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Abstract 

The digital era is witnessing a remarkable evolution of digital services. While the prospects 

are countless, the e-marketplaces of digital services are encountering inherent game-theoretic 

and computational challenges that restrict the rational choices of bidders. Our work examines 

the limited bidding scope and the inefficiencies of present exchange e-marketplaces. To meet 

challenges, a free exchange e-marketplace is proposed that follows the free market economy. 

The free exchange model includes a new bidding language and a double auction mechanism. 

The rule-based bidding language enables the flexible expression of preferences and strategic 

conduct. The bidding message holds the attribute-valuations and bidding rules of the selected 

services. The free exchange deliberates on attributes and logical bidding rules for automatic 

deduction and formation of elicited services and bids that result in a more rapid self-managed 

multiple exchange trades. The double auction uses forward and reverse generalized second 

price auctions for the symmetric matching of multiple digital services of identical attributes 

and different quality levels. The proposed double auction uses tractable heuristics that secure 

exchange profitability, improve truthful bidding and deliver stable social efficiency. While 

the strongest properties of symmetric exchanges are unfeasible game-theoretically, the free 

exchange converges rapidly to the social efficiency, Nash truthful stability, and weak budget 

balance by multiple quality-levels cross-matching, constant learning and informs at repetitive 

thick trades. The empirical findings validate the soundness and viability of the free exchange. 

Keywords 

rule-based bidding, bidding lifecycle, market economy, free exchange, preference deduction, 

bid formation, double auction, quality levels, stable efficiency, market profitability. 
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Chapter 1  

1 Introduction 

The phenomenal evolution of digital services and smart interactions is empowering a new 

culture that is transforming social lifestyles into commodities. The dynamics of mobile 

influence, digital engagement, constant learning, smart conduct, and real-time immediacy 

are rather disruptive for e-marketplaces. While it reveals massive opportunists, it raises 

concerns about restricted bidding choices, inflexible strategic conduct and inefficiencies 

of online trading mechanisms. Our work identifies and examines some potential issues of 

current exchange e-marketplaces from microeconomic, game-theoretic and computational 

perspectives. The work here reflects on our bias to free market economy practices and 

presents briefly the proposed free exchange e-marketplace model that follows free market 

economy. The problem definition statement outlines the desired exchange e-marketplace 

properties with respect to an expressive and flexible rule-based bidding language and 

truthfully stable, socially efficient and profitable double auction matching mechanism.                 

1.1 Exchange e-Marketplaces: Potential Issues 

The digital era trends are manifested by the thriving digital services (referred to as e-

services) as mobile apps, online advertising (ad), and interactive digital marketing. While 

the prospects are countless, the e-marketplaces are encountering inherent game-theoretic 

and computational challenges that restrict the rational choices, preferences and strategic 

conduct of bidders. The remarkable evolution of interactive digital services is, in fact, 

inciting the industry to diligently fetch more viable delivery and revenue trading models 

that thrive in the market ecosystem (Moore, 1996). The game-theoretic complexity, 

however, impacts the strategic stability of trading mechanisms that dictate the rules of 

encounter. At stable equilibrium, a mechanism	ࣧ	implements a social welfare function 

with solution concepts that predict strategies rational bidders select with assumptions 

about rationality of bidders and knowledge bidders have about other bidders. The 

computational complexity, otherwise, relates to the tractable algorithmic efficiency that 



2 

 

 

 

drive  ࣧ to compute, in polynomial time, a combinatorial allocation problem (CAP) 

where number of possible bids is exponential in number of e-services.  

Our work identifies and examines, particularly, the potential challenges that initiate from 

the restricted bidding conduct and the inefficiencies of present exchange e-marketplaces. 

While complexities may justify the restrictive bidding practices, the de facto auctions are 

often designed for the strategic benefit of revenue maximizing e-marketplaces. For 

instance, in Google AdWords and DoubleClick exchange (Mansour et al., 2012; Google, 

2013), the advertisers often bid with restricted number of keyword choices. Bidders 

submit single bids that do not adequately convey preferences for various ad positions 

while paying for, perhaps, no-sale cost-per-clicks. Google applies, otherwise, a rather 

fuzzy cost-per-acquisition pricing model at real conversions. The Facebook FBX 

exchange breaches the privacy of online users by using intruding cookies. The cookies 

collect and trade user personal profiles on the real-time-bidding exchange and charge 

using the revenue-per-page-view pricing rule. The restrictive bidding practices, however, 

provokes adverse strategies of bidders that may lead to digital market (referred to as e-

market) failures. For instance, bidder agents (referred to as agents) may collude by 

submitting untruthful reduced bids for false partial requirements and form coalitions that 

act as super-agents to benefit from reduction in competition that harm social welfare. 

Collusion can be, even, more problematic in computational settings as bidders unleash 

several agents and adopt multiple identities name (i.e., false name bidding).  

The inefficiencies of present exchange mechanisms, on the other hand, is understood in 

the context of Hurwicz impossibility theorem (Hurwicz, 1975) that states it is impossible 

to implement an allocative efficient (AE), strategy proof (SP) and budget balance (BB) 

social welfare function in dominant strategy equilibrium (DSE) in a simple exchange e-

market and quasi-linear preferences even without requiring individual rationality (IR). 

(Green & Laffont, 1977) , demonstrates no AE and SP mechanism can be safe from 

manipulation by coalitions, even in quasi-linear environments. A simple exchange is one 

in which there are buyers and sellers selling single units of the same good (Parkes, 2001).      
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It is useful at this point to briefly define some of the related economic and computational 

concepts. The elaborate definitions are found in later chapters. A mechanism	ࣧ ൌ ሺߑ, 	ग़ሻ 

holds the rules of interaction that define strategies ߑ௜ of each agent and the outcome rule 

ग़: ଵߑ ൈ …ൈ ௟ߑ → ࣩ.  The social choice function maps the profile of preferences to an 

outcome, while the social welfare function maps preferences to an efficient outcome. The 

social allocative efficiency (AE) maximizes the sum of utilities or valuations of bidders. 

An incentive compatible (IC) mechanism ࣧ is the one in which agent best max utilities 

is at truthful (direct) revelation of private information. A direct-revelation mechanism 

(DRM) ࣧ is strategy-proof if its truth-revelation is a DSE, a useful game-theoretic and 

computational property. A stronger solution concept is DSE at which every agent has the 

same utility-maximizing strategy, for all strategies of other agents. A Strategy ݏ௜ is a 

dominant strategy if it (weakly) maximizes the agent's expected utility ݑ௜	for all possible 

strategies of other agents	ିݏ௜, ,௜ݏ௜ሺݑ ,௜ିݏ ௜ሻߠ	 ൒ ௜ݏ௜൫ݑ
, , ,௜ିݏ ,௜൯ߠ	 ௜ݏ∀

, ് ,௜ݏ ௜ିݏ ∈ 	 Σି௜. Agent 

can compute its optimal strategy without modeling the preferences and strategies of other 

agents. At weak budget balance (BB) the ࣧ	total utility transfers is positive (No deficit). 

The BB propriety maps to e-marketplace profitability. The individual rationality (IR) 

relates to voluntary participation in a trade at which an agent can achieve as much 

expected utility from participation using	ࣧ	as without participation. The computational 

efficiency means that, ࣧ is computed in polynomial time (i.e., tractable algorithms). The 

strategic (game-theoretic) stability means that ࣧ	implement a social welfare function at 

equilibrium with solution concepts that predict strategies agents will select with diverse 

assumptions about rationality of agents and knowledge agents have about other agents. 

The quasi-linear preferences simplify the utility transfer across agents, via side-payments. 

The exchange challenges to achieving desirable properties for full symmetric exchange 

mechanisms influences industry exchange e-marketplaces. This is evident in the famous 

e-marketplaces as Google, e-Bay, Facebook and Amazon that utilize asymmetric auctions 

(i.e., single auction mechanisms) with reserve value of sellers. For instance, in (Mansour 

et al., 2012) Google DoubleClick ad exchange uses generalized second price (GSP) and 
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optional second price (OSP) auctions for matching (see Figure 1, source: (Mansour et al., 

2012)). The OSP enables advertiser ݅ submits mandatory bid ܾ௜ and optional bid	0௜ ൑ ܾ௜ 

for ߩ reserve price to mitigate exposure. The OSP, charges	݉ܽݔ	൛݉ܽݔ௝ஷ௜ ௝ܾ, 	0௜,   .ൟߩ	

 

Figure 1: Google DoubleClick ad exchange OSP auction  

1.2 Towards Free Symmetric Exchange of Market Economy  

Our work examines the restrictive bidding conduct and inefficiencies of present exchange 

e-marketplaces. In that vein, Adam Smith, remarkably, observed that bidders interacting 

in free market economy act as if guided by “invisible hand” that leads to desirable market 

outcomes. The market economy is the free market in which resources allocated by bidder 

buying and selling free decision making, as primarily governed by the opportunity cost, 

and influenced by the society (Hall & Lieberman, 2010). The invisible hand aligns the 

dynamics of the dual self-interests and essential needs of bidders that allocate the scarce 

assets efficiently and works best in economy of perfect competition. The dual dynamics 

promote collaborative strategies while discouraging monopolies. In this context, strategic 

practices would be the truthful rational reactions to constant learning of e-market 

disruptions, particularly, at repetitive trades that must be freely expressed. The flexible 

bidding language that is adequate for the free expression of rational conduct would 

facilitate, hence, the truthful revelation of the strategic reactions. Following the 

microeconomic perspective of free market economy, our work advocate, hence, an 

adequate e-marketplace allows for symmetric bidding with flexible expression of free 

choices and strategic conduct. The e-marketplace should have, also, an exchange 
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mechanism that enables fully symmetric matching trades between e-service providers and 

consumers. The exchange e-marketplaces should maintain its position as bidders most 

preferred trading platform by providing endlessly growing inventory and information 

liquidity with reliable visibility, metrics, and focus targeting. The exchange model should 

deliver, also, adequate desirable game-theoretic and computational properties as stable 

social efficiency, exchange profitability, and computational efficiency (i.e., tractability). 

The fully symmetric exchange would deliver a fair and equal trading flexibility and free 

bidding conduct for both buyers, who are currently enjoying much of the allowed trading 

flexibility, and sellers, who are most often confined with the reserve value model. 

Our work advocates the flexible bidding conduct by introducing the free exchange (FX) 

e-marketplace that follows the free market economy (Hall & Lieberman, 2010). The free 

market economy has proved to be effective in organizing the economic activities for the 

social well-being, despite the self-interested decision making (Mankiw, 2012). The FX 

includes a flexible RBBL that empowers bidders to expressing free conduct. Our work 

endow the free exchange, also, with a double auction mechanism that improve stable 

efficiency. The rule-based bidding language (RBBL) enables free, flexible and concise 

expressions of preferences and strategic conduct by bidders using logical rules. The 

RBBL message includes distinct attribute-values of e-services and logical rules formulae 

that the FX deliberates on for automatic deduction and formation of the e-services and 

bids. The FX automatic bidding allows for least preference elicitation and multiple rapid 

trades. The RBBL is completely symmetric that enables the rule-based bidding not only 

for buyers but also for sellers, often, confined with their reserved values model.  

The double auction (DA) exploits the forward and reverse generalized second price 

(GSP) auctions for a class of multiple e-services of identical attributes and different 

quality levels (Q-levels). The multiple Q-levels GSP based DA matching (GSPM) 

motivates truthful bidding and deliver symmetric social efficiency and strategic stability 

with constant learning at repetitive trades that deliver the truthful best response strategies 

of bidders. The DA heuristics are computationally tractable and secures, also, the FX 
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profitability. However, the GSPM social efficiency and e-market profitability is better 

realized with market thickness (Roth, 2007). Realizing perfect stable efficiency in 

profitable exchanges, however, is unfeasible game-theoretically (Hurwicz, 1975). Our 

work establishes, though, that the FX converges to the stable efficiency of the full 

information setting with constant learning at repetitive trades. The FX exploits the GSPM 

DA to achieving strategic equilibrium of self-interested rational bidders of private 

independent information and free strategic conduct. The GSPM takes advantage of the 

successes of the efficient, yet simple de facto GSP (Edelman et al., 2007) (Varian, 2007), 

and the repeated best response auction (Nisan et al., 2011). The proposed multiple Q-

levels, GSPM DA enables tractable and IC exchange that delivers stable efficiency and 

profitability. This is evident in the rapid stable convergence of thick e-markets, i.e., large 

number bidders and transactions. The desirable properties of the FX free exchange RBBL 

rules bidding and GSPM DA is thoroughly verified through experimental analysis.  

1.3 Problem Definition Statement  

Our work examines the status quo of the restricted bidding conduct and inefficiencies of 

present exchange e-marketplaces. An adequate market economy exchange must allow for 

symmetric bidding with flexible expression of free choices and strategic conduct. The 

exchange should, also, have a symmetric double auction mechanism that enables for fully 

matching trades between e-service providers and consumers. The exchange model should 

deliver adequate desirable game-theoretic and computational properties like stable social 

efficiency, exchange profitability, and computational efficiency (i.e., tractability). Our 

work, hence, targets the realization of the following desirable properties in the bidding 

language: (1) Expressiveness: ability to flexibly, correctly and completely, represent the 

semantics and structure of the bidding preferences and strategic conduct ; (2) Ease-of-

use: ability to express the semantics and structure of the bidding preferences and strategic 

conduct in direct and easy manner; (3) Conciseness: ability to express the semantics and 

structure of the bidding preferences and strategic conduct compactly with the least use of 

notations and structure; (4) Flexibility: ability to extend the bid semantics and structure to 

incorporate diverse logical rules formulae; (5) Symmetry: ability to express attributes and 
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logical rules formulae of any e-service and request and ask bids in the same bidding 

message; (6) Computational efficiency: ability to compute a tractable polynomial time 

preference deduction, bid formation and winner determination;  (7) Rapid automation: 

ability to have command on the bidding lifecycle to delivering to more rapid trades, and 

(8) Distributed computation: ability to distribute the computational workload between the 

software agents of bidders and exchange for best resource utilization. Our work proposes 

that the strategic conduct may be exhibited by logical rule and operator formulae. The 

rule-based expressions allow bidders to share part of their problem constraints without 

full exposure. Another compelling aspect, is the fact the rule-based expressions expedite 

the trades with faster bidding lifecycle due to the automatic deduction and aggregation of 

rules of action that. Hence, our work introduces the rule-based bidding language (RBBL) 

for the free exchange e-marketplace that enables the flexible expression of strategic rules 

of conduct as logical rule and operator formulae in the bidding structure. The RBBL is 

fully symmetric that enables a simultaneous rule-based bidding, not only for buyers but 

also for sellers and those of mixed roles. The RBBL empowers the free exchange to 

deliberate on the logical rules and operators for automatic preference and service 

deduction and bid formation that secures rapid trades.  

Furthermore, the strategic and computational complexities of the exchange impossibly 

theorem (Hurwicz, 1975) have motivated our work to target some relaxed (weaker) 

desirable properties for an adequate fully symmetric DA. While Hurwicz strong budget-

balance is often not necessary, we can achieve adequate truthfulness, efficiency and weak 

budget balance using market economy settings: (1) Allocative Efficiency (AE): that 

maximizes the social utility welfare; the aggregate valuations of all buyers and sellers. 

The e-services are allocated to the bidders who value them most highly (2) Incentive 

Compatibility (IC): in which bidders maximize their utilities when they truthfully reveal 

private information. The truthful attitude of bidders is based on their ex ante expectations, 

given the mechanism outcome and their ex-post expectations, given their constant 

learning at repetitive trades. In (McAfee, 1992) and (Wurman et al., 1998), however, 

there is no DA that is both AE and IC; (3) Weak Budget Balance (BB): in which the total 
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payment that bidder agents make is positive so the exchange doesn’t run at deficit, but 

secures sufficient profits; The weak BB guarantee a fairly positive e-market profit,  at 

which no outside subsidy inwards or transfers outwards are required for a deal to be 

reached (4) Individuals rationality (IR): in which the agent’s expected utility from using 

exchange is more than that of other choices given prior beliefs about preferences of other 

agents; The exchange matching do not make any bidder worse off than has the bidder not 

participates, (5) Strategic equilibrium: a mechanism implement a social welfare function 

at equilibrium with solution concepts that predict strategies agents will select with diverse 

assumptions about rationality of agents and knowledge agents have about other agents.; 

and (6) Computational tractability: extends to the polynomial time tractable performance 

of the RBBL bidding, exchange deduction, bid formation and winner matching heuristics. 

Generally, given bidders' preferences, an AE matching is NP-hard (Sandholm, 2008).  

In summary, our work targets the stable and socially efficient matching allocation of a 

class of decentralized CAP of multiple units of e-services that share identical attributes at 

different Q-levels. Our work develops an expressive free exchange e-marketplace using 

the RBBL rules bidding that enables the flexible expression of bidding strategic conduct.  

Our work empowers the free exchange, also, with the GSPM GSP based multiple Q-level 

double auctions that facilitates fully symmetric exchange trades, while delivering social 

efficiency, strategic stability, computational tractability and e-market profitability.  

1.4 Thesis Organization 

Chapter 2 presents the formal description, and analysis of the combinatorial allocation 

problem. Chapter 3 expands on the related work and fundamentals. Chapter 4 introduces, 

describes and analyzes the formal modelling of the rule based bidding language (RBBL) 

and the inherent properties, while Chapter 5 introduces and investigates the GSPM, 

generalised second price based matching double auction and the inherent economic and 

computational properties. Chapter 6 describes, examines, and analyses the experimental 

simulation environment and empirical findings. Chapter 7 concludes with a summary of 

general research issues, contributions, empirical analysis, limitations, and future outlook.  
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Chapter 2  

2 Problem Modeling, Analysis, and Issues 

Our work in this chapter targets the formal problem modeling and analysis of a special 

decentralized CAP of e-services that target the socially efficient symmetric allocation 

matching of request and ask e-service assets between self-interested rational bidders. The 

bidders may have conflicting goals that motivate their strategic conduct as manifested by 

their varying preferences for, indeed, maximizing expected utilities, given their beliefs 

about other bidder preferences. The decentralised CAP social efficiency optimizes the 

aggregate valuations and utilities of request and ask bidders for any discriminatory DA 

clearing prices. As the proposed DA matching mechanism is anticipated to incite the 

truthful revelation of request and ask bidders as will be proven later on in our work,   the 

formal described and decentralized CAP assumes a truthful state of choices and rules of 

conduct of bidders. Hence, the decentralized CAP may be formally reduced and modeled 

as centralized CAP integer program (IP) for the winner determination problem (WDP). In 

fact, the DA mechanism selects the payment rule that motivates the IC of IR bidders with 

free disposal in which bidders have increasing values for e-services. The DA secures, 

also, BB for e-market profitability. The CAP IP is limited, however, by constraints (i.e., 

bids, budgets), local objectives, and the proposed DA rules of encounter.  

The modeled CAP targets the efficient matching of multiple units of a particular e-service 

that shares identical attributes of varied attribute values and, essentially, different quality 

levels (Q-levels). For instance, the e-service commodity of the digital advertising (ad) 

CAP is the ad impression, that is a user single viewing of single ad, while the bidders are 

the publishers and advertisers. For mobile apps, the e-service is a software application 

that delivers certain functionality that run on buyers (consumers) who navigate app stores 

for a required app using mobile devices, smart phones or tablet computers. The seller 

(provider), however, is typically the application distribution platform such as Apple App 

Store, Google Play, and BlackBerry World. With larger number of Q-levels, however, the 
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CAP class may also be extended to the matching of multiple units of rather multiple 

different e-services. In fact, the multiple Q-levels concept is suites e-services that often 

comprise distinct attributes. While there are many e-services that share identical 

functionality, it may differ in some functional or nonfunctional (i.e., software quality) 

attributes. For instance, similar e-services from multiple sources would differ in their 

quality of services or user acceptance or reputation score. Otherwise, some games may 

differ in their functional complexity levels. In fact, the more the number of presented Q-

levels, the narrower the tactical maneuverability of bidders with a Q-level solution space 

that, eventually, incites a rather truthful revelations.  

2.1 Combinatorial Allocation Problem Description 

Considering the time horizon as a set of discrete decision periods ߬௧, ݐ ൌ ሼ1,… , ܶሽ during 

which the exchange e-marketplace collects the seller and buyer RBBL messages (i.e., e-

service attributes, values, and rules), deduces the request and ask bids of the targeted 

multiple e-services to be traded. The FX ranks and sorts the request and ask bids of the 

selected e-services based on their valuations and Q-levels. The FX computes, the, the 

efficient matching for the multiple winners. Our work assumes bidders act exclusively as 

either e-service sellers or buyers, while  the CAP allocation and pricing decisions are 

taken off-line at the end of decision periods	߬௧, ݐ ൌ ሼ1, … , ܶሽ, ܶ is number of decision 

periods. The following is a formal description of the CAP at ߬௧ that manifests a sequence 

of events (Mansour et al., 2012) as shown in the matching CAP environment of Figure 2:   

1) 	݉	e-service providers	ܲ ൌ ൛ ଵܲ, … , ௝ܲ, … , ௠ܲൟ	construct ask bids	∐〈 ௉݂
௝, ௉ݒ

௝, ௉ݎ
௝, ܳ௉

௝ , ௉ݐ
௝ 〉	 

that include: (1) feature-group attributes set ௉݂
௝ of provider ௝ܲ that form the e-service 

combinations:	 ௉݂
௝ ൌ ൛ሺ ଵ݂, ଵ݃ሻ, … , ሺ ௟݂, ݃௟ሻ, … , ሺ ௙݂, ݃௙ሻൟ, (2) initial true costs set	ݒ௉

௝ ൌ

൛ݒଵ, … , ,௟ݒ … , of attributes set ௉݂		௙ൟݒ
௝(i.e., value of	ሺ ௟݂ , ݃௟ሻ is	ݒ௟) (3) rational rules 

௉ݎ
௝of provider ௝ܲ that direct the exchange deduction of various e-services and net 

valuations of asks, (4) assigned Q-levels ܳ௣
௝  set of the FX deduced ask e-services, 
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and (5) expiry times ݐ௉
௝ 	of the conveyed logical rules.  The logical rule formulae ݎ௉

௝ 

represent the rational rules of action/reaction to the e-market anticipated disruptions.   

2) Simultaneously, 	݊ e-service consumers ܥ ൌ ሼܥଵ, … , ,௞ܥ … ,  ݉ request	 ௡ሽ constructܥ

bids ∐〈 ௖݂
௜, ,௖௜ݒ ,௖௜ݎ ܳ௖௜ , ௖௜ݐ 〉	to request e-services that include: (1)	 ௖݂௜	 attribute-group 

attributes of requested e-services 	 ௖݂௜ ⊆ ௉݂
௝; (2) initial true valuations ݒ௖௜		of the e-

service attributes	 ௖݂௜; (3) rational rules ݎ௖௜ that direct the exchange deduction and 

aggregation of e-services and their bids; (4) assigned Q-level ܳ௖௜  set of the FX 

deduced request e-services; and (5) the expiry times ݐ௖௜ 	of the logical rules. 

3) The exchange collects the bidding message requests and asks and exploits the 

rational rules	ݎ௉
௝	,  to deduce the offered and requested e-services. Eventually, the		௖௜ݎ

FX produces ݆݌ number of e-services for provider ௝ܲ 	݁௉
௝ ൌ ൛݁௉

௝ଵ, … , ݁௉
௝௤, … , ݁௉

௝௣ൟ	with 

related Q-levels ܳ௉
௝ ൌ ൛ܳ௉

௝ଵ, … , ܳ௉
௝௤, … , ܳ௉

௝௣ൟ and ask bids ܾ௉
௝ ൌ ൛ܾ௉

௝ଵ, … , 	ܾ௉
௝௤, … , ܾ௉

௝௘ൟ 

and ݅ܿ number of request e-services  in set	݁௖௜ ൌ ൛	݁௖௜ଵ, … , 	݁௖௜௞, … , ݁௖௜௖ൟ with related Q-

levels set 	ܳ௖௜ ൌ ൛	ܳ௖௜ଵ, … , ܳ௖௜௞, … , ܳ௖௜௖ൟ	and request bids set	ܾ௖
௝ ൌ ൛ܾ௖௜ଵ, … , ܾ௖௜௞, … 	, ܾ௖௜௖ൟ. 

The e-services	݁௣
௝௤ ⊆ ௉݂

௝ , is a combination of provider feature-group attributes, while 

݁௖௜௞ ⊆ ௉݂
௝ a combination of consumer attributes that are induced by the stored logical 

rules, while the ask bid and request bids are the sum of the selected attribute values 

and the revised valuation of the FOL active rules. That is, for the deduced request e-

service	݁௖௜௞ ∈ 	݁௖௜ , the request bid net value	ܾ௖௜௞ ൌ ∑ ሺݒ ௖݂
௜ሻ ൅ ௖௜ሻ௞ݎሺݒ , i.e., the sum of 

values of eligible attributes and the value adjustments of the FOL rules. Similarly, 

for eligible ask e-services	݁௣
௝௤ ∈ ܾ௖

௝ the ask bid values	ܾ௣
௝௤ ൌ ∑ ሺݒ ௣݂

௝ሻ ൅ ௣ݎሺݒ
௝ሻ௤ . 

4) The exchange e-marketplace announces the requested e-services with Q-levels ܳ௖௜  

and the time horizon	߬௧: ∐〈݁௖௜ , ܳ௖௜ , ߬௧〉	 to the provider bidders	ܲ. The exchange also 

announces the offered e-services with	ܳ௣
௝  set and the time horizon	߬௧: ∐〈݁௉

௝, ܳ௉
௝ , ߬௧〉	to 

consumers	ܥ ൌ ሼܥଵ, … , ,௜ܥ … ,  ,௡ሽ. The exchange stores the bidding attribute-valuesܥ

FOL rules ݎ௉
௝  and	ݎ௖௜ and their expiry times ݐ௉

௝ , ௖௜ݐ 	 while hiding the request and ask 
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valuations ܾ௉
௝ , ܾ௖௜  to mitigate the impact of exposure problem. The exchange signals 

consumers and providers, while collecting RBBL messages during	߬௧. 

5) At expiry of	߬௧, the exchange: (1) deduces all ask ܾ௣
௝௤and request bids ܾ௖௜௞	using the 

RBBL attribute-values, Q-levels, logical rules and other constraints; (2) ranks all 

request and ask bids based on the Q-levels; (3) sorts all request (ask) bids in 

descending (ascending) orders based on their net values; and (4) computes the AE 

matching allocations and pricing rules for clearing the exchange. 

6) Finally, the exchange e-marketplace returns ∐〈݁௖௜௞, ܳ௖௜௞,  〈௖௜௞ߨ

and	∐〈݁௣
௝௤, ܳ௣

௝௤, ௣ߨ
௝௤〉to winning bidders such that		݁௖௜௞ ൌ ݁௉

௝௤ 	∧ 	݉݅݊	ܳ௖௜௞ ൒ 	ܳ௉
௝௤. The 

costs and payments	ߨ௖∗, ∗௣ߨ  are the prices for the matched pairs.  
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Figure 2: Combinatorial allocation problem environment of digital services 

2.2 Formal Combinatorial Allocation Problem Model 

Considering the time horizon as a set of discrete decision periods during which multiple 

e-services with the same attributes and different Q- levels are allocated to multiple 
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winners, our work assumes the matching allocation and pricing decisions are taken off-

line at the end of a decision period	߬௧, ݐ ൌ ሼ1, … , ܶሽ. Generally, the objective of the FX is 

to implement a trade 	ߣ∗௧ for the CAP at period	߬௧	 that delivers social efficiency. Our 

work defines the social AE as the objective that maximizes the total request and asks 

valuations of bidders while securing e-market profitability. Formally, let ߣ௧௜௝௞௤
ொ ∈ ௧ߣ

ொ ൌ 1 

if 	݁௖௜௞ ൌ ݁௉
௝௤ 	∧ 	݉݅݊	ܳ௖௜௞ ൒ 	ܳ௉

௝௤ and	ߣ௧௜௝௞௤
ொ ൌ 0,	otherwise. For ൫݁௖௜௞, ݁௉

௝௤൯ matched pairs, 

the bidders have a quasi-linear utility: ݑ௖௜௞൫ߣ௧
ொ൯ ൌ ܾ௖௜௞൫ߣ௧

ொ൯ െ ௧ߣ௖௜௞൫݌
ொ൯	for consumers who 

buy the e-services	݁௖௜௞ and ݑ௣
௝௤ሺߣ௧

ொሻ ൌ ܿ௣
௝௤ሺߣ௧

ொሻ െ ܾ௣
௝௤ሺߣ௧

ொሻ for the providers who sell the 

e-services	݁௉
௝௤, ∀݌௖௜௞, ܿ௣

௝௤ ∈Թା (i.e., payments and costs).  Bidders are assumed risk 

neutral in the formal model below, who pay as much as expected of an e-service with 

budget bounds (ܤ௖௜). Given instance ܺܨሺܾ, Q, ,ߣ 	߬௧	ሻ	at period		߬௧, then, the CAP AE 

trade	ߣ௧
ொ ൌ ∗ߣ

௧
 maximizes the aggregate values of bids (i.e., ݒሺ݁௖௜௞ሻ ൌ ܾ௖௜௞ and minimizes 

the aggregate values of asks (i.e.,	ݒሺ݁௣
௝௤ሻ ൌ 	ܾ௣

௝௤) given the multiple Q-levels. That is: 

ݔܽ݉
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

ܾ௖௜௞ ൅ ݉݅݊
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

ܾ௣
௝௤ 

That is equivalent to  

ݔܽ݉
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

ܾ௖௜௞ െ ݔܽ݉
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

ܾ௣
௝௤	 

ݔܽ݉
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

.		ሺܾ௖௜௞ െ	ܾ௣
௝௤	ሻ																																					ሺ૚ሻ 

Given quasi linear utilities of request and ask bidders :	ݑ௖௜௞൫ߣ௧
ொ൯ =ܾ௖௜௞൫ߣ௧

ொ൯ െ ௧ߣ௖௜௞൫݌
ொ൯ ൒ 0 

and	ݑ௣
௝௤ሺߣ௧

ொሻ ൌ ܿ௣
௝௤ሺߣ௧

ொሻ െ ܾ௣
௝௤ሺߣ௧

ொሻ ൒ 0, then (1) becomes: 
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	ݔܽ݉
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

൫ݑ௖௜௞ ൅ ௣ݑ
௝௤൯ ൅ 	ݔܽ݉

ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

	൫݌௖௜௞ െ ܿ௣
௝௤൯		ሺ૛ሻ 

Hence, the social welfare objective of the CAP in formula (1) transforms to formula (2) 

that maximizes the aggregate utilities of the request and ask bidders and maximizes, also, 

the net FX e-market profit that should be of a positive value at all situations. In fact, the 

eligible criteria of the GSPM matching (i.e.,		݁௖௜௞ ൌ ݁௉
௝௤ 	∧ 	݉݅݊	ܳ௖௜௞ ൒ 	ܳ௉

௝௤ሻ is that	ܾ௖௜௞ ൒

ܾ௣
௝௤. However, as per the GSPM forward GSP for buyers and reverse GSP for sellers the 

pricing rules,	ܾ௖௜௞ ൒ ௖௜௞൫ܾ௖௜௞ାଵ൯݌ for the second bid in rank and	௖௜௞൫ܾ௖௜௞ାଵ൯݌ ൒ ܿ௣
௝௤ሺܾ௣

௝௤ାଵሻ 

for matching condition, then	݌௖௜௞ ൒ ܿ௣
௝௤. Hence, the GSPM realizes AE while maximizing 

the FX profitability that grows with the thick e-market. For an instance	ܺܨሺܾ, Q, ,ߣ 	߬௧ሻ	of 

at	߬௧, ݐ ൌ ሼ1,… , ܶሽ, ߣ௧௜௝௞௤
ொ  =1 if	݁௖௜௞ ൌ ݁௉

௝௤ ∧ ݉݅݊	ܳ௖௜௞ ൒ 	ܳ௉
௝௤,	ߣ௧௜௝௞௤

ொ =0	otherwise: 

ܾ௖௜௞ ൌ෍ݒሺ ௖݂
௜ሻ ൅ ௖௜ሻݎሺݒ

௞

; ܾ௣
௝௤ ൌ෍ݒሺ ௣݂

௝ሻ ൅ ௣ݎሺݒ
௝ሻ

௤

∀ܾ௖௜௞, ܾ௉
௝௤

൒ 0		ሺRBBL	valuation	modelሻ 

௖௜௞݌ ൌ ܾ௖௜௞ାଵ	; 	ܿ௣
௝௤ ൌ ܾ௣

௝௤ାଵ;		∀݌௖௜௞, ∀ܿ௉
௝௤ 	∈ ሼԹା, 0ሽ			ሺGSPM	DA	pricing	ruleሻ 

ொߣ
∗ , solves the following IP model of the FX CAP with an objective similar to (1) and (2):  

ݔܽ݉
ఒ೟
ೂ
෍෍෍෍ߣ௧௜௝௞௤

ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

. ൫	ܾ௖௜௞ െ ܾ௣
௝௤൯		∀	߬௧													ሺAE, ICሻ		ሺ૜ሻ 

.ݏ ௧௜௝௞௤ߣ෍෍.ݐ
ொ

௜௖

௞ୀଵ

௡

௜ୀଵ

൑ 1, ∀ ௝ܲ, ݁௉
௝௤, 	∀ܳ௉

௝௤									ሺUnique	Matchingሻ		ሺ૝ሻ 

෍෍ߣ௧௜௝௞௤
ொ

௝௣

௤ୀଵ

௠

௝ୀଵ

	൑ 1, ,௜ܥ∀ 	݁௖௜௞∀ܳ௖௜௞																							ሺUnique	Matchingሻ	ሺ૞ሻ 
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෍෍ߣ௧௜௝௞௤
ொ . ܾ௖௜௞ ൑ ,݅∀		௖௜ܤ ,௜ܥ ܾ௖௜௞

௜௖

௞ୀଵொ

																												ሺMax	Budgetሻ		ሺ૟ሻ 

෍෍෍෍ߣ௧௜௝௞௤
ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

. ൫	݌௖௜௞ െ ܿ௣
௝௤൯ ൒ 0		∀ܳ௖௜௞, ܳ௉

௝௤	ሺWeak	ܤܤሻ			ሺૠሻ 

෍෍෍෍ߣ௧௜௝௞௤
ொ

௝௣

௤ୀଵ

௜௖

௞ୀଵ

௠

௝ୀଵ

௡

௜ୀଵ

൑ ݉݅݊ ቐ෍|݁௖௜|
௜

,෍ |݁௉
௝|

௝

ቑ ሺCardinalityሻ		ሺૡሻ 

,݁௖௜௞	௧௜௝௞௤൫ߣ 	݁௉
௝௤, 	ܳ௖௜௞, 	ܳ௉

௝௤൯ ∈ ሼ0,1ሽ	∀݁௖௜௞, ݁௣
௝௤							ሺIntegralityሻ						ሺૢሻ 

Constraint (9) ensures integrality, while constraints (4) and (5) restrict any winning 

request-bid to be assigned at most to one ask-bid of the same unique e-service attributes, 

and restrict any wining ask-bid be assigned at most one request-bid of the same attributes. 

