
This is a repository copy of Self-Healing Dilemmas in Distributed Systems: Fault
Correction vs. Fault Tolerance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179226/

Version: Accepted Version

Article:

Nikolić, J, Jubatyrov, N and Pournaras, E orcid.org/0000-0003-3900-2057 (2021) Self-
Healing Dilemmas in Distributed Systems: Fault Correction vs. Fault Tolerance. IEEE
Transactions on Network and Service Management, 18 (3). pp. 2728-2741. ISSN 1932-
4537

https://doi.org/10.1109/TNSM.2021.3092939

This item is protected by copyright. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 1

Self-healing Dilemmas in Distributed Systems:
Fault Correction vs. Fault Tolerance

Jovan Nikolić, Nursultan Jubatyrov and Evangelos Pournaras

Abstract—Large-scale decentralized systems of autonomous
agents interacting via asynchronous communication often expe-
rience the following self-healing dilemma: fault detection inherits
network uncertainties making a remote faulty process indistin-
guishable from a slow process. In the case of a slow process
without fault, fault correction is undesirable as it can trigger
new faults that could be prevented with fault tolerance that is a
more proactive system maintenance. But in the case of an actual
faulty process, fault tolerance alone without eventually correcting
persistent faults can make systems underperforming. Measuring,
understanding and resolving such self-healing dilemmas is a
timely challenge and critical requirement given the rise of
distributed ledgers, edge computing, the Internet of Things in
several energy, transport and health applications. This paper con-
tributes a novel and general-purpose modeling of fault scenarios
during system runtime. They are used to accurately measure and
predict inconsistencies generated by the undesirable outcomes of
fault correction and fault tolerance as the means to improve self-
healing of large-scale decentralized systems at the design phase. A
rigorous experimental methodology is designed that evaluates 696
experimental settings of different fault scales, fault profiles and
fault detection thresholds in a prototyped decentralized network
of 3000 nodes. Almost 9 million measurements of inconsistencies
were collected in a network, where each node monitors the health
status of another node, while both can defect. The prediction
performance of the modeled fault scenarios is validated in a
challenging application scenario of decentralized and dynamic
in-network data aggregation using real-world data from a Smart
Grid pilot project. Findings confirm the origin of inconsistencies
at design phase and provide new insights how to tune self-healing
at an early stage. Strikingly, the aggregation accuracy is well
predicted as shown by high correlations and low root mean
square errors.

Keywords-self-healing; fault correction; fault tolerance; fault
detection; distributed system; agent; gossip; aggregation

I. INTRODUCTION

S
EVERAL complex systems in nature and society often
exhibit striking reliability, a result of timely choosing,

applying and orchestrating multiple self-healing and adapta-
tion strategies. For instance, effectively mitigating blackouts
in power grids requires several tailored fault-correction and
fault-tolerance mechanisms, whose coordination is way more
sophisticated than simply repairing the originating fault of a
power line. These include resilient topological design, load-
shedding, operating reserves, islanding and active devices
among others [1]. While a level of sophisticated self-healing in

J. Nikolić is with Google, Zurich, Switzerland, e-mail: jovan-
nikolic@google.com.

N. Jubatyrov is with Facebook, London, UK, e-mail: nurs@fb.com.
E. Pournaras is with University of Leeds, Leeds, UK, e-mail:

e.pournaras@leeds.ac.uk.
Manuscript received November 20, 2020; revised March, 2021.

natural systems is usually a result of self-adaptation and evolu-
tion, in artificial socio-technical systems with central control
such as power grids, reliability remains to a high extent a
result of planning based on past experience, adaptations based
on precomputed simulations and manual human interventions
by system operators.

Decentralized autonomous systems recently witness a phe-
nomenal rise with the applicability of distributed ledgers, edge
computing, multi-agent systems and the Internet of Things in
several sectors of society, e.g. energy, transport, health, agri-
culture, etc [2]. Large-scale asynchronous distributed environ-
ments experience unprecedented network/system uncertainties
that challenge the orchestration of self-healing strategies: Fault
detection inherits these uncertainties that can make a faulty
remote process indistinguishable from a slow process [3], [4].
As a result, a reactive system recovery may turn into an
undesirable fault correction of a non-faulty system, which in
turn may cause an actual fault that could be prevented instead
with fault tolerance, i.e. a more proactive and preventive sys-
tem maintenance. Figure 1 illustrates the self-healing dilemma
problem studied in this paper.

