g(x) synthetic samples for each
x ∈ Cmin.

The SMOTEBoost Algorithm, proposed in [Chawla 2003], was one of the earlier
follow-ups of the SMOTE algorithm. It involves combining the idea of SMOTE to standard
boosting procedure. The component of SMOTE oversampling in this model is aimed at
enriching the minority class data distribution by oversampling. The boosting component of
this model is aimed at improving the overall accuracy that is sometimes compromised by
SMOTE.

I discussed the core idea behind boosting as previously discussed in Section 1.2.2. The
idea of Boosting involves a weak classifier that iteratively learns to make better decisions by
correcting wrong decisions made by its predecessor classifier in the iteration. SMOTEBoost
particularly uses AdaBoost classifier as the underlying Boosting algorithm.

For imbalanced data however, there is a problem with a standard boosting algorithm,
that has been addressed by Chawla et al. A boosting algorithm samples for training data
from a pool of data that mostly majority class data points, since the dataset is imbalanced.
AdaBoost algorithm treats False positives and False negatives equally. AdaBoost algorithm
is known to reduce both bias and variance of the fit in the final ensemble. However, due
to the imbalance in the dataset, there is a strong learning bias towards the majority class.
Thus, the classifier might be biased in learning the majority class properly and deficient in
learning the minority class [Chawla 2003].

The goal of SMOTEBoost is to reduce the biased inherent to the learning procedure due
to the class imbalance by increasing the sample weights of the minority class data points.
The logic behind this is that, introducing SMOTE generated oversamples at every stage
of boosting, will enable the classifier to sample more from the minority class. This, in
turn, helps the classifier to learn better and broader decision regions of the minority class
[Chawla 2003].

Let us now go into the details of the algorithm. The SMOTEBoost algorithm starts with
a labelled training set S = {(xi, yi)}, i ∈ {1, . . . , m} and xi ∈ X, yi ∈ Y as input. Cmin be the
minority class. First, a weight distribution is initialised for every training sample carrying
equal weight D1(xi) = 1

m , for every i. A total of T weak classifiers tj : j ∈ {1, . . . , T} are
to be sequentially trained. Before training an arbitrary weak classifier tj, the minority class
Cmin is oversampled and the distribution Dj is modified. Recall, that a SMOTE-generated
oversample is given by O = xm + u(xn − xm), for some minority class samples xm and
xn and u is some constant such that 0 < u < 1. Thus, the weight of a newly generated
oversample O can be calculated as uDj(xm) + (1− u)Dj(xn). Thus, the weights of a weight
distribution is then defined over the oversampled training distribution S′. Initially, a weak
classifier t1 is then trained on the training dataset with the initial weight distribution D1 with
all training samples bearing equal weights, to build a weak hypothesis h1 : X × Y → [0, 1].
For every weak classifier tj, the weak hypothesis hj : X × Y → [0, 1], can be thought of as

3.3. Integration of SMOTE with unsupervised learning 35

the prediction of the classifier tj on the weighted training set. The hypothesis is then tested
against the ground to truth to identify the set of misclassified training data Bj. The pseudo
loss for tj is then calculated by the equation [Chawla 2003]:

ϵtj = Σxi∈Bj Dj(xi)

(︄
1− h1(xi, yi) + h1(xi, yî)

)︄
(3.8)

where yî is the predicted class of xi by weak classifier tj. The predictive confidence value of

the weak classifier is then calculated as βtj =
ϵtj

1−ϵtj
. The distribution Dj+1 is then updated

by the equation [Chawla 2003],

Dj+1(xi) = Dj(xi)β
1−h1(xi ,yi)+h1(xi ,yî :yî ̸=yi)

2
j

(3.9)

The updated Dj+1 is then normalised and used to train weak learner tj+1. The final
hypothesis takes into consideration the decisions of the weak learners to finally make its
predictions [Chawla 2003].

H f (x) = arg max
y∈Y

ΣT
t=1ht(x, y) log

1
βt

(3.10)

3.3 Integration of SMOTE with unsupervised learning

3.3.1 SMOTE with clustering algorithms

One of the problems that is very common while dealing with imbalanced datasets is
related to the spacial distribution of the minority class samples. Sometimes it might occur
that the minority class data points are distributed over several clusters. Majority class
data points may lie between these minority class clusters. In such cases, considering the
distributions of these clusters might be important. Thus, some extensions of SMOTE have
been built with the integration of several clustering techniques with SMOTE. In this section,
I will discuss some of these algorithms.

K-means SMOTE, as implied from the nomenclature itself, is an integration of the
K-means clustering algorithm with SMOTE oversampling [Douzas 2018]. The K-means
SMOTE algorithm is realised through three steps.

1. Clustering: The clustering step clusters the whole input data. This divides the data
into K clusters, where K is a pre-specified number defined by the user.

2. Filtering: The filtering step is used to identify the clusters with a high proportion(by
default more than 50%) of minority class data points. It then distributes the number of
synthetic minority class samples to be generated over such identified clusters. The
distribution is done such that more synthetic samples would be generated for the
clusters with sparse distribution of minority class samples.

3. Oversampling: Finally, SMOTE is applied to generate predefined synthetic samples
from each of the clusters prioritised by the filtering step.

36 Chapter 3. Oversampling Techniques for convex space modelling

Note that, in the filtering step, for determining the distribution of the synthetic samples
to be generated, the filtered clusters are assigned sampling weights between zero and one.
A higher value of sampling weight for a certain sample corresponds to a low density of
minority class samples in the cluster containing that sample. The density of minority class
samples in a filtered cluster is measured relative to the average density of minority class
samples over all filtered clusters. The computation of the sampling weights is realised
through the following steps.

1. For a filtered cluster f , the Euclidean distance matrix is calculated for the minority
class samples from that clusters only.

2. The mean distance among samples is then calculated by taking the mean of all
non-diagonal elements in this distance matrix. Let us denote this by M f

3. The density of the cluster f is then defined as the ratio of number of minority class
data points in f to the quantity (M f)

m, where m is the number of features. The inverse
of density is termed as the sparsity of the cluster f .

4. Finally, the sampling weight of a cluster f is defined as the ratio of the sparsity measure
of f to the sum of the sparsity measures of all the filtered clusters.

Note that, the last step ensures that the sum of the sampling weights of all the filtered
clusters is always one. Thus, the sampling weight can be multiplied by the overall synthetic
samples to be generated to obtain the desired number of synthetic samples to be generated
from each cluster.

DBSMOTE is another extension of SMOTE that explores the integration of a clustering
algorithm DBSCAN with SMOTE. To understand the algorithm, it is crucial to understand
the DBSCAN algorithm discussed in [Bunkhumpornpat 2012]. DBSMOTE algorithm relies
on a data structure called Directly density reachable graph. Let x be a data point and Nϵ(x)
be a neighbourhood of x with radius ϵ. If the Nϵ(x) contains at least k points, where k
is some positive integer and y ∈ Nϵ(x), then y is said to be directly density reachable
from x, with respect to the chosen values of ϵ and k. For some cluster C in the data, a
Directly density reachable graph is an undirected but weighted simple graph constructed
such that the nodes are the data points of the cluster, for any pair of directly density
reachable nodes, there is an edge in the graph such that the edge weight is the distance
between the two nodes. The DBSMOTE algorithm is realised through the following steps:

1. First, the DBSCAN algorithm is used to cluster the minority class into m disjoint
clusters C1, . . . , Cm, depending on some choice of k and ϵ. Note that DBSCAN
clustering has a noise filtering mechanism.

2. From each of the selected clusters Ci, 1 ≤ i ≤ m, a directly density-reachable graph is
constructed depending upon the chosen ϵ and k.

3. The pseudo centroid ci of the cluster Ci is calculated. It is the nearest data point to the
centroid of the cluster Ci.

3.3. Integration of SMOTE with unsupervised learning 37

4. For every point p except for ci in Ci the shortest path between p and ci is identified
using Dijkstra’s algorithm.

5. Random edges are chosen from this shortest paths, and the node data points attached
to the corresponding edges are chosen to generate synthetic samples using the SMOTE
algorithm.

6. The process is then repeated over all clusters to balance the classes.

The CURE clustering algorithm is used by CURE SMOTE to identify clusters among
the minority class samples [Ma 2017, Guha 2001]. The CURE algorithm uses a hierarchical
clustering framework, which is also able to identify outliers in the minority class. The
algorithm identifies centre points for each cluster after removing the noisy data points,
in the process of clustering. It then generates synthetic data by applying SMOTE on each
representative minority data point and the cluster centres [Ma 2017].

Notably, a similar algorithm has been proposed using the Affinity propagation clustering
method instead of the K means clustering [Laureano 2019]. The proper choice of K is often
considered as a limitation of K-means clustering algorithm. However, Affinity propagation
does not require the number of clusters to be specified a priori.

Also, there is another algorithm called cluster-SMOTE that is quite similar to the
K-means SMOTE algorithm. However, it uses K-means clustering only on the minority
class and then oversamples from each cluster using the SMOTE algorithm.

3.3.2 SMOTE with dimension reduction algorithms

I have discussed algorithms that integrate clustering methods with SMOTE. Most of
these clustering methods are dependent on their parameter values and might not be robust.
Dimension reduction methods are different from clustering methods in the sense that they
do not deliberately try to find clusters in the data, but only attempt to reduce the data to
lower dimensions. If there is a strong pattern occurring in a subset of the data, usually
visualising the dimension-reduced data helps us identify such subsets as clusters occurring
in lower dimensions.

Isomap hybrid resampling is an algorithm integrating Isomap with SMOTE [Gu 2009].
Isomap is a dimension reduction method, which differs from its predecessor PCA on a
key aspect. PCA uses Euclidean distance as a distance measure between two points, while
Isomap uses the approximated geodesic distance as a distance measure between two points.
This enables Isomap to represent the nonlinearity in data in lower dimensions with more
efficiency. Isomap hybrid resampling uses the Isomap algorithm to embed the original data
into a lower dimensional space where it is linearly separable. The SMOTE algorithm is
then used to generate oversamples in the reduced data space. The oversampled samples
are then under-sampled using Neighbourhood Cleaning Rule (NCR) to generate balanced
low-dimensional data sets.

Another instance of integrating dimension reduction techniques with SMOTE is the
Minority Oversampling based on Local Densities in Low-Dimensional Space, the MOT2LD

38 Chapter 3. Oversampling Techniques for convex space modelling

algorithm. Notably, this algorithm uses both dimension reduction and clustering approach
[Xie 2015]. It uses t-SNE, a popular algorithm used for dimension reduction maintaining
the underlying manifold structure in a sense that, in a lower dimension, t-SNE can cluster
points, that are close enough to the latent high-dimensional manifold. The MOT2LD
algorithm is realised through the following steps:

1. The first step involves dimension reduction of the training data. A high dimensional
data point is embedded in some lower dimension. This is done using the t-SNE
algorithm. Notably, the t-SNE algorithm was proposed after Isomap and was a
significant improvement over the latter.

2. The second step is about finding clusters in the low dimensional embedding of the
data. A density based clustering algorithm, DPCluster is employed here. This
clustering algorithm determines the number of clusters automatically, unlike K-Means
Clustering. The motivation of the clustering step is to generate synthetic samples
within the clusters rather than between the clusters.

3. The third step involves outlier detection and filtering. A minority class sample can be
treated as an outlier if its local minority density is zero. This means that none of its
nearest neighbours are minority class samples.

4. In the fourth step, the minority class samples are assigned some weights, indicative of
their importance in context of the oversampling process. The importance of a minority
class sample is measured by the product of local majority count and inverse of local
minority density.

5. The fifth step is about synthetic sample generation. For this, the importance scores of
the minority class data points are first normalised to obtain a probability distribution.
Then a minority samples is drawn randomly following this probability distribution.
Another random sample is drawn that lies in the same cluster as the previous one.
Using these two samples, a new synthetic sample is generated following the SMOTE
algorithm.

The Self Organising Map Oversampling SOMO algorithm uses a Self Organising
Map (SOM) [Yin 2008, Douzas 2017], a dimension reduction approach, to learn the latent
distribution of the minority class data points. The imbalance ratio within each cluster is
then calculated, followed by identification of clusters with an imbalance ratio of less than 1.
For each of these identified clusters a density factor quantifying the density of minority class
data points in the respective cluster is calculated and then, for every pair of topologically
neighbouring clusters, another density factor, is calculated between the pairs. Both of
the density factors are normalised to form a weight distribution. The weight distribution
arising from the first distribution governs the amount of intra-cluster synthetic samples to be
generated from each detected cluster, while the weight distribution arising from the second
distribution governs the amount of inter-cluster synthetic samples to be generated between
a pair of topologically close clusters [Douzas 2017]. The synthetic samples are generated
using the SMOTE algorithm for both cases.

3.3. Integration of SMOTE with unsupervised learning 39

3.3.3 Oversampling technique integrating multiple approaches

The algorithm MWMOTE has been designed with the objective of improving the
selection of relevant minority class samples and using them for oversampling [Barua 2014].
It is a hybrid approach that uses weight distribution to prioritise minority class samples that
are beneficial for synthetic data generation as seen in the ADASYN algorithm and also uses
a clustering algorithm to cluster the minority class data points. The philosophy behind the
strategy is similar to its predecessor Borderline-SMOTE. However, it uses a more intricate
mechanism to select the Borderline minority class samples. There are six input parameters
for the MWMOTE algorithm Cmaj, Cmin, Smin, k1, k2, k3. Cmaj and, Cmin as usual, denote
the majority and minority class, respectively. Through the parameter Smin the user can
determine the number of synthetic samples to be generated. k1, k2 and k3 are the parameters
used to calculate data subsets defined as filtered minority set, borderline majority set, and
informative minority set respectively.

The filtered minority set is defined as Cfmin = Cmin − {x ∈ Cmin : Nk1(x) ∩ Cmin = φ},
where Nk1(x) denotes the k1 nearest neighbours of x. The filtered minority set identifies the
relatively safe minority class data points. This step is designed to filter out the outliers in
the minority class.

The borderline majority set is defined as Cbmaj = {y ∈ Cmaj : ∃x ∈ Cfmin, y ∈ N
Cmaj

k2
(x)},

where N
Cmaj

k2
(x) denotes the k2 nearest majority class neighbours of x. This step is designed

to identify majority class data points that are in close vicinity to some minority class sample
that is not an outlier.

The informative minority set is defined Cimin = {y ∈ Cfmin : ∃x ∈ Cbmaj, y ∈ NCmin
k3

(x)},
where NCmin

k3
(x) denotes the k3 nearest minority class neighbours of x. This step is designed

to identify minority class data points that are not an outlier, but lie in the close vicinity of
some majority class data point.

After the three sets Cfmin, Cbmaj and Cimin are identified, a weight distribution is defined
the minority class samples of Cimin. The weighing mechanism adopted by MWMOTE is
based on three key assumptions.

1. Samples close to the decision boundary contain more information than those far from
the boundary.

2. Minority samples in sparse clusters are more important than those in dense clusters.

3. Minority samples near dense majority clusters are more important than those near
sparse majority clusters.

A weight distribution Dw
imin is calculated by taking the borderline majority set Cbmaj into

consideration. Each data point x ∈ Cbmaj contributes to the weight of each minority class
data point p ∈ Cimin. The weight imposed by x ∈ Cbmaj on p ∈ Cimin is denoted by Iw(x, y),
named as information weight imposed by x on p. For a minority class data point p ∈ Cimin,
the selection weight is defined by the equation

Dw
imin(p) = Σx∈Cbmaj Iw(x, p) (3.11)

40 Chapter 3. Oversampling Techniques for convex space modelling

After all selection weights are determined, they are normalised to form a probability
distribution over the set Cimin. The quantity Iw(x, p) for a given x ∈ Cbmaj and p ∈ Cimin

are calculated depending on two factors called closeness factor and density factor.

The closeness factor C f of two points x ∈ Cmin and, p ∈ Cmin with respect to a cut-off
function f , is assumed to be inversely proportional to the Euclidean distance between points
x and p. Let de(x, p) denote the Euclidean distance between x and p. Let d(x, p) = de(x,p)

|F| ,
where |F| is the dimension of the feature space. The closeness factor is then defined by the
equation:

C f (x, p) =
f (d(x, p)−1)

C f (t)
M (3.12)

Where t and M are user defined quantities and f is a cut-off function.

The density factor is designed to support the second assumption ‘Minority samples in
sparse clusters are more important than those in dense clusters’, keeping in mind that the
first assumption is not contradicted. For points x and, p the density factor is defined as:

D f (x, p) =
C f (x, p)

Σq∈Cmin C f (x, q)
(3.13)

This is the normalised version of the closeness factor. The density factor ensures that a large
weight is assigned to the members of the sparse clusters.

Finally, depending on the closeness factor from Equation 3.12 and density factor from
Equation 3.13, the quantity Iw(x, p) is calculated as the product of C f (x, p) and D f (x, p).

After the probability distribution over Cmin is finalised, MWMOTE proceeds to a
clustering step to cluster Cmin using average linkage agglomerative clustering, a hierarchical
clustering process. Agglomerative clustering does not require the number of clusters to be
fixed a priori.

Finally, the synthetic samples are generated by first randomly choosing a data point
x ∈ Cimin based on the probability distribution defined over Cimin. A second sample y is
randomly chosen from the cluster which contains the data points x. For the choice of y, a
uniform probability distribution is considered over the cluster. Using x and y a synthetic
data is generated by the Equation 3.1.

3.4 Comparative studies between oversampling algorithms

A recent study conducted an empirical comparison of 85 such extensions or variants of
the SMOTE algorithm proposed until 2018 [Kovács 2019]. This shows that there is still scope
for improvement in convex space based oversampling and that the research field is still
quite dynamic. The comprehensive study benchmarked these algorithms on over a hundred
imbalanced datasets using different classifiers, including Support Vector Machine (SVM),
Decision Tree (DT), k-Nearest Neighbours (kNN), and Multi Layered Perceptron (MLP),
and investigated the best performing algorithms among the 85 SMOTE extensions. I briefly
introduce two algorithms with the best ranking according to Kovács et al. : Polynom-fit
SMOTE and ProWSyn.

3.4. Comparative studies between oversampling algorithms 41

3.4.1 Some state-of-the-art extensions of SMOTE

The Polynom-fit SMOTE (pf-SMOTE) algorithm was proposed in 2008 [Gazzah 2008].
This algorithm has different oversampling schemes based on the underlying network
topologies of the minority class. The pf-SMOTE algorithm proposes four different network
topologies to generate synthetic samples from minority classes, depending on the latent
data distribution. These are: star topology, polynomial curve topology, bus topology, and
mesh topology. The star topology generates synthetic samples along straight lines joining
the mean of the minority class data points and each minority class data point, forming a
star-like silhouette for the synthetic data. For the polynomial curve topology, each feature
is fit to a polynomial, the synthetic samples are generated feature-wise along the curve of
these polynomials. For the bus topology, a path connecting one minority data to its nearest
neighbour is formed using straight lines. Synthetic samples are sampled from this path.
For the mesh topology, synthetic samples are generated along straight lines connecting each
minority data point to the rest of the minority data points. The authors suggest that the star
topology has proven to be the most effective [Gazzah 2008].

The ProWSyn algorithm partitions the minority classes by their proximity to the
majority class. The partitions are treated as clusters. The clusters are weighted as per their
proximity to the majority class, such that clusters closer to the majority class have higher
weights. The precise method for this is documented in Algorithm 4. The weights decide
how many samples are to be generated from each cluster. Synthetic samples are generated
following the approach of SMOTE, that is, taking a convex combination of two arbitrary
samples in a cluster [Barua 2013].

This chapter reviews the state-of-the-art relevant to synthetic oversampling based on
convex space modelling. The next chapter discusses my research work on improving
synthetic sample generation through convex space modelling by introducing the LoRAS
algorithm.

43

Chapter 4

Improving convex space modelling
with the LoRAS algorithm

This chapter introduces the LoRAS algorithm. The algorithm relies on a more precise
modelling of the convex space minority class data compared to its predecessors. Firstly,
this chapter provides a geometric interpretation and an analytical explanation behind the
rationale of the approach adopted by LoRAS for convex space modelling, followed by
a section presenting a detailed description and pseudocode of the algorithm. Then the
chapter discusses the integration of the LoRAS algorithm with the state-of-the art dimension
reduction algorithm UMAP, to introduce the LoRAS UMAP algorithm. The protocols and
datasets used for my benchmarking studies for LoRAS and LoRAS UMAP algorithms are
then described. I show, from the results of the benchmarking studies, some unique aspects of
LoRAS in terms of improving classifier performance and present the statistical significance
of the results to analyse the reliability of the results.

4.1 Modelling the convex space of minority class

4.1.1 Geometric interpretation of convex space modelling

This section describes the strategy of LoRAS to approximate the data manifold, given
a dataset. A typical dataset for a supervised ML problem consists of a set of features F =

{ f1, f2, . . . }, that are used to characterise patterns in the data, and a set of labels or ground
truth. Ideally, the number of instances or samples should be significantly greater than the
number of features. In order to maintain the mathematical rigour of LoRAS consider the
following definition for a small dataset.

Definition 11. Consider a class or the whole dataset with n samples and |F| features. If log10(
n
|F|) <

1, then the dataset is called, a small dataset.

The LoRAS algorithm is designed to learn from a dataset by approximating the
underlying data manifold. Assuming that F is the best possible set of features to represent
the data and all features are equally important, one can think of a data oversampling model
to be a function g : ∏l

i=1 R|F| → R|F|, that is, g uses l parent data points (each with |F|
features) to produce an oversampled data point in R|F|.

44 Chapter 4. Improving convex space modelling with the LoRAS algorithm

Definition 12. Define a random affine combination of some arbitrary vectors as the affine linear
combination of those vectors, such that the coefficients of the linear combination are chosen randomly.
Formally, a vector v, v = α1u1 + · · ·+ αnum, is a random affine combination of vectors u1, . . . , um,
(uj ∈ R|F|) if α1 + · · · + αm = 1, αj ∈ R+ and α1, . . . , αm are the coefficients of the affine
combination chosen randomly from a Dirichlet distribution.

The simplest way of augmenting a data point would be to take the average (or random
affine combination with positive coefficients as defined in Definition 12) of two data points
as an augmented data point. But, when there are |F| features, one can assume that
the hypothetical manifold on which the data lies is |F|-dimensional. A |F|-dimensional
manifold can be locally approximated by a collection of (|F|−1)-dimensional planes.

4.1.2 Analytical explanation for convex space modelling

I constructed a mathematical framework to prove that LoRAS is a more effective
oversampling technique, since it provides a better estimate for the mean of the underlying
local data distribution of the minority class data space. Let X = (X1, . . . , X|F|) ∈ Cmin

be an arbitrary minority class sample. Let NX
k be the set of the k-nearest neighbours

of X, which will consider the neighbourhood of X. Both SMOTE and LoRAS focus on
generating augmented samples within the neighbourhood NX

k at a time. Assume that a
random variable X ∈ NX

k follows a shifted t-distribution with k degrees of freedom, location
parameter µ, and scaling parameter σ. Note that here σ is not referring to the standard
deviation but sets the overall scaling of the distribution [Jackman 2009], which can be chosen
to be the sample variance in the neighbourhood of X. A shifted t-distribution is used to
estimate population parameters, if there are less number of samples (usually, ≤ 30) and/or
the population variance is unknown. Since in SMOTE or LoRAS generates samples from
a small neighbourhood, one can argue in favour of the assumption that locally, a minority
class sample X as a random variable, follows a t-distribution. Following [Blagus 2013], one
can assume that if X, X′ ∈ NX

k then X and X′ are independent. For X, X′ ∈ NX
k , also assume:

IE[X] = IE[X′]

= µ = (µ1, . . . , µ|F|)

Var[X] = Var[X′]

= σ2
(︂ k

k− 2

)︂
= σ′2 = (σ′21 , . . . , σ′2|F|)

(4.1)

where, IE[X] and Var[X] denote the expectation and variance of the random variable X
respectively. However, the mean has to be estimated by an estimator statistic (i.e., a function
of the samples). Both SMOTE and LoRAS can be considered as an estimator statistic for the
mean of the t-distribution that X ∈ Cmin follows locally.

Theorem 1. Both SMOTE and LoRAS are unbiased estimators of the mean µ of the t-distribution
that X follows locally. However, the variance of the LoRAS estimator is less than the variance of
SMOTE given that |F| > 2.

4.1. Modelling the convex space of minority class 45

Proof. A shadowsample S is a random variable S = X + B where X ∈ NX
k , the

neighbourhood of some arbitrary X ∈ Cmin and B follows N (0, σB).

IE[S] = IE[X] + IE[B]

= µ

Var[S] = Var[X] + Var[B]

= σ′2 + σ2
B

(4.2)

assuming S and B are independent. Now, a LoRAS sample L = α1S1 + · · · + α|F|S|F|,
where S1, . . . , S|F| are shadowsamples generated from the elements of the neighbourhood
of X, NX

k , such that α1 + · · · + α|F| = 1. The affine combination coefficients α1, . . . , α|F|
follow a Dirichlet distribution, with all concentration parameters assuming equal values
of 1 (assuming all features to be equally important). For arbitrary i, j ∈ {1, . . . , |F|},

IE[αi] =
1
|F|

Var[αi] =
|F| − 1

|F|2(|F|+ 1)

Cov(αi, αj) =
−1

|F|2(|F|+ 1)

where Cov(A, B) denotes the covariance of two random variables A and B. Assuming α and
S to be independent,

IE[L] = IE[α1]IE[S1] + · · ·+ IE[α|F|]IE[S
|F|] = µ (4.3)

Thus L is an unbiased estimator of µ. For j, k, l ∈ {1, . . . , |F|},

Cov[αkSk
j , αlSl

j] = IE[αkSk
j αlSl

j]− IE[αkSk
j]IE[αlSl

j]

= IE[αkαl]µ
2
j −

µ2
j

|F|2

=
[︂
Cov(αk, αl) +

1
|F|2

]︂
µ2

j −
µ2

j

|F|2 = µ2
j Cov(αk, αl)

(4.4)

since αkαl is independent of Sk
j Sl

j. For an arbitrary j, j-th component of a LoRAS sample Lj

Var(Lj) = Var(α1S1
j + · · ·+ α|F|S

|F|
j)

= Var(α1S1
j) + · · ·+ Var(α|F|S

|F|
j) + Σ|F|k=1Σ|F|l=1,l ̸=kCov(αkSk

j , αlSl
j)

=
µ2

j (|F| − 1) + 2(σ′2j + σ2
Bj)|F|

|F|(|F|+ 1)
−

µ2
j (|F| − 1)

|F|(|F|+ 1)

=
2(σ′2j + σ2

Bj)

(|F|+ 1)

(4.5)

For LoRAS, a convex combination of |F| shadowsamples is considered as a synthetic
samples and SMOTE considers a convex combination of two minority class samples.

46 Chapter 4. Improving convex space modelling with the LoRAS algorithm

Note that since a SMOTE generated oversample can be interpreted as a random convex
combination of two minority class samples, one can consider |F| = 2 for SMOTE,
independent of the number of features. Moreover, from Equation 4.3, this implies that
SMOTE is an unbiased estimator of the mean of the local data distribution. Thus, the
variance of a SMOTE generated sample as an estimator of µ would be 2σ′2

3 (since B = 0
for SMOTE). However, for LoRAS as an estimator of µ, when |F| > 2, the variance would
be less than that of SMOTE.

This implies that, locally, LoRAS can estimate the mean of the underlying t-distribution
better than SMOTE.

FIGURE 4.1: Figure showing the idea of LoRAS to control the variance of the synthetic samples
generated from the minority class. Compared to SMOTE, LoRAS can generate low-variance synthetic
samples which can be intuitive interpreted as synthetic samples generated closer to the average point
or centroid in a minority class data neighbourhood. LoRAS thus prevent classifiers from confusing

them to majority class samples.

4.2 LoRAS algorithm

Given |F| sample points, it is possible to exactly derive the equation of a unique (|F|−
1)-dimensional plane containing these |F| sample points. Note that, a small neighbourhood
of a dataset can itself be considered as a small dataset. A small neighbourhood of k points
around a data point in a dataset, given sufficiently small k, satisfies Definition 11, that is
k and |F| satisfies, log10(

k
|F|) < 1. Thus, considering k to be sufficiently small, it can be

assumed that this small neighbourhood is a small dataset. To enrich this small dataset,
LoRAS creates shadow data points or shadowsamples from the k parent data points in the
minority class data point neighbourhood. Each shadow data point is generated by adding
noise from a normal distribution, N (0, h(σf)) for all features f ∈ F, where h(σf) is some
function of the sample variance σf for the feature f . For each of the k data points, LoRAS can
generate m shadow data points such that, k×m ≫ |F|. Now it is possible for us to choose
|F| shadow data points from the k×m shadow data points even if k < |F|. LoRAS chooses
|F| shadow data points as follows: it first chooses a random parent data point p and then
restrict the domain of choice to the shadowsamples generated by the parent data points in
Np

k .

4.3. Benchmarking studies for LoRAS algorithm 47

For high-dimensional datasets, choosing k-nearest neighbours of a data point using
simple Euclidean, Manhattan or general Minkowski distance measures can be misleading
in terms of approximating the latent data manifold. To avoid this, LoRAS adopts
a manifold learning-based strategy. Before choosing the k-nearest neighbours of a
data point, LoRAS performs a dimension reduction on the data points of the minority
class using the well-known dimension reduction and manifold learning technique t-SNE
[van der Maaten 2008]. Once a two-dimensional t-embedding of the minority class data
is obtained, LoRAS chooses the k-nearest neighbours of a particular data point consistent
with its k-nearest neighbours (measured as per usual distance metrics) in the 2-dimensional
t-SNE embedding of the minority class.

Once the neighbourhoods are decided upon and the shadowsamples are generated,
LoRAS takes a random affine combination with positive coefficients (Convex combination)
of the |F| chosen shadowsamples to create one augmented Localized Random Affine
Shadowsample or a LoRAS sample as defined in Definition 12. Considering the arbitrary
low variance that LoRAS can choose for the Normal distribution from which it draws
the shadowsamples, one can assume that the shadowsamples lie in the latent data
manifold itself. It is a practical assumption, considering the stochastic factors leading
to small measurement errors. Now, there exists a unique (|F|−1)-dimensional plane,
that contains the |F| shadowsamples, which is assumed to be an approximation of the
latent data manifold in that small neighbourhood. Thus, a LoRAS sample is an artificially
generated sample drawn from a (|F|−1)-dimensional plane, which locally approximates
the underlying hypothetical |F|-dimensional data manifold. It is worth mentioning here,
that the effective number of features in a dataset is often less than |F|. In high dimensional
data, there are often correlated features or features with low variance. Thus, for practical
use of LoRAS, one might consider generating convex combinations of the effective number
of features, which might be less than |F|.

4.3 Benchmarking studies for LoRAS algorithm

For testing the potential of LoRAS as an oversampling approach, I designed
benchmarking experiments on a total of 14 datasets which are either highly imbalanced,
high dimensional or with a few data points. With this number of diverse case studies,
it is possible to have a comprehensive idea of the advantages of LoRAS over the other
oversampling algorithms of interest.

4.3.1 Datasets used

This section provides a brief description of the datasets and sources that have been used
for the study.

Scikit-learn imbalanced benchmark datasets: The imblearn.datasets package is
complementing the sklearn.datasets package. It provides 27 preprocessed datasets,
which are imbalanced. The datasets span a large range of real-world problems from several
fields such as business, computer science, biology, medicine, and technology. This collection

48 Chapter 4. Improving convex space modelling with the LoRAS algorithm

Algorithm 1 Localized Random Affine Shadowsample (LoRAS) Oversampling
Inputs:

C_maj: Majority class parent data points
C_min: Minority class parent data points

Parameters:

k: Number of nearest neighbours to be considered per parent data point
(default value : 30 if |Cmin | >= 100, 5 otherwise)

|Sp|:
Number of generated shadowsamples per parent data point(︁
default value : max

(︁
ceil(2|F|

k), 40
)︁)︁

Lσ : List of standard deviations for normal distributions for adding noise to each feature
(default value : [0.005, . . . , 0.005])

Naff : Number of shadow points to be chosen for a random affine combination
(default value : |F|)

Ngen :
Number of generated LoRAS points for each nearest neighbours group(︁
default value :

|Cmaj |−|Cmin |
|Cmin |

)︁
embedding: Type of Embedding used to choose minority class neighbourhood (regular or t-embedding)

(default value : ‘regular’)

perplexity: Perplexity of t-embedding (applicable only if embedding=‘t-embedding’)
(default value : 30)

Constraint:
Naff < k ∗ |Sp|

Initialize loras_set as an empty list
For each minority class parent data point p in C_min do

neighbourhood←− calculate k-nearest neighbours of p, as per selected Embedding parameter and append p

Initialize neighbourhood_shadow_sample as an empty list

For each parent data point q in neighbourhood do
shadow_points ←− draw |Sp| shadowsamples for q drawing noises from normal distributions with corresponding standard deviations Lσ containing

elements for every feature
Append shadow_points to neighbourhood_shadow_sample

endfor
Repeat

selected_points←− select Naff random shadow points from neighbourhood_shadow_sample
affine_weights←− create and normalize random weights for selected_points
generated_LoRAS_sample_point←− selected_points · affine_weights
Append generated_LoRAS_sample_point to loras_set

Until Ngen resulting points are created;
endfor
Return resulting set of generated LoRAS data points as loras_set

FIGURE 4.2: Figure showing the philosophies of SMOTE and LoRAS oversampling algorithms.
While smote generates synthetic samples from convex combination of two close minority class
samples, LoRAS generates synthetic samples from random convex combination of multiple

shadowsamples in a minority class data neighbourhood.

of datasets was proposed in the imblearn.datasets Python library by [Lemaître 2017]
and benchmarked by [Ding 2011]. Many of these datasets have been used in various
research articles on oversampling approaches [Ding 2011, Sáez 2016]. A statistically reliable
benchmarking analysis of all 27 datasets in a stratified cross-validation framework involves

4.3. Benchmarking studies for LoRAS algorithm 49

a lot of computational effort. 11 datasets are thus chosen out of these two, depending on
two criteria:

• Highly imbalanced: Datasets with imbalance ratio more than 25:1. This
category includes abalone_19, letter_image, mammography, ozone_level, webpage,
wine_quality, yeast_me2 datasets.

• High dimensional: Datasets with more than 100 features. This category includes
arrhythmia, isolet, scene, webpage and yeast_ml8.

Note that the webpage dataset is common in both the criteria, giving us a total of 11
datasets. These two categories are chosen because they are of special interest in research
related to imbalanced datasets and have received extensive attention in this research area
[Anand 2010, Hooda 2018, Jing 2021, Blagus 2013].

Credit card fraud detection dataset: The description of this dataset from the website is:
https://www.kaggle.com/mlg-ulb/creditcardfraud. “The dataset contains transactions
made by credit cards in September 2013 by European cardholders. This dataset presents
transactions that occurred in two days, where there are 492 frauds out of 284,807
transactions. The dataset is highly unbalanced, the positive class (frauds) account for
0.00172 percent of all transactions. The dataset contains only numerical input variables,
which are the result of a PCA transformation. Feature variables f1, . . . , f28 are the principal
components obtained with PCA, the only features that have not been transformed with PCA
are the ‘Time’ and ‘Amount’. The feature ‘Time’ contains the seconds elapsed between each
transaction and the first transaction in the dataset. The feature ‘Amount’ consists of the
transaction amount. The labels are encoded in the ‘Class’ variable, which is the response
variable and takes value 1 in case of fraud and 0 otherwise” [Dal Pozzolo 2018].

Small datasets: It was also an interesting venture to check the performance of LoRAS on
small datasets. Two such datasets were obtained: ar1, ar3. Both of these datasets have very
few data points and less than 10 points in the minority class.

Thus, in total, the LoRAS oversampling algorithm was benchmarked against the existing
algorithms on a total of 14 datasets. Please note the relevant statistics on these datasets in
Table 4.1.

4.3.2 Study protocols

For every dataset analysed, a consistent workflow has been used. Given a dataset, for
every machine learning model, the model performances are judged based on a 5×10-fold
stratified cross-validation framework. However, for the two small datasets ar1 and ar3 use,
a 5×3-fold stratified cross validation framework is employed, since there are less than 10
samples in the minority class. First, the dataset is randomly scuffled. A given dataset is first
split into 10 folds, each one distinct from the other, maintaining the imbalance ratio for every
fold. Then machine learning models are trained on the dataset without any oversampling
with 10-fold cross validation. This means that they are trained and tested 10 times, each time
considering a fold as a test fold and the rest 9 folds as training folds. However, while training

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.openml.org/d/1059
https://www.openml.org/d/1060

50 Chapter 4. Improving convex space modelling with the LoRAS algorithm

TABLE 4.1: Table showing some statistics for the datasets studied in for the benchmarking of LoRAS.
For each dataset, the feature of the dataset that led us to its choice for this study is marked in bold.

Dataset Imbalance ratio Number of samples Number of features

abalone_19 130:1 4177 10
arrythmia 17:1 452 278
isolet 12:1 7797 617
letter-img 26:1 20000 16
mammography 42:1 11183 6
scene 13:1 2407 294
ozone_level 34:1 2536 72
webpage 33:1 34780 300
wine-quality 26:1 4898 11
yeast-me2 28:1 1484 8
yeast-ml8 13:1 2417 103
credit fraud 577:1 284807 28
ar1 12.44:1 121 30
ar3 6.8:1 63 30

the ML models on oversampled data, the oversampling was done only on the training folds
and the test folds were left as they are for each training session. For each dataset, the whole
process is repeated five times to avoid the stochastic effects as much as possible.

For all the oversampling algorithms, for a given dataset, the same neighbourhood
size for every oversampling model is chosen. If there were less than 100 data points
in the minority class, the neighbourhood size was chosen to be 5. Otherwise, the
neighbourhood size is considered to be 30. Given numerous datasets analysed, for every
dataset, this was not customised, and the above-mentioned general rule is maintained
throughout. For LoRAS oversampling, however, a preliminary study was performed to
find out the customised parameter values for every dataset, since the LoRAS algorithm is
highly parametrized in nature. Several combinations of parameters Naff, embedding and
perplexity were tried employing random grid search. For the initial study involving the
parameter optimisation of LoRAS, given a dataset, a simple train-test split of the dataset
(1:1 train-test split ratio) was done, and then LoRAS was applied with parameter grids on
the training data to oversample and test the classifier performances on the test data. The
training set is kept relatively small, so that the classifier does not gain much experience on
the data while parameter estimation and gets prone to overfitting. This study was kept
completely independent of the main cross-validation based results so that the samples from
the test sets of cross validation have minimum effect on parameter tuning. For parameter,
Naff the grid interval is [2, |F|], |F| being the number of features. Five numbers were chosen
while forming a search grid from this interval. Three of them are randomly chosen and the
numbers 2 and |F| are always included in this set of 5 numbers. For parameter, embedding
the grid values are the two possible entries that the parameter adopts. For the perplexity
parameter, grid values [0.01, 0.1, 1, 10, 30, 100] were used.

For all the algorithms including LoRAS, for a given dataset, the neighbourhood size
for every oversampling model is fixed. For every oversampling model considered, the
neighbourhood size for the oversampling model is the parameter that the model is highly
sensitive to, since it contributes the most in determining the distribution of the oversampled
minority class. For LoRAS, there are three (out of seven parameters in total) parameters
designed to better model/approximate the minority class data manifold (for example: the
ones involving the t-SNE on the minority class), which are tuned to show the applicability

4.3. Benchmarking studies for LoRAS algorithm 51

of manifold approximation to improve convex combination-based oversampling. However,
as suggested, all parameters related to the original distribution of the minority class, for all
oversampling models are fixed for all comparisons.

However, considering the philosophy of LoRAS and the comparatively large number of
parameters it uses, the other parameters for LoRAS are tuned, since the other parameters are
the key to a proper approximation or modelling of the minority class data manifold, which
is the key factor behind the success of LoRAS.

For LoRAS oversampling, every dataset a unique value for Naff is used, as presented
in Table 4.2. For individual ML models, different settings for the LoRAS parameters
embedding and perplexity are implemented (See supplementary materials in [Bej 2021]).
To ensure fairness of comparison, the oversampling was done such that the total number
of augmented samples generated from the minority class was as close as possible to the
number of samples in the majority class as allowed by each oversampling algorithm.
Speaking of other parameters of the LoRAS algorithm, for Lσ, w list consisting of a constant

value of .005 is considered for each dataset and for the parameter Ngen the value |Cmaj|−|Cmin|
|Cmin|

is chosen. A detailed list of parameter settings used for the oversampling algorithms is
presented in Table 4.2

TABLE 4.2: This table shows the details of the parameter settings for the oversampling algorithms
used by us for the experiment. The second column is the size of the oversampling neighbourhood,
and the same size is chosen for all the oversampling models for each dataset in the analysis. The last

three columns are specific to LoRAS parameters.

Dataset Minority samples Oversampling nbd LoRAS Naff

abalone19 32 5 10
arrythmia 25 5 100
isolet 600 30 179
letter-img 734 30 16
mammography 260 30 6
scene 177 30 2
ozone_level 73 5 10
webpage 981 30 94
wine-quality 183 30 2
yeast-me2 51 5 2
yeast-ml8 178 30 3
credit fraud 492 30 30
ar1 9 3 30
ar3 8 3 10

To choose ML models for the study, first a pilot study was conducted with ML classifiers
such as k-nearest neighbours (kNN), Support Vector Machine (SVM) (linear kernel), Logistic
regression (LR), Random forest (RF), and Adaboost (AB). As inferred in [Blagus 2013], kNN
was found to be quite effective for the datasets used. LR and SVM performed better
compared to RF and ab in most cases. Thus, kNN, SVM, and LR were considered for the
final studies. The lbfgs solver was used for the LR model and a linear kernel for the SVM
model. For the kNN model, 10 nearest neighbours were chosen as parameter settings if there
are less than 100 samples in the minority class and 30 nearest neighbours otherwise. For
‘arrhythmia’, ‘abalone-19’, ‘ar1’ and ‘ar3’ however only 5 nearest neighbours for the kNN
model are considered since it has only 25, 32, 9 and 8 minority class samples respectively.

52 Chapter 4. Improving convex space modelling with the LoRAS algorithm

This parameter is chosen to be consistent with the neighbourhood size of all oversampling
models, since the neighbourhood size directly influences the distribution of the training data
and hence the model performance.

In the analysis, special notice of the credit card fraud detection dataset is taken. This
dataset is not included in the imblearn.datasets Python library. However, the main
reason why a special attention was bestowed upon this dataset is that, it is by far the
most imbalanced popular publicly available dataset. The extreme imbalance ratio of 577:1
is incomparable to any of the datasets in imblearn.datasets. Also, this dataset has
received special attention of researchers attempting to use ML in Credit fraud detection
[Varmedja 2019]. LR and RF are known to have good prediction accuracies for the dataset.
Thus, these two ML models are considered for the credit fraud dataset. [Varmedja 2019]
has also not provided cross-validated analysis of their models, while the models have been
trained and tested with the usual 10-fold cross-validation framework as discussed before.
In addition, for two small datasets with a critically small minority class, only kNN and
LR classifiers were used, with parameter settings as specified before. The reason is, for all
12 other datasets, SVM did not stand out to be the best performer in terms of F1-Score
in any of them. As performance measures, F1-Score and balanced accuracy have been
used for classifier evaluation in this study. For a given classifier, F1-Score quantifies the
classification performance of the minority class, whereas balanced accuracy quantifies the
overall classification performance.

For computational coding, I used the scikit-learn (V 0.21.2), numpy (V

1.16.4), pandas (V 0.24.2), and matplotlib (V 3.1.0) libraries in Python (V

3.7.4).

4.4 Improving classifier performance using LoRAS

From the experiments, one can observe an interesting behaviour of oversampling models
in terms of their average F1-Score and balanced accuracy. Once experiment results are
presented, I will discuss why considering both F1-Score and balanced accuracy can give
us a clearer idea about model performance.

Selected model performances for all datasets: Detailed results of the experiments for all
machine learning models are provided as supplementary material in Bej et al. To be precise,
for every combination of datasets, ML models and oversampling strategies, the mean and
variance of the 10-fold cross validation process over 5 repetitions are presented. For judging
the performance of the oversampling models the following scheme is followed:

- First, for a given dataset, the ML model trained on that dataset that provides the
highest average F1-Score over all the oversampling models and training without
oversampling is chosen. The F1-Score reflects the balance between precision and recall
and considered as a reliable metric for imbalanced classification tasks.

- Both the balanced accuracy and F1- score of the chosen model are considered as an
evaluation of how well the oversampling model performs on the considered dataset.
Following this evaluation scheme, the results are presented in Table 4.3.

4.4. Improving classifier performance using LoRAS 53

TABLE 4.3: Table showing balanced accuracy/F1-Score for several oversampling strategies
(Baseline, SMOTE, SVM-SMOTE, Borderline1 SMOTE, Borderline2 SMOTE, ADASYN and LoRAS
column-wise respectively) for all 14 datasets of interest for ML learning models producing the best

average F1 score over all oversampling strategies and baseline training for respective datasets.

Dataset ML Baseline SMOTE Bl-1 Bl-2 SVM ADASYN LoRAS

abalone19 kNN .534/.000 .644/.054 .552/.044 .552/.044 .556/.045 .571/.055 .675/.059
arrythmia LR .679/.37 .666/.345 .672/.352 .709/.307 .679/.350 .667/.362 .694/.380
isolet LR .900/.826 .898/.806 .899/.802 .906/.693 .911/.799 .898/.806 .904/.809
letter-img kNN .927/.915 .988/.781 .984/.768 .977/.687 .986/.724 .985/.732 .989/.833
mammography kNN .703/.549 .911/.413 .909/.414 .899/.326 .909/.467 .905/.353 .896/.511
scene LR .551/.168 .616/.222 .619/.230 .620/.223 .616/.235 .620/.224 .616/.226
ozone_level LR .517/.062 .800/.190 .777/.212 .781/.183 .738/.215 .803/.192 .809/.207
webpage kNN .805/.711 .906/.267 .901/.274 .903/.287 .904/.267 .903/.264 .923/.613
wine-quality LR .517/.067 .718/.179 .715/.182 .711/.171 .712/.216 .721/.180 .734/.197
yeast-ml8 kNN .500/.000 .558/.152 .561/.153 .563/.153 .572/.158 .558/.151 .559/.152
yeast-me2 kNN .523/.074 .834/.331 .797/.373 .79/.304 .785/.388 .825/.315 .842/.354
credit fraud RF .669/.775 .922/.359 .919/.645 .919/.556 .913/.741 ..923/.350 .904/.820
ar1 kNN .340/.071 .561/.306 .549/.298 .594/.338 .550/.324 .583/.320 .563/.349
ar3 RF .634/.259 .810/.531 .809/.584 .819/.582 .755/.479 781/.457 .823/.563
Average - .636/.338 .775/.352 .764/.380 .771/.346 .759/.386 .777/.340 .783/.433
Average rank - 6.53/4.64 3.57/4.75 4.35/3.46 3.39/5.10 4.07/3.17 3.5/4.71 2.57/2.14

Calculating average performances over all datasets, LoRAS has the best balanced
accuracy and F1-Score. As expected, SMOTE improved balanced accuracy compared to
model training without any oversampling. Surprisingly, it lags behind in F1-Score, for quite
a few datasets with high baseline F1-Score such as letter_image, isolet, mammography,
webpage and credit fraud. Interestingly, the oversampling approaches SVM-SMOTE
and Borderline1 SMOTE also improved the average F1-Score compared to SMOTE, but
compromised for a lower balanced accuracy. On the other hand, applying ADASYN
increased the balanced accuracy compared to SMOTE, but again compromises on the
F1-Score. In contrast, the LoRAS approach produces the best balanced accuracy on average
by maintaining the highest average F1-Score among all oversampling techniques. Even
considering stochastic factors, LoRAS can improve both the balanced accuracy and F1-Score
of ML models significantly compared to SMOTE, which makes it unique.

Datasets with high imbalance ratio: To verify the performance of LoRAS on highly
imbalanced datasets, the average of the selected model performances for the datasets with
the highest imbalance ratios (among the ones tested) is presented in Table 4.4.

TABLE 4.4: Table showing the average balanced accuracy/F1-Score of the selected models for
datasets with the highest imbalance ratios and high-dimensional datasets separately

Average Baseline SMOTE Bl-1 Bl-2 SVM ADASYN LoRAS

Highly imbalanced datasets .662/.381 .840/.321 .819/.364 .817/.319 .814/.382 .841/.305 .846/.449
High dimensional datasets .687/.415 .728/.358 .730/.362 .740/.332 .736/.361 .729/.361 .739/.436

From the results, note that LoRAS oversampling can significantly improve model
performance for highly imbalanced datasets. LoRAS provides the highest F1-Score and
balanced accuracy among all oversampling models. The results here show similar
properties for SMOTE, Borderline-1 SMOTE, SVM SMOTE, ADASYN and LoRAS as
discussed before. Note that, for the credit fraud dataset, which is the most imbalanced

54 Chapter 4. Improving convex space modelling with the LoRAS algorithm

among all, LoRAS has significant success over the other oversampling models in terms of
balanced accuracy. For the webpage dataset as well, it improves the balanced accuracy
significantly, compromising minimally on the baseline F1-Score. The same trend follows
for the letter_image dataset. Notably, these three datasets have the highest number of
overall samples as well, implying that with more data, LoRAS can significantly outperform
compared convex combination-based oversampling models.

High dimensional datasets: It is also of interest to us to check how LoRAS performs
on high dimensional datasets. Therefore, five datasets with the highest number of features
are selected among the tested datasets and the performances of the selected ML methods
are presented in Table 4.4. From the results for high dimensional datasets, observe that
LoRAS produces the best F1-Score and second best balanced accuracy on average among all
oversampling models as Borderline-2 SMOTE beats LoRAS marginally. SMOTE improves
both balanced accuracy with respect to the baseline score here. Borderline-1 SMOTE
and SVM SMOTE further increased SMOTE’s performance both in terms of F1-Score and
balanced accuracy. Borderline-2 SMOTE, although improves the balanced accuracy of
SMOTE, compromises on the F1-Score. Note that, even excluding the webpage dataset,
where LoRAS has an overwhelming success, LoRAS still has the best average F1-Score
and the third highest balanced accuracy marginally behind SVM-SMOTE and Borederline-2
SMOTE. One can thus conclude, that for high dimensional datasets LoRAS can outperform
the compared oversampling models in terms of F1-Score, while compromising marginally
for balanced accuracy.

Small datasets: For the two small datasets (with less than 10 samples in the minority
class) explored, one can observe that LoRAS performs reasonably well. For ‘ar1’, LoRAS
produces the best F1-Score and the third best balanced accuracy. For the ‘ar2’ dataset, LoRAS
produces the best balanced accuracy and the third best F1-Score. Note that LoRAS performs
quite well for the ‘abalone’ and ‘arrhythmia’ datasets, which also have a few data points in
the minority class.

The Wilcoxon’s signed rank test is implemented to compare LoRAS with other
convex-combination based oversampling algorithms, in terms of both the performance
measures used: F1-Score and balanced accuracy.

TABLE 4.5: Table showing p-values for comparison of LoRAS against the other oversampling
algorithms, in terms of both the performance measures used: F1-Score and balanced accuracy.

Measure Baseline SMOTE Bl-1 Bl-2 SVM ADASYN

F1-Score 0.0303 0.0009 0.0479 .0035 0.0479 0.0009
balanced accuracy 0.0009 0.0354 0.0258 0.5095 0.0382 0.1670

From Table 4.5, observe that the p-values for all paired tests are less than 0.05 for the
F1-Score, and therefore, the H0 is rejected for all the paired tests in case of the F1-Score.
Thus, the F1-Scores LoRAS produce have a big enough difference compared to the other
compared algorithms, to be statistically significant. For balanced accuracy, the algorithms
Borderline-2 SMOTE and ADASYN do not show significant statistical difference to LoRAS.
However, since F1-Score is a more reliable and widely used metric for imbalanced datasets,

4.5. Significance of the LoRAS algorithm 55

one can conclude that overall results generated by LoRAS are significantly different from
the compared oversampling algorithms.

Recall that a higher value W+ for LoRAS indicates towards a superior performance of
LoRAS and the value of R indicates towards how superior(with a higher W+)/ inferior(with
a higher W−) the performance of LoRAS is, compared to the other oversampling model for
the tested datasets. [Tarawneh 2020] have considered ranges of R ≤ 0.1, 0.1 < R ≤ 0.5 and
R > 0.5 to be indicators for small, medium and high degree of change (improvement or
deterioration) in the predictive performance respectively.

TABLE 4.6: Table showing W+/W−/R for comparison of LoRAS against the other oversampling
algorithms, in terms of both the performance measures used: F1-Score and balanced accuracy.

Measure Baseline SMOTE Bl-1 Bl-2 SVM ADASYN

F1-Score 95/10/.713 105/0/.880 90/15/.629 102/3/.830 80/15/.629 105/0/.880
balanced accuracy 105/0/.880 102/3/.830 95/10/.715 69/36/.286 95/10/.722 95/10/.837

From Table 4.6, note that, LoRAS has a higher W+ value for both F1 Score and balanced
accuracy in comparison to each of the other convex combination-based oversampling
methods in consideration. Moreover, for the F1 Score measure, the R value is also more than
0.5, indicating a high degree of improvement in F1-Score for LoRAS, over the considered
oversampling models. Similarly, for balanced accuracy, a high degree of improvement
for LoRAS is observed over all considered oversampling models except the Borderline-2
SMOTE, for which there is a medium degree of improvement. Overall, it is safe to conclude
that LoRAS provides a significant improvement in performance over the compared convex
combination-based oversampling methods.

4.5 Significance of the LoRAS algorithm

To visualise the key aspects of LoRAS oversampling, the PCA plots for oversampled
data from the ozone_level dataset are generated for several studied oversampling methods,
in Figure 4.3. From Figure 4.3 one can observe that SMOTE and ADASYN oversamples
highly on the neighbourhood of the outliers, depicted by a blue box in each subplot. While
this is somewhat controlled in Borderline1-SMOTE and SVM SMOTE, they still generate
some synthetic samples in this neighbourhood. LoRAS on the other hand, refrains to do so,
leveraging on its strategy to produce a better estimate for the local mean of the underlying
local data distribution. This enables LoRAS to ignore the outliers and to oversample more
uniformly, resulting in a better approximation of the data manifold. Note that the average
F1-Scores of the oversampling models as presented in Table 4.3 has a direct correlation
with how the oversampling strategy oversamples in this neighbourhood. SMOTE and
ADASYN generate the lowest F1-Scores and show a tendency of oversampling excessively
in this neighbourhood. Borderline-SMOTE and SVM improve the F1-Score compared to
SMOTE and ADASYN, again, consistent to their behaviour of oversampling lesser in this
neighbourhood. LoRAS, has the highest average F1-Score and oversampling very sparsely
in this neighbourhood.

56 Chapter 4. Improving convex space modelling with the LoRAS algorithm

FIGURE 4.3: Figure showing for Principal Component Analysis plot of ozone dataset for baseline
data and oversampled data with several oversampling strategies for the ozone_level dataset. The
boxed region in each subplot shows a neighbourhood of outliers and how each oversampling

strategy generates synthetic samples in that neighbourhood.

Oversampling with LoRAS produces comparatively balanced ML model performances
on average, in terms of balanced accuracy and F1-Score among the compared
convex-combination-strategy-based oversampling techniques. This is due to the fact that, in
most cases, LoRAS produces lesser misclassifications on the majority class with a reasonably
small compromise for misclassifications on the minority class. From the study I infer that
for tabular high dimensional and highly imbalanced datasets, the LoRAS oversampling
approach can better estimate the mean of the underlying local distribution for a minority
class sample (considering it a random variable) and can improve the balanced accuracy and
F1-Score of ML classification models. However, the scope of such convex combination based
strategies, including LoRAS, might be limited for heterogeneous image-based imbalanced
datasets.

The distribution of both the minority and majority class data points is considered in the
oversampling techniques such as Borderline1 SMOTE, Borderline2 SMOTE, SVM-SMOTE,
and ADASYN. SMOTE and LoRAS are the only two techniques, among the oversampling
techniques I explored, that deal with the problem of imbalance just by generating new data
points, independent of the distribution of the majority class data points. Thus, comparing
LoRAS and SMOTE gives a fair impression about the performance of the novel LoRAS
algorithm as an oversampling technique, without considering any aspect of the distribution
of the minority and majority class data points and relying just on resampling. Other

4.6. Integrating LoRAS with the UMAP algorithm 57

extensions of SMOTE such as Borderline1 SMOTE, Borderline2 SMOTE, SVM-SMOTE, and
ADASYN can also be built on the principle of LoRAS oversampling strategy. According to
the analyses, LoRAS already reveals great potential for a broad variety of applications and
evolves as a true alternative to SMOTE, while processing highly unbalanced datasets.

4.6 Integrating LoRAS with the UMAP algorithm

LoRAS generates synthetic samples from convex combinations of multiple shadowsamples
from a neighbourhood. The shadowsamples are nothing but Gaussian noise added over
the original samples. The approach of LoRAS enables synthetic data generation such
that the local variance of a synthetic sample can be controlled in a minority class data
neighbourhood. Moreover, the LoRAS algorithm integrates the philosophy of convex space
modelling with prior learning of the minority class manifold using the t-SNE algorithm
[Bej 2021].

However, the state-of-the-art manifold learning technique UMAP is known to preserve
the global data structure better than t-SNE, while performing significantly faster than
the t-SNE algorithm [McInnes 2018]. Both UMAP and t-SNE thrives on creating a
higher and lower dimensional representation of data, and iteratively try to make the two
representations as similar as possible [McInnes 2018]. Interestingly, for high-dimensional
datasets UMAP models represent the data using a weighted neighbourhood graph
construction approach in contrast to other algorithms, including t-SNE, which suffer
from the curse of dimensionality [McInnes 2018]. McInnes et al. describe the algorithm
as: “UMAP uses local manifold approximations and patches together with their local
fuzzy simplicial set representations to construct a topological representation of the
high-dimensional data. Given some low-dimensional representation of the data, a similar
process can be used to construct an equivalent topological representation. UMAP then
optimises the layout of the data representation in the low-dimensional space, to minimise
the cross-entropy between the two topological representations” [McInnes 2018].

Considering the advantages of UMAP over t-SNE, I integrated UMAP in the LoRAS
algorithm. Instead of t-SNE, I use the UMAP algorithm to learn the latent manifold of the
minority class data.

4.7 Benchmarking studies for LoRAS UMAP algorithm

In terms of benchmarking study design, I have followed similar protocols as the original
article on LoRAS [Bej 2021]. 14 datasets characterised by either of high imbalance ratio,
high dimensionality and high absolute imbalance were selected for the benchmarking study,
following the work of [Bej 2021].

Classification model selection for each dataset: The extensive benchmarking study
for LoRAS, compared three classification models, namely k-Nearest neighbours (kNN),
Logistic Regression (LR), and Support Vector Machine (SVM) [Bej 2021]. For each of the 14
benchmarking datasets, which are also used in this study, I have compared the F1-Scores of

58 Chapter 4. Improving convex space modelling with the LoRAS algorithm

Algorithm 2 LoRAS-UMAP Oversampling (GitHub link)
Inputs:

C_maj: Majority class parent data points
C_min: Minority class parent data points

Parameters:

k: Number of nearest neighbours to be considered per parent data point
|Sp|: Number of generated shadowsamples per parent data point
Lσ : List of standard deviations for normal distributions for adding noise to each feature
Naff : Number of shadow points to be chosen for a random affine combination
Ngen : Number of generated LoRAS points for each nearest neighbour group
n_neighbours: Number of neighbours for UMAP embedding

Constraint:
Naff < k ∗ |Sp|

Initialise loras_set as an empty list
For each minority class parent data point p in C_min do

neighbourhood← calculate k-nearest neighbours of p, as per after dimension reduction by UMAP(n_neighbours)

Initialise neighbourhood_shadow_sample as an empty list

For each parent data point q in neighbourhood do
shadow_points ← draw |Sp| shadowsamples for q drawing noises from normal distributions with corresponding standard deviations Lσ containing

elements for every feature
Append shadow_points to neighbourhood_shadow_sample

endfor
Repeat

selected_points← select Naff random shadow points from neighbourhood_shadow_sample
affine_weights← create and normalize random weights for selected_points
generated_LoRAS_sample_point← selected_points · affine_weights
Append generated_LoRAS_sample_point to loras_set

Until Ngen resulting points are created;
endfor
Return resulting set of generated LoRAS data points as loras_set

the classification models kNN, LR, and SVM. In the current study, for each of benchmarking
datasets the classification model that has provided the highest F1-Score for each respective
dataset is used [Bej 2021]. For the credit fraud dataset the Random forest model (RF) is used
as it produces a better F1-Score compared to LR, SVM, and kNN.

As discussed in Section 3.3, there are several recent extensions of SMOTE that use diverse
clustering and manifold learning techniques to learn the latent manifold of the minority
class data. I have benchmarked the LoRAS-UMAP algorithm against four such algorithms:
DBSMOTE, MOT2LD, SOMO, and CURE SMOTE. I choose the four algorithms in particular
for the benchmarking study due to the following arguments:

• All of these algorithms use some unsupervised approach (either clustering or
dimension reduction) for learning the minority class data manifold.

• The DBSMOTE algorithm was one of the first such algorithms.

• CURE SMOTE and SOMO are proposed recently in 2017.

• MOT2LD, proposed in 2015 uses the t-SNE for manifold learning of the minority class,
same as the originally proposed LoRAS algorithm.

Choosing parameters for oversampling algorithms: Each of the oversampling algorithms
used has their respective set of parameters. Notably, SMOTE, MOT2LD and LoRAS has one
common parameter. This parameter accounts for deciding the oversampling neighbourhood
around a minority class data point. For each dataset, I used the same value for this
parameter for all oversampling algorithms. However, the datasets vary in size. For datasets,
with less than 10 samples in the minority class, with more than 10 but less than 100 and with
more than 100 a fixed value of 3, 5, and 30 is defined as the oversampling neighbourhood for

https://github.com/Saptarshi-Bej/LoRAS-UMAP-project

4.8. Improved performance of LoRAS UMAP algorithm 59

each algorithm. All other parameters of all other oversampling algorithms have been set to
its default value. However, the philosophy of oversampling with LoRAS is different. Unlike
SMOTE based algorithms, which model the convex space of the minority class using convex
combinations of two close enough minority class samples, LoRAS models the convex space
more rigorously considering convex combinations of multiple close enough shadowsamples
(Gaussian noise added to minority class samples). For each of the 14 benchmarking datasets
I already obtained an optimised parameter value for the number of shadowsamples to be
chosen for a convex combination obtained by a random grid search (see column 4 in Table
3 in Bej et al.) [Bej 2021]. In the current study, I have used the same parameter value for this
particular parameter for each dataset as obtained in the benchmarking study of LoRAS. For
the rest of the parameters of LoRAS default values were used to keep this study simple.

Training and validation of classification models: Given a dataset and a classification
model, I used a specific protocol to train and test the classification model. First, I used
5× 10-fold stratified cross validation for most of the chosen datasets. However, for datasets
with less than 30 samples in the minority class (arrhythmia, ar1, and ar3), I have used
5 × 3-fold stratified cross validation. For each cross-validation fold, only the training set
is used for oversampling. The oversampled training fold is used to train the classification
model. The trained model is then tested using the test fold, which was not oversampled.
I have used the F1-Score and balanced accuracy as performance measures following Bej
et al. [Bej 2021]. F1-Score, the harmonic mean of the precision and recall measures, plays
a important role to measure how accurate the classification model perceives the minority
class. balanced accuracy, the average class-wise accuracy, on the other hand, measures how
accurate the model classifies both classes on average and thus takes the accuracy of the
classification accuracy of the majority class into account. In Bej et al., observe that depending
on the oversampling model used, the classification models tend to compromise on either
the balanced accuracy or the F1-Score. Models with higher F1-Score tend to produce
lower balanced accuracy and vice versa. The LoRAS algorithm performed best in terms of
producing the highest F1-Score, while compromising minimally on the balanced accuracy.
For coding, I used the scikit-learn (V 0.21.2), numpy (V 1.16.4), pandas (V

0.24.2), and matplotlib (V 3.1.0) libraries in Python (V 3.7.4).

4.8 Improved performance of LoRAS UMAP algorithm

LoRAS-UMAP produces the best F1-Score, while compromising minimally on the
balanced accuracy: Table 4.7 presents the results of benchmarking study . SMOTE,
improves both the F1-Score and the balanced accuracy compared to the Baseline training
(training classification models without oversampling), producing an average F1-Score and
balanced accuracy of 0.372 and 0.785 respectively. Interestingly, the DBSMOTE algorithm
improves neither of F1-Score and balanced accuracy compared to SMOTE. For most of
the datasets I have used for the benchmarking study, the minority class is quite sparse.
Thus, a density-based clustering algorithm as employed by DBSMOTE fails to detect
significant clusters and since it focuses on producing between-cluster samples only, there
are hardly any significant synthetic samples produced in significant regions that can affect

60 Chapter 4. Improving convex space modelling with the LoRAS algorithm

TABLE 4.7: Table showing balanced accuracy/F1-Score for several oversampling strategies
(Baseline, SMOTE, SVM-SMOTE, MOT2LD, DBSMOTE, CURE SMOTE, SOMO, LoRAS t-SNE, and

LoRAS-UMAP) for all 14 benchmarking datasets

Dataset ML Baseline SMOTE MOT2LD DBSMOTE CURE SMOTE SOMO LoRAS t-SNE LoRAS-UMAP

abalone19 kNN .500/.000 .663/.052 .506/.0166 .538/.050 .607/.056 .500/.000 .527/.035 .631/.058
arrythmia LR .320/.341 .665/.361 .547/.178 .656/.340 .664/.353 .656/.340 .667/.353 .671/361
isolet LR .844/.802 .94/.808 .902/.806 .901/.802 .904/.803 .901/.802 .902/.801 .904/.805
mammography kNN .724/.580 .911/.469 .892/.594 .859/.532 .866/.505 .734/.589 .886/.523 .875/.548
ozone_level LR .265/.053 .804/.193 .728/.208 .515/.057 ..785/.191 .515/.092 .807/.205 .798/.209
scene LR .190/.184 .61/.217 .612/.225 .562/.188 .611/.223 .558/.184 .612/.220 .618/.228
yeast-ml8 kNN .500/.002 .559/.153 .562/.154 .5004/.002 .575/.1587 .500/.002 .565/.154 .57/.156
yeast-me2 kNN .534/.114 .834/.329 .797/.404 .590/.221 .791/.350 .534/.114 .835/.335 .844/.366
wine-quality LR .259/.068 .726/.183 .698/.171 .705/.174 .706/.221 .519/071 .704/.189 .701/.169
letter-img kNN .979/.971 .995/.920 .995/.921 .981/.960 .992/.963 .979/.961 .994/.960 .992/.959
webpage kNN .855/.776 .924/.394 .928/.510 .856/.776 .925/.495 .858/.632 .903/.725 .900/.733
ar1 kNN .500/.000 .690/.283 .581/.183 .500/.000 .586/.210 .498/.000 ..581/.185 .627/.25
ar3 RF ..500/.000 .747/.481 .533/.079 .500/.000 .500/.000 .531/.099 .766/.488 .758/.469
credit fraud RF .773/.665 .923/.359 .906/.772 .759/.641 .906/.805 .773/.665 .904/.818 .902/.819
Average - .553/.325 .785/.372 .727/.373 .673/.339 .744/.381 .647/.326 .761/.428 .771/.438
Average rank - 7.5/5.85 2.25/4.5 3.85/4.10 6.10/5.64 3.60/3.71 6.75/5.71 3.10/3.89 2.82/2.57

the decision boundary. That is why its performance is not much of an improvement over
the baseline case. The MOT2LD algorithm also uses a density-based algorithm along
eith the manifold learning technique t-SNE. It marginally improves the average F1-Score
of SMOTE but compromises heavily on the balanced accuracy. The SOMO algorithm
also takes into account the density factor of clusters during oversampling. However, it
generates both between-cluster and within-cluster samples. It thus performs slightly better
than DBSMOTE. The CURE algorithm improves the F1-Score compared to SMOTE to a
minor extent, compromising relatively less on the balanced accuracy. The LoRAS algorithm
integrated with t-SNE improves the F1-SCORE compared to CURE, and compromises
minimally on the balanced accuracy achieved by SMOTE. The LoRAS-UMAP algorithm
outperforms the LoRAS algorithm integrated with t-SNE in terms of both F1-Score and
balanced accuracy.

LoRAS-UMAP is consistently better than the LoRAS t-SNE for high-dimensional
imbalanced datasets: In the benchmarking experiments, there are five high-dimensional
datasets (arrhythmia, isolet, scene, yeast-ml8, and webpage), with the number of features
more than 100. It is noteworthy that for all these high-dimensional datasets, LoRAS-UMAP
outperforms the LoRAS algorithm combined with t-SNE, in terms of F1-Score. In terms of
balanced accuracy, LoRAS-UMAP outperforms the LoRAS algorithm combined with t-SNE
for four out of five such datasets (except for the webpage dataset).

LoRAS-UMAP is faster compared to LoRAS t-SNE: A disadvantage of the rigorous
convex space learning approach of LoRAS algorithm is that with the growing number
of features the computational complexity gets higher. The use of the UMAP algorithm
for manifold learning can thus make the algorithm faster compared to using t-SNE. With
LoRAS-UMAP, the manifold learning step takes less time as UMAP and is significantly
faster than t-SNE. For datasets with a high number of minority class samples, this makes
LoRAS-UMAP marginally faster than LoRAS t-SNE. I demonstrate this by recording the
data generation times for three datasets (over the entire datasets), isolet, letter image, and
webpage, which have also a relatively high number of minority class samples (600, 734,
and 981 respectively). Note that, for these three datasets, the data generation process with
LoRAS-UMAP is approximately 14, 7, and 45 seconds faster than LoRAS t-SNE using a
standard PC (Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical

4.8. Improved performance of LoRAS UMAP algorithm 61

Processor(s), 16 GB RAM).

TABLE 4.8: Table showing the results of Wilcoxon’s signed rank test for comparison of LoRAS-UMAP
with other oversampling algorithms.

Dataset Baseline SMOTE MOT2LD DBSMOTE CURE SMOTE SOMO LoRAS t-SNE

p-value (F1 Score) 0.011 0.084 0.055 0.011 0.030 0.003 0.055
p-value (Balanced acc.) 0.000 0.078 0.055 0.001 0.064 0.000 0.593
W+/W− (F1 Score) 99/6 95/10 95/10 99/6 99/6 102/3 99/6
W+/W− (Balanced acc.) 105/0 60/45 95/10 104/1 90/15 105/0 77/28
R (F1 Score) 0.78 0.713 0.629 0.780 0.780 0.830 0.780
R (Balanced acc.) 0.88 0.12 0.713 0.864 0.663 0.888 0.411

Interpretation of results: From Table 4.8, it is evident that p-values of the Wicoxon’s test
alone do not reflect the potential of the proposed algorithm fully. Although LoRAS-UMAP
in comparison to SMOTE, MOT2LD, and LORAS t-SNE does not show a p-value less than
0.05 for both balanced accuracy and F1-Score, observe that for all models W+ > W− in
favour of LoRAS-UMAP, for both balanced accuracy and F1-Score. Thus, if each individual
oversampling model is compared against LoRAS-UMAP over 14 benchmarking datasets,
the newly proposed extension performs better. Note that in terms of F1-Score, the MOT2LD
algorithm also performs well even though it is not reflected in the average scores in Table
4.7. In terms of F1-Score, LoRAS-UMAP does not improve the balanced accuracy over
SMOTE much, but in terms of F1-Score one can observe an improvement on R value (0.713).
However, UMAP, being able to preserve the global as well as local structure, proves to
be more effective than t-SNE used by both MOT2LD and LoRAS t-SNE for the purpose
of manifold learning. Moreover, the global structure preservation property of the UMAP
algorithm also results in a better dimension reduction for high-dimensional datasets, which
improves the performance of LoRAS algorithm on high-dimensional datasets. The results
are also supporting this finding, where LoRAS-UMAP performs better than all compared
algorithms in terms of F1-Score and is only worse than SMOTE in terms of balanced
accuracy when compared over all benchmarking datasets. The superior performance of
LoRAS t-SNE and LoRAS-UMAP indicates that using a manifold learning algorithm to learn
the latent data manifold is an effective approach to learn from imbalanced datasets.

An implementation of the LoRAS algorithm for binary classification problems using
Python (V 3.7.4) and several examples Jupyter Notebooks from the benchmarking
study is provided in the GitHub repository: https://github.com/COSPOV/LoRAS.

After rigorous analysis of the performance of the LoRAS algorithm on publicly available
benchmarking datasets, the next chapter proceeds to an application of the LoRAS algorithm.
In the next chapter, a LoRAS-based tool, sc-SynO, for automated detection of rare cell types
from single cell data is introduced.

https://github.com/COSPOV/LoRAS

63

Chapter 5

Automated annotation of rare cell
populations

This chapter presents a real-life application of the LoRAS algorithm in the form of the
sc-SynO tool designed for automated annotation of rare cell populations from single-cell
data. Single-cell data has been chosen for the study because of its vast potential in
biomedical research. Firstly, the chapter discusses briefly the single-cell technology,
followed by the idea of in silico cell generation using synthetic oversampling. The next
part of the chapter then describes the preprocessing techniques for preparation of the
data for the study. Next, the detailed protocol of the sc-SynO tool is discussed. I then
demonstrate through data-based experiments the effectiveness of the tool in detecting and
thereby annotating two rare cell populations. Finally, the chapter is concluded through
discussions on the applicability and importance of sc-SynO.

5.1 Applying LoRAS in a biological context

Single-cell RNA-sequencing (scRNA-Seq), as well as single-nuclei RNA-sequencing
(snRNA-Seq), open up a transcriptome-wide gene expression measurement at single-cell
level, enabling cell-type cluster identification, the arrangement of populations of cells
according to novel hierarchies, and the identification of cells transitioning between
individual states [Lähnemann 2020]. This facilitates the investigation of underlying
structures in tissue, organism development, and diseases, as well as the identification of
unique subpopulations in cell populations that were so far perceived as homogeneous.

5.1.1 Using single-cell technology for the identification of rare cells

Classifying cells into cell types or states is essential for many biological analyses
[Lee 2020]. For example, investigating gene expression changes within a cell type or cell
subpopulation can be of high interest across different biological conditions, time-points,
or in patient samples. To be able to compare these different cell types, reliable reference
systems, especially in sparse-cell states, are necessary. However, the lack of markers
for rare-cell types motivates the use of unsupervised clustering approaches. Method
development for such unsupervised clustering of cells has already reached a certain level of

64 Chapter 5. Automated annotation of rare cell populations

FIGURE 5.1: Visualization of the workflow, demonstrating a step-by-step explanation for a sc-SynO
analysis. a) Several or one snRNA-Seq or scRNA-Seq fastq datasets can be used as an input. Here,
cell population of interest are identified and provide raw or normalized read counts of this specific
population. This can be done with any single-cell analysis workflow, e.g., Seurat. b) Further
information are extracted for cluster annotation that serve as improved input for the subsequent
training with sc-SynO. c) Based on the data input, the underlying LoRAS [Bej 2021] synthetic
oversampling algorithm of sc-SynO is utilized to generate new cells around the former origin of cells
to increase the size of the minority sample. d) The trained Machine Learning classifier is validated
on the trained, pre-annotated dataset to evaluate the performance metrics of the actual model. The
sc-SynO model is now ready to identify the learned rare-cell type in novel data. This figure was

solely created by the authors.

maturity [Duo 2018, Freytag 2018, Kiselev 2019]. Furthermore, many studies are interested
in specialised cells (e.g., cancer cells, cardiac pacemaker cells) with an occurrence of less
than 1 in 1000. The identification of such clusters, solely based on unsupervised clustering
of a single dataset, remains very challenging [Jindal 2018]. For this reason, almost every
cell clustering characterisation approach is driven by manual cluster annotation, which is
time-consuming and involves a bias of the annotating domain expert, thus limiting the
reproducibility of results. One possible solution requires a so-called cell atlas, as a curated
reference system that systematically captures cell types and states, either tissue-specific or
across different tissues [Zhang 2018].

Here, it is shown how the limitation of identifying already annotated rare-cell types
in newly generated scRNA-Seq data can be overcome, by using a synthetic oversampling
approach (sc-SynO). sc-SynO is able to automatically identify rare-cell types in an unbiased
and precise manner in novel data.

5.1.2 Using machine learning algorithms to generate cell types in silico

Machine learning (ML) algorithms are widely used to deal with classification problems
and, thus, are used here to automate the annotation of rare-cell types from single-cell or
nuclei RNA-Seq data. However, the scarce number of these cells within samples (less than
1 out of 1000 cells) often results in highly imbalanced data. An imbalanced dataset is a type
of dataset where one or more classes have a significantly less number of samples compared

5.2. Datasets and methodologies 65

to other classes (e.g., sinus node cells in the heart). A class having such a low number
(minority class) is difficult to detect for unsupervised clustering approaches or classification
algorithms in general [Jindal 2018].

The reason behind this is the inability of ML algorithms to perceive or learn underlying
patterns from the minority class due to the scarcity of samples and thereby failure of these
algorithms to classify them properly [Satoso 2017].

To overcome the problem of imbalance, oversampling techniques have been an area of
research in the field of ML for more than a decade. Among several approaches proposed
to deal with such issues is the approach of synthetic oversampling [Weiss 2007]. The
philosophy of generating synthetic samples is to impute minority class instances, here cell
types, in an attempt to enhance the capacity of an ML algorithm to learn. The idea of
oversampling is thus commonly used to rebalance the classes [Satoso 2017]. I have discussed
oversampling in much more details in previous chapters.

In this study, the ML-based annotations of rare cells were compared and benchmarked
with no oversampling and the most commonly used oversampling algorithm SMOTE
[Chawla 2002], as well as sc-SynO approach based on the LoRAS algorithm [Bej 2021].
LoRAS integrates the idea of approximating the minority class data manifold with a more
comprehensive modelling of the convex data space of the minority class, while generating
synthetic minority class samples, resulting in more balanced model performance in terms of
precision and recall. To the best of my knowledge, this is the first time that an oversampling
approach is applied to single-cell RNA-Seq data for rare-cell detection improvement. The
workflow can be obtained in Fig.5.1 and is available on GitHub (https://github.com/
COSPOV/sc-SynO). For more details, please see the Section 5.2.

5.2 Datasets and methodologies

5.2.1 Use case preparation

To evaluate the potential of synthetic oversampling to precisely annotate cell populations
in newly generated data, three use cases were generated, by utilising already published
single-cell and nuclei RNA-Seq datasets. Normalised read counts were processed with
Seurat [Butler 2018] (any other normalisation method is also applicable). These are then
used as an input to generate the synthetic samples and train the different ML classifiers. In
addition, the influence of using all transcripts for a classification were tested, or only the
top 20, 50, or 100 preselected ones (basic feature selection function of Seurat 3 was used).
This helps us to investigate the influence of further downstream information obtained from
standard feature selection workflows that are usually applied during scRNA-Seq analysis.

The first use case identifies cardiac glial cells in snRNA-Seq data (17 nuclei out of 8,635)
[Wolfien Cells 2020], which were used as a training set. The trained sc-SynO ML-classifier
was subsequently applied to the independently generated snRNA-Seq data sets of Wolfien et
al. [Wolfien Cardiovascular Research 2020] and Vidal et al. [Vidal 2019] to automatically detect
the cardiac glial cells (Glial cells). This use case was designed to take a larger imbalance
ratio (~1 to 500) into account and only uses single-nuclei data.

https://github.com/COSPOV/sc-SynO
https://github.com/COSPOV/sc-SynO

66 Chapter 5. Automated annotation of rare cell populations

Representation of the Allen Brain Atlas Reanalyzed data and sc-SynO input (300k cells)

624 cells

for training

input

FIGURE 5.2: Comparison of the Allen Brain Atlas mice data of the whole dataset from (https://
celltypes.brain-map.org/) and the reanalysis. The 119_Pvalb Vipr2 cluster, consisting in total of
1,720 cells, was chosen as a rare-cell type of interest. The sc-SynO input was 624 cells of this cell type

obtained from the first 300,000 cells in the data.

In contrast to this, the second use case was designed to jointly use snRNA-Seq data
and scRNA-Seq on a lower imbalance ratio (~1 to 26) for the training step to likewise
investigate the potential of the algorithm to consider both single cell capture procedures
and the impact of “less” rare-cell types. In particular, studies of Galow et al. [Galow 2020]
(snRNA-Seq), and Linscheid et al. [Linscheid 2019] (scRNA-Seq) were used to identify
prolifertive cardiomyocytes (Prl cardio).

The third data set refers to the murine data of the Allen Brain Atlas (https://
celltypes.brain-map.org/), which serves as an example for a large dataset. Here, the
expression of the first 300,000 cells has been used as a model training input to identify
cells in the 119_Pvalb Vipr2 cluster (Figure 5.2). Only models based on previously selected
features were used for a downstream comparison because training on such a large dataset
including all available transcriptomic features demands excessive computational resources.
The validation of the trained model was performed on additional 300,000 cells of the murine
Allen Brain Atlas dataset.

For validation purposes, all datasets have also been analysed traditionally using
common data analysis approaches, such as the Seurat workflow, as already described
elsewhere [Wolfien Cardiovascular Research 2020]. These additional experiments have been
conducted to manually evaluate the identified cells from sc-SynO via traditional clustering.
The computational scripts for data preprocessing in R and sc-SynO model generation in
Python can be retrieved from the FairdomHub instance (https://fairdomhub.org/assays/

https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://fairdomhub.org/assays/1368
https://fairdomhub.org/assays/1368

5.2. Datasets and methodologies 67

1368) and GitHub (https://github.com/COSPOV/sc-SynO). Key statistics, such as the
imbalance ratio (Imb. ratio), number of minority samples, cross-validation folds, and
oversampling neighbours of the use cases, are presented in Table 5.1.

TABLE 5.1: Key statistics of the datasets used during this study. The column ’Oversampling nbd’
shows the number of nearest neighbours considered for each minority class data points to generate

synthetic samples

Dataset Imb. ratio minority samples CV folds Oversampling nbd
Glial cells 506.94 17 3 3
Prl cardio 26.21 625 10 30
Brain atlas 348.5 624 10 30

5.2.2 sc-SynO: Transferring the LoRAS algorithm to single-cell data

The LoRAS algorithm is designed to create a better approximation of the underlying
data manifold by a rigorous modelling of the convex data space compared to pre-existing
algorithms, like SMOTE and several of its already presented extensions. A brief outline
of the sample generation of sc-SynO approach, as well as the resulting benefits, are shown
in Figure 5.1. To generate a synthetic sample, the algorithm first considers the k-nearest
neighbours of a minority class data point from a two-dimensional embedding of the
minority class achieved by using t-SNE (this is an optional step). When there are enough
data points in the minority class, this provides the algorithm a better approximation of the
local data manifold for the minority class.

Once the k-nearest neighbours are decided for a minority class data point p and thereby
the neighbourhood of p is identified, Gaussian noise is added to all the data points in
the neighbourhood of p. The pseudo data points generated by the Gaussian noise are
called shadowsamples. A random convex combination of multiple shadowsamples is
used to create a Synthetic LoRAS sample. A mathematical explanation of the algorithm
asserts that, using a convex combination of multiple shadowsamples in LoRAS, we can
produce a better estimate of the local mean considering the synthetic samples generated in
a neighbourhood are random variables [Bej 2021].A brief outline of the sample generation
of sc-SynO approach, as well as the resulting benefits, are shown in Figure 5.1. The details
of the LoRAS algorithm is discussed in Chapter 4.

ML model description: For the benchmark study, the k-nearest neighbours (kNN) and
logistic regression model (LR) were chosen as ML classifiers. The reason behind choosing
kNN is that this model is known to perform well for imbalanced datasets, especially
while using oversampling algorithms [Blagus 2013]. The LR model was used because
of its effectiveness in other benchmarking studies using different imbalanced datasets, is
performing well jointly with the LoRAS oversampling algorithm [Bej 2021]. The kNN model
was used with k = 30 parameter value. After oversampling, there are almost equal data
points in the majority and the minority class. For the kNN classifier model, a k value of
thirty was chosen to ensure that the classifier’s decision is made on a statistically significant
number of samples. The LR model was used with default parameter settings.

https://fairdomhub.org/assays/1368
https://fairdomhub.org/assays/1368
https://github.com/COSPOV/sc-SynO

68 Chapter 5. Automated annotation of rare cell populations

Given the proliferative cardiomyocytes dataset, for every ML model, a 5 × 10-fold
stratified cross-validation framework was implemented to judge model performances. For
the cardiac glial cell dataset, due to the minuscule minority class of only 17 cells, a 5× 3-fold
stratified cross-validation was implemented. First, the dataset was scuffled randomly. The
dataset was divided into k-folds depending on the dataset as described above. The folds
are kept distinct, maintaining approximately the same imbalance ratio in each fold. After
training and testing the models using stratified cross validation, an appropriate model for
a given dataset based on the F1-score and balanced accuracy was identified. The selected
model was then trained over the whole dataset and is then used to detect rare cells in two
corresponding validation datasets.

Oversampling procedure: Although there are several other oversampling strategies,
convex combination-based oversampling can work particularly well when there are too few
data points in the minority class due to a lesser chance of overfitting.

For every test fold, I oversample only on the training fold, so that the test fold is
completely unseen to the classifiers. I specify the most important parameter values of the
oversampling model to ensure the full reproducibility of the models. For the proliferative
cardiomyocytes dataset having 625 minority class samples, I choose 30 of the nearest
neighbours of a minority class sample, as the oversampling neighbourhood for sc-SynO.
sc-SynO has some additional parameters, such as Naff, Lσ, and Ngen, enabling a better
approximation of the minority class data manifold. For the Glial cell dataset, with only
17 minority class samples, I use three of the nearest neighbours of a minority class sample,
as well as the oversampling neighbourhood. The num_afcomb parameter is chosen to be 23
and 100 for the two cases studies of the proliferative cardiomyocytes dataset with 23 and
100 prioritized marker-genes, respectively. For the Glial cell dataset, num_afcomb is chosen
to be 50 in both case studies. For detailed parameter values, please see the code published
on FairdomHub (https://fairdomhub.org/assays/1368).

Choosing proper performance metrics are also often a challenge for imbalanced datasets.
The usual performance measures, such as accuracy or area under the curve (AUC) of
receiver operating characteristic (ROC) might be unreliable in this scenario [Saito 2015]. In
this study, I used three performance measures, precision, recall, and F1-Score (Harmonic
mean of precision and recall). Here, a high precision model indicates a low number of FN
cells, relative to the number of TPs and a high-recall model indicates a higher proportion of
TP cells. These two measures can provide in combination a fair understanding of a classifier
performance on the underlying datasets. However, in the specific case of detecting rare cells,
the primary priority can be user assigned to either prefer a high recall or precision score by
appropriately choosing above-mentioned parameters during the training step. The F1-Score
determines, how well the model is balanced in terms of precision and recall. In combination,
these scores can indicate how appropriate the classification model has performed.

5.3 sc-SynO can detect rare cell types

Based on analysed data of all three use cases, this study shows that the preselection
of features (e.g., marker gene identification via Seurat or ML-based or manually driven)

https://fairdomhub.org/assays/1368

5.3. sc-SynO can detect rare cell types 69

is an important preprocessing step for rare-cell type detection. Preselection of features
not only results in faster classification models, but also produces more reliable results
than using all possible features. Table 5.2 shows the comparison of runtimes for several
preselection scenarios using a kNN model. One can observe a much higher runtime
without preselection of features. Moreover, the performance of the predictive model on
both validation datasets without preselection is highly unreliable. In the validation dataset
VD1 and VD2, there are only five and three cardiac glial cells, respectively, as per expert
annotations. In contrast, preselection of features based on prior marker identification
per cluster yields much more accurate results [Vidal 2019, Wolfien Cells 2020]. Without
preselection the predictive model uses numerous features leading to an overfitted model.
For example, without feature selection, the predicted number of glial cells in VD1 is 0
without any oversampling and 2423 using sc-SynO. For this reason, I recommend using the
workflow based on preselected features obtained from manually curated feature selection
methods in the in-depth comparisons in this work.

TABLE 5.2: Table showing comparisons among several feature preselection scenarios in terms of run
time and efficiency in detection of glial cells for two different validation datasets (VD 1 & 2)

Dataset Pre-selection Pre-processing Data generation Training Detected/Actual cells

VD1 All features None - 11min 56s 0/5
VD2 All features None - 2min 19s 0/3
VD1 All features sc-SynO 4min 3s 28min 24s 2423/5
VD2 All features sc-SynO 4min 19s 5min 8s 299/3
VD1 50 features None - 2.4 s 4
VD2 50 features None - 408 ms 2
VD1 50 features sc-SynO 1.23 s 1.94 s 5/5
VD2 50 features sc-SynO 1.12 s 484 ms 3/3
VD1 20 features None - 706 ms 4
VD2 20 features None - 240 ms 1
VD1 20 features sc-SynO 1.12 s 679 ms 6/5
VD2 20 features sc-SynO 1.11 s 236 ms 3/3

For simplicity, I have chosen the in-build marker gene identification method from Seurat
as a feature input in sc-SynO. Other commonly available methods, such as Random Forest
or any other feature selection methods to derive important transcripts for the rare-cell type
of interest are also suitable. Analyses of population-specific marker genes are commonly
performed for all single-cell pipelines and can contribute to the biological explainability of
the model. For this reason, I have shown different case studies with different amounts of
pre-selected features (e.g., 20, 50, and 100).

However, I deliberately refrain from recommending a fixed number of features for
using sc-SynO because every dataset has different characteristics, and it is a common
practice to tune model parameters in a dataset-specific way in machine learning. To
fully understand the specific sc-SynO synthetic cell generation, users should test different
parameters, including the best amount of features by using methods, such as random grid
search. Here, the results show that even with less than 100 features, the models are able to
detect rare cells successfully.

70 Chapter 5. Automated annotation of rare cell populations

In general, I observed that the synthetic cells were generated close to the original
minority class data using UMAP visualizations (Figure 5.3). To show the newly introduced
cells by sc-SynO, the generated cells are highlighted for the proliferative CM cluster (50,
500, 1000, and 2000 cells respectively) and the original cells. I observed for the increased
amount of in silico generated cells in a stretch of the cell cluster because with larger amounts
of synthetic cells the space stretches to maintain the assumption of uniformity of data
distribution in UMAP.

UMAP 1

U
M

A
P

 2

50 synthetic

cells

500 synthetic

cells

1000 synthetic

cells

2000 synthetic

cells

U
M

A
P

 2

UMAP 1

 Proliferative CMs

 Sythetic cells

 Other cells

FIGURE 5.3: Figure showing a comparison between the distribution of synthetic cells (purple)
generated by sc-SynO and original input cells (blue) for model training.

The results for all model training cases, including pre-specified cellular markers and
5-fold stratified cross validation, are presented in Figure 5.4 and more detailed in Table 5.3.

5.3.1 sc-SynO can detect extremely rare glial cells

Training data: For the cardiac glial cell dataset, all models except for the kNN-Baseline
model produce an F1-Score of more than 90 percent. For the LR model with 20 features,
one can observe that the recall is 1 irrespective of the model used. The reason behind the
superior performance of all models in this case is that, even though the glial cell cluster is
extremely rare, it is also very well separated from the rest of the clusters, making it easy for
machine learning models to detect cells.

5.3. sc-SynO can detect rare cell types 71

TABLE 5.3: Table showing F1-Scores/Precision/Recall for sc-SynO against baseline classification for
the two ML classifiers (LR and kNN) and for several numbers of pre-selected features (Marker genes).

119_Pvalb represents a small subpopulation of the Allen Brain atlas.

Dataset ML Features Baseline sc-SynO

Glial cells LR 20 .96/.94/1 .96/.94/1
Glial cells kNN 20 .97/1/.95 .94/.90/1
Glial cells LR 50 .90/.94/.88 .94/.94/.95
Glial cells kNN 50 .89/1/.81 .94/.90/1
Prl cardio LR 20 .80/.87/.74 .72/.62/.86
Prl cardio kNN 20 .86/.91/.81 .85/.79/.92
Prl cardio LR 100 .86/.88/.84 .84/.81/.87
Prl cardio kNN 100 .86/.95/.79 .79/.68/.95
119_Pvalb LR 50 .43/.45/.41 .65/.49/.99
119_Pvalb LR 100 .45/.48/.42 .65/.49/.99

Validation: I tested the baseline case (without oversampling) against sc-SynO using
the LR model with 20 features, which was trained on snRNA-Seq normalized read count
data of two independent snRNA-Seq data sets. Both, the baseline model and sc-SynO,
identified four out of five cardiac glial cells in the first validation set of Wolfien et
al. [Wolfien Cells 2020] (Figure 5.5A). For the second validation dataset from Vidal et al.
[Vidal 2019] (Figure 5.5B) sc-SynO was able to detect three out of three glial cells, whereas
the baseline model was able to detect only one. Figure 5.5C shows the average gene
expression of particular cardiac glial cell markers that are highly expressed in the identified
clusters and weakly in other clusters. Although sc-SynO was effective in finding rare cells,
as I have observed in this case study, the case study itself does not deterministically prove
the advantage of oversampling over the baseline case. The reason behind this is, as I have
discussed before, that the cluster of glial cell is already well-separated within the dataset.
That is why to appreciate the effectiveness of the tool, I provide the next case study on
proliferative cardiomyocyte detection. Although this cell type is not as rare as the glial cells,
it is a transient cell type that is not well separated from the neighbouring cluster and, thus,
can appropriately show the variation in performance of the considered models.

5.3.2 Sc-SynO achieves a low FN rate for the identification of proliferative
cardiomyocytes

Training data: For the proliferative cardiomyocytes dataset, I, notice that the
performance of the classifiers clearly improves with including more marker genes as
features (Figure 5.6A, 5.6B). Note that, for all baseline models in this case, the precision
is quite high. In contrast, the recall in turn is low. Due to the high precision, a high F1-Score
is also maintained for the baseline models. However, given that the goal is to detect rare
cells, a low recall means that the baseline models are not very effective to execute this task,
even though they produce low FNs. Interestingly, sc-SynO in turn, improves the recall,
which facilitates the detection of rare cells, compromising on the precision of the classifiers.
Clearly, in this case, the kNN classifiers produce a higher recall and F1-score compared to

72 Chapter 5. Automated annotation of rare cell populations

FIGURE 5.4: Comparison of the baseline classification and sc-SynO visualized as mean outcome for
the used quality parameter: F1-Score (grey), Precision (blue), and Recall (purple). Detailed results
can be obtained in Table 5.3. I observe that in every case, sc-SynO improves the recall compared to
the Baseline model (see dotted boxes in the figure). This ensures that oversampling with sc-SynO

improves the detection rate of rare-cell types.

a) b)

c)

Top five cardiac

glial cell markers

Cluster 11

Cluster 27

Cluster 32

UMAP 1

U
M

A
P

 2

0

-10

-5

5

10

0 -10 10

15

15 5 -5

UMAP 1

U
M

A
P

 2
 0

-10

-5

5

0 -10 10 5 -5

Cluster 15

Cluster 29

Cluster 31

Top five cardiac

glial cell markers

Cluster 38

Average

expression

Percent

expressed

0

-1

1

2

0

25

50

75

100

Validation dataset 1 Validation dataset 2

32 15

15

FIGURE 5.5: Validation of the sc-SynO model for the first use case of cardiac glial cell
annotation. a) UMAP representation of the manually clustered Bl6 dataset of Wolfien et al.
[Wolfien Cardiovascular Research 2020]. Predicted cells of sc-SynO are highlighted in blue, cells
not chosen are grey. b) UMAP representation of the manually clustered dataset of Vidal et al.
[Vidal 2019]. Predicted cells of sc-SynO are highlighted in blue, cells not chosen are grey. c) Average
expression of the respective top five cardiac glial cell marker genes for both validation sets, including

the predicted clusters and those in proximity.

the LR classifiers. With 20 features using kNN for sc-SynO an improved recall to 92% can be
observed, while the F1-Score remains comparable to baseline.

Validation: I applied the baseline model and the sc-SynO algorithm on two validation
datasets for proliferative cardiomyocytes, using the kNN classifier with 20 features. While

5.3. sc-SynO can detect rare cell types 73

sc-SynO was able to identify 10 out of 11 cells, the baseline case could not detect any cells
from the first validation dataset. Interestingly, the model using the top 100 genes identifies
48 cells, including all 9 cells from the top 20 model, which may imply that this higher set of
transcripts can detect a larger, yet similar, set of cells that are closely related to the cells of
investigation. Since the second use case was about a transient cell type, the assigned cells of
the model might indicate related cells that have already been or closely to enter the actual
state of a proliferative cardiomyocyte. The second validation set assigned 40 cells out of
67 correctly (top 20 features). By using 100 features, the amount of correctly assigned cells
increased further. In both cases, the capability of the baseline model to detect numerous
cells was limited (None with 20 features and only 29 with 100 features).

a) b)

c)

Top five PCM markers

Cluster 21

Cluster 32

Cluster 29

UMAP 1

U
M

A
P

 2

0

-5

5

0 5 -5

UMAP 1

U
M

A
P

 2

0

-10

-5

5

0 -10 10 5 -5

Top five PCM markers

Average

expression

Percent

expressed

0

-1

1

2

0

25

50

75

100

Validation dataset 1 Validation dataset 2

10

Cluster 2

Cluster 21

Cluster 34

Cluster 20

Cluster 33

Cluster 37

Cluster 41

Cluster 33

Cluster 37

Not a classified cell

Classified cell – 20 features

Classified cell – 100 features

34

34

FIGURE 5.6: Validation of the sc-SynO model for the second use case of proliferative cardiomyocyte
annotation. a) UMAP representation of the manually clustered single-nuclei dataset of Linscheid et
al. [Linscheid 2019]. Predicted cells of sc-SynO are highlighted in blue (based on top 20 selected
features in the training model), red (based on top 100 selected features in the training model) cells
not chosen are grey. b) UMAP representation of the manually clustered dataset of Vidal et al.
[Vidal 2019]. Predicted cells of sc-SynO are highlighted in blue (based on top 20 selected features
in the training model), red (based on top 100 selected features in the training model) cells not chosen
are grey. c) Average expression of the respective top five proliferative cardiomyocyte marker genes

for both validation sets, including the predicted clusters and those in proximity.

5.3.3 Sc-SynO can detect rare-cell populations from large-scale datasets

Training data: To test the effectiveness of sc-SynO on large-scale datasets, the
approach was performed on the murine data of the Allen Brain Atlas (https://celltypes.
brain-map.org/), which includes more than 1,000,000 cells. In the third case study, a small
population of cells was chosen (119_Pvalb Vipr2, see Figure 5.2) and tested the effectiveness

https://celltypes.brain-map.org/
https://celltypes.brain-map.org/

74 Chapter 5. Automated annotation of rare cell populations

of baseline classifiers and sc-SynO on detecting this rare cell-population. The rare-cell
population of interest has an imbalance ratio of 348.5. Since the dataset was very large,
I performed a pilot study to notice that LR is not only the fastest among the models,
but performs significantly better than kNN in this case (dns). Thus, I used only the LR
model for the classification task. I noticed that sc-SynO significantly improves the classifier
performance. With 20 features, the precision, recall, and F1-Score for the baseline model
where 0.486, 0.424, and 0.450 respectively, while with 50 features the values were 0.456,
0.416, and 0.433. For sc-SynO, with 20 features the precision, recall, and F1-Score were 0.492,
0.988, and 0.655 respectively, while with 50 features the values were 0.496, 0.990, and 0.665.

Validation: For validation, I tested the baseline and sc-SynO oversampled trained model
for an additional 300,000 cells of the Allen Brain Atlas dataset. A manual analysis of
the dataset served as the ground truth and resulted in ~1,500 cells of the target cluster
119_Pvalb Vipr2. Using the top 10 features, the baseline model identified 388 cells correctly
in comparison to 491 correctly assigned cells of sc-SynO (375 cells in common). In addition,
sc-SynO mis-classified around 200 fewer cells in comparison to the baseline model (915 vs.
734 cells).

5.4 Importance and applicability of sc-SynO

sc-SynO tool is the first oversampling approach to identify and annotate rare-cell
populations from scRNA-Seq and snRNA-Seq data. The LoRAS algorithm has
been benchmarked against other popular oversampling techniques like SMOTE or
Borderline-SMOTE, and presents LoRAS as the underlying algorithm of sc-SynO as a
robust algorithm for a broad set of applications in terms of F1-score and balanced accuracy
[Bej 2021]. For the baseline models trained without oversampling, I observe a clear
limitation on the validation datasets. Since the identification of rare cells in new unseen
data is a key requirement, a high recall, as obtained from oversampling approaches, would
be essential. Moreover, oversampling with sc-SynO produces comparatively balanced ML
model performances on average, in the sense that, in most cases, the algorithm produces
less mis-classifications on the majority class with a reasonably small compromise for
mis-classifications on the minority class. This is why I would suggest using the algorithm
for rare-cell detection instead of the baseline model without oversampling.

I also investigated the similarity of the original cells in comparison to the synthetic cells.
I visualized the results using UMAP plots represented in Figure 5.3. I noticed that plotting
the synthetic samples of the minority class data space along with the synthetic samples looks
stretched. I assume this phenomenon can be explained by investigating the mathematical
assumptions underlying the UMAP algorithm. Note that, the full name of UMAP is
’Uniform Manifold Approximation and Projection’. The word ’Uniform’ is essential in this
context. The UMAP algorithm relies on building a neighbourhood graph in the process of
clustering, and the basic assumption behind this construction is the uniformly distributed
data over the whole data space, even though it is not the reality. Now what happens when
one oversamples on a very small population is that, within a very small volume of the data
space, one can synthetically generate numerous data points. Whereas, during clustering,

5.4. Importance and applicability of sc-SynO 75

one can assume that they are all uniformly distributed. Since there are a lot of data points,
congested in a small volume, under the assumption of uniform distribution, this volume
in the space itself stretches. That is why, in the 2-D plot, the distribution of synthetic data
points looks stretched and spread over a lot of the space. In summary, with a higher density
of points in a data subspace, it will be more stretched to satisfy the assumption of uniformity.
Thus, if one ignores the stretching effect caused by UMAP due to a high density of synthetic
samples in a small data neighbourhood, one can observe that the synthetic samples are
indeed quite similar to the original minority class samples as shown in Figure 5.3.

sc-SynO facilitates the identification of very similar cells for smaller sets of feature genes
and biologically related cells for larger sets of genes. The initial clustering of the training
data plays an essential role, in which I observed that smaller clusters with a distinct border
to other clusters are better suited for an analysis in comparison to larger cell populations
with transient borders. However, the algorithm still has high accuracies in identifying those
cells.

In comparison to other current tools, such as cscGAN [Marouf 2018], scANVI [Xu 2021],
MARS [Brbi 2020], FiRE [Jindal 2018], and ELSA [Wang 2009], sc-SynO uses synthetic
oversampling of previously, manually curated cell populations to identify such rare
cells of interest in novel unseen data. In addition, sc-SynO is easily applicable and
only requires a single, well-curated dataset of any size, including only a few cells of
interest, to be able to achieve already high predictive accuracy. Likewise, sc-SynO can
be used on integrated datasets (scRNA-Seq and snRNA-Seq) as well, which commonly
represent the underlying biological heterogeneity of the sample in an improved manner
[Wolfien Cardiovascular Research 2020].

sc-SynO can be seamlessly incorporated in any single-cell and single-nuclei data analysis
workflow after the identification and annotation of cell populations on raw or normalized
read count data and important transcripts per cluster. As a potential perspective, it might be
even possible to generate synthetic cells/samples out of homogeneous bulk-RNA-Seq data
by treating a single sample as one single cell that needs to be identified within a single-cell
dataset. Once a rare-cell population has been identified and carefully checked by a domain
expert, sc-SynO can be used on this highly curated dataset to train the specific cell type.
Based on experience with the application of oversampling models, one would see individual
models for single rare-cell types as the preferred solution, rather than embedding multiple
minority class cell types in one data augmentation model. Applying sc-SynO on a novel
dataset to identify the same rare-cell type is magnitude less time-consuming than manually
curated data processing and annotation of scRNA-Seq data. This facilitated cell enrichment
can be used for more in-depth downstream analyses on the cell type of interest, without
reanalysing all datasets. Such a scenario can be of high interest for single-cell identification
in cancer, hypothesis testing on larger cell sets, cell homology search across tissues, or
further individual applications.

All computational scripts can be obtained from the FairdomHub instance
(https://fairdomhub.org/assays/1368), or the algorithm itself (https://github.
com/narek-davtyan/LoRAS), and the current integration for sc-SynO on GitHub
(https://github.com/COSPOV/sc-SynO). Single-cell RNA-Seq data utilized during

https://fairdomhub.org/assays/1368
https://github.com/narek-davtyan/LoRAS
https://github.com/narek-davtyan/LoRAS
https://github.com/COSPOV/sc-SynO

76 Chapter 5. Automated annotation of rare cell populations

this study are already publicly available at the Single Cell Expression Atlas via
ArrayExpress (E-MTAB-7869, E-MTAB-8751, E-MTAB-8848), the Allen Brain Atlas
(https://celltypes.brain-map.org/), and GEO (GSE130710).

https://celltypes.brain-map.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130710

77

Chapter 6

Classifier-independent oversampling
using the ProWRAS algorithm

This chapter presents the ProWRAS algorithm, a multi-schematic and
classifier-independent extension of the LoRAS algorithm. Firstly, the chapter discusses an
independent benchmarking study showing that performance of oversampling algorithms
are indeed classifier dependent. Given numerous oversampling algorithms and classifiers to
choose from, a proper choice of an oversampling algorithm and classifier for an imbalanced
dataset is challenging. Analysing the philosophies of several oversampling algorithms, it is
possible to identify some generic oversampling schemes followed by common oversampling
algorithms. The ProWRAS algorithm is designed to integrate such oversampling schemes
under a single umbrella. I demonstrate through rigorous benchmarking studies that the
ProWRAS algorithm, with proper choice of parameters, can adapt to classifier specific
oversampling schemes and thereby perform in a classifier-independent way.

6.1 Classifier dependence of oversampling models

6.1.1 Study protocols

For the pilot study and the final benchmarking study, two sets of public datasets were
selected. The first set (Set-I) is a subset of the 104 publicly available imbalanced datasets
used for benchmarking studies in Kovács et al. [Kovács 2019]. The second set (Set-II), is a
subset of 27 publicly available datasets in the imblearn.datasets Python library. The
datasets in Set-I and Set-II are selected, based on the following three criteria. Set-I has 14
datasets and Set-II has 6 datasets. Note that all datasets that follow all the three criteria are
selected to ensure that the choice of datasets for the studies are impartial. The criteria are:

• Datasets with an imbalance ratio of at least 15 : 1 were chosen. This is to ensure that
the performances of the compared oversampling algorithms are tested, particularly on
datasets with high imbalance.

• Datasets with a minimum of 35 minority class samples were chosen. Datasets with
very fewer minority class samples, classifier performances that are often affected
by high stochasticity and the results are often statistically unreliable. Setting this
condition for the choice of datasets enhances the reliability of results.

http://glemaitre.github.io/imbalanced-learn/generated/imblearn.datasets.fetch_datasets.html

78 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

• Datasets with at most 5000 samples (only 4 datasets do not satisfy this condition) were
chosen. Given that the studies involve 4 classifiers, 8-different oversampling models
and 4-oversampling schemes of the ProWRAS algorithm, this constraint is considered
to limit the computational effort.

FIGURE 6.1: Illustration of the working principle of the ProWRAS algorithm. ProWRAS used a
proximity based partitioning system to find clusters in the minority class. For each cluster, it then

uses one of four oversampling schemes shown in the figure.

Choosing classification models and parameters: The classification models GB, RF, kNN,
and LR were used for the benchmarking studies. GB and RF were used, since they are
powerful classifiers that use ensemble approaches of boosting and bagging, respectively.
kNN and LR were also seen to perform well for imbalanced datasets in the benchmarking
study of Bej et al. [Bej 2021]. Both in the pilot study and in the final benchmarking study,
default parameters were used for all the classifiers, as recommended in scikit-learn

(V 0.21.2) documentation.

Choosing oversampling models and parameters: In the final benchmarking study, five
benchmarking algorithms are compared against ProWRAS. These algorithms were chosen
in particular for the following reasons:

• SMOTE, of course, is the pioneer of all algorithms and still, widely used because of its
simplicity and applicability.

• Polynom-fit SMOTE, ProWSyn are the top two oversampling algorithms by overall
performance, from the detailed benchmarking study by Kovács [Kovács 2019].

• ProWSyn, CURE-SMOTE, and SOMO also use the idea of using clustering approaches
on the minority class to learn the distribution of the minority class better and take

6.1. Classifier dependence of oversampling models 79

advantage of it during synthetic sample generation, a philosophy they share with
ProWRAS algorithm. Moreover, both CURE-SMOTE and SOMO are proposed fairly
recently(in 2017). SOMO has been used only in the pilot study. It was excluded in the
main study because of its low I -score in the pilot experiment (See Table 6.6).

• I chose LoRAS because, evidently, ProWRAS is an extension of the LoRAS algorithm.

For the pilot study, default parameters for SMOTE, Polynom-fit SMOTE, ProWSyn,
CURE SMOTE, and SOMO algorithms were used. For LoRAS, parameter values of k = 5,
|S_p| = 100, Lσ = 5× 10−8 and regular embedding were implemented. For the parameter
Lσ, random search among the values {2, 10, 30, dim(data))} were performed. This random
search is based on a training and testing done on a randomly chosen 250 percent and 20
percent mutually disjoint subset of the respective dataset, chosen such that the imbalance
ratio is maintained in the randomly chosen subsets.

For the final benchmarking study, default parameters were used for SMOTE, Polynom-fit
SMOTE, ProWSyn, CURE SMOTE, and LoRAS algorithms. For ProWRAS parameter values
of max_levels = 5, n_neighbours_max = 5, num_samples_to_generate = |Cmax| − |Cmin|,
θ = 1, shadow = 100 and σ = 10−6. To access the four oversampling schemes four
combinations of values for the parameters max_conv, neb_conv were considered.

• High global variance (HGV)
(max_conv = 2, neb_conv = 1000)

• Low global variance (LGV)
(max_conv = dim(data), neb_conv = 1000)

• High local variance (HLV)
(max_conv = 2, neb_conv = 5)

• Low local variance (LLV)
(max_conv = dim(data), neb_conv = 5)

Table 6.1, presents for every classifier and every dataset, which oversampling scheme was
used by ProWRAS to obtain the best performance. Note that, as previously discussed, for
accessing the global oversampling scheme for a certain cluster, neb_conv must be at least the
size of the cluster. Since all the chosen datasets have minority class size of less than 1000, a
choice of neb_conv = 1000 to access the global oversampling scheme works for all datasets.

Performance measures: Choice of performance measures are an important aspect of
studies with imbalanced datasets. For the study, two performance measures, F1-Score and
Cohen’s κ -Score, were used. F1-Score is the harmonic mean of precision and recall and is a
good measure for how good the classification is for the minority class. Given a classification
problem, the κ measure is formally defined as:

κ =
Po − Pe

1− Pe

where, Po is the measure of the observed agreement among the chosen classifier and the
ground truths of the classification problem. Pe is the measure of agreement by chance,

80 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

among a chosen classifier and the ground truths of the classification problem. The κ-Score
gives a quantification of how good the classification is considering both the majority and the
minority class.

Quantification of classifier independence: The basis of this work is the observation that
the performance of existing variants of the well-known SMOTE oversampling method for
imbalanced classification problems are “classifier dependent”. This is quite natural, as it is
widely appreciated that, for machine learning, no single best method will exist with respect
to all possible classification problems (the so-called no free-lunch theorem). Analogously,
it is unlikely that there is a single best oversampling scheme, over all possible classifiers.
However, this still poses problems. Since there are more than a hundred of such SMOTE
variants and tens of ML based classifiers, given an imbalanced dataset, it is difficult to
choose an appropriate oversampling algorithm from such a large pool of algorithms. I
address this problem with the development of an oversampling approach, which offers
good classification performance on an average, irrespective of the classifier used. In practice,
this avoids laborious benchmarking experiments on numerous oversampling algorithms.

Some ambiguity may arise regarding the term ‘classifier independence’ since an
oversampling algorithm that always leads to worse than the others, could also be considered
classifier independent, if its ranking is ‘stably’ low. To establish some formalization about
the term ‘classifier independence’, I therefore propose a quantitative measure for classifier
independence here.

Definition 13. Given a set of oversampling algorithms O, a set of classifiers C and a set of
benchmarking datasets D, for a given oversampling algorithm o ∈ O, classifier independence of
o is defined as,

I (o) = |C|

⌜⃓⃓⃓
⎷∏

c∈C

(︃
1

|O| − 1 ∑
o′∈O
o′ ̸=o

F (o′, o)
|D|

)︃
(6.1)

where, F (o′, o), denotes the number of datasets for which the oversampling algorithm o ∈ O,
performs equally or better than another oversampling algorithm o′ ∈ O.

In other words to measure the classifier independence of an oversampling algorithm
o relative to some other oversampling algorithms, given a set of datasets and a set of
classifiers, one can calculate for each classifier, the average proportion of datasets for which
o outperforms other oversampling algorithms. When one calculates this for all classifiers,
one can take the geometric mean over all classifiers to obtain I (o). Note that, I choose a
geometric mean over all classifiers in Equation 6.1, to keep the measure strictly sensitive to
classifier-specific performance of the oversampling algorithms, since the geometric mean is
always less than the arithmetic mean. The value of I , will always range between 0 and 1,
making it a conveniently interpretable measure. I thus, measures not only how consistent
the performance of an oversampling algorithm is over a set of classifiers, but also how well
the oversampling model performs compared to other such models, overall. I, however,
would like to emphasize that, while I do provide a measure of classifier-independence,

6.1. Classifier dependence of oversampling models 81

the conclusion will nevertheless be empirical, dependent on the datasets, oversampling
algorithms, and classifiers used.

For coding, I used the scikit-learn (V 0.21.2), numpy (V 1.16.4), pandas
(V 0.24.2), and matplotlib (V 3.1.0) libraries in Python (V 3.7.4).

Table 6.1 shows the statistics for the relevant datasets. The datasets of Set-I are used
for the pilot study, comparing Baseline classification with oversampling models SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO, and LoRAS for four respective
classifiers GB, RF, kNN, and LR. For the final benchmarking study, all 20 datasets from
Set I and Set II were utilised, comparing Baseline classification with oversampling models
SMOTE, Polynom-fit SMOTE, ProWSyn, CURE SMOTE, LoRAS, and ProWRAS for the four
classifiers GB, RF, kNN, and LR. For both the pilot study and for the main benchmarking
study, 5 × 5 stratified cross-validation as a validation protocol was implemented. While
training models, oversampling algorithms were applied only on the training data for each
fold. Also, normalised datasets were used for training and testing.

TABLE 6.1: Table showing the ProWRAS oversampling scheme used for every dataset and for every
classifier. HGV: High global variance, LGV: Low global variance, HLV: High local variance, LLV:
Low local variance. Column 2-5 show the oversampling scheme for which ProWRAS works best for
respective datasets and classifiers. Furthermore, the table shows some statistics for the datasets. The

last six datasets form Set II.

Dataset GB RF kNN LR Imbalance ratio Minority samples Total samples

abalone9-18 HGV HGV LGV HGV 16.40 42 731
abalone_17_vs_7_8_9_10 HGV HGV LGV LLV 39.31 58 2338
car-vgood LLV HLV LGV LGV 25.58 65 1728
car_good LGV HLV LLV LGV 24.04 69 1728
flare-F HGV HGV LLV LGV 23.79 43 1066
hypothyroid LGV LGV LLV LGV 19.95 151 3163
kddcup-guess_passwd_vs_satan HLV HGV LLV LGV 29.98 53 1642
kr-vs-k-three_vs_eleven LGV HGV LGV LGV 35.23 81 2935
kr-vs-k-zero-one_vs_draw LGV LGV LGV LGV 26.63 105 2901
shuttle-2_vs_5 HGV HGV LLV LGV 66.67 49 3316
winequality-red-4 HLV HGV HLV LGV 29.17 53 1599
yeast4 HLV HGV LGV LGV 28.10 51 1484
yeast5 HLV HGV LGV LLV 32.73 44 1484
yeast6 LGV HLV LGV LLV 41.40 35 1484
oil HGV HGV LGV LGV 22.85 41 937
ozone_level HGV HGV LLV LGV 34.73 73 2536
solar_flare_m0 HLV HLV LLV LGV 20.42 68 1389
thyroid_sick LGV HLV LLV LGV 16.32 231 3772
wine_quality HLV HLV HLV LGV 26.76 183 4898
yeast_me2 LLV HLV LLV LGV 29.09 51 1484

6.1.2 Pilot study confirming classifier dependence of oversampling

Figure 6.2, shows a comparative plot for the performance by F1-Score of all classifiers
over all oversampling models. Figure 6.2 has a heatmap for every classifier. For a given
classifier, the number in an arbitrary cell in the i-th row and j-th column, of the heatmap
shows the number of datasets for which the oversampling model corresponding to the
i-th row performs equally or better than the oversampling model corresponding to the j-th
column. Since the pilot study was performed on only the datasets of Set-I (with 14 datasets),
all diagonal elements are 14. Notably, the performance by the κ -Score follows a similar
trend.

82 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

N
u
m

b
e
r

o
f

d
a
ta

s
e
ts

u
s
e
d
 f

o
r

th
e

s
tu

d
y

Gradient Boosting Random Forest

K-Nearest Neighbours Logistic Regression

FIGURE 6.2: Figure showing results for the pilot study. Every heatmap for a respective classifier
shows the number of datasets for which the oversampling model in the i-th row performs equally
or better (by F1-Score) than the model in the j-th column. For example, for the gradient boosting
classifier LoRAS performs equally or better than SMOTE for 10 out of 14 datasets. Note that, none of

the oversampling models perform consistently well for all the classifiers.

Observe from Figure 6.2, that for kNN classifier, LoRAS, CURE SMOTE, and Polynom-fit
SMOTE are the best performers. For LR classifier, CURE SMOTE and Polynom-fit SMOTE
are ahead of the other oversampling models. For the RF classifier, SMOTE and ProWSyn
are the best performers. For GB classifier, ProWSyn, LoRAS, and SMOTE generate better
F1-Scores.

Moreover, observe that the average F1-Score and κ-Score for all classifiers is
comparatively better for the ensemble based classifiers RF and GB.

I also provide the I -score for every oversampling model used in the pilot study in Table
6.6. Observe that, CURE-SMOTE, Polynom-fit SMOTE and LoRAS produce the best scores,
while the score of SOMO is quite close to the baseline. Thus, I excluded the SOMO algorithm
in the final benchmarking studies.

6.1. Classifier dependence of oversampling models 83

TABLE 6.2: Table showing F1-Score/κ- Score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO, LoRAS) for 14 Set-I benchmarking datasets

for GB classifier.

Datasets Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE SOMO LORAS

abalone9-18 0.394/0.367 0.408/0.362 0.3/0.275 0.39/0.345 0.38/0.336 0.394/0.367 0.441/0.401
abalone_17_vs_7_8_9_10 0.283/0.272 0.318/0.292 0.309/0.298 0.349/0.324 0.346/0.323 0.283/0.272 0.324/0.298
car-vgood 0.968/0.967 0.957/0.956 0.968/0.967 0.975/0.974 0.966/0.964 0.963/0.961 0.985/0.984
car_good 0.904/0.9 0.813/0.805 0.86/0.855 0.839/0.832 0.867/0.862 0.893/0.888 0.867/0.862
flare-F 0.14/0.121 0.315/0.281 0.197/0.181 0.281/0.254 0.154/0.132 0.164/0.143 0.124/0.099
hypothyroid 0.806/0.797 0.781/0.769 0.81/0.801 0.776/0.763 0.792/0.782 0.806/0.797 0.793/0.782
kddcup-guess_passwd_vs_satan 1.0/1.0 1.0/1.0 0.994/0.994 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
kr-vs-k-three_vs_eleven 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
kr-vs-k-zero-one_vs_draw 0.979/0.979 0.956/0.954 0.973/0.972 0.97/0.969 0.977/0.977 0.975/0.974 0.967/0.966
shuttle-2_vs_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.048/0.033 0.156/0.115 0.083/0.046 0.141/0.096 0.11/0.076 0.048/0.033 0.08/0.043
yeast4 0.347/0.332 0.399/0.37 0.309/0.292 0.372/0.34 0.291/0.27 0.347/0.332 0.386/0.361
yeast5 0.625/0.615 0.738/0.729 0.685/0.676 0.713/0.704 0.691/0.682 0.625/0.615 0.708/0.699
yeast6 0.436/0.426 0.481/0.465 0.531/0.521 0.46/0.442 0.531/0.521 0.436/0.426 0.486/0.472
Average 0.638/0.629 0.666/0.65 0.644/0.634 0.662/0.646 0.65/0.637 0.638/0.629 0.654/0.641

TABLE 6.3: Table showing F1-Score/κ- Score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO, LoRAS) for 14 Set-I benchmarking datasets

for RF classifier.

Datasets Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE SOMO LORAS

abalone9-18 0.28/0.449 0.389/0.347 0.313/0.29 0.336/0.287 0.336/0.298 0.28/0.267 0.368/0.331
abalone_17_vs_7_8_9_10 0.106/0.353 0.339/0.319 0.167/0.157 0.32/0.296 0.278/0.261 0.106/0.103 0.31/0.29
car-vgood 0.969/0.995 0.988/0.988 0.954/0.952 0.974/0.973 0.947/0.945 0.969/0.967 0.932/0.93
car_good 0.795/0.964 0.861/0.856 0.734/0.727 0.817/0.81 0.66/0.651 0.797/0.791 0.664/0.654
flare-F 0.08/0.232 0.182/0.151 0.025/0.003 0.196/0.169 0.045/0.024 0.027/0.004 0.086/0.06
hypothyroid 0.789/0.862 0.77/0.758 0.789/0.78 0.77/0.758 0.773/0.763 0.789/0.779 0.758/0.748
kddcup-guess_passwd_vs_satan 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
kr-vs-k-three_vs_eleven 0.992/1.0 0.997/0.997 0.992/0.992 0.995/0.995 0.999/0.999 0.992/0.992 0.995/0.995
kr-vs-k-zero-one_vs_draw 0.95/0.997 0.943/0.941 0.95/0.948 0.955/0.953 0.951/0.949 0.953/0.951 0.939/0.937
shuttle-2_vs_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.0/0.172 0.143/0.115 0.031/0.01 0.164/0.127 0.054/0.037 0.0/-0.0 0.07/0.046
yeast4 0.23/0.408 0.413/0.391 0.264/0.252 0.372/0.342 0.287/0.27 0.23/0.219 0.341/0.319
yeast5 0.637/0.752 0.724/0.715 0.707/0.699 0.728/0.719 0.689/0.68 0.637/0.629 0.715/0.705
yeast6 0.428/0.53 0.493/0.481 0.496/0.489 0.46/0.445 0.528/0.519 0.428/0.42 0.504/0.494
Average 0.59/0.694 0.66/0.647 0.602/0.593 0.649/0.634 0.61/0.6 0.586/0.58 0.62/0.608

TABLE 6.4: Table showing F1-Score/κ- Score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO, LoRAS) for 14 Set-I benchmarking datasets

for kNN classifier.

Datasets Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE SOMO LORAS

abalone9-18 0.125/0.119 0.345/0.286 0.368/0.345 0.404/0.356 0.332/0.279 0.125/0.119 0.394/0.346
abalone_17_vs_7_8_9_10 0.11/0.105 0.295/0.267 0.316/0.3 0.335/0.309 0.286/0.259 0.11/0.105 0.298/0.271
car-vgood 0.594/0.585 0.88/0.875 0.84/0.833 0.836/0.828 0.84/0.834 0.583/0.574 0.898/0.894
car_good 0.409/0.399 0.857/0.851 0.572/0.546 0.509/0.478 0.737/0.725 0.423/0.413 0.84/0.832
flare-F 0.095/0.079 0.28/0.234 0.28/0.234 0.275/0.227 0.305/0.265 0.1/0.083 0.293/0.251
hypothyroid 0.61/0.595 0.589/0.562 0.646/0.625 0.578/0.551 0.668/0.651 0.61/0.595 0.619/0.595
kddcup-guess_passwd_vs_satan 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99
kr-vs-k-three_vs_eleven 0.936/0.935 0.949/0.948 0.949/0.948 0.936/0.934 0.937/0.935 0.939/0.937 0.945/0.943
kr-vs-k-zero-one_vs_draw 0.892/0.889 0.879/0.873 0.904/0.9 0.879/0.874 0.92/0.917 0.898/0.895 0.91/0.906
shuttle-2_vs_5 0.998/0.998 1.0/1.0 1.0/1.0 0.992/0.991 1.0/1.0 0.998/0.998 1.0/1.0
winequality-red-4 0.0/-0.001 0.066/0.009 0.054/-0.005 0.074/0.015 0.073/0.016 0.0/-0.001 0.078/0.023
yeast4 0.139/0.126 0.323/0.285 0.329/0.292 0.292/0.25 0.357/0.325 0.139/0.126 0.383/0.353
yeast5 0.679/0.67 0.67/0.656 0.67/0.657 0.627/0.611 0.688/0.676 0.679/0.67 0.686/0.673
yeast6 0.562/0.553 0.332/0.306 0.367/0.343 0.307/0.28 0.49/0.474 0.562/0.553 0.361/0.338
Average 0.51/0.503 0.604/0.582 0.592/0.572 0.574/0.55 0.616/0.596 0.511/0.504 0.621/0.601

TABLE 6.5: Table showing F1-Score/κ- Score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, SOMO, LoRAS) for 14 Set-I benchmarking datasets

for LR classifier.

Datasets Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE SOMO LORAS

abalone9-18 0.559/0.694 0.524/0.485 0.57/0.538 0.518/0.477 0.563/0.529 0.559/0.538 0.569/0.536
abalone_17_vs_7_8_9_10 0.357/0.436 0.307/0.278 0.363/0.339 0.323/0.295 0.342/0.315 0.357/0.347 0.324/0.297
car-vgood 0.122/0.353 0.377/0.337 0.397/0.36 0.381/0.342 0.368/0.327 0.132/0.117 0.385/0.346
car_good 0.0/0.078 0.095/0.024 0.103/0.033 0.099/0.028 0.108/0.039 0.022/0.012 0.094/0.024
flare-F 0.208/0.352 0.263/0.212 0.329/0.287 0.265/0.214 0.273/0.224 0.252/0.23 0.28/0.23
hypothyroid 0.335/0.444 0.368/0.317 0.401/0.355 0.381/0.331 0.388/0.343 0.335/0.316 0.376/0.326
kddcup-guess_passwd_vs_satan 0.996/0.989 1.0/1.0 0.996/0.996 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
kr-vs-k-three_vs_eleven 0.96/0.997 0.947/0.946 0.948/0.947 0.953/0.951 0.949/0.948 0.96/0.959 0.946/0.944
kr-vs-k-zero-one_vs_draw 0.853/0.934 0.732/0.719 0.795/0.786 0.74/0.728 0.766/0.756 0.862/0.857 0.764/0.753
shuttle-2_vs_5 1.0/1.0 1.0/1.0 0.983/0.983 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.007/0.155 0.127/0.072 0.132/0.078 0.129/0.074 0.157/0.106 0.007/0.004 0.138/0.084
yeast4 0.212/0.415 0.255/0.211 0.275/0.233 0.259/0.215 0.247/0.203 0.212/0.2 0.26/0.217
yeast5 0.552/0.709 0.599/0.582 0.631/0.616 0.607/0.59 0.622/0.607 0.552/0.541 0.598/0.581
yeast6 0.437/0.512 0.3/0.272 0.345/0.32 0.295/0.266 0.398/0.377 0.437/0.428 0.323/0.296
Average 0.471/0.576 0.492/0.461 0.519/0.491 0.496/0.465 0.513/0.484 0.478/0.468 0.504/0.474

84 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

TABLE 6.6: Table showing the I -scores for different oversampling algorithms for the pilot study.

Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE-SMOTE SOMO LoRAS

I 0.442 0.58 0.592 0.562 0.649 0.478 0.647

6.2 ProWRAS algorithm

Recall that the LoRAS oversampling approach proposes to model the convex space more
rigorously. Instead of generating synthetic samples by taking a convex combination of only
two samples from a neighbourhood (as done by SMOTE and a majority of its extensions),
LoRAS proposes to generate synthetic samples by taking convex combinations of multiple
shadowsamples (Gaussian noise added to the original minority class samples) in a minority
class data neighbourhood [Bej 2021]. Bej et al. analytically calculates the variance of a
LoRAS-generated synthetic sample (considered as a random variable) as:

Var(Lj) =
2(σ′2j + σ2

Bj)

(|F|+ 1)
(6.2)

where, Lj is the j-th component of a LoRAS-generated sample L, |F| is the number of
shadowsamples considered for a convex combination to generate L, σ′2j is the original
variance of the minority class samples in a neighbourhood and σ2

Bj is the variance of the
noise added to the original minority class samples to generate shadowsamples (σ2

Bj can be
chosen to be arbitrarily small) [Bej 2021]. Moreover, the LoRAS algorithm uses manifold
learning technique t-SNE to learn the minority class data neighbourhoods.

Algorithm 3 ProWRAS oversampling algorithm (GitHub link)
Inputs:

data Data points.

Parameters:

max_conv (> 0) Weight for number of generated samples per layer.
num_samples_to_generate (> 0) Maximal count of generated samples in the output.

Function ProWRAS_oversampling(data) begin
clusters← partition_info(data) (See Algorithm 4)

weight_max← max({weight : (cluster, weight) ∈ clusters})
Initialize synth_samples with an empty set.

For (cluster, weight) ∈ clusters do

num_samples← ⌈num_samples_to_generate · weight⌉

num_convcomb←
⌈︂

max_conv·weight
weight_max

⌉︂
synth← generate_points(cluster, num_samples, num_convcomb) (See Algorithm 5)

synth_samples← synth_samples∪ synth

endfor
Return resulting set of generated data points as synth_samples.

end

The ProWRAS algorithm is a multi-schematic oversampling algorithm, which integrates
several aspects of the LoRAS and ProWSyn algorithms. The ProWRAS algorithm can be
realised by the following steps:

Partition/Cluster minority class samples: The algorithm takes labelled imbalanced data
as input. As a first step, it creates a partition of the minority class. The partition is

https://github.com/Saptarshi-Bej/LoRAS-UMAP-project

6.2. ProWRAS algorithm 85

Algorithm 4 Proximity weighted minority class data partitioning
Inputs:

data Data points.

Parameters:

max_levels (≥ 1) Maximal repeat of bordersearch.
n_neighbours_max (≥ 1) Number of neighbours considered for the majority class data points

while constructing minority class partitions.
θ (> 0) Scaling for weights.
num_feats (= dim(x1)) Number of features.

Function partition_info(data) begin
X_maj← Data points in data with label for major class.
X_min← Data points in X with label for minor class.

L = max_levels
Initialize clusters as empty set.

For i = 1, 2, . . . , L− 1 do
If |X_min| = 0 then

break
endif
weight = exp(−θ · (i− 1))

k← min(|X_min|, n_neighbours_max])
cluster← All neighbours in k-Neighbourhoods from X_maj in X_min

clusters = clusters∪ {(cluster, weight)}
X_min← X_min \ cluster

endfor

If |X_min| > 0 then
weight = exp(−θ · (L− 1))
clusters = clusters∪ {(X_min, weight)}

endif

weight_sum← sum({weight : (cluster, weight) ∈ clusters})

clusters←
{︂(︂

cluster, weight
weight_sum

)︂
: (cluster, weight) ∈ clusters

}︂
Returns pairs of clusters and normalised weights as clusters.

end

Algorithm 5 Cluster-wise oversampling schemes
Inputs:

cluster Data points.
num_samples Number of generated shadowsamples per parent data point.
num_convcomb Number of convex combinations for each new sample.

Parameters:

neb_conv (≥ 1) Number of data points used in affine combination for new samples.
shadow (≥ 1) Number of generated shadowsamples per parent data point.
sigma (≥ 0) List of standard deviations for normal distributions for adding noise to each feature.

Function generate_points(cluster, num_samples, num_convcomb) begin
Initialize generated_data with empty set.

If |cluster| > neb_conv then
neb_list← set of all k-Neighbourhoods in cluster

else
neb_list← {cluster}

endif

If num_convcomb < num_feats then
k← 2

else
k← num_convcomb

endif

For i = 1, 2, . . . num_samples do
neighbourhood← a random neighbourhood in neb_list

If num_convcomb < num_feats then
data_shadow← neighbourhood

else
Initialize data_shadow with empty set.
For v ∈ neighborurhood do

data_shadow← data_shadow∪ {shadow random vectors around v with normal distribution. }
endfor

endif

u = (u1 , . . . , uk)← k random vectors ∈ data_shadow
w = (w1 , . . . , wk)← a random vector with positive values and w1 + w2 + . . . + wk = 1

generated_data← generated_data∪ {w · u}
endfor
Returns new points as generated_data.

end

86 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

done as per the proximity of the minority class data points from the majority class. The
maximum number of desired partitions can be predefined by the user using a parameter
max_levels (recommended value of 5). The first partition P1 is determined by the union of
n_neighbours_max (recommended value of 5) number of minority class nearest neighbours
of all the majority class data points. The parameter n_neighbours_max can also be adjusted
by the user. Once the first partition P1 is ready, the process is repeated for the remaining
minority class data points (if any left) that are not in P1. This procedure is repeated for L− 1
steps to obtain partitions P1, . . . , PL−1. The minority class data points that are not included
in any of the partitions P1, . . . , PL−1, form the partition PL. Thus, for i < j, Pi is closer to the
majority class compared to Pj, i, j ∈ {1, . . . , L}. The partitions thus formed are treated as
clusters in the minority class. This clustering technique is adopted from ProWSyn, a very
effective oversampling technique, described in Section 3.4.1 [Barua 2013]. An advantage
of this type of partitioning/ clustering of data is that the clustering process considers the
distribution of the minority class with respect to the majority class, which is not considered
in other clustering algorithms.

Assigning proximity weights to clusters: The next step is to assign proximity weights
to each cluster Pi, i ∈ {1, . . . , L}, such that clusters closer to the majority class have more
weights. This is done to make the decision boundary stronger as the minority class data
points that are closer to the majority class cause more confusion for the classifiers to create a
decision boundary. This is achieved for i ∈ {1, . . . , L}, by assigning weight wi to the cluster
Pi, following the equation:

wi = e−θ·(i−1) (6.3)

The weights are then normalised. The parameter θ (recommended value 1) can be used
to control the rate of decay of weights. The pseudocode for this process can be found in
Algorithm 4.

Deciding the number of synthetic samples to generate from each cluster: After
the clusters and their respective normalised weights are obtained, ProWRAS decides
the number of synthetic samples to be generated from each cluster. The total number
of synthetic samples to be generated is taken as a user input using the parameter
num_samples_to_generate (a recommended value for this parameter is the difference
between the number of majority and minority class samples). The normalised weights of
respective clusters are multiplied to num_samples_to_generate, to determine the number
of samples to be generated from those clusters. Until this point, the ProWRAS algorithm
follows the same steps as the ProWSyn algorithm [Barua 2013].

Customise variance for each cluster: Bej et al. in the article on the LoRAS algorithm
pointed out that customising the variance of the synthetic samples can be important for an
improved modelling of the convex space of the minority class. In contrast to the ProWSyn
algorithm, the ProWRAS algorithm uses an approach to rigorously model the convex space
of the minority class by controlling the variance of the synthetic samples generated. There
are two aspects of the algorithm that can help one achieve this, which are described below.

A) Choice of proper neighbourhood size: For each of the identified clusters, ProWRAS
can generate synthetic samples using different minority class neighbourhood sizes. This
can lead to a local oversample generation scheme by choosing a small minority class

6.2. ProWRAS algorithm 87

FIGURE 6.3: Illustration of the working principle of the ProWRAS algorithm. ProWRAS used a
proximity based partitioning system to find clusters in the minority class. For each cluster, it then
uses one of four oversampling schemes shown in the figure. The key to success of the ProWRAS
algorithm is its ability to rigorously model the convex space through controlling the variance of the

synthetic samples.

neighbourhood (similar to the approach of SMOTE or LoRAS) or a global oversample
generation scheme, which considers the entire cluster as a neighbourhood (similar to the
approach of CURE-SMOTE). The global or local oversampling schemes can be accessed
using proper choice of neb_conv parameter. If the choice of neb_conv is less than the size
of the cluster itself, then ProWRAS will employ a local oversampling scheme, otherwise the
whole cluster will be considered as a neighbourhood and the global oversampling scheme
is employed.

B) Convex space modelling: ProWRAS can also control the variance of the generated
synthetic samples using rigorous convex space modelling. This is achieved using the
max_conv parameter. If max_conv = 2, ProWRAS generates SMOTE-like synthetic samples
by taking convex combinations of any two minority class samples. Let’s call this, a high
variance oversampling scheme, since this leads to high variance of the synthetic samples
(see Equation 6.2). If max_conv > 2, ProWRAS generates LoRAS-like synthetic samples by
taking convex combinations of multiple numbers of shadowsamples. LoRAS-like sample
generation of course requires two more parameters to be added to the algorithm: σ

(recommended value of 0.001), for deciding the variance of the normal distribution to

88 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

draw the noise for creating the shadowsamples, shadow (recommended value of 100), for
deciding how many shadowsamples need to be created per minority class sample. Let’s
call this a low variance oversampling scheme. The number of convex combinations is
decided by the normalised proximity weight of the respective cluster. First, the normalised
proximity weights of all clusters are scaled, dividing them by the maximum normalised
proximity weight obtained. Note that, this produces scaled weights for every cluster, such
that each cluster has a weight between 0 and 1. The scaled weights are then multiplied
with the max_conv parameter to obtain the number of appropriate convex combinations of
shadowsamples for each cluster.

Note that clusters with higher scaled weights are closer to the majority class. Taking
a convex combination of multiple samples for such clusters will help to keep the variance
of the synthetic samples low, which will prevent them from interfering with the majority
class. Clusters with lower scaled weights are far away from the majority class, and hence
one can choose to create high variance synthetic samples from them. This also reduces the
computational costs of the LoRAS algorithm.

Based on the points mentioned above, one can identify four oversampling schemes
for the ProWRAS algorithm that can be accessed by different combinations of the two
parameters max_conv and neb_conv. They are:

• High global variance (HGV)
(max_conv = 2, neb_conv ≥ |Cmin|)

• Low global variance (LGV)
(max_conv = dim(data), neb_conv ≥ |Cmin|)

• High local variance (HLV)
(max_conv = 2, neb_conv = 5)

• Low local variance (LLV)
(max_conv = dim(data), neb_conv = 5)

where Cmin is the minority class and dim(data) is the number of features in the dataset.
Note that the global oversampling scheme is employed for a cluster, if the chosen value of
neb_conv is greater than the size of the cluster. Choosing the value of neb_conv ≥ |Cmin|
ensures that for all clusters the global oversampling scheme is employed. Moreover, if
max_conv = 2 then automatically scales cluster weights to determine the number of convex
combinations for the shadowsample generation in any arbitrary cluster becomes 2 (See
Algorithm 5), leading ProWRAS into the high variance data generation scheme. A graphical
representation of the ProWRAS algorithm is shown in Figure 6.3.

To sum up, the ProWRAS algorithm, which has eight adjustable parameters:
max_levels, n_neighbours_max, num_samples_to_generate, θ, σ, shadow, max_conv,
neb_conv. Among these, only two parameters max_conv, neb_conv, affects the oversampling
process significantly by changing the use of one of the four oversampling schemes.

Classifier-specific synthetic sampling: Finally, to take full advantage of the ProWRAS
algorithm given a dataset and a classifier of choice, a user can choose to train the classifier

6.3. Classifier independent performance of ProWRAS 89

using all four oversampling schemes and finally select the best one. In Section 6.3, where
I discuss the results of this research, I show that classifier-specific choice of oversampling
schemes helps ProWRAS to perform better, independently of the classifier used.

6.3 Classifier independent performance of ProWRAS

N
u
m

b
e
r

o
f

d
a
ta

s
e
ts

u
s
e
d
 f

o
r

th
e

s
tu

d
y

Gradient Boosting Random Forest

K-Nearest Neighbours Logistic Regression

FIGURE 6.4: Figure showing results for the final study. Every heatmap for the respective classifier
shows the number of datasets for which the oversampling model in the i-th row performs equally or
better (by F1-Score) than the model in the j-th column. Note that, ProWRAS performs consistently

well for all the classifiers.

Details of the final benchmarking studies are shown in Table 6.7, 6.8, 6.9, 6.10. Observe
that the ensemble models on an average perform quite well in comparison to kNN or LR.
Even the baseline model for GB has better F1 and κ-Scores comparing the oversampled
classifiers for kNN and LR. For classifiers GB, RF, and LR, ProWRAS produces better
average F1-Score and κ-Score over all models. In the case of kNN, CURE SMOTE does
marginally better than ProWRAS. Figure 6.4 shows the heatmap plots for each chosen
classifier, showing comparisons of the oversampling algorithms among each other in terms
of their performance on the 20. Observe that the oversampling models that performed
well in the pilot study for the respective classifiers continue to do well. For example,

90 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

for RF, SMOTE and ProWSYN still perform quite well. Interestingly, ProWRAS performs
consistently well for all the classifiers. Thus, the classifier and dataset specific synthetic data
generation of ProWRAS makes its performance classifier-independent.

I have also quantified the classifier independence of the compared oversampling
algorithms using the I -score (6.1). I observed that, CURE-SMOTE, LoRAS and ProWSYN
still maintains comparatively high degree of classifier independence. However, ProwRAS
significantly outperforms other algorithms with a score of 0.833.

Thus, I conclude that, classifier and dataset specific synthetic data generation of
ProWRAS makes its performance classifier-independent.

TABLE 6.7: Table showing F1-Score/κ- Score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, LoRAS, ProWRAS) for all 20 benchmarking datasets
for Gradient Boosting classifier. The column on the right shows the performance of the ProWRAS
algorithm over all datasets. Observe in the last row that the average performance of ProWRAS is

superior to all other oversampling algorithms.

Dataset Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE-SMOTE LoRAS ProWRAS

abalone9-18 0.342/0.319 0.359/0.312 0.259/0.236 0.381/0.338 0.317/0.271 0.319/0.294 0.385/0.341
abalone_17_vs_7_8_9_10 0.277/0.265 0.333/0.308 0.294/0.282 0.359/0.336 0.337/0.314 0.236/0.226 0.335/0.310
car-vgood 0.981/0.980 0.946/0.943 0.966/0.964 0.968/0.967 0.960/0.959 0.968/0.966 0.959/0.957
car_good 0.900/0.896 0.850/0.843 0.819/0.812 0.855/0.849 0.84/0.833 0.868/0.863 0.863/0.857
flare-F 0.172/0.155 0.321/0.287 0.174/0.156 0.271/0.241 0.143/0.123 0.171/0.149 0.320/0.291
hypothyroid 0.805/0.796 0.762/0.748 0.798/0.788 0.776/0.763 0.788/0.778 0.796/0.787 0.803/0.794
kddcup-guess_passwd_vs_satan 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 0.998/0.998
kr-vs-k-three_vs_eleven 0.993/0.992 0.993/0.993 0.995/0.995 0.993/0.993 0.995/0.995 0.995/0.995 0.995/0.995
kr-vs-k-zero-one_vs_draw 0.969/0.968 0.949/0.947 0.969/0.968 0.958/0.957 0.962/0.96 0.961/0.96 0.969/0.967
shuttle-2_vs_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.056/0.045 0.154/0.112 0.083/0.044 0.150/0.105 0.132/0.093 0.143/0.105 0.156/0.115
yeast4 0.304/0.287 0.351/0.32 0.307/0.290 0.339/0.305 0.321/0.299 0.214/0.197 0.335/0.303
yeast5 0.697/0.689 0.739/0.730 0.727/0.719 0.734/0.725 0.738/0.731 0.703/0.695 0.735/0.726
yeast6 0.454/0.444 0.456/0.44 0.505/0.496 0.462/0.445 0.507/0.496 0.554/0.545 0.514/0.501
oil 0.482/0.464 0.525/0.503 0.482/0.466 0.537/0.517 0.527/0.507 0.549/0.533 0.587/0.568
ozone_level 0.166/0.154 0.341/0.317 0.221/0.207 0.332/0.306 0.233/0.221 0.269/0.254 0.329/0.303
solar_flare_m0 0.106/0.085 0.155/0.115 0.110/0.088 0.129/0.109 0.121/0.101 0.098/0.078 0.194/0.139
thyroid_sick 0.865/0.856 0.852/0.841 0.858/0.849 0.845/0.834 0.845/0.836 0.856/0.847 0.873/0.864
wine_quality 0.232/0.216 0.278/0.234 0.22/0.178 0.247/0.201 0.225/0.189 0.238/0.193 0.290/0.248
yeast_me2 0.329/0.313 0.361/0.33 0.319/0.303 0.339/0.305 0.207/0.192 0.329/0.241 0.225/0.328
Average 0.556/0.546 0.586/0.566 0.555/0.542 0.584/0.565 0.564/0.549 0.560/0.546 0.600/0.580

TABLE 6.8: Table showing F1-Score/κ- Score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE SMOTE, LoRAS, and ProWRAS) for all 20 benchmarking
datasets for Random Forest classifier. The column on the right shows the performance of the
ProWRAS algorithm over all datasets. Observe that, in the last row that the average performance

of ProWRAS is superior to all other oversampling algorithms.

Dataset Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE-SMOTE LoRAS ProWRAS

abalone9-18 0.211/0.198 0.342/0.3 0.266/0.245 0.327/0.278 0.311/0.272 0.325/0.293 0.38/0.335
abalone_17_vs_7_8_9_10 0.17/0.166 0.338/0.318 0.25/0.241 0.324/0.3 0.242/0.228 0.247/0.233 0.328/0.303
car-vgood 0.959/0.958 0.974/0.973 0.937/0.935 0.955/0.953 0.922/0.919 0.943/0.942 0.972/0.971
car_good 0.78/0.773 0.8/0.793 0.713/0.705 0.768/0.76 0.723/0.715 0.6/0.59 0.869/0.863
flare-F 0.087/0.066 0.147/0.117 0.091/0.07 0.183/0.156 0.075/0.055 0.1/0.08 0.21/0.181
hypothyroid 0.786/0.777 0.755/0.742 0.791/0.782 0.756/0.743 0.783/0.773 0.785/0.775 0.787/0.778
kddcup-guess_passwd_vs_satan 0.998/0.998 0.998/0.998 1.0/1.0 0.998/0.998 0.998/0.998 0.998/0.998 0.998/0.998
kr-vs-k-three_vs_eleven 0.989/0.989 0.995/0.995 0.989/0.989 0.991/0.991 0.991/0.991 0.991/0.990 0.996/0.996
kr-vs-k-zero-one_vs_draw 0.961/0.96 0.949/0.947 0.955/0.953 0.958/0.956 0.956/0.954 0.941/0.939 0.961/0.959
shuttle-2_vs_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.007/0.007 0.113/0.086 0.048/0.025 0.168/0.131 0.037/0.022 0.104/0.078 0.158/0.119
yeast4 0.238/0.23 0.351/0.326 0.26/0.249 0.352/0.321 0.267/0.251 0.245/0.235 0.357/0.325
yeast5 0.655/0.647 0.751/0.743 0.723/0.716 0.739/0.73 0.695/0.687 0.723/0.716 0.754/0.746
yeast6 0.435/0.428 0.478/0.465 0.464/0.456 0.474/0.459 0.482/0.473 0.531/0.523 0.518/0.507
oil 0.391/0.379 0.52/0.503 0.429/0.415 0.586/0.57 0.441/0.427 0.421/0.408 0.58/0.564
ozone_level 0.014/0.012 0.301/0.284 0.086/0.081 0.326/0.304 0.114/0.109 0.177/0.17 0.33/0.307
solar_flare_m0 0.07/0.047 0.105/0.066 0.058/0.036 0.109/0.079 0.067/0.045 0.081/0.058 0.168/0.117
thyroid_sick 0.843/0.833 0.875/0.867 0.839/0.829 0.85/0.84 0.843/0.834 0.85/0.841 0.868/0.859
wine_quality 0.292/0.282 0.378/0.355 0.304/0.283 0.331/0.296 0.275/0.258 0.307/0.282 0.368/0.344
yeast_me2 0.181/0.173 0.406/0.384 0.223/0.211 0.359/0.328 0.242/0.229 0.268/0.257 0.389/0.365
Average 0.504/0.496 0.579/0.563 0.521/0.511 0.578/0.56 0.524/0.519 0.531/0.521 0.600/0.582

Statistical significance of results: The higher the value of W+ the better the performance
of ProWRAS with respect to the compared algorithms, whereas a higher value of W− implies

6.4. Interpretations and applicability of the ProWRAS oversamping approach 91

TABLE 6.9: Table showing F1-score/κ- score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS, and ProWRAS) for all 20 benchmarking
datasets for k-Nearest neighbours classifier. The column on the right shows the performance of the
ProWRAS algorithm over all datasets. Observe that, in the last row that the average performance of

ProWRAS is superior to all the other oversampling algorithms.

Dataset Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE-SMOTE LoRAS ProWRAS

abalone9-18 0.206/0.197 0.285/0.223 0.345/0.295 0.316/0.257 0.335/0.279 0.309/0.249 0.384/0.35
abalone_17_vs_7_8_9_10 0.104/0.1 0.276/0.247 0.339/0.316 0.324/0.297 0.295/0.269 0.297/0.271 0.347/0.328
car-vgood 0.827/0.822 0.74/0.728 0.737/0.723 0.703/0.688 0.765/0.753 0.741/0.728 0.818/0.81
car_good 0.581/0.571 0.645/0.625 0.607/0.585 0.491/0.458 0.645/0.626 0.645/0.626 0.641/0.622
flare-F 0.203/0.183 0.273/0.228 0.257/0.212 0.255/0.208 0.284/0.244 0.311/0.273 0.301/0.263
hypothyroid 0.437/0.422 0.479/0.444 0.509/0.48 0.487/0.454 0.546/0.523 0.545/0.519 0.553/0.528
kddcup-guess_passwd_vs_satan 1.0/1.0 0.996/0.996 0.994/0.994 1.0/1.0 1.0/1.0 0.994/0.994 1.0/1.0
kr-vs-k-three_vs_eleven 0.902/0.899 0.918/0.915 0.925/0.923 0.911/0.908 0.907/0.904 0.92/0.917 0.94/0.938
kr-vs-k-zero-one_vs_draw 0.852/0.847 0.867/0.861 0.879/0.874 0.872/0.866 0.868/0.863 0.875/0.87 0.9/0.896
shuttle-2_vs_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.039/0.036 0.132/0.083 0.13/0.081 0.13/0.079 0.145/0.099 0.13/0.08 0.141/0.093
yeast4 0.219/0.21 0.261/0.217 0.286/0.244 0.267/0.223 0.292/0.25 0.257/0.212 0.308/0.268
yeast5 0.69/0.682 0.631/0.616 0.655/0.642 0.614/0.598 0.677/0.665 0.661/0.648 0.714/0.704
yeast6 0.574/0.565 0.314/0.288 0.363/0.339 0.301/0.274 0.507/0.493 0.4/0.379 0.588/0.579
oil 0.329/0.319 0.426/0.39 0.475/0.444 0.456/0.423 0.476/0.445 0.492/0.464 0.545/0.531
ozone_level 0.165/0.155 0.202/0.161 0.202/0.162 0.2/0.159 0.23/0.192 0.216/0.177 0.218/0.179
solar_flare_m0 0.052/0.033 0.226/0.168 0.207/0.146 0.2/0.138 0.208/0.155 0.225/0.175 0.228/0.177
thyroid_sick 0.5/0.48 0.527/0.487 0.531/0.495 0.528/0.49 0.555/0.525 0.556/0.524 0.556/0.526
wine_quality 0.104/0.096 0.246/0.2 0.226/0.177 0.22/0.168 0.235/0.19 0.232/0.185 0.25/0.204
yeast_me2 0.255/0.245 0.309/0.27 0.287/0.248 0.266/0.223 0.306/0.272 0.329/0.295 0.339/0.305
Average 0.452/0.443 0.488/0.457 0.498/0.469 0.477/0.446 0.514/0.487 0.506/0.479 0.538/0.515

the opposite. The value of R quantifies the degree of improvement of ProWRAS compared
to the other oversampling models. Table 6.11 provides the p-values, as well as the W+, W−
and R measures for ProWRAS with other oversampling models for all classifiers used in the
study.

For the classifiers RF and LR, ProWRAS significantly improves the classifier
performance, both F1-Score and κ-Score, compared to all other oversampling algorithms.
For GB, ProWRAS significantly improves the classifier performance, both F1-Score and
Balanced accuracy, compared to all other compared oversampling algorithms except for
SMOTE. ProWRAS still improves the κ-Score significantly compared to SMOTE for the GB
classifier. Moreover, SMOTE does better than ProWRAS in only six out of twenty datasets.
Only for the kNN classifier, CURE SMOTE marginally outperformed ProWRAS, looking at
the average performance from Table 6.9 and the p-value from Table 6.11. However, Figure
6.4 shows that ProWRAS performs better than CURE SMOTE for ten datasets, worse than
CURE SMOTE for eight datasets and equally well for two datasets. Thus, one can conclude
that using ProWRAS has been as effective as CURE-SMOTE for the kNN classifier.

6.4 Interpretations and applicability of the ProWRAS oversamping
approach

Observe that the distribution of oversampling schemes used by ProWRAS used by
LoRAS is vastly different for different classifiers. For KNN, the LLV oversampling scheme
has been largely effective for LR, the LGB scheme has worked out for most datasets. For RF,
the oversampling schemes HGV and HLV have worked out to be the best. For GB, which has
produced the best average F1-Score and κ-Score among all classifiers over all oversampling
models, interestingly, have a more uniform distribution for the ProWRAS oversampling
schemes.

92 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

TABLE 6.10: Table showing F1-score/κ- score for several oversampling strategies (Baseline, SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS, and ProWRAS) for all 20 benchmarking
datasets for Logistic Regression classifier. The column on the right shows the performance of the
ProWRAS algorithm over all datasets. Observe that, in the last row that the average performance of

ProWRAS is superior to all the other oversampling algorithms.

Dataset Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE-SMOTE LoRAS ProWRAS

abalone9-18 0.463/0.448 0.46/0.413 0.488/0.447 0.481/0.437 0.447/0.401 0.464/0.418 0.488/0.446
abalone_17_vs_7_8_9_10 0.266/0.259 0.301/0.271 0.333/0.307 0.3/0.271 0.309/0.281 0.312/0.284 0.315/0.287
car-vgood 0.086/0.075 0.378/0.338 0.403/0.365 0.388/0.35 0.37/0.33 0.382/0.343 0.407/0.371
car_good 0.0/0.0 0.099/0.028 0.1/0.029 0.099/0.028 0.102/0.033 0.096/0.025 0.103/0.033
flare-F 0.213/0.198 0.268/0.217 0.313/0.268 0.272/0.222 0.298/0.253 0.268/0.218 0.341/0.3
hypothyroid 0.356/0.339 0.386/0.338 0.42/0.376 0.39/0.342 0.423/0.381 0.412/0.367 0.446/0.407
kddcup-guess_passwd_vs_satan 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99 0.99/0.99
kr-vs-k-three_vs_eleven 0.921/0.919 0.877/0.873 0.924/0.922 0.898/0.895 0.864/0.86 0.881/0.878 0.928/0.926
kr-vs-k-zero-one_vs_draw 0.816/0.81 0.692/0.677 0.796/0.787 0.727/0.714 0.716/0.703 0.713/0.699 0.853/0.847
shuttle-2_vs_5 0.966/0.966 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
winequality-red-4 0.007/0.007 0.113/0.086 0.048/0.025 0.168/0.131 0.037/0.022 0.104/0.078 0.158/0.119
yeast4 0.219/0.21 0.261/0.217 0.286/0.244 0.267/0.223 0.292/0.25 0.257/0.212 0.308/0.268
yeast5 0.511/0.5 0.571/0.552 0.615/0.599 0.584/0.566 0.601/0.584 0.585/0.567 0.591/0.574
yeast6 0.383/0.375 0.309/0.281 0.33/0.304 0.298/0.269 0.388/0.366 0.316/0.289 0.326/0.3
oil 0.524/0.507 0.474/0.44 0.518/0.49 0.506/0.475 0.484/0.454 0.475/0.444 0.535/0.511
ozone_level 0.191/0.178 0.262/0.226 0.287/0.253 0.263/0.226 0.314/0.282 0.311/0.279 0.347/0.319
solar_flare_m0 0.112/0.102 0.196/0.124 0.216/0.151 0.204/0.133 0.206/0.142 0.192/0.119 0.25/0.195
thyroid_sick 0.644/0.626 0.511/0.465 0.652/0.624 0.534/0.492 0.611/0.579 0.535/0.492 0.57/0.532
wine_quality 0.083/0.077 0.178/0.121 0.195/0.14 0.188/0.133 0.225/0.175 0.169/0.111 0.196/0.143
yeast_me2 0.22/0.21 0.255/0.211 0.28/0.238 0.262/0.218 0.291/0.25 0.266/0.222 0.295/0.254
Average 0.399/0.39 0.429/0.393 0.46/0.428 0.441/0.406 0.448/0.417 0.436/0.401 0.472/0.441

TABLE 6.11: Table showing the results of Wilcoxon’s signed rank test for comparison of ProWRAS
with other oversampling algorithms. The p-values in the table quantify the statistical significance of
the improvement achieved by ProWRAS over each oversampling model. Higher value of W+, shows
that how superior performance of ProWRAS for higher number of datasets. Higher value of R shows

better reliability of the results.

Dataset classifier Baseline SMOTE Polynom-fit SMOTE ProWSYN CURE-SMOTE LoRAS

p-value (F1 score) GB 0.003 0.024 0.000 0.012 0.001 0.003
p-value (κ-score) GB 0.006 0.017 0.000 0.014 0.001 0.003
W+/W− (F1 score) GB 189/15 182/21 195/6 189/15 195/10 189/10
W+/W− (κ-score) GB 189/15 189/15 195/6 189/15 195/10 189/10
R (F1 score) GB 0.860 0.795 0.925 0.860 0.914 0.878
R (κ-score) GB 0.860 0.860 0.925 0.860 0.914 0.878

p-value (F1 score) RF 0.000 0.013 0.000 0.001 0.000 0.000
p-value (κ-score) RF 0.000 0.019 0.000 0.001 0.000 0.000
W+/W− (F1 score) RF 204/1 182/15 204/3 200/3 207/0 207/1
W+/W− (κ-score) RF 204/1 174/21 204/3 200/3 207/0 207/1
R (F1 score) RF 0.983 0.820 0.989 0.960 0.995 1
R (κ-score) RF 0.983 0.750 0.989 0.960 0.995 1

p-value (F1 score) kNN 0.000 0.000 0.000 0.000 0.001 0.000
p-value (κ-score) kNN 0.000 0.000 0.000 0.000 0.001 0.000
W+/W− (F1 score) kNN 204/1 207/1 209/0 207/0 195/6 200/6
W+/W− (κ-score) kNN 204/1 207/1 209/0 207/0 195/6 204/3
R (F1 score) kNN 0.983 1 1 0.995 0.925 0.957
R (κ-score) kNN 0.983 1 1 0.995 0.925 0.984

p-value (F1 score) LR 0.001 0.000 0.047 0.000 0.034 0.003
p-value (κ-score) LR 0.007 0.000 0.047 0.000 0.034 0.000
W+/W− (F1 score) LR 204/3 207/0 189/10 204/1 189/10 207/0
W+/W− (κ-score) LR 200/6 207/0 182/15 204/1 189/10 207/ 10
R (F1 score) LR 0.989 0.995 0.878 0.983 0.878 0.995
R (κ-score) LR 0.957 0.995 0.820 0.983 0.878 0.995

TABLE 6.12: Table showing the I -scores for different oversampling algorithms for the final
benchmarking experiments.

Baseline SMOTE Polynom-fit SMOTE ProWSyn CURE-SMOTE LoRAS ProWRAS

I 0.301 0.484 0.403 0.505 0.524 0.496 0.833

For the kNN model, the LoRAS algorithm that produces synthetic samples with low

6.4. Interpretations and applicability of the ProWRAS oversamping approach 93

FIGURE 6.5: Summarising oversampling schemes/strategies used by the investigated oversampling
models and their respective influence on the classifier performance. For example, SMOTE generates
samples with a “High local variance” scheme and works well for Gradient Boosting and Random
Forest. Since the ProWRAS algorithm has access to all four oversampling schemes, its performance

can be made independent of the chosen classifier.

SMOTE

Polynom-fit SMOTE

PROWSYN

CURE SMOTE

SOMO

LoRAS

ProWRAS

High global variance

High local variance

Low global variance

Low local variance

Gradient Boosting

Random Forest

K-Nearest Neighbours

Logistic Regression

Oversampling strategy:

• Clusters considered as

neighbourhoods

• High variance synthetic samples

Oversampling strategy:

• Individual data neighbourhoods

construction

• High variance synthetic samples

Oversampling strategy:

• Clusters considered as

neighbourhoods

• Low variance synthetic samples

Oversampling strategy:

• Individual data neighbourhoods

construction

• Low variance synthetic samples

Multiple oversampling schemes access

achieved by rigorous modelling of

convex space and variance control.

Oversampling models Oversampling schemes Classification models

Performance of ProWRAS is

independent of the classification model

used.

ProWRAS can access all four oversampling schemes

local variance has also proved to be the most successful for the pilot study. LoRAS uses LLV
strategy, LoRAS both reduces the variance of synthetic samples and generate them from
neighbourhoods of each minority class data point. Note that the ProWRAS algorithm is also
quite successful for the kNN classifier using the LLV scheme.

For RF and GB classifiers except for ProWRAS, SMOTE, and ProWSyn also perform
well. Note that SMOTE uses synthetic samples with high local variance (SMOTE generates
synthetic samples from neighbourhoods of minority class data points and does not control
the variance of the synthetic samples, hence high local variance), while ProWSyn, within
each cluster adopts the high global variance philosophy of synthetic sample generation
(ProWSyn generates synthetic samples from the entire clusters of minority class data points
and does not control the variance the synthetic samples, hence high global variance). Note
that, for the ProWRAS algorithm, for most datasets, HGV and HLV strategies are successful
for both GB and RF. For LR, except for ProWRAS, Polynom fit-SMOTE also performs well.

For the star topology, Polynom fit-SMOTE controls the variance of the synthetic
samples by choosing a convex combination of a minority sample with the centroid of
the minority class, rather than choosing a convex combination of two minority samples.
Moreover, Polynom fit-SMOTE does not generate synthetic samples from individual
data neighbourhoods. Thus, it follows a global oversampling scheme. Although the
oversampling strategy of Polynom fit-SMOTE does not follow any of the strategies

94 Chapter 6. Classifier-independent oversampling using the ProWRAS algorithm

considered for ProWRAS exactly, the use of the star topology (the default topology used
by Polynom fit-SMOTE, hence used in benchmarking studies), is quite similar to the LGV
strategy, which again is the successful strategy used by ProWRAS for most datasets for LR.

To sum up, the results of the benchmarking study show the ProWRAS improve classifier
performance for all the chosen classifiers, with proper choice of oversampling scheme
compared to the other state-of-the-art oversampling algorithms. Even though LoRAS is
not included in the final benchmarking study, comparing LoRAS and ProWRAS on the 14
datasets that are common among the pilot study and the final benchmarking study, it is
easy to see that ProWRAS convincingly outperforms LoRAS. Moreover, the significance of
the improvement induced by ProWRAS is quantified using the Wilcoxon’s signed rank test,
which proves the improvement induced by using ProWRAS is statistically significant.

Observe that, given a dataset and a classifier, it is hard to predict which oversampling
scheme of ProWRAS would be most effective for that particular dataset and classifier. To
obtain the best results, it is highly recommended using all four oversampling schemes and
choose the scheme that is most effective. However, from the results, some patterns are
observed on: which oversampling scheme works better for which classifiers. For example,
for GB and RF, oversampling schemes HGV and HLV are likely to be more effective; for
kNN, the scheme LLV is likely to be more effective and for LR, the scheme LGV is likely to
be more effective.

Of course, oversampling models based on modelling the convex space of the minority
class are more effective for datasets where the convex space of the data can add some
meaningful information to the training experience of the classifiers. ProWRAS also relies
on convex space modelling of the minority class and hence can be widely applicable to
regular tabular data that are homogeneous in nature, that is the features are well-defined
with respect to the classification problem.

Observations confirm that different classifiers adapt differently to the different
approaches of oversampling algorithms to generate synthetic samples. ProWRAS on the
other hand, provides a straightforward and unbiased way to generate synthetic samples
using different oversampling schemes and, thus, can adapt to different classifiers. The
proposed ProWRAS approach can model the convex space of the minority class more
rigorously than the LoRAS algorithm by controlling the variance of the synthetic samples
better. ProWRAS achieves this through four unique oversampling schemes, as well as a
proximity-weighted clustering system of the minority class data. The oversampling scheme
of ProWRAS depends on two factors controlling the variance of the synthetic samples:
neighbourhood size and convex space modelling. Moreover, ProWRAS allows generating
low variance synthetic samples only in borderline clusters to avoid an overlap with the
majority class, making the synthetic sample generation computationally cheaper compared
to LoRAS. Using the multi-schematic approach of oversampling, ProWRAS significantly
improves performance of classifiers in terms of both F1-Score and κ-Score compared to
state-of-the-art oversampling models. ProWRAS is highly flexible to different classifiers and
can find broad applicability in solving classification problems for real-world imbalanced
datasets.

An implementation of the algorithm using Python (V 3.7.4) and several Jupyter

6.4. Interpretations and applicability of the ProWRAS oversamping approach 95

Notebooks from the benchmarking study is provided in the GitHub repository: https:
//github.com/COSPOV/ProWRAS.

With detailed documentation of the research work presented in this thesis, it is time to
proceed to the final concluding remarks in the next chapter. The next chapter presents a
concise account of my research, thereby highlighting its importance and indicating towards
potential applicability.

https://github.com/COSPOV/ProWRAS
https://github.com/COSPOV/ProWRAS

97

Concluding remarks
Convex-space-based oversampling algorithms are a popular choice to improve

imbalanced classification problems. This thesis focuses on solving tow primary limitations
of convex space based oversampling algorithms. The first problem is the over-generalisation
of minority classes by SMOTE and many of its extensions, and the second problem is the
classifier-dependent performance of the SMOTE based oversampling algorithms.

The two proposed algorithms in this thesis, LoRAS and ProWRAS, successfully solved
these problems. The key philosophy behind both algorithms is a rigorous modelling of
the convex space that is lacking in the SMOTE algorithm and its extensions. The LoRAS
algorithm forms the basis of rigorous convex space modelling. The ProWRAS algorithm,
an extension of the LoRAS algorithm, to the best of my knowledge, is the first instance of a
classifier independent algorithm, that is an oversampling algorithm whose performance is
independent of the classifier used. This is achieved through a multi-schematic framework
also unique to the algorithm.

The thesis provides an analytical explanation of this philosophy, which is consistent with
the results of the data-based experiments. Moreover, the applicability of the philosophy is
also tested in a real-life scenario through the development of the sc-SynO tool for automated
annotation of rare cells from single-cell data. These algorithms have been tested over
multiple datasets arising from diverse domains of research. They would thus be applicable
to imbalanced classification problems arising from any research domain.

Oversampling algorithms based on convex space modelling, proposed in this thesis,
are applicable to datasets where the convex space of the datasets is meaningful. This
typically includes feature-based tabular datasets, where features are consistent through data
points. Future directions of research can investigate how meaningful such methods can be,
when integrated with deep learning approaches such as contrastive learning or generative
networks. This could extend the applicability of such methods to more heterogeneous image
and text datasets, where latent representations of the data are more important due to the
lack of consistent and interpretable features in the data. Application-wise, the algorithms
can be useful in real-life problems such as fraud detection, rare disease detection, software
fault detection, anomaly detection, etc. Given that interpretable classical machine learning
models on feature-based tabular datasets are still highly sought-after in many research fields
such as finance, biomedicine, epidemiology, and given that imbalance naturally occurs in
such datasets, the algorithms proposed in the thesis can add significant value to future
research in such applicative fields.

99

Bibliography

[Krawczyk 2016] Krawczyk B. Learning from imbalanced data: open challenges and future
directions Prog Artif Intell vol 5, 221232 (2016). https://doi.org/10.1007/
s13748-016-0094-0.

[Fernández 2018] Fernández A., García S., Galar M., Prati R.C., Krawczyk B., Herrera
F.Learning from Imbalanced Data Sets Springer International Publishing, October 2018
ISBN: 978-3-31-998073-7, https://doi.org/10.1007/978-3-319-98074-4

[Zięba 2014] Zięba M., Tomczak J.M., Lubicz M., Świątek J. Boosted SVM for extracting rules
from imbalanced data in application to prediction of the post-operative life expectancy in the
lung cancer patients, Applied Soft Computing vol 14(A), 2014, pp. 99-108, ISSN 1568-4946,
https://doi.org/10.1016/j.asoc.2013.07.016.

[Azari 2015] Azari A., Janeja V.P. and Levin S. Imbalanced learning to predict long stay
Emergency Department patients IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Washington, DC, USA, 2015, pp. 807-814. https://doi.org/10.
1109/BIBM.2015.7359790

[Cao 2014] Cao P., Yang J., Li W., Zhao D., Zaiane O., Ensemble-based hybrid probabilistic
sampling for imbalanced data learning in lung nodule CAD Computerized Medical
Imaging and Graphics, vol 38(3), 2014, pp 137-150, ISSN 0895-6111, https://doi.org/
10.1016/j.compmedimag.2013.12.003.

[Acharya 2016] Acharya U.R., Chowriappa P., Fujita H., Bhat S., Dua S., Koh J.E.W, Eugene
L.W.J., Kongmebhol P., Ng K.H. Thyroid lesion classification in 242 patient population
using Gabor transform features from high resolution ultrasound images Knowledge-Based
Systems, vol 107, 2016, Pages 235-245, ISSN 0950-7051, https://doi.org/10.1016/j.
knosys.2016.06.010.

[Krawczyk 2015] Krawczyk B., Schaefer G., Woniak M. A hybrid cost-sensitive ensemble for
imbalanced breast thermogram classification Artificial Intelligence in Medicine, vol 65(3),
2015, Pages 219-227, ISSN 0933-3657, https://doi.org/10.1016/j.artmed.2015.07.
005.

[Bach 2017] Bach M., Werner A., Źywiec J., Pluskiewicz W. The study of under- and
over-sampling methods utility in analysis of highly imbalanced data on osteoporosis
Information Sciences, vol 384, 2017, Pages 174-190, ISSN 0020-0255, https://doi.org/
10.1016/j.ins.2016.09.038.

[Pérez-Ortiz 2017] Pérez-Ortiz M, Gutiérrez P.A., Ayllón-Terán M.D., Heaton N., Ciria
R., Briceño J., Hervás-Martínez C. Synthetic semi-supervised learning in imbalanced

https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1016/j.asoc.2013.07.016
https://doi.org/10.1109/BIBM.2015.7359790
https://doi.org/10.1109/BIBM.2015.7359790
https://doi.org/10.1016/j.compmedimag.2013.12.003
https://doi.org/10.1016/j.compmedimag.2013.12.003
https://doi.org/10.1016/j.knosys.2016.06.010
https://doi.org/10.1016/j.knosys.2016.06.010
https://doi.org/10.1016/j.artmed.2015.07.005
https://doi.org/10.1016/j.artmed.2015.07.005
https://doi.org/10.1016/j.ins.2016.09.038
https://doi.org/10.1016/j.ins.2016.09.038

100 BIBLIOGRAPHY

domains: Constructing a model for donor-recipient matching in liver transplantation
Knowledge-Based Systems, vol 123, 2017, Pages 75-87, ISSN 0950-7051, https://doi.
org/10.1016/j.knosys.2017.02.020.

[Yang 2014] Yang P., Yoo P. D., Fernando J., Zhou B.B., Zhang Z. and Zomaya A. Y.,
Sample Subset Optimization Techniques for Imbalanced and Ensemble Learning Problems in
Bioinformatics Applications, in IEEE Transactions on Cybernetics, vol. 44(3), pp. 445-455,
March 2014. https://doi.org/10.1109/TCYB.2013.2257480.

[Triguero 2015] Triguero I, del Río S., López V., Bacardit J., Benítez J.M., Herrera F.
ROSEFW-RF: The winner algorithm for the ECBDL14 big data competition: An extremely
imbalanced big data bioinformatics problem Knowledge-Based Systems, vol 87, 2015, Pages
69-79, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2015.05.027.

[Dai 2015] Dai H-L. Imbalanced Protein Data Classification Using Ensemble FTM-SVM IEEE
Trans Nanobioscience. 2015 Jun; vol 14(4):350-359. doi: https://doi.org/10.1109/
TNB.2015.2431292.

[Iannello 2014] Iannello G., Percannella G., Soda P., Vento M. Mitotic cells recognition in
HEp-2 images, Pattern Recognition Letters vol 45, 2014, Pages 136-144, ISSN 0167-8655,
https://doi.org/10.1016/j.patrec.2014.03.011.

[Lucas 2019] Lucas Y. Credit card fraud detection using machine learning with integration of
contextual knowledge Artificial Intelligence [cs.AI]. Université de Lyon; Universität
Passau (Deutscheland), 2019.https://tel.archives-ouvertes.fr/tel-02951477/
document

[Pérez 2005] Pérez J.M., Muguerza J., Arbelaitz O., Gurrutxaga I., Martín J.I. (2005)
Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class
Imbalance In: Singh S., Singh M., Apte C., Perner P. (eds) Pattern Recognition and Data
Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686, Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11551188_41.

[Effendy 2014] Effendy V., Adiwijaya and Baizal Z.K.A., Handling imbalanced data in customer
churn prediction using combined sampling and weighted random forest 2nd International
Conference on Information and Communication Technology (ICoICT), Bandung,
Indonesia, 2014, pp. 325-330, https://doi.org/10.1109/ICoICT.2014.6914086.

[So 1976] So X. Two Modifications of CNN in IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-6, no. 11, pp. 769-772, Nov. 1976, https://doi.org/10.1109/
TSMC.1976.4309452.

[Devi 2017] Devi D., Biswas S.K., Purkayastha B., Redundancy-driven modified Tomek-link
based undersampling: A solution to class imbalance Pattern Recognition Letters, vol 93,
2017, Pages 3-12, ISSN 0167-8655, https://doi.org/10.1016/j.patrec.2016.10.
006.

[Kumar 2019] Kumar, S., Biswas, S.K., Devi, D. TLUSBoost algorithm: a boosting solution
for class imbalance problem Soft Comput 23, 1075510767 (2019). https://doi.org/10.
1007/s00500-018-3629-4.

https://doi.org/10.1016/j.knosys.2017.02.020
https://doi.org/10.1016/j.knosys.2017.02.020
https://doi.org/10.1109/TCYB.2013.2257480
https://doi.org/10.1016/j.knosys.2015.05.027
https://doi.org/10.1109/TNB.2015.2431292
https://doi.org/10.1109/TNB.2015.2431292
https://doi.org/10.1016/j.patrec.2014.03.011
https://tel.archives-ouvertes.fr/tel-02951477/document
https://tel.archives-ouvertes.fr/tel-02951477/document
https://doi.org/10.1007/11551188_41
 https://doi.org/10.1109/ICoICT.2014.6914086
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1016/j.patrec.2016.10.006
https://doi.org/10.1016/j.patrec.2016.10.006
https://doi.org/10.1007/s00500-018-3629-4
https://doi.org/10.1007/s00500-018-3629-4

BIBLIOGRAPHY 101

[Seiffert 2008] Seiffert C., Khoshgoftaar T.M., Van Hulse J. and Napolitano A., RUSBoost:
Improving classification performance when training data is skewed 2008 19th International
Conference on Pattern Recognition, Tampa, FL, 2008, pp. 1-4, https://doi.org/10.
1109/ICPR.2008.4761297.

[Patel 2020] Patel H., Rajput D., Gadekallu T Iwendi C., Bashir A., Jo O. A review on
classification of imbalanced data for wireless sensor networks International Journal of
Distributed Sensor Networks. vol 16(4), 10.1177/1550147720916404.

[Bellinger 2018] Bellinger C., Drummond C. Japkowicz N. Manifold-based synthetic
oversampling with manifold conformance estimation Mach Learn vol 107, 605637 (2018).
https://doi.org/10.1007/s10994-017-5670-4

[Bellinger 2016] Bellinger C., Drummond C., Japkowicz N. Beyond the Boundaries of SMOTE
In: Frasconi P., Landwehr N., Manco G., Vreeken J. (eds) Machine Learning and
Knowledge Discovery in Databases. ECML PKDD 2016. Lecture Notes in Computer
Science, vol 9851, Springer, Cham. https://doi.org/10.1007/978-3-319-46128-1_
16

[Goodfellow 2014] Goodfellow I.J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D.,
Ozair S., Courville A., and Bengio Y. Generative adversarial nets In Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume
2 (NIPS’14). MIT Press, Cambridge, MA, USA, 26722680 https://arxiv.org/abs/
1406.2661.

[Blum 2018] Blum O., Brattoli B., Ommer, B. X-GAN: Improving Generative Adversarial
Networks with ConveX Combinations GCPR(2018) https://doi.org/10.1007/
978-3-030-12939-2_15

[Mullick 2019] Mullick S.S., Datta S. and Das S., Generative Adversarial Minority Oversampling
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea
(South), 2019, pp. 1695-1704, https://doi.org/10.1109/ICCV.2019.00178.

[Douglas 2018] Douzas G., Bacao F., Effective data generation for imbalanced learning using
conditional generative adversarial networks Expert Systems with Applications, vol 91,
2018, Pages 464-471, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2017.09.
030.

[Li 2018] Li J., Madry A., Peebles J. Schmidt, L. (2018) On the Limitations of First-Order
Approximation in GAN Dynamics Proceedings of the 35th International Conference on
Machine Learning, in PMLR vol 80:3005-3013 http://proceedings.mlr.press/v80/
li18d.html

[Mescheder 2018] Mescheder L.M., Geiger A., Nowozin S. (2018). Which Training Methods
for GANs do actually Converge? Proceedings of the 35 th International Conference
on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. https://ei.is.mpg.de/
uploads_file/attachment/attachment/424/paper.pdf

https://doi.org/10.1109/ICPR.2008.4761297
https://doi.org/10.1109/ICPR.2008.4761297
10.1177/1550147720916404
https://doi.org/10.1007/s10994-017-5670-4
https://doi.org/10.1007/978-3-319-46128-1_16
https://doi.org/10.1007/978-3-319-46128-1_16
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1007/978-3-030-12939-2_15
https://doi.org/10.1007/978-3-030-12939-2_15
https://doi.org/10.1109/ICCV.2019.00178
https://doi.org/10.1016/j.eswa.2017.09.030
https://doi.org/10.1016/j.eswa.2017.09.030
http://proceedings.mlr.press/v80/li18d.html
http://proceedings.mlr.press/v80/li18d.html
https://ei.is.mpg.de/uploads_file/attachment/attachment/424/paper.pdf
https://ei.is.mpg.de/uploads_file/attachment/attachment/424/paper.pdf

102 BIBLIOGRAPHY

[Sajjadi 2018] Sajjadi M.S.M., Parascandolo G., Mehrjou A. Schölkopf B.. (2018).
Tempered Adversarial Networks Proceedings of the 35th International Conference on
Machine Learning, in PMLR vol80:4451-4459 http://proceedings.mlr.press/v80/
sajjadi18a.html

[Tarawneh 2020] Tarawneh A.S., Hassanat A.S.A., Almohammadi K., Chetverikov D.
and Bellinger C. SMOTEFUNA: Synthetic Minority Over-Sampling Technique Based on
Furthest Neighbour Algorithm in IEEE Access, vol. 8, pp. 59069-59082, 2020, https:
//doi.org/10.1109/ACCESS.2020.2983003.

[Powers 2011] Powers D.M.W. Evaluation: From Precision, Recall and F-Measure to ROC,
Informedness, Markedness & Correlation Journal of Machine Learning Technologies. vol
2(1) 3763, 2011 https://doi.org/10.1016/0005-2795(75)90109-9

[Matthews 1975] Matthews B.W. Comparison of the predicted and observed secondary structure
of T4 phage lysozyme Biochimica et Biophysica Acta (BBA) - Protein Structure. vol 405(2)
442451, 1975, https://doi.org/10.1016/0005-2795(75)90109-9.

[Olson 2008] Olson D.L. and Delen D. Advanced Data Mining Techniques Springer, 1st edition
(February 1, 2008), page 138

[Jeni 2013] Jeni L.A., Cohn J.F., De La Torre F. Facing Imbalanced Data Recommendations for
the Use of Performance Metrics Int Conf Affect Comput Intell Interact Workshops. 2013:
245-251. https://doi.org/10.1109/ACII.2013.47.

[Cohen 1960] Cohen, J. A coefficient of agreement for nominal scales Educational and
Psychological Measurement. vol 20(1) 3746. 1960 https://doi.org/10.1177/
001316446002000104.

[Cohen 1968] Cohen J. Weighed kappa: Nominal scale agreement with provision for scaled
disagreement or partial credit Psychological Bulletin. vol 70(4): 213220. 1968, https:
//doi.org/10.1037/h0026256.

[García 2010] García V., Mollineda R.A. and Sánchez J.S., Theoretical Analysis of a
Performance Measure for Imbalanced Data, 2010 20th International Conference on
Pattern Recognition, Istanbul, 2010, pp. 617-620, https://doi.org/10.1109/ICPR.
2010.156.

[García 2009] García V., Mollineda R.A., Sánchez J.S. Index of Balanced Accuracy: A
Performance Measure for Skewed Class Distributions In: Pattern Recognition and Image
Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524, Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_57.

[Chicco 2020] Chicco, D., Jurman, G. The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation BMC Genomics vol
21(6) (2020). https://doi.org/10.1186/s12864-019-6413-7.

[Wilcoxon 1945] Wilcoxon F. Individual comparisons by ranking methods Biometrics Bulletin.
vol1(6) 8083. 1945, https://doi.org/10.2307/3001968.

http://proceedings.mlr.press/v80/sajjadi18a.html
http://proceedings.mlr.press/v80/sajjadi18a.html
https://doi.org/10.1109/ACCESS.2020.2983003
https://doi.org/10.1109/ACCESS.2020.2983003
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1109/ACII.2013.47
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1037/h0026256
https://doi.org/10.1037/h0026256
 https://doi.org/10.1109/ICPR.2010.156
 https://doi.org/10.1109/ICPR.2010.156
https://doi.org/10.1007/978-3-642-02172-5_57
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.2307/3001968

BIBLIOGRAPHY 103

[Saito 2015] Saito T., Rehmsmeier M. The Precision-Recall Plot Is More Informative than the
ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets PLoS ONE 10(3):
e0118432. 2015, https://doi.org/10.1371/journal.pone.0118432.

[Bellinger 2018] Bellinger, C., Drummond, C. & Japkowicz, N. Manifold-based synthetic
oversampling with manifold conformance estimation Mach Learn 107, 605637 (2018).
https://doi.org/10.1007/s10994-017-5670-4.

[Fawcett 2006] Fawcett, T. An Introduction to ROC Analysis Pattern Recognition Letters. vol
27(8): 861874. 2006, https://doi.org/10.1016/j.patrec.2005.10.010.

[Blagus 2013] Blagus R., Lusa L. SMOTE for high-dimensional class-imbalanced data BMC
Bioinformatics vol 14, 106. https://doi.org/10.1186/1471-2105-14-106.

[Jackman 2009] Jackman S. (2009), Bayesian Analysis for the Social Sciences John Wiley & Sons,
Ltd.

[Lee 2000] Lee S. (2000). Noisy replication in skewed binary classificatio Computational
Statistics & Data Analysis vol 34, 165-191. https://doi.org/10.1016/
S0167-9473(99)00095-X.

[Chawla 2002] Chawla N., Bowyer K., Hall L., Kegelmeyer W. SMOTE: Synthetic Minority
Over-sampling Technique J. Artif. Intell. Res. (JAIR). vol 16, 321-357. https://doi.org/
10.1613/jair.953.

[Han 2005] Han H., Wang WY., Mao BH. Borderline-SMOTE: A New Over-Sampling Method
in Imbalanced Data Sets Learning In: Huang DS., Zhang XP., Huang GB. (eds) Advances
in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644,
Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_91.

[Bunkhumpornpat 2009] Bunkhumpornpat C., Sinapiromsaran K., Lursinsap C.
Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling
the Class Imbalanced Problem In: Theeramunkong T., Kijsirikul B., Cercone N.,
Ho TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD
2009. Lecture Notes in Computer Science, vol 5476. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-01307-2_43.

[Chawla 2003] Chawla N.V., Lazarevic A., Hall L.O., Bowyer K.W. SMOTEBoost: Improving
Prediction of the Minority Class in Boosting Knowledge Discovery in Databases: PKDD
2003. Lecture Notes in Computer Science, vol 2838, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-39804-2_12.

[He 2008] He H., Bai Y., Garcia E.A. and Li S., ADASYN: Adaptive synthetic sampling approach
for imbalanced learning IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), Hong Kong, 2008, pp. 1322-1328,
https://doi.org/10.1109/IJCNN.2008.4633969.

[Douzas 2018] Douzas G., Bacao F., Last F., Improving imbalanced learning through a heuristic
oversampling method based on k-means and SMOTE Information Sciences, vol 465, 2018,
pp. 1-20, https://doi.org/10.1016/j.ins.2018.06.056.

https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1007/s10994-017-5670-4
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/ 10.1016/S0167-9473(99)00095-X
https://doi.org/ 10.1016/S0167-9473(99)00095-X
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/11538059_91
https://doi.org/10.1007/978-3-642-01307-2_43
https://doi.org/10.1007/978-3-540-39804-2_12
 https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1016/j.ins.2018.06.056

104 BIBLIOGRAPHY

[Bunkhumpornpat 2012] Bunkhumpornpat C., Sinapiromsaran K. & Lursinsap C.
DBSMOTE: Density-Based Synthetic Minority Over-sampling TEchnique Appl Intell vol
36, 664684 (2012). https://doi.org/10.1007/s10489-011-0287-y.

[Gu 2009] Gu Q., Cai Z., Zhu L. Classification of Imbalanced Data Sets by Using the Hybrid
Re-sampling Algorithm Based on Isomap Advances in Computation and Intelligence.
ISICA 2009. Lecture Notes in Computer Science, vol 5821 Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-04843-2_31.

[Xie 2015] Xie Z., Jiang L., Ye T., Li X. A Synthetic Minority Oversampling Method Based on
Local Densities in Low-Dimensional Space for Imbalanced Learning Database Systems for
Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science, vol 9050
Springer, Cham. https://doi.org/10.1007/978-3-319-18123-3_1.

[Douzas 2017] Douzas G., Bacao F., Self-Organizing Map Oversampling (SOMO) for imbalanced
data set learning Expert Systems with Applications, vol 82, 2017, Pages 40-52, https:
//doi.org/10.1016/j.eswa.2017.03.073.

[Laureano 2019] Laureano L.B., Sison A.M., and Medina R.P.. Handling Imbalanced Data
through Affinity Propagation and SMOTE In Proceedings of the 2nd International
Conference on Computing and Big Data (ICCBD 2019). Association for Computing
Machinery, New York, NY, USA, 2226. https://doi.org/10.1145/3366650.3366665.

[Barua 2014] Barua S., Islam M.M., Yao X. and Murase K. MWMOTE–Majority Weighted
Minority Oversampling Technique for Imbalanced Data Set Learning IEEE Transactions on
Knowledge and Data Engineering vol 26 (2014): 405-425 https://doi.org/10.1109/
TKDE.2012.232

[Barua 2013] Barua S., Islam M.M., Murase K. ProWSyn: Proximity Weighted Synthetic
Oversampling Technique for Imbalanced Data Set Learning Advances in Knowledge
Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science, vol
7819, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_
27.

[Gazzah 2008] Gazzah S., Amara N.E.B. New Oversampling Approaches Based on Polynomial
Fitting for Imbalanced Data Sets The Eighth IAPR International Workshop on Document
Analysis Systems, Nara, 2008, pp. 677-684, https://doi.org/10.1109/DAS.2008.74.

[Kovács 2019] Kovács G., An empirical comparison and evaluation of minority oversampling
techniques on a large number of imbalanced datasets. Applied Soft Computing, vol 83,
105662, ISSN 1568-4946, 2019, https://doi.org/10.1016/j.asoc.2019.105662.

[van der Maaten 2008] van der Maaten L. and Geoffrey H. Visualizing Data using t-SNE
Journal of Machine Learning Research vol 9 (2008): 2579–2605. https://www.jmlr.
org/papers/v9/vandermaaten08a.html

[Lemaître 2017] Lemaître G., Nogueira F., and Aridas C.K. Imbalanced-learn: a python toolbox
to tackle the curse of imbalanced datasets in machine learning J. Mach. Learn. vol 18, 1
(January 2017), 559563. https://jmlr.org/papers/v18/16-365.html

https://doi.org/10.1007/s10489-011-0287-y
https://doi.org/10.1007/978-3-642-04843-2_31
https://doi.org/10.1007/978-3-319-18123-3_1
https://doi.org/10.1016/j.eswa.2017.03.073
https://doi.org/10.1016/j.eswa.2017.03.073
https://doi.org/10.1145/3366650.3366665
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1007/978-3-642-37456-2_27
https://doi.org/10.1007/978-3-642-37456-2_27
https://doi.org/10.1109/DAS.2008.74
https://doi.org/10.1016/j.asoc.2019.105662
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://jmlr.org/papers/v18/16-365.html

BIBLIOGRAPHY 105

[Ding 2011] Ding. Z Diversified ensemble classifiers for highly imbalanced data learning
and its application in bioinformatics Ph.D. Dissertation. Georgia State University,
USA. Advisor(s) Yan-Qing Zhang. 2011 Order Number: AAI3486649. https://
scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1060&context=cs_diss

[Sáez 2016] Sáez J.A., Krawczyk B., Woniak M., Analyzing the oversampling of different classes
and types of examples in multi-class imbalanced datasets Pattern Recognition, vol 57, pp.
164-178, https://doi.org/10.1016/j.patcog.2016.03.012.

[Anand 2010] Anand A., Pugalenthi G., Fogel G.B., Suganthan P.N. An approach for
classification of highly imbalanced data using weighting and undersampling Amino Acids
vol 39(5):1385-91. https://doi.org/10.1007/s00726-010-0595-2.

[Hooda 2018] Hooda N., Bawa S., Rana P.S., B2FSE framework for high dimensional imbalanced
data: A case study for drug toxicity prediction Neurocomputing, vol 276, 2018, Pages 31-41,
https://doi.org/10.1016/j.neucom.2017.04.081.

[Jing 2021] Jing X.Y., Zhang X., Zhu X., Wu F. et al., Multiset Feature Learning for Highly
Imbalanced Data Classification in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol 43, no. 1, pp. 139-156, 1 Jan. 2021, https://doi.org/10.1109/TPAMI.
2019.2929166.

[Dal Pozzolo 2018] Dal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G.,
Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy, in IEEE
Transactions on Neural Networks and Learning Systems, vol 29, no. 8, pp. 3784-3797,
Aug. 2018, https://doi.org/10.1109/TNNLS.2017.2736643.

[Varmedja 2019] Varmedja D., Karanovic M., Sladojevic S., Arsenovic M. and Anderla
A., Credit Card Fraud Detection - Machine Learning methods 2019 18th International
Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and
Herzegovina, 2019, pp. 1-5, https://doi.org/10.1109/INFOTEH.2019.8717766.

[McInnes 2018] McInnes L., Healy J., Melville J. (2018). UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. ArXiv e-prints. arXiv:1802.03426,
https://arxiv.org/pdf/1802.03426.pdf.

[Bej 2021] Bej S., Davtyan N., Wolfien M., Nassar M., Wolkenhauer O. LoRAS: an
oversampling approach for imbalanced datasets. Machine Learning, vol 110, 279301 (2021),
https://doi.org/10.1007/s10994-020-05913-4.

[Lähnemann 2020] Lähnemann D., Köster J., Szczurek E., McCarthy D.J.et al. Eleven grand
challenges in single-cell data science Genome Biol vol 21, 31 (2020) https://doi.org/10.
1186/s13059-020-1926-6.

[Lee 2020] Lee J., Hyeon D., and Hwang D., Single-cell multiomics: technologies and data
analysis methods, Experimental & Molecular Medicine, vol 52, pp. 1428–1442, Sep 2020.
https://doi.org/10.1038/s12276-020-0420-2

https://scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1060&context=cs_diss
https://scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1060&context=cs_diss
https://doi.org/10.1016/j.patcog.2016.03.012
https://doi.org/10.1007/s00726-010-0595-2
https://doi.org/10.1016/j.neucom.2017.04.081
https://doi.org/10.1109/TPAMI.2019.2929166
https://doi.org/10.1109/TPAMI.2019.2929166
https://doi.org/10.1109/TNNLS.2017.2736643
 https://doi.org/10.1109/INFOTEH.2019.8717766
https://arxiv.org/pdf/1802.03426.pdf
https://doi.org/10.1007/s10994-020-05913-4
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1038/s12276-020-0420-2

106 BIBLIOGRAPHY

[Duo 2018] Duò A., Robinson M., and Soneson C., A systematic performance evaluation
of clustering methods for single-cell rna-seq data (version 2; peer review: 2 approved),”
F1000Research, vol 7, no. 1141, 2018. https://doi.org/10.12688/f1000research.
15666.3

[Freytag 2018] Freytag S., Tian L., Lönnstedt I., Ng M., and Bahlo M. Comparison of clustering
tools in r for medium-sized 10x genomics single-cell rna-sequencing data (version 2; peer
review: 3 approved) F1000Research, vol 7, no. 1297, 2018 https://doi.org/10.1038/
s41576-018-0088-9

[Kiselev 2019] Kiselev V.Y., Andrews T.S., and Hemberg M. Challenges in unsupervised
clustering of single-cell rna-seq data Nature reviews. Genetics, vol20, p. 273282, May 2019.
https://doi.org/10.1038/s41576-018-0088-9

[Jindal 2018] Jindal A., Gupta P., Jayadeva, and Sengupta D. Discovery of rare cells from
voluminous single cell expression data Nature Communications, vol 9, 12 2018 https:
//doi.org/10.1038/s41467-018-07234-6

[Zhang 2018] Zhang F., Lehallier B., Schaum N., and Li T.Q. Single-cell transcriptomics of 20
mouse organs creates a tabula muris Nature, vol 562, pp. 367–372, 10 2018 https://doi.
org/10.1038/s41586-018-0590-4.

[Satoso 2017] Santoso B., Wijayanto H., Notodiputro K.A., and Sartono B. Synthetic over
sampling methods for handling class imbalanced problems : A review IOP Conference Series:
Earth and Environmental Science, vol 58, pp. 012–031, Mar 2017. https://doi.org/
10.1088/1755-1315/58/1/012031.

[Weiss 2007] Weiss G., McCarthy K., and Zabar B. Cost-sensitive learning vs. sampling: Which
is best for handling unbalanced classes with unequal error costs? in DMIN, pp. 35–41, 01
2007.

[Butler 2018] Butler A., Hoffman P., Smibert P., Papalexi E., and Satija R. Integrating
single-cell transcriptomic data across different conditions, technologies, and species Nature
biotechnology, vol 36, 05 2018 https://doi.org/10.1038/nbt.4096.

[Wolfien Cells 2020] Wolfien M., Galow A.M., Müller P., Bartsch M., Brunner R.M.,
Goldammer T., Wolkenhauer O., Hoeflich A., and David R. Single-nucleus sequencing
of an entire mammalian heart: Cell type composition and velocity Cells, vol 9(2), 2020
https://doi.org/10.3390/cells9020318.

[Wolfien Cardiovascular Research 2020] Wolfien M., Galow A.M., Müller P., Bartsch M.,
Brunner R.M., Goldammer T., Wolkenhauer O., Hoeflich A., and David R. Single
nuclei sequencing of entire mammalian hearts: strain-dependent cell-type composition and
velocity, Cardiovascular Research, vol 116, pp. 1249–1251, 04 2020. https://doi.org/
10.1093/cvr/cvaa054. .

[Vidal 2019] Vidal R., Wagner J.U.G., Braeuning C., Fischer C., Patrick R., Tombor L.,
Muhly-Reinholz M., John D., Kliem M., Conrad T., Guimarães-Camboa N., Harvey
R., Dimmeler S., and Sauer S. Transcriptional heterogeneity of fibroblasts is a hallmark of

https://doi.org/10.12688/f1000research.15666.3
https://doi.org/10.12688/f1000research.15666.3
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41467-018-07234-6
https://doi.org/10.1038/s41467-018-07234-6
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
 https://doi.org/10.1088/1755-1315/58/1/012031
 https://doi.org/10.1088/1755-1315/58/1/012031
https://doi.org/10.1038/nbt.4096
https://doi.org/10.3390/cells9020318
https://doi.org/10.1093/cvr/cvaa054.
https://doi.org/10.1093/cvr/cvaa054.

BIBLIOGRAPHY 107

the aging heart JCI Insight, vol 4, 11 2019 https://doi.org/10.1172/jci.insight.
131092.

[Galow 2020] Galow A.M., Wolfien M., Müller P., Bartsch M., Brunner R., Hoeflich A.,
Wolkenhauer O., David R., and Goldammer T. Integrative cluster analysis of whole
hearts reveals proliferative cardiomyocytes in adult mice Cells, vol 9, p. 1144, 05 2020.
https://doi.org/10.3390/cells9051144.

[Linscheid 2019] Linscheid N., Logantha S.J.R.J., Poulsen P.C., Zhang S., Schrölkamp
M., Egerod K.L., Thompson J.J., Kitmitto A., Galli G., Humphries M.J., Zhang
H., Pers T.H., Olsen J.V., Boyett M., and Lundby A. Quantitative proteomics and
single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac
pacemaking Nature Communications, vol 10(1),, p. 2889, 2019 https://doi.org/10.
1038/s41467-019-10709-9.

[Marouf 2018] Marouf M., Machart P., Magruder S., Bansal V., Kilian C., Krebs C., and Bonn
S. Realistic in silico generation and augmentation of single cell rna-seq data using generative
adversarial neural networks Nature Communications volume, vol 11, p. 166, 08 2018
https://doi.org/10.1038/s41467-019-14018-z.

[Xu 2021] Xu C., Lopez R., Mehlman E., Regier J., Jordan M., and Yosef N., Probabilistic
harmonization and annotation of single-cell transcriptomics data with deep generative models
Molecular Systems Biology, vol 17, 1 2021 https://doi.org/10.15252/msb.20209620.

[Brbi 2020] Brbi M., Zitnik M., Wang S., Pisco A., Altman R., Darmanis S„ and Leskovec
J. Mars: discovering novel cell types across heterogeneous single-cell experiments Nature
Methods, vol 17, pp. 1–7, 10 2020 https://doi.org/10.1038/s41592-020-00979-3.

[Wang 2009] Wang L., Catalan F., Shamardani K., Babikir H., and Diaz A. Ensemble learning
for classifying single-cell data and projection across reference atlases Bioinformatics, vol 36,
pp. 3585–3587, 02 2020 https://doi.org/10.1093/bioinformatics/btaa137.

[Saito 2015] Saito T. and Rehmsmeier M., The precision-recall plot is more informative than
the roc plot when evaluating binary classifiers on imbalanced datasets, PLOS ONE, vol. 10,
pp. 1–21, 03 2015. doi: https://doi.org/10.1371/journal.pone.0118432.

[Hu 2009] Hu S., Liang Y., Ma L., He Y. MSMOTE: Improving Classification Performance When
Training Data is Imbalanced. 2009 Second International Workshop on Computer Science
and Engineering, Qingdao, 2009, 13-17, https://doi.org/10.1109/WCSE.2009.756.

[Puntumapon 2012] Puntumapon K., Waiyamai K. A Pruning-Based Approach for Searching
Precise and Generalized Region for Synthetic Minority Over-Sampling. Advances
in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in
Computer Science, vol 7302, Springer, Berlin, Heidelberg, https://doi.org/10.1007/
978-3-642-30220-6_31.

[Hastie 2009] Hastie, T., Tibshirani, R., Friedman, J. H. The elements of statistical learning: Data
mining, inference, and prediction. Springer series in statistics. Springer, 2009, New York,
2nd edition, https://link.springer.com/book/10.1007/978-0-387-84858-7.

https://doi.org/10.1172/jci.insight.131092
https://doi.org/10.1172/jci.insight.131092
 https://doi.org/10.3390/cells9051144
https://doi.org/10.1038/s41467-019-10709-9
https://doi.org/10.1038/s41467-019-10709-9
https://doi.org/10.1038/s41467-019-14018-z
https://doi.org/10.15252/msb.20209620
https://doi.org/10.1038/s41592-020-00979-3
https://doi.org/10.1093/bioinformatics/btaa137
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1109/WCSE.2009.756
https://doi.org/10.1007/978-3-642-30220-6_31
https://doi.org/10.1007/978-3-642-30220-6_31
https://link.springer.com/book/10.1007/978-0-387-84858-7

108 BIBLIOGRAPHY

[Yin 2008] Yin H. The Self-Organizing Maps: Background, Theories, Extensions and
Applications. Computational Intelligence: A Compendium. Studies in Computational
Intelligence, vol 115, Springer, Berlin, Heidelberg, https://doi.org/10.1007/
978-3-540-78293-3_17.

[Ma 2017] Ma, L., Fan, S. CURE-SMOTE algorithm and hybrid algorithm for feature selection
and parameter optimization based on random forests. BMC Bioinformatics 2017, vol 18, 169,
https://doi.org/10.1186/s12859-017-1578-z.

[Guha 2001] Guha S., Rastogi R., Shim K. Cure: an efficient clustering algorithm for large
databases. Information Systems, 2001, vol 26(1), 35-58, https://doi.org/10.1016/
S0306-4379(01)00008-4.

[Brown 2014] Brown R.A. Building a Balanced k-d Tree in O(kn log n) Time, Journal of Computer
Graphics Techniques (JCGT), vol 4(1), 50-68, 2015 http://jcgt.org/published/0004/
01/03/

https://doi.org/10.1007/978-3-540-78293-3_17
https://doi.org/10.1007/978-3-540-78293-3_17
https://doi.org/10.1186/s12859-017-1578-z
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1016/S0306-4379(01)00008-4
http://jcgt.org/published/0004/01/03/
http://jcgt.org/published/0004/01/03/

109

Appendix A

Implementation for the integrated
LoRAS algorithms

This appendix provides an implementation of the integrated LoRAS algorithms (LoRAS
and LoRAS UMAP) with possible manifold learning options with both t-SNE and UMAP.
The implementation is for binary classifications only.

• convex_neighbourhood corresponds to the parameter k from the LoRAS algorithm.
The standard value of this parameter should be 5 to 10. However for larger datasets
(minority class size more than 500) it can be extended to 20 to 30.

• umap_neighbourhood corresponds to the parameter n_neighbours from the LoRAS
algorithm. A standard value of 5 would be fine for this parameter.

• shadow corresponds to the parameter |Sp| from the LoRAS algorithm. The standard
value of this parameter is to be kept around 100.

• sigma corresponds to the standard deviation for a Gaussian distribution to draw noise
from. The standard value of sigma can be taken as 0.005. Although in the LoRAS
algorithm it is proposed that a list of feature-wise sigma values is taken as input, we
have noticed that a standard value of small enough sigma works quite well.

• num_RACOS corresponds to the parameter Ngen from the LoRAS algorithm. The standard

value for this parameter is int(|Cmaj|−|Cmin|
|Cmin|), where |Cmaj| and |Cmin| are the number of

majority and minority instances in the training dataset, that is provided as input to the
LoRAS_gen function and the int function refers to the greatest integer floor function in

case |Cmaj|−|Cmin|
|Cmin| is a float value.

• num_convcomb corresponds to the parameter Naff from the LoRAS algorithm.

1 import numpy as np
2 import umap.umap_ as umap
3 from sklearn . manifold import TSNE
4 from numpy. random import randint , normal , seed
5 from sklearn . neighbors import NearestNeighbors
6

7 def Neb_grps (data , near_neb):
8 ’Function calculating nearest near_neb neighbours

110 Appendix A. Implementation for the integrated LoRAS algorithms

9 (among input data points), for every input data point ’
10 from sklearn . neighbors import NearestNeighbors
11 nbrs = NearestNeighbors (n_neighbors =near_neb ,
12 algorithm =’ball_tree ’).fit(data)
13 distances , indices = nbrs. kneighbors (data)
14 neb_class =[]
15 for i in (indices):
16 neb_class . append (i)
17 return (np. asarray (neb_class))
18

19 def LoRAS(data , convex_neighbourhood , shadow , sigma , num_RACOS , num_convcom):
20 ’Function creating LoRAS samples for one
21 minority data point neighbourhood ’
22 np. random .seed (42)
23 data_shadow =([])
24 for i in range (convex_neighbourhood):
25 c=0
26 while c< shadow :
27 data_shadow . append (data[i]+np. random . normal (0, sigma))
28 c=c+1
29 data_shadow ==np. asarray (data_shadow)
30 data_shadow_lc =([])
31 for i in range (num_RACOS):
32 idx = np. random . randint (shadow * convex_neighbourhood ,
33 size= num_convcom)
34 w=np. random . randint (100 , size=len(idx))
35 aff_w=np. asarray (w/sum(w))
36 data_tsl =np.array(data_shadow)[idx ,:]
37 data_tsl_ =np.dot(aff_w , data_tsl)
38 data_shadow_lc . append (data_tsl_)
39 return (np. asarray (data_shadow_lc))
40

41 def LoRAS_gen (data , labels , convex_neighbourhood , shadow ,
42 sigma , num_RACOS , num_convcom , embedding):
43 ’Main LoRAS function performing preferred dimension reduction ’
44 ’For UMAP use embedding =" umap"’
45 ’For t-SNE use embedding =" tsne"’
46 ’For regular use embedding =" regular "’
47 import numpy as np
48 import umap.umap_ as umap
49

50 features_1_trn =data[np.where(labels ==1)]
51 features_0_trn =data[np.where(labels !=1)]
52 n_feat = features_0_trn .shape [1]
53 if embedding == ’umap ’:
54 umap_neighbourhood = int(input ("Enter umap_neighbourhood :"))
55 data_embedded_min = umap.UMAP(n_neighbors = umap_neighbourhood ,
56 min_dist =0.00000001 , n_components =2,
57 metric =’euclidean ’, random_state =42). fit_transform (features_1_trn)
58 nb_list = Neb_grps (data_embedded_min , convex_neighbourhood)
59 print(’UMAP for minority class : Done\n’)
60 elif embedding == ’tsne ’:
61 perp = int(input ("Enter perplexity :"))
62 data_embedded_min = TSNE(n_components =2, perplexity =perp ,

Appendix A. Implementation for the integrated LoRAS algorithms 111

63 random_state =42)
64 . fit_transform (features_1_trn)
65 nb_list = Neb_grps (data_embedded_min , convex_neighbourhood)
66 print(’t-SNE for minority class: Done\n’)
67 elif embedding == ’regular ’:
68 data_embedded_min = features_1_trn
69 nb_list = Neb_grps (data_embedded_min , convex_neighbourhood)
70 else:
71 print(’Enter embedding =" tsne" or "umap" or " regular "’)
72

73 RACOS_set =[]
74 for i in range (len(nb_list)):
75 RACOS_i = LoRAS(features_1_trn [nb_list [i]], convex_neighbourhood ,
76 shadow ,sigma ,num_RACOS , num_convcom)
77 RACOS_set . append (RACOS_i)
78 LoRAS_set =np. asarray (RACOS_set)
79 LoRAS_1 =np. reshape (LoRAS_set ,(len(features_1_trn)*num_RACOS , n_feat))
80 features_1_trn =np. concatenate ((LoRAS_1 , features_1_trn))
81 print (’Data generation : Done\n’)
82 return (np. concatenate ((features_1_trn , features_0_trn)),
83 np. concatenate ((np.zeros(len(features_1_trn))+1,
84 np.zeros(len(features_0_trn)))))

113

Appendix B

Implementation for the ProWRAS
algorithm

1

2 r"""
3 ProWRAS :
4 Generates sample data points for imbalanced data sets.
5 """
6

7 # List of public functions .
8 __all__ = [" ProWRAS_gen "]
9

10 # See Style guide : https :// www. python .org/dev/peps/pep -0008/
11 # Importing libraries
12

13 import warnings
14 import time
15

16 import numpy as np
17 from numpy. random import randint , normal , seed
18 from sklearn . neighbors import NearestNeighbors
19

20

21 def minority_class (data , labels):
22 """ Returns all data points that are in the minority class.
23 data: numpy array of data points .
24 labels : numpy array of labels . (== 1: minority class , != 1: other class)
25 """
26 return data[np.where(labels == 1)]
27

28

29 def majority_class (data , labels):
30 """ Returns all data points that are not in the minority class .
31 data: Numpy array of data points .
32 labels : Numpy array of labels . (== 1: minority class , != 1: other class)
33 """
34 return data[np.where(labels != 1)]
35

36

37 def random_subset (data , size):
38 """ Return a subset of the array data. The returned data points
39 are selected

114 Appendix B. Implementation for the ProWRAS algorithm

40 by random .
41 data: Numpy array of data points .
42 size: Number of values in the returned array.
43 """
44 return data[randint (len(data), size=size)]
45

46

47 def random_item (data):
48 """ Returns a random item in the given array .
49 data: Numpy array of data points .
50 """
51 return data[randint (len(data))]
52

53

54 def concatArray (listOfListOfThings):
55 """ Changes the type of the given array to Numpy array.
56 Concatenates all aubarrays .
57

58 listOfListOfThings : Array of arrays .
59 Example :
60 [[1 ,2 ,3] ,[4 ,5 ,6 ,7] ,[8 ,9]] will become
61 array ([1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9])
62 [[[1 ,2] ,[3 ,4]] ,[[5 ,6] ,[7 ,8]]] will become array ([[1 ,2] ,[3 ,4] ,[5 ,6] ,[7 ,8]])
63 """
64 return np. concatenate (np.array(listOfListOfThings))
65

66

67 def random_vector_with_sum_one (size):
68 """ Rerurns an array of the given size. The array has random non negative
69 values . The sum of all Values is one.
70 size: Number of the expected values in the array .
71 """
72 w = [0]
73 sum_w = 0
74 while sum_w == 0:
75 w = randint (100 , size=size)
76 sum_w = sum(w)
77

78 return np.array(w / sum_w)
79

80

81 # Defining ProWRAS function
82

83 class ProWRASHelper :
84 """
85 A collection of helpfull functions for the ProWRAS algorithm .
86 """
87

88 def __init__ (
89 self ,
90 convex_nbd ,
91 shadow ,
92 sigma ,
93 n_jobs ,

Appendix B. Implementation for the ProWRAS algorithm 115

94 num_feats):
95 """ Constructor of the helper class. Checks some values for validity .
96 Sets the parameters for the helping functions .
97 convex_nbd : Number of points in the neighbourhoods . If a cluster has
98 more than this amount of points . It will be divided in
99 neighbourhoods of this size.

100 shadow : Number of shadow point to create for each point in cluster .
101 sigma: Used to generate random shadow samples with normal deviation .
102

103 n_jobs : Maximal count of processor cores , used during the calculation .
104

105 num_feats : Number of features for each sample .
106 """
107 assert convex_nbd >= 1
108 assert shadow >= 1
109 assert n_jobs >= 1
110 assert num_feats >= 1
111

112 self. convex_nbd_size = int(convex_nbd)
113 self. shadow_size = int(shadow)
114 self.sigma = sigma
115 self. n_jobs = int(n_jobs)
116 self. num_feats = int(num_feats)
117 self. isDebugEnabled = False
118

119 def random_vector (self , point):
120 """ Returns a random vector with normal deviation
121 around the given point .
122 point: Data point (Numpy array of float values .)
123 returns : Numpy array of float values .
124 """
125 return point + [normal (0, self.sigma) for k in range (len(point))]
126

127 def shadow_for_point (self , point):
128 """ Creates random shadow points for a given point .
129 point: Data point (Numpy array of float values .)
130 returns : Numpy array of points .
131 """
132 return [
133 self. random_vector (point)
134 for _c in range(self. shadow_size)
135]
136

137 def split_into_neighbourhoods (self , cluster):
138 """ If the given cluster has more points than the
139 given convex_nbd_size ,
140 it will be divided into neighbourhood of size convex_nbd_size .
141 It will be returned an array of arrays of indices .
142

143 cluster : Numpy array of data points .
144 """
145 if len(cluster) > self. convex_nbd_size :
146 self.debug(’local ’)
147 return self. neb_grps (cluster)

116 Appendix B. Implementation for the ProWRAS algorithm

148

149 self.debug(’global ’)
150 return np.array ([np.array(range (len(cluster)))])
151

152 # Defining ProWRAS function
153

154 def neb_grps (self , data):
155 """
156 Function calculating nearest convex_nbd neighbours
157 (among input data points), for every input data point .
158 data: Numpy array of data points .
159 """
160 nbrs = NearestNeighbors (
161 n_neighbors =self. convex_nbd_size ,
162 n_jobs =self. n_jobs)
163 nbrs = nbrs.fit(data)
164 _distances , indices = nbrs. kneighbors (data)
165 return np. asarray (indices)
166

167 def partition_info (self , data , labels , max_levels , n_neighbors , theta):
168 """ Divides the given array of data points into weighted layers .
169 data: Numpy array of data points .
170 labels : numpy array of labels . (1: minority class , != 1: other class)
171 max_levels : Maximal number of returned layers .
172 n_neighbours : Number of neighbours in a layer from the minority class
173 for points in majority class .
174 theta: Scaling factor for the weights .
175 """
176

177 def proximity_level (level):
178 """ Calculates the weight for a layer level ."""
179 return np.exp(-theta * (level - 1))
180

181 # Step 2
182 P = np.where(labels == 1) [0]
183 data_maj = majority_class (data , labels)
184

185 Ps = []
186 weights = []
187

188 # Step 3
189 for i in range (1, max_levels):
190 if len(P) == 0:
191 break
192 # Step 3 a
193 n_neighbors = min ([len(P), n_neighbors])
194 nn = NearestNeighbors (n_neighbors = n_neighbors , n_jobs =self. n_jobs)
195 nn.fit(data[P])
196 _distances , indices = nn. kneighbors (data_maj)
197

198 # Step 3 b
199 P_i = np. unique (np. hstack (indices))
200

201 # Step 3 c - proximity levels are encoded in the Ps list index

Appendix B. Implementation for the ProWRAS algorithm 117

202 Ps. append (P[P_i])
203 weights . append (proximity_level (i))
204

205 # Step 3 d
206 P = np. delete (P, P_i)
207

208 if len(P) > 0:
209 # Step 4
210 Ps. append (P)
211

212 # Step 5
213 weights . append (proximity_level (i - 1))
214

215 # Step 6
216 weights = np.array(weights)
217

218 # weights is the probability distribution of sampling in the
219 # clusters identified
220 weights = weights / np.sum(weights)
221 return (np.array(Ps), weights)
222

223 def limit_neighbourhood (self , neighbourhood):
224 """ Limits a neighbourhood to convex_nbd_size amount of values ."""
225 if len(neighbourhood) > self. convex_nbd_size :
226 return neighbourhood [: self. convex_nbd_size]
227 return neighbourhood
228

229 def generate_points (self , cluster , num_of_points_to_create , num_convcomb):
230 """
231 Function creating samples for one minority data point neighbourhood .
232 cluster : Numpy array of data points .
233 num_of_points_to_create : Size of the returned array with new created
234 points .
235 num_convcomb : Number of points used for creating one new point.
236 """
237

238 assert num_convcomb >= 1
239

240 generated_data = []
241

242 isLowVariance = True
243 num_convcomb = int(num_convcomb)
244 if num_convcomb < self. num_feats :
245 isLowVariance = False
246 num_convcomb = 2
247 self.debug(’high ’)
248 else:
249 self.debug(’low ’)
250

251 neb_list = self. split_into_neighbourhoods (cluster)
252

253 for _i in range (int(num_of_points_to_create)):
254 random_neighbourhood = cluster [random_item (neb_list)]
255

118 Appendix B. Implementation for the ProWRAS algorithm

256 if isLowVariance :
257 data_shadow = concatArray ([
258 self. shadow_for_point (x)
259 for x in self. limit_neighbourhood (random_neighbourhood)
260])
261 else:
262 data_shadow = random_neighbourhood
263

264 shadowPoints = random_subset (data_shadow , num_convcomb)
265 aff_w = random_vector_with_sum_one (num_convcomb)
266

267 generated_data . append (np.dot(aff_w , shadowPoints))
268

269 return np.array(generated_data)
270

271 def debug(self , message):
272 """ Prints a message , if debug is enabled ."""
273 if self. isDebugEnabled :
274 print (message)
275

276 def enableDebug (self):
277 """ Prints a message , if debug is enabled ."""
278 self. isDebugEnabled = True
279

280 def ProWRAS_gen (
281 data ,
282 labels ,
283 max_levels ,
284 convex_nbd ,
285 n_neighbors ,
286 max_concov ,
287 num_samples_to_generate ,
288 theta ,
289 shadow ,
290 sigma ,
291 n_jobs ,
292 enableDebug =False):
293 """ Calculates shadow points for a minority class of data points .
294 data: numpy array of data points .
295 labels : numpy array of labels . (== 1: minority class , != 1: other classes)
296 max_levels : Maximal number of layers , used in the algorithm .
297 convex_nbd : Number of points in the neighbourhoods . If a layer has more
298 than this amount of points . It will be divided in neighbourhoods of
299 this size.
300 n_neighbours : Number of neighbours in a layer from the minority class
301 for points in majority class. This parameter is used for generating
302 the layers .
303 max_concov :
304 num_of_samples_to_generate : Number of new generated points in the minority
305 class of data points .
306 theta : Scaling factor for the weights of the layers .
307 shadow : Number of shadow point to create for each point .
308 sigma : Used to generate random shadow samples with normal deviation .
309

Appendix B. Implementation for the ProWRAS algorithm 119

310 n_jobs : Maximal count of processor cores , used during the calculation .
311 """
312

313 warnings . filterwarnings (" ignore ")
314 seed(int(time.time () * 1000) & 0 x0fffffff)
315

316 features_1_trn = minority_class (data , labels)
317 features_0_trn = majority_class (data , labels)
318

319 num_feats = data.shape [1]
320

321 helper = ProWRASHelper (convex_nbd , shadow , sigma , n_jobs , num_feats)
322 if enableDebug :
323 helper . enableDebug ()
324

325 clusters , weights = helper . partition_info (
326 data , labels , max_levels , n_neighbors , theta)
327

328 num_samples_each_cluster = np.ceil(num_samples_to_generate * weights)
329 num_convcomb_each_cluster = np.ceil ((weights / max(weights)) * max_concov)
330

331 sample_params = zip(
332 clusters ,
333 num_samples_each_cluster ,
334 num_convcomb_each_cluster
335)
336

337 synth_samples = concatArray ([
338 helper . generate_points (data[cluster], num_samples , num_convcomb)
339 for (cluster , num_samples , num_convcomb) in sample_params
340])
341

342 prowras_train = np. concatenate ((
343 synth_samples ,
344 features_1_trn ,
345 features_0_trn
346))
347

348 minority_class_size = len(synth_samples) + len(features_1_trn)
349 prowras_labels = np. concatenate ((
350 np.ones(minority_class_size),
351 np.zeros(len(features_0_trn))
352))
353

354 return (prowras_train , prowras_labels)

121

Appendix C

Complexity of the ProWRAS
algorithm

C.1 Assumptions

• N, M are big

• 1 ≤ s, L

• 4 ≤ d

• 2 ≤ m ≤ s · n

• 1 ≤ c, n ≤ N

• The complexity of the k-Neighbourhood search was estimated by Brown
[Brown 2014], We will use:

O(k-Nextneighbourhood) = O(d · N · log(N))

Where

• N = |data| is the number of datasets.

• d is the number of features
(∀x ∈ data : dim(x) = d)

• L = max_levels is the maximum number of created layers in the partition_info
function.

• M = num_samples_to_generate is the number of new samples
ProWRAS_oversampling will generate.

• m = max_conv is the number of shadow samples, used in affine combination to create
a new datapoint.

• n = neb_conv is the maximum size of a neighbourhood, used to create shadow
samples for the affine combination.

122 Appendix C. Complexity of the ProWRAS algorithm

• s = shadow is number of shadow samples, that are created for each sample in a
neighbourhood.

• c = n_neighbours_max is number maximal neighbourhood size.

C.2 Estimations

The computation complexity as estimated in complexity analysis of Algorithms 7, 8 and
6 results in:

O(ProWRAS_oversampling) =

O
(︂

L · d ·
(︁

N · log(N) + c · log(c) + M(s · n + m)
)︁)︂

As c is constant or c ≤ N we have:

O
(︂

L · d ·
(︁

N · log(N) + M(s · n + m)
)︁)︂

For every sensible choice of m, it is true, that m ≤ s · n. So we get:

O
(︁

L · d · (N · log(N) + M · s · n)
)︁

For HLV and LLV it is suggested to use n = 5. For HGV and LGV we select n = neb_conv ≥
|Cmin|. As no neighbourhood can be greater than N, the complexity simplifies to:

O
(︁

L · d · N · (log(N) + M · s)
)︁

Algorithm 6 ProWRAS oversampling algorithm (Complexity Analysis)
Inputs:

data Data points.

Parameters:

max_conv (> 0) Weight for number of generated samples per layer.
num_samples_to_generate (> 0) Maximal count of generated samples in the output.

Function ProWRAS_oversampling(data) begin
clusters← partition_info(data) (See Algorithm 7) . O(partition_info) = O(L · d · N · log(N))

weight_max← max({weight : (cluster, weight) ∈ clusters}) . O(L)

Initialize synth_samples with an empty set. O(1)

For (cluster, weight) ∈ clusters do

num_samples← ⌈num_samples_to_generate · weight⌉ . O(1)

num_convcomb←
⌈︂

max_conv·weight
weight_max

⌉︂
. O(1)

synth← generate_points(cluster, num_samples, num_convcomb) (See Algorithm 8)
. O(generate_points) = O(d(c log(c) + M(s · n + m))

synth_samples← synth_samples∪ synth . O(1)

endfor

. .
O(for . . . endfor) = O

(︂
L ·
(︂

3O(1) + O
(︁
d · (c · log(c) + M(s · n + m))

)︁)︂)︂
= O

(︂
L · d ·

(︁
c · log(c) + M(s · n + m)

)︁)︂
Return resulting set of generated data points as synth_samples.

end

. .

O(ProWRAS_oversampling) = O(L · d · N · log(N)) + O(L) + O(1) + O
(︂

L · d ·
(︁
c · log(c) + M(s · n + m)

)︁)︂
= O(L · d · N · log(N)) + O

(︂
L · d ·

(︁
c · log(c) + M(s · n + m)

)︁)︂
= O

(︂
L · d ·

(︁
N · log(N) + c · log(c) + M(s · n + m)

)︁)︂

C.2. Estimations 123

Algorithm 7 Proximity weighted minority class data partitioning (Complexity Analysis)
Inputs:

data Data points.

Parameters:

max_levels (≥ 1) Maximal repeat of bordersearch.
n_neighbours_max (≥ 1) Number of neighbours considered for the majority class data points

while constructing minority class partitions.
θ (> 0) Scaling for weights.
num_feats (= dim(x1)) Number of features.

Function partition_info(data) begin
X_maj← Data points in data with label for major class. O(N)
X_min← Data points in X with label for minor class. O(N)

L = max_levels . O(1)
Initialize clusters as empty set. O(1)

For i = 1, 2, . . . , L− 1 do
If |X_min| = 0 then

break
endif
. O(1)
weight = exp(−θ · (i− 1)) . O(1)

k← min(|X_min|, n_neighbours_max) . O(1)
cluster← All neighbours in k-Neighbourhoods from X_maj in X_min . O(d · N · log(N))

clusters = clusters∪ {(cluster, weight)} . O(1)

X_min← X_min \ cluster . O(N)
endfor

. O(for . . . endfor) = O
(︂

L ·
(︁
4O(1) + O(N) + O(d · N · log(N))

)︁)︂
= O(L · d · N · log(N))

If |X_min| > 0 then
weight = exp(−θ · (L− 1)) . O(1)
clusters = clusters∪ {(X_min, weight)} . O(1)

endif
. O(1)

weight_sum← sum({weight : (cluster, weight) ∈ clusters}) . O(L)

clusters←
{︂(︂

cluster, weight
weight_sum

)︂
: (cluster, weight) ∈ clusters

}︂
. O(L)

Returns pairs of clusters and normalized weights as clusters.
end

. .
O(begin . . . end) = O

(︂
2O(N) + 4O(1) + 2O(L) + O

(︁
L · d · N · log(N)

)︁)︂
= O

(︁
L · d · N · log(N)

)︁

124 Appendix C. Complexity of the ProWRAS algorithm

Algorithm 8 Cluster-wise oversampling schemes (Complexity Analysis)
Inputs:

cluster Data points.
num_samples Number of generated shadowsamples per parent data point.
num_convcomb Number of convex combinations for each new sample.

Parameters:

neb_conv (≥ 1) Number of data points used in affine combination for new samples.
shadow (≥ 1) Number of generated shadowsamples per parent data point.
sigma (≥ 0) List of standard deviations for normal distributions for adding noise to each feature.

Function generate_points(cluster, num_samples, num_convcomb) begin
Initialize generated_data with empty set. O(1)

If |cluster| > neb_conv then
neb_list← set of all k-Neighbourhoods in cluster . O(d · c · log(c))

else
neb_list← {cluster} . O(1)

endif
. O(if . . . endif) = O(d · c · log(c))

If num_convcomb < num_feats then
k← 2

else
k← num_convcomb

endif
. O(if . . . endif) = O(1)

For i = 1, 2, . . . num_samples do
neighbourhood← a random neighbourhood in neb_list . O(1)

If num_convcomb < num_feats then
data_shadow← neighbourhood . O(1)

else
Initialize data_shadow with empty set.
For v ∈ neighborurhood do

data_shadow← data_shadow∪ {shadow random vectors around v with normal distribution. } . O(d · s)
endfor
. O(for . . . endfor) = O(d · s · n)

endif
. O(if . . . endif) = O(d · s · n)
u = (u1 , . . . , uk)← k random vectors ∈ data_shadow . O(m)
w = (w1 , . . . , wk)← a random vector with positive values and w1 + w2 + . . . + wk = 1 . O(m)

generated_data← generated_data∪ {∑k
i=1 wi · ui} . O(d ·m)

endfor

. .
O(for . . . endfor) = O

(︂
M ·

(︁
O(1) + O(d · s · n) + O(d ·m + 2 ·m)

)︁)︂
= O

(︁
M · (d · s · n + d ·m)

)︁
= O

(︁
d ·M · (s · n + m)

)︁
Returns new points as generated_data.

end

. .
O(begin . . . end) = O

(︂
O(d · c · log(c)) + 2O(1) + O

(︁
d ·M · (s · n + m)

)︁)︂
= O

(︂
d ·
(︁
c · log(c) + M · (s · n + m)

)︁)︂

125

Appendix D

Curriculum Vitae

SAPTARSHI BEJ

Date of birth: 24th July 1991

Place of Birth: Bardhaman

Nationality: Indian

ACADEMIC BACKGROUND

2003-2007 Secondary education,
RKMV Narendrapur,
Kolkata, India

2008-2009 Higher secondary education,
CMS high school,
Burdwan, India

2009-2014 Integrated Bachelors and Masters degree (Mathematics),
(with specialization in Graph and Network theory),
Indian Institute of Science Education and Research,
Kolkata, India (with KVPY Scholarship)

May-Jul, 2012 Internship on Number theory,
Center For Excellence in Basic Sciences,
Mumbai, India

PROFESSIONAL EXPERIENCE

126 Appendix D. Curriculum Vitae

2014-2016 Project intern,
Indian Institute of Science Education and Research,
Kolkata, India

2016-2017 Research assistant,
Paderborn Center for Advanced Studies,
University of Paderborn, Germany

2018-present Research assistant and PhD student,
Department of Systems Biology and Bioinformatics,
University of Rostock, Germany

2021-present Guest scientist,
Leibniz-Institute for Food Systems Biology,
at the Technical University of Munich, Germany

SCHOLARSHIPS AND AWARDS

2009-2014 KVPY scholarship,
For highly motivated students pursuing basic science research,
Awarded by the Department of Science and Technology,
Government of India

2020 DAAD-Prize,
for outstanding achievement of a foreign student,
awarded by the University of Rostock

ACADEMIC EXPERIENCES

Conference presentations:

• e-Med Meeting (Sept. 2018)

• International Conference on Systems Biology (Sept. 2018)

• Internation Joint Conference on Neural Networks (July 2021)

Project contributions:

• GB-X Map: Assessing gut-brain-cross-diseases risk (BMBF funded) Performed RNA-Seq
analysis and machine learning analysis for 500 patients suffering from Ulcerative Colitis and
Schizophrenia

Appendix D. Curriculum Vitae 127

• iRhythmics: Programming pacemaker cells for in vitro drug testing (ESF funded)
Created machine learning models for automatic annotation of rare cells from single cell data

Teaching assistance:

• Bio-systems modelling and simulation for 5 semesters, with a class of 30 students

• Data science seminar with Python for 3 semesters, with a class of 30 students, was
responsible for designing, planning and evaluation of the course

Thesis and project supervision:

• Narek Davtayn (Masters Thesis) LoRAS: An oversampling approach for imbalanced
datasets

• Krithika Sayar Chand (Masters Thesis) Advanced Image Analysis with Deep Learning

• David Brauer (Masters Thesis) ML-Assisted Construction of a Disease-Specific molecular
Interaction Network from Human Blood RNA-Seq Data

• Prashant Srivastava (project supervision) Knowledge-graph creation through Biological
Literature Mining

• Cagri Kuzulu (Erasmus project supervision) Comparative study on alternative methods of
imbalanced learning

129

Appendix E

Publications

E.1 Articles published/accepted in peer-reviewed journals relevant
to this thesis

1. Bej S., Davtyan N., Wolfien M., Nassar M., Wolkenhauer O. LoRAS: an
oversampling approach for imbalanced datasets Mach Learn vol 110, 279301 (2021).
https://doi.org/10.1007/s10994-020-05913-4

Contributions: I developed the concept behind this study. I built the analytical results
and developed the algorithm. I also decided upon the protocols of the benchmarking
studies and performed the benchmarking experiments. I wrote the manuscript for
this study and am the first author. This study is directly related to this thesis.

2. Bej S., Schultz K., Srivastava P., Wolfien M., Wolkenhauer O. A multi-schematic
classifier-independent oversampling approach for imbalanced datasets, IEEE Access, vol. 9,
pp. 123358-123374, 2021 https://doi.org/10.1109/ACCESS.2021.3108450

Contributions: I developed the concept behind this study. I developed the algorithm.
I also decided upon the protocols of the benchmarking studies and performed the
benchmarking experiments. I wrote the manuscript for this study and am the first
author. This study is directly related to this thesis.

3. Bej S., Galow A-M., David R., Wolfien M., Wolkenhauer O. Automated annotation of
rare-cell types from single-cell RNA-sequencing data through synthetic oversampling. BMC
Bioinformatics 22, 557 (2021) https://doi.org/10.1186/s12859-021-04469-x

Contributions: The concept of this study was developed by Markus Wolfien. He
along with Anne-Marie Galow and Robert David generated and pre-processed the
data. I used the data to construct and test the sc-SynO tool. I wrote significant portions
of the manuscript. This study is directly related to this thesis.

https://doi.org/10.1007/s10994-020-05913-4
https://doi.org/10.1109/ACCESS.2021.3108450
https://doi.org/10.1186/s12859-021-04469-x

130 Appendix E. Publications

E.2 Other published/accepted articles in peer reviewed journals

1. Mucha S., Baurecht H., Novak N., Bej S. et al. Protein-coding variants contribute to the
risk of atopic dermatitis and skin-specific gene expression J Allergy Clin Immunol. 2020;
145(4), 1208-1218. https://doi.org/10.1016/j.jaci.2019.10.030

Contributions: I participated in this study as a part of the GB-X Map project. I
constructed gene-protein-interaction networks from genes and proteins identified by
experts. Moreover, I used standard network analysis techniques to identify important
genes and proteins from the constructed network.

2. Banerjee A., Bej S. On extension of regular graphs Journal of Discrete Mathematical
Sciences and Cryptography, (2018) Vol 21:1, 13-21, https://doi.org10.1080/
09720529.2015.1085740

Contributions: I developed the concept behind this study. I built the analytical results
and also wrote the manuscript under the supervision of Prof. Banerjee.

3. Kok J., Bej S. Coloring sums of extensions of certain graphs Journal of Algebra
Combinatorics Discrete Structures and Applications, (2016) Vol 5(1) 19-27,
http://dx.doi.org/10.13069/jacodesmath.349383

Contributions: Johan Kok developed the concept behind this study. I built some of
the analytical results and also wrote parts of the manuscript.

4. Bej S., Steffen E. Factors of edge-chromatic critical graphs: a brief survey and some
equivalences Lecture Notes of Seminario Interdisciplinare di Matematica, (2017) Vol 14
37-48, http://dimie.unibas.it/site/home/in-evidenza/articolo3004582.html

Contributions: Eckhard Steffen developed the concept behind this study. I performed
the literature survey for the review portion of the article and also participated in
writing the manuscript.

5. Bej S. Hamiltonian cycles in annular decomposable Barnette graphs https:
//arxiv.org/abs/2008.06671 (accepted for publication in the Journal of Discrete
mathematical Sciences and Cryptography)

Contributions: I developed the concept behind this study. I developed the theorems
and proofs for showing some conditions such that ADB-AC graphs are Hamiltonian.
This work is driven by my long term interest in graph theory, especially the Barnette’s
conjecture. The manuscript was also written by me.

https://doi.org/10.1016/j.jaci.2019.10.030
https://doi.org10.1080/09720529.2015.1085740
https://doi.org10.1080/09720529.2015.1085740
http://dx.doi.org/10.13069/jacodesmath.349383
http://dimie.unibas.it/site/home/in-evidenza/articolo3004582.html
https://arxiv.org/abs/2008.06671
https://arxiv.org/abs/2008.06671

E.3. Published/Accepted articles in conference proceedings 131

6. Nguinkal J., Bej S., et al. Comprehensive Characterization of Multitissue Expression
Landscape, Co-Expression Networks and Positive Selection in Pikeperch Cells. 2021;
10(9):2289, https://doi.org/10.3390/cells10092289

Contributions: I contributed with the idea of using unsupervised ML approaches in
the data analysis workflow and related consultations.

7. Srivastava P., Bej S., et al.. Self-Attention-Based Models for the Extraction
of Molecular Interactions from Biological Texts. Biomolecules 2021, 11, 1591
https://doi.org/10.3390/biom11111591

Contributions: This is a review article. I wrote a major portion of the publication.

E.3 Published/Accepted articles in conference proceedings

1. Bej S., Srivastava P., Wolfien M., Wolkenhauer O. Combining uniform manifold
approximation with localized affine shadowsampling improves classification of imbalanced
datasets 2021 International Joint Conference on Neural Networks (IJCNN), 2021, pp.
1-8, https://ieeexplore.ieee.org/document/9534072

Contributions: I developed the concept behind this study. I developed the algorithm.
I also decided upon the protocols of the benchmarking studies and performed the
benchmarking experiments. I wrote the manuscript for this study and am the first
author. This study is directly related to this thesis.

E.4 Articles in peer-review and other independent articles

1. Bej S., Sarkar J., Biswas S., Mitra P., Chakrabarti P., Wolkenhauer O. Identication and
epidemiological characterization of Type-2 Diabetes sub-population using an unsupervised
machine learning approach (submitted to Nutrition and Diabetes (Nature))

Contributions: The concept of this study was developed by Jit Sarkar and myself.
Jit Sarkar along with his collaborators generated and pre-processed the data. I used
the data to construct a feature-distributed clustering method that could identify
significant patient clusters. I wrote significant portions of the manuscript.

2. Bej S., Wolkenhauer O. The timing of contact restrictions and pro-active testing
balances the socio-economic impact of a lockdown with the control of infections
https://doi.org/10.1101/2020.05.08.20095596

Contributions: The concept of this study was developed by Olaf Wolkenhauer. I
helped in building Python based models to simulate and visualise several scenarios.

https://doi.org/10.3390/cells10092289
https://doi.org/10.3390/biom11111591
https://ieeexplore.ieee.org/document/9534072
https://doi.org/10.1101/2020.05.08.20095596

132 Appendix E. Publications

Moreover, I helped in the interpretation of the results. I also wrote significant portions
of the manuscript.

3. Uellendahl-Werth F., Maj C., Borisov O., Matthias Wacker E., Bej S., Wolkenhauer
O., Ellinghaus D., et al. Cross-tissue transcriptome-wide association studies of 885,176
individuals and seven diseases of the gut-brain axis identify susceptibility genes shared
between schizophrenia and inflammatory bowel disease

Contributions: I contributed to the workflow of using unsupervised learning,
supervised learning and feature selection techniques in transcriptomic analysis.

E.4. Articles in peer-review and other independent articles 133

Presented poster in E-Med meeting 2018, Berlin

TWAS Benchmark Improved RNA-Seq Analysis

Method and data

References:
[1] Bernstein et al. Increased Burden of Psychiatric Disorders in Inflammatory BoweDisease. Inflamm Bowel Dis. (2018). July 7 doi:
10.1093 ePub ahead
[2] Watanabe, K., Taskesen, E., van Bochoven, A., & Posthuma, D. (2017). Functional mapping and annotation of genetic associations
with FUMA. Nature Communications, 8(1), 1826
[3] Martin, A., Ochagavia, M. E., Rabasa, L. C., Miranda, J., Fernandez-de-Cossio, J., & Bringas, R. (2010). BisoGenet: a new tool for
gene network building, visualization and analysis. BMC Bioinformatics, 11, 91. https://doi.org/10.1186/1471-2105-11-91

Base pair position on chr6

Abstract: Psychiatric comorbidity in in�lammatory bowel disease (IBD) is well known, with a higher incidence of
schizophrenia (SCZ) in IBD cohorts compared with controls (incidence rate ratio [IRR] = 1.64) [1]. An overlap for
common GWAS loci has been observed, in particular for the MHC complex on chromosome 6p21. The objective of the
GB-XMAP	 (Gut-brain	 cross-disease	map) Vernetzungsfonds project is to decipher the mechanisms of action of
disease-predisposing GWAS loci shared between ulcerative colitis (UC) and SCZ. The e:Med consortia "Sysin�lame"
and "IntegraMent" have generated a wealth of genome-wide genotyping and gene expression data that are used for
exploration.

Genome-wide association studies have identi�ied >300 risk loci for IBD and SCZ. The GB-XMAP project, a new strategic alliance between two e:Med
centres in Bonn and Kiel as well as one de.NBI node in Rostock, uses transcriptome (RNA-seq and array experiments) of whole-blood samples of 500
UC, 500 SCZ patients and 1,500 healthy controls in combination with GWAS SNP array data availabel from >20,000 UC and >30,000 SCZ patients and
>79,000 healthy controls.

 • Objective 1: We estimate the genetically regulated component of expression of
potential risk genes of established UC and SCZ GWAS loci for a wide range of tissues
by means of tissue speci�ic cis-eQTL models followed by transcriptome wide
association studies (TWAS).

 • Objective 2: We construct a single cross-disease interaction map, derive a
common regulatory core, and predict disease gene signatures using in silico model
simluation to create a multidimensional model.

50-80% of seq. reads map to globin RNA in whole blood samples. Ef�icient
gene-expression analysis of whole-blood samples with globin block (GB)
oligos from Lexogen:

Heatmap of normalized Pearson's rho
values (matchscore) shows that globin
blocking (GB) RNA-seq has no impact on
the correlation of "technical" replicates (GB
versus non-GB). RNA-seq GB and non-GB
samples from same individuals perfectly
match, shown for a subset of 10
individuals.

Correlation plots showing the strong correlation of counts normalized by
DESeq2 from two healthy individuals. GB does not signi�icantly increase
the variance (biological variability) or occurence of outliers in the data.

Most common RNA-seq
alignment tools pro�it from
reduced globin transcripts:
More transcripts with
increased counts for
differential expression
analysis. STAR: raw counts;
Next�low: STAR&stringTie;
Tophat: FPKM (Fragments
Per Kilobase Million);
Kallisto: Pseudoalignment.

Expression imputation works for non-MHC/MHC genes

 David	Ellinghaus1,	Saptarshi	Bej2,	Carlo	Maj3,	Markus	Wol�ien2,	Oleg	Borisov3,	Sören	Mucha1,	Per	Hoffmann4,5,6,7,	Franziska	Degenhardt	6,7,	Andrea	Bagnacani2,	Stefan	Schreiber1,	Peter	Michael	Krawitz3,	Markus	Nöthen6,7,	Olaf	Wolkenhauer2

 (1) Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany, (2) University Rostock, Institute of Computer Science, Department of Systems Biology and Bioinformatics, Ulmenstraße 69, 18057 Rostock, Germany, (3) Institute for
Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, (4) Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland, (5) Institute of Medical
Genetics and Pathology, University Hospital Basel, Basel, Switzerland, (6) Institute of Human Genetics, University of Bonn, Bonn, Germany, (7) Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany

Network Analysis

• GWAS Network for IBD
• 970 Nodes
• 3802 Edges
• All feed forward loops
and feedback loops
involving at least two of the
input genes included
•Tool used: Bisogenet [3]

• Sub-networks extracted
by MCODE Algorithm
• MCODE Algorithm
extracts relatively dense
motifs from a larger
network
• After integrating the
RNA-sequencing data with
the GWAS data the
networks will be updated

•Functional Enrichment
of the motifs extracted by
MCODE
• Tool used for
Enrichment Analysis:
FUMA-GWAS [2]

134 Appendix E. Publications

Presented poster in LSB Munich (2021)

Classifier Independent of Oversampling for the

Classification of Imbalanced Datasets

S. Bej1,2 , P. Srvivastava1,2, and O. Wolkenhauer1,2

1Leibniz Institute for Food Systems Biology at TUM, 2University of Rostock

Research Question
Oversampling is a data pre-processing approach for handling imbalanced

datasets. However, more than a hundred oversampling approaches perform differently
when integrated with different machine learning classifiers. Given a dataset and a classifier,

how do we make sure that a chosen oversampling model is effective?

Conclusion
Our ProWRAS algorithm outperforms state of the art oversampling algorithms in a classifier

independent manner. Our application based studies on automated rare cell type annotation is
promising. With method firmly established, we are using it in different applications.

S.Bej et al. Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling – submitted (available on bioRxiv)

M
et

h
o

d

R
e

su
lt

s

SMOTE LoRAS

LoRAS oversampling can control

the variance of the generated

synthetic samples to reduce their

interference with the majority

class.

Variance of synthetic samples id

inversely proportional to the

dimension of the convex space

from which the samples are

generated.

R
a
n

d
o

m
 F

o
re

st
G

ra
d

ie
n

t
B

o
o

st
in

g
K

-N
e

a
re

st
 N

e
ig

h
b

o
u

rs

C
o

m
p
a

ri
s
o
n

 o
f

o
v
e

rs
a

m
p

lin
g
 m

o
d
e

ls
 f

o
r

3
 c

la
s
s
if
ie

rs
 f

o
r

2
0

 d
a

ta
s
e

ts
.
T

h
e

 i
j-
th

v
a
lu

e
 o

f
e
a
c
h
 h

e
a
tm

a
p
 d

e
n
o
te

s
 t

h
e
 n

u
m

b
e
r

o
f
d
a
ta

s
e
ts

 f
o
r

w
h
ic

h
 t
h
e
 o

v
e
r-

s
a
m

p
lin

g
 m

o
d
e
l
in

 t
h
e
 i
-t

h
ro

w
 o

u
tp

e
rf

o
rm

s
 o

r
e
q
u
a
ls

 o
n
e
 i
n
 t
h
e
 j
-t

h
c
o
lu

m
n
.

S.Bej et al. LoRAS: an oversampling approach for imbalanced datasets. Machine Learning (2021) 110:279-301

S.Bej et al. A multi-schematic classifier-independent oversampling approach for imbalanced datasets. Accepted for publication in IEEE Access

„ProWRAS performs well

for multiple classifiers“

S3

E.4. Articles in peer-review and other independent articles 135

Presented poster in CTNR Summer School (2021)

Explainable transcriptome (?) analyses

Make patterns and relationships visible through bioinformatics

Markus Wolfien,

Maximilian Hillemanns,

Daniel Jenderny,

Saptarshi Bej,

Olaf Wolkenhauer

www.sbi.uni-rostock.de

Literature
1 Wolfien M, Galow AM, David R. 2021. Single-cell RNA-Sequencing

procedures and data analysis. Exon Publications.

2 Wolfien M, Galow AM, et al. 2020. Single-Nuclei Sequencing

of entire Mammalian Hearts: Cell Type Comparison and

Velocity. Cardiovascular Research

3 Serhan C, Gupta SK, et al. 2020. The Atlas of Inflammation

Resolution (AIR). Molecular Aspects of Medicine.

4 Bej S, Davtyan N, et al. 2021. LoRAS: An

oversampling approach for imbalanced datasets.

Machine Learning.

5 Bej S, Galow AM, et al. 2021. Automated anno

-tation of rare cell types from sc-RNA-Seq data

through synthetic oversampling. BioRxiv.

Finding mice in a maze

Behavioral analysis has

made great progress

through the use of deep

learning technologies,

especially in the field of

video analysis. With the

help of DeepLabCut, which

is an AI-based analysis of

different parameters in an

unbiased manner. Try to

label images yourself!

Influences of clustering Train neurons with data

playground.tensorflow.org

Explore single-cell RNA sequencing data

https://air.elixir-luxembourg.org/minerva/

Deep dive in networks

https://www.naftaliharris.com/blog/visua

lizing-k-means-clustering/

Clustering cells into certain groups is an

essential part of many analyzes. Here, we

present LoRAS4,5 an algorithm to adjust for

imbalance of data and improve accuracy.

Image analysis using deep learning has become an

indispensable part of research. But how do these

neural networks actually learn, and more importantly,

what exactly do they learn?

Here, we link to a

showcase of TensorFlow,

which is a software

framework used as a basis

for our sarcomere studies.

Single-cell transcriptome analyzes enable an improved degree of resolution within cell type

characterization.1,2 However, the analysis is very complex and multi-layered, which is why easy access to the

interpretation of the data is of great importance. RShiny is used as a well-suited solution. Explore yourself!

Interactions between proteins or RNA

transcripts can be compactly visualized

and analyzed with the help of networks.

In addition, they can serve as a

knowledge base for a broad variety of

data. Exemplarily, these methods are

demonstrated via AIR3, which is based

on Minerva.

Computer-aided investigations are irreplaceable in research. Within the Chair of Systems Biology and Bioinformatics, there are different approaches in this

regard, for example based on artificial intelligence or network and pathway modeling, in order to simplify the explainability and interpretation of data. Not only

are the results of the CTNR community presented, but important fundamentals of these different approaches are also illustrated using interactive examples.

With the help of this poster you can actively experience and discover the most modern, computer-aided techniques. All you need is a device with a QR code

reading function and you're ready to go.

Funded by:

European Social Funds

(ESF)-14-BM-A55-0027/18

https://contrib.deeplabcut.org/

https://www.sbi.uni-rostock.de/shiny/mice_comparison/

137

Declaration of Authorship
I hereby declare that this thesis was independently composed and authored by myself.

All content and ideas drawn directly or indirectly from external sources are indicated as
such. All sources and materials that have been used are referred to in this thesis.

The thesis has not been submitted to any other examining body and has not been published.

Signed: Saptarshi BEJ

Date: February 21, 2022
Place: Rostock

	Acknowledgements
	Abstract
	Zusammenfassung
	Theses
	List of Figures
	List of Tables
	List of Abbreviations
	Summary and outline of the thesis
	Classification problems with imbalanced datasets
	Challenges of imbalanced classification in real-life scenarios
	Imbalanced datasets in bio-medicine
	Imbalanced datasets in security and business management
	Imbalanced datasets in engineering and technology

	Common machine learning approaches for imbalanced classification problems
	Data level approaches
	Algorithm level approaches

	Performance measures for imbalanced datasets
	Preliminary performance measures
	Common performance measures for imbalanced datasets
	Precision, Recall and F1-Score
	Other popular performance measures

	Receiver operating characteristic curve and precision recall curve
	Wilcoxon's signed rank test for model comparison

	Oversampling Techniques for convex space modelling
	SMOTE algorithm and its limitations
	Criticisms of the SMOTE algorithm

	Some early extensions of the SMOTE algorithm
	Borderline based oversampling
	Weighting minority class samples

	Integration of SMOTE with unsupervised learning
	SMOTE with clustering algorithms
	SMOTE with dimension reduction algorithms
	Oversampling technique integrating multiple approaches

	Comparative studies between oversampling algorithms
	Some state-of-the-art extensions of SMOTE

	Improving convex space modelling with the LoRAS algorithm
	Modelling the convex space of minority class
	Geometric interpretation of convex space modelling
	Analytical explanation for convex space modelling

	LoRAS algorithm
	Benchmarking studies for LoRAS algorithm
	Datasets used
	Study protocols

	Improving classifier performance using LoRAS
	Significance of the LoRAS algorithm
	Integrating LoRAS with the UMAP algorithm
	Benchmarking studies for LoRAS UMAP algorithm
	Improved performance of LoRAS UMAP algorithm

	Automated annotation of rare cell populations
	Applying LoRAS in a biological context
	Using single-cell technology for the identification of rare cells
	Using machine learning algorithms to generate cell types in silico

	Datasets and methodologies
	Use case preparation
	sc-SynO: Transferring the LoRAS algorithm to single-cell data

	sc-SynO can detect rare cell types
	sc-SynO can detect extremely rare glial cells
	Sc-SynO achieves a low FN rate for the identification of proliferative cardiomyocytes
	Sc-SynO can detect rare-cell populations from large-scale datasets

	Importance and applicability of sc-SynO

	Classifier-independent oversampling using the ProWRAS algorithm
	Classifier dependence of oversampling models
	Study protocols
	Pilot study confirming classifier dependence of oversampling

	ProWRAS algorithm
	Classifier independent performance of ProWRAS
	Interpretations and applicability of the ProWRAS oversamping approach

	Concluding remarks
	Bibliography
	Implementation for the integrated LoRAS algorithms
	Implementation for the ProWRAS algorithm
	Complexity of the ProWRAS algorithm
	Assumptions
	Estimations

	Curriculum Vitae
	Publications
	Articles published/accepted in peer-reviewed journals relevant to this thesis
	Other published/accepted articles in peer reviewed journals
	Published/Accepted articles in conference proceedings
	Articles in peer-review and other independent articles

	Declaration of Authorship

