1,192 research outputs found

    Self-Corrective Dynamic Networks via Decentralized Reverse Computations

    Get PDF
    The feasibility of large-scale decentralized networks for local computations, as an alternative to big data systems that are often privacy-intrusive, expensive and serve exclusively corporate interests, is usually questioned by network dynamics such as node leaves, failures and rejoins in the network. This is especially the case when decentralized computations performed in a network, such as the estimation of aggregation functions, e.g. summation, are linked to the actual nodes connected in the network, for instance, counting the sum using input values from only connected nodes. Reverse computations are required to maintain a high aggregation accuracy when nodes leave or fail. This paper introduces an autonomic agent-based model for highly dynamic self-corrective networks using decentralized reverse computations. The model is generic and equips the nodes with the capability to disseminate connectivity status updates in the network. Highly resilient agents to the dynamic network migrate to remote nodes and orchestrate reverse computations for each node leave or failure. In contrast to related work, no other computational resources or redundancy are introduced. The self-corrective model is experimentally evaluated using real-world data from a smart grid pilot project under highly dynamic network adjustments that correspond to catastrophic events with up to 50% of the nodes leaving the network. The model is highly agile and modular and is applied to the large-scale decentralized aggregation network of DIAS, the Dynamic Intelligent Aggregation Service, without major structural changes in its design and operations. Results confirm the outstanding improvement in the aggregation accuracy when self-corrective actions are employed with a minimal increase in communication overhead

    Self-Healing Dilemmas in Distributed Systems: Fault Correction vs. Fault Tolerance

    Get PDF
    Large-scale decentralized systems of autonomous agents interacting via asynchronous communication often experience the following self-healing dilemma: fault detection inherits network uncertainties making a remote faulty process indistinguishable from a slow process. In the case of a slow process without fault, fault correction is undesirable as it can trigger new faults that could be prevented with fault tolerance that is a more proactive system maintenance. But in the case of an actual faulty process, fault tolerance alone without eventually correcting persistent faults can make systems underperforming. Measuring, understanding and resolving such self-healing dilemmas is a timely challenge and critical requirement given the rise of distributed ledgers, edge computing, the Internet of Things in several energy, transport and health applications. This paper contributes a novel and general-purpose modeling of fault scenarios during system runtime. They are used to accurately measure and predict inconsistencies generated by the undesirable outcomes of fault correction and fault tolerance as the means to improve self-healing of large-scale decentralized systems at the design phase. A rigorous experimental methodology is designed that evaluates 696 experimental settings of different fault scales, fault profiles and fault detection thresholds in a prototyped decentralized network of 3000 nodes. Almost 9 million measurements of inconsistencies were collected in a network, where each node monitors the health status of another node, while both can defect. The prediction performance of the modeled fault scenarios is validated in a challenging application scenario of decentralized and dynamic in-network data aggregation using real-world data from a Smart Grid pilot project. Findings confirm the origin of inconsistencies at design phase and provide new insights how to tune self-healing at an early stage. Strikingly, the aggregation accuracy is well predicted as shown by high correlations and low root mean square errors

    Learn to Sense vs. Sense to Learn: A System Self-Integration Approach

    Get PDF
    The diffusion of Internet of Things (IoT) devices has opened up new opportunities for decentralized data analytics. In this context, data transmission can be affected by both network issues and distance between devices and receivers. These factors can affect the ability to aggregate and analyze data from multiple IoT devices, resulting in noisy, partial, or incorrect information. To this end, self-healing techniques pursue corrective actions when information acquired from sensors is not reliable. In this paper, we propose a new self-integration approach to improve the performance of decentralized self-healing techniques

    Engineering self-organizing urban superorganisms

    Get PDF
    Progresses in ubiquitous, embedded, and social networking and computing make possible for people in urban areas to dynamically interact with each other and with ICT devices around. This can result in a system with a very large number of agents working together in an orchestrated and self-organizing way to achieve specific urban-level goals, i.e., as if they were a “superorganism”. In this paper, we sketch the future vision of urban superorganisms and overview some emerging application areas heading towards the vision. Following, we identify the key challenges in engineering self-organizing multi-agent systems that can work as a superorganism, i.e., seamlessly involving ICT agents and human agents so to achieve some required urban level goals. Finally, we introduce the reference architecture for an infrastructure to support our future vision of self-organizing urban superorganisms

    (So) Big Data and the transformation of the city

    Get PDF
    The exponential increase in the availability of large-scale mobility data has fueled the vision of smart cities that will transform our lives. The truth is that we have just scratched the surface of the research challenges that should be tackled in order to make this vision a reality. Consequently, there is an increasing interest among different research communities (ranging from civil engineering to computer science) and industrial stakeholders in building knowledge discovery pipelines over such data sources. At the same time, this widespread data availability also raises privacy issues that must be considered by both industrial and academic stakeholders. In this paper, we provide a wide perspective on the role that big data have in reshaping cities. The paper covers the main aspects of urban data analytics, focusing on privacy issues, algorithms, applications and services, and georeferenced data from social media. In discussing these aspects, we leverage, as concrete examples and case studies of urban data science tools, the results obtained in the “City of Citizens” thematic area of the Horizon 2020 SoBigData initiative, which includes a virtual research environment with mobility datasets and urban analytics methods developed by several institutions around Europe. We conclude the paper outlining the main research challenges that urban data science has yet to address in order to help make the smart city vision a reality

    Proof of witness presence: Blockchain consensus for augmented democracy in smart cities

    Get PDF
    Smart Cities evolve into complex and pervasive urban environments with a citizens’ mandate to meet sustainable development goals. Repositioning democratic values of citizens’ choices in these complex ecosystems has turned out to be imperative in an era of social media filter bubbles, fake news and opportunities for manipulating electoral results with such means. This paper introduces a new paradigm of augmented democracy that promises actively engaging citizens in a more informed decision-making augmented into public urban space. The proposed concept is inspired by a digital revive of the Ancient Agora of Athens, an arena of public discourse, a Polis where citizens assemble to actively deliberate and collectively decide about public matters. The core contribution of the proposed paradigm is the concept of proving witness presence: making decision-making subject of providing secure evidence and testifying for choices made in the physical space. This paper shows how the challenge of proving witness presence can be tackled with blockchain consensus to empower citizens’ trust and overcome security vulnerabilities of GPS localization. Moreover, a novel platform for collective decision-making and crowd-sensing in urban space is introduced: Smart Agora. It is shown how real-time collective measurements over citizens’ choices can be made in a fully decentralized and privacy-preserving way. Witness presence is tested by deploying a decentralized system for crowd-sensing the sustainable use of transport means. Furthermore, witness presence of cycling risk is validated using official accident data from public authorities, which are compared against wisdom of the crowd. The paramount role of dynamic consensus, self-governance and ethically aligned artificial intelligence in the augmented democracy paradigm is outlined

    A Free Exchange e-Marketplace for Digital Services

    Get PDF
    The digital era is witnessing a remarkable evolution of digital services. While the prospects are countless, the e-marketplaces of digital services are encountering inherent game-theoretic and computational challenges that restrict the rational choices of bidders. Our work examines the limited bidding scope and the inefficiencies of present exchange e-marketplaces. To meet challenges, a free exchange e-marketplace is proposed that follows the free market economy. The free exchange model includes a new bidding language and a double auction mechanism. The rule-based bidding language enables the flexible expression of preferences and strategic conduct. The bidding message holds the attribute-valuations and bidding rules of the selected services. The free exchange deliberates on attributes and logical bidding rules for automatic deduction and formation of elicited services and bids that result in a more rapid self-managed multiple exchange trades. The double auction uses forward and reverse generalized second price auctions for the symmetric matching of multiple digital services of identical attributes and different quality levels. The proposed double auction uses tractable heuristics that secure exchange profitability, improve truthful bidding and deliver stable social efficiency. While the strongest properties of symmetric exchanges are unfeasible game-theoretically, the free exchange converges rapidly to the social efficiency, Nash truthful stability, and weak budget balance by multiple quality-levels cross-matching, constant learning and informs at repetitive thick trades. The empirical findings validate the soundness and viability of the free exchange

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network
    • …
    corecore