Figure 1. The self-healing dilemma of agents comprising a large-scale
decentralized networked systems: Fault detection within the vicinity of an
agent comes with network uncertainties: Is a remote process faulty or slow?
Which self-healing strategy should be applied? Fault correction as a reactive
system recovery with the risk of introducing new faults? Or, fault tolerance
as a proactive system maintenance with the risk of letting a fault affecting
system performance?

The effective resolution of such fault-correction vs. fault-
tolerance dilemmas promises more effective self-healing
mechanisms for large-scale decentralized networked systems
with uncertainties. A more informed and timely application
of fault correction and fault tolerance has the potential to
decrease the likelihood of new faults by self-healing itself,
against which decentralized systems remain more resilient
with a lower communication and processing cost. This paper
models and classifies the possible outcomes of self-healing
dilemmas between pairs of agents, where one monitors the

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 2

health status of the other, while both can arbitrary defect.
These outcomes are possible desirable and undesirable states
(inconsistencies) into which self-healing can fall. The cost
of these inconsistencies by undesirable outcomes is further
formalized and distinguished within fault scenarios during
system runtime. These fault scenarios have the novelty of pre-
dicting the performance of self-healing mechanisms without
knowledge of the computational/application scenario, overly-
ing algorithms or application data. The modeled fault scenarios
are applied and studied to the computational case study of
decentralized dynamic in-network aggregation [5] by intro-
ducing a new prototyped fault-detection mechanism based on
gossip-based communication [6] and agent migrations [7].
Fault correction and fault tolerance are employed to improve
the estimates of aggregation functions made by each node in
the network. These estimations approximate, for instance, the
total power demand based on which decentralized demand-
response programs and power markets operate [8]. To preserve
accuracy, fault correction performs risky recomputations of the
total power demand reactively when faults are detected with
uncertainty, while fault tolerance relies entirely on occasional
proactive recomputations to capture changes.

A rigorous experimental methodology is introduced to
tackle three objectives: (i) Profiling of the inconsistency
cost generated by the modeled fault scenarios across 696
experimental settings with varying fault scales, fault profiles
and fault-detection thresholds. (ii) Validation of whether the
inconsistency cost measured by the modeled fault scenarios
is a good general predictor of the accuracy observed in the
application scenario of decentralized aggregation of real-world
power consumption data. (iii) Comparison of different model
calibrations for the prediction of aggregation accuracy by
relying on application-independent features.

The findings of the experimental evaluation have significant
implications and impact for system designers and operators:
By (re)using the general-purpose fault scenarios for vulnera-
bility analysis, the resilience of different system designs can
be assessed at an early stage with low cost and under different
fault characteristics, while fault-detection mechanisms can be
parameterized more effectively. Application developers can
improve the self-healing capabilities of applications at the
design phase by predicting the impact of faults and tuning
appropriately the application before deployment to lower its
cost. They can also plan computational resources for self-
healing more effectively.

The contributions of this paper are summarized as follows:
(i) The modeling of possible outcomes in agents’ self-healing
dilemmas. (ii) The modeling of application-independent fault
scenarios during system runtime that sufficiently formalize
the overall heath status of decentralized systems and their
impact on self-healing performance. (iii) A general-purpose
novel fault-detection mechanism based on gossip-based com-
munication and migrating agents. (iv) The applicability of
the fault-detection mechanism to the Dynamic Intelligent
Aggregation Service (DIAS) [5] for the improvement of its
aggregation accuracy. Self-corrective operations of DIAS are
expanded when nodes massively fail [9]. (v) The profiling
of the predicted inconsistencies that different fault scenarios

cause under different fault scales, profiles and fault-detection
thresholds. (vi) Three model calibration methods to improve
the accuracy of the predicted inconsistencies that rely entirely
on application-independent features.

This paper is organized as follows: Section II positions and
compares this study with related work. Section III models the
uncertainties in fault detection for large-scale asynchronous
decentralized systems and introduces the possible outcomes
in agents’ self-healing dilemmas. Section IV formalizes fault
scenarios that predict the cost of inconsistencies caused by
faults. Section V illustrates the applicability of the proposed
model in a case study of decentralized aggregation. The mech-
anisms for fault detection, fault correction and fault tolerance
to improve aggregation accuracy are outlined. Section VI
introduces the experimental methodology that addresses the
objectives of this study and Section VII illustrates the findings
of the experimental evaluation. Finally, Section VIII concludes
this paper and outlines future work.

