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ABSTRACT 

Although the current trend of data production is focused on generating tons of it every second, there 

are situations where the target category is represented extremely unequally, giving rise to 

imbalanced datasets, analyzing them correctly can lead to relevant decisions that produces 

appropriate business strategies.  Fraud modeling is one example of this situation: it is expected less 

fraudulent transactions than reliable ones, predict them could be crucial for improving decisions and 

processes in a company. However, class imbalance produces a negative effect on traditional 

techniques in dealing with this problem, a lot of techniques have been proposed and oversampling is 

one of them.  

This work analyses the behavior of different oversampling techniques such as Random oversampling, 

SOMO and SMOTE, through different classifiers and evaluation metrics. The exercise is done with 

real data from an insurance company in Colombia predicting fraudulent claims for its compulsory 

auto product. Conclusions of this research demonstrate the advantages of using oversampling for 

imbalance circumstances but also the importance of comparing different evaluation metrics and 

classifiers to obtain accurate appropriate conclusions and comparable results. 
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1. INTRODUCTION 

The use of analytics in financial enterprises has risen through time; nowadays it is more common to 

base decisions and strategies on data and not only on instinct. Increment of available data which 

allows identifying trends and patterns to help companies to improve their relationship with clients 

and effectiveness of marketing campaigns, optimize processes, have a better administration of 

resources and maximize earnings. Applying predictive models for forecasting fraud is one of the most 

challenging tasks in which organizations are facing in this context.  

Identifying fraudulent behavior is meaningful for financial companies due to the disastrous 

consequences it brings with it: economic losses, affectation on its public image, client’s forfeiture and 

wastage of processes are some of them.  

In Colombia, exists a huge problem related to this situation, insurance companies are dealing with a 

fraud giant presented in compulsory auto insurance. Millions of dollars in losses force the search of 

methodologies to have answers against this situation where predictive models have been considered 

as one of them.  

Unfortunately for prediction aspects, because of the nature of this phenomenon the data found for 

fraudulent transactions is considerably less than the whole existing ones which has as a consequence 

low performance of traditional predictive methodologies leading us to a problem of skewed 

distribution type. For this reason, academic community has proposed different solutions to mitigate 

this problem. One of them, consist in preprocessing the data to rebalance data either creating new 

individuals with the characteristic of interest –Oversampling -or deleting instances from the majority 

class - Undersampling - (Haixiang, Yijing, Shang, Mingyun, & Yuanyue, 2016).   

This paper is focused on comparing different oversampling strategies for fraud prevention based on 

different measures for an insurance company in Colombia. The rest of this paper is structured as 

follows: in the first part, an overview of the context which gives rise to the motivation of this study is 

given, in section 3 a general review related with oversampling techniques and imbalanced problem is 

presented. In section 4 research methodology is explained followed by results and discussion in 

section5. Finally, conclusions and future work are expressed on section6.  
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2. LITERATURE REVIEW 

2.1.  FRAUD MODELING 

Although companies’ efforts for fighting against fraud has increased over time and more 

sophisticated methodologies have been used, its consequences are still evident in economic 

enterprises losses, according to (2016 Global Economic Crime Survey, 2016) in the insurance context 

this numbers are noticeable in approximately $80 billion losses a year across all lines of insurance in 

U.S (Coalition Against Insurance Fraud, n.d.). (Global Fraud Report) Germany, through the insurance 

association (GDV) estimates (Hartley, 2016) In Colombia, the National Institute for Investigation 

against Fraud (INIF) ensures that (Chacón, 2017).   

It is important to remark that repercussions transcend to economic injuries and are visible also in 

savings losses, premiums increase for users, distrust in insurance sector and insurer’s image discredit. 

This problem, has produced the need for the insurance sector to improve their business processes 

control, unfortunately, it can be traduced in tedious operational tasks which represent a lot of 

budget and execution time. 

For this reason, statistical methods and models have been developed, used and improved in order to 

find patterns which establish fraud behavior and allow acting opportunely. (Decker, 1998)  

According to Forbes magazine (Skeels & Pan, 2016) “For executives seeking to increase the 

competitiveness of their business, preventing fraud and its impacts in a cost efficient and effective 

way presents a major opportunity to grow the bottom line.” 

A lot of research can be found in the fraud prevention context (Phua & Alahakoon, 2004) (Wei, Jinjiu, 

Longbing, Yuming, & Jiahang, 2012) (Barnarescu, 2016) (Ibrahim Hassan & Abraham Ajith, 2015) 

(Kim, Baik, & Sungzoon, 2016) (Sahin, Bulkan, & Duman, 20132), the main goal is to find the best 

statistical model that allows the identification of fraud transactions or events obtaining more gain 

and less operative procedures time. 

2.2. COMPULSORY AUTO INSURANCE  

The Compulsory Auto insurance (SOAT) formed in Colombia in 1986 legislated by the national low as 

a response to automotive accidents increment with 1.3 million of fatal victims and more than 50 

million of injured people which leads to a public health problem, its “social” purport consists in 

guarantee a basic medical attention to all the victims of this type of accident occurred in the country.  

Unfortunately, because of the mismanagement carried out by the government, health entities and 

users, most of the cases related with fraud, and the impossibility to determine the premium 

according to the risk, the insurance companies which provide this coverage had state annual losses 

for more than 54 million dollars.  

The SOAT (according to its acronym in Spanish) is highly sensitive to fraud; the actions made by 

fraudsters can be enumerated as follows:  

 Bills of services which cannot be proved. 
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 Charging the same bill to different insurance companies 

 Using the policy to charge medical treatments resulting from different situations than car 

accidents. 

 Health companies can charge bills related to nonexistent patients or apply unnecessary 

treatments like surgeries to the injured person. 

 Nonexistent health entities charge fake bills to the insurance companies 

 Use of fake policies 

 Inflation of treatments and medicines costs. 

 

2.3. IMBALANCED DATASETS  

Fraud is an unusual event in most industries, for insurance industry it is supposed to expect fewer 

fraudulent claims than non-fraudulent cases. Also, the cost of misclassified a fraudulent claim is 

higher than a considered rightful claim as a counterfeit claim.  Hence, fraudulent claims prediction 

can be defined as an imbalanced classification task.  

Imbalanced datasets can be defined as datasets in which the existing classes are not represented in 

the same proportion and where the misclassification costs are not equal. Therefore, learning from it 

for classification purposes becomes a very difficult task:  

Most of classifiers (Regression models, Support Vector Machine (SVM), Decision tress or Neural 

Networks) present a poor performance when they are facing with unbalanced data: they can have a 

good accuracy for majority class but poor results for the class of interest.  This, since they were 

created precisely assuming a balanced distribution or equal misclassification costs. (Haibo, 2009)  

Additionally, differentiate between rare cases and the minority class is challenging: examples 

belonging to the lesser class can be identified by the algorithm as noise or outliers, and in the same 

way noisy individuals can be treated as the individuals of interest. (Beyan & Fisher, 2015) 

Because of the relevance of this situation and the importance of treat it the best way, a lot of 

research has been developed for deal with it, (Haixiang, Yijing, Shang, Mingyun, & Yuanyue, 2016) 

presents a review from 527 papers where the work of 10 years of study are shaped.  

There exist four main groups were the proposed solutions can be categorized:  

2.3.1. Sampling strategies  

This kind of approach is applied before any classification algorithm, the goal is to reduce the skewed 

distribution that exist in the data either introducing synthetic individuals to the minority class 

(resampling) or deleting instances from the majority class (undersampling). 
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2.3.2. Cost sensitive learning 

This method consists in define a cost values of misclassification, most of times defined based on 

business knowledge, and introducing it in the sampling stage (Cost Curves) or in the classification 

algorithm (Cost matrices). 

2.3.3. Algorithmic classifier modifications 

As it was presented, traditional methodologies suppose a balanced distribution, changing them to 

improve their learning ability is the goal of this result. Kernel and activation function transformation 

applied to Support Vector Machine (Chen, Fan , & Sun, 2012) and Neural Networks (Perez-Godoy, 

Fernandez, Rivera, & del Jesus, 2010) are some examples. 

2.3.4. Ensemble methods 

The main idea of this solution is to merge different classifiers to increase prediction accuracy by using 

several independent algorithms at the same time. Bootstrap aggregating and boosting are the most 

common ensemble types. The first one is a parallel base method while in the second, each model is 

run after obtain the results of the previous one. For fraud prevention (Phua & Alahakoon, 2004) 

combine bagging and stacking to achieve more cost savings. 

 

2.4. SAMPLING STRATEGIES  

Oversampling strategies are probably the method with a more extended research because for being 

intuitive and with easy application , through years, a lot of research had been developed not only in 

the theoretical context (Sun, Song , Zhu, Xu, & Zhou, 2015) (Nekooeimhr & Lai-Yuen, 2016) (Menardi 

& Torelli, 2014) (Bowyer, Hall, Kegelmeyer, & Chawla, 2002)  (Douzas & Bação,  2018) (Last, Douzas, 

& Bacao, 2017) (Douzas & Bação,  2017) but also in the practical one (Zhang , Ma, Ji, Niu, & Xu , 2015) 

(Yang , Xu, Zhou, Zhang, & Zomaya, 2009) (Li, Fong , Wong, Mohagmmed, & Fiaidhi , 2016). Different 

methods have been proposed to reach a balanced data based by adding new individuals belonging to 

the minority class (Haixiang, Yijing, Shang, Mingyun, & Yuanyue, 2016) (Solberg & Solberg, 1996). 

2.4.1. Random oversampling  

As it is described in its name, this technique, which is the easiest to perform, balance the data by 

taking individuals from the minority class and replicating them according to the existing skewness. 

However, it increases the performance of the classifiers and is independent algorithm (del Rio, 

Benítez, & Herrera Franciso, 2015) (Zhou, 2013) (Lopez, Fernandez, García, Palade, & Herrera, 2013) 

(Loyola- Gonzalez, Martinez-Trinidad, Carrasco - Ochoa, & Garcia-Boroto, 2016) (Napierala & 

Stefanowski, 2015), it can also produce oversampling based on the fact of replying exact copies of 

the real instances.  

2.4.2. SMOTE  

SMOTE formed in order to deal with the previous enumerated problem (Bowyer, Hall, Kegelmeyer, & 

Chawla, 2002) by randomly selecting each time an instance from the minority class and identify some 

of the nearest neighbors of it, based on the Euclidean distance, and create new individuals based on 
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linear interpolations between the selected item and its neighbors, it is important to remark that the 

overlap between the two cases can be increased due to the generation of the same number of 

artificial instances for each minority individual (Zhu, Baesens, & Vanden Broucke, 2017).  

2.4.3. SOMO 

Self-Organizing Map Oversampling (SOMO) is an informed oversampling method focused on having a 

better minority class selection by avoiding the election of noisy individuals and obtaining a better 

distribution in the data space of the synthetic examples generated.  The algorithm was designed in 

three stages: 1) separate the initial dataset into clusters that are obtained after applying Self 

Organizing maps algorithm.  Due to the topology preservation of the SOM algorithm (Bação & Lobo, 

2010), points that are close to each other in the input space are graphed on adjacent map units 

(Kohonen, 2001) 2) generate synthetic individuals for the minority class using individuals that belong 

to the same cluster 3) reproduce synthetic individuals for the minority class based on instances that 

belong to adjacent clusters in the two-dimensional grid. The density of the cluster is considered for 

the distribution of the intracluster and intercluster data distribution (Douzas & Bacao, 2017). 

This algorithm counteracts some of the problems that traditional oversampling methodologies 

present:  

1. Overfitting; when a lot of instances belonging to the minority class are replicated, the 

data set could become too specific, lead to a high accuracy in the train data but to a poor 

classification capability on the test data (Holte, Acker, & Porter, 1989), this could happen 

using random oversampling (Mease, Wyner, & Buja, 2007) . However, using 

methodologies based on K nearest neighborhoods as SMOTE could also lead to generate 

noisy samples: nearly duplicates samples which have the same result, there is not 

generation of new information but increasing dense minority class areas (Douzas & 

Bacao, 2017). Additionally, SMOTE algorithm can lead to an increase of overlap between 

classes since it generates the same number of synthetic minority individuals for each 

original minority example and does not take into consideration neighboring instances 

belonging to the majority class (Zhu, Baesens, & Vanden Broucke, 2017).  

2. Generation of noisy examples in the majority class; for the same reason explained above, 

K nearest neighborhood based methodologies, can introduce noisy examples that 

penetrate around majority class examples area (Douzas & Bacao, 2017). This could bring 

as a consequence a reduction in the accuracy of both, the minority but also de majority 

class (Kotsiantis, Kanellopoulos, & Panayiotis, 2006). 

3. Assume a simple manifold structure for the input space; the use of methods based on the 

Euclidean distance for determine the minority instances neighbors can have troubles 

when the dimensionality increases and the data become sparse (Beyer, Goldstein, & 

Ramakrishnan, 1999). 
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3. EXPERIMENTAL METHODOLOGY  

3.1. THE DATA 

The main goal of this paper is to compare the behavior of different oversampling techniques through 

different classifiers and evaluation metrics with real data. For this, a dataset from a global insurance 

company in Colombia regarding its three previous year’s compulsory auto insurance claims is used. 

Imbalance phenomenon is presented with only 3.7% of fraudulent cases from 48.570 examples.  

The database has 32 independent variables that describe the nature about the accidents and the 

behavior of the actors in the company such as: injured person, insurance policy and vehicle, date of 

accident, insured person, accident location and hospital characteristics. These variables are going to 

classify between fraudulent and non-fraudulent claims.  

3.2.  METHODOLOGY  

The execution of this experimental research is based on the comparison of four methodologies used 

for treat imbalanced datasets: random oversampling, SMOTE, SOMO and none-oversampling 

technique; we will compare them through different classifiers: Decision threes, k- nearest neighbors 

and logistic regression and distinct evaluation metrics: F1 score, geometric mean score and ROC 

curve analysis.  

The use of different classifiers and evaluation metrics is motivated on having robust results: 

independent from the classifier or metric used.  Every experiment (oversampling methodology – 

evaluation metric) is repeated 5 times and consists of a 5-fold cross validation procedure. For this 

reason, results are reported over the mean coefficient of variation and standard deviation coefficient 

of variation across the experiments.  

3.2.1. Evaluation metrics review 

The use of the confusion matrix in order to validate classifiers performance is common. The main 

goal of this tool is to compare predicted values (columns) vs the actual ones (rows) as is illustrated in 

Table 1. 

 Predicted:N Predicted:P 

Actual:N TN FP 

Actual:P FN TP 

Table 1 Confusion Matrix 

Values in the diagonal represents those individuals whose classification was correct: True negatives 

(TN) and true positives (TP). On the other hand, FN (False negatives- Positive individuals classified as 

negative) and FP (False Positive – Negative individuals classified as positive) are those instances with 

a wrong classification. Based on this, the predictive accuracy is defined as a performance evaluation 

measure: 
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However, when imbalance is presented predictive accuracy is not as convenient as in a balanced 

dataset. For this reason, different evaluation metrics are considered to develop this analysis. 

3.2.1.1. Roc curve analysis  

Receiver operating characteristic (ROC) curve analysis is usually used as the criterion of evaluation in 

problems with dichotomic response variable and apply it on imbalance datasets problems is also 

common. It works by summarizing classifier performance over a range of tradeoffs between true 

positive and false positive error rates (Chawla, 2005).  

Defining TP as the true positive classified examples, TN as the true negative, FP as the false positive 

and FN as the false negative instances; false positive and true positive rates are expressed as follows: 

 

 

 

ROC curve is obtained by plotting false positive rates (x-axis) versus true positives rates (y-axis), thus, 

the point (0,100) represents the ideal scenario in terms of misclassification costs: all positive 

examples are classified correctly and no negative examples are misclassified as positive. Area under 

the ROC curve (AUC) aggregates the performance of a classification model into a single number and 

not only allows comparing different ROC curves. (Zhu, Baesens, & Vanden Broucke, 2017).   It is 

remarkable from Figure 1 than for a pure random classification model the AUC values is equal to 0.5, 

thus, a good classifies should reach an AUC larger than 0.5. 

 

 

Figure 1 Roc Curve 
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3.2.1.2. F1 score 

Based on the confusion matrix (Table 1), precision and recall can be defined (Buckland & Gey, 1994): 

 

 

The F1 score or F-value is based on these two concepts. Working with imbalanced datasets imply to 

reach a recall improvement without affecting the precision, this goal is very difficult to achieve since 

increasing the true positive for the minority class the number of false positives could be also 

increased, reducing the precision (Chawla, 2005). 

Although Roc curve represents the tradeoff between TP and FP values, the F score seeks to represent 

the trade-off among different values of TP, FP and FN.  (Buckland & Gey, 1994). This evaluation 

metric can be expressed as follows: 

 

It is common to assume that precision and recall have the same meaningfulness, this means β=1. 

3.2.1.3. Geometric mean score 

Geometric mean score is defined as the geometric mean of the true positive rate (*) and the true 

negative rate (Douzas & Bacao, 2017). This las one is defined as: 

 

This evaluation metric has been widely used for testing the performance of models applied to 

imbalanced datasets. It is calculated as follows: 
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4. RESULTS AND DISCUSSION 

This research work is accomplished in two main steps to compare the impact of oversampling the 

data on imbalanced datasets. Firstly, comparison between different classifiers and evaluation metrics 

is executed with the original data. After this, different oversampling techniques are executed for 

evaluating the impact on the evaluation metrics results through the different classifiers used.   

4.1.  STEP 1: NO SAMPLING STRATEGY 

As a first step, different classifiers and evaluation metrics are going to be tested on the original data, 

this means, imbalanced data with no oversampling. As it can be seen in Figure 2 defining the best 

classifier depends on the chosen evaluation metric, if we analyze the geometric mean or the F-score, 

the best classification methodology would be the decision tree, however, considering the AUC from 

the ROC curve, a logistic regression should be the selected classifier. Notice that this last predictive 

model obtained more stable results, which is evident on a standard deviation results.  

 

Figure 2 Results for non oversampling strategy 
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4.2.  STEP 2: COMPARING DIFFERENT OVERSAMPLING TECHNIQUES 

After comparing different classifiers with the original dataset, research is now focused on test 

different oversampling techniques on the defined models. Figure 3 and Figure 4, shows the results 

for each classification methodology (Decision trees, k nearest neighbor and Logistic regression) using 

the selected oversampling techniques (Random oversampling, SMOTE and SOMO) and evaluation 

metrics. 

As the main objective of this analysis is to evaluate different procedures used for balance skewed 

datasets, results are going to be presented for each classifier, evaluating the impact of creating a 

proportionated-class data. This, by comparing the results with those achieved in step 1, considering 

this last one as the base of the analysis.  

Firstly, for decision trees, we can observe by comparing the F-score outputs that the use of SOMO 

and random oversampling generated better results, while Geometric mean presented an 

improvement only with SOMO algorithm. Contrary to this, ROC AUC score didn’t show a better 

performance. It is remarkable that among the different evaluation metrics results were more stable.  

On the other hand, outputs for k-nearest neighbor classifier, evidence that the use of any 

oversampling techniques will increase its performance no matter the evaluation metric used, 

however, SOMO algorithm results are significantly better.  The improvement in outputs was superior 

not only on classifier performance but also in the stability of the results. 

Finally, for logistic regression is noticeable that only when the evaluation metric is the geometric, 

meaning score results are greatly better with any oversampling technique, nonetheless, with F score 

measure results seems to be worst, by its side. ROC AUC score presents similar values between the 

data-balancing methodologies but with more solid results for SOMO. 

After comparing these results, SOMO is outlined as the oversampling technique with better results 

through the different classifiers and evaluation metrics. It is remarkable that ROC AUC score 

presented the smallest difference between the different methodologies more specifically for linear 

regression.  
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Figure 3 Results for comparison between overampling techiniques - Mean cv score 
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Figure 4 Results for comparison between overampling techiniques - SD cv score 
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5. CONCLUSIONS AND FUTURE WORK 

Mining from imbalanced datasets is indeed a very important problem from both algorithmic and 

performance perspective (Chawla, 2005), however, finding the correct methodology for doing it, 

brings important knowledge for companies decisions such as detecting fraud claims in the insurance 

context.  

Taking into account the damage that fraud has done to the compulsory auto insurance in Colombia in 

terms of financial losses, use predictive analytics in order to create preventive strategies detecting 

fraud claims reaches as a crucial solution. In this work we compare different oversampling 

techniques across different classifiers obtaining as a conclusion that SOMO technique had better 

performance results in the majority of cases but also that not in all cases oversampling methodology 

achieve better results, these outcomes are meaningful thanks to having different evaluation metrics 

which lead us to comparable conclusions in each step of the research.  

For future work it is necessary to carry these results to the business operation in the insurance world 

in order to determine the possible financial savings that analyzing imbalanced datasets can bring. 

This, taking into account that methodologies that produces better performance in classification tasks 

are found, contributing to fighting against the traditional problems that this type of situation bring 

with it.  
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