Hence, the CAP turns into the generalized assignment problem known to be ܰܲ-Hard; 

constraints (6) and (7) ensure the weak budget balance that secures the e-marketplace 

profitability, while restricting the budget boundaries (i.e.,	ܤ௖௜). Constraint (8) imposes the 

multiple Q-level cardinality balance of the offered and requested (supply and demand) of 

particular e-services by free disposal. 

2.3 Combinatorial Allocation Problem Complexity Analysis 

The CAP problem at period		߬௧, as formulated above is an instance (i.e., reduction) of a 

set-packing problem (SPP) (deVries & Vohra, 2003). Given a set of ܯ elements and a 

collection ܸ of subsets with non-negative weights, find the largest weight collection of 

subsets that are pairwise disjoints. Formally: let 	ߣ௝ ൌ 1 if ݆௧௛ subset of ܸ with weight 	ݒ௝ 

is selected,	ߣ௝ ൌ 0, otherwise. Let 	݉௜௝ ൌ 1 if ݆௧௛ subset of ܸ contains	݅ ∈ ௜௝݉	,ܯ ൌ 0, 

otherwise. Then the SPP model is formulated as followed: 
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max
௝∈௏

෍ .௝ߣ	 ,ሺAE																																																																					௝ݒ	 ICሻ			ሺ૚sppሻ 

.ݏ ෍.ݐ .௝ߣ	
௝∈௏

	݉௜௝ 	൑ 1, ∀݅ ∈  ሺ૛sppሻ		Machingሻ	ሺUnique																			;	ܯ

௝ߣ	 ∈ ሼ0,1ሽ	∀ܸ																																																									ሺIntegralityሻ			ሺ૜sppሻ 

The SPP is equivalent to the IP in equations (3), (4), (5) and (9) of the exchange CAP IP 

with fewer constraints. Hence, the SPP is a functional reduction of exchange CAP and 

could be reduced or transformed in polynomial time (i.e., SPP ൑௣ CAP). Indeed, the 

exchange CAP is an instance of SPP, as noted in (Rothkopf et al., 1998) and (Sandholm, 

2002). However, the SPP is, generally, NP-Hard with fairly large number of bidders, 

while the recognition version is NP-complete (deVries & Vohra, 2003). Hence, the 

exchange CAP is generally NP-hard, in which the computation demanded for solving 

practical size problems is usually prohibitive. Hence, the exchange CAP would be 

computationally intractable for thicker e-market trades of practical size of bidders and 

cannot be solved using the exact approaches like Branch and Bound, Cutting planes, or 

Branch and Cut. In addition, the decentralized CAP has other inherent game-theoretic and 

computational challenges pertinent to the decentralized distribution of knowledge and 

control, quite evident in the bidder’s rationality, strategic conduct, self-interest, decision 

making autonomy, and private information and actions. The NP-hard complexity of our 

CAP IP model motivates our work, hence, to adopt the rather more natural economic 

based approaches for rational bidders. Our proposed mechanism has to motivate, first, the 

truthful revelation of preferences and strategic rules of bidders, then computes socially 

efficient matching allocations and pricing out of the modeled CAP IP based on the 

truthful revelations as detailed in the next chapters. In that vein, our work investigates 

how to attract bidders to be strategically truthful, not tactically manipulative, how to 

develop a flexible, concise and expressive bidding messaging model that enables the free 

expressions of choices and strategic conduct, and how to reach tractable closure with 

rapid, efficient and stable allocations, while delivering profitability to the e-marketplace.    
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2.4    Research Issues 

While the prospects of the digital era are enormous, e-marketplaces are encountering 

inherent and persistent game-theoretic and computational complexities that challenge the 

strategic and computational efficiencies of the matching mechanisms. In addition to the 

computational complexity of the centralized CAP, the distributed knowledge and control 

of the decentralized CAP imposes a rather further coordination and mechanism design 

complexities. The work in (Kalagnanam & Parkes, 2004) identified four areas of 

computational constraints that restrict the solution space of feasible mechanisms, 

including strategic, communication, valuation, and winner determination complexities. In 

the context of communication complexity, our work examines the limited bidding scope 

and trading conduct of e-market mechanisms that often provoke adverse strategies and 

lead to e-market failures. In the context of strategic, valuation and winner determination 

complexities, our work investigates, also, the inefficiencies of the symmetric exchange 

mechanisms with respect to allocation and revenue models. A fundamental challenge is 

the fact symmetric exchange models are hard to implement, as per Hurwicz impossibility 

theorem (Hurwicz, 1975). In fact, most present exchange e-marketplaces implement a 

rather single reserve price auction mechanism with the fixed reserve values of sellers.  

The design of an adequate exchange, though, promotes flexible and efficient symmetric 

interactions between rational bidders. In that vein, our work presents a realistic view of a 

symmetric exchange that delivers stable efficiency while facilitating the flexible choices 

and strategic tolerance of rational bidders. The decentralized CAP reveals, however, 

some hard game-theoretic and computational complexities as the following explains:      

Limited bidding conduct and language complexity: Our work identifies and examines the 

potential challenges that initiate from the restricted bidding conduct and trading practices. 

While complexities may justify the restrictive bidding practices, the de facto auctions are 

often designed for the strategic benefit of revenue maximizing e-marketplaces. The 

restrictive bidding practices, however, provokes adverse strategies of bidders that may 

lead to digital market failures. Given the complex semantics and structure of interactions 

in open systems, preference formation becomes a hard problem, especially if preferences 
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are uncorrelated (Dash et al., 2003). The design of flexible bidding language that promote 

free strategic conduct has to deliver expressiveness, ease of use, conciseness, flexibility, 

and computational	efficiency. Generally, the bidding model often confines agents express 

preferences that impact the computational e-market model. In (Nisan, 2000), a trade-off 

between the compactness and simplicity is analyzed, in which, at one extreme, there are 

the bidding programs that provide methods to compute valuations, while at the other far 

extreme, there are myopic bids used in iterative auction. A concise and expressive 

bidding language mitigates preference elicitation and lets agents convey their valuations 

compactly. The CAP would require an agent to specify 2|୒|– 1 bids, while few may be of 

interest. The proposed rules bidding would allow for expressing the logical and operators 

rule formula in the bidding structure with distinct attribute level valuations which exposes 

new challenges to the bidding complexity. Our work proposes the first order logic (FOL) 

for modeling the logical rules formulae. The free exchange smart preference deliberation, 

deduction, aggregation and bid formation are other emerging challenges.  

Mechanism design (MD) complexity: The inefficiencies of present exchange mechanisms 

is understood in the context of Hurwicz impossibility theorem (Hurwicz, 1975) that states 

it is impossible to implement an AE, SP and BB social welfare function in DSE in a 

simple exchange and quasi-linear preferences. There are limitations related to developing 

tractable mechanism design (MD), game-theoretically and computationally, that delivers 

stable efficiency. For instance, while GVA is an AE SP mechanism, it is computationally 

intractable as it has to solve a complex optimization problem multiple times: once to 

determine the optimal matching allocation and once for each agent with its bid removed 

to determine the residual payment (Wellman et al., 2001). The agents compute solution 

concepts as Nash equilibrium (NE) or DSE, given information about the mechanism and 

beliefs about preferences, rationality, and beliefs of other agents. A NE or DSE MD 

mitigate the strategy selection problem that results in minimal agent computation (Varian, 

1995), however, with limited choice of desired properties.
 
Otherwise, an iterative-MD 

(Parkes, 2001) enables bounded agents to play myopic best-response strategy and reason 

about one round of the game at a time. Another approach is to select MD with 
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polynomial‐time computable equilibrium (Nisan & Ronen, 2000) best‐response that 

restricts strategies an agent in computing its best‐response to a knowledge subset of the 

strategy space. While our work targets the stable social efficiency as adequacy objectives 

for the exchange DA design, our work realizes the particular game-theoretic complexity 

of o symmetric exchange in the context of Hurwicz impossibility theorem. In (McAfee, 

1992) and (Wurman et al., 1998), there is no DA that is both efficient and IC. 

Computational complexity: bounded computational resources impose challenges on the 

software agents and the MD that may necessitate explicit approximations and restrictions. 

However, approximations can change economic properties. For instance, approximating 

VCG auction payment and matching allocation rules break SP. Agents, for instance, are 

computationally bounded-rational when resolving the combinatorial complexity of 

computing their preferences on all outcomes given other agents strategists. In fact, 

solving even typical centralized CAP problems, where the number of possible bids is 

exponential as the number of items is most often NP-hard (Sandholm, 2008). Agents may 

use indirect iterative mechanisms (Wellman, 1993) (Parkes, 2001) and computing, rather, 

a myopic best-response bundle set. Direct MD one-shot agents, however, act in a game-

theoretic sense, modeling the expected effect of their actions on other agents’ actions. 

Another approach formulates queries about agent valuations that relieve agents from 

formulating preferences for all outcomes (Hudson & Sandholm, 2002). 

In summary, our work targets a market economy based solution approach for a special 

class of decentralised CAP for the matching of multiple units of e-services that may share 

identical attributes and differs in quality levels. The game-theoretic and NP-hard 

computational complexities of the decentralised CAP between rational self-interested 

bidders in addition to the symmetric exchange inherent inefficiencies motivate selecting 

the economic based solution approach. Our work targets a fully symmetric exchange e-

marketplace for the double auction matching of e-services that deliver fairly adequate 

properties like truthfulness, social efficiency, strategic stability and market profitability in 

a rather weaker sense to relax the symmetric exchange game-theoretic challenges.          
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Chapter 3  

3 Literature Review 

Our approaches to designing adequate free exchange e-marketplace are multidisciplinary 

that draw concepts from microeconomics theory that studies impact of market allocations 

and pricing decision rules on bidder preferences and rational strategic conducts. Game 

theory is an essential mathematical framework for studying the models of conflict and 

cooperation among rational bidders. Our work exploits, also, the mechanism design 

theory that examines game-theoretic solution concepts for private information settings. 

The mechanism design theory uses the framework of non-cooperative games and 

incentive engineering to determine how the private preferences can be elicited. The 

combinatorial optimization and operation research analyze the problem computationally 

and help developing tractable algorithms for the matching CAP. Software engineering is 

crucial in the development and implementation of the multiagent based approaches for 

the decentralized rationality and interaction. It is a natural framework for realizing agent 

collaboration, rational self-interest and autonomy (Jennings, 2001) that map state history 

to actions and translate strategies into outcomes. The work in this chapter reviews aspects 

of the above mentioned disciplines that are relevant to the proposed free exchange model.   

3.1 Bidding Languages 

The bidding language relates to the efficient CAP across multiple bidders that requires 

the determination of their preferences over the matching allocations and then choosing an 

allocation that satisfies certain criteria. Bidders may consider bundles of substitutes or 

complements or express complex preferences over combinations of items. Bidders 

provide	2|୒|– 1 bid valuations on ܰ	 items over bundles that make it a computationally 

NP-hard problem (Sandholm, 2000) (Parkes, 2006). Furthermore, the complex semantics 

and syntactic structure of the interactions in combinatorial open systems, turn preference 

formation into a hard problem especially if preferences are uncorrelated (Dash et al., 

2003). However, combinatorial bids eliminate the “exposure problem” as in SAA 
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(Milgrom, 2004). A bid defines values for matching allocations that constrain the spaces 

of acceptable matching allocations. However, the bidding language often, confine agents 

express preferences that impact properties of the computational e-market model. In fact, 

the structure of bids, and the rules specified, often, restricts the choice of bids by bidders. 

Bid structure relates closely to e-market structure. Some common bid structures are found 

in (Kalagnanam & Parkes, 2004), like divisible and indivisible bids with price‐quantity 

pairs, divisible bids with price schedule, , bundled bids with price‐quantity pairs and 

configurable bids for multifactor items.  

The e-market model has a crucial impact on the bidding language complexity. Agents 

trading with iterative mechanism (Parkes, 2001) compute myopic best-response bundles 

using simple bidding structure. Another approach is to formulate queries about agent 

valuations (Hudson & Sandholm, 2002). Agents act in game-theoretic sense and require a 

complex form of bidding to formulate preferences. A concise and expressive bidding 

language mitigates preference elicitation problems and let agents communicate their 

valuations compactly. The work in (Boutilier & Hoos, 2001) (Boutilier, 2002), 

introduced two forms of logical bidding, ॷீ	and ॷீ஻	that allow for logical formulae of 

requests and asks where goods present atomic propositions (i.e., substitutes), combined 

using logical connective, with a price of formulae. The ॷ஻ logical bidding (Nisan, 2000) 

(Sandholm, 2000) uses bundles with related prices as atomic propositions combined 

using logical connectives. The additive‐or	ॷ୆
୓ୖ has one or more disjoint bids, and the total 

bid price is the sum of the bidder bid prices. ॷ୆
୓ୖ, is compact for particular valuations, but 

not expressive for general valuations. In exclusive‐or	ॷ୆
ଡ଼୓ୖ bids state that at most one bid 

can be accepted. The total bid price is the value of the maximal bid price across the 

bundles when multiple bundles are accepted. One can also consider nested languages, as 

OR‐of‐XORs and XOR‐of‐ORs, and a generalization, ॷ୆
୓ୖ∗ (Nisan, 2006) that supports 

constraints using phantoms, dummy goods, within atomic bids to provide more 

expressiveness and compactness.  
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The TBBL, tree-based bidding language (Cavallo et al., 2005) is a concise and expressive 

tree-structured bidding language that uses the interval to choose (IC) logical operator for 

internal nodes to combine bundles, while the leafs represent single items, facilitating by 

which a symmetric bidding for buyers and sellers. The TBBL allows agents to specify 

bounds on their true values for trades, to be refined during bidding. Computationally, the 

TBBL can be captured, concisely, in IP for the matching allocation problem. The TBBL 

uses IC operators to provide more concise representations than OR∗ or ॷୋ୆.  The	ܥܫ௡௡ሺߚሻ 

is equivalent to an AND;	ܥܫଵ
௡ሺߚሻ	is equivalent to an OR, and ܥܫଵ

ଵሺߚሻ	is equivalent to XOR 

operator. Computationally, the TBBL can be captured, concisely, in an integer program 

(IP) for the CAP. The TBBL has an IC logical operator on internal nodes coupled with 

semantics for propagating values within the tree. The TBBL uses IC operators to provide 

more concise representations than OR∗ or ॷୋ୆ (Boutilier & Hoos, 2001) (Nisan, 2006) 

(see Figure 3). Leafs of the tree are annotated with traded items and all nodes are 

annotated with changes in values. For bid tree ௜ܶ from bidder	݅, let ߚ ∈ ௜ܶ node in the 

tree, and ݒ௜ሺߚሻ ∈ Թ the value specified at node	ߚ. Let	݂ܽ݁ܮ	ሺ ௜ܶሻ 	⊆ 	 ௜ܶ the subset of 

nodes representing leafs of ௜ܶand ݈݄݀݅ܥሺߚሻ ⊆ 	 ௜ܶthe children of	ߚ. All nodes are labeled 

with operator	ܥܫ௫
௬ሺߚሻ. Each leaf ߚ is labeled as a buy or sell, with units ݍ௜ሺߚ, ݆ሻ ∈ 	Ժ for 

the impression ݆ associated with leaf	ߚ, and ݍ௜ሺߚ, ݆′ሻ ൌ 0	otherwise. Same impression j 

may simultaneously occur in multiple leafs of the tree, given the semantics of the tree. 

௫ܥܫ
௬ሺߚሻ, node (ݔ and ݕ	are non-negative integers) indicates the bidder is willing to pay 

for the satisfaction of at least ݔ and at most ݕ of her children. An extended TBBL (i.e., 

multiple parents DAG or using ܫ௔௕ ௫ܥ
௬ operator) subsumes both ܱܴ∗ and	ॷீ஻, and is more 

expressive. TBBL can express XOR, OR and XOR/OR languages (Nisan, 2006).	ܥܫ௡௡ሺߚሻ 

with ݊ children is equivalent to an AND operator; 	ܥܫଵ
௡ሺߚሻ	is equivalent to an OR 

operator; and 	ܥܫଵ
ଵሺߚሻ	is equivalent to XOR operator. 

Given a tree	 ௜ܶ, the (change in) value of a trade ߣ is defined as the sum of the values on 

all satisfied nodes, where the set of satisfied nodes is chosen to provide the maximal total 

value. Let ݐܽݏ௜	ሺߚሻ ∈ ሼ0, 1ሽ denote whether node ߚ	in tree ௜ܶ of bidder ݅ is satisfied, 
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if	ݐܽݏ௜ ൌ ሼݐܽݏ௜ሺߚሻ, 	ߚ∀ ∈ 	 ௜ܶሽ, is valid for ௜ܶ and trade	ߣ௜	ݐܽݏ௜ ∈ ሺ	݈݀݅ܽݒ ௜ܶ,   :௜ሻߣ	

ߚ∀ ∈ ሼ ௜ܶ\݂ܽ݁ܮሺ ௜ܶሻሽ	ܥܫ௫
௬ሺߚሻ, ሻߚ௜ሺݐܽݏ	ݔ ൑ ෍ ᇱሻߚ௜ሺݐܽݏ

ఉᇲ∈஼௛௜௟ௗሺఉሻ

൑  ሻߚ௜ሺݐܽݏ	ݕ

௜ݐܽݏ ∈ ሺ	݈݀݅ܽݒ	 ௜ܶ,  ௜ሻ, means the total number of units of each item requested across allߣ	

satisfied leafs is no greater than the total number of units awarded in the trade, that is:  

෍ ,ߚ௜ሺݍ ݆ሻݐܽݏ௜ሺߚሻ
ఉ∈௅௘௔௙ሺ்೔ሻ

൑ ݆∀										,	௜௝ߣ	 ∈  			ܩ

Given the constraints formulated in above two equations, the total value of trade	ߣ௜	given 

bid-tree ௜ܶ from bidder	݅, is defined as the solution to an optimization problem:  

௜ሺݒ						 ௜ܶ, ሻ	௜ߣ	 ൌ 	 max
௦௔௧೔∈	௩௔௟௜ௗ	ሺ்೔,	ఒ೔ሻ

෍ ሻߚ௜ሺݐܽݏሻߚ௜ሺݒ
ఉ∈்೔

		 

 

Figure 3: An OR*, LGB and TBBL bidding instance 

In the ॷୖ	requirement bidding (Wang et al., 2009) the atomic propositions attach value to 

the job scheduling problem, given a performance requirement is satisfied. With timeline 

discretization, agents can express time related scheduling requirements, such as release 
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times, due dates, indirectly by attaching values to various time units combinations, that 

could be NP‐hard. As shown Figure 4, the	ॷୖ	Atomic proposition (root tree nodes) 

consists mainly of a requirement (level-1 node) for completing a set of Jobs (level-2 

node) according to a Performance in SX (level-2 node) and a Price (level-1 node), an 

agent willing to pay for requirement. Performance is defined by a Measure (level-3 node) 

and Level (level-3 node). An Atomic proposition is represented by a 4‐tuple leafs൏

Jobs,Measure, Level, Price ൐.  

 

Figure 4: Requirement bidding model for job shop scheduling problem 

3.2 Game-Theoretic Concepts  

Game theory (Von Neumann & Morgenstern, 1953) (Nash Jr., 1951) is the most reliable 

theoretical framework to investigating the states of the self-interested agents in conditions 

of strategic interaction. This is in comparison to many robust tools for analyzing decision 

making in decentralized systems with multiple autonomous agents. Blending these tools 

for computational settings, provide a basis for building multiagent systems (MAS) that 

exploits computational mechanism design by applying the microeconomic principles to 

computer systems design (Dash et al., 2003).
 
Agents, often, represent distinct bidders 

with potentially conflicting goals that seek to maximize own gains, and leads, hence, to 

the strategic analysis of uncooperative games, through which a designer can impose only 

the protocols of a mechanism but can’t control which strategies agents will implement. 

The game theoretic analysis considers the following basic concepts and assumptions: An 

agent ݅ ∈ ܰ holds private information about its preferences of type	ߠ௜ ∈  ௜ of possible߆

types set, determines preference (i.e., agent’s value) for an outcome ߳݋	ࣩ over a set of 
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different outcomes of a game. The preferences 	ߠ௜ are general when they provide a 

complete and transitive preference ordering ≻	on outcomes. An ordering is complete if 

for all	݋ଵ, ଶ݋ ∈ ࣩ, we have ݋ଵ ≻ ଶ݋ ଶ or݋ ≻  ଵ (or both). An ordering is transitive if for݋

all	݋ଵ, ,ଶ݋ ଷ݋ ∈ ࣩ, if	݋ଵ ≻ ଶ݋	and	ଶ݋ ≻ ଵ݋	then	ଷ݋ ≻  ଷ. A general environment is one in݋

which there is a discrete set of possible outcomes ࣩ and agents have general preferences. 

The agent’s utility 	ݑ௜ሺ. ሻ	determines preferences over own strategy and other agent 

strategies, given its type	θ୧, and expresses utility as ݑ௜ሺ݋, 	݋	௜ሻ for outcomeߠ ∈  of the ߴ ,ߴ

set of possible outcomes that define payments or costs and matching allocations. Agent ݅ 

prefers outcome	݋ଵ ≻ ,ଵ݋௜ሺݑ		iff	ଶ݋ ௜)൐ߠ ,ଶ݋௜ሺݑ ௜ሻߠ	௜ሺݏ ݅	௜). The strategy of agentߠ ∈

௜ݏ ,.(i.e	௜ߑ	 ∶ Θ௜ →  ௜, is a contingent plan orߠ	݅ possible strategies set given	of agent’s	௜ሻߑ

decision rule(s) that defines actions an agent will chose for every state of the world. In 

addition to pure strategy, an agent can have mixed or stochastic strategy	ߪ௜ ∈ ∆ሺߑ௜ሻ, a 

probability distribution over pure strategies. The game (i.e., auction) is a set of actions 

(i.e., bids) available to an agent and a mapping from agent strategies to an outcome.  An 

agent's utility	ݑ௜ሺݏଵ … ,௟ݏ ௜ሻߠ	 ൌ ,݋௜ሺݑ  depends on agent strategies that realize strategic	௜ሻߠ

interdependence. The agent rationality relates to expected utility maximizing at which an 

agent selects a strategy that maximizes its expected utility, given the preferences	ߠ௜	over 

outcomes, beliefs about strategies of other agents, and the structure of the game. 

The mechanism	ࣧ ൌ ሺΣଵ, … , Σ௟, ग़(.))ൌ ሺΣ, ग़ሻ , is a protocol of social interactions that 

defines set of strategies Σ௜ available to each agent, an outcome rule	ग़: Σଵ ൈ …ൈ Σ௟ → ࣩ 

and payment rule	ݐ: Σଵ ൈ …ൈ Σ௟ → Ը , such that ग़(ݏ) is the outcome implemented by the 

mechanism for strategy profile	ݏ ൌ ሺݏଵ …  ࣧ implements a social	௟ሻ. The mechanismݏ

choice function  (SCF) ݂ሺߠሻ if the outcome computed with equilibrium agent strategies is 

a solution to the SCF for all possible agent preferences i.e.,	ग़൫ݏଵ
∗ሺ	ߠଵሻ, … , ௟ݏ

∗ሺ	ߠ௟ሻ൯ ൌ

݂ሺߠሻ, ∀	ሺߠଵ, … , ௟ሻߠ ∈ ଵ߆ ൈ …ൈ ଵݏሺ	௟, where strategy profile߆
∗, … , ௟ݏ

∗) is an equilibrium 

solution to the game induced by	ࣧ. The mechanism, together with the agent types, 

defines a game. Agents are assumed autonomous and economically rational that selects a 

best-response strategy to maximize their expected utility in equilibrium with other agents, 
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means no agent benefit from unilateral deviation. The mechanism design (MD) problem 

is to design a set of possible agent strategies (e.g. bid at least the ask price) and an 

outcome rule (e.g. match highest bid with lowest ask) to implement a SCF with desirable 

properties based on agent’s strategies. A desirable property is a solution concept as 

strong as possible. Dominance is preferred to Bayesian-Nash as it makes less assumption 

about agents. Game theory analyzes the outcome of a mechanism.  Generally, in auction 

theory and MD, agents are risk neutral and have quasi-linear utility functions.  

The quasi-linear utility function for agent ݅ of type	ߠ௜	is	ݑ௜ሺ݋, ௜ሻߠ	 ൌ ,ݔ௜ሺݒ	 ௜ሻߠ	 െ   .௜ݐ	

Outcome ݋ ∈ ࣩ defines a choice ݔ ∈ ࣥ from a discrete choice set and a transfer payment 

ݔ	ሻ for choiceݔ௜ሺݒ	௜ defines valuation functionߠ	௜ by the agent. The typeݐ	 ∈ ࣥ. In fact, 

ݔ ∈ ࣥ represent matching allocations (outcomes), and 	ݐ௜ transfer payments to the 

auctioneer. Risk neutrality states an expected utility maximizing agent pay as much as the 

expected value of an item. With quasi-linear preferences, the outcome of a SCF is divided 

into a choice 	ݔሺߠሻ ∈ ࣥ	and a transfer ݐ௜ሺߠሻ	∀agent	݅, i.e.,	݂ሺߠሻ ൌ ൫ݔሺߠሻ,  ሻ൯ߠ௟ሺ݌…ሻߠଵሺ݌	

ߠ∀ ൌ ሺߠଵ, … ,  in a mechanism with quasi-linear agent ,(ݏ)௟ሻ. The outcome rule, ग़ߠ

preferences, has a selected choice rule,	݇ሺݏሻ from the choice set given strategy profile ݏ, 

and selected payment rule	ݐ௜ሺݏሻ	for agent ݅	given strategy profile	ݏ. Hence, a quasi-linear 

mechanism	ࣧ ൌ ൫Σଵ, … , Σ௟, ग़ሺ. ሻ൯ ൌ ൫Σଵ, … , Σ௟, ݇ሺ. ሻ, .ଵሺݐ ሻ, … , .௟ሺݐ ሻ൯	defines strategy set 

Σ௜	available to each agent; a choice rule	݇: Σଵ ൈ …ൈ Σ௟ → ࣥ, such that ݇ሺݏሻ is the choice 

implemented for strategy profile	ݏ	 ൌ 	 ሺݏଵ, … , :௜ݐ	௟ሻ; and transfer rulesݏ Σଵ ൈ …ൈ Σ௟ → Թ, 

for each agent	݅, to compute her payment	ݐ௜ሺݏሻ. Properties of SCFs implemented by a 

mechanism can be stated separately, for both the choice selected and the payments. 

The SCF ݂ሺߠሻ ൌ ൫ݔሺߠሻ, ௜ߠ∀	ሻ൯ is Allocative-efficient (AE) ifߠሺ݌ ∈ ߠ ൌ ሺߠଵ, … ,  ௟ሻ, anߠ

efficient matching allocation maximizes total value of all agents	∑ ,ሻߠሺݔ௜ሺݒ ௜ሻߠ
ூ
௜ୀଵ ൒

∑ ,ᇱݔ௜ሺݒ ௜ሻߠ
	
௜	 ᇱݔ∀	,  ∈ ࣥ. A Mechanism ࣧ is AE if it implements an AE SCF	݂ሺߠሻ. The 

mechanism selects the choice ݔሺߠሻ ∈ ࣥ that maximizes total agents value. 

Computationally, achieving AE is a hard computational problem (NP-complete). Yet, 

there are efficient algorithms that approximate maximum social welfare that gives a SCF 
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that approximates social welfare maximization, however, is different from it.  A SCF 

݂ሺߠሻ is Budget-balanced (BB) if	∀ߠ௜ ∈ ߠ ൌ ሺߠଵ, … ,  ௟ሻ, there are no net transfers out ofߠ

the system or into the system, i.e., ∑ ሻߠ௜ሺ݌ ൌ 0௟
௜ୀଵ . A SCF ݂ሺߠሻ is weakly BB if	∀ߠ௜ ∈

ߠ ൌ ሺߠଵ, … ,  ௟ሻ, a net payment can be made from agents to the mechanism, but no netߠ

payment from the mechanism to the agents, i.e., ∑ ሻߠ௜ሺ݌ ൒ 0ூ
௜ୀଵ . A Mechanism ࣧ is 

 BB if the equilibrium net transfers to the mechanism are non-negative for all ݐݏ݋݌	ݔ݁

agent preferences, while ࣧ is ݁ݔ	݁ݐ݊ܽ BB if the equilibrium net transfers to the 

mechanism are balanced in expectation for a distribution over agent preferences. An AE 

and BB imply Pareto optimality or Pareto efficiency. Given an initial matching allocation 

of items among a set of agents, a change to a different matching allocation that makes at 

least one agent better off without making any other agent worse off is a Pareto 

improvement. An matching allocation is Pareto efficient or Pareto optimal if no further 

Pareto improvements can be made. In other words, a SCF	݂ሺߠሻ is Pareto optimal if it 

implements outcomes for which no alternative outcome is strongly preferred by at least 

one agent, and weakly preferred by other agents	∀݋′ ് ݂ሺߠሻ, ,′݋௜ሺݑ ௜ሻߠ	 ൒ ,݋௜ሺݑ ௜ሻߠ	 ⟹

∃݆ ∈ ॎ	ݑ௝൫݋′, ௝൯ߠ	 ൏ ,݋௝൫ݑ  ௝൯. A Pareto optimal mechanism implements a Paretoߠ	

optimal SCF	݂ሺߠሻ. This is ex post Pareto optimality; i.e., the outcome is Pareto optimal 

for the specific agent types. At ex ante Pareto optimality is, there is no outcome that at 

least one agent strictly prefers and all other agents weakly prefer in expectation.  

The Individual-rationality (IR), or “voluntary participation" constraints, allows an agent, 

to decide whether or not to participate. It places constraints on the level of expected 

utility that an agent receives from participation. A mechanism ࣧ is interim IR if 

∀preferences ߠ௜ it implements a SCF݂ሺߠሻ with	ݑ௜ሺ݂ሺߠ௜, ௜ሻሻିߠ	 ൒  ௜ሻ, whereߠത௜ሺݑ

,௜ߠ௜ሺ݂ሺݑ  ௜ሻሻ is the expected utility for agent ݅ at the outcome, given distributionalିߠ

information about the preferences 	ିߠ௜ of other agents, and ݑത௜ሺ	ߠ௜ሻ is the expected utility 

for non-participation. A mechanism	ࣧ, is ex post IR if agent's expected utility from 

participation is at least its best outside utility ∀ߠ௜ possible agent types, given prior beliefs 

about the preferences of other agents, a more suitable mechanism if agent can withdraw 
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once learns the outcome. A mechanism	ࣧ, is ex ante IR if agent chooses to participate 

before it even knows its own preferences; states that agent's expected utility in the 

mechanism, averaged over all possible preferences, must be at least its expected utility 

without participating, also averaged over all possible preferences (Parkes, 2001).  

Weak Monotonicity (WMON): A SCF ݂	satisfies WMON if ∀݅, ௜ିݒ∀ → 	݂ሺݒ௜, ௜ሻିݒ ൌ ܽ ്

ܾ ൌ ݂ሺݒ′௜, ௜ሺܾሻݒ௜ሺܽሻെݒ ௜ሻ implies thatିݒ ൒ ݒ ′௜ሺܽሻെݒ ′௜ሺܾሻ. If the social choice changes 

when a player changes valuation, then player must have increased more his value relative 

to his value of the old choice.  If a mechanism	ሺ݂, ଵ݌  .satisfies WMON	௡ሻ, is IC then ݂݌…

If all domains of preferences ௜ܸ are convex sets then for every SCF that satisfies WMON 

ଵ݌∃ ,௡ such that ሺ݂݌… ଵ݌  is IC. The WMON condition is a local condition for each	௡ሻ݌…

player separately and for each ିݒ௜	separately. For global characterisation, there are two 

extreme cases: when ௜ܸ is unrestricted and when severely restricted as to be essentially 

single dimensional. The intermediate range where the	 ௜ܸ’s are somewhat restricted, a 

range in which most computationally interesting problems lie, is still wide open.  

3.3 Equilibrium Solution Concepts 

A major objective of implementing, economic based MD techniques is to mitigate the 

computational limitations. In fact, economics and computations, often, intertwined, in a 

way, that facilitates resolving mutual problems. For instance, an economic equilibrium 

strategy may lead to intractable computational solution approach. Similarly, an economic 

truth-revealing equilibrium MD, may lead to optimal computationally tractable solution. 

In fact, the blend of MD economic and computing techniques to developing efficient 

mechanisms (Conitzer & Sandholm, 2002) is a potential research space. In that vein, the 

game theoretic MD investigates solution concepts for private information games, and 

often solved by a truth revealing strategy. A mechanism	ܯ	 ൌ 	 ሺߑ, ݃ሻ may implement a 

SCF in equilibrium with diverse solution concepts that predicts strategies an agent select. 

Each solution concept differs in assumptions about agents’ rationality and knowledge 

agents have about other agents. The main solution concepts may be tabled as followed: 
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Dominant Strategy Equilibrium (DSE): Each agent has a best-response strategy no matter 

what other agent strategies		S୧
∗ሺߠ௜ሻ ൌ ௌ೔ݔܽ݉݃ݎܽ ,௜ߠ௜ሺݑ ݃ሺݏ௜ሺ	ߠ௜ሻ,  ,௜ሻሻሻିߠ	௜ሺିݏ

,௜ିݏ	∀ ,௜ିߠ	∀ ௜ߠ	∀ ∈ ௜ݏ ௜ andݏ ௜. For߆
ᇱ strategies of player	݅,  ௜ domination is classifiedିݏ	∀

as (1) strict, if		ݑ௜ሺݏ௜, ௜ሻିݏ ൐ ௜ݏ௜ሺݑ
ᇱ, ,௜ݏ௜ሺݑ	௜ሻ;(2) weak ifିݏ ௜ሻିݏ ൒ ௝ݏ௜൫ݑ

ᇱ,  ௜൯  and for atିݏ

least one	ିݏ௜, ݑ௜ሺݏ௜, ௜ሻିݏ ൐ ௜ݏ௜ሺݑ
ᇱ, ,௜ݏ௜ሺݑ ௜ሻ; and (3) very weakly ifିݏ ௜ሻିݏ ൒ ௜ݏ௜ሺݑ

ᇱ,  ௜ሻ. Ifିݏ

a strategy dominates all others, then it is (strongly, weakly or very weakly) dominant.  

The DSE provides a robust solution concept as agents don’t form beliefs about other 

agents’ rationality or distribution over other agent types. The single item second price 

auction is a DSE implementation, as agents truthfully reveal bid values.  

Nash equilibrium (NE): (Nash Jr., 1951): A strategy profile ݏ ൌ ሺݏ௜,  ௜ሻ is at NE if, forିݏ

all agents	݅, ݏ௜ is a best response strategy to other agents, given their types and 

strategies	ିݏ௜:		 ௜ܵ
∗ሺߠ௜ሻ ൌ maxௌ೔݃ݎܽ ,௜ߠ௜ሺݑ ݃ሺݏ௜ሺ	ߠ௜ሻ, ܵି௜

∗ ሺିߠ௜ሻሻሻ , ,௜ିߠ∀ ௜ߠ	∀ ∈ ,௜߆  .௜ݏ	∀

Nash equilibrium is a stable strategy profile: no agent would want to change his strategy 

if she knew what strategies the other agents were following. ∀݅, ,ݏ∀ ௜ݏ	
ᇱ ്  ௜,, a strict Nashݏ

strategy profile occurs if, ݑ௜ሺݏ௜, ௜ሻ ൐ିݏ ௜ݏ௜ሺݑ
ᇱ,  ௜ሻ and a weak Nash strategy profileିݏ

occurs if ݑ௜ሺݏ௜, ௜ሻିݏ ൒ ௜ݏ௜ሺݑ
ᇱ,  is not a strict Nash equilibrium. Mixed‐strategy ݏ ௜ሻ, andିݏ

Nash equilibrium is necessarily always weak, while pure‐strategy Nash equilibrium can 

be either strict or weak, depending on the game.  

Ex post Nash equilibrium: requires common knowledge about the agents’ rationality but 

doesn’t require any knowledge about type distributions. In this sense, ex post Nash has a 

no-regret property and an agent doesn’t want to deviate from its strategy even once it 

knows the other agents’ types. English auction is an example of ex post Nash 

implementation (McAfee & McMillan, 1987), with direct bidding IC strategy of ask price 

݌ whenever ݌ ൑ ௜ݒ  for value	ݒ௜, as long as other IC agents are direct. However, direct 

bidding is not DSE (e.g. with jump bids). Formally, a profile of strategies	ݏଵ … -௡ is at exݏ

post-Nash equilibrium if	∀	߆ଵ … …ଵሻ߆	ଵሺݏ	, ௡߆	  ௡ሻ are in Nash equilibrium in the߆	௡ሺݏ	

full information game. ∀݅, ଵ߆	 … ௜ݏ	,௡߆	
′ :	ሺ߆௜, ,௜ሻ߆	௜ሺݏ ௜ሻ)൒ି߆	௜ሺିݏ ,௜߆௜ሺݑ	 ௜ݔ

′ 	,  .(௜ሻି߆	௜ሺିݏ

Ex-post Nash requires ݏ௜ሺ	߆௜ሻ be a best response to ݏ௜ሺ	ି߆௜ሻ  ∀ି߆௜, without knowing 



30 

 

 

 

 .as functions	௜ିݏ but only knowing the forms of the other players’ strategies	௜ି߆	

Let	ݏଵ … .ሺ∑ଵ	௡be an ex-post-Nash equilibrium of gameݏ	 . . ∑௡; Θଵ …Θ௡; ଵݑ …  ௡ሻ. Ifݑ	

ग़௜
′ ൌ ሼݏ௜ሺ	߆௜ሻ|߆௜ ∈ Θ௜ሽ, ଵݏ	 … ൫∑ଵ	௡is DSE in gameݏ

′ . . . ∑௡
′ ; Θଵ …Θ௡; ଵݑ   .௡൯ݑ…

Bayesian Nash equilibrium (BNE): Agents select best-response strategies and announce 

types ߠ෠௜ ∈ Θ௜ to maximize their expected utility given their beliefs about the common 

prior about distributional information of other agent types, and assuming other agents are 

following expected-utility best-response maximizing strategies, announced type ߠ෠௜ need 

not equal true type: ௜ܵ
∗ሺߠ௜ሻ ൌ maxௌ೔݃ݎܽ ఏష೔ܧ ቂݑ௜ ቀߠ෠௜	, ݃ሺݏ௜ሺ	ߠ௜ሻ, ܵି௜

∗ ሺିߠ௜ሻቁቃ , ௜ߠ	∀ ∈  .	௜߆

BNE is the weakest solution concept adopted in MD. In a BNE, every agent must hold 

both beliefs about other agents’ rationality and correct beliefs about the distribution on 

types of other agents. An example of BNE implementation is the first price sealed-bid 

auction. Comparing BNE with NE, the key difference is that agent	݅′ݏ strategy ݏ௜ሺ	ߠ௜ሻ 

must be a best response to the distribution over strategies of other agents. A refined 

solution concept is perfect BNE as applied to dynamic games of incomplete information 

(Fudenberg & Tirole, 1991). Strict incomplete information means no probabilistic 

information captured in the model, called also “pre-Bayesian”.  

Pareto optimality: Strategy profile ݏ is Pareto optimal, ݎ݋ strictly Pareto efficient, if there 

does not exist another strategy profile ݏᇱ ∈ ܵ that Pareto dominates	ݏ. A Strategy profile ݏ 

Pareto dominates strategy profile (not action profile) ݏᇱ if		∀݅ ∈ ܰ, ሻݏ௜ሺݑ ൒  ᇱሻ, andݏ௜ሺݑ

there exists some ݆ ∈ ܰ for which	ݑ௝ሺݏሻ ൐  ᇱሻ, means in a given Pareto‐dominatedݏ௝ሺݑ

strategy profile some player can be made better without making any other player worse 

off. Every game must have at least one optimum.  

Other Solution Concepts (Leyton-Brown & Shoham, 2008): (a) Maxmin: a strategy of 

player ݅ in an n‐player, general‐sum game that maximizes	݅’s worst‐case payoff in hostile 

situations where all other players play the strategies that cause the greatest harm to	݅. The 

maxmin value or security level of the game for player ݅ is max௦೔min௦ష೔ݑ௜ሺݏ௜,  ௜ሻ, thatିݏ

minimum amount of payoff guaranteed by a maxmin strategy, while the maxmin strategy 
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is	arg	max௦೔min௦ష೔ݑ௜ሺݏ௜,  ௜ሻ; (b) Minmax: A useful strategy when we want to considerିݏ

the amount that one player can punish another without regard to his own payoff. the 

minmax strategy for player ݅ against player ݆ ് ݅ is ݅ݏ a mixed‐strategy profile ିݏ௝ in the 

arg	min௦షೕmax௦ೕݑ௝ሺݏ௝,  ݆. The minmax	௝ሻ, where‐j denotes the set players other thanିݏ

value for player j is min௦షೕmax௦ೕݑ௝ሺݏ௝,  ௝ሻ; (c) Minimax Regret: In settings in which theିݏ

other agent is not believed to be malicious, but is entirely unpredictable, it makes sense 

for agents to care about minimizing their worst‐case loss, rather than maximizing their 

worst‐case payoff; (d) ઽ‐Nash; reflects the idea that players might not care about 

changing their strategies to a best response when the amount of utility that they could 

gain by doing so is very small. This leads us to the idea of ߝ‐Nash equilibrium:  Fix	ߝ ൐

0. A strategy profile ݏ	is an ߝ‐Nash equilibrium if, for all agents ݅ and for all 

strategies	ݏ௝
ᇱ ് ,௜ݏ௜ሺݑ ,௜ݏ ௜ሻିݏ ൒ ௜ݏ௜ሺݑ

ᇱ, ௜ሻିݏ െ  :and (e) Evolutionarily stable strategy ;ߝ

Roughly, a mixed strategy that  resists invasion by new strategies. 

3.4 Direct Revelation and Incentive Compatibility 

The direct revelation makes direct claims about preferences (i.e., reporting types). A 

direct-revelation mechanism (DRM) is a mechanism in which the only strategic action of 

an agent is to make direct claim	ߠ	෡about preferences. Formally, the DRM	ࣧ ൌ

൫Σଵ …Σ௟, ग़ሺ. ሻ൯, coordinates amongst agents with strategy sets	Σ௜	 ൌ  ∀݅, and delivers	௜߆

outcome rule	ग़: Σଵ ൈ …ൈ Σ௟ → ࣩ, which selects an outcome ग़൫ߠ෠൯	given reported types 

෠ߠ	 ൌ ሺߠ෠ଵ, … ,  ෠௟ሻ. The revelation principle stated under weak conditions any mechanismߠ

ࣧ can be transformed into an equivalent incentive-compatible (IC) DRM (i.e., the SCF is 

IC if it cannot be manipulated), such that it implements the same SCF, a theoretic key 

concept for analysis of impossibility and possibility results (Mas-Colell et al., 1995). The 

revelation principle for DSE implementation states any SCF that is implementable in 

DSE is implementable in strategy proof (SP) mechanism, which focuses attention at 

DRMs.  If	ࣧ	 implements SCF݂ሺ. ሻ in dominant strategy equilibrium (DSE) then ݂ሺ. ሻ	is 

truthfully implementable in DSE, i.e., SP mechanism (i.e., the SCF is SP if it never 
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rewards agents for pretending preferences other than true ones). An IC-DRM ࣧ is 

strategy-proof (SP) if truth-revelation is DSE. A mechanism ࣧ is coalition-proof if truth 

revelation is a DSE for any coalition of agents, where a coalition is able to make side 

payments and re-distribute items after the mechanism terminates. An SP-DRM satisfies 

conditions : ሺ1ሻ ∀݅	, ,௜ିݒ∀  ௜, but only on chosen outcomeݒ	௜ does not depend on݌

݂ሺݒ௜, ,௜ሻିݒ ௢݌	∃ ∈ Ը, ݋∀ ∈ ,௜ݒሺ݂	݄ݐ݅ݓ	௜ݒ∀	such that	,ߴ ௜ሻିݒ ൌ ݋ → ,௜ݒሺ݌	 ௜ሻିݒ ൌ  ௢ (2)݌

optimal for each player, ∀ݒ௜, ݂ሺݒ௜, ௜ሻିݒ ∈ 	 ሻ݋௜ሺݒ௢ሺݔܽ݉݃ݎܽ 	െ  ࣧ ௢ሻ. An IC-DRM݌

implements SCF 	݂ሺߠሻ ൌ ݃ሺߠ	ሻ, where ݃ሺߠ	ሻ,  is the outcome rule of a mechanism. The 

preference of each agent	݅	is modeled by a valuation function	ݒ௜:Α → Ը , where	ݒ௜ ∈

௜ܸ. 	 ௜ܸ 	⊆ Ը஺ is set of possible valuation functions for agent	݅. A DRM	ग is Bayesian-

Nash IC (BNE-IC) if truth-revelation is BNE. If a DRM ࣧ implements the SCF ݂ሺ. ሻ	 in 

BNE, then	݂ሺ. ሻis truthfully implementable in a BNE-IC DRM. In BNE implementation, 

though, the distribution over agent types is common knowledge to the DRM, and agents.  

The revelation principle was, initially, formulated for DSE (Gibbard, 1973), and later 

extended by (Green & Laffont, 1977) (Myerson, 1981). The outcome rule in the SP 

mechanism, 	݃ ∶ ଵߠ ൈ …	ൈ	ߠ௟ → ࣩ, equal to the SCF	݂ሺ. ሻ. DSE revelation principle 

suggests that to identify which SCFs are implementable in DSEs, just identify functions 

݂ሺ. ሻ for which truth-revelation is a DSE for agents in a DRM with outcome rule	݃ሺ. ሻ ൌ

݂ሺ. ሻ. In the absence of dummy bidders (i.e., false naming) or collusion, the second-price 

sealed-bid (Vickrey) auction is an SP DRM for the single-item matching allocation 

problem. The revelation principle states what can be achieved and what cannot, without 

stating the computational structure to achieve a particular set of properties. The IC 

captures the essence of MD, to minimizing the impact of agents’ rationality, learning, 

tactical and strategic self-interest in order to achieving a stable efficiency at economic 

and computational levels, given the bounded-computation and combinatorial complexity.  

The SP is a useful game-theoretic and computation property, at which DSE is robust to 

assumptions about information and rationality of agents. An agent, also, computes 

optimal strategy without modeling preferences and strategies of other agents. The SP-
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DRM Vickrey Clarke Groves (VCG) mechanism is a possibility that maximizes social 

welfare. However, the SP-DRMs are often expensive for agents because they place high 

demands on information revelation. In fact complete information revelation must be 

avoided in solving the combinatorial allocation problem (CAP), because agents often 

have hard combinatorial valuation problems to compute their value for any single 

outcome, and there are an exponential number of possible outcomes (deVries & Vohra, 

2003).  Iterative mechanism can sometimes implement DRM but with less information 

revelation and agent computation. In fact, computing NE in a game is difficult. It is even 

more difficult for BNE across games in which agents, owing to their continuous types, 

can play an infinite number of strategies (Nisan, 2000) (Reeves & Wellman, 2003). 

Designing IC mechanisms can mitigate strategy selection problem, especially, using DSE 

implementations. Other approaches include designing mechanisms using models of 

computationally limited agents. In the former model, the DSE MD require minimal agent 

computation (Varian, 1995).
 
However, would be a non-realistic solution concept, given 

challenges, as rationality, self-interest, strategic qualities.      

3.5 Vickrey-Clarke-Groves (VCG) Mechanisms  

The VCG mechanisms (Vickrey, 1961) (Clarke, 1971) (Groves, 1973) are one-shot 

DRMs that provide DSE solutions to the CAP. The mechanism aligns the incentives of 

bidder agents with the system-wide objective of computing an efficient  allocation. In 

fact, VCG mechanisms are, also, the only AE and SP mechanisms for agents with quasi-

linear preferences and general valuation functions, amongst DRMs (Green & Laffont, 

1977). The VCG mechanisms however, are not BB and often clear with deficit. In fact, 

one impossibility result, the Myerson-Satterthwaite theorem (Mas-Colell et al., 1995),
 

shows no AE and BB mechanism can exist in many settings, including simple exchange. 

In special cases, however, VCG mechanisms are IR and satisfy weak BB, as in VCG for 

CA. Often, BB is compromised with efficiency loss. Approaches to addressing the BB 

problem include adjusting payments to get close to VCG payments but retain BB (Parkes 

et al., 2001)
 
and IC. However, the explicit clearing of exchanges sub-optimally sacrifices 

some of AE in return for BB (McAfee, 1992). The revelation principle extends this 
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uniqueness to general mechanisms, direct or indirect (i.e., iterative). This uniqueness 

extends to GSP to achieve AE in DSE implementation must implement a VCG outcome. 

Consider a set of possible allocations,	ࣥ and agents with quasi-linear utility functions 

,௜ሺ݇ݑ	 ,௜݌	 ௜ሻߠ ൌ ,௜ሺ݇ݒ	 ௜ሻߠ	 െ ,௜݌	 ,௜ሺ݇ݒ ݇	௜ሻ agent's ݅ value for matching allocationߠ	 ∈ ࣥ, 

and 	݌௜ is her payment given type	ߠ௜ ∈  ௜ that express her valuation function. In a DRM߆

for quasi-linear preferences, the outcome rule ݃൫ߠ෠	൯	is presented in terms of choice 

rule	݇ ∶ ଵ߆	 ൈ …	ൈ	߆௟ → ࣥ, and payment rule	݌௜ ∶ ଵ߆	 ൈ …	ൈ	߆௟ → Թ, ∀݅. In VCG, 

agent ݅ reports type	ߠ෠௜ ൌ ;௜ሻߠ	௜ሺݏ ෠ߠ ൌ ሺߠ෠ଵ, … , ൯	෠ߠ݇∗൫	෠௟ሻ. The VCG choice ruleߠ ൌ

ࣥ∋max௞݃ݎܽ ∑ ,௜൫݇ݒ ෠௜൯௜ߠ	  maximizes total reported value over all agents.  The VCG 

payment rule is defined as	݌௜൫ߠ෠	൯ ൌ ݄௜൫	ߠ෠ି௜	൯ െ ∑ ,∗௜൫݇ݒ ෠௝൯௝ஷ௜ߠ	 , ݄௜: ௜ି߆ → Թ is arbitrary 

function on the reported types of every agent except	i. In fact, different choices of 

arbitrary function		h୧	make different tradeoffs across BB and IR.   

VCG mechanisms are AE and SP for agents with quasi-liner preferences. SP insures DSE 

truth-revelation, from which AE follows with	݇∗൫ߠ෠൯ ൌ ࣥ∋௞ݔܽ݉݃ݎܽ ∑ ,௜൫݇ݒ ෡௜൯௜ߠ		 . Then 

෠௜൯ߠ	௜൫ݑ ൌ ,൯	෠ߠ௜൫݇∗൫ݒ ௜൯ߠ െ ൯	෠ߠ௜൫݌ ൌ ,൯	෠ߠ௜൫݇∗൫ݒ ௜൯ߠ	 ൅෍ݒ௜൫݇∗, ෠௝൯ߠ
௝ஷ௜

െ ݄௜൫ߠ෠ି௜	൯ 

Since	݄௜൫	ߠ෠ି௜൯ is independent of agent	i's reported type; truth-revelation	ߠ෠ ൌ  :௜ solvesߠ

,ݔ௜ሺݒఏ෡೔∈௵೔ൣ	ݔܽ݉ ௜ሻߠ ൅ ∑ ,ݔ௜൫ݒ ෠௝൯௝ஷ௜ߠ ൧; ݔ ൌ ݇∗൫	ߠ෠௜,  .the outcome selected by DRM	൯	෠ି௜ߠ

The only effect of the agent's announced type 	ߠ෠௜ is on	ݔ, and the agent can maximize 

,ݔ௜ሺݒ ௜ሻߠ	 ൅ ∑ ,ݔ௜൫ݒ ෡௝൯௝ஷ௜ߠ		 	by announcing 		ߠ෡௜ ൌ  ௜ as then the mechanism computesߠ	

	݇∗൫	ߠ෠௜, ,௜ሺ݇ݒ௞∈ࣥሾݔܽ݉ :൯ to explicitly solve	෠ି௜ߠ ௜ሻߠ	 ൅ ∑ ,௝൫݇ݒ ෡௝൯௝ஷ௜ߠ		 ሿ . Truth-revelation 

is the DSE of agent	i, whatever reported types 	ߠ෠ି௜	by other agents. The effect of payment 

෠൯ߠ௜൫݌ ൌ ሺ. ሻ െ ∑ ,∗௜൫݇ݒ ෠௝൯௝ஷ௜ߠ	   is to “internalize the externality" placed on other agents 

by reported preferences of agent	݅, hence aligns incentives with system-wide goal for AE;  
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The Pivotal, or Clarke, mechanism (Clarke, 1971) is a VCG mechanism in which the 

payment rule ݄௜൫ߠ෠ି௜൯ is set to achieve (ex post) IR, and weak BB in an AE SP 

mechanism, when choice-set monotonicity, no negative externalities, and no single-agent 

effect hold with quasi-linear agent preferences. In fact, the payment rule 	݄௜൫	ߠ෠ି௜	൯ ൌ

∑ ௜൫݇ି௜ݒ
∗ ൫ߠ෠ି௜൯, ෠௝൯௝ஷ௜ߠ ݇ି௜

∗ ൫ߠ෠ି௜൯ ൌ ∑௞∈ࣥሾݔܽ݉ ,௝൫݇ݒ ෠௝൯௝ஷ௜ߠ	 ሿ delivers optimal social choice 

without agent	݅. Then each agent makes payment	݌௜൫ߠ෠௜	൯ ൌ ,௜ሺ݇ݒ –	ሺܸሺܰሻ	–		෠௜ሻߠ 	ܸሺܰ	\

	݅ሻሻ, ܸሺܰሻ is total reported value of ݇∗and ܸሺܰ	\	݅ሻ is total reported value ݇ି௜
∗ 	without 

agent	݅. The first two terms of the payment align an agent’s incentives with VCG and 

make truth-revelation a DSE. In equilibrium, each agent receives as utility the marginal 

value it contributes to the system. The Clarke mechanism is Ex post IR when two 

(sufficient) conditions hold on agent preferences: (1) Choice set monotonicity: feasible 

choice set ࣥ (weakly) increases as additional agents are introduced to the system; means 

an agent cannot “block" a selection, and (2) No negative externalities: Agent i has non-

negative value, i.e., ݒ௜൫݇ି௜
∗ , ௝൯ߠ	 ൒ 0 for any optimal solution choice, ݇ି௜

∗ ൫ߠ෠ି௜	൯	without 

agent	݅, ∀݅ and all	ߠ௜, means any choice not involving an agent has neutral (or positive) 

effect on that agent. Assume truth-revelation in equilibrium, and prove the total transfers 

are non-negative, such that the mechanism does not require a subsidy, i.e.,	∑ ሻ௜ߠ௜ሺݐ ൒ 0 

ߠ∀ ∈ Θ:  ݑ௜ሺ	ߠ௜, ௜ሻିߠ ൌ ,ሻߠ௜ሺ݇∗ሺݒ	 ௜ሻߠ	 െ ൫∑ ௜൫݇ି௜ݒ
∗ ሺିߠ௜ሻ, ௝൯௝ஷ௜ߠ	 െ ∑ ,ሻߠ௝൫݇∗ሺݒ ௝൯௝ஷ௜ߠ ൯ 

ൌ ∑ ,൯	ߠ௜൫݇∗൫ݒ ௜൯௜ߠ	 െ ∑ ௜൫݇ି௜ݒ
∗ ൫ିߠ௜	൯, ௝൯௝ஷ௜ߠ	 ൒ 0 is non-negative	∀݅, because any choice 

with agents ݆ ് ݅ is also feasible with all agents (monotonicity), and has just as much 

total value (no negative externalities). The Clarke mechanism also achieves weak budget-

balance in special-cases. A sufficient condition is the no single-agent effect: For any 

collective choice ݇ᇱ that is optimal in some scenario with all agents, i.e.,݇ᇱ ൌ

max௞∈ࣥሾ∑ ,௜ሺ݇ݒ ௜ሻ௜ߠ	 ሿ , for some ߠ ∈ Θ	then for all ݅	there must exist another choice ݇ି௜ 

that is feasible without ݅ and has as much value to the remaining agents	݆ ് ݅. In words, 

the no single-agent effect condition states that any one agent can be removed from an 

optimal system-wide solution without having a negative effect on the best choice 

available to the remaining agents. As soon as there are buyers and sellers in a market, we 
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very quickly lose even weak BB with Groves-Clarke mechanisms. The BB problem in a 

combinatorial exchange is addressed in (Parkes et al., 2001) including a number of 

methods to trade-off strategy-proofness and allocative efficiency for budget balance. 

The Generalized Vickrey Auction (GVA) applies the Pivotal mechanism on the CAP. 

Let’s allocate set ࣡	of to ॎ agents. The set of choices ࣥ ൌ ሼ	ሺ ଵܵ, … , ௟ܵሻ∗: ௜ܵ ∩ ௝ܵ ൌ

∅, ௜ܵ ⊆ ࣡ሽ where ௜ܵ is an allocation of a bundle to agent	݅. Given type	ߠ௜, each agent ݅ has 

quasi-linear utility function, ݑ௜ሺܵ, ,௜݌	 ௜ሻߠ ൌ ,௜ሺܵݒ	 ௜ሻߠ	 െ  .௜݌	௜ for bundle ܵ and payment݌	

Letݒ௜ሺܵ, ௜ሻߠ	 ൌ  :௜ሺܵሻ. The AE maximize the total valueݒ

ܵ∗ ൌ ሻ	ௌ಺	maxௌୀሺௌభ…݃ݎܽ ∑ ௜ሺݒ	 ௜ܵሻ௜∈ூ  s.t. ௜ܵ ∩ ௝ܵ=∅, ∀	݅ ് ݆. The Pivotal mechanism 

applied to this problem is a sealed-bid CA, often called the GVA. The GVA is AE, SP, IR, 

and weak BB for agents with quasi-linear preferences in the CAP. Each agent ݅ ∈ ॎ 

submits a (possibly untruthful) valuation function, ݒො௜ሺܵሻ	to the auctioneer. The outcome 

rule computes	݇∗ሺߠሻ, the allocation that maximizes reported value over all agents. In the 

GVA, this is equivalent to the auctioneer solving a winner determination problem (WDP) 

to solving the CAP with reported values and computing allocation	ܵ∗ ൌ ሺ ଵܵ
∗ … ௟ܵ

∗) to 

maximize reported value. Let	ܸ∗denote the total value of this allocation.  Allocation ܵ∗ is 

the allocation implemented by the auctioneer. The payment rule in the Pivotal mechanism 

also requires the auctioneer solve the CAP with each agent	݅ taken out in turn to 

compute	݇ି௜
∗ ൫ିߠ௜	൯, the best allocation without agent	݅. Let ൫ܵି௜	൯

∗
 denote this second-

best allocation, and ൫ܸି ௜	൯
∗
 denote its value. Finally, from Groves-Clarke payment rule 

෠൯ߠ௜൫݌ ൌ ൯	௩௜௖௞൫݅݌ ൌ ݄௜൫	ߠ෡ି௜	൯ െ ∑ ,∗௜൫݇ݒ ෡௝൯௝ஷ௜ߠ		 ; 	݄௜൫	ߠ෡ି௜൯ ൌ ∑ ௜൫݇ି௜ݒ
∗ ൫	ߠ෡ି௜	൯, ෡௝൯௝ஷ௜ߠ		 ൌ

൫ܸି ௜	൯
∗
  , the auctioneer compute agent	݅'s payment: ݌௩௜௖௞൫݅	൯ ൌ ൫ܸି ௜	൯

∗
െ ∑ ො௝ሺܵ௝ݒ

∗ሻ௝ஷ௜ . 

An agent pays the marginal negative effect that its participation has on the (reported) 

value of the other agents. Equivalently, the Vickrey payment can be formulated as a 

discount ∆௩௜௖௞ሺ݅ሻ from its bid price,	ݒෝ௜ሺ ௜ܵ
∗ሻ i.e., ݌௩௜௖௞൫݅	൯ ൌ ො௜ሺݒ ௜ܵ

∗ሻ െ ∆௩௜௖௞ሺ݅ሻ for 

Vickrey discount	∆௩௜௖௞ሺ݅ሻ ൌ ܸ∗ െ ൫ܸି ௜	൯
∗
; ሺ	ܸ∗ ൌ ො௜ሺݒ	 ௜ܵ

∗ሻ ൅	∑ ො௝ሺܵ௝ݒ
∗ሻ௝ஷ௜ 	ሻ. AE and SP 

follow from the properties of the Groves mechanism. Weak BB holds; given all agents 



37 

 

 

 

pay non-negative amounts to the auctioneer, while IR holds as agents pay no more than 

their values for bundles they receive; Alternatively, one can verify that conditions choice-

set monotonicity, no negative externalities, and no single-agent effect hold for the CAP. 

3.6 Impossibility and Possibility Results 

Impossibility theorems sketch the properties that no mechanism can achieve with rational 

agents in certain environments. The Gibbard-Satterthwaite impossibility theorem 

(Gibbard, 1973) (Satterthwaite, 1975) shows for adequate rich preferences on outcomes, 

it is impossible to implement a satisfactory non-dictatorial SCF in DSE. A SCF is 

dictatorial if one (or more) agents always receive one of its most-preferred outcomes. In 

fact, all dictatorial SCFs are SP (Mas-Colell et al., 1995). However, the impossibility 

theorem may not hold if there are: (1) additional constraints that relax agent preferences 

(e.g. quasi-linear) and reduce the onto (one to one) preference mapping to the outcomes, 

or (2) weaker implementation concept as the practical Bayesian Nash implementation. In 

fact, the e-market settings make implementation easier.  

The Hurwicz impossibility theorem (Hurwicz, 1975) states it is impossible to implement 

an AE SP and BB SCF in DSE e-market settings of simple exchange economy with 

quasi-linear preferences, even without requiring IR. (Green & Laffont, 1977) demonstrate 

no AE and SP mechanism can be safe from manipulation by coalitions, even in quasi-

linear environments. The general impossibility result follows from (Green & Laffont, 

1977) (Hurwicz, 1975) established no member of the Groves family of mechanisms has 

BB, and that the Groves family is the unique set of SP implementation rules in a simple 

exchange economy. The Myerson-Satterthwaite impossibility theorem (Myerson, 1983) 

strengthens Hurwicz impossibility to include Bayesian-Nash implementation, if interim 

IR is required. It states that it is impossible to achieve AE, BB and IR in a BN IC 

mechanism, even with quasi-linear utility functions. An immediate consequence of this 

result is that we can only hope to achieve at most two of AE, IR and BB in a e-market 

with quasi-linear agent preferences, even if we look for BN implementation.  
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A positive result is the VCG mechanisms, which are AE (but not BB) SP mechanisms in 

quasi-linear domains that clearly exhibit it is possible to implement non-dictatorial SCFs 

in more restricted domains of preferences. However, they are not efficient and strong BB. 

The possibility results are outlined by agent preferences, the equilibrium solution concept 

and the environment or problem domain. Contrary to impossibility results, for possibility 

results a strong implementation concept is more useful than a weak implementation, e.g. 

dominant is preferred to Bayesian-Nash, and a general environment such as an exchange 

is preferred to a more restricted environment such as a combinatorial auction. Groves 

mechanisms are consistent with the Gibbard-Satterthwaite impossibility theorem because 

agent preferences are not general but quasi-linear; and Groves mechanisms are consistent 

with the Hurwicz/Myerson-Satterthwaite impossibility theorems because strong BB does 

not hold. Groves’ mechanisms are not strong BB. This failure of strong BB is acceptable 

in some domains; e.g., in one-sided combinatorial auctions with single seller and multiple 

buyers it may be acceptable to achieve weak BB and transfer net payments to the seller. 

3.7 Economic Based Mechanisms 

The economic based e-market mechanisms are well rooted in the microeconomics theory, 

particularly in general equilibrium theory and mechanism design. The economic activity 

takes place in a setting of institutions that range from relatively simple arrangements, to 

complex structures (i.e., mechanisms). A mechanism models the institutions (market 

rules of encounter) that govern economic activities amongst rational agents with, often, 

private information to achieve the desired social goals. In fact, the economic based 

mechanisms are natural to respecting autonomy and information decentralization in open 

systems. Inherently, while mechanisms of interaction can be imposed from the society, 

agents have control over their own actions and chose their own strategies in response to 

the mechanism imposed. Hence, the economic theory addresses the strategic implications 

of agent’s distributed private information, often manipulated for private advantage, where 

a mechanism is modeled as a game form. The desired outcome is given by a social goal 

function (SCF). A game form (i.e., mechanism) implements a SCF “rules of a game” if 

its equilibrium coincides with outcome (i.e., optimal system-wide solution) specified by 
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the SCF in the specified game theoretic solution concept, given the risk of the strategic 

manipulation of private information. Theoretically, in microeconomics, there are two 

approaches to modeling agent behavior: (1) Game-theoretic mechanism design (MD), in 

which agents’ best-response strategy to each other drives equilibrium state, at which 

agents cannot benefit from unilateral deviations to alternative strategies. Generally, the 

game theoretical MD investigates solution concepts for private information games, in 

which the game structure directs the game's outcome. The mechanism design theory uses 

the framework of non-cooperative games with incomplete information and investigates 

how the private preference information can be elicited. In fact, mechanism design can be 

viewed as reverse engineering of games or equivalently as the art of designing the rules 

of a game to achieve specific desired outcome.  (2) Price-taking-CE, in which agents’ 

myopic best-response to the current price drives equilibrium state, without modeling 

either the strategies of other agents or the effect of its own actions on the future states.   

The computational MD (CMD), however, resolves the challenge between game-theoretic 

and computational approaches. For instance, some best game-theoretic solutions provide 

computational benefits, as in DSE implementation. However, every agent must compute 

and reveal its complete preferences over all possible outcomes. While DSE is useful 

game-theoretically, it is intractable computationally (Parkes, 2001). In fact, the economic 

MD for decentralized optimization problem exposes number of computational problems. 

Costly computations at network and distributed processing and inherent combinatorial 

complexity can burden implemented game-theoretic mechanisms. Yet, self-interest and 

computation interact in non-obvious ways, while approximate solutions can destroy IC 

properties of a mechanism, software agent bounded rationality affect MDs that cannot be 

manipulated without agent solving an intractable problem (Parkes, 2001). An efficient 

mechanism must control the computational costs of the mechanism infrastructure and the 

computational costs of the agents, while retaining useful game-theoretic properties that 

handle agent self-interest. In (Kalagnanam & Parkes, 2004) the exchange should consider 

resources, market structure, preference structure; bid structure matching supply to 

demand e-market clearing and information feedback for direct or an indirect mechanisms. 



40 

 

 

 

In (Wellman et al., 2001), for instance, e-market mechanisms solve distributed resource 

allocation problems as in market-oriented programming (MOP (Wellman, 1995)). Agents 

require and produce resources, for which their decision problem is to evaluate the trade-

offs of acquiring different resources using e-market prices. CMD specifies configuration 

of resources traded, and the mechanism that decides prices. Message of bids and prices 

are, also, concise between agents and the e-market mechanism. In fact, price systems can 

minimize the number of messages required to determine Pareto optimal allocations. Some 

mechanisms, furthermore, can elicit the information necessary to achieve Pareto optima 

in well-characterized situations, though. For instance, while first and second welfare 

theorems (Mas-Colell et al., 1995) secure strong performance of market mechanisms, 

results are formally restricted to special cases. Also, scheduling problems often exhibit 

complementarities, which violate conditions for welfare theorems or e-market protocols. 

The MD sets incentives to induce the actions that deliver specific performance and 

economize on resources that operate the institutions (i.e., informationally efficient 

mechanisms) (Hurwicz & Reiter, 2006). The incentive theory tackles the private 

information problem, either of unobserved agent action, the case of moral hazard or 

hidden action; or ignored agent private knowledge, the case of adverse selection or 

hidden knowledge (Laffont & Martimort, 2002). The MD determines the economic 

incentives to encouraging agent truthful response that leads to best social solutions. The 

MD elicits the private information to select a desirable system wide outcome, despite the 

self-interested agents, through providing enough structure to enable strong theoretical 

claims about strategies agents will select and the optimality properties of final solutions. 

In fact, microeconomics, computer science and game theory empower research design of 

algorithmic solutions that optimize agent utilities in decentralised strategic settings. The 

following is a brief description of some well-known economic based mechanisms:   

The Combinatorial Auctions (CA) determine the efficient allocations in settings with 

multiple items and agents that wish to express complements and substitutes across items 

(i.e.,, “I only want A if I can also get B” or “I only want AB or CD”). CA is implemented 
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in many settings, including wireless spectrum rights allocation, takeoff and landing slots 

at airports, and multiagent planning (deVries & Vohra, 2003).
 
For allocative efficiency, 

the VCG mechanism provides an economic solution to the CA problem (CAP). The 

agents must submit bids on all item combinations. The central controller solves, then, a 

winner-determination problem (WDP) to determine the allocation that maximizes the 

reported value given agent bids. Buyers pay their bid prices for the bundles they receive 

in the efficient allocation, minus the Vickrey discount. However, the VCG mechanism 

for the CAP has several undesirable computational characteristics. The WDP in CA is 

NP-hard and difficult to approximate i.e., equivalent to weighted set-packing problem 

(deVries & Vohra, 2003). Furthermore, it is totally centralized, with all agents reporting 

their complete and exact valuations to the auctioneer center and the center-solving 

|ܰ| ൅ 1 WDPs to determine the allocation and payments.  

The Double Auction (DA) is, often, used for the exchange mechanisms, in application 

such as stock markets (i.e., NYSE), commodity markets (i.e., CME), etc. The DA allows 

multiple buyers and sellers to trade simultaneously or sequentially at either continuous 

(CDA) or periodic (Call) clear e-market (Shubik, 2005). Given the supply and demand of 

sellers and buyers, A DA matches request and ask bids and determines a clearing price. 

While our work targets desirable e-market adequacy objectives for the DA design of the 

FX such as, IC, AE, IR, it is almost impossible for a DA to have them all as per 

impossibility results. In (McAfee, 1992) and (Wurman et al., 1998), there is no DA 

mechanism that is both efficient and IC. The adoption of exchange DA institution, 

however, can be traced to its operational simplicity, efficiency, and agility to varying e-

market conditions. Yet, the DA challenge is how to reach e-market equilibrium with AE, 

given bidders’ self-interest, rationality, private information, knowledge, strategic choice 

and repetitive learning. 

The Combinatorial Exchange (CX): combines and the DA and CA mechanisms. While in 

DA, multiple buyers and sellers trade units of identical items (McAfee, 1992), in CA, a 

single seller has multiple heterogeneous items up for sale (deVries & Vohra, 2003) 
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(Cramton et al., 2006). Buyers in CA may have complementarities or substitutabilities 

between items, and use expressive bidding languages to describe these preferences. A 

common goal in the design of DAs and CAs is to implement efficient matching 

allocations that maximize total social welfare. The CX in (Parkes et al., 2001) is a 

combinatorial DA (DA) of multiple buyers and sellers trade multiple heterogeneous 

items. CXs have been use in many applications like wireless spectrum matching 

allocation (Kwerel & Williams, 2002), and airport takeoff and landing slot matching 

allocation (Rassenti et al., 1982). CX is used, also, for expressive sourcing by multiple 

bid‐takers (Sandholm, 2008) for expressive sourcing using one‐sided CAs. The work in 

(Lubin et al., 2008) introduced the iterative combinatorial exchange (ICE) that leverage 

their proposed tree-based bidding language (TBBL) to support simultaneously buy and 

sell bidders using valuation bounds and interval connect operators. The ICE converges to 

efficient trade with truthful bidders using duality theory (i.e., primal-dual) when prices 

are sufficiently accurate. Bidders annotate TBBL trees with initial lower and upper 

bounds on values of different trades. ICE, then, identifies provisional trade and payments 

in each round, and generates provisional clearing price on each item. In each round of 

ICE, each bidder tighten bounds on bid to make precise which trade is most preferred 

given current prices. When ICE terminates, a payment rule is used to determine the 

payments made, and received, by each participant. Since AE together with BB is not 

possible in CX due to Myerson‐Satterthwaite impossibility, our work (Parkes et al., 2001) 

developed the threshold payment rule for defining final payments, which minimizes the 

 post regret for truthful bidding across BB payment rules, when holding bids from ࢞ࢋ

other participants fixed; see (Milgrom, 2007). That allows ICE to inherit truthful bidding 

(i.e.,, revising TBBL bounds to remain consistent with a bidder’s true valuation) in an ݁ݔ 

post Nash equilibrium, just as can be achieved in iterative Generalized Vickrey auctions 

(Mishra & Parkes, 2007). DAs in which truthful bidding is in DSE are known for unit 

demand settings (McAfee, 1992) and also for expressive domains (Chu & Shen, 2008). 

The Dynamic Mechanisms handles the coordinated decision making with regard to both 

dynamics of internal agent preferences and the external uncertainty about the world, The 
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external uncertainties describe decision problems in which uncertain events occur in the 

environment. The internal uncertainties, though, describe a decision problem in which 

the uncertain events occur within the scope of an bidder agent’s view of the world. The 

dynamic mechanisms are quite realistic in their ability to embrace both uncertainty occurs 

outside and within bidder agents and coordinate self-learning and deliberation processes 

(Parkes, 2007). The IC constraints, however, must hold in every period, so that The 

dynamic mechanisms continually provide incentives for the bidders to share their private 

type information with the mechanism. The dynamics include arrival and departure of 

agents with respect a mechanism’s outcome space, as well as changes to the outcomes 

that are available to a mechanism. An agent that arrives must have fixed type, and be able 

to report type, truthfully upon arrival.  The dynamics are those of information acquisition, 

learning, and updates to local goals or preferences, all which trigger changes to an agent’s 

preferences. For external uncertainty where agent’s type is static, it is sufficient to align 

incentives only until the period in which an agent makes a claim about its type. Internal 

and external uncertainty could be combined, as well, (Cavallo et al., 2010). In fact, a 

various generalization of second price auction may deliver IC for uncertain environments 

with dynamic agents’ population and where agents have general valuation functions on 

sequences of actions. In dynamic VCG mechanism, for instance, payments are defined so 

agents expected total payment from every period is the expected externality imposed by 

agents on the other agents. With external uncertainty, this property on payments needs to 

hold at agent’s arrival. For internal uncertainty, this property must hold in every period.  

The Dynamic VCG Mechanism is a generalization of the VCG mechanism to dynamic 

environments (Parkes, 2003). Payments are collected so each agent’s expected payment 

is exactly the expected externality imposed by the agent on other agents upon its arrival. 

The expected externality is the difference between the total expected discounted value to 

the other agents under optimal policy without agent	݅, and the total expected discounted 

value to other agents under the optimal policy with agent	݅. The digital VCG mechanism 

aligns incentives of agents with the social objective of following a decision policy that 

maximizes the expected total discounted value to all participants. The kind of IC 
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achieved by VCG mechanism is weaker than the DSE achieved in the static VCG 

mechanism. Rather, truthful reporting is an agent’s best response in expectation, as long 

as the probabilistic model of the mechanism is correct and agents in the current and 

future periods are truthful. This is a refinement on a BNE, referred to as a within period 

ex post NE, because an agent’s best strategy is to report its true type whatever the reports 

of other agents up to and including the current period, just as long as other agents follow 

the truthful equilibrium in future periods. It is equivalent to DSE in the final period of a 

dynamic problem, when digital VCG is equivalent to the static VCG mechanism. 

3.8 Double Auction Mechanisms  

The double two-sided double auction (DA) is often used for the exchange mechanisms in 

applications like stock markets (i.e., NYSE) and commodity markets (i.e., CME). The 

DA allows multiple buyers and sellers to trade simultaneously or sequentially at either 

continuous (CDA) or periodic (Call) clear e-market (Shubik, 2005). Given the supply and 

demand of sellers and buyers, a DA matches request and ask bids and determines a 

clearing price. A commonly used sealed bid DA matching method is equilibrium 

matching (EM) (Wurman et al., 1998) sealed‐bid DA that is IC, in which the clearing 

price does not depend on the matching bidding prices, but rather externalities. The EM 

finds a uniform equilibrium price ݌∗ that balances request-bids and ask-bids so that all 

eligible requests with price ݌ ൒ ݌ and asks with ∗݌ ൑  are matched (Friedman, March ∗݌

1993). The 4‐Heap EM algorithm (Wurman et al., 1998) implements the incentive 

compatible IC ܯ௧௛	Price auction clearing rule that sets the matching price at the ܯ௧௛ 

highest among all bids and the	ሺܯ ൅ 1ሻ௦௧	price rule at the (ܯ ൅ 1ሻ highest among all 

bids. However, IC cannot extend to multi‐unit bids, or simultaneously to buyers and 

sellers. A uniform price is normally determined by the last matchable or the first 

unmatchable pair w.r.t. the matching order. The EM DA, however, can be IC or AE, but 

not both, with some special pricing policies (McAfee, 1992) (Wurman et al., 1998). The 

adoption of DA, though, can be traced to its operational simplicity, efficiency, and high 

agility to varying e-market conditions.  
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 Delivering AE as the uniform clearing price, however, might prohibit some matchable 

bids from being matched. However, IC cannot extend to multi‐unit bids, or 

simultaneously to buyers and sellers. To maximize the number of matches, it is essential 

to allow different matches to be cleared at different prices (i.e., price discrimination). In 

fact, IC is not compatible with most desirable properties and is also hard to achieve, 

especially in dynamic/digital double auction (e.g. stock exchanges), where bids are 

entering or leaving over time and there is more than one matching to search sequentially 

(Blum, 2006) (Parkes, 2007). The work in (Zhao et al., 2010), introduced a maximal 

matching (MM) DA algorithm that maximizes market liquidity, share and auctioneer 

profit. However, while it delivers social efficiency it cannot guarantee IC. Figure 5 

depicts, for visual comparison of matching and pricing, an instance of the EM, MM and 

proposed single Q-level GSPM DA models. The GSPM DA is described in chapter 5.   

 

Figure 5: GSPM DA in comparison with other DA models 

3.9 Preference Elicitation Models 

Privacy is a concern that impact information revelation. Ascending CAs (Wurman & 

Wellman, 2000) (Ausubel et al., 2006) (Parkes, 2006) (Ausubel & Milgrom, 2006), 

minimize information requirements by posting prices on all bundles for asking bidders to 

reveal their demands at the current prices. An elicitor model proposed in (Conen & 
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Sandholm, 2001), a preference elicitation model (PEM) alternative, in which bidders 

asked for limited, and relevant, information. The PEM in CAs refers to the process, by 

which an auctioneer (elicitor) queries bidders for specific valuations, and may decide to 

ask further queries, given the sequence of responses to previous queries, or stops to 

determine a feasible matching allocation and payments. Using incremental querying, the 

auctioneer gradually builds up a partial model of bidder valuations, one that becomes 

more refined with each query, until an optimal matching allocation can be determined. 

An attribute that distinguishes the PEM is the fact specific information about preferences 

of the bidder may be relevant, given preferences of others. Thus, interleaving of queries 

among bidders offers potential reduction in elicited information (Conen & Sandholm, 

2001). The PEM in CA exploits the general elicitation framework (GEF) (Sandholm & 

Boutilier, 2006) in which forms of incremental elicitation can be casted (Conen & 

Sandholm, 2001). The GEF for PEM includes: (1) Query types (i.e., Rank, order, bound, 

value or demand); (2) Queried information models: relate to query types and structural 

assumptions elicitor makes about valuations, since different queries impose different 

constraints; and (3) Termination: a critical process at which an elicitor requires enough 

information and a certificate to reach effective closure that require IC properties. The 

algorithmic GEF for PEM may be described as followed: (1) Let ܥ௧ the updated elicitor 

information regarding bidder valuations after iteration	ܥ .ݐ଴, reflects any prior 

information available to the auctioneer; (2) Given ܥ௧, either (a) terminate the process, and 

determine an matching allocation and payments; or (b) choose a set of queries ܳ௧ to ask 

bidders; and (3) Update ܥ௧ given response(s) to query set ܳ௧ to form	ܥ௧ାଵ, and repeat.  

Preference elicitation in ICE is performed by combining two activity rules: (1) modified 

revealed	preference activity rule (MRPAR) that requires each bidder decide which trade 

is most preferred in each round; and (2) delta improvement activity rule (DIAR) that 

requires each bidder refine his bid to improve price accuracy or prove no improvement is 

possible. ICE mitigates elicitation costs by directing bidders using price discovery and 

activity rules. As bidders prefer to reveal information as required to avoid leaks to 

competitors, ICE allows bidders specify lower and upper bounds on valuations and refine 
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bounds across rounds. Bounds allow price discovery, useful preference elicitation, and 

termination with efficient trade despite iterative valuations. ICE proxy model of revealed‐

preference activity rule, coupled with linear prices, ensures incremental progress. 

Activity rules are important in practice as they mitigate opportunities for strategic 

behavior. In (Milgrom, 2004), the Milgrom‐Wilson activity rule requires a bidder to be 

active on a minimum percentage of the quantity of the spectrum for which it is eligible to 

bid, is critical component of the auction rules used by FCC for wireless spectrum 

auctions. ICE adopts a variation on the clock‐proxy auction’s RPAR.  

3.10 Winner Determination Models  

The winner determination problem (WDP) is, typically, solved by the central exchange e-

marketplace from the agents’ reported valuations (bids). The FX e-market computes the 

stable socially efficient matching of the denaturalized CAP that, often, involves solving 

an NP-hard combinatorial optimization problem (Sandholm, 2008). Some solution 

approaches include: (1) Identify and exploit one shot models through identifying 

polynomially solvable matched cases of the WDP (deVries & Vohra, 2003) (Nisan, 

2000), that are rare to qualify, (2) Use approximations close to the optimal, but easier to 

compute that requires validation of the conservation of IC properties; or (3) Use an 

indirect iterative mechanisms, however, risk desired economic properties as SP and AE. 

Indirect mechanisms requires more time to converge to competitive equilibrium (CE) for 

e-market clearing due to the multiple round ascending auction model, though saving in 

processing time due to balanced distributed computing.  The combinatorial nature of the 

problem, however, makes it difficult for two reasons. First, a bidder in an auction has an 

exponential number of choices’ combinations that he can express bids on. Consequently, 

a bidder may need to submit an exponential number of bids. Second, the WDP is NP-hard 

(Sandholm, 2008); meaning rapid solution of large-scale problems is difficult. The WDP 

is the problem of determining an efficient trade given bids. The WDP in CAs and CEs is 

NP-hard (Rothkopf et al., 1998).  
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The work in (Lubin et al., 2008) formulates the ICE WDP as IP, and solve with branch-

and-cut algorithms (Nemhauser & Wolsey, 1999). A similar approach has proved 

successful for solving the WDP in CAs (deVries & Vohra, 2003) (Sandholm & Boutilier, 

2006). The work in (Lubin et al., 2008) allow bidder ݅	report a lower and upper bound 

,ሻߚ௜ሺݒ) ߚ	 on the value of each node	ሻሻߚ௜ሺݒ ∈ ௜ܶ, and refine these bounds across rounds. 

That in turn induces valuation functions ݒ௜ሺ ௜ܶ, ௜ሺݒ	ሻ and	௜ߣ	 ௜ܶ,  ሻ. The exact value, and	௜ߣ	

thus true willingness-to-pay, remains unknown except when ݒ௜ሺߚሻ ൌ  . on all nodes	ሻߚ௜ሺݒ

The bid-tree ௜ܶ is well-formed if	ݒ௜ሺߚሻ ൑ ߚ	∀	ሻߚ௜ሺݒ ∈ ௜ܶ. In this case we 

have	ݒ௜ሺ ௜ܶ, ሻ	௜ߣ	 ൑ ௜ሺݒ ௜ܶ, ሻߚ௜ሺݒ .	௜ߣ	∀	ሻ	௜ߣ	 െ	ݒ௜ሺߚሻ	, is the value uncertainty on node	ߚ.. 

For instance, Figure 6 portrays a matching allocation problem of two bidder agents, 

Bidder1 sells one of his items	ܣ	or	ܤ if he gets Bidder2’s item	ܥ at the right price. 

Bidder2 is interested in buying either of Bidder l’s items or selling his own items, with no 

structural constraints. Efficient trade assumes	ܣ, transfers to Bidder2, and ܥ to Bidder1. 

While transferring ܥ from Bidder2 to Bidder1 may not hurt, and since that trade is a 

prerequisite for Bidder1 to sell one of his items, it should executes. Bidders can begin 

with loose bounds on valuations, and gradually tighten them in response to pricing 

information provided by the mechanism. An interpretation of a revealed-preference 

activity rule, coupled with simple linear prices, ensures progress across rounds.  

 

Figure 6: A TBBL matching allocation instance of two bidders 

The WDP model ICE in (Lubin et al., 2008), may be modeled as followed: Given a bid 

tree	 ௜ܶ ∈ ܶ ൌ ሺ	 ௜ܶ … ௡ܶሻ, ߚ ∈ ௜ܶ a node	 that satisfies trade	λ୧.Then, the WDP for bids 

tree	ܶ	and matching allocation	ݔ଴:  
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,ሺܶܦܹ ଴ሻݔ ൌ 	 ݔܽ݉
ሺఒభ,…,ఒ೙ሻ

෍ݒ௜
௜

ሺߣ௜ሻ ൌ ݔܽ݉
ఒ,௦௔௧

෍ ෍ 									ሻߚ௜ሺݐܽݏሻߚ௜ሺݒ
ఉ∈்೔௜

 

.ݏ																							 ௜௝ߣ		.ݐ ൅ ௜௝ݔ
଴ ൒ 0	, ∀݅, ∀݆													     

																																				∑ ௜௝௜ߣ ൌ 0, ∀݆																																			        

௜ݐܽݏ ∈ ሺ	݈݀݅ܽݒ	 ௜ܶ, ,௜ሻߣ	 	ݐܽݏ ; ݅∀ ൌ ሺݐܽݏଵ, . . . ,  .௡ሻݐܽݏ

ሻߚሺ	௜ݐܽݏ ∈ ሼ0, 1ሽ, 	௜௝ߣ	 ∈ Ժ								 

The decision variables represent the satisfaction of nodes and capture the logic of the 

bidding language through linear constraints; a related approach has been considered in 

application to ॷீ஻ (Boutilier, 2002). The formation determines the trade λ while in 

parallel determining the value to all bidders by activating nodes in the bid trees. Given 

reported valuation functions	ݒො ൌ ሺݒොଵ   :ො௡ሻ the VCG collects the following paymentsݒ…

௩௖௚,௜݌ ൌ 	 ௜ߣො௜ሺݒ
∗ሻ െ	൫ܸሺݒොሻ െ ܸି ௜ሺݒොሻ൯,				 

,∗ߣ
 
is the efficient trade, ܸሺݒොሻ is the reported value of this trade and ܸି ௜ሺݒොሻ is the reported 

value of the efficient trade in the economy without bidder	݅. Let’s refer to ∆௩௖௚,௜ൌ

	൫ܸሺݒොሻ െ ܸି ௜ሺݒොሻ൯,	as the VCG discount. The problem with the VCG mechanism in the 

context of a CE is that it may run at a budget deficit with the total payments negative. An 

alternative payment method is the Threshold rule of (Parkes et al., 2001):	݌௧௛௥௘௦௛,௜ ൌ

௜ߣො௜ሺݒ	
∗ሻ െ	∆௧௛௥௘௦௛,௜	, ∆௧௛௥௘௦௛,௜ , is selected to minmax regret ݉ܽݔ௜ሺ∆௩௖௚,௜ െ	∆௧௛௥௘௦௛,௜ሻ	 

subject to ∆௧௛௥௘௦௛,௜൑ 	∆௩௖௚,௜ ∀݅ and ∑ ∆௧௛௥௘௦௛,௜௜ ൑ 	ܸሺݒොሻ.	Threshold payments are BB and 

minimize the max deviation from VCG outcome across all balanced rules.  

Example Consider possible trade of the two bidders in Figure 2: If Bidder 1 trades A for 

C he gets $2 and Bidder 2 gets $7. If Bidder 1 trades B for C he gets $-2 and Bidder 2 

gets $2. If no trade occurs both bidders get $0 value. Therefore the efficient trade is to 

swap A for C.  Because the efficient trade creates a surplus of $9 and removing either 

bidder results in the null trade, both bidders have a Vickrey discount of $9. Thus if we use 
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VCG payments, Bidder 1 pays $2-$9=$-7 and Bidder 2 pays $7-$9=$-2 and the exchange 

runs at a deficit. The Threshold payment rule chooses payments that minimally deviate 

from VCG while maintaining BB. This minimization reduces the discounts to $4.50, and 

thus Bidder 1 pays $2-$4.50=$-2.50 and Bidder 2 pays $7-$4.50=$2.50. 

3.11 Digital Advertising e-Marketplaces 

The digital advertising (ad) online and mobile e-markets are a bold manifestation of the 

digital era. The ad value chain (Thomas, 2008) includes advertisers, publishers, media 

agencies, ad networks (adnet) of demand and supply side platforms, and ad exchanges 

(adx). The ad inventory is the supply of potential impressions to display to the right users 

at the right times in the right digital medium.  As many publishers can't afford to maintain 

sales force, they sell ad inventory through adnets or adxs. Publishers maximize revenues 

by selling inventory at highest average price possible, due to the fact that ad inventory is 

perishable and finite. The adnet e-marketplaces create efficiency by providing targeting 

capabilities. There are vertical adnets which focus on a particular industry and contextual 

adnets that provide e-marketplace for selling keyword-based ads (i.e., Google AdSense).  

As it is complex for Adnets to forge many cross relationships, to manage the supply-

demand unbalances, the ad adx would be the right answer, where adnets would have just 

one trading relationship, and one ‘hop’ away from each other (see Figure 7). In fact, adxs 

bring more transparency and simplify trading Ads. Nevertheless, the adx is poised to 

have a transformative effect on the digital era. While adnets will likely see better margins 

by going through the adx for inventory they can’t clear themselves; the adx will level the 

playing field in terms of inventory access. 



51 

 

 

 

 

Figure 7: Ad Networks and ad Exchanges 

The digital ad auction serves various forms like web TV ads (i.e., Google TV), contextual 

ads on search engine results pages (i.e., Google AdWords) banner ads, social networking 

Ads (i.e., Facebook Ads). The Google TV (Google, 2013) is an open smart platform that 

extends the computing capabilities and interactive user experience of any TV. In (N. 

Nisan et al., 2009), the Google TV uses simultaneous ascending auction (SAA) subject to 

over demand (Demange et al., 1986) (Cramton et al., 2006) (Milgrom, 2004) for 

Walrasian competitive equilibrium (CE) price and efficient matching allocation of TV ad 

spots.  Advertisers bid their max daily budget and cost-per-view ads on target attributes 

that influence bid valuation. Pursuing tradeoff among cost minimizing advertisers and 

revenue maximizing publishers, the work in (N. Nisan et al., 2009) proposed an auction 

matching allocation at Walrasian minimum CE prices that is Pareto optimal and IC. 

While auction increases publisher revenues by exhausting winner budgets, advertisers are 

efficiently allocated set of ads at minimum price to win with little strategic incentive to 

reduce bids. However, while IC is realized for trivial case of Walrasian CE (Demange et 

al., 1986), no Pareto optimal auction is IC with budget limits (Dobzinski et al., 2008). 

Computing demand and matching allocations is also NP-hard (i.e., knapsack problem).   

The AdWords (Google, 2013) utilizes the GSP auction. Every time a user searches on 

Google, AdWords run GSP auction and ads of relevant keywords are shown as sponsored 

links on search result page. Advertisers select keywords that trigger their ads, bid and 

PPC, however, the pay value of advertiser below them in ranking. To meet requirements, 
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the quality score (QS) measures the relevance of keywords to ad text and to a search 

query. Ads, ultimately, are ranked by max CPC-Bids× QS; the minimum advertisers pay 

to hold position ݌ሺ௝ሻܳܵሺ௝ሻ ൒ ܾሺ௝	ାଵሻܳܵሺ௝ାଵሻ ⟹ ሺ௝ሻ݌ ൌ ܾሺ௝	ାଵሻ ቀொௌ
ሺೕశభሻ

ொௌሺೕሻ
ቁ ൅  min 0=ߜሺ	ߜ

payment).  Furthermore, the higher the QS, the higher ad rank is, the lower CPC payment 

is and the better ad position. However, in the GSP auction, advertisers do not necessarily 

fare best when they truthfully reveal any private information asked for by the ad auction. 

Hence, Google’s suggested CPC bidding strategies (i.e., cost per acquisition (CPA)). 

Compared to VCG, the GSP is not proof efficient and has no equilibrium in DSE. The 

equivalent one-shot complete information game, however, proved to converge to “locally 

envy-free” equilibrium, at which the payoffs of the players are the same as in DSE of 

VCG auction, even though bids and payment rules are different. (Edelman et al., 2007), 

analyzed the generalized English auction (GEA) that depicts GSP to capture convergence 

of bidding behavior to static equilibrium. GEA is similar to English auction except 

bidders are assigned to slots in the order they drop out of the auction. Let ߙ௜ known	∀	݅, 

valuations drawn from a continuous distribution	ܨሺ൉ሻ. The user knows own valuation 

andܨሺ൉ሻ. Let	݌ሺ௞,௛,௩
ሺ೔ሻሻ ൌ ሺ௜ሻݒ െ ఈೖ

ఈೖషభ
	ሺݒሺ௜ሻ െ ܾሺ௞ାଵሻ), the price at which user ݅ drops out, 

where	݇, is no. of remaining bidders ݄ ൌ 	 ሺܾሺ௞	ାଵሻ	, . . . , ܾሺ௞ሻሻ is the history of bidders. For 

dynamic GSP, if bids can change iteratively, agents eventually learn information about 

other agents that implies equilibrium is robust independent of the underlying distribution 

an ex post BNE strategy profiles for any set of distributions of advertisers’ private values.  

(Varian, 2007), analyzed the ad position auction with complete information, based on the 

two-sided matching assignment game  (Shapley & Shubik, 1972) (Demange et al., 1986), 

and (Roth & Sotomayor, 1992). The work of (Shapley & Shubik, 1972) showed 

properties of the two-sided markets are robust to generalizations of the two-sided labour 

markets model. The ad positions (i.e., slot-s) in a web page are traded amongst 

advertisers (i.e., agent	ܽ) of valuations	ݒ௔௦ ൌ  ௦, isݔ	௔ is expected profit PPC andݒ ,௦ݔ௔ݒ

CTR. Ad agents simultaneously decide bids	ܾ௔, while each agent charged, if users click 
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on an ad slot, the bid value of agent below him in the ranking. The auction settles with 

Nash equilibrium. that is		ݑ௔௦ ൒ ௔௧ݑ	 → 	 ሺݒ௔ െ ௦ݔ௦ሻ݌ ൒ ሺݒ௔ െ   .other slots	,ݐ∀	௧ݔ௧ሻ݌

The digital ad auction model is evolving to an exchange matching model that cross trade 

e-market visibility intelligence and liquidity for the efficient matching allocation of 

digital media assets. The combinatorial exchange (CX) matching trade problem is 

tackled, for instance, in the ICE proxy architecture of (Cavallo et al., 2005), in which 

bidders submit and refine bounds on TBBL bids directly to the CX that drive price 

dynamics and ultimately clear the CX. The TBBL leads to a concise formation of the 

efficient trade problem as an IP. In fact, linear prices	ߨ	are CE prices for the CX problem, 

if there is a feasible trade	λ ∈ ࣠ሺx଴ሻ	with prices	ߨ: ௜ሻߣ௜ሺݒ െ ௜ሻߣగሺ݌ ൒ ௜ߣ௜ሺݒ
ᇱሻ െ

௜ߣగሺ݌
ᇱሻ∀ߣ௜

ᇱ ∈ ௜࣠ሺݔ଴ሻ ,∀݅ that makes λ of CE ߨ prices an efficient trade (Bikhchandani & 

Ostroy, 2002). Algorithmically, the bid tree and TBBL calculate, iteratively, based on 

myopic best response iterative auction an optimal primal and optimal dual solution to 

solve for efficient matching allocation and price 〈ݔ,  ,in a CX.  The ICE iterative model 〈݌

however, would enforce activity rules to guide preference elicitation in each round, 

ensure incremental progress and prevent free‐riding that reduce the CX to a sealed‐bid 

auction and lose desirable properties. The ICE allows bidders specify lower and upper 

bounds on valuations and refine bounds across rounds that allow price discovery, useful 

preference elicitation, and termination with efficient trade despite iterative model. While 

there are no truthful MD solutions for AE, and BB sealed bid CXs due to impossibility 

results (Myerson & Satterthwaite, 1983), any payment rule can be leveraged and would 

allow ICE to inherit truthful bidding  in an ݁ݔ post Nash equilibrium, just as can be 

achieved in iterative GVA (Mishra & Parkes, 2007). The DAs in which truthful bidding 

is in DSE are known for unit demand settings (McAfee, 1992) and also for more 

expressive domains (Chu & Shen, 2008). The free exchange (FX) secures AE and IC best 

response trade as based on the GSP matching and pricing models that maximizes the FX 

exchange revenue, rather than leaving it on deficit; as in Parkes, iterative GVA (Parkes, 

2001) that adds further steps to enforce IC, while applying payment rules as Threshold 

payment rule on final payments to resolve BB problem (Parkes et al., 2001).  
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Chapter 4  

4 RBBL: Rule Based Bidding Language  

An inspiring motivation to conveying the rule-based bidding strategies with the attribute-

values of e-services is to facilitating the free market economy natural conduct of bidders. 

Our work follows this inherent microeconomic market concept based on the shared facts 

below. As a matter of fact, the constant learning of rational bidders at repetitive trades is 

what motivates realizing the truthful strategic behaviour of bidders using the rule-based 

bidding language. The RBBL would, also, facilitates multiple trading transactions of 

rather rapid response without scarifying privacy. This is due to the automatic deduction 

and aggregation of bidding rules and attribute-values of elicited e-services that facilitates 

bid formation by the free exchange platform for rather multiple automatic transactions of 

more rapid trades. In that vein, our work presents and examines the concept of bidding 

lifecycle in the current trading mechanisms. Our work facilitates the flexible bidding 

strategic conduct using the logical rules formula as presented in the RBBL model. An 

example elaborates on the application of the RBBL messaging by bidders and the free 

exchange deliberation and formation of elicited e-services and related bids. The desirable 

properties of the RBBL is examined and theoretically verified at the end of this chapter.   

4.1 Market Economy: Insights from Microeconomics Theory 

Generally, the resource matching allocation problem amongst societies relied, primarily, 

on three institutional economies (mechanisms) (Hall & Lieberman, 2010): (1) Traditional 

economy: A fair e-market that allocates resources according to traditional practices that 

govern the fair distribution of goods and e-services. Though, predictable and stable; 

traditional markets, often, lack innovation and growth, hence, likely converge to stagnant 

economies; (2) Command economy: a central authority that plans and allocates resources 

according to explicit enforced rules; and (3) Market economy: A free market in which 

resources allocated by bidder buying and selling decision making, primarily governed by 

opportunity cost, as influenced, most often, by the society. Adam Smith, remarkably, 
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observed bidders interacting in free markets act as if guided by “invisible hand” that leads 

to desirable e-market outcomes: “[The trader] neither intends to promote the public 

interest, nor knows how much he is promoting it... he intends only his own gain, and he is 

in this… led by an invisible hand to promote an end which was not part of his intention”.  

Prices are the instrument of invisible hand in directing economic activities, reflecting 

both value of goods to a society and cost to society of making goods that, in many cases, 

maximize the welfare of society. The invisible hand, though, is less able to ensure 

economic prosperity is distributed fairly (Mankiw, 2012). Free markets reward people as 

per their ability to produce goods other people are willing to pay for. While public 

policies, as welfare, attempt to achieve fair distribution of economic well-being, the 

invisible hand leads free markets to allocate resources efficiently, works best in economy 

of perfect competition. The invisible hand is , also, not invincible to e-market failure due 

to either externalities or monopolistic power. Nevertheless, Smith’s insight ensures free 

market invisible hand of competition is better than fair e-market regulation or 

government ruled economy. The activities of buyers and sellers automatically push e-

market price for a good towards equilibrium at which buyers and sellers are satisfied, and 

there is no upward or downward pressure on prices as supply and demand for the good is 

in balance (i.e., law of supply and demand).  

Economists often advocate free markets as the best way to organize economic activities. 

After all, in free market economy, no one is looking out for the economic well-being of 

society as a whole. Despite the decentralized and self-interested decision making, the free 

market economies have proven remarkably successful in organizing economic activities 

in a way that promotes overall economic well-being (Mankiw, 2012). However, caution 

must be taken at microeconomic and computational levels to realizing and eradicating the 

adverse strategies of e-market participants as fraud, deception, adverse selection (of 

buyers of partial information) and hidden actions (i.e., moral hazard), that often, harm the 

social welfare efficiency and result in e-market failures. The mechanism design (MD) 

theory perceives an agent might unilaterally seek to manipulate an outcome. For instance, 

in Vickrey auction, if agents having the highest and second-highest valuations collude, 
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then these agents can benefit. Also, there might be bidding across mechanisms, making 

collusion harder to detect. Other strategic behaviors are snipping (submitting bids near to 

auction closing) and free riding (submitting overvalued bids with no financial shield) and 

shading. Our work advocates free e-market economy and establishes that free strategic 

conduct would eradicate, eventually, the adverse strategies driven by restrictions. 

4.2 Strategic Impact of Constant Learning  

The rationale of advocating free strategic conduct is particularly inspired by the impact of 

constant learning at repetitive trades. The learning process motivates bidders to deliberate 

about e-market disruptions and, hence, change their preferences and strategies. This type 

of strategic adjustment is perceived as a truthful and rational reaction due to learning new 

facts. The truthful strategic reaction is also driven by the invisible dynamics of the free 

market economy that stabilize the self-interest and essential needs of bidders to scarce 

assets.  The free market economy draws, eventually, a rationally collaborative bidders 

response that delivers stable efficiency. The free expression of rational conduct would, 

hence, facilitate the truthful revelation of strategic conduct. Another compelling by-

product is that the bidding automation allow for more rapid trades. The restricted bidding 

conduct would, otherwise, provoke deceitful tactics and adverse strategies that result in e-

market failures. Our work proposes, hence, the free exchange that follows the free market 

economy that proved effective in organizing economic activities for the social well-being 

despite the self-interest of bidders. However, the free exchange stable efficiency would, 

often be better realized with thicker e-markets, uncongested interaction, and safe privacy 

(Roth, 2007). Another crucial factor is implementing fair mechanisms of no monopolies.  

The limited bidding scope to free choices may be traced to the Vickrey–Clarke–Groves 

(VCG) mechanisms (Vickrey, 1961) (Clarke, 1971) (Groves, 1973) that penalize 

(internalize) bidders externality levies for reporting untrue strategic preferences, to align 

payoffs with the social welfare, rather than the desirable self-prosperity. Evidently, the 

fact e-markets penalize or inhibit strategizing incites adverse reactions that lead to e-

market failure due to incomplete or false information revelation. The adverse strategies 
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may be manifested by fraud, deception, collusion, shilling, free riding, shading, snipping 

or hidden actions. The e-markets are, mostly, more vulnerable to adverse strategies than 

classic markets. The virtual bidders may use agents to collude, form coalitions or unleash 

agents of multiple identities for false name bidding.  

The strategic aspect of natural interactions in mechanisms has an incident in the Boston 

public school (BPS) choice under “Boston Mechanism”  (Abdulkadiroglu et al., 2011), 

where smart parents strategized and gained preferred seats, the reason why it switched to 

a deferred acceptance, Stagey Proof (SP) mechanism that, literally, disables the strategic 

choices, through less intense preference elicitation, in this case, for a better social welfare 

outcome and , of course, to avoid lawsuits by unsatisfied parents. While equity is justified 

at school choice level, e-market fairness is not a natural attribute of the decentralized 

matching allocation problem. In fact, our work takes notice, not of the solution, but a 

comment by one affected parent “I’m troubled that you’re considering a system that takes 

away the little power that parents have to prioritize... what you call this strategizing as if 

strategizing is a dirty word...” (Recording from BPS Public Hearing; 05-11-04).  

The strategic impact of the repeated trades and constant learning is empirically observed 

in the first-price auction as examined by (Edelman & Ostrovsky, 2007) on Yahoo!. The 

first price auction is found unstable as bidders shade true valuations and adjust bids 

frequently in response to others in a cycling behavior strategy as shown in Figure 8 

(source: (Zhang, 2005)). The cyclic behaviour often results in slower trades and a 

potential revenue loss. The empirical evidence of bid and ranking fluctuations in the 

generalized second price auction (GSP) auction established history dependent strategies 

motivate such fluctuations. The work of (Zeithammer, 2006) analyzed eBay auctions 

using real data and observed that forward-looking bidders change strategies and actions 

once having information about future auctions. Zeithammer argued bidding true valuation 

would be too high, as it exposes the bidder to winning immediately, while losing the 

opportunity for a better price for the same item on future trades. Instead, bidders bid less 

than their valuations, a strategy referred to as “shading”. The key prediction of the theory 
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of “forward‐looking” is bidders should shade more when there are more items coming up 

for auction and when more of those items are desirable to the bidders. Such findings 

would impact, also, seller strategies, raising the question of whether eBay auction limits 

the potential of trading institutions. In fact, allowing strategic selling may change the 

bidder’s strategy. That, of course, raises the question whether current auction models are 

strategically sustainable  

In (Nisan et al., 2011), the convergence of the GSP to VCG AE outcome is due to best 

response strategies that transform partial information to complete information models at 

repeated trades. Incidentally, our work takes note of Nisan’s remark “It is quite an 

embarrassment that the pricing rule used in ad auctions, almost universally is GSP, 

rather than the more theoretically	motivated VCG which mechanism design (MD) theory 

would suggest”. While (Nisan et al., 2011) recognized the value of GSP cognitive and 

computational simplicity over VCG, yet, the theoretical analysis relate GSP stable 

efficiency to the fact GSP auction converges from uncompleted information trading 

model a complete information IC trading by implementing repeated best response truthful 

direct strategies with, indeed, continuously repeated trades. In particular, showing that 

VCG prices are equilibrium of GSP auction does not address the question of how the 

bidders may reach equilibrium without having the required information. This issue was 

also addressed by (Cary et al., 2007), who show that the GSP auction of bidders with 

repeated best response strategies, would converge to the VCG equilibrium.  The work in 

(Varian, 2007) empirically analyzed the GSP data of Google and reported similar results 

to (Edelman et al., 2007) where the complete information locally envy-free equilibrium 

of the simultaneous-move game is observed in Google ad auction fairly accurately. The 

GSP, however, limits bidder choices. For any keyword, advertisers submit single bids; 

given different ad positions that may not sufficiently convey preferences of bidders..  
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Figure 8: First price auction cyclic behaviors  

4.3 Bidding Lifecycle: Bidding Automation for Rapid Trades 

The time wasted in the bidding processes at de facto e-marketplaces is rather an annoying 

user experience. For instance, a bidding process may take hours or days for an e-Bay or 

Amazon auction. Our work examines the “bidding lifecycle” that relates to the processes 

of creation, dispatch, and expiry of the bidding process. While the bidder agents manage 

their local problems and the formation of their RBBL messages, the FX deduces and 

aggregates the bidding rules to elicit preferences, generate the requests and asks and 

computes winning matches. Hence, the bidding lifecycle would have substantial 

influence on designing mechanisms. The following is an analysis of the bidding 

lifecycles in various e-trading mechanisms: 

Iterative Bidding: commonly used in partial revelation indirect mechanisms (i.e., 

English auction, Dutch clock auction, SAA (Cramton, 2006), iBundle (Parkes, 2006)) and 

has a simple bidding structure and semantics. The bidding lifecycle expires at every 

round of a single trade and requires manual setups and bid formations. The iterative 

biddings and indirect mechanisms distribute the computational workload between agents 

and the exchange. The manual updates, however, require excessive setup times. The 
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clock auction reduces the bidding delays by enforcing a timeout constraint to promoting 

faster trades.  Figure 9 depicts the iterative bidding for the free exchange e-marketplace. 

 

Figure 9: Iterative bidding  

Proxy Iterative Bidding: extends bidding lifecycle until e-market clears in the price 

taking model for a single trade as shown Figure 10, using proxy agents (i.e., iBundle Tree 

based bidding language (TBBL) (Parkes, 2006), Ascending proxy auction (Ausubel & 

Milgrom, 2006)) with valuation bounds (i.e., budget constraints) and provisional 

allocation. The proxy iterative bidding is computationally distributed with extended 

bidding lifecycle, however, for single trades. The bidders must set the valuation bounds at 

each trade and update proxy agents. 

 

Figure 10: Proxy iterative bidding  

Bidding programs:  the complete problem model is sent to the exchange (see Figure 11) 

in the form of complex bid structure that includes the formal local problem objectives and 

constrains (Nisan, 2000). In fact, it is the other extreme of information revelation bidding 

compared to the simple iterative bidding in which the bidding lifecycle extends until the 
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problem is fully solved. However, there are inherent critical issues as found in (Parkes, 

2001) like the privacy exposure problem that makes the bidding model impractical.   

 

Figure 11: Bidding programs 

One Shot Bidding: commonly used for complete information direct mechanisms (i.e., 

First and Second sealed bid auctions, GSP, VCG). The auctioneer collects single shot 

bids in sealed auction, and computes the winner determination. The bidding lifecycle is 

rapid for single trades. However, it requires setup at each trade. The computation model 

is distributed. Agents work on valuation and bid formation; while exchange computes 

winner determination allocation and pricing outcomes (see Figure 12).   

 

Figure 12: One shot bidding  

4.4 Rule Based Biding Language (RBBL) Model 

The RBBL is an expressive bidding language that has a directed acyclic graph (DAG) 

structure. Our work combines the expressive and structural attributes of the tree based 

bidding language (TBBL) in (Cavallo et al., 2005) with those of logical languages	ॷீ	 
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and ॷ஻in (Boutilier & Hoos, 2001) that include ॷ஻
ைோ, ॷ஻

௑ைோ, ॷீ஻	and	ॷ஻
ைோ∗. In fact, the 

RBBL subsumes the expressive and structural attributes of the TBBL in (Cavallo et al., 

2005) and the logical languages	ॷீ,	 ॷ஻, ॷ஻
ைோ, ॷ஻

௑ைோ, ॷீ஻	and	ॷ஻
ைோ∗in (Boutilier & Hoos, 

2001) using the logical rule and operators formulae in the bid DAG structure and 

semantics. Our work exploits the FOL to model the rules, formulae and other attributes 

like Q-levels and budget bounds. As shown in Figure 13, the RBBL symmetric DAG 

bidding structure consists of two segments, the attribute-values segment and the logical 

rules segment. The iconic attribute of the RBBL, however, is the addition of the logical 

rule formulae to the bid DAG message, which are simple rules that attribute to the local 

constraints of bidders, while preserving their privacy, contrary to the exposure problem of 

the bidding programs in (Nisan, 2000). The RBBL enables the repetitive adjustments of 

the preferences in response to constant learning at repetitive trade disruptions. The RBBL 

logical rule formulae enable bidders to expressing their free strategic conduct. The RBBL 

is symmetric model that allows for bidding requests and asks in a single DAG structure 

that may exploit diverse models of the rule formulae. For instance, our work uses the first 

FOL to model rule formulae and other bounding attributes like Q-levels and budget. 

The RBBL semantics and structure outlines the blueprint for the deduction and formation 

of diverse e-services and bid combinations by the free exchange. The RBBL message 

comprises (1) the attribute-value segment of factor-group-value leafs. The attribute-value 

includes the attribute short description, the group identifier and initial values of attributes. 

For instance, as shown in Figure 13 the attribute-value leaf ( ଷ݂.Cap: ݃ଶ:QP,  ହ) designatesݒ

ଷ݂: capability feature of, particular group ݃ଶ: optimization solver of a quadratic 

programming problem with assigned value	ݒହ by the bidder; (2) the logical rules internal 

control nodes that may include logical operator and logical rule formulae (i.e., FOL 

rules). The rules presents the control nodes of the RBBL DAG structure with often no 

values but rules applied on values. The FOL logical rules often update the values of the 

attributes or combinations following strategic aspects of bidders and the outcome of the 

constant learning at repeated trades. For instance, the FOL rule (൓Win_Before⇒	ൌ

ሺ൅ሺݒ௫, ,ሻߝ ௫ሻݒ ∨	൑ ሺݒ௫, ܷ௫ሻሻ means, if the bidder has not won before, increase the value 
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 for next trade, as long ߝ ௫ that is the sum of the selected combined attributes by factorݒ

as	ݒ௫ ൑ ܷ௫. Evidently, the node rules often change the initial true attribute or combined 

attributes values. The selected Q-levels and max budgets may be presented explicitly as 

an attribute or implicitly as a rule. 

As shown in Figure 13, the RBBL symmetric DAG bidding structure consists of two 

segments, the attributes segment and the logical rules segment.  The RBBL model 

outlines the blueprint for inferring the diverse bid combinations by the exchange e-

market: (1) the attributes segment comprises the feature-group-value leafs of the DAG 

structure. The attributes include the attribute short description, group identifier and initial 

true values of the feature. For instant, the feature leave ( ଷ݂.Cap: ݃ଶ:QP,  ହ ) valuates theݒ

capability feature ଷ݂of the optimization solver to compute a quadratic programming 

problem ݃ଶ	for value	ݒହ; (2) the logical rules internal control nodes that may include 

logical operator and logical rule formulae (i.e., FOL rules). The rules presents the control 

nodes of the RBBL DAG structure with, often, no values but rules applied on values. The 

rules often update the values of the attributes or combinations following some strategic 

aspects being the outcome of constant learning and repeated trade disruptions. For 

instance, the FOL rule (൓Win_Before⇒	ൌ ሺ൅ሺݒ௫, ,ሻߝ ௫ሻݒ ∨	൑ ሺݒ௫, ܷ௫ሻሻ  means if the 

bidder has not won before, increase the value ݒ௫ that is the sum of the selected combined 

attributes by factor ߝ for next trade, as long as	ݒ௫ ൑ ܷ௫. Evidently, the node rules, often, 

change the initial true attribute or combined attributes values. The selected Q-levels and 

maximums budgets may be presented explicitly as an attribute or implicitly as rules.  
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The FX deliberates on the RBBL FOL rules and attribute-values to deduce the selected digital 
services and formulate the request and ask bids 

The RBBL symmetric bid structure Ц fp/c
i/j vp/c

i/j rp/c
i/j of attribute-values 

fp/c
i/j vp/c

i/j , bidding rules rp/c
i/j and activity period .

ec
i1,Qc

j1,bc
i1
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Solution Solver:v1
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f2.ID:g1.IBM Cplex 
Optimizer:v2

f2.ID:g2.Gurobi 
Optimizer:v3

f3.Cap:g1.MILP:v4

f3.Cap:g2.QP:v5

f4.Sup:
g1.Matlab:v6
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TSX=>Bid(QP)
TSX=> AND

f4.Sup:g2.Java:v6

AND
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• • • 
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=(-(vx , vx ≥(vx,Ly)

≤(BBudget,Bmax)=>
Request Bid

ec
ic,Qc

ik,bc
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• • • 

=(f2,Cplex)=>
=(+(vx , vx ≤(vx,Ux) ep

j1,Qp
j1,bp

j1

ep
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jq,Qp
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jq

• • • 

• • • 
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f3.Cap:g2.QP:v5

f1.Cat:
g2.Simulation:v6

f2.ID:g3.Matlab 
Stock Market:v7

AND

=(f5,Cloud_Proc)=>
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AND
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Figure 13: RBBL bid symmetric DAG structure 

The FX collects the RBBL DAG messages and implements the automatic preference 

deduction algorithms (not covered) on rules and attributes sets to generate the 

combinations of requests and asks rather than solving a bidding program (Nisan, 2000). 

In fact, the rules act as filters (i.e., bid constraints) to reducing the complexity of the 
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feasible solution space. The RBBL internal logical rule formulae nodes compute the new 

attribute valuations and propagate the updated values within the DAG. The logical 

operators (i.e.,	ܱܴ, ,ܦܰܣ ܱܴܺ, etc.), otherwise, combine the attributes and their current 

values for the next stage. The RBBL is expressive with more flexibility and conciseness 

that reduces the complexity of preferences to sets of attributes and rules.  

Compared with the bidding lifecycles of other mechanisms presented in literature review, 

the RBBL enables more rapid bidding lifecycle for multiple trades and hence expedites 

trades. The free exchange collects the bidding attribute-values and logical rules formulae 

to automatically deduce preferences, form bids, and computes winner determination with 

minimal preference elicitation. The RBBL facilitates, also, distributed computation, in 

which the request and ask bidders as well as the free exchange e-marketplace contribute, 

equally, in the computation and fulfillment of the social objective (see Figure 14).        

 

Figure 14: Rule based bidding  

The RBBL exploits the logical rule and operator formulae, concisely, while delivering the 

expressive semantics and structural attributes of other logical bidding languages. i.e., 

	ॷீ, ॷ஻, ॷ஻
ைோ, ॷ஻

௑ைோ, ॷீ஻	, OR‐ of‐ XORs, XOR‐ of‐ ORs, ܽ݊݀	ॷ஻
ைோ∗.	 and TBBL languages.  

The RBBL bidding process: This example illustrates the process of RBBL flexible 

bidding and the free exchange deduction and aggregation of attribute-values and logical 

rules to forming targeted e-services and associated bids. As shown in Figure 15, there are 

two levels in the automatic construction of request and ask bids by the free exchange: 
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1) Bidder action: A consumer works on mathematical modeling and simulation wishes 

to bid for any commercial optimization solver e-service with a particular preference to 

either Gurobi or IBM Cplex Optimiser solutions. For simplicity, consider the part of 

the RBBL message instance in Figure 15 that includes only two attribute-values of the 

e-service: (1) category feature (ݐܽܥ: ଵ݂) and (2) Source ID feature (ܦܫ: ଶ݂	). The 

consumer would pay ݒଵ for any solver:ሺ ଵ݂. :ݐܽܥ ଵ݃: :ݎ݁ݒ݈݋ܵ	݊݋݅ݐݑ݈݋ܵ	݈ܽ݉݅ݐ݌ܱ  (ଵݒ

and would add more ݒଶ if the solver is a component of IBM Cplex or ݒଷ if it is part of 

Gurobi Optimizer that isሺ ଶ݂. :ܦܫ ଵ݃: :ݎ݁ݖ݅݉݅ݐ݌ܱ	ܾ݅݋ݎݑܩ  ଷ).   The bidder is lookingݒ

for a Q-level൒ ܳ௫ for any solver with limited budget ܤ஻௨ௗ௚௘௧ ൑  ௠௔௫. The bidder hasܤ

a strategy, if he couldn’t win a specific trade then he would increase the bid valuation 

 in the next repetitive trade on the same e-service subject to a limited upper ߝ ௫ byݒ

bound	ݒ௫ ൑ ܷ௫ ∈ Թା,	ݒ௫ is total attribute values that fan-in to the FOL rule. The 

bidder forms flexibly and concisely the RBBL message that include his preferences on 

requested e-services in the form of attribute-values and his bidding strategies in the 

form of FOL rules as shown in a part of Figure 15 then send it to the free exchange.   

2) FX action: The FX receives the bidder RBBL message and stores it in the database. 

The FX and bidders share common semantics repository of feature-group attributes. 

The FX identifies an offer from Gurobi for a solver. The FX searches for request 

matches and identifies our consumer as an eligible buyer. The FX aggregation might 

consider, for instance, the matching of max budgets and min costs for qualifying 

eligibility before constructing bids. The FX then, automatically deliberates on the 

RBBL message and examinesሺ ଵ݂: ଵ݃: ଵ) andሺݒ ଶ݂: ଵ݃:  ଷ) attributes-values to form theݒ

requested e-services and bids. As shown in Figure 15, the red arrows indicate the 

transition state and activity flow of the logical operators on the attributes. The FX 

queries the attribute-value ሺ ଵ݂: ଵ݃:  ଵሻ being offered by seller(s) and tags it as true toݒ

indicate eligibility. The ሺ ଵ݂: ଵ݃:  ଵሻ attribute-value state transitions next to the Q-levelݒ

FOL rule (൒ ሺܳ௟௘௩௘௟,	ܳ௫ሻ ⇒ ሻ that inspect the min required Q-level. If ܳ௟௘௩௘௟݀݅ܤ ൒ ܳ௫ 

true, the active flow branches to the max budget FOL (൑ ሺܤ஻௨ௗ௚௘௧, ௠௔௫ሻܤ ⇒  ሻ and݀݅ܤ

also to bidding path of attributeሺ ଷ݂, ݃ଶ, ஻௨ௗ௚௘௧ܤ	ଷሻ. For the first bidding path, ifݒ ൑
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௠௔௫ the “true” flow, steps to the bidding expiry rule: (൑ܤ ሺݐ௔௖௧௜௩௘, ௘௫௣௜௥௔௬ሻݐ ⇒

௔௖௧௜௩௘ݐ	ሻ.  If݀݅ܤ_ݐݏ݁ݑݍܴ݁ ൑ ௘௫௣௜௥௔௬ the FX forms ሺ݁௖ଵሺݐ ଵ݂, ଵ݃ሻ: ܳ௖ଵሺܳ௟௘௩௘௟ሻ: ܾ௖ଵሺݒଵሻሻ	  

request bid 	for e-service	݁௖ଵ. The FX inspects the FOL rule (൓Win_Before⇒

	=ሺ൅ሺݒ௫, ,ሻߝ ௫ሻݒ ∨	൑ ሺݒ௫, ܷ௫ሻሻ  in the other bidding path that combines attribute-value 

ሺ ଵ݂, ଵ݃: ܳ௖: attributeሺ ݄ݐ݅ݓ		ଵሻݒ ଷ݂: ݃ଶ: ܳ௖:  ଷሻ. The FOL rule inspects the bidderݒ

winning status at repetitive trades and implements reactive strategy. The FOL rule 

increases the bid valuation ݒ௫ by ߝ in the next trade subject to upper bound	ݒ௫ ൑ ܷ௫ ∈

Թା (i.e.,	ݒ௫=	ݒଵ൅	ݒଷ ൅  is total attribute values that fan-in to the FOL rule. The FX (ߝ

constructs, then, a second request bid	ሺ݁௖ଶሺ ଵ݂, ଵ݃, ଶ݂, ݃ଶሻ: ܳ௖ଵሺܳ௟௘௩௘௟ሻ: ܾ௖ଵሺݒଵାݒଷ ൅

௔௖௧௜௩௘ݐ	 after validating	ሻሻߝ ൑  ,௘௫௣௜௥௔௬ as shown above. The FX generates, eventuallyݐ

two request bids for the e-services ݁௖ଵ	and ݁௖ଵ : ሺ݁௖ଵሺ ଵ݂, ଵ݃ሻ: ܳ௖ଵሺܳ௟௘௩௘௟ሻ: ܾ௖ଵሺݒଵሻሻ	 and 

ሺ݁௖ଶሺ ଵ݂, ଵ݃, ଶ݂, ݃ଶሻ: ܳ௖ଵሺܳ௟௘௩௘௟ሻ: ܾ௖ଵሺݒଵାݒଷ ൅  .ሻሻߝ

 

Figure 15: A sample instance of a RBBL bid structure and preference deduction 

4.5 RBBL Theoretical and Computational Properties 

Proposition 1: The RBBL logical rules and operator formulae expedites e-market trades.         
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Our work introduced and analyzed the bidding lifecycle concept that relates to the 

processes of creation (i.e., bidding), dispatch (i.e., execution) and termination (i.e., 

expiry) of bids. The bidding lifecycle captures the flow and duration of the trades. The 

RBBL logical rules and operators expedite the bidding lifecycle for multiple trades due to 

the automatic deduction and aggregation of logical rules and operators and the formation 

of the request and ask bids inside the FX system. Our work demonstrates empirically the 

performance benefits of the rules aggregation in the experimental analysis.  

Proposition 2: The RBBL subsumes the logical bidding languages (i.e., 	ॷீ, ॷ஻, , ॷீ஻	 

ॷ஻
ைோ, ॷ஻

௑ைோ, ॷ஻
ைோ∗ ) and the tree based bidding languages (i.e., TBBL).  

The RBBL exploits the DAG model and enables ॷୋ୆	, ॷ஻
ைோ, ॷ஻

௑ைோ, ॷ஻
ைோ∗and TBBL 

(Cavallo et al., 2005) semantics. For instance, the TBBL ܥܫ௬௫ operator is presented as an 

RBBL rule (i.e., ܴ1:൑ ሺActive_Attributes, ሻ∨൒ݕ ሺActive_Attribute, ሻݔ ⇒ Bid. The 

RBBL, otherwise, subsumesॷୋ୆	, ॷ஻
ைோ, ॷ஻

௑ைோ, ॷ஻
ைோ∗, as shown Figure 13, where the logical 

operators are utilized concisely. As for the bidding lifecycle, the RBBL lifecycle extend 

to multiple trades. The TBBL works for single trade; once ܥܫ௫
௬ is selected for a choice 

with bounds (Lubin et al., 2008) it cannot change unless reconfigured for new trade.  

Proposition 3: The RBBL facilitates direct and indirect mechanisms in a single message 

structure. 

The RBBL logical rule formulae may serve for single shot bidding, otherwise for rule-

based iterative or incremental. Both scenarios are shown in a single RBBL bidding 

instance in Figure 13. For the iterative bidding, the bid value is incremented or 

decremented subject to diverse rule-based inspected situations. 

Proposition 4: The RBBL allows for capturing the CAP as an integer program (IP).  

Proof:  The work in (Boutilier, 2002) defines an IP formation for winner determination 

using	ॷீ஻	and provides positive empirical performance results using a commercial solver. 

The RBBL enable the free exchange to deliberate on the FOL bidding rules and attribute-
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values of the e-services to deduce the e-services and preferences and formulate the 

request and ask bids. The FX problem model would then reduce to a form that is similar 

to the ॷீ஻	 IP in (Boutilier, 2002) as shown in Figure 13 andFigure 15. Chapter 2 expands 

on the IP formal modeling. Hence, the computational feasibility translates to the RBBL. 

Formally, given a request bid RBBL instance ݅ of consumer c as shown in Figure 15, the 

RBBL bid model is ∐ 〈 ௖݂
௜, ,௖௜ݒ ,௖௜ݎ ܳ௖௜ , ௖௜ݐ 〉௜

௖  where the notations are defined in the problem 

description. The FX may then deduce the (݁௖௜௞, ܳ௖௜௞, ܾ௖௜௞ሻ for a selected e-service ݁௖௜௞of a 

particular Q-level ܳ௖௜௞and compute the total bid value	ܾ௖௜௞ of a trade ߣ௧௜௝௞௤ that is the true 

sum of attribute value RBBL leafs ൫ ௖݂
௜,  ௖௜൯ and bid value revisions as applied by theݒ

active rules of the RBBL internal control nodes	൫ݎ௖௜൯ before expiry	ݐ௖௜  (i.e., 	ܾ௖௜௞ ൌ

∑ ሺݒ ௖݂
௜ሻ ൅ ௖௜ሻ௞ݎሺݒ ሻ. The AE allocative efficiency indicates the set of selected satisfied 

attribute and control rules provide a max true total bid valuation. Given an RBBL 

message, ∐ 〈. 〉௜
௖  and a bid-value ܾ௖௜௞(݁௖௜௞ሻ for e-service ݁௖௜௞ in tradeߣ௧௜௝௞௤, let ݐܽݏ௖௜ሺ݊ሻ ∈

ሼ0, 1ሽ denote if the attribute-value leaf or the active rule internal control node ݊	in the 

RBBL bid ݅ of consumer c	ሺi. e. , ∐ 〈. 〉௜
௖ ሻ is satisfied with	if	ݐܽݏ௖௜ ൌ ൛ݐܽݏ௖௜ሺ݊ሻ, ∀݊ ∈ ∐ 〈. 〉௜

௖ ൟ. 

For	ݐܽݏ௖௜  to be eligible for bid, 	∀∐ 〈. 〉௜
௖ , ௧௜௝௞௤ߣ∀ ⇒ ௖௜ݐܽݏ ∈ ∐ሺ	݈݀݅ܽݒ 〈. 〉௜

௖ ,  ௧௜௝௞௤ሻ  means aߣ

given request (ask) is matched. The total value is the solution to the IP problem:  

ܾ௖௜௞൫݁௖௜௞൯ ൌ ௖௜௞ݒ ቆሡ 〈. 〉
௜

௖
, ௧௜௝௞௤ቇߣ ൌ 	 ݔܽ݉

	௦௔௧೎
೔∈	௩௔௟௜ௗ	൫∐ 〈.〉೔

೎ ,ఒ೟೔ೕೖ೜൯
෍ ௖௜ሺ݊ሻݐܽݏ	௖௜௞ሺ݊ሻݒ	

௡∈∐ 〈.〉೔
೎

		 

ܾ௣
௝௤൫݁௣

௝௤൯ ൌ ௣ݒ
௝௤ ቆሡ 〈. 〉

௝

௣
, ௧௜௝௞௤ቇߣ ൌ 	 ݉݅݊

	௦௔௧೛
ೕ∈	௩௔௟௜ௗ	ቀ∐ 〈.〉ೕ

೛ ,ఒ೟೔ೕೖ೜ቁ
෍ ௣ݒ

௝௤ሺ݊ሻݐܽݏ௣
௝ሺ݊ሻ

௡∈∐ 〈.〉ೕ
೛

 

This formation is equivalent to the IP mode of the original problem model in chapter 2∎.   
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Figure 16: RBBL bid instance for IP analysis 

This chapter presents the RBBL modeling and analysis, The RBBL model exploits the 

logical rules and operators formulae on the internal control nodes coupled with the 

semantics for propagating attribute-values leafs within the RBBL DAG structure. The 

RBBL is inspired by the constant learning of rational bidders throughout their repetitive 

e-trades. The RBBL facilitates conveying the free bidding strategic conduct using the 

logical rules and operators formulae. The logical rules expedite e-market trades due to 

automatic deduction of the rules, operators and attribute-values to construct the selected 

e-services and to form the relevant request and ask bids. The RBBL allows for symmetric 

bidding of consumers and providers with unique valuations of factor-group e-service 

attributes that include multiple Q-levels. For an ad problem, the attribute may be an age 

group, location or interest.  For a software app, the attribute can be e-service ID, 

capability, category, etc. The RBBL subsumes other logical bidding languages and is 

suitable for direct and indirect mechanisms. It allows, also, for capturing the CAP as an 

integer program (IP) for winner determination problem. 



71 

 

 

 

Chapter 5  

5 GSPM Double Auction Mechanism  

Our work targets a tractable GSP based DA approach that delivers truthful, efficient and 

stable matching with the proposed free exchange e-marketplace profitability. The GSPM 

DA exploits the multiple Q-levels cross-matching heuristics for a class of decentralised 

CAP of multiple units of a single e-service of distinct attribute-values and multiple Q-

levels. The RBBL allows for a unique valuation of each attribute while conveying the 

logical rules in the bidding structure. The free exchange employs the rules deduction, 

aggregation and formation on the stored attribute-value attributes of the RBBL to 

generate the multiple request and ask bids for a specific trade. Our work is motivated by 

the fact while GSP is not IC, the GSP repeated best response strategies (BBS) always 

converge to NE with VCG AE IC outcomes and payments, as analyzed and validated in 

(Edelman & Ostrovsky, 2007) (Varian, 2007) and (Nisan et al., 2011). The GSPM 

exploits the efficient GSP auction and the Nash stability of GSP repeated best response 

auction. The GSPM is tractable of polynomial time complexity. In fact, the best response 

strategy is, evidently, the rational strategic reaction to constant learning at repetitive 

trades that transform private settings to complete information stability.  

The GSPM DA follows the EM for single Q-level matching allocation while it applies the 

GSP discriminatory DA price matching model that exploits the forward and reverse GSP 

auctions as described in later sections. The GSPM pricing model narrows down the 

valuation preferencing space of request (ask) bidders to the second price in descending 

(ascending) order that results in AE, particularly, in thick e-market repetitive trades, 

while securing e-market profitability. However, while the single Q-level GSPM DA is 

AE, it might not be IC for multiple units of single items (McAfee, 1992) (Wurman et al., 

1998). The IC challenge of single Q-level GSPM DA inspires designing the multiple Q-

level mechanism that motivates the IC of bidders through their desire to be winners in the 
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narrower, more competitive Q-levels, in addition to the prospect that their true valuations 

might win them a higher Q-level e-service item in the multiple Q-level cross-matching.  

This chapter presents the different single Q-level and multiple Q-levels GSPM and EM 

DA algorithms. The chapter covers also the game-theoretic and computational properties 

of the GSPM DA mechanisms as well as the simulation algorithmic structure.  

5.1 Exchange Mechanisms 

The exchange mechanisms are emerging e-trading models for e-marketplaces that enable 

consumers to target potential users for, often, spontaneous impact throughout interactive 

user engagement and rational configuration. The exchange brings efficiency by eliciting 

prices, aggregating information, matching trades, and generating capital. The Facebook 

FBX, Google DoubleClick, Yahoo RMX, and Microsoft ad Exchange are few examples 

of the exchange e-marketplaces. The objective of the exchange mechanism is the stable 

and socially efficient matching allocation and pricing of the e-services. That, often, 

involves the rational self-interested agents of both providers and consumers (bidders). 

The bidders interact and collaborate probably at real-time given, often, their competitive 

local objectives to accept at equilibrium a system-wide outcome that satisfies them. The 

decentralized collaboration cannot, however, be modeled and implemented using the 

centralized models. This is due to the inherent challenges that tackle the decentralized 

and often conflicting local objectives of rational bidders, their constraints, preferences 

and valuations, decision making, self-interest, truth revelation and strategic conduct.     

Building an efficient exchange, hence, is a daunting task. The large number of e-service 

providers and consumers that bid for the e-services at real-time by interacting with is a 

key challenge that strains, considerably, the computational resources of e-marketplaces. 

The present exchange e-marketplaces would, often, tackle those challenges, for bounded 

rational agents in rather constrained non-strategic settings. However, the e-marketplaces 

are typically challenged with issues related to the decentralized game-theoretic stability 

and social efficiency amongst rational bidders on top of the computational efficiency.  
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5.2 GSPM and EM Double Auction Mechanisms  

As shown Figure 17 and Figure   18, the GSPM DA allocation rule follows the 

Equilibrium Matching (EM) (Wurman et al., 1998) for single Q-level and multiple Q-

levels settings. Hence, our work examines the single Q-level EM DA (see Figure 19). 

The proposed Single Q-level GSPM DA pricing rule exploits the GSP forward auction 

for buyers (Varian, 2007) (Edelman et al., 2007) and reverse-GSP auction for sellers. The 

forward and reverse GSP DA narrows down the pricing tolerance of request and ask 

bidders to the second price in rank that improves stable efficiency, particularly, in thicker 

e-markers, while securing e-market profitability. The fact while the single Q-level GSPM 

and EM DA mechanisms are AE, it might not be IC for multiple units of single items, 

inspires designing the multiple Q-level GSPM and EM DA mechanisms for the class of 

multiple units of multiple Q-level items that motivates IC. The bidders IC is motivated by 

their desire to be winners in the narrower Q-level category, in addition to the prospect 

their true valuations might win bidders even a higher Q-level item in the cross-matching 

phase. Our work maintains, though, that the partial information revelation of bidders 

converge to complete information settings at best response strategist to repetitive trades 

that translates eventually, to a stable efficiency for all mechanisms subject to the best 

rational reaction of bidders to their dynamic states. This is formally analyzed in (Nisan et 

al., 2011). It is, also, validated through our experimental analysis.  Figure   18 and Figure   

20 presents the multiple Q-level GSPM and EM DA mechanisms.   

5.2.1 Single Q-level GSPM Double Auction Mechanism 

The single Q-level GSPM DA follows the EM DA (Wurman et al., 1998) in computing 

the matching allocations. However, our work proposes a forward-GSP auction pricing 

rule for buyers, and a reverse-GSP auction pricing rule for sellers for the multiple units of 

a single-item of multiple attributes as shown in Figure 17, steps are as follows:  

1) Qualify request and ask bids’ eligibility by fetching and grouping bids of identical e-

service attributes (i.e., 	݁௖௜௞=݁௣
௝௤ሻ. 

2) Sort the eligible asks	ܾ௣
௝௤ in ascending order for forward-GSP auction and sort the 
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eligible bids ܾ௖௜௞in descending order for reverse-GSP auction with respect to request 

and ask values.  

3) Matching: start at the top, add ask‐request pairs to the matched list, if request-bid price 

ܾ௖௜௞ ൒ ܾ௣
௝௤	ask-bid price.  

4) Compute the GSPM allocations and assign matched pairs ൫݁௖௜௞, ݁௣
௝௤൯ to the winning 

buyers ܥ௜	and sellers ௝ܲ.  

5) Assign prices such that	݌௖௜௞ ൌ ܾ௖௜௞ାଵ, ܿ௣
௝௤ ൌ ܾ௣

௝௤ାଵ ∀݌௖௜௞, ܿ௉
௝௤ ∈ሼԹା, 0ሽ. Every bid 

winner pays the second price below him in the bids ordered list, while every ask 
winner collects the second price below him in ordered list. For the last pair, if 

matched: 	݌௖௜௡ ൌ ܾ௖௜௡, ܿ௣
௝௡ ൌ ܾ௣

௝௡. Ask or bid bidders pays his bid or collects his ask. 

 

Figure 17: Single Q-level GSPM DA mechanism 

5.2.2 Multiple Q-levels GSPM Double Auction Mechanism 

The multiple Q-levels GSPM DA computes the allocation and pricing rules for multiple 

units of a single-item of multiple attributes, and multiple Q-levels. While the ask bidders 

offers the same particular e-service item, items are distinct in the assigned Q-levels. The 

bid bidders request the same e-service item, however, they are different in their minimum 
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requested Q-levels. The multiple Q-level GSPM sorts the Q-levels and applies a 

multilevel cross-matching allocation as shown Figure   18:  

1) Sort Q-levels in descending order starting with the highest. 

2) Group the request and ask bids based on sorted Q-levels such that∀	݁௖௜௞ ൌ

݁௉
௝௤,݉݅݊ ܳ௖௜௞ ൌ ܳ௉

௝௤ ൌ 	ܳ௠;	∀ܳ െ ݈݁ݒ݈݁ ൌ ܳ௠.   

3) For each Q-level, qualify the item eligibility by identifying and grouping the eligible 

requests and asks of identical e-service item attributes (i.e.,	݁௖௜௞ ൌ ݁௣
௝௤ሻ.  

4) For each Q-level, sort the eligible asks	ܾ௣
௝௤ in ascending order for forward-GSP 

auction and the eligible bids ܾ௖௜௞in descending order for reverse-GSP auction.  

5) Start at the top of first highest Q-level list in rank (i.e.,	ܳ െ ݈݁ݒ݈݁ ൌ ܳ௠௔௫ሻ. Add the 

ask‐bid pairs to the matched list ifܾ௖௜௞ ൒ ܾ௣
௝௤ ∧ ݉݅݊ ܳ௖௜௞ ൌ ܳ௉

௝௤ ൌ 	ܳ௠.  

6) Step to the next lowest Q-level in rankܳ െ ݈݁ݒ݈݁ ൌ ܳ௠ିଵ. Consider the unmatched 

asks ܾ௣
ఫ௤തതതത of the same or higher Q-levels from previous steps (i.e.,ܳ௉

ఫ௤തതതതത ൒ ܳ௠ିଵ). Add 

the ask‐bid pairs to the matched list ifܾ௖௜௞ ൒ ܾ௣
ఫ௤തതതത ∧ ݉݅݊ܳ௖௜௞ ൑ ܳ௉

ఫ௤തതതതത.  

7) The chance of winning higher Q-level e-services motivates the IC truthful revelation 
of the consumers. The providers’ IC is driven by getting more prospective consumers.   

8) Compute the matching allocations and assign the matched pairs	൫݁௖௜௞, ݁௣
௝௤൯ to the 

winning buyers ܥ௜	sellers ௝ܲ.  

9) At each Q-level, apply the GSPM pricing rule, as in single Q-level	݌௖௜௞ ൌ ܾ௖௜௞ାଵ, ܿ௣
௝௤ ൌ

ܾ௣
௝௤ାଵ ∀݌௖௜௞, ܿ௉

௝௤	∈ሼԹା, 0ሽ, ∀ܳ. For the last pair in each Q-level, if matched, then 

௖௜௡݌	 ൌ ܾ௖௜௡, ܿ௣
௝௡ =ܾ௣

௝௡.  every bidder pays his bid or collects his ask. 
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Figure   18: Multiple Q-level GSPM double auction 

5.2.3 Single Q-level EM Double Auction Mechanism 

The single Q-level Mth  EM DA follows (Wurman et al., 1998) in computing the 

matching allocation and the Mth pricing (last matched ask price) rule (see Figure 19) for 

multiple units of a single-item of multiple attributes of a single Q-level. The work use this 

base models for the proposed multiple Q-level, EM DA. The following steps describe the 

single Q-level Mth EM DA:          

1) Qualify the eligibility by identifying and grouping the request and ask of identical e-

service item attributes (i.e.,	݁௖௜௞ ൌ ݁௣
௝௤ሻ.  

2) Sort the eligible asks	ܾ௣
௝௤ in ascending order and sort bids ܾ௖௜௞in descending order.  

3) Process the matching: start at the top, add the ask‐request pairs to the matched list, if 

the bid price ܾ௖௜௞ ൒ ܾ௣
௝௤	more or equal the ask price for the eligible pairs.  

4) Compute the matching allocation list and assign matched pairs	൫݁௖௜௞, ݁௣
௝௤൯ to the 

winning buyers ܥ௜	and sellers	 ௝ܲ.  
5) Compute the EM Mth equilibrium pricing rule ܾ௣ெ as the last matched ask price (i.e., 

ܾ௣ெ ൌ ܾ௣
௝ାଷ). Assign prices such that	݌௖௜௞ ൌ ܿ௣

௝௤ ൌ ܾ௣ெ ∀݌௖௜௞, ∀ܿ௉
௝௤ 	∈ ሼԹା, 0ሽ.  
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Figure 19: Single Q-level Mth EM double auction  

5.2.4 Multiple Q-level Mth EM Double Auction Mechanism 

Our work extends the single Q-level Mth EM and proposes a multiple Q-level EM DA 

that exploits a multiple EM points for the multiple Q-levels in computing the allocations 

and the pricing. The multiple Q-level, Mth EM DA follows the matching allocation of the 

multiple Q-level, GSPM DA. The multiple Q-level Mth EM DA applies a multiple cross-

level matching allocation as described below and shown in Figure   20. The following 

steps describe the subject multiple Q-level Mth EM DA mechanism: 

1) Sort the Q-levels in descending order. 

2) Group all request and ask bids based on the sorted Q-levels such that	∀݁௖௜௞ ൌ

݁௉
௝௤,݉݅݊ ܳ௖௜௞ ൌ ܳ௉

௝௤ ൌ ܳ௠;	∀ܳ െ ݈݁ݒ݈݁ ൌ ܳ௠.   
3) For each Q-level, qualify the eligibility by identifying and grouping the eligible 

requests and asks of identical e-service item attributes (i.e.,	݁௖௜௞ ൌ ݁௣
௝௤ሻ.  

4) For each Q-level, sort the eligible asks	ܾ௣
௝௤ in an ascending order and the eligible bids 

ܾ௖௜௞in a descending order.  

5) Start at the top of the highest Q-level in rank (ܳ ൌ ܳ௠௔௫ሻ. Add the ask‐bid pairs to the 

matched list if  ܾ௖௜௞ ൒ ܾ௣
௝௤ ∧ ݉݅݊ ܳ௖௜௞ ൌ ܳ௉

௝௤ ൌ 	ܳ௠.  
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6) Step to the next lower Q-level in rank (ܳ ൌ ܳ௠ିଵ). Consider all unmatched asks ܾ௣
ఫ௤തതതത 

of the same or higher Q-levels (from pervious steps) (i.e., ܳ௉
ఫ௤തതതതത ൒ ܳ௠ିଵ). Add the ask‐

bid pairs to the matched list if  ܾ௖௜௞ ൒ ܾ௣
ఫ௤തതതത ∧ ݉݅݊ ܳ௖௜௞ ൑ ܳ௉

ఫ௤തതതതത.  

7) Compute the matching allocations and assign the matched pairs	൫݁௖௜௞, ݁௣
௝௤൯ to the 

winning buyers ܥ௜	and sellers	 ௝ܲ.  

8) Within each ܳ ൌ ܳ௠ level, apply the Mth price rule (last matched ask price) such 

that	݌௖௜௞ ൌ ܿ௣
௝௤ ൌ ܾ௣ெ ∀݌௖௜௞, ∀ܿ௉

௝௤ ∈ ሼԹା, 0ሽ, ∀݉݅݊ܳ௖௜௞ ൌ ܳ௉
௝௤ ൌ ܳ௠. The Mth   price 

ܾ௣ெ, is the last matched ask price. For instance, as shown in Figure   20, there are 

multiple EM points (i.e.,ሺܾ௣ଶ, ܳ௠	),ሺܾ௣
௝ାଵ, ܳ௠ିଵሻሺܾ௣

௝ାଶ, ܳ௠ିଶ	), (ܾ௣௠, ܳଵ	)). In the case 

that the matching occurs at multiple Q-levels (i.e., ሺܾ௖௜ିଶ, ܳ௠ିଵ	ሻ andሺܾ௣ଶ, ܳ௠ሻ	), then 

apply the multiple Q-level cross matching allocation ሺ݅. ݁. ௖௜ିଶ݌ ൌ ܾ௣ଶሻ that is the Mth 

matching price of ܳ௠ level.  

 

Figure   20: Multiple Q-level Mth EM double auction 

5.3 GSPM Economic and Computational Properties 

Definition 1: [GSPM and EM allocation rule]: Let ܲ ∪  the set of exclusive request		,ܥ

and ask bidders ܲ ∩ ܥ ൌ ∅ as per the problem model assumption. Let ी ൌ ी௉ ∪ ी஼ the 
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set of eligible provider asks ܾ௣
௝௤ ∈ ी௉ and consumer bids	ܾ௖௜௞ ∈ ी஼ of the same offered 

and requested e-service (i.e.,	݁௖௜௞ ൌ ݁௉
௝௤) except for their Q-levels. Sort Q-levels in 

descending order and group bids ܾ௣
௝௤	and asks ܾ௖௜௞ based on the sorted Q-levels such that, 

∀	݁௖௜௞ ൌ ݁௉
௝௤ , ݉݅݊ܳ௖௜௞ ൌ ܳ௉

௝௤ ∀ ܳ ൌ ܳ௠ (i.e.,	݉݅݊ ܳ௖௜௞ ൌ ܳ௉
௝௤ ൌ 	ܳ௠ሻ.  Then sort bids 

(asks) in descending (ascending) order within each Q-level. Start at the top of the list of 

the highest Q-level (i.e.,	ܳ௠ ൌ ܳ௠௔௫ሻ. Add the ask‐bid pairs to a particular Q-level 

matched list ै௠ if	ܾ௖௜௞ ൒ ܾ௣
௝௤ ∧ ݉݅݊ܳ௖௜௞ ൌ ܳ௉

௝௤ ൌ ܳ௠. Step to the next Q-level (i.e.,ܳ ൌ

ܳ௠ିଵ). Consider unmatched asks ܾ௣
ఫ௤തതതത of the same or higher Q-levels (i.e.,ܳ௉

ఫ௤തതതതത ൒ ܳ௠ିଵ). 

Add the ask‐bid pairs to the matched list ै௠ିଵif ܾ௖௜௞ ൒ ܾ௣
ఫ௤തതതത ∧ ݉݅݊ܳ௖௜௞ ൑ ܳ௉

ఫ௤തതതതത and so on 

until all eligible bids are matched.   

Definition 2: [GSPM pricing rule]: the seller ask price for	݉ ∈ ሼ1…ܯ െ 1ሽ<ܯ	matched 

pair within any particular Q-level is		݌௉ሺܾ௣௠, ܾ௖௠ሻ ൌ ܾ௉ሺܾ௣௠ାଵሻ, the price of the second 

lower seller ask in rank	൫ܾ௣௠ାଵ൯. The buyer bid price for a matched pair is	݌௖൫ܾ௣௠, ܾ௖௠൯ ൌ

 ܾ௖௠ାଵሻ. For the last match in a	௖ሺܾ௖௠ାଵሻ, the price of second lower buyer bid in rankሺ݌

particular Q-level	݉ ൌ  buyers and sellers pay their exact request and ,ܯ

ask	݌௉൫ܾ௣ெ, ܾ௖ெ൯ ൌ ,௖ሺܾ௣ெ݌	௉ሺܾ௖ெሻ; and݌ ܾ௖ெሻ ൌ   .(௖ሺܾ௖ெ݌

Definition 3: [Single Q-Levels EM Mth Pricing Rule]: the ask-bidder price for ݉ ∈

ሼ1…ܯሽ	matched pair within a particular Q-level is	݌௉ሺܾ௣௠, ܾ௖௠ሻ ൌ  ௉ሺܾ௣ெሻ, the ask price݌

of the last matched pair	൫ܾ௣ெ൯ within the Q-level. The request-bidder price for a matched 

pair is	݌௖൫ܾ௣௠, ܾ௖௠൯ =݌௖൫ܾ௣ெ൯, the ask-price of the last matched pairሺܾ௣ெሻ within the Q-

level.  

Definition 4: [Multiple Q-Levels EM Mth Pricing Rule]: the ask-bidder price for 

݉ ∈ ሼ1…ܯሽ	matched pair within a particular Q-level (i.e.,	ܳ௣௠ ൌ ܳ௖௠) is		݌௉ሺܾ௣௠, ܾ௖௠ሻ ൌ

൫ܾ௣ெ൯ within ܳ௣௠	௉ሺܾ௣ெሻ, the ask price of the last matched pair݌ ൌ ܳ௖௠ Q-level. The 

request-bidder price for a matched pair is	݌௖൫ܾ௣௠, ܾ௖௠൯ =݌௖൫ܾ௣ெ൯, the ask-price of the last 

matched pair	ሺܾ௣ெሻ within ܳ௣௠ ൌ ܳ௖௠ Q-level. For the multiple Q-levels cross-matching 
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cases (i.e., (ሺܾ௣௠, ܳ௣௠ା௥ሻ	ሺܾ௖௠, ܳ௖௠ሻሻ, ݉, ,௉൫ܾ௣௠݌ .are integers ݎ ܾ௖௠൯ ൌ ,௖൫ܾ௣௠݌ ܾ௖௠൯ ൌ

 ௉ሺܾ௣ெᇱሻ the ask price of the last matched pairs of the higher Q-level ܳ௣௠ା௥ for requests݌

and asks.  

Theorem 1: The VCG mechanisms (Vickrey, 1961) (Clarke, 1971) (Groves, 1973) are 

the only AE and SP mechanisms for bidder agents with quasi-linear preferences and 

general valuation functions amongst direct revelation mechanisms. 

Theorem 2: The GSPM DA mechanism is allocative efficient (AE). The GSPM DA 

maximizes the aggregate utilities of request and ask bidders by maximizing the aggregate 

bid values of buyers and minimizing the aggregate ask values of sellers.  

Proof: Consider a set of matching allocations	ࣥ for buyer agents	݆	of quasi-linear 

utility	ݑ௝൫݇, ,௝݌	 ௝൯ߠ ൌ ,௝൫݇ݒ ௝൯ߠ െ .௝ሺݒ∀	;௝≥ 0݌ ሻ is buyer ݆ bid value for the matching 

allocation 	݇ ∈ ࣥ; ௝ߠ	௝ is buyer ݆ payment given type݌∀ ∈  utility	݅	௝. Let seller agents߆

,௜ሺ݇ݑ ܿ௜, ௜ሻߠ ൌ ܿ௜ െ ,௜ሺ݇ݒ ௜ሻߠ ൒ 0; .௜ሺݒ∀ ሻ  is seller ݅ ask value for allocation	݇ ∈ ࣥ, 	∀ܿ௜ 

is seller	݅ collection given typeߠ௜ ∈  ௜. Then, the social choice exchange mechanism߆

outcome ݃൫ߠ෠	൯ ൌ ቀ݇൫ߠ෠൯, :݇	෠൯ቁ is AE, ∀matching ruleߠ൫݌ ଵ߆ ൈ …ൈ	߆௟ → ࣥ, ∀pricing 

rule	݌௜, 	 ௝ܿ:	߆ଵ ൈ …ൈ ௟߆ → Թ, and reported types	ߠ෠ ൌ ሺߠ෠ଵ  :݂݂݅ ෠௟ሻߠ…

	݇∗൫ߠ෠൯ ൌ ݔܽ݉݃ݎܽ
௞∈ࣥ

෍ݒ௝൫݇, ෠௝൯ߠ ൅
௝

݊݅݉݃ݎܽ
௞∈ࣥ

෍ݒ௜൫݇, ෠௜൯ߠ
௜

	∀݇ ∈ ࣥ 

	݇∗൫ߠ෠	൯ ൌ ݔܽ݉݃ݎܽ
௞∈ࣥ

ሺ෍ݒ௝൫݇, ෠௝൯ߠ	 െ
௝

෍ݒ௜൫݇, ෠௜൯ሻߠ	
௜

, ∀	݇ ∈ ࣥ 

Following the above analysis, and as presented in chapter 2, given an instance 

,ሺܾܺܨ Q, ,ߣ 	߬௧	ሻ	at period		߬௧, then the GSPM AE	ߣ∗௧	trade maximizes the collective bid 

values of buyers (i.e., ݒሺ݁௖௜௞ሻ ൌ ܾ௖௜௞), and minimizes the collective ask values of 

sellers(i.e.,	ݒሺ݁௣
௝௤ሻ ൌ 	ܾ௣

௝௤) at multiple Q-levels. The above equations are equivalent to 
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equation (2) as shown in chapter 2. The AE social welfare objective of the CAP in (2) 

maps, hence, to maximizing the total utilities the net FX e-market profit.  

Forward-GSP auction max bid valuations: A max buyer bid is her true value for a 

matching allocation. The buyer often strategizes by shading (lowering) her true bid value 

to increase utility. Consider the case of a unit-demand forward-GSP auction of a single 

Q-level e-service (i.e., similar factor-groups, from multiple sellers), then under the GSP 

auction rule, the best-response strategies of bidders converge to VCG efficient outcome, 

which is the only AE SP for agents with quasi-linear preferences (Edelman et al., 2007) 

(Varian, 2007) (Nisan et al., 2011)(see Theorem 1). The best-response true bids guarantee 

higher positions in the matched list that allow for the best wining chance while paying a 

lower second bid price in order. Also, bidders may risk losing possible matching 

allocation if they lower prices below the lowest matched pair. Furthermore, in the 

multiple Q-level matching, bidders would have a chance to win a better e-service item of 

higher Q-level using the multiple Q-levels cross-matching. In Definition 2, the 

݉௧௛	highest buyer bid	ܾ௖௠ and charged ݌௖௠ ൌ 	ܾ௖௠ାଵ for a winning match. Her 

utility	ݑ∗ሺ݉	ሻ ൌ ܾ௖௠ െ ௖௠݌ ൌ ܾ௖௠ െ ܾ௖௠ାଵ ൒ 0	since	ܾ௖௠ ൒ ܾ௖௠ାଵ. There is also no 

incentive if the ݉௧௛ bidder switches bids with the one above her in rankݑሺ݉ሻ ൌ ܾ௖௠ െ

௖௠ିଵ݌ ൌ ܾ௖௠ െ ܾ௖௠ ൌ 0 ൑ ܾ௖௠ െ ܾ௖௠ାଵ. Hence, the GSPM achieves maximum (max) true 

bids for buyers at best response strategies.  

Reverse GSP auction minimum ask valuations: a min seller ask is her true cost for a 

matching allocation. The seller often strategizes by shading (rising) her true cost value to 

increase utility. The AE Reverse GSP auction of the min ask bidders is equivalent to the 

AE Forward GSP auction of the max bid bidders as presented in chapter 2. hence the 

same argument of the forward GSP auction is applied. The best-response true asks 

guarantee higher positions in the matched list that allow for best winning chance, while 

collecting a higher second ask price in order. Also, the ask sellers may risk losing 

possible matching allocation if they raise prices higher than the highest matched pair. 

Moreover, in the multiple Q-level matching, the sellers would have a better chance to win 

a buyer from the lower Q-levels using the multiple Q-levels cross-matching∎. 
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Definition 5: [Nash Equilibrium (NE)]: the NE “Symmetric NE (Varian, 2007)” of the 

simultaneous move game induced by the GSP auction is locally envy-free if an ask or bid 

bidder cannot improve her payoff by exchanging bids or asks with the bidder ranked one 

position above her” (Edelman et al., 2007). 

Theorem 3: The GSPM DA has NE with VCG AE outcomes in IC manner with repeated 

best response.  

Proof: consider the forward and reverse unit-demand GSP auctions for AE max bid 

buyers and min ask sellers. Using the analysis of (Edelman et al., 2007) for envy-free 

Nash equilibrium that is equivalent to the “Symmetric NE” (Varian, 2007) and the 

analysis in (Nisan et al., 2011), though IC is not dominant strategy under GSP, the full 

information GSP auction of the locally envy-free bidders and repeated best response 

strategies converges to NE with VCG AE outcomes in IC manner. In the GSP auction, 

there is no strategy profile from which all players but one do not wish to deviate and that 

strictly prefers to NE reached if all players follow the repeated best‐response strategies, a 

necessary argument to establish the IC of best‐response GSP auctions (i.e.,∄ state	ݏ ൌ

ሺݏଵ, … , ௡ሻݏ ∈ ܵ, and player	݅ ∈ ሾ݉ሿ such that	∀݆ ്  ݏ is a best‐response to	௝ݏ ,݅

and	ݑ௜ሺݏሻ ൐  ሻሻ. In fact, unstable bidders would pay a price as high as the paymentܧ௜ሺܰݑ

of the bidder who gets it in the VCG outcome, and thus, the unstable bidder would prefer 

to be allocated it in the VCG outcomes that require the IC of players. In GSPM DA if any 

buyer or seller agent ݅ maximizes expected utility with strategy	ݏ௜, given its preferences 

and strategy of other agents then the strategy profile ݏ ൌ ሺݏଵ, … ,  ሻ is at NE state (Nash	௟ݏ

Jr., 1951), at which	ݑ௜ሺݏ௜ሺߠ௜ሻ, ,௜ሻିߠ௜ሺିݏ ௜ሻߠ ൒ ௜ݏ௜ሺݑ
ᇱሺߠ௜ሻ, ,௜ሻିߠ௜ሺିݏ ,௜ሻߠ ௜ݏ∀

ᇱ ്  ௜. NE inݏ

GSPM requires every agent have perfect information about preferences of every other 

agent, agent rationality, and agents must all select the same Nash equilibrium∎.  

Definition 6: [budget-balance (BB)] A social choice matching function ݃൫ߠ෠	൯ ൌ

ቀ݇൫ߠ෠൯, ෠ߠ෠൯ቁ is FX post BB if ∀preferencesߠ൫݌ ൌ ൫ߠ෠ଵ :෠௟൯ߠ… ∑ ෠൯ߠ௜൫݌ ൌ 0௟
௜ୀଵ ; no into or 

out transfers to the exchange. The AE and BB imply Pareto optimality. The ݃൫ߠ෠	൯	is FX 

post weak BB if∀ߠ෠:	∑ ෠൯ߠ௜൫݌ ൒ 0ூ
௜ୀଵ ;  
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Theorem 4: The GSPM DA is weak BB that secures e-market profitability and grows 

with thick trades.  

Proof: In theorem 1, the AE social matching objective of the GSPM DA in of equation 

(2) maps to maximizing the net FX e-market profit ݉ܽݔ	ఒ೟ೂ ∑ ∑ ∑ ∑ ௧௜௝௞௤ߣ
ொ௝௣

௤ୀଵ
௜௖
௞ୀଵ

௠
௝ୀଵ

௡
௜ୀଵ ൫݌௖௜௞ െ ܿ௣

௝௤൯ ൒

0	that is always positive, as the GSPM DA requires that ݌௖௜௞ ൒ ܿ௣
௝௤ as a condition for 

matching. As per Definition 1, the eligible criteria of the GSPM matching (i.e.,	݁௖௜௞ ൌ

݁௉
௝௤ ∧ ܳ௖௜௞ ൒ 	ܳ௉

௝௤ሻ is that ܾ௖௜௞ ≥ܾ௣
௝௤. However, as per the GSPM pricing rules of Definition 

2: 	ܾ௖௜௞ ൒ ௖௜௞൫ൌ݌ ܾ௖௜௞ାଵ൯	for second bid in rank and ݌௖௜௞൫ൌ ܾ௖௜௞ାଵ൯ ൒ ܿ௣
௝௤ሺൌ ܾ௣

௝௤ାଵሻ for 

matching state, then	݌௖௜௞ ൒ ܿ௣
௝௤. Hence, the GSPM DA maximizes the e-market 

profitability that grows thicker e-market trades. As ܾ௣௠ାଵ ൒ ܾ௖௠ାଵ based on the matching 

rule requirement, the e-market profit is	∑ ෠൯ߠ௜൫݌ ൌ௜ୀ௠ ܾ௣௠ାଵ െ ܾ௖௠ାଵ ൒ 0, ∀݉. For the 

last match	ܯ, the buyer (seller) pays (collects) his bid (ask).∎   

Definition 6 [Bidder Rationality (IR)]: A mechanism ࣧ is IR if for all preferences ߠ௜ it 

implements a SCF ݂ሺߠሻ with	ݑ௜ሺ݂ሺ	ߠ௜, ௜ሻሻିߠ	 ൒ ,௜ߠ	௜ሺ݂ሺݑ ,௜ሻߠ	ത௜ሺݑ  ௜ሻሻ, is the expectedିߠ	

utility for agent ݅ at outcome, given prior beliefs about others preferences 

distribution	ିߠ௜	and	ݑത௜ሺ	ߠ௜ሻ is the expected utility for non-participation. ࣧ is ex post IR 

if an agent can withdraw once learns the outcome, in which expected utility from 

participation must be at least its best outside utility for all possible types of agent.  

Theorem 5: The GSPM DA is ex-post Bidder Rational (IR), VCG AE and SP with quasi-

linear agent preferences monotonic choice-set and no negative externalities.  

Proof: The GSPM, VCG based exchange is IR when two sufficient conditions hold on 

agent preferences (Parkes, 2001): (1) Choice set monotonicity: feasible choice set ࣥ 

increases as more agents introduced; means an agent cannot “block" a selection, and (2) 

No negative externalities: Agent ݅ has non-negative value, i.e., ݒ௜൫݇ି௜
∗ , ௝൯ߠ	 ൒ 0, means 

any choice not involving an agent has a neutral (or positive) effect on that agent. To show 

ex post IR, the utility to agent ݅ in the VCG equilibrium outcome of the GSPM must 

always be non-negative, given IC in equilibrium. The utility to agent ݅with type	ߠ௜is: 



84 

 

 

 

,௜ߠ	௜ሺݑ ௜ሻିߠ	 ൌ ,ሻ	ߠ௜ሺ݇∗ሺݒ	 ௜ሻߠ	 െ ቌ෍ݒ௜൫݇ି௜
∗ ሺିߠ௜	ሻ, ௝൯ߠ	

௝ஷ௜

െ෍ݒ௝൫݇∗ሺߠሻ, ௝൯ߠ	
௝ஷ௜

ቍ 

,௜ߠ	௜ሺݑ ௜ሻିߠ	 ൌ෍ݒ௜ሺ݇∗ሺߠ	ሻ, ௜ሻߠ	
௜

െ෍ݒ௜൫݇ି௜
∗ ሺିߠ௜	ሻ, ௝൯ߠ	 ൌ ܸ∗ െ ሺܸି ௜	ሻ∗

௝ஷ௜

 

ܸ∗ െ ൫ܸି ௜	൯
∗
 is non-negative because the value of the AE solution without agent	݅,	ܸି ௜ 

cannot be greater than the value of the AE solution with agent	݅	ܸ∗, as any choice with 

agents ݆ ് ݅ is also feasible with all agents (monotonicity), and has just as much total 

value (no negative externalities).∎ 

5.4 GSPM and EM Algorithmic Structure   

The GSPM Algorithms follow the free market economy model and compute different 

cost or payment prices for the matched winners. The multiple Q-levels e-services CAP 

extends the complexity of the multiple-unit auction, as the cross-matching are dependent. 

The bidders might be assigned an e-service of the same Q-level or higher contrary to the 

independent multiple unit demand auctions. The simulation model allows for repetitive 

trades, in which the FX applies the stored RBBL logical rules and operators for 

preference deduction and request and ask bid formation at each trade to capture the 

bidder dynamic reactions to disruptions at constant learning. Request and ask bids are 

either bounded by the min/max true attribute valuations or unbounded.  

The implemented algorithms and the activity flow structure of the simulated GSPM and 

EM double auction  mechanisms includes: (1) initial non repetitive setting stage that 

instantiates the simulation code variables, generates the random true and first traded 

requests and asks with random Q-levels, and implements the GSPM/EM e-trading 

algorithms for the non-repetitive stage, and (2) repetitive e-trading stage that revaluates 

the requests and asks based on the same instance of logical bidding rules of bidders. The 

rules examine the current and previous win and lose states of all bidders and compute 

accordingly the next move of request and ask revaluation. The stage implements, then, 
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the GSPM/ EM e-trading algorithms, repetitively until the last preset trades (i.e., twenty 

trades). The outline of the algorithmic flow model of the two stages is tabled as followed:  

I. The Initial Settings Stage 

 Generate the initial true ask and request bid valuations. (All Algorithms) 

 Generate the initial random traded bids. (All Algorithms) 

 Generate the random Q-levels for all bids.  (Multiple Q-level Algorithms) 

 Generate the random Q-levels for all bids. (Single Q-level Algorithms) 

 Sort Q-levels in descend order. Group, then, the true and traded requests and asks 

of each Q-level according to the sorted Q-levels. (All Algorithms) 

 Sort the true and traded requests and asks of each Q-level group. (All Algorithms) 

 Matching allocation for true and traded requests and asks. (All Algorithms)  

 GSPM Pricing and Metrics of true bids without learning.  

 EM Pricing and metrics for true bids without learning.   

II. The Repetitive e-Trading Stage with RBBL and GSPM Simulated Dynamics: 

 GSPM Pricing and Metrics of Single/Multiple Q-level bids and Learning. 

 EM M Pricing and Metrics of Single/Multiple Q-level bids and Learning.    

 Scenario#1: local rules inside FX update bids. (Unbounded Algorithms) 

 Scenario#1: local rules inside FX update bids. (Bounded Algorithms) 

 Scenario#2: bidders’ remote rules update bids. (Unbounded Algorithms) 

 Scenario#2: bidders’ remote rules update bids. (Bounded Algorithms) 

 Scenario#3: FX aggregated rules update bids. (Unbounded Algorithms) 

 Scenario#3: FX aggregated rules update bids. (Bounded Algorithms) 

 Sort Request and ask of each Q-level Group. (All Algorithms) 

 Matching allocation algorithm for true and traded bids. (All Algorithms) 

 Table winners and losers status change for next trades. (All Algorithms) 
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The GSPM DA implements the SORT() algorithm in Appendix A on randomly generated 

true initial requests and asks and randomly generated traded requests and asks, derived 

from the true requests and asks. There are also the related randomly generated Q-levels.  

The SORT() algorithm: (1) sort Q-levels in descending order, (2) group true and traded 

requests and asks based on sorted Q-levels, and (3) sort true and traded bids (asks) within 

each Q-level in ascending (descending) orders. While the Q-levels is not effective in the 

single Q-level models, the SORT () algorithm, however, applies all GSPM and EM DA.  

The MATCHING-ALLOCATION-RULE () algorithm in Appendix A, applies to all 

GSPM and EM DA mechanisms. All GSPM and EM matching allocations apply 

definition 1 for the matching allocations. The single Q-level GSPM pricing rule applies 

the GSPM-PRICING-RULE () algorithm in Appendix A. The pricing rule works for all 

GSPM DA mechanisms. All GSPM mechanisms apply definition 2 for the pricing rule of 

the winning bidders of the matched pairs of request and ask.  The bounded GSPM, 

applies the BOUNDED-RULES-UPDATE () algorithm in Appendix A that models the 

constant learning reaction at repetitive trades. The algorithm inspects the win and loses 

states of all bidders at the current and previous trades and computes then the request and 

asks adjustments for next repetitive trade based on the conveyed RBBL bounded 

revaluation rules. The BOUNDED-RULES-UPDATE () constrains the revaluation 

bounds to a maximum of the true initial bid valuations and to a minimum of the true 

initial ask valuations. This reactive learning scheme is applied to all Bounded GSPM and 

EM mechanisms. The EXAMINE-CHANGE-OF-STATES () algorithm examines the 

winning and losing change of states of all bidders at the current and previous trades. 

The single Q-level unbounded GSPM DA mechanism follows the bounded GSPM in 

applying the same algorithms of the matching allocation and pricing rules. However, the 

unbounded GSPM and EM apply the UNBOUNDED-RULES-UPDATE () algorithm in 

Appendix A that liberates the bounds of the rule-based adjustments due constant learning 

at repetitive trades. The UNBOUNDED-RULES-UPDATE () frees all rule-based bounds. 

This reactive learning scheme works for all unbounded mechanisms.   The single Q-level 
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Mth EM pricing rule applies the EM-PRICING-SINGLE-Q () algorithm shown in 

Appendix A. The pricing rule works for only single Q-level bounded and unbounded EM 

mechanisms. It is presented for demonstration, analysis and comparison.  The multiple Q-

level Mth EM pricing rule applies the EM-PRICING-MULTIPLE-Q () algorithm shown 

in Appendix A. The pricing rule works for multiple Q-level bounded and unbounded EM 

mechanisms. It follows definition 4.            