II. POSITIONING AND COMPARISON TO RELATED WORK

Self-healing mechanisms usually address different types of
faults classified according to recent taxonomies [10], [11].
Assuming reliable communication channels, faults are differ-
entiated as follows [10]: (i) Crash - agents stop responding
and terminate. (ii) Omission - agents sporadically skip send-
ing/receiving messages. (iii) Timing - agents do not complete a
task in a certain time frame. (iv) Arbitrary (Byzantine)- agents
deviate from the expected behavior and operate unpredictably.
Another classification distinguishes between (i) transient, (ii)
intermittent, (iii) permanent and (iv) Byzantine faults [11].
While transient faults draw parallels with omission ones and
are a result of a temporary affecting condition, e.g. network
connectivity, intermittent faults are random, temporary and
usually result of hardware failure. In contrast, crash hardware
faults require repair of the root cause and are a subset of per-
manent faults. Byzantine faults result in corrupted/malicious
agents sharing manipulated, forged or incorrect data. In large-
scale decentralized systems, designing self-healing mecha-
nisms exclusively for certain fault types is ineffective. Several
such faults can co-occur, cascade or even have a cause-effect
relationship resulting in vicious adaptation cycles, e.g. a faulty
fault detection causing faulty fault correction and vice versa.
Modeling the interplay of faults and formalizing complex fault
scenarios as well as their impact on self-healing performance
is fundamental and missing.

In such fault scenarios, the reliability of fault detection
plays a key role [10]. Two main fault-detection approaches
of periodic heartbeat messages and agent interactions are
identified. The latter further distinguishes between timeout

and missing callback detection. Replication [12], [10] is a
common approach that supports both fault tolerance and fault
correction in terms of guarantying the availability of (backup)
resources and repair modules for self-healing [13]. Replication
can be active vs. passive based on whether replicas are
used only when faults occur [14], adaptive based on criteria
for replication [15], [16], dynamic by switching on-the-fly
replication schemes [14], or homogeneous vs. heterogeneous

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 3

based on whether replicas are identical copies or equivalent
processes [13]. Replication is applied to check-point schemes
based on rollback protocols [17], [18], consensus protocols
and hybrid approaches [19]. Replication methods are partic-
ularly applicable in multi-agent systems, for instance, group
replication via proxy servers [13], replication of agents based
on the criticality of their planned actions [16], adjustable
group replication with a leader agents [14] or introducing a
special class of agents for redundancy maintenance [20]. New
replication strategies designed for the Internet of Things and
cyber-physical systems are subject of recent work [21], [22].
Self-healing methods [23] can be preventive (proactive) [12] or
reactive (resilient) [11]. The former methods require prediction
based on probabilistic modeling and monitoring [24]. The
latter ones require learning capabilities from historic data and
observations [25], [26].

Despite the large body of work on fault correction and
fault tolerance, a recent comprehensive review of such ap-
proaches for multi-agent systems identifies as imperative the
need for generalized and standardized evaluation of fault-
tolerance approaches [10]. Another recent systematic eval-
uation of 36 state-of-the-art self-healing systems from the
research communities of autonomic computing, self-adaptive,
self-organizing and self-managing systems (ICAC, SASO,
TAAS, SEAMS) is illustrated [27]. Empirical assessments
conclude that multiple input traces covering a vast spectrum of
failure characteristics are required to predict the performance
of a self-healing system. Therefore, generalized models that
predict the impact of faults and their correction on large-
scale decentralized systems are missing so far [12]. Predicting
without knowledge about the computational/application sce-
nario, executed application algorithms and application data is
challenging [12]. Such models have the potential to fundamen-
tally influence the understanding of how to design and deploy
more cost-effective decentralized self-healing systems. What
makes particularly challenging the inception of such general
models is the absence of central control units, the agents’
autonomy, the network uncertainties and the non-determinism
of system operations [13]. In particular, failed processes are
often indistinguishable from slow processes in asynchronous
decentralized environments that inherit the impossibility of
distributed consensus [28], [29]. As a consequence, fault
detection inherits such uncertainties [3], [30] (is the process
faulty or slow?), which in turn results in dilemmas on what
self-healing adaptations to apply, i.e. fault correction vs. fault
tolerance. This paper addresses these self-healing dilemmas.

III. SELF-HEALING DILEMMAS

This paper studies self-healing of large-scale decentralized
networked systems with faulty nodes. Decentralization means
that no single node has full information about all other nodes
in the network at a time and each node is connected with a
limited number of other nodes. Faults can be a result of system
failure, software failure, security attack or any other type of
error that makes a faulty node inaccessible to other healthy
nodes [13]. Nodes usually depend on each other to perform
distributed operations by communicating with each other in a

peer-to-peer fashion. Even if communication is asynchronous,
a fault introduces a cost that hinders (i) performance and/or
(ii) consistency of a distributed operation. The latter is referred
to as inconsistency cost and is the main focus of this paper.

Two approaches are distinguished to eliminate these costs:
(i) fault correction vs. (ii) fault tolerance. Fault correction
eliminates the performance and inconsistency cost of faults via
an effective and timely fault detection and its correction. For
instance, consider a master-slave heartbeat mechanism with
which a master node monitors the health status of a slave node
by receiving periodically heartbeat messages. A fault detection
by the master node is the passage of time period without
receipt of a heartbeat message. This period is usually selected
empirically and universally [31]. In contrast, fault-tolerance
mechanisms are designed to decrease the performance and
inconsistency cost of faults by preventing a total system break
down and allowing a system to continue its operation with an
operating quality proportional to the severity of the fault.

The following assumptions are made: (i) Both fault cor-
rection and fault tolerance have both, a performance and
inconsistency cost. They have performance cost because their
operations usually introduce communication and processing
overhead. They have inconsistency cost because of uncertain-
ties in fault detection. A fault may be erroneously detected
because of high network latency, low convergence speed of the
underlying communication model, misconfiguration or poor
design in fault detection. For instance, a heartbeat message
may not be received because of network fault rather than
because of a node fault. The unnecessary correction process
consumes resources and introduces potential inconsistencies as
system operations are usually not designed to tolerate unneces-
sary fault corrections. (ii) The performance and inconsistency
cost of fault correction and fault tolerance is significantly lower
than the respective costs of a system left to be faulty, i.e.
without any self-healing. In other words, it makes sense to
take care of faults either via fault tolerance or fault correction
(or both). (iii) The performance and inconsistency cost of
fault correction vs. the ones of fault tolerance depend on the
operational state of the system during system runtime and
therefore, it is unclear which self-healing approach should be
adopted. Based on these three assumptions as well as the
focus of this paper on inconsistency cost to eliminate the
number of studied dimensions, a study on how to minimize
the inconsistency cost in fault correction vs. fault-tolerance
dilemmas is illustrated.

Figure 2a models self-healing dilemmas in a decentralized
networked system that consists of Node �, � and �. Each
node runs a self-healing agent that is responsible to perform
fault correction or fault tolerance. Given the focus of this
paper on faulty nodes and without loss of generality, the self-
healing agents need to operate remotely so that they are not
affected by the faults of the parent nodes, i.e. the original
host nodes that created them. As a result, they migrate to
neighboring nodes as shown in Figure 2b. In practice, the
scope of this model covers several systems that have backup
components for redundancy. For the sake of this illustration,
a heartbeat mechanism is assumed with which self-healing
agents monitor the health status of parent nodes as shown

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 4

in Figure 2c. Heartbeat messages may not arrive at Node �

because of (i) a fault in the parent Node � and/or (ii) a large
latency or network error in the link between Node � and � [4].
See Figure 2d. Therefore, when heartbeat messages are not
anymore received in Node �, the dilemma of the self-healing
agent is whether to perform fault correction, i.e. establish the
new link between � and � because the parent Node � is
truly faulty or perform fault tolerance, i.e. not establish a new
link because missing heartbeat messages are probably a result
of high latency or fault in the link connecting Node � and
�. It is assumed that the applied fault correction is effective
if and only if nodes experience faults, otherwise correction
introduces an inconsistency cost.

(a) (b) (c) (d)

Figure 2. Modeling self-healing dilemmas in a decentralized networked
system. (a) Nodes (circles) are connected in a decentralized network and
initiate self-healing agents (squares), which are responsible to detect, correct
or tolerate faults of their parent node. (b) Self-healing agents find a host node
to migrate for redundancy. In this way, a fault on their parent node does
not influence their self-healing operations. (c) Self-healing agents monitor
the health status of their parent nodes via, for instance, heartbeat signals. (d)
Fault detection, determined by a time period during which heartbeat messages
are not received from the parent node, comes along with uncertainties. For
instance, the heartbeat messages may not be received because of high latency
or network error on the �-� link, rather than because Node � is faulty [4].
In this example, self-healing agents perform fault correction by initiating
a new connection with another node if they detect a fault in the parent
node. Fault correction eliminates inconsistency cost if a node is actually
faulty, but introduces inconsistency cost if the parent node is actually not
faulty. Therefore, the self-healing agent has the following dilemma: Should it
establish the �-� link (fault correction) or wait longer for heartbeat messages
to arrive (fault tolerance)? There are four possible outcomes in this decision-
making illustrated in Figure 3.

The fault-correction vs. fault-tolerance dilemmas come with
four possible outcomes as shown in Figure 3. Note that in
Figure 3a and 3b there are two outcomes that do not have
inconsistency cost (desirable outcomes). These are the true

negative outcome that is a result of effective fault tolerance
and the true positive outcome as a result of effective fault
correction. Figure 3c and 3d show the two outcomes with an
inconsistency cost (undesirable outcomes). These are the false

negative outcome1 by erroneous fault tolerance and the false

positive outcome by erroneous fault correction.
The next section formalizes the fault scenarios of false

negative and false positive outcomes during system runtime,
which are the ones that come with an inconsistency cost. The
modeled fault scenarios serve the following: (i) Predict the in-
consistency cost of decentralized self-healing systems without
application information. (ii) Design self-healing agents with
a fault-detection capability that minimizes the inconsistency
cost during system runtime.

1False negatives also originate from faults in the node hosting the self-
healing agent.

(a) True negative.
Desirable.

(b) True positive.
Desirable.

(c) False negative.
Undesirable.

(d) False positive.
Undesirable.

Figure 3. Self-healing dilemmas in fault detection under uncertainty. In this
illustrative example, fault correction is the reactive establishment of the link
between Node � and � when no heartbeat messages are received in Node
� from Node �. In contrast, fault tolerance waits further for the heartbeat
messages to arrive assuming a delay over the link between Node � and
�. Possible outcomes: (a) True negative: Parent Node � is healthy and the
self-healing agent does not perform fault correction. This outcome has no
inconsistency cost. (b) True positive: Parent Node � is faulty and the self-
healing agent performs fault correction. This outcome has no inconsistency
cost. (c) False negative: Parent Node � is faulty but the self-healing agent
does not perform fault correction. This outcome has inconsistency cost. (d)
False positive: Parent Node � is healthy but the self-healing agent performs
fault correction. This outcome has inconsistency cost.

IV. MODELING FAULT SCENARIOS AT SYSTEM RUNTIME

Table I summarizes the mathematical symbols used in the
rest of this paper. Assume once more here the pair of Nodes �

and �, where Node � remotely monitors the health status of
Node �. Tracking the inconsistency cost generated by this pair
of nodes during system runtime is complex and challenging
due to the uncertainty over the different fault scenarios in
the following: (i) Faults in either of the two (monitoring and
monitored) nodes. (ii) Faulty detection in Node �, performed
either too early or too late. Table II illustrates the modeled
fault scenarios that can occur during system runtime.

Table I
MATHEMATICAL NOTATION USED IN THIS PAPER.

Symbol Description

) System runtime
g ∈ {1, ...,) } Time unit
3 ≤) Detection time
C ≤) Threshold for fault detection
��, �� ≤) Fault time of Node � and �

; Total number of fault scenarios
B ∈ {1, ..., ; } Fault scenario
n −B , n +B ∈ R Maximum inconsistency cost of a fault scenario B generated by

a false negative and false positive state, during system runtime)

d−B , d
+
B ∈ [0, 1] Relative inconsistency cost of a fault scenario B generated by

a false negative and false positive state, during system runtime)

�, �−, �+ ∈ R Total inconsistency cost as well as inconsistency cost generated by
a false negative and false positive state during system runtime)

2 ≤) