
Geometric SMOTE a geometrically enhanced drop-in
replacement for SMOTE

Georgios Douzas, Fernando Bacao

NOVA Information Management School, Universidade Nova de Lisboa, Campus de

Campolide, Lisboa 1070-312, Portugal

This is the accepted author manuscript of the following

article published by Elsevier:

Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced
drop-in replacement for SMOTE. Information Sciences, 501, 118-135.
https://doi.org/10.1016/j.ins.2019.06.007

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

https://doi.org/10.1016/j.ins.2019.06.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Geometric SMOTE
A geometrically enhanced drop-in replacement for SMOTE

Georgios Douzas1, Fernando Bacao1∗

1NOVA Information Management School, Universidade Nova de Lisboa

*Corresponding Author

Postal Address: NOVA Information Management School, Campus de Campolide, 1070-312 Lisboa, Portugal

Telephone: +351 21 382 8610

Classification of imbalanced datasets is a challenging task for standard algorithms. Al-
though many methods exist to address this problem in different ways, generating artificial
data for the minority class is a more general approach compared to algorithmic modifications.
SMOTE algorithm, as well as any other oversampling method based on the SMOTE mecha-
nism, generates synthetic samples along line segments that join minority class instances. In
this paper we propose Geometric SMOTE (G-SMOTE) as a enhancement of the SMOTE
data generation mechanism. G-SMOTE generates synthetic samples in a geometric region of
the input space, around each selected minority instance. While in the basic configuration this
region is a hyper-sphere, G-SMOTE allows its deformation to a hyper-spheroid. The perfor-
mance of G-SMOTE is compared against SMOTE as well as baseline methods. We present
empirical results that show a significant improvement in the quality of the generated data
when G-SMOTE is used as an oversampling algorithm. An implementation of G-SMOTE is
made available in the Python programming language.

1 Introduction

Learning from imbalanced data is a non trivial and important problem for the research community
and the industry practitioners [Chawla et al., 2003]. An imbalanced learning problem is defined as a
classification task for binary or multi-class datasets where a significant asymmetry exists between the
number of instances for the various classes. The dominant class is called the majority class while the rest
of the classes are called the minority classes [Chawla et al., 2003]. The Imbalance Ratio (IR), defined as
the ratio between the majority class and each of the minority classes, depends on the type of application
and for binary problems values between 100 and 100.000 have been observed [Chawla et al., 2002], [Barua
et al., 2014].

The imbalance learning problem can be found in numerous practical domains, such as chemical and
biochemical engineering, financial management, information technology, security, business, agriculture
or emergency management, for a more in depth review the reader is referred to (Haixiang et al., 2017).
Standard learning methods induce a bias in favor of the majority class during training. This happens
because the minority classes contribute less to the minimization of the objective function, defined often
as the classification accuracy. Additionally, the distinction between noisy and minority class instances
is frequently difficult. As a result the performance of the classifiers, evaluated on metrics suitable for
imbalanced data, is low. It is also important to consider that the costs of misclassifying the minority

1

class are frequently much higher than the costs of misclassification of the majority class [Domingos,
1999], [Ting, 2002]. Diseases screening tests are a typical situation in in which false negatives involve a
much higher cost than the false positives. Therefore, fundamentally the class imbalance challenge is to
propose smart and simple ways is to improve the accuracy of classifiers for the minority class.

We can classify the approaches to deal with class imbalance into three main groups [Fernández et al.,
2013]. The first consists in the modification or creation of algorithms that reinforce the learning towards
the minority class. The second is the application of cost-sensitive methods to minimize higher cost errors.
The last and more general approach involves the modification at the data level by re-balancing the class
distribution. This is usually done through the use of undersampling, oversampling or hybrid methods.

Our focus in this paper is oversampling techniques, which result in the generation of artificial data
for the minority class. Synthetic Minority Oversampling Technique (SMOTE) [Chawla et al., 2002]
is the most popular algorithm in this category. SMOTE can be decomposed into two parts: a set of
selection rules for the minority class instances and a data generation mechanism once these samples
are selected. Specifically, the selection phase constitutes of a process that repeatedly identifies one
minority class sample and a random minority class k-nearest neighbor of it while the data generation
mechanism creates synthetic examples along the line segment that joins them. Most existing variations
of the SMOTE algorithm modify the selection phase by imposing a set of heuristic rules. Contrary
to this, the method proposed in this paper, G-SMOTE, substitutes the data generation mechanism by
defining a flexible geometric region around each minority class instance. Then synthetic instances are
generated inside the boundaries of the region which are controlled by an appropriate parametrization of
the algorithm.

For the evaluation of G-SMOTE as an oversampling method an experimental analysis is performed. The
selected imbalanced datasets are publicly available from the UCI [Lichman, 2013] and KEEL [Alcal-Fdez
et al., 2011] repositories. In order to test the performance of the algorithm on more extreme cases of
imbalance, undersampled modifications of the aforementioned datasets as well as simulated binary class
imbalanced data are provided in a total of 69 datasets. Since this work aims to show that G-SMOTE
is an enhanced generalization of SMOTE, the experimental procedure includes a comparison between
the two algorithms using 4 classifiers and 3 appropriate evaluation metrics. Additionally, applying no
oversampling and Random Oversampling are included as baseline methods.

The sections in the paper are organized as follows. In section 2, an overview of related previous works
and existing sampling methods is given. In Section 3, the motivation for G-SMOTE is presented, while
section 4 describes the proposed method in detail. The experimental results as well as conclusions from
their analysis are presented in section 5.

2 Related work

In this section we provide a brief review of the most popular oversampling methods. The reader interested
in undersampling and hybrid methods is referred to [Galar et al., 2012], [Chawla, 2005] and [Fernandez
et al., 2018]. The fundamental idea of oversampling methods consists in the generation of synthetic
examples for the minority class, which should then be added to the training set. The simplest approach,
Random Oversampling, duplicates randomly selected minority class instances. The disadvantage of this
approach is that the exact replication of training examples can increase the risk of over-fitting since no
new information is created and the classifier will use the same information. An alternative approach
that aims to reduce this problem and generate new data is SMOTE, which allows for the generation of
synthetic instances along a line segment that joins original minority class instances. SMOTE has been
the first and most popular oversampling algorithm. Although SMOTE has been shown to be an effective
and simple option for oversampling it also has some weaknesses, such as the fact that the separation

2

between majority and minority class clusters is not often clear and the generation of noisy instances
[He and Garcia, 2009]. In order to mitigate these problems many variations to SMOTE have been
proposed.

2.1 Modifications of the selection phase

Imbalance learning can be divided into two different problems: between-class imbalance and within-class
imbalance [Jo and Japkowicz, 2004]. The between-class imbalance refers to the classical problem of the
skewness in the distribution between majority and minority classes. The within-class imbalance is a
subtler, but equally relevant, problem and refers to the possible existence of dense or sparse sub-clusters
of minority or majority instances. Both of these problems are relevant in imbalance learning.

SMOTE + Edited Nearest Neighbor [Batista et al., 2004] is and example of a between-class imbalance
algorithm, which modifies the selection phase of the SMOTE algorithm. SMOTE + Edited Nearest
Neighbor combination starts by generating artificial instances using SMOTE and then applies the edited
nearest neighbor rule [Wilson, 1972] to remove misclassified instances, based on the classification by
its three nearest neighbors. Borderline-SMOTE [Han et al., 2005], MWMOTE (Majority Weighted
Minority Oversampling Technique for Imbalanced Data Set Learning) [Barua et al., 2014], ADASYN and
its variation KernelADASYN [Tang and He, 2015] share the same overall objective, which is to prevent
the generation of noisy instances through the identification of the borderline instances for both, majority
and minority classes, which, in turn, are used to identify the informative minority class instances.

The typical approach to deal with the within-class imbalance problem is to apply some type of clustering
procedure, for the identification of eventual minority or majority sub-clusters, followed by the application
of sampling methods, such as SMOTE, to correct the size of different clusters. Cluster-SMOTE [Cieslak
et al., 2006] applies the k-means algorithm and then generates artificial data using SMOTE. Similarly
DBSMOTE [Bunkhumpornpat et al., 2012] uses DB-SCAN, density-based, algorithm to identify arbi-
trarily shaped clusters and generates synthetic instances along a shortest path from each minority class
instance to a pseudo-centroid of the cluster. A-SUWO [Nekooeimehr and Lai-Yuen, 2016] creates clus-
ters of the minority class instances with a size, which is determined using cross validation and generates
synthetic instances based on a proposed weighting system. SOMO [Douzas and Bacao, 2017b] creates
a two dimensional representation of the input space (U-matrix) and based on it, applies the SMOTE
procedure to generate intra-cluster and inter-cluster synthetic instances that preserve the underlying
manifold structure. Similarly to SOMO, a combination of k-means and SMOTE [Douzas et al., 2018]
can be applied to re-balance the class distribution based on the density of the identified clusters. Finally,
other types of oversampling approaches are based on ensemble methods [Wang et al., 2015], [Sun et al.,
2015] such as SMOTEBoost [Chawla et al., 2003] and DataBoost-IM [Guo and Viktor, 2004].

2.2 Modifications of the data generation mechanism

The modification or substitution of the SMOTE data generation mechanism is a less common approach.
Safe-Level SMOTE [Bunkhumpornpat et al., 2009] applies a weight degree, the safe level, in the data
generation process. Based on the safe level, another quantity called the safe level ratio is calculated,
that effectively truncates a part of the line segment joining minority class samples. Therefore the Safe-
Level SMOTE modification acts as a restriction of the SMOTE data-generation mechanism. A different
type of oversampler, that completely substitutes the SMOTE data generation mechanism, applies the
Conditional Generative Adversarial Networks (CGAN) [Douzas and Bacao, 2017a] to generate data for
the minority class. Contrary to the other methods, CGAN oversampler does not rely on local information
of the input space but aims to approximate directly the true data distribution.

3

3 Motivation

In the previous section various informative oversampling methods were presented as an effective way
to re-balance the data distribution. However, there are scenarios where the SMOTE data generation
mechanism may encounter a variety of problems. This section describe some of these cases providing
suitable examples and motivates the proposed G-SMOTE algorithm. In what follows x is the initially
selected minority class instance of the SMOTE mechanism. Some of the SMOTE algorithm inefficiencies
are the following:

1. Generation of noisy instances due to the selection of k-nearest neighbors.

In SMOTE, the value of k is determined in advance and there are cases where the results of oversampling
are sensitive to it as it is shown in the following example. The decision boundary of Fig. 1 identifies
areas of the input space where instances from either the positive or negative class dominate. A few of the
minority class instances, called noisy observations, that are located near the decision boundary, penetrate
into the majority class area. A large k value can result in the generation of additional noisy examples
since x′, the selected k-nearest neighbor of x, might be one of the aforementioned noisy observations.

xgen	

Majority	class	
Minority	class	
Generated	sample	
Decision	boundary	

x	

x	

Figure 1: An instance near the decision boundary and one of its 4-nearest neighbors are selected ran-
domly. A noisy observation is generated.

2. Generation of noisy examples due to the selection of an initial observation.

In order to avoid the previous scenario k is set to a small value. This choice does not eliminate the
generation of noisy samples when x itself is a noisy instance as can be seen in Fig. 2.

4

Majority	class	
Minority	class	
Generated	sample	
Decision	boundary	

x	

x	

xgen	

Figure 2: A 2-nearest neighbor does not avoid the generation of noise when noisy samples are initially
selected.

3. Generation of nearly duplicated instances.

Minority and majority regions can be organized in different clusters, having complex decision boundaries.
In this case, being conservative in the selection of k may be a valid strategy since a small value of it
can minimize the probability of generating noisy instances. On the other hand, it may increase the
probability of generating synthetic instances in dense minority class areas as is shown in Fig 3, where
x and x′ belong in to the same cluster. These artificial samples are less useful because they do not add
new information to the data set and are conducive to overfitting. Consequently, it is desirable to expand
the data generation process in areas where minority examples are absent.

xgen	

Majority	class	
Minority	class	
Generated	sample	
Decision	boundary	

x	 x	

Figure 3: An instance belonging to a minority class cluster and one of its 5-nearest neighbors are selected.
An observation belonging to the same cluster is generated.

5

4. Generation of noisy instances due to the use of observations from two different minority class clus-
ters.

Increasing k in order to avoid the previous scenario, may result to a selected x′ such that x and x′ belong
to different clusters. This in turn may lead to the generation of a new instance within the majority
region as it is exemplified in Fig. 4.

xgen	

Majority	class	
Minority	class	
Generated	sample	
Decision	boundary	

x	

x	

Figure 4: An attempt to generate inter-cluster instances by increasing the number of k-nearest neighbors
of the selected instances. One of the generated instances penetrates in the majority class area.

4 The proposed method

In the previous section some insufficiencies of the SMOTE data generation mechanism in various scenarios
were described. Some of these insufficiencies apply also to other SMOTE-based oversamplers. We propose
a novel data generation procedure, G-SMOTE, which is an extension of the SMOTE algorithm and has
three main objectives:

1. To define a safe area around each selected minority class instance such that the generated artificial
minority instances inside this area are not noisy.

2. To increase the variety of generated samples by expanding the minority class area.

3. To parametrize the above characteristics based on a small number of transformations with a geometrical
interpretation.

G-SMOTE can be considered as a drop-in replacement for SMOTE in the sense that any method relying
on the SMOTE data generation mechanism can replace it with the one proposed by G-SMOTE without
any further modifications. As it was mentioned on the previous sections, in this paper we aim to a direct
comparison of the two data generation mechanisms, with the effect of the above replacement being an
investigation of future work.

The complete algorithm in pseudo-code is presented in the following figure:

6

Algorithm 1: G-SMOTE

Input: Smaj , Smin, N, k, αsel, αtrunc, αdef

Output: Sgen

Function Surface(αsel, xcenter, Smaj, Smin):
if αsel = minority then

xsurface ∈ Smin,k

else if αsel = majority then
xsurface ∈ Smaj,1

else if αsel = combined then
xmin ∈ Smin,k

xmaj ∈ Smaj,1

xsurface ← argminxmin,xmaj

(
‖xcenter − xmin‖, ‖xcenter − xmaj‖

)
return xsurface

Function Vectors(xcenter, xsurface):

e// ←
xsurface−xcenter

‖xsurface−xcenter‖
x// ← (xgen · e//) e//

x⊥ ← xgen − x//

return (x//,x⊥)

Function Hyperball():
vi ∼ N(0, 1)
r ∼ U(0, 1)

xgen ← r1/p
(v1,··· ,vp)
‖(v1,··· ,vp)‖

return xgen

Function Truncate(αtrunc,xgen,xcenter,xsurface):
if |αtrunc − x//| > 1 then

xgen ← xgen − 2x//

return xgen

Function Deform(αdist,xgen,xcenter,xsurface):
return xgen − αdef x⊥

Function Translate(xgen,xcenter, R):
return xcenter +R xgen

begin
1 Sgen = ∅
2 while |Sgen| < N do
3 xcenter ∈ Smin

4 xsurface ← Surface(αsel, xcenter, Smaj, Smin)

5 (x//,x⊥)← Vectors(xcenter, xsurface)
6 xgen ← Hyperball()

7 xgen ← Truncate(αtrunc,xgen,xcenter,xsurface)
8 xgen ← Deform(αdist,xgen,xcenter,xsurface)
9 xgen ← Translate(xgen,xcenter, ‖xcenter − xsurface‖)

10 Sgen ← Sgen ∪ {xgen}

7

4.1 G-SMOTE algorithm

The inputs of the G-SMOTE algorithm are the following:

– The sets Smaj , Smin of majority and minority class samples, respectively.

– The total number N of synthetic samples to be generated.

– The number k of nearest neighbors.

– The neighbor selection strategy αsel with αsel ∈
{
minority,majority, combined

}
.

– The truncation factor αtrunc with −1 ≤ αtrunc ≤ 1.

– The deformation factor αdef with 0 ≤ αdef ≤ 1.

The output of G-SMOTE is the set Sgen of generated synthetic examples.

The algorithmic procedure is the following:

– The Smin elements are shuffled and an empty set Sgen is initialized.

– The following loop is repeated until N minority instances are selected, each multiple times if
necessary, in the order that appear in Smin:

– Let xcenter ∈ Smin the selected minority class instance of p components.

– A surface vector is defined from the relation xsurface ← Surface(αsel, xcenter, Smaj, Smin) .

– A set of direction vectors (x//,x⊥)← Vectors(xcenter, xsurface) is extracted.

– A synthetic sample xgen ← Hyperball() is generated.

– The transformation functions Truncate, Deform and Translate are applied to xgen.

– xgen is added to Sgen.

4.2 Functions

The above algorithmic procedure relies on the following definitions of functions:

– Function Surface:

The sets Smin,k and Smaj,1 are the sets of k and k = 1 nearest neighbors of xcenter from Smin and
Smaj , respectively.

If αsel = minority then an element xsurface ∈ Smin,k is randomly selected.

If αsel = majority then an element xsurface ∈ Smaj,1 is randomly selected.

8

If αsel = combined then Smin,k and Smaj,1 are defined as above and the elements xmin ∈ Smin,k

and xmaj ∈ Smaj,1 are randomly selected. Finally the element xsurface is defined as either xmin or
xmaj by selecting the one with smallest distace from xcenter.

– Function Hyperball:

A vector vnormal ← (v1, · · · , vp) is generated of p random numbers from the normal distribution
N(0, 1). The unit vector esphere ← vnormal

‖vnormal‖ (1) and the vector xgen ← r1/pesphere (2) are

calculated where r is a random number from the uniform distribution U(0, 1).

– Function Vectors:

The unit vector e// ←
xsurface−xcenter

‖xsurface−xcenter‖ (3) and the projection x// = xgen · e// are defined. Using

this projection, the vectors x// ← x//e// (4) and x⊥ ← xgen − x// are also defined.

– Function Truncate:

If the relation |αtrunc − x//| > 1 (5) holds then the transformation xgen ← xgen − 2x// (6) is
applied.

– Function Deform:

The transformation xgen ← xgen − αdef x⊥ (7) is applied.

– Function Translate:

The transformation xcenter +R xgen (8) is applied.

4.3 Justification of the G-SMOTE algorithm

As explained above, SMOTE compared to Random Oversampling, improves the diversity of generated
samples by linearly interpolating generated samples between two minority class instances. However on
high-dimensional data SMOTE does not change the class-specific mean values while it decreases the
data variability and it introduces correlation between samples [Blagus and Lusa, 2013]. Contrary to
this, G-SMOTE extends the linear interpolation mechanism by introducing a geometric region where
the data generation process occurs. At the most general choice of hyper-parameters, this geometric
region of the input space is a truncated hyper-spheroid. The various steps of the G-SMOTE algorithm
can be described in detail as follows:

1. An empty set Sgen is initialized.

2. The Smin elements are shuffled and the process described below is repeated N times until N
artificial points have been generated.

3. A minority class instance xcenter is selected as the center of a geometric region. The order of
selection follows the order of dataset points after shuffling on the previous step. Therefore if N is
greater than Smin, then some of the minority class samples will be selected more than once.

4. At first glance, this step generalizes the selection phase of the SMOTE algorithm. More specifically,
it results to a randomly selected sample called xsurface which might belong to either the minority
or majority class, depending on the values of αsel, k and xcenter. However, we consider it as a part

9

of the G-SMOTE data generation mechanism since it does not just filters the selected minority
class instances based on heuristic rules similarly to SMOTE variations. Based on the neighbor
selection strategy αsel, we distinguish 3 different cases:

a) Case αsel = minority:

In this case the neighbor selection strategy is based only on the minority class and it is
identical to the selection strategy of SMOTE. Initially the k nearest neighbors of xcenter from
the set Smin are identified and one of them, xsurface, is randomly selected. Fig. 5 presents an
example of a minority class instance selection among the k = 4 nearest neighbors of xcenter.
The time complexity of this selection strategy depends on the choice of the algorithm and
increases with the dimensionality of the input space as well as the value of the k parameter
[Vaidya, 1989]. Therefore for a wide set of realistic cases restricting the search of nearest
neighbors to the minority class has a lower computational cost than including the majority
class instances in the search space.

xsurface	
	

xcenter	
R	

Majority	class	
Minority	class	

Figure 5: An example of the minority selection strategy. A minority class instance is defined as the
center of the hyper-spheroid and one of its k = 4 minority class nearest neighbors is selected
as the surface point. The radius R of the hyper-spheroid is defined to be equal to the distance
of these minority instances.

b) Case αsel = majority:

As explained in section 3, one of the drawbacks of the minority selection strategy is that
it may lead to the generation of data penetrating deeply in the majority class area. The
majority selection strategy eliminates this scenario. More specifically, the nearest neighbor of
xcenter from the set Smaj is identified as xsurface. The consequence of this selection is that
when a random minority class point is generated inside a hypersphere of center xcenter and
radius R = ‖xcenter − xsurface‖, it is ensured that its distance from xcenter is not higher than
the distance between xcenter and any majority class instance. On the other hand, since any
information about the minority class is discarded, this strategy might aggressively expand the
minority class area, resulting effectively to noise generation. Fig. 6 presents an example of
the nearest majority class instance selection among the majority class neighbors of xcenter. A
disadvantage of the majority selection strategy is that the computational cost compared to

10

the minority selection strategy may be higher, especially for datasets with high IR values.

xsurface	
	

xcenter	
R	

Majority	class	
Minority	class	

Figure 6: An example of the majority selection strategy. A minority class instance is defined as the center
of the hyper-spheroid and its closest majority class neighbor is selected as the surface point.
The radius R of the hyper-spheroid is defined to be equal to the distance of these instances.

c) Case αsel = combined:

The combined selection strategy initially applies the minority and majority selection strate-
gies, identifying xmin and xmaj as the selected minority and majority class instances, respec-
tively. The surface point xsurface is defined to be either xmin or xmaj , so that its distance
from the center xcenter is minimized. Fig. 7 and Fig. 8 present both of these scenarios i.e.
when xsurface is identified either as a minority or majority class instance. Following the com-
bined selection strategy, the expansion of the minority class area relative to the selected as a
center minority class sample is restricted by the nearest majority class neighbor of the center,
ensuring that the generation of noisy samples is avoided. Contrary to pure majority selection
strategy, the expansion is not only safe but it is further restricted by the presence of minority
class instances. The drawback of the combined, similarly to the majority selection strategy, is
that it has a higher computational cost compared to the SMOTE/minority selection strategy.

11

dmin	=	R	 xmin	=	xsurface	
	

xcenter	
dmaj	

Majority	class	
Minority	class	

xmaj	

Figure 7: A minority class sample is identified as the surface point since it is closer to the center than
the nearest majority class instance.

Majority	class	
Minority	class	

xcenter	

xmaj	=	xsurface	
	

dmaj	=	R	

xmin	

dmin	

Figure 8: The closest to the center majority class sample is identified as the surface point since it is
closer to the center than the selected instance from the k nearest minority class neighbors of
the center.

5. Two special directions in the input space are generated: x// and x⊥. The first one represents the
projection of xgen to the unit vector e// of equation (3) that connects xcenter to xsurface, while the
second is perpendicular to the same vector belonging also to the hyperplane defined by xgen and
e//.

6. This step starts the data generation process. A random point esphere is generated on the surface
of a unit hyper-sphere centered at the origin of the input space, using equation (1). Applying
equation (2), the point esphere is transformed to a random generated point xgen inside the unit

12

hyper-sphere. The final result of this process is a random generated point, uniformly distributed,
within the unit hyper-sphere [DasGupta, 2011]. Fig. 9 shows an example in two dimensions.

0	 x1	

x2	

xgen	esphere	

1	

Figure 9: A unit hyper-sphere centered at the origin of the input space. A point is randomly generated
on the surface and moved to the interior of the unit hyper-sphere.

7. In this step a transformation is applied to the generated point xgen. As it was explained above,
the center xcenter and the selected surface point xsurface define a special direction in the input
space which is represented by the unit vector e// of equation (3). SMOTE mechanism, that always
selects a minority class instance as a surface point, exploits this direction by generating synthetic
samples at the line segment between xcenter and xsurface. G-SMOTE algorithm parametrizes a
generalized version of the SMOTE mechanism. More specifically, the unit vector e// defines a
family of parallel hyper-planes which are perpendicular to it. We define a linear mapping between
αtrunc and the point determined by the intersection of each hyper-plane and the parallel to e//

diameter. Therefore each one of these hyper-planes corresponds to a particular value of αtrunc and
partitions the hyper-sphere interior in to two areas. Let P the hyper-plane that passes through the
origin and P ′ the hyper-plane for a specific non-zero value of αtrunc. When atrunc > 0, the area that
does not include the e// point is truncated from the interior of the hyper-sphere, in the sense that if
the xgen point belongs to it then it is mapped with respect to P to the symmetric point xgen−2x//

of equation (6), where x// is defined in equation (4). Condition (5) checks if the xgen is in the
truncated area. Fig. 10 shows an example of the above transformation. When αtrunc < 0, the
transformation is similarly defined but in this case the truncation occurs in the area that includes
the e// point. In both cases, the absolute value of the hyper-parameter αtrunc controls the extent of
the truncation. Fig. 11 presents the truncated hyper-sphere areas for various positive and negative
values of αtrunc. A final observation is that the above transformation effectively corresponds to
a modification of the initial uniform probability distribution in the hyper-sphere. The truncated
area acquires a zero value for the p.d.f., while its P -symmetric mapped area doubles its initial
p.d.f. value.

13

e//	

x2	

x1	

xgen	
	xgen	–	2x//	

	

x//	

x

P	P	

Figure 10: An example of applying the Truncate transformation. The shaded area corresponds to the
resulting truncated area.

v//	 v//	 v//	

αtrunc	=	0.3	

αtrunc	=	-0.3	

αtrunc	=	0.5	 αtrunc	=	1.0	

αtrunc	=	-0.5	 αtrunc	=	-1.0	

Figure 11: Truncated areas for various values of αtrunc.

8. This step describes a transformation that corresponds to the deformation of the hyper-sphere in
to a hyper-spheroid. More concretely, the point xgen is moved to a perpendicular direction to
the unit vector e//, towards the parallel to e// diameter. This mapping is controlled by the αdef

hyper-parameter and from equation (7) changes linearly with it. Therefore any point located at the
surface of the hyper-sphere will remain to the surface of the new boundary while all the axes, except
the one defined by the e// unit vector, rescale by the factor αdef . This effectively corresponds to
the formation of a hyper-spheroid boundary with symmetry axis at the e// direction. Similarly to
the truncation, the deformation transformation further modifies the initially uniform probability
distribution. Fig. 12 presents a deformation of the unit hyper-sphere and the resulting mapping
of the xgen point. Fig. 13 shows the effect of increasing the αdef values on the hyper-sphere

14

deformation.

e//	

xgen	
	xgen	– αdef	x	
	

x1	

x2	

Figure 12: The transformation Deform is applied and the generated point is mapped to a new point
towards the diameter of the hyper-sphere.

αdef	=	0.5	 αdef	=	0.7	 αdef	=	1.0	

Figure 13: The effect of increasing αdef on the hypersphere deformation. The last case corresponds to a
line segment.

9. The final step of the algorithm is the translation of the generated point by the xcenter vector and
the rescaling by the value of the radius R. The combined result of this two transformations is
described in equation (8). Fig. 14 and fig. 15 show the resulting boundaries of the permissible
data generation area as well as a random generated point xcenter, of the two different scenarios
presented in fig. 7 and fig. 8, after the application of truncation, deformation and translation.

15

xcenter	

xgen	
	

R	
xsurface	
	

Majority	class	
Minority	class	

Figure 14: Boundaries of permissible data generation area for the scenario of Fig 7.

xcenter	

xgen	
	

R	

Majority	class	
Minority	class	

xsurface	
	

Figure 15: Boundaries of permissible data generation area for the scenario of Fig 8.

5 Research methodology and experimental results

This section describes the evaluation process of G-SMOTE using a variety of classifiers, datasets and
metrics. An extensive performance comparison of G-SMOTE to Random Oversampling and SMOTE
is presented, using a cross validation procedure where the significance of the results is verified through
appropriate statistical tests. Additionally, an analysis of the G-SMOTE hyper-parameters is included
as well as guidelines for their tuning relative to the IR of the dataset.

16

5.1 Experimental data

In order to test the performance of G-SMOTE we used the following imbalanced datasets:

– UCI Machine Learning Repository, 13 datasets.

– KEEL repository, 13 datasets.

– Simulated data based on variations of the ”MANDELON” dataset [Guyon, 2003], 2 datasets.

Furthermore, additional datasets with even higher imbalance ratios were generated, by randomly un-
dersampling the minority classes of the aforementioned datasets. For each one of them, its initial IR
was multiplied by a factor of 2 and 3 but the resulting dataset was used for the experiments only if the
total number of minority samples was not less than 15. Table 1 shows a summary of the final 69 data
sets that can be found at https://github.com/IMS-ML-Lab/research-showcase/tree/master/data/
binary-numerical-imbalanced. The multiplication factor is appended in parentheses to the dataset’s
names while the table is sorted by ascending IR:

Dataset name Features Instances Minority instances Majority instances Imbalance Ratio

HEART 13 270 120 150 1.25
LIVER 6 345 145 200 1.38
WINE 13 178 71 107 1.51
PIMA 8 769 268 501 1.87
BREAST TISSUE 9 106 36 70 1.94
IRIS 4 150 50 100 2.00
GLASS 9 214 70 144 2.06
YEAST 1 8 1,484 429 1,055 2.46
HEART (2) 13 210 60 150 2.50
LIVER (2) 6 272 72 200 2.78
HABERMAN 3 306 81 225 2.78
WINE (2) 13 142 35 107 3.06
VEHICLE 18 846 199 647 3.25
PIMA (2) 8 635 134 501 3.74
HEART (3) 13 190 40 150 3.75
BREAST TISSUE (2) 9 88 18 70 3.89
IRIS (2) 4 125 25 100 4.00
GLASS (2) 9 179 35 144 4.11
LIVER (3) 6 248 48 200 4.17
WINE (3) 13 130 23 107 4.65
YEAST 1 (2) 8 1,269 214 1,055 4.93
NEW THYROID 1 5 215 35 180 5.14
NEW THYROID 2 5 215 35 180 5.14
ECOLI 7 336 52 284 5.46
EUCALYPTUS 8 642 98 544 5.55
HABERMAN (2) 3 265 40 225 5.62
PIMA (3) 8 590 89 501 5.63
SEGMENTATION 16 2,310 330 1,980 6.00
IRIS (3) 4 116 16 100 6.25
GLASS (3) 9 167 23 144 6.26
VEHICLE (2) 18 746 99 647 6.54
YEAST 1 (3) 8 1,198 143 1,055 7.38
YEAST 3 8 1,484 163 1,321 8.10

17

https://github.com/IMS-ML-Lab/research-showcase/tree/master/data/binary-numerical-imbalanced
https://github.com/IMS-ML-Lab/research-showcase/tree/master/data/binary-numerical-imbalanced

Dataset name Features Instances Minority instances Majority instances Imbalance Ratio

HABERMAN (3) 3 252 27 225 8.33
PAGE BLOCKS 0 10 5,472 559 4,913 8.79
VEHICLE (3) 18 713 66 647 9.80
VOWEL 13 988 90 898 9.98
NEW THYROID 2 (2) 5 197 17 180 10.59
NEW THYROID 1 (2) 5 197 17 180 10.59
ECOLI (2) 7 310 26 284 10.92
LED 7 443 37 406 10.97
EUCALYPTUS (2) 8 593 49 544 11.10
SEGMENTATION (2) 16 2,145 165 1,980 12.00
LIBRAS 90 360 24 336 14.00
PAGE BLOCKS 1 3 10 472 28 444 15.86
YEAST 3 (2) 8 1,402 81 1,321 16.31
ECOLI (3) 7 301 17 284 16.71
DERMATOLOGY 34 358 20 338 16.90
EUCALYPTUS (3) 8 576 32 544 17.00
PAGE BLOCKS 0 (2) 10 5,192 279 4,913 17.61
SEGMENTATION (3) 16 2,090 110 1,980 18.00
VOWEL (2) 13 943 45 898 19.96
LED (2) 7 424 18 406 22.56
YEAST 3 (3) 8 1,375 54 1,321 24.46
PAGE BLOCKS 0 (3) 10 5,099 186 4,913 26.41
MANDELON 1 20 4,000 142 3,858 27.17
MANDELON 2 200 3,000 105 2,895 27.57
YEAST 4 8 1,484 51 1,433 28.10
VOWEL (3) 13 928 30 898 29.93
YEAST 5 8 1,484 44 1,440 32.73
YEAST 6 8 1,484 35 1,449 41.40
MANDELON 1 (2) 20 3,929 71 3,858 54.34
MANDELON 2 (2) 200 2,947 52 2,895 55.67
YEAST 4 (2) 8 1,458 25 1,433 57.32
YEAST 5 (2) 8 1,462 22 1,440 65.45
MANDELON 1 (3) 20 3,905 47 3,858 82.09
MANDELON 2 (3) 200 2,930 35 2,895 82.71
YEAST 4 (3) 8 1,450 17 1,433 84.29
YEAST 6 (2) 8 1,466 17 1,449 85.24

Table 1: Description of the datasets.

5.2 Evaluation measures

Various assessment metrics can be used to evaluate a classifier’s performance. However, not all of
them are suitable for imbalanced datasets [He and Garcia, 2009]. The most common metric for binary
classification problems is accuracy defined as the ratio of correct predictions for both of the classes over
the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN

18

where TP/TN and FP/FN are the true positives/negatives and false positives/negatives, respectively.
When the class distribution is imbalanced, assuming that the minority class is identified as the P label,
the contribution of TP and FP to the above formula might be negligible, i.e. accuracy is mainly
determined by the majority class contribution. Based on this, the selected evaluation metrics of the
experimental procedure are following:

– Area Under the ROC Curve (AUC):

ROC curve results from varying the decision threshold and plotting the true positive rate against
the false positive rate.

– F-score:

It is defined as the harmonic mean of Precision and Recall, where Precision = TP
TP+FP and

Recall = TP
TP+FN .

– G-mean:

It is defined as the geometric mean of Sensitivity and Specificity, where Sensitivity = TP
TP+FN

and Specificity = TN
TN+FP .

5.3 Machine learning algorithms

The main objective of the paper is to compare G-SMOTE and SMOTE algorithms. Therefore their
performance was evaluated on the aforementioned 69 datasets. Additionally, the use of unmodified data
(NO OVERSAMPLING) and random oversampling (RANDOM OVERSAMPLING) were included as a
baseline methods.

For the evaluation of the oversampling methods the following 4 classifiers were used: Logistic Regression
(LR) [McCullagh and Nelder, 1989], K-Nearest Neighbors (KNN) [Cover and Hart, 1967], Decision Tree
(DT) [Salzberg, 1994] and Gradient Boosting (GBC) [Friedman, 2001].

The implementation of the classifiers and standard oversampling algorithms was based on the Python
libraries Scikit-Learn [Pedregosa et al., 2011] and Imbalanced-Learn [Lemaitre et al., 2016].

5.4 Experimental results

5.4.1 Experimental procedure

In order to evaluate the performance of each combination of oversampler and classifier, n-fold cross
validation was applied with n = 5. Let D one of the datasets. Before starting the training of the
classifier, in each stage i ∈ {1, 2, ..., n} of the n-fold cross validation procedure, synthetic data Tg,i were
generated from the oversampler based on the training data Ti of the n− 1 folds such that the resulting
Tg,i ∪ Ti training set becomes perfectly balanced. This enhanced training set in turn was used to train
the classifier. The performance evaluation of the classifiers was done on the validation data Vi of the
remaining fold, where Vi ∪ Ti = D and Vi ∩ Ti = ∅.

A variety of hyper-parameters were used for the the oversamplers and classifiers. For SMOTE the
optimal value of k nearest neighbors was selected as k ∈ {3, 5} while for G-SMOTE a hyper-parameter

19

grid was generated from the Cartesian product of the three different selection strategies, the number
of nearest neighbors k ∈ {3, 5}, the truncation factor αtrunc ∈ {−1.0,−0.5, 0.0, 0.25, 0.5, 0.75, 1.0} and
the deformation factor αdef ∈ {0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0}. As far the classifiers are concerned, the
number of nearest neighbors for KNN was selected as k ∈ {3, 5}, the max depth for DT was selected as
max depth ∈ {3, 6} while GBC hyper-parameter grid included the four combinations resulting from the
Cartesian product of max depth ∈ {3, 6} and number of estimators ∈ {50, 100}.

Using the above hyper-parameters, the highest cross validation score for each combination of datasets,
classifiers, oversamplers and evaluation metrics was reported. The experimental procedure was repeated
3 times and the reported results include the average values between the experiments. A ranking score
was assigned to each oversampling method with the best and worst performing methods receiving scores
equal to 1 and 4, respectively. We apply the Friedman test to confirm the statistical significance of the
ranking results of the experiments [Guyon, 2003]. The Friedman test is used to detect differences for a
set of experimental attempts when normality assumption may not hold. In this case the null hypothesis
represents the situation in which the classifiers show an identical performance, in terms of their mean
ranking, independently of the oversampling method and performance metric used. Additionally, we
apply the Holms test, using G-SMOTE as the control method [Guyon, 2003]. The Holms test is a non-
parametric version of the t-test, where the null hypothesis is whether the proposed G-SMOTE algorithm
outperforms the other methods as the control method.

5.4.2 Software implementation

As it was mentioned above, the implementation of the experimental procedure is based on the Python
programming language and Scikit-Learn/Imbalanced-Learn libraries. Specifically, the function that pre-
pares and runs any comparative experiment can be found at https://github.com/georgedouzas/

scikit-learn-extensions/blob/master/sklearnext/tools/imbalanced_analysis.py, while the G-
SMOTE implementation is available at https://github.com/georgedouzas/scikit-learn-extensions/
blob/master/sklearnext/over_sampling/geometric_smote.py. Being fully integrated with the Scikit-
Learn ecosystem they can be adjusted and used for a variety of custom comparative studies. The experi-
ments reported in this paper as well as the analysis of their results are reproducible using the scripts pro-
vided at https://github.com/IMS-ML-Lab/publications/tree/master/scripts/gsmote-journal.

5.4.3 Comparative presentation

The mean cross validation scores across datasets for each combination of classifiers, metrics and over-
samplers are presented in Table 2:

Classifier Metric NO OVERSAMPLING RANDOM OVERSAMPLING SMOTE G-SMOTE

LR AUC 0.899 0.903 0.903 0.907
LR F-SCORE 0.444 0.588 0.593 0.604
LR G-MEAN 0.499 0.842 0.841 0.856
KNN AUC 0.825 0.822 0.842 0.863
KNN F-SCORE 0.546 0.584 0.590 0.620
KNN G-MEAN 0.628 0.758 0.783 0.821
DT AUC 0.845 0.849 0.865 0.894
DT F-SCORE 0.623 0.625 0.641 0.690
DT G-MEAN 0.726 0.820 0.833 0.866
GBC AUC 0.907 0.906 0.913 0.927
GBC F-SCORE 0.661 0.679 0.697 0.736
GBC G-MEAN 0.748 0.817 0.834 0.868

20

https://github.com/georgedouzas/scikit-learn-extensions/blob/master/sklearnext/tools/imbalanced_analysis.py
https://github.com/georgedouzas/scikit-learn-extensions/blob/master/sklearnext/tools/imbalanced_analysis.py
https://github.com/georgedouzas/scikit-learn-extensions/blob/master/sklearnext/over_sampling/geometric_smote.py
https://github.com/georgedouzas/scikit-learn-extensions/blob/master/sklearnext/over_sampling/geometric_smote.py
https://github.com/IMS-ML-Lab/publications/tree/master/scripts/gsmote-journal

Classifier Metric NO OVERSAMPLING RANDOM OVERSAMPLING SMOTE G-SMOTE

Table 2: Results for mean cross validation scores of oversamplers across the datasets.

The table of full results is available at https://github.com/IMS-ML-Lab/publications/blob/master/
data/results/gsmote-journal/wide_optimal.csv. Table 2 shows that G-SMOTE systematically
performs better on average than the rest of the methods. Particularly, the percentage difference of
G-SMOTE and SMOTE mean scores, relative to each classifier’s score without any oversampling, is
presented in Fig. 16:

A
U
C

F-
S
C
O
R
E

G
-M
E
A
N

A
U
C

F-
S
C
O
R
E

G
-M
E
A
N

A
U
C

F-
S
C
O
R
E

G
-M
E
A
N

A
U
C

F-
S
C
O
R
E

G
-M
E
A
N

LR KNN DT GBC

0

2

4

6

8
G-SMOTE and SMOTE percentage difference

Figure 16: Percentage difference of G-SMOTE and SMOTE, relative to the score of each classifier without

any oversampling, calculated as Score[G-SMOTE]−Score[SMOTE]

Score[NO OVERSAMPLING]
× 100%.

As explained in section 5.4 a ranking score in the range 1 to 4 is assigned to each oversampler. Then
the mean ranking of the oversampling methods across the data sets for each combination of a classifier
and evaluation metric is presented in Table 3:

Classifier Metric NO OVERSAMPLING RANDOM OVERSAMPLING SMOTE G-SMOTE

LR AUC 2.913 2.942 2.739 1.406
LR F-SCORE 3.232 2.877 2.420 1.471
LR G-MEAN 3.739 2.471 2.580 1.210
KNN AUC 2.978 3.391 2.384 1.246
KNN F-SCORE 3.159 2.732 2.696 1.413
KNN G-MEAN 3.696 2.841 2.174 1.290
DT AUC 3.239 3.159 2.428 1.174
DT F-SCORE 2.797 3.159 2.659 1.384
DT G-MEAN 3.652 2.812 2.370 1.167
GBC AUC 2.993 3.232 2.623 1.152
GBC F-SCORE 3.196 3.080 2.529 1.196
GBC G-MEAN 3.645 2.920 2.312 1.123

Table 3: Results for mean ranking of oversamplers across the datasets.

21

https://github.com/IMS-ML-Lab/publications/blob/master/data/results/gsmote-journal/wide_optimal.csv
https://github.com/IMS-ML-Lab/publications/blob/master/data/results/gsmote-journal/wide_optimal.csv

5.4.4 Statistical analysis

The results of the application of the Friedman test are shown in Table 4:

Classifier Metric p-value Significance

LR AUC 2.3 · 10−16 True
LR F-SCORE 1.4 · 10−16 True
LR G-MEAN 1.7 · 10−30 True
KNN AUC 9.3 · 10−25 True
KNN F-SCORE 4.1 · 10−16 True
KNN G-MEAN 2.1 · 10−29 True
DT AUC 1.2 · 10−25 True
DT F-SCORE 8.3 · 10−17 True
DT G-MEAN 3.8 · 10−30 True
GBC AUC 1.6 · 10−24 True
GBC F-SCORE 5.6 · 10−24 True
GBC G-MEAN 1.7 · 10−32 True

Table 4: Results for Friedman test.

Therefore at a significance level of a = 0.05 the null hypothesis is rejected, i.e. the classifiers do not per-
form similarly in the mean rankings across the oversampling methods and evaluation metrics. Following
the Friedman test, the Holm’s method is applied to adjust the p-values of the paired difference test with
G-SMOTE algorithm as the control method. The adjusted p-values are presented in Table 5:

Classifier Metric NO OVERSAMPLING RANDOM OVERSAMPLING SMOTE

LR AUC 9.8 · 10−4 2.8 · 10−8 1.5 · 10−7

LR F-SCORE 1.2 · 10−9 2.8 · 10−9 9.2 · 10−5

LR G-MEAN 1.5 · 10−12 4.0 · 10−8 1.4 · 10−8

KNN AUC 2.5 · 10−9 2.1 · 10−10 5.3 · 10−5

KNN F-SCORE 1.1 · 10−7 1.0 · 10−9 2.0 · 10−10

KNN G-MEAN 2.7 · 10−11 8.0 · 10−5 1.6 · 10−2

DT AUC 1.8 · 10−12 1.1 · 10−13 1.3 · 10−10

DT F-SCORE 1.6 · 10−8 4.2 · 10−15 1.8 · 10−9

DT G-MEAN 4.9 · 10−12 4.9 · 10−12 4.6 · 10−10

GBC AUC 5.7 · 10−9 5.7 · 10−9 1.6 · 10−9

GBC F-SCORE 3.9 · 10−12 4.1 · 10−15 1.7 · 10−12

GBC G-MEAN 8.3 · 10−12 1.0 · 10−12 1.7 · 10−12

Table 5: Adjusted p-values using the Holm’s method.

Therefore, the null hypothesis of the Holm’s test is rejected for all oversamplers at a significance level of
a = 0.05, indicating that the proposed method outperforms all other methods.

5.4.5 Analysis of optimal hyper-parameters

The G-SMOTE hyper-parameters αtrunc, αdef and αsel control the characteristics of the data generation
process, allowing to identify some special cases that can be considered as extensions of the SMOTE

22

algorithm with a simple geometrical interpretation. All these cases are tested during the experimental
procedure and compared to the rest of the oversampling methods as well as the optimal choice of hyper-
parameters for G-SMOTE. A short description is provided below:

– SMOTE algorithm.

The choice of hyper-parameters that reproduces the SMOTE algorithm is αdef = 1.0, αtrunc = 1.0
and αsel = minority. The first of them ensures that the initial hypersphere is deformed in to a
line segment, the second truncates the half of the resulting line segment and the third chooses the
SMOTE selection strategy.

– Majority selection SMOTE algorithm.

The geometry of the permissible data generation areas is identical to SMOTE, thus the hyper-
parameters αtrunc, αdef are identical too, but instead of the minority selection strategy, it uses the
majority one.

– Combined selection SMOTE algorithm.

Similar to the previous case except the selection strategy is the combined one.

– Inverse SMOTE algorithm.

Similar to case 1 except the truncation of the line segment occurs at the opposite direction. This
requires a modification of αtrunc value to αtrunc = −1.0.

– Hyper-sphere SMOTE algorithm.

This extension of SMOTE generates artificial data inside a hyper-ball with center a minority class
instance and a radius equal to the distance of it with one of its minority class k nearest neighbors.
The choice of hyper-parameters in this case is αdef = 0.0, αtrunc = 0.0 and αsel = minority.

– Half hyper-sphere SMOTE algorithm.

Similar to the previous case except only half of the hyper-sphere is used as a permissible data
generation area. This requires αtrunc = 1.0.

As it was described in section 5.4.1, the generated hyper-parameter space for G-SMOTE was 4-dimensional
and included the following dimensions:

– Selection strategy.

– Truncation factor.

– Deformation factor.

– Number of nearest neighbors.

The first three of them, called geometric hyper-parameters, adjust the geometric configuration of G-
SMOTE. Their percentage contribution to the optimal hyper-parameter settings is shown in Fig. 17:

23

M
in
or
ity

M
aj
or
ity

C
om
bi
ne
d

0

20

40

60

80

100
Selection strategy

-1
.0

-0
.5 0.
0

0.
25 0.
5

0.
75 1.
0

0

20

40

60

80

100
Truncation factor

0.
0

0.
2

0.
4

0.
5

0.
6

0.
8

1.
0

0

20

40

60

80

100
Deformation factor

Figure 17: Percentage contribution of geometric hyper-parameters to the optimal configurations of
experiments.

The majority of optimal values for the αsel hyper-parameter are split between the minority and combined
selection strategies, while the majority selection strategy has a lower but not negligible contribution.
On the other hand, the distribution of optimal values for the αtrunc and αdef hyper-parameters is
approximately uniform.

The number of points in the hyper-parameter subspace Hsub, formed only by the geometric hyper-
parameters is equal to N({minority,majority, combined}) × N({−1.0,−0.5, 0.0, 0.25, 0.5, 0.75, 1.0}) ×
N({0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0}) = 147. Therefore a ranking score between 1 to 147 can be assigned to

24

each point of Hsub, by counting the number of times it appears as the optimal configuration across all
the experiments. Fig. 18 shows the ranking of the above special cases:

S
M

O
TE

M
aj

or
ity

 s
el

ec
tio

n
S

M
O

TE
C

om
bi

ne
d

se
le

ct
io

n
S

M
O

TE

In
ve

rs
e

S
M

O
TE

H
yp

er
-s

ph
er

e
S

M
O

TE
H

al
f h

yp
er

-s
ph

er
e

S
M

O
TE

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Rank

Figure 18: Frequency ranking of the 6 special cases.

SMOTE, inverse SMOTE and half hyper-sphere SMOTE, as described above, represent the configura-
tions with the highest frequency ranking among the 6 special cases. It is important to notice that Fig.
18 shows only 6 of the 147 possible configurations. On the other hand, Fig. 17 shows that there is an
approximately uniform distribution of the optimal hyper-parameters values, meaning that all the points
of the generated hyper-parameter space are important. Also a non-intuitive observation is that inverse
SMOTE appears to be an effective approach having a high ranking score.

Finally, an analysis of the relation between optimal hyper-parameters and IR shows that lower αdef

values should be selected as the dataset’s IR increases. An explanation for this finding is the following:
The SMOTE data generation mechanism, which corresponds to high αdef values, for highly imbalanced
datasets creates nearly duplicate examples. Therefore when low αdef values are selected, the variety of
generated samples is increased.

5.5 Discussion

In this paper we presented G-SMOTE, a new oversampling algorithm, that extends the SMOTE data
generation mechanism. G-SMOTE selects a safe radius around each minority class instance and gener-
ates artificial data within a (truncated) hyper-spheroid. G-SMOTE performance was evaluated on 69

25

datasets with different imbalance ratios and compared to no oversampling, Random Oversampling and
SMOTE, using Logistic Regression, K-Nearest Neighbors, Decision Tree and Gradient Boosting Machine
as classifiers.

The results show that G-SMOTE performs significantly better compared to the other methods. The
explanation for this improvement in performance relates to the ability of G-SMOTE to generate ar-
tificial data in safe areas of the input space, while, at the same time, aggressively increasing the di-
versity of the generated instances. G-SMOTE parametrizes efficiently the data generation process and
adapts to the special characteristics of each imbalanced dataset. We make available an implementa-
tion of G-SMOTE at https://github.com/georgedouzas/scikit-learn-extensions/blob/master/
sklearnext/over_sampling/geometric_smote.py.

G-SMOTE can be a useful tool for researchers and practitioners since it results in the generation of high
quality artificial data and only requires the tuning of a small number of parameters.

References

[Alcal-Fdez et al., 2011] Alcal-Fdez, J., Fernndez, A., Luengo, J., Derrac, J., Garca, S., Snchez, L., and
Herrera, F. (2011). Keel data-mining software tool: data set repository, integration of algorithms and
experimental analysis framework. Journal of Multiple-Valued Logic & Soft Computing, 17.

[Barua et al., 2014] Barua, S., Islam, M. M., Yao, X., and Murase, K. (2014). MWMOTE - Majority
weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on
Knowledge and Data Engineering, 26(2):405–425.

[Batista et al., 2004] Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A Study of
the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD
Explorations Newsletter - Special issue on learning from imbalanced datasets, 6(1):20–29.

[Blagus and Lusa, 2013] Blagus, R. and Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced
data. BMC Bioinformatics, 14(1):106.

[Bunkhumpornpat et al., 2009] Bunkhumpornpat, C., Sinapiromsaran, K., and Lursinsap, C. (2009).
Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbal-
anced problem. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 5476 LNAI, pages 475–482.

[Bunkhumpornpat et al., 2012] Bunkhumpornpat, C., Sinapiromsaran, K., and Lursinsap, C. (2012).
DBSMOTE: Density-based synthetic minority over-sampling technique. Applied Intelligence,
36(3):664–684.

[Chawla, 2005] Chawla, N. V. (2005). Data Mining for Imbalanced Datasets: An Overview. In Data
Mining and Knowledge Discovery Handbook, pages 853–867. Springer-Verlag.

[Chawla et al., 2002] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).
SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16:321–357.

[Chawla et al., 2003] Chawla, N. V., Lazarevic, A., Hall, L., and Boyer, K. (2003). SMOTEBoost: im-
proving prediction of the minority class in boosting. Principles of Knowledge Discovery in Databases,
PKDD-2003, pages 107–119.

26

https://github.com/georgedouzas/scikit-learn-extensions/blob/master/sklearnext/over_sampling/geometric_smote.py
https://github.com/georgedouzas/scikit-learn-extensions/blob/master/sklearnext/over_sampling/geometric_smote.py

[Cieslak et al., 2006] Cieslak, D. A., Chawla, N. V., and Striegel, A. (2006). Combating imbalance in
network intrusion datasets. In 2006 IEEE International Conference on Granular Computing, pages
732–737.

[Cover and Hart, 1967] Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27.

[DasGupta, 2011] DasGupta, A. (2011). Probability for Statistics and Machine Learning. Springer New
York.

[Domingos, 1999] Domingos, P. (1999). MetaCost: A General Method for Making Classifiers Cost-
Sensitive. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, 55:155–164.

[Douzas and Bacao, 2017a] Douzas, G. and Bacao, F. (2017a). Effective data generation for imbalanced
learning using Conditional Generative Adversarial Networks. Expert Systems with Applications.

[Douzas and Bacao, 2017b] Douzas, G. and Bacao, F. (2017b). Self-organizing map oversampling (somo)
for imbalanced data set learning. Expert Systems with Applications, 82:40 – 52.

[Douzas et al., 2018] Douzas, G., Bacao, F., and Last, F. (2018). Improving imbalanced learning through
a heuristic oversampling method based on k-means and smote. Information Sciences, 465:1 – 20.

[Fernandez et al., 2018] Fernandez, A., Garcia, S., Herrera, F., and V. Chawla, N. (2018). Smote for
learning from imbalanced data: Progress and challenges, marking the 15-year anniversary. 61:863–905.

[Fernández et al., 2013] Fernández, A., López, V., Galar, M., del Jesus, M. J., and Herrera, F. (2013).
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and
ad-hoc approaches. Knowledge-Based Systems, 42:97–110.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29(5):1189–1232.

[Galar et al., 2012] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2012).
A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based
Approaches.

[Guo and Viktor, 2004] Guo, H. and Viktor, H. L. (2004). Learning from imbalanced data sets with
boosting and data Generation : The DataBoost-IM approach. ACM SIGKD Explorations Newsletter
- Special issue on learning from imbalanced datasets, 6(1):30–39.

[Guyon, 2003] Guyon, I. (2003). Design of experiments of the NIPS 2003 variable selection benchmark.
In NIPS 2003 workshop on feature extraction.

[Han et al., 2005] Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-SMOTE: A New Over-
Sampling Method in Imbalanced Data Sets Learning. In Lecture Notes in Computer Science, pages
878–887. Springer Berlin Heidelberg.

[He and Garcia, 2009] He, H. and Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Trans-
actions on Knowledge and Data Engineering, 21(9):1263–1284.

[Jo and Japkowicz, 2004] Jo, T. and Japkowicz, N. (2004). Class imbalances versus small disjuncts.
ACM SIGKDD Explorations Newsletter, 6(1):40.

27

[Lemaitre et al., 2016] Lemaitre, G., Nogueira, F., and Aridas, C. K. (2016). Imbalanced-learn: A
Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. Journal of Machine
Learning Research, 18:1–5.

[Lichman, 2013] Lichman, M. (2013). Uci machine learning repository.

[McCullagh and Nelder, 1989] McCullagh, P. and Nelder, J. (1989). Generalized Linear Models.

[Nekooeimehr and Lai-Yuen, 2016] Nekooeimehr, I. and Lai-Yuen, S. K. (2016). Adaptive semi-
unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Appli-
cations, 46:405–416.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python,
volume 12.

[Salzberg, 1994] Salzberg, S. L. (1994). C4.5: Programs for machine learning by j. ross quinlan. morgan
kaufmann publishers, inc., 1993. Machine Learning, 16(3):235–240.

[Sun et al., 2015] Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., and Zhou, Y. (2015). A novel ensemble
method for classifying imbalanced data. Pattern Recognition, 48(5):1623–1637.

[Tang and He, 2015] Tang, B. and He, H. (2015). KernelADASYN: Kernel based adaptive synthetic data
generation for imbalanced learning. In 2015 IEEE Congress on Evolutionary Computation. IEEE.

[Ting, 2002] Ting, K. M. (2002). An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE
Transactions on Knowledge and Data Engineering, 14(3):659–665.

[Vaidya, 1989] Vaidya, P. M. (1989). An O(n logn) algorithm for the all-nearest-neighbors Problem.
Discrete & Computational Geometry, 4(2):101–115.

[Wang et al., 2015] Wang, S., Minku, L. L., and Yao, X. (2015). Resampling-Based Ensemble Meth-
ods for Online Class Imbalance Learning. IEEE Transactions on Knowledge and Data Engineering,
27(5):1356–1368.

[Wilson, 1972] Wilson, D. L. (1972). Asymptotic Properties of Nearest Neighbor Rules Using Edited
Data. IEEE Transactions on Systems, Man and Cybernetics, 2(3):408–421.

28

	Introduction
	Related work
	Modifications of the selection phase
	Modifications of the data generation mechanism

	Motivation
	The proposed method
	G-SMOTE algorithm
	Functions
	Details and justification of the G-SMOTE algorithm

	Research methodology and experimental results
	Experimental data
	Evaluation measures
	Machine learning algorithms
	Experimental results
	Experimental procedure
	Software implementation
	Comparative presentation
	Statistical analysis
	Analysis of optimal hyper-parameters

	Discussion