This chapter covers the modeling and analysis of the proposed multiple Q-level GSPM 

DA mechanism. Our work presents the single Q-level GSPM and EM DA mechanisms as 

a reference DA mechanisms for developing the matching allocation and pricing rules of 

the multiple Q-level GSPM and EM DA mechanisms. In that vein, the work introduces 

the multiple Q-levels EM DA mechanism that extends the single Q-level EM to multiple 

equilibrium price points for rather multiple trades. The multiple Q-levels of the EM DA 

work as multiple EM trades that clear at different EM prices. While the single Q-level 

GSPM and EM DA are AE they are not IC. Hence, the multiple Q-level GSPM and EM 

DA is introduced to improve IC using the multiple Q-levels cross-matching. The multiple 

Q-level, EM DA is compared with the multiple Q-level, GSPM DA for the game-

theoretic and computational properties, as presented in the experimental analysis of next 

chapter. The GSPM DA heuristics are polynomial time tractable and deliver social 

efficiency, strategic stability and weak budget balance that secures exchange profitability.  
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Chapter 6  

6 Experimental Results and Analysis  

The work here analyses the experimental findings of implementing the RBBL, rules-

based bidding language and the GSPM DA matching heuristics for the FX e-marketplace. 

The FX targets, particularly, the stable and efficient matching allocation of the request 

and ask bids on the e-services that the FX deduces and form out of the RBBL conveyed 

attribute-values, logical rules formulae, and multiple e-service Q-levels. This chapter 

tables the experimental simulation models and the implemented DA heuristics. The work 

derives, also the experimental findings and the conclusions out of the empirical analysis. 

6.1   RBBL Rule-based Bidding Experimental Model 

The RBBL is a promising flexible and concise expressive language model that may find 

applications in a wide scope of e-services, particularly, the e-marketplaces.  The fact that 

the RBBL bidding messages convey the logical rules and operators with rather multiple 

attributes, attribute values, Q-levels and other constraining attributes, require that the FX 

e-market system to have functional units that descript the logical rule and operator 

formulae, deduce and aggregate the preferences of bidders out of the logical rules, and 

generate the attribute combinations of the requested bids and offered asks. Our work, 

however, doesn’t cover the scope of reasoning and deduction of the rule and operator 

formulae. The presented experimental validation examines, nevertheless, the proof of 

concept and verifies the performance advantage of using rules aggregation. Our work 

uses MATLAB toolboxes to simulate the ask and request bidding behavior of a number 

of bidders with the assumption that bidders apply self-learning abilities at repetitive 

trades that translate to logical rules conveyed to the FX e-marketplace 

The presented RBBL experimental validation examines the proof of concept and verifies 

the performance advantage of using the RBBL rules aggregation. Our work uses the 

MATLAB to simulate the RBBL bidding model and the rule-based dynamic behavior of 
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the number of bidders with at repetitive trades. The simulation creates multiple Q-levels 

as attributes (i.e.,	ܳ௖௜௞, 	ܳ௉
௝௤) with random initial values for a e-service request or ask 

ሺ݅. ݁. , 	݁௖௜௞, ݁௉
௝௤ሻ. The simulation correlates the attribute-values with the Q-level (i.e., 

generate higher random values for higher Q-level). The random request and ask bids are 

then deduced by the exchange out of the multiple Q-level attribute-values and logical 

rules formulae. There is also a random variation between bids and true values. The FX 

collects the multiple Q-level attribute-values and the FOL rational rule formulae as 

shown in Figure 21. The depicted RBBL FOL rules instruct the free exchange to 

increment the attribute-values or combinations (i.e., ݒ௫ ൌ ௫ݒ ൅ ߜ ∗ … ሻ if the consumer is 

not a winner. Otherwise, at loss the request and ask bids stay as is or decrement attribute-

values (i.e., ݒ௫ ൌ ௫ݒ െ ߝ ∗ … ሻ. 

 

Figure 21: Attribute-values and rational rules of the RBBL validation 

The simulations work for three scenarios: (1) execute the RBBL rules inside the bidder 

agents; (2) execute the RBBL rule inside the FX with no aggregation to inspect the 

communication cost; and (3) execute the RBBL rule inside the FX with simple 

aggregation of bidder rules. The exchange applies two aggregation rules: (a) group and 

sort request and ask bids inside the FX according to the multiple Q-levels, rather than 

every trade inside the bidder agents; and (b) stop updating all request and ask bids that 

reach the upper or lower bounds for the next stage (i.e., for bounded mechanisms). For 

instance, the bounded GSPM applies a heuristic that inspects the win and lose states of all 



90 

 

 

 

bidders at the current and previous trades and computes the bid value adjustments for the 

next repetitive trade based on the RBBL rules. Another heuristic constrains the request 

and ask bid adjustment bounds to the maximum of the true initial request values and to 

the minimum of the true initial ask values. Figure 22 shows the rules processing times of 

twenty repetitive trades that use the bounded and unbounded multiple Q-levels GSPM 

and EM heuristics for one thousand request and one thousand ask bidders. The simulation 

applies the three rule based update scenarios mentioned above. The results of repeated 

experiments show similar performance patterns for any number of bidders.  

 

 

Figure 22: Rules processing times of twenty repetitive trades using the bounded and 

unbounded multiple Q-level GSPM and EM for two thousand bidders. 

Figure 23 shows the rules processing times for different number of bidders. The rules 

aggregation inside the FX saved roughly half of the average relative processing times of 
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all bidder agents that are locally simulated inside the FX. Also, the rules aggregation 

inside the FX saved almost two third of the average processing times of remote bidder 

agents (i.e., over local network). The performance advantage would be significant with 

thicker e-market trades of much larger number of bidders and transactions over best 

effort internet due to high communication cost and effective aggregations.  Obviously, 

even a simple aggregation of the RBBL rules inside e-exchange would deliver more rapid 

response and, hence, faster trades. It is also evident that the higher the number of bidders 

(i.e., thicker e-markets), the more effective the RBBL aggregation process. Of course, the 

communication cost would make the RBBL more desirable, particularly, in thicker e-

markets with a large number of online bidders. Our work, anticipate, also the preference 

elicitation deduction (not implemented) would have a more substantial impact.     

 

Figure 23: Rules processing times vs. number of bidders for the bounded and 

unbounded multiple Q-levels GSPM and EM trades 
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6.2 GSPM and EM Experimental Matching Models 

The GSPM DA matching is another prospective venue for the FX e-marketplace. The FX 

applies the GSPM DA heuristics on the generated requests and asks to compute efficient 

and stable matching allocation and pricing outcomes. A key theme in the GSPM is the 

fact it motivates the strategic IC of bidders while narrowing down the tactical scope using 

the second price in rank without blocking the rational free choice. The FX achieves 

truthful interactions by implementing an AE DA matching that exploits both the GSP and 

revere GSP for trading e-services of identical attributes and multiple Q-levels. For 

instance, a request bidder would be better off if she conveys a truthful valuation on an the 

e-service of particular Q-level, as it would minimize the risk of losing to others in the 

matched list at that Q-level, while having an incentive for a chance to be awarded an e-

service of rather higher Q-level using the GSPM multiple Q-level cross-matching 

heuristics. Another key aspect is that GSPM DA guarantees e-market profitability that 

grows with the rapid stable convergence of the thick e-markets. The GSPM ensures, 

hence, the stable social efficiency of the FX e-marketplace, while securing sufficient e-

market profitability that grow with number of satisfied bidders.        

The simulation work in this section targets the comparative analysis between the GSPM 

and EM (Wurman et al., 1998) DAs. The reason for choosing the EM for comparison is 

due to the fact while the GSPM is discriminatory pricing for symmetric DA the EM is 

uniform clearing pricing for symmetric DA. The EM computes the market competitive 

equilibrium of supply and demand and work efficiently at perfect competition of free 

market economy. The EM is, also, desirable for its efficiency and tractability, hence, 

widely used in diverse market auctions (i.e., energy market auction). The simulation 

implements, examines and reports the experimental results and findings of the eight 

GSPM and EM double auction mechanisms that exploits the conveyed RBBL instance 

message of as described in the previous section, for up to 2000 request and ask bidders 

that dictates their constant learning and reactive model: (1) Single Q-level bounded 

GSPM DA, a base model for the multiple Q-levels GSPM DA, (2) Single Q-level 

unbounded GSPM DA for testing impact of free unconstrained strategies, (3) Multiple Q-
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levels bounded GSPM DA, the core model,(4) Multiple Q-levels Unbounded GSPM DA, 

the core unbounded extension, (5) Single Q-level Bounded EM DA (Wurman et al., 

1998), (6) Single Q-level Unbounded EM DA, (7) Multiple Q-levels bounded EM DA, a 

new proposed extension of (5) for comparative analysis, and (8) Multiple Q-levels 

unbounded  EM  DA. The simulation implements, examines and reports the experimental 

results and findings of the four comparative analysis between GSPM and EM DA 

mechanisms that exploits also the conveyed RBBL instance as described above for  2000 

request and ask bidders that dictates the constant learning and reactive model.  

6.3 Bounded GSPM Double auction Mechanisms 

The matching allocation of the single Q-level and multiple Q-levels bounded GSPM DA 

mechanisms follow the GSPM matching allocation rule in definition 1. While definitions 

1 exploits, to some extent, the equilibrium matching (EM) allocation (Wurman et al., 

1998), it extends the matching allocations to the multiple Q-level cross-matching that 

motivates the IC. The pricing rules, however, follows our proposed GSPM pricing rule in 

definitions 2 for the requests and asks. One of the challenges that multiple Q-level GSPM 

mechanisms encounter is the instability of both AE and IC properties. This means there is 

no incentive for bidders to reveal their true valuations if they can reduce their traded bids 

and still win. As such our work extend the CAP model to include multiple Q-level items 

and introduce the multiple Q-level GSPM mechanisms that improve incentive compatible 

due to multiple Q-levels cross-matching. The cross-matching allows for matching bids of 

a particular Q-level and asks of the same or high Q-levels. The more the number of Q-

levels, the narrower the tactical maneuverability space of bidders.  A consumer may bid 

for an e-service of certain functionality at a minimum Q-level. The e-service providers 

may offer similar e-services of rather different Q-levels. Then the multiple Q-level 

GSPM DA implements the MATCHING-ALLOCATION-RULE () for cross- matching 

that allows winners to win an item of targeted Q-level or higher. Hence, the consumer 

would have an incentive to reveal truthful requests and asks to guarantee place in the 

winning list or increase chances to win an even higher Q-level e-service with the same 

bid. The same applies to ask bidders, where they increase also chances to win a place in 
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the matched list and give a higher chances to match with higher request bid bidders for 

lower Q-level e-services. This section describes and examines the main implemented 

algorithms and repots on the experimental findings.   

6.3.1 Experimental Bounded GSPM Description 

Table 1 depicts a GSPM requests and asks processing instance of twenty bidders at the 

first and twentieth repetitive trades with constant learning and strategic rule-based 

revaluations. The first two tables depicts the processing of the requests and asks through 

different algorithmic stages of the GSPM DA at first trade: (1) twenty sorted initial true 

requests and asks of single and multiple Q-level, (2) twenty generated random requests 

and asks that is purposely deviated at random from the initial true requests and asks 

(without learning and revaluation of rules), and (3) GSPM requests and asks matching 

allocations with applied GSPM pricing rule (i.e., payments and costs). The second table 

depicts the processing of the requests and asks through the algorithmic stages of the 

GSPM DA at the twentieth trade: (4) the same twenty sorted initial true requests and asks 

of single Q-level, (5) the twenty generated random requests and asks using RBBL logical 

rules, (6) the GSPM requests and asks matching with applied GSPM pricing rule. 

Apparently, the expected number of matched-pairs increases at repetitive trades due to 

the constant learning and rational reactions of bidders that adapts with the winning and 

losing states and prospects as described in the rules revaluation algorithms. The other 

observation relates to the constant fall of the variance between the requests and asks 

throughout the repetitive e-trading process until it reaches the stability of second prices or 

EM price or true setting bounds. In fact, this is a natural reaction of bid (ask) winners 

who attempt to lower (raise) valuations at constant learning of repetitive trade disruptions 

for achieving higher utilities. Bid (Ask) Losers, however, attempt to rise (lower) 

valuations for having a rather better chance to be in the winner matched list. The outcome 

as observed in the Table 1 and Figure 24 is an initial rapid drop of variance between 

requests and asks and an increasing number of matched pairs. Variance converges to 

stability as matched pairs converge to maximum matching or that of true settings.  For 

multiple Q-level, it is observed that the matched list per Q-level grows with repetitive 
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trades with some requests and asks Q-level cross-matched.  The allocation and pricing 

rules of single Q-level GSPM is applied for multiple Q-levels with rather cross-matching.                        

Table 1: Sample results of first and twentieth single Q-level (left set) and multiple Q-

levels (right set) bounded GSPM repetitive trades of twenty request and ask bidders  

 

6.3.2 Analysis of Bounded GSPM Trades 

The first set of Figure 24 depicts the constant learning trend as exploited by the RBBL 

rule instance of 200 request and ask bidders in the first and twentieth trades. Obviously, 

the second graph of the first set shows the rapid fall of the variance between requests and 

asks and the growing size of the matched list. In fact the final matched list is similar to 

that the initial true matched list shown in light colors. The losing bidders demonstrate the 

bounded aggressive corrective moves to increasing (lowering) their bids (asks) for a 

better winning chance that results in a more matched pairs. However, the winning bidders 

demonstrate a bounded conservative moves to decreasing (increasing) their bids (asks) 

that increases their utilities within their bounds and results in the fast drop of bids/asks 

variance. The second set demonstrates the impact of thicker e-markets (i.e., 200 request 
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and ask bidders). Obviously, the more the thicker e-markets is the more stable and rapid 

it converges to social efficiency due the converging very small difference between 

bid/ask and payment/cost values being the second prices as realized by (Roth, 2007).  

 

 

Figure 24: Traded vs. initial true matched pairs of the first and twentieth trades of  

the bounded single Q-level (upper set) and multiple Q-levels (lower set) GSPM  
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6.3.3 Analysis of Bounded GSPM Metrics 

Figure 25 depicts the metrics of two instances of 200 and 1000 single Q-level and 

multiple Q-levels request and ask bidders in the bounded GSPM e-market. The follwoing 

are the experimental findings:  

1. The U-Welfare of fixed initial values (fixed U-Welfare) is the utility social welfare 

that aggregates the utilities of bidders in reference to their fixed initial true 

requests and asks (i.e., sum (Initial true bids - current payments)+ sum (current 

costs- Initial true asks )). The fixed U-Welfare converges rapidly to a maximum 

stable AE bounds compared to the initial true welfare (i.e., green line) as request 

and ask utilities increase due to the rule based adjustments driven by constant 

learning at repetitive trades. That results in a rising asks/costs and falling 

bids/payment until they reach the stable bounds of the second price limits. The 

thick e-market increases the fixed U-Welfare significantly in reference to the true 

initial settings at thicker e-market trades.   

2. The U-Welfare of dynamic (current) values (moving Welfare) is the moving utility 

social welfare that aggregates the utilities of bidders in reference to the current 

trade true requests and asks (i.e., sum (current bids - current payments)+ sum 

(current costs-current asks)). The moving U-Welfare converges to a low stable 

utility welfare that is close to max item value. This is due to the sharp fall of 

differences between current bids (asks) and second price payments (costs) at 

repetitive trades. The thick e-markets have no effect on the converged utility 

value, but delivers instant convergence due to the faster stability of  requests and 

asks at thicker repetitive trades.       

3. The V-Welfare is the valuation social welfare that correlates with the e-market 

profit. The V-Welfare is equal to the moving U-Welfare and the e-market profit. 

Hence, the V-Welfare converges to the e-market profit as the moving U-Welfare 

converges to a stable low value at thicker trades. The V-Welfare totals the 

maximum bid and minimum ask values or equivalently the maximum bid minus 

maximum ask values which at thicker trades converges to the maximum payment 



98 

 

 

 

minus maximum cost values, or the FX e-market profit. The V-Welfare and e-

market profitability of bounded GSPM converge to stable positive value that is 

lower than that of initial settings due to the rule based adjustment that direct the 

convergence to lower value bids and higher value asks at constant leaning of 

repetitive trades. In fact, the winners maintain a bounded conservative moves to 

increase utilities while losers takes a bounded aggressive moves to join in the 

matched list until they reach the bounded true values. This is the free natural 

reaction of bidders that directs the V-Welfare stability as it balances the rising 

asks and the falling bids and converge to the second prices payment/cost or true 

bounds. The thicker e-market deliver higher, stable and more rapid instant 

convergence as the variance drops considerably. The GSPM DA guarantees, also, 

the e-market converge rapidly to a stable profitability that grow, also, with the 

economy of scale of thicker e-market trades.  

4. The bounded GSPM converges rapidly after few trades to the maximum number 

of the matched pairs of the true initial value settings shown in green line. This is 

due to the initial rapid and aggressive incremental fall of bids and rise of asks of 

the losing bidders to gain a winning seat in the matched list. The winners then 

takes a conservative moves close to the second prices to gain better utilities.      

5. The variance of bounded GSPM drops rapidly at the first initial trades to 

optimizing the random initial settings with larger delta adjustments of the requests 

and asks then it stabilizes with smaller changes as values get closer to the second 

price bounds. The variance converges, then, to a stable low value outcome due 

rather to the narrowing differences between the rising asks and the falling bids.   
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Figure 25: Metrics of the bounded single Q-level (upper set) and multiple Q-level 

(lower set) GSPM of 200 and 1000 request and ask bidders  
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6.4 Unbounded GSPM Double Auction Mechanisms 

6.4.1 Experimental Unbounded GSPM Description  

The instance in Table 2: follows the same settings of the Table 1. However, it is obvious 

that the unbounded GSPM DA allows losers to play rather more aggressive corrective 

moves and break risk neutrality for better winning chance within and across the multiple 

Q-levels. Hence, the unbounded GSPM matched list converges to complete matched list 

at repetitive trades with most losers turn into winners while narrows down the bids/ asks 

variance. The violation of the risk neutrality of allows losers an unbounded free choice 

and conduct. The first and final trades in Table 2: demonstrate how unbounded losers 

converge to winners through aggressive lowering (raising) of their bids (asks) in a way 

that breach risk neutrality. Winners, however, apply conservative moves to narrow down 

variance between requests and ask to increase their utilities. The multiple Q-level 

unbounded GSPM motivation follows the one of bounded GSPM in the previous section.    

 Table 2: Sample results of first and twentieth single Q-level (left set) and multiple 

Q-levels (right set) unbounded GSPM trades of twenty request and ask bidders 
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6.4.2 Analysis of Unbounded GSPM Trades 

Figure 26 shows the constant learning trend of 200 request and ask bidders in the first and 

twentieth trades. The second graph show an almost complete matched list that include all 

bidders with constant drop of the bid/ask variance similar to the bounded GSPM. The 

lower graph set shows the multiple Q-level matched list with some cross-matched pairs. 

The narrowing gap between requests and asks (falling variance) at each Q-level is 

obvious, as well. In fact, the losers demonstrate a rather unbounded aggressive corrective 

moves by breaching risk neutrality for a winning chance (i.e., often found in classic 

markets for clearing of slow moving items) by increasing (lowering) bids(asks) beyond 

initial true bounds (i.e., see the curve extension into the losers zone). The results exhibits 

the rapid convergence of thick e-market risk neutral winners to stable efficiency at each 

Q-level while the unbounded risk unneutral losers become winners at repetitive trades 

with the bounded conservative moves of winners within the initial winning space and the  

unbounded aggressive moves of losing bidders beyond the initial winning space to 

become winners. That result is a complete cross-matched list and lower variance. 

6.4.3 Analysis of Unbounded GSPM Metrics 

Figure 27 depicts the metrics of the Single Q-level and multiple Q-levels Unbounded 

GSPM DA mechanism. The analysis emphasizes the following experimental findings:  

1. The U-Welfare of fixed values keeps falling to the negative quadrant at repetitive 

trades and also with thicker e-markets of more bidders compared to that of the 

initial true settings due to, primarily, the violation of risk neutrality of losers.        

2. The moving U-Welfare of dynamic values converges to a stable low utility welfare 

that is close to max item value at thicker trades. This is due to the sharp fall of 

differences between current bids (asks) and second price payments (costs) at 

repetitive trades. The thick e-markets have no effect on the converged utility, but 

keep decreasing and converge to a stable low welfare at repetitive trades. 

3. The V-Welfare and e-market profitability keep increasing to values beyond that of 

the initial true settings due to the rule-based aggressive adjustments that direct the 
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unbounded convergence of the risk unneutral higher value bids and lower value 

asks of the losing bidders at constant leaning of repetitive trades. In fact, the 

winners maintain bounded conservative moves to second prices to increase 

utilities while the losing bidders take unbounded aggressive moves to join in the 

matched list. The V-Welfare and e-market profitability converge to stability when 

all requests and asks of now all joining winners get closer to the second prices. 

The V-Welfare and e-market profitability grow for all trades and thicker markets.  

 

 

Figure 26: Traded vs. initial true matched pairs of the first and twentieth trades of  

the unbounded single Q-level (upper set) and multiple Q-levels (lower set) GSPM 
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Figure 27: Metrics of unbounded single Q-level (upper set) and multiple Q-level 

(lower set) GSPM of 200  and 1000  request and ask bidders 

4. The unbounded GSPM e-market converges to the maximum complete matched 

pair that covers almost all ask-bid pairs at repetitive trades. This is a result of the 

unbounded reactions of bidders that disregard risk neutrality for a wining seat.   
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5. The variance drops rapidly at the initial trades due to the large delta adjustments 

of the requests and asks of losers. The variance converges, then, to stable low 

value due to the narrowing difference between the rising asks and the falling bids.   

6.5 Bounded Mth EM Double Auction Mechanisms 

The bounded Mth EM mechanism applies the matching allocation and Mth pricing rule of  

(Wurman et al., 1998), however, for single Q-level requests and asks. This Mth EM is 

described in chapter 4 while the pricing rule is based on definition 3.   

6.5.1 Bounded Mth EM DA Description   

The data Table 3 depicts the EM requests and asks processing of twenty bidders at the 

first and twentieth repetitive trades with constant learning and rule-based adjustments. It 

follows data Table 1 in structure. As in other DA mechanisms the repetitive trades 

increase the number of matched pairs. The other observation relates to the converging of 

requests and asks to almost same valuation in the twentieth trade with rather a minor 

change in the EM equilibrium price. In fact, this is a natural reaction of bid (ask) winners 

who attempt to lower (raise) their valuation for achieving higher utilities. Bid (Ask) 

Losers, however, attempt to raise (lower) their valuations for better winning chances.  As 

mentioned in chapter 4, our work, inspired by the theoretical model and the experimental 

finding of the multiple Q-level GSPM DA, proposes a generalized multiple Q-level Mth 

EM DA mechanism that exploits a multiple equilibrium matching points for the multiple 

Q-levels in computing the matching allocation and pricing rules for multiple units of a 

single-item of multiple attributes, and multiple Q-levels. The proposed multiple Q-level 

Mth EM DA follows the matching allocation of the proposed multiple Q-level GSPM 

mechanism.  The multiple Q-level Mth EM DA sorts the Q-levels, with asks of same Q-

levels and bids of same min Q-levels, and apply a multilevel cross- matching allocation 

as shown in Figure   20. The multiple Q-level Mth EM DA pricing rule, however, follows 

definition 4. The following steps describe the multiple Q-level Mth EM mechanism. The 

multiple Q-level cross-matching allows for matching between bids of a particular Q-level 

and asks from the same or high Q-levels. The multiple Q-level EM DA implements the 
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matching allocation algorithm#2 as d in definition 3 and the following multiple Q-level 

Mth EM pricing algorithm#8 as stated in definition 4.    

Table 3: Sample results of first and twentieth single Q-level (left set) and multiple Q-

levels (right set) unbounded EM trades of twenty request and ask bidders 

 

6.5.2 Analysis of Bounded Mth EM DA Trades 

Figure 28 shows the constant learning trend as exploited by the RBBL rule instance of 

200 bidders in the first and twentieth trades. Both repetitive trades converge each Q-level 

to the Mth equilibrium price (i.e., the last matched ask price in  a Q-level) that bid (ask) 

winning bidders have to pay(collect). In fact the final matched list is quite similar to the 

initial true valuation matched list as shown in light colors of the second graph of both 

sets. The losers demonstrate a bounded aggressive moves to increasing (lowering) their 

bids (asks) for a winning chance while the winners demonstrate a conservative moves to 

decreasing (increasing) bids(asks) their utilities that narrows down bids/asks variance. 

The second set reveals the insignificant impact of the thicker e-market on EM contrary to 

the GSPM. The observed outcome of repetitive trades is the very low variance of the 
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converging requests and asks and also the no e-market profits. In fact, EM e-markets 

profit is most often equal to zero, in which the GSPM DA find an inherent competitive 

advantage over EM DA.   

 

 

Figure 28: Traded vs. initial true matched pairs of the first and twentieth trades of  

the bounded single Q-level (upper set) and multiple Q-levels (lower set) EM DA 
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6.5.3 Analysis of Bounded Mth EM DA Metrics 

Figure 29, depicts the metrics of two instances of request and ask bidders in single and 

multiple Q-levels bounded EM DA. The following are the experimental findings:  

1. The fixed U-Welfare converges rapidly to the stable bounds of initial U-Welfare 

values (i.e., green line) for single Q-level model as request and ask fixed utilities 

keep increasing and converges to the EM price at repetitive trades that is close the 

mean of initial EM prices as shown in Table 3. The fixed U-Welfare of multiple 

Q-levels EM converges to a higher stable bounds, however, with respect to initial 

U-Welfare based on the rather more fuzzy means of the initial multiple Q-level 

EM prices, as shown in  Table 3. Another reason is the cross matching effect. The 

thick e-markets increase the U-Welfare significantly with respect initial settings 

due to increasing number of trades. This is due to the constant rising of asks/costs 

and falling of bids/payment until they reach the stable bound of initial true values.  

2. The moving U-Welfare converges to a stable low utility welfare. This is due to 

the sharp fall of differences between current bids (asks) and Mth EM payments 

(costs) at repetitive trades. The thick e-markets, while it  have no effect on the 

converged welfare value it delivers rapid convergence as the bids (asks) variance 

drops with thick e-market trades.        

3. moving U-Welfare keeps decreasing and converges to small value at constant 

learning of repetitive trades as the current bids/payments and current asks/costs  

converge to the same EM e-market Mth equilibrium price value with low variance.     

4. The V-Welfare falls rapidly and converges to stable low value with respect to the 

initial true V-Welfare. This is due to the large incremental valuation drops of 

initial winning bids and losing asks that stabilizes with smaller increments as 

requests and asks get closer to the EM pricing bounds. However, the losers keep 

bounded aggressive moves to join in the matched list, while winners maintain 

conservative moves to increase utility. The thicker e-market, while it increases the 

V-Welfare, it delivers instant convergence as the variance drops rapidly with 
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thicker trades. The e-market profitability, however, maintains a zero value for all 

trade as the ask/bid bidders collect/pay the same Mth EM price. 

 

 

Figure 29: Metrics of bounded single Q-level (upper set) and multiple Q-level, 

(lower set) EM DA, of 200 and 1000 request and ask bidders 
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5. The bounded EM DA converges to the maximum number of true matched pairs at 

repetitive trades (i.e., light green) . This due to the fewer bidders at each Q-level 

and the corrective style of losers to join the matched list.  

6. The variance drops rapidly at the initial trades due to the large delta adjustments 

of losers. The variance converges, then, to stable low value due to the narrowing 

difference between the rising asks and the falling bids close to the EM Mth price.   

6.6 Unbounded Mth EM Double Auction Mechanisms 

The Single Q-level Unbounded EM DA mechanism follows the bounded Single Q-level 

EM in the matching allocation and pricing rules. However, the unbounded EM applies 

the UNBOUNDED-RULES-UPDATE () algorithm that liberates bounds of the constant 

learning reaction at repetitive trades. The UNBOUNDED-RULES-UPDATE frees all 

rule-based bounds. This reactive learning scheme works on unbounded DA mechanisms. 

The Multiple Q-level Unbounded EM DA model follows the Multiple Q-level Bounded 

EM model in previous section. This section examines the unbounded choices of bidders.    

6.6.1 Unbounded Mth EM DA Description   

The data in Table 4 follows the same setting of the Table 3. However, it is obvious that 

the unbounded EM DA allows losers to play rather more aggressive corrective moves and 

break risk neutrality for better winning chance. Hence, the unbounded GSPM matching 

list converges to full list of all trades while reducing the bid/ask variance. The violation 

of the risk neutrality of allows bidders an unbounded free choice and conduct. The first 

and final trades demonstrate how unbounded losers may converge to be winners and 

impact the matched list through lowering (raising), freely, their bids (asks) and how 

winners narrow request and ask variance to increase their utilities.   
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Table 4: Sample results of first and twentieth single Q-level (left set) and multiple Q-

levels (right set) unbounded EM trades of twenty request and ask bidders 

 

 

6.6.2 Analysis of Unbounded Mth EM DA Trades 

Figure 30 shows the constant learning trend of 200 request and ask bidders in the first and 

twentieth trades. The second right graphs show an almost full matched list that include all 

bidders with constant drop of the bid/ask variance. In fact, the losers demonstrate a rather 

unbounded aggressive corrective moves and break risk neutrality for a winning chance 

by increasing (lowering) bids(asks) beyond initial true bounds (i.e., see the curve 

extension into the losers zone). The loser/winning dynamics results in a full matching and 

reduction of bid/ask variance. The lower set exhibits the rapid convergence of thicker e-

market to stable efficiency while unbounded losers become winner at repetitive trades. 

That attributes to the extension of the matching curve in the losers space as shown below.  
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Figure 30: : Traded vs. initial true matched pairs of the first and twentieth trades of  

the unbounded single Q-level (upper set) and multiple Q-levels (lower set) EM DA 

6.6.3 Analysis of Unbounded Mth EM DA Metrics 

Figure 31 depicts the metrics of the Single Q-level Unbounded EM DA mechanism. The 

analysis emphasizes the following experimental findings:  

1. The fixed U-Welfare falls rapidly from values close to the initial true welfare 

value shown in light green to rather lower positive values that converge to zero U-
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Welfare at repetitive trades. This is due to the violation of the risk neutrality that 

motivates losers to overbid by decreasing (increasing) their bids (asks) over true 

bounds that generates negatives utilities and force welfare to decrease gradually 

until all requests and asks matched at EM price and zero welfare.  

2. The moving U-Welfare  keeps decreasing and converges to stable lower values at 

repetitive trades as the current bids/payments and current asks/costs  converge  to 

the EM e-market Mth equilibrium price value.       

3.  The V-Welfare and e-market profitability falls rapidly and converges to stable 

lower value with respect to the initial true V-Welfare. This is due to the large 

incremental valuation drops of initial winning bids and losing asks that converges 

to more stable smaller increments as requests and asks get closer to EM pricing 

bounds. This V-Welfare stability is due the balancing effect of the rising asks and 

the falling bids that converge to the Mth pricings. The EM delivers almost no (i.e., 

zero) e-market profitability as the ask/bid bidders collect/pay the same EM price. 

Also, thick e-markets increase the V-Welfare and deliver instant convergence.    

4. The EM e-market converges slowly to the a full matched pairs list for single and 

multiple Q-levels that include all bidders (i.e., initial winners and losers) after few 

trades (see the green line for initial requests and asks valuation matched list) at 

repetitive trades. This due to the fewer bidders at each Q-level and the aggressive 

corrective style of losers to join the matched list.  

5. The variance drops slowly at the initial trades due to the large delta adjustments of 

losers. The variance converges, then, to stable low value due to the narrowing 

difference between the rising ask bids and the falling request bids close to the EM 

Mth price.   
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Figure 31: Metrics of the unbounded single Q-level (upper set) and multiple Q-level, 

(lower set) EM DA of 200 and 1000 request and ask bidders 

6.7 The GSPM and EM Comparative Analysis 

This section summarizes the comparative experimental findings between the GSPM and 

EM DA mechanisms for the single Q-level and multiple Q-levels requests and asks. Our 
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work here investigates, also, the bounded and unbounded bidder reactions due to their 

constant learning of e-market dynamics at repetitive trades.  

6.7.1 Single and Multiple Q-level(s) Bounded GSPM and EM DAs 

Experimental Matching Behaviour: Figure 32 depicts the matching patterns of the 

GSPM and EM DA mechanisms for bounded request and ask bidders of a single Q-level 

(left set) and multiple Q-levels (right set) e-service at the first and twentieth repetitive 

trades. The GSPM and EM DA exhibit a gradual reduction of the request/ask bids 

variance with the increasing matched list that converges to the initial true matched list. 

The GSPM thicker trades converge rapidly to stable efficiency as request and ask bids 

converge to the second prices. The Mth EM thick trades, however, have no effect. The 

losers demonstrates a bounded aggressive corrective actions by increasing (lowering) 

their request (ask) bids for a winning chance. The winners demonstrate conservative 

actions to improve their utilities. That results in reducing the request/ask bids variance. 

The EM repetitive trades converge to the Mth equilibrium prices. 
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Figure 32: Single Q-level (lefts set) and multiple Q-levels (right set) bounded GSPM 

and EM DA matching patterns at first and twentieth trades 

Experimental Metrics: Figure 33, depicts sample metrics of the GSPM and EM DA 

mechanisms of a two thousand bounded request and ask bidders of multiple Q-levels e-

services during twenty repetitive trades. The analysis extends to single Q-level models. 

1) The fixed U-Welfare of the GSPM or EM DA converges rapidly to a maximum stable 

AE bounds compared to the initial true welfare (i.e., green line) as ask and request bid 

utilities increase due to the rule adjustments driven by constant learning at repetitive 
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trades. The EM converges to higher welfare values compared to GSPM as the rising 

asks/costs and falling bids/payments of the GSPM converge to the stable bounds of the 

closer second prices, while the EM converges to the stable bounds of the rather distant 

EM price. Else, the thicker e-markets increase the fixed U-Welfare significantly.  

2) The moving U-Welfare of the GSPM and EM converge to a low stable utility. This is 

due to the rapid fall of differences between current request (ask) bids and GSPM 

second price payments (costs) or the Mth equilibrium price value at repetitive trades. 

The thick e-markets have no effect on the converged utility, but deliver instant GSPM 

convergence and faster EM convergence (slower in base) due to the faster converging 

stability of the bids and ask at thicker trades.       

3) The V-Welfare and e-market profitability converge to stable positive value that is 

lower than that of initial settings due to the rule based adjustment that direct the 

convergence to lower value bids and higher value asks at constant leaning of repetitive 

trades. The winners maintain bounded conservative moves to increase utilities while 

losers take bounded aggressive moves to join in the matched list until they reach the 

bounded true values. The thicker e-market deliver higher, stable and more rapid 

instant. The GSPM DA guarantees, also, the e-market converge rapidly to a stable 

profitability close to the V-Welfare that grow, also, with the economy of scale of 

thicker e-market trades. The V-Welfare of the EM DA, however, falls rapidly and 

converges to stable low value close to zero with respect to the initial utility. This is 

due to the large increments of initial request and asks bids that stabilize with smaller 

increments as request and ask bids get closer to the EM pricing bounds. However, the 

EM profitability maintains a zero value as ask/bid bidders collect/pay the EM price. 

4) The bounded GSPM and EM DA converge to the maximum number of matched pairs 

close to the true value matched pairs (shown in green). This is the natural matching 

progress of the bounded learners (bidders) at repetitive trades. 

5) The variance of the GSPM and EM DA drops rapidly at the initial trades due to the 

large delta adjustments of the request and ask bids of the losers. The variance then 

converges with smaller adjustments to a stable low value as the falling bids and the 

rising asks get closer to the GSPM second price or the EM Mth price bounds.    
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Figure 33: Sample metrics of the bounded multiple Q-level GSPM DA and EM DA 

for two thousand request and ask bidders during twenty repetitive trades 
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6.7.2 Single and Multiple Q-level(s) Unbounded GSPM and EM DAs 

Experimental Matching Behaviour: Figure 34 depicts the matching patterns of the 

GSPM and EM DA of unbounded request and ask bidders of single Q-level and multiple 

Q-levels e-service at the first and twentieth repetitive trades.  Both unbounded DA deliver 

a full matched list of all bidders (i.e., initial winners and losers). The losers demonstrate a 

rather unbounded aggressive corrective move and break risk neutrality for a winning seat 

by increasing (lowering) request (ask) bids beyond initial true bounds (i.e., see the curve 

extensions into the losers zone). The thicker DA e-market trades deliver a rapid stable 

efficiency of winners while losers join in winners at repetitive trades.   
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Figure 34: Single Q-level (left set) and multiple Q-levels (right set) unbounded 

GSPM and EM DA matching patterns at first and twentieth trades 

Experimental Metrics: Figure 35 depicts sample metrics of the GSPM and EM DA 

mechanisms of two thousand unbounded request and ask bidders of multiple Q-levels e-

services during twenty repetitive trades. The analysis extends to single Q-level models. 

1) The fixed U-Welfare of the unbounded GSPM DA keeps falling to the negative 

quadrant at repetitive trades, while the fixed U-Welfare of the unbounded EM keeps 

falling to rather positive lower values. The thicker e-market trades intensify the 

impact. This is due to the violation of the risk neutrality that motivates losing bidders 

to overbid by decreasing (increasing) their bids (asks) over true bounds that generate 

negatives utilities. The GSPM fixed U-Welfare drops to a negative zone as its bounded 

fixed U-Welfare shown in previous section get overrun by the negative utilities. The 

EM fixed U-Welfare drops to lower positive value, though, due to its higher bounded 

EM fixed U-Welfare. This pattern of tactical trading actions is often found in 

conventional markets or e-market, where there are some bidders who are stuck with 

their non-moving or slow-moving items. It also observed in markets where bidders 

might need a critical item or tactically inspecting the e-market valuation for an items.  
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2) The moving U-Welfare of the unbounded GSPM and EM DA keep decreasing and 

converges to a stable low welfare at repetitive trades. This correlates with the constant 

fall of differences between the current bids (asks) and the GSPM second price 

payments (costs) or the EM Mth equilibrium price at repetitive trades. The thick e-

markets have no effect, but delivers instant GSPM convergence, while keeps falling 

for EM until it converges to a stable low utility.      

3) The V-Welfare and e-market profitability of GSPM DA keep increasing to values 

beyond that of the initial true setting due to the unbounded aggressive adjustments that 

direct the unbounded convergence of the risk unneutral higher value bids and lower 

asks of the losers at constant leaning of repetitive trades. However, the winners 

maintain bounded conservative moves to second prices to increase utilities. The 

GSPM V-Welfare and e-market profitability converge to stability when all request and 

ask bids of now all joining winners get closer to the second prices. The V-Welfare and 

e-market profitability grow for all trades and thicker markets. The V-Welfare and e-

market profitability of the EM DA, however, keep falling and converge to stable lower 

value with respect to the initial true V-Welfare. These is due to the larger increments 

of request and ask bids that stabilize with smaller increments as request and ask bids 

get closer to the EM price. The EM delivers zero profitability as the request/ask 

bidders collect/pay the same EM price.   

4) The unbounded GSPM and EM converge to the maximum full matched pairs that 

covers almost all request-ask pairs at repetitive trades. This is a result of the 

unbounded reactions of bidders that scarify risk neutrality for a wining match. 

5) The variance drops rapidly at the initial trades due to the large delta adjustments of the 

request and ask bids of losers. The variance converges to stable low value due to the 

narrowing difference between the rising asks and falling bids. 
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Figure 35: Sample metrics of the unbounded multiple Q-level, GSPM DA vs. EM 

DA for two thousand request and ask bidders during twenty repetitive trades 



122 

 

 

 

6.8 Complexity Analysis of the GSPM and EM Mechanisms 

Our work examines the execution runtimes for all matching codes using the MATLAB 

tic-toc. A similar pattern of processing times is observed for GSPM and EM DAs at 

various trade settings. In fact, the most demanding function is the SORT () function that 

all DA mechanisms share for grouping, sorting and indexing. The blue curve in Figure 36 

depicts the average absolute processing runtimes of all DA allocation and pricing 

algorithms for up to 10000 ask or request bidders.  Figure 36 shows also the asymptotic 

݃ሺ݊ሻ ൌ ࣩሺ݊ log ݊ሻ ൅ ࣩሺ݊ሻ	upper bound curve in green of the	݂ሺ݊ሻ	that our work derived 

for the complexity of the experimental data pattern of the processing runtimes at different 

trades. The experimental results pattern is common between all DA mechanisms. The 

yellow curves are sample functions (i.e., ݂ሺ݊ሻ ൌ ܿ൫݃ሺ݊ሻ൯ that present an upper and lower 

bounds for the experimental data results, It designates a tighter bounds	݃ሺ݊ሻ ൌ

	Θሺ݊ log ݊ሻ ൅ 	Θሺ݊ሻ. However, our work maintains the upper bound complexity 

	ࣩሺ݊ log ݊ሻ ൅ ࣩሺ݊ሻ  as the worst case runtime of all algorithms.   

The GSPM DA is equivalent to finding a maximum bipartite matching in a bipartite 

graph ܩ	 ൌ 	 ሺܸ	 ൌ 	 ሺܾ௖௜௞	, ܾ௣
௝௤ሻ,  contains one edge for each pair of bid ܾ௖௜௞ and	ܧ ሻ, whereܧ

ask ܾ௣
௝௤ if ܾ௖௜௞ ൒ ܾ௣

௝௤.	∀	݁௖௜௞ ൌ ݁௉
௝௤ , ݉݅݊ܳ௖௜௞ ൌ ܳ௉

௝௤ ∀ ܳ ൌ ܳ௠ . For ݊ bidders, the GSPM 

and EM run in ࣩሺ݈݊݊݃݋ሻ time for the sorting and in	ࣩሺ݊ሻ time for the matching in the 

worst case. The ࣩሺ݊ log ݊ሻ term is the worst case complexity of the sorting as found in 

the case of the merge sort, while the  ࣩሺ݊ሻ term, however, is for the allocation matching 

of the EM algorithms that is applied also to the GSPM algorithms. For the case of 

different ݊௖ bid bidders and ݊௣	ask trades the GSPM and EM algorithms would run at 

ࣩ൫݉݅݊൫݊௖, ݊௣൯ log݉݅݊൫݊௖, ݊௣൯൯ ൅ ࣩሺ݉݅n൫݊௖, ݊௣൯ሻ		times.   
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Figure 36 Complexity analysis of GSPM and EM algorithms 
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Chapter 7  

7 Conclusions and Future work 

Our work contemplates on the profoundly changing landscapes of e-marketplaces due to 

the massive growth and interactive marketing of e-services. While the prospects of the 

digital era are enormous, e-marketplaces are encountering inherent and persistent game-

theoretic and computational complexities that challenge the strategic and computational 

efficiencies of the matching mechanisms. In fact, the mounting complexities are inciting 

the industry to pursue more resilient delivery and revenue ecosystem friendly e-market 

mechanisms (Moore, 1996). Our work examines the limited bidding scope and strategic 

trading conduct of e-market mechanisms that often provoke adverse strategies and lead to 

e-market failures. The market economy of free rational conduct would, however, enable 

stable social efficiency by equalizing the dual self-interest and essential needs of bidders 

to the scarce assets. The dual dynamics inspire the collaborative strategies that discourage 

monopolies. The constant learning at repetitive trades motivates bidders to reason about 

e-market disruptions and adjusts preferences and strategic conduct in a rational manner. 

This type of strategic conduct is a truthful rational reaction that must be freely expressed. 

Our work targets the solution approach of a rather truthful, efficient and stable problem 

models of a class of CAP for multiple units of a single-item (i.e., e-service or app) of 

multiple-attributes, attribute-values and, particularly, multiple Q-levels that extend to the 

CAP of multiple units of multiple attribute items (i.e., multiple e-services). 

Our work introduces the free exchange by endowing it with the RBBL that enables the 

flexible and symmetric expression of free choice and strategic conduct. The RBBL 

structure includes multiple distinct attribute-values of various digital and the logical rule 

formulae. The RBBL bidding model enables a graph-based expressions of the multiple 

distinct attribute-values of various e-services, and also the expressions of applied logical 

rule formulae. The RBBL enables the free exchange to reasoning about the attribute-

values using logical rules deduction for a rapid automatic construction of e-services and 
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bid formations. Hence, the RBBL enables a rapid exchange clearing. Our work presents 

the formal model of the e-services CAP and expanded on how the RBBL allows for 

capturing the CAP as a formal IP for the stable and efficient winner matching allocation. 

However, our work does not expand on the smart aspect of the free exchange. Our work 

uses MATLAB to simulate the request and ask bidding behaviour and self-learning at 

repetitive trades that maps to logical rules conveyed to the exchange e-marketplace. 

Our work investigates, also, the inefficiencies of the exchange mechanisms with respect 

to allocation and revenue models. A fundamental challenge is the fact exchange models 

are hard to implement, as per Hurwicz impossibility theorem (Hurwicz, 1975) that states 

it is impossible to implement an AE, IC and BB social welfare function in a DSE settings 

even for simple exchange (Parkes, 2001) and quasi-linear preferences. This is also the 

case even without requiring IR. The work in (Green & Laffont, 1977) demonstrates no 

DSE AE and IC mechanism can be safe from manipulation by coalitions, even in quasi-

linear settings. Our work endows the free exchange, also, with the GSPM, GSP DA 

matching. The formal problem model captures the CAP as a IP for the socially efficient 

matching allocation. The free exchange deliberates on the logical rules for preference 

deduction and winner matching. The free exchange applies the GSPM matching on the 

induced request and ask-bids to compute an efficient and stable matching. The GSPM 

DA uniquely exploits the tractable forward and reverse-GSP auction heuristics that 

improve the truthful, efficient, stable, profitable, and tractable FX matching. The FX 

GSPM targets the symmetric, efficient an stable matching between multiple buyers and 

sellers of a class of multiple units of a particular e-service of multiple Q-levels.  

The free exchange improves truthfulness by implementing a multiple Q-levels GSPM. 

The request bidder would be better off if it bid truthfully on a e-service of a particular Q-

level, as it would minimize the risk of losing to others at that Q-level, while having an 

incentive to win a e-service of higher quality. The GSPM also secures e-market 

profitability that grows with thick trades and makes it lucrative to e-markets. 
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Given, the complexity of exchange impossibility theory (Hurwicz, 1975), our work 

proposes an exchange model that exploits the relaxed (weaker) properties of the e-

services CAP that translates to the multiple unit-demand matching with multiple Q-levels 

to improve the symmetric DA properties. Our model suggest also the application of 

constant learning at repetitive trades in rather thicker markets that transform efficiently 

the private information model to full information settings using our proposed FX model.        

7.1 Experimental Findings and Comparative Analysis  

The experimental analysis targets the algorithmic simulation and comparison between the 

GSPM and EM for the matching allocation and pricing outcomes of the CAP class of 

multiple units DA of a single-item (i.e., e-service). The single items (e-services) may be 

constructed from multiple attributes and multiple Q-levels using the RBBL tree based 

bidding attribute-values and logical rule and operators formulae. The simulation allows 

for repetitive trades. Requests and asks bids are either bounded or unbounded by the 

Min/Max request and ask bid limits. The simulation implements, analyses and reports the 

algorithms and the experimental findings of the presented GSPM and EM DA 

mechanisms that serve either bounded or unbounded bidders of single or multiple Q-level 

request and ask bids. The DA mechanisms exploit the conveyed RBBL instance of the 

bidders that dictates their rational reactions at constant learning. 

The experimental scenarios examines the performance advantage of using only the rules 

aggregation for a number of request and ask bidders with the assumption that bidders 

apply self-learning abilities at repetitive trades that maps to logical rules and conveyed to 

the FX. The RBBL rules aggregation inside the free exchange reduces the relative 

processing time of the remote (i.e., over local networks) bidder agents processing time in 

multiple folds. Furthermore, the reduction of processing time by the aggregation of rules 

increases significantly with thicker e-market trades over best effort internet. In addition, 

our work assumes that the smart deduction and minimal elicitation, that is to be explored 

in future work, would have a substantial performance improvement for more rapid trades.     
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The FX applies the GSPM matching on the induced and generated e-services and 

requests and asks bids to find an efficient and stable matching allocation and pricing 

outcomes. The FX e-marketplace facilitates truthful interactions by implementing the 

GSPM double auction matching that exploits the multiple Q-level forward and reverse 

GSP double auctions for e-trading e-services. The GSPM DA delivers stable social 

efficiency quite rapidly at the first trades with fairly thick e-market trades (i.e., more than 

100 bidders). However, the EM DA keeps unstable social efficiency for most repetitive 

trades. The GSPM stable efficiency is due to the pricing rule that narrows down the 

tactical maneuverability, the multiple Q-level cross-matching and the best response at 

repetitive trades. In fact, the rational reaction of bidders at constant learning of the e-

market dynamics drives both the GSPM and EM to converge to stable efficiency. The 

process transforms the exchange e-market from incomplete information to complete 

information truthful settings. However, there is no guarantee the EM DA would converge 

in a lower number of rounds due to the EM pricing model that allows for aggressive 

tactical moves of losers throughout repetitive trades until they converge to the EM prices.  

The GSPM DA secures the e-market profitability that grows with thicker trades. This is 

an inherent attribute of the GSPM DA matching. However, the EM DA mechanism 

delivers no profitability. The e-market profitability is lucrative to e-marketplaces that 

deliver the liquidity and the computational e-services. The bounded GSPM and EM DA 

converge to the maximum number of matched pairs close to the true value matched pairs. 

This is the natural matching progress of the bounded bidders at repetitive trades. The 

unbounded GSPM and EM DA converge, however, to the maximum full matched pairs 

that cover almost all ask-bid pairs at repetitive trades. This is a result of the unbounded 

reactions of bidders that scarify risk neutrality for a wining match. The unbounded GSPM 

DA and EM DA allows for negative utilities due to the unbounded aggressive 

adjustments of losers that direct the convergence of the risk unneutral higher value 

request bids and lower ask bids of the losers until they turn into winners. This is due to 

the violation of the risk neutrality by the losers over true bounds. Otherwise, the bounded 

conservative conduct of winners targets utility maximization. Our work examines the 
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unbounded model to investigate bidder’s behaviours at GSPM thicker and/or repetitive 

trades. An interesting observation is that GSPM DA delivers stable AE social efficiency 

for bidders of bounded GSPM trades and also for winners of unbounded GSPM trades. 

The losers of unbounded GSPM trades destabilises their allocation region due to their 

unbounded aggressive moves that breaks risk neutrality.        

It is also observed the variance of both GSPM and EM DA requests and asks drops 

rapidly at the initial trades due to the bounded or unbounded large delta adjustments of 

the requests and asks of losers aggressive moves. The variance converges, then, with 

rather the smaller adjustments of winners conservative moves to a stable low value as 

bidders hit their true valuation bounds or as the difference between the falling bids and 

the rising asks narrows down until they get closer to the GSPM second prices in order or 

the EM Mth price bounds. 

The complexity analysis of the diverse GSPM DA mechanisms examines the processing 

runtimes at diverse GSPM and EM trades.  Our work observed there is at no extra 

computational cost in implementing the GSPM algorithmic heuristics compared to the 

EM DA counterpart. In fact, the GSPM mechanisms utilize the EM algorithms for the 

sorting, grouping, indexing and the allocation matching that often demands the highest 

computation cost while applying linear pricing models. Hence, the GSPM DA would 

deliver better economic properties such as stable efficiency and e-market profitability for 

the same computational cost.          

7.2   Future Outlook  

This is ongoing research with promising prospects. The free exchange is an attempt to 

liberalize the e-market mechanisms that would drive their resilience through free, rapid 

and stable trades, social efficiency, self-prosperity, and e-markets profitability. However, 

there are potential aspects to be furthered such as how the free exchange smart engine can 

be computationally effective for the automatic deduction of the bidding rules and the 

formation of request and ask bids. There is also the scalability impact of thick e-market 
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trades and real-time performance. Another issue has to do with how the bidders may 

effectively generate the suitable strategic rules that deliver to their local constraints and 

objectives without exposure. The solution approaches in this research are anticipated to 

open new horizons for ecosystem friendly and computationally tractable mechanisms. 

The proposed free exchange facilitates the free rational strategic conduct that equalizes 

the conflicting forces of the essential needs to the scarce resources and the self-interested 

local objectives and local feasibility constraints. The free exchange with the flexible 

strategic conduct of bidders would eventually deliver a socially efficient and strategically 

stable and profitable e-marketplace. In fact, the free rational conduct is still an 

overlooked encounter in the digital era and mobile influence where bidders are the targets 

and are the real-time commodity.  The desirable properties of the FX e-market is verified 

through the experimental analysis of proposed FX model. Figure 37 outlines the FX 

trading platform with the proposed RBBL model and GSPM double auction mechanism. 

 

Figure 37: Free exchange e-marketplace trading platform 
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    Appendices 

Appendix A: GSPM and EM MATLAB Simulation Algorithms  

 
SORT (Bids, Asks, BidQS, AskQS) % Sort Q-levels and Request and Ask Bids 
% Bids is set of all request bids. 
% BidQS is set of all Q-levels of request bids. 
% Asks is set of all ask bids.  
% AskQS is set of all Q-level of ask bids. 
% (1) Sort all Q-levels in descend order. 
% (2) Group request and ask bids according to Q-level ranks. 
[sBidQS, sBidQSX] = sort (BidQS, ‘descend');  
[sAskQS, sAskQSX] = sort (AskQS, ‘descend');  
% sBidQS is set of sorted Q-levels of request bids. sBidQSX is sort index. 
% AskQS is set of sorted Q-levels of ask bidders. sAskQSX is sort index. 
% (3) Group Request and ask bids based on the sorted Q-levels. 
For j=1:1: buyers % Rearrange Request and ask based on sorted Q-levels 
 QBid (j) = int16 (Bids (sBidQSX (j))); %group traded requests based on Q-level 
 QTruBid (j) = BidTruVals (sBidQSX (j)); %group True request based on Q-levels 
End 
For j=1:1: sellers 
 QAsk (j) = int16 (Asks (sAskQSX (j)));   %group traded Asks based on Q-levels 
 QTruAsk (j) = AskTruVals (sAskQSX (j)); % group True Asks based on Q-levels. 
End 
For i=1:1: QS 
 For j=1:1: buyers % Count Number of Bids in each Q-level group 
  If (i==sBidQS (j)) 
   BidQS_size (i) =BidQS_size (i) +1; % Number of request Bids in Q-level=i 
 End  
End 
End 
For i=1:1: QS 
 For j=1:1: sellers % Count Number of Asks in each Q-level group 
  If (i==sAskQS (j)) 
   AskQS_size (i) =AskQS_size (i) +1; % Number of Ask Bids in Q-level=i 
  End 
 End 
End 
% (4) Sort the true and traded request and ask bids for each Q-level 
% sQBid and sQAsk are the sorted Requests and asks bids based on Q-levels. 
buyPointer =1; % Points to the start of each Q-level in bid list 
sellPointer =1; % Points to the start of each Q-level in Ask list 
For i=QS:-1:1 
 [B,X]= sort (QBid (buyPointer: buyPointer +BidQS_size (i)-1),'descend'); 
 Bt= sort (QTruBid (buyPointer: buyPointer +BidQS_size (i)-1),'descend'); 
 sQBid (buyPointer: buyPointer +BidQS_size(i)-1) = B;% Sorted Bids in Q-level 
 sQBidX (buyPointer: buyPointer +BidQS_size(i)-1)= X;% Sorted Index 
 % Sort True item Bid valuations to follow sorted Bids 
 sQTruBid (buyPointer :buyPointer +BidQS_size(i)-1) =Bt; 
 [B, X]= sort (QAsk(sellPointer :sellPointer +AskQS_size(i)-1),'ascend'); 
 Bt= sort (QTruAsk (sellPointer :sellPointer +AskQS_size(i)-1),'ascend'); 
 sQAsk (sellPointer: sellPointer +AskQS_size (i)-1) =B;%Sorted Asks in Q-level 
 sQAskX (sellPointer: sellPointer +AskQS_size (i)-1)=X; % Sorted Index 
% Sort True item Ask Valuations to follow sorted Asks 
 sQTruAsk (sellPointer :sellPointer+ AskQS_size(i)-1)= Bt; 
 buyPointer =   buyPointer +BidQS_size(i);% Step to next Q-level Bid list 
 sellPointer =   sellPointer+ AskQS_size(i);% Step to next Q-level ask list 
End 
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MATCHING-ALLOCATION-RULE (sQBid, sQAsk, BidQS_size, AskQS_size) % Match 
Request and Ask Bids and Allocate Winners (Same for all DA mechanisms) 
%sQBid/sQAsk: sorted request/ask bids. 
%BidQS_size/AskQS_size: number of request/ask bids in each Q-level.   
n = min (sQBid, sQAsk); %n is minimum size of sorted Requests and asks 
matched = 0; % Initial number of qualified matches 
msQBid = zeros(1,n); % Initial sorted match list of request bids. 
msQAsk = zeros(1,n); % Initial sorted match list of ask bids.  
sQAskT = sQAsk; %  
buyPointer   =  1; % Bid Start Pointer 
sellPointerS =  1; % Ask start pointer 
sellPointerE =  1; 
For i =Q-level:-1:1 % Inspect matching allocation For each Q-level 
     For j= buyPointer to buyPointer + BidQS_size(i)-1 
         For k=sellPointerS:1:sellPointerE+AskQS_size(i)-1 
           flag = 0; 
             If (sQBid(j) >= sQAskT(k))% sorted bid is more of equal ask?   
                msQBid(j)  = sQBid(j); % Select sorted Bid for match list                  
                msQAsk(k)  = sQAsk(k); % Select sorted ask for match list                  
                sQAskT(k)  = Big-M;% Big-M is very high to drop matched ask 
                matched    = matched+1; % Set number of matches in Q-level =i 
                flag= 1; 
             End 
            If (flag == 1)  
                 Break% Start with new bid and compare it with sQAskT asks  
            End 
         End 
     End 
   % Done with one Q-level? Then increment to next Q-level 
     buyPointer= buyPointer + BidQS_size(i);%BidQS_size no of bids in Q-level=i           
     sellPointerE=sellPointerE+ AskQS_size(i));%AskQS_size of asks in Q-level=i      
End 
 

GSPM-PRICING-RULE (msQBid, msQAsk, sBidQS, sAskQS, matched)%GSPM Pricing 
Rule for any Q-level ( Same for all GSPM DA mechanisms).  
% msQBid/ msQAsk: matched and sorted bid/ask sets,  
% sBidQS/sAskQS: bid/ask Q-levels,  
% matched: numbers matched bid/ask pairs for any Q-level.   
 
n       = min (sQBid, sQAsk); %n is minimum size of sorted Requests and asks 
Cost    = zeros (1, n); 
Payment = zeros (1, n); 
For i=1:1: matched-1; 
     If and(msQAsk(i)> 0,sAskQS(i)== sAskQS(i+1)) % sQAsk has same Q-level? 
        Cost (i) = sQAsk (i+1); % Ask value within Q-level group 
     Elseif and (msQAsk (i)> 0, sAskQS (i)> sAskQS (i+1)) 
        Cost (i) = sQAsk (i); % sQAsk is at the end of Q-level group 
     End 
     If and (msQBid (i)> 0, sBidQS (i) == sBidQS (i+1)) 
        Payment (i)= sQBid(i+1); % Bid Value within Q-level group 
      Elseif and (msQBid (i)> 0, sBidQS (i)> sBidQS (i+1)) 
        Payment (i) = sQBid (i); % Bid Value at the end of Q-level group 
     End 
 End 
If and (msQAsk (matched)> 0, msQBid (matched)> 0) % Matching of the last pair 
     Cost (matched)= sQAsk(matched); 
     Payment (matched) = sQBid (matched); 
End 
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EM-PRICING-SINGLE-QS (msQBid, msQAsk, SQAsk, sBidQS, sAskQS, matched)%EM 
Pricing Rule for Single Q-level EM DA Mechanism.  
% msQBid/ msQAsk: matched and sorted bid/ask sets,  
% sBidQS/sAskQS: bid/ask Q-levels,  
% matched: numbers matched bid/ask pairs for single Q-level    
 
n       = min (sQBid, sQAsk); %n is minimum size of sorted Requests and asks 
Cost    = zeros (1,n); 
Payment = zeros (1,n); 
For i=1:1: matched-1; 
     if and(msQAsk(i)> 0,sAskQS(i)== sAskQS(i+1)) % sQAsk has same Q-level? 
        Cost (i) = sQAsk (matched); % Ask value within Q-level group 
     Elseif and (msQAsk (i)> 0, sAskQS (i)> sAskQS (i+1)) 
        Cost (i)= sQAsk(matched); % sQAsk is at the end of Q-level group 
     End 
     If and (msQBid (i)> 0, sBidQS (i) == sBidQS (i+1)) 
        Payment (i) = sQAsk (matched); % Bid Value within Q-level group 
      Elseif and (msQBid (i)> 0, sBidQS (i)> sBidQS (i+1)) 
        Payment (i) = sQAsk (matched); % Bid Value at the end if Q-level group 
     End 
 End 
If and(msQAsk(matched)> 0,msQBid(matched)> 0) % EM matching for last pair 
     Cost (matched)= sQAsk(matched); 
     Payment (matched) = sQAsk (matched); 
End 
 

EM-PRICING-Multiple-QS(msQBid, msQAsk, sQAsk, sBidQS, sAskQS, 
AskQS_size, BidQS_size) %EM Pricing Rule for Multiple Q-levels EM DA.  
 
% msQBid/ msQAsk: matched and sorted bid/ask sets,  
% sBidQS/sAskQS: bid/ask Q-levels,  
% matched: numbers matched bid/ask pairs for single Q-level    
n       = min (sQBid, sQAsk); %n is minimum size of sorted Requests and asks 
Cost    = zeros (1,n); 
Payment = zeros (1,n); 
sellPointer =1; 
lastmsQAsk = zeros(QS); 
For i=QS:-1:1 % Set M Equilibrium Pricing for each Q-level 
    For k=sellPointer :1:sellPointer +AskQS_size(i)-1 
        if (msQAsk(k)> 0) % Does sQAsk has same Q-level? 
            lastmsQAsk (i) = k; 
        End 
    End 
    sellPointer = sellPointer + AskQS_size(i); 
End 
buyPointer   = 1; 
sellPointerS = 1; % Ask start pointer 
sellPointerE = 1; 
sQAskT = sQAsk; 
For i=QS:-1:1 
       For j=buyPointer :1: buyPointer+ BidQS_size(i)-1 
         For k=sellPointerS:1:sellPointerE+AskQS_size(i)-1 
             flag=0; 
             if (msQBid(j) >= sQAskT(k)) 
               if(k<= lastmsQAsk(i)) 
                    Cost(k)= sQAsk(lastmsQAsk(i));% M-Pricing 
                    Payment(j)= sQAsk(lastmsQAsk(i)); % Value within Q-level 
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               End 
                 sQAskT(k)= 99999; 
                flag= 1; 
             End 
            if(flag == 1) 
               break 
            End 
         End 
      End 
     buyPointer = buyPointer + BidQS_size(i); 
     sellPointerE= sellPointerE+ AskQS_size(i); 
End 
 

BOUNDED-RULES-UPDATE (BidWinnersNow, AskWinnersNow, sQAsk, sQBid, 
sQTruBid, sQTruAsk, delta_win, delta_loss, Bid_switch, Ask_switch) 
% Bid_switch and Ask_switch hold change of state of bidders. 
% Min and Max is for bounded adjustments of RBBL rules inside exchange 
For j=1:1:n 
    winnerNow = BidWinnersNew (j);% Recall current winners list 
    If (sQBid (j) >= sQTruBid(j))% Stop bidders at true valuation threshold  
        sQBid (j) = sQTruBid(j); 
    Elseif and ( winnerNow, not(Bid_switch(j)))% Buyers wins and still wins 
        sQBid (j) = sQBid(j)- delta_win*rand(1)*(sQBid(j)-Payment(j)); 
    Elseif and(not( winnerNow),not (Bid_switch(j)))% Buyer is still a loser 
       sQBid (j) = min(sQBid(j)+ delta_loss*rand(1)*sQBid(j),sQTruBid(j)); 
    Elseif and( winnerNow, Bid_switch(j)) % Buyer wins after losing 
       sQBid (j) = sQBid(j); 
    Elseif and(not( winnerNow),Bid_switch(j))% Buyers loses after winning 
       sQBid (j) = min(sQBid(j)+ delta_loss*rand(1)*sQBid(j),sQTruBid(j)); 
    End 
     winnerNow =AskWinnersNew (j); 
    If (sQAsk(j) <= sQTruAsk(j)) 
       sQAsk(j) = sQTruAsk(j); 
    Elseif and( winnerNow, not(Ask_switch(j)))  % Seller is still winner 
       sQAsk(j) = sQAsk(j)+ delta_win*rand(1)*(Cost(j)-sQAsk(j)); 
    Elseif and(not( winnerNow),not (Ask_switch(j)))%Seller is still a loser  
       sQAsk(j) = max(sQAsk(j)- delta_loss*rand(1)*sQAsk(j), sQTruAsk(j)); 
    Elseif and( winnerNow, Ask_switch(j)) ))% Seller wins after losing 
        sQAsk(j) = sQAsk(j); 
    Elseif and(not(winnerNow),Ask_switch(j))% Seller loses after winning 
        sQAsk(j) = max(sQAsk(j)- delta_loss*rand(1)*sQAsk(j),sQTruAsk(j)); 
    End 
End 
 

UNBOUNDED-RULES-UPDATE (BidWinnersNow, AskWinnersNow, sQAsk, sQBid, 
sQTruBid, sQTruAsk, delta_win, delta_loss, Bid_switch, Ask_switch) 
% Bid_switch and Ask_switch hold change of state of bidders. 
% Min and Max is for unbounded adjustments of RBBL rules inside exchange 
For j=1:1:n 
    winnerNow = BidWinnersNow (j);% Recall current winners list 
    If and( winnerNow, not(Bid_switch(j)))% Buyers wins and still wins 
        sQBid(j) = sQBid(j)- delta_win*rand(1)*(sQBid(j)-Payment(j)); 
    Elseif and(not( winnerNow),not (Bid_switch(j)))% Buyers is still loser 
       sQBid(j) = sQBid(j)+ delta_loss*rand(1)*sQBid(j); 
    Elseif and( winnerNow, Bid_switch(j)) % Buyer wins after losing 
       sQBid(j) = sQBid(j); 
    Elseif and(not( winnerNow),Bid_switch(j))% Buyers loses after winning 
       sQBid(j) = sQBid(j)+ delta_loss*rand(1)*sQBid(j; 
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    End 
     winnerNow =AskWinnersNow (j); 
    If and( winnerNow, not(Ask_switch(j)))  % Seller is still winner 
       sQAsk(j) = sQAsk(j)+ delta_win*rand(1)*(Cost(j)-sQAsk(j)); 
    Elseif and(not( winnerNow),not (Ask_switch(j)))%Seller is still loser  
       sQAsk(j) = sQAsk(j)- delta_loss*rand(1)*sQAsk(j); 
    Elseif and( winnerNow, Ask_switch(j)) ))% Seller wins after losing 
        sQAsk (j) = sQAsk(j); 
    Elseif and(not(winnerNow),Ask_switch(j))% Seller loses after winning 
        sQAsk (j) = sQAsk (j)- delta_loss*rand(1)*sQAsk(j); 
    End 
End 
 
 
EXAMINE-CHANGE-OF-STATES (BidWinnersOld, BidWinnersNow, AskWinnersOld, 
AskWinnersNow) %Examine Request and ask bidders New/Old Winning States. 
Status_changes = 0; 
Bid_switch = zeros (1, buyers);  
Ask_switch = zeros (1, sellers); 
For j=1:1: n 
    winner_before = BidWinnersOld (j); % Set win/lose state history  
    If xor (winner_before, BidWinnersNow (j)) % Inspect win/lose switching  
        Bid_switch (j) =1; % Set to one if state changes only. 
        Status_changes = Status_changes +1; % Set number of state changes 
        BidWinnersOld (j) = BidWinnersNow (j); % Save state for next trade 
    End 
    winner_before = AskWinnersOld (j); 
    If xor (winner_before, AskWinnersNew (j)) 
        Ask_switch (j) =1; 
        Status_changes  = Status_changes +1; 
        AskWinnersOld (j) = AskWinnersNew (j); 
    End 
End 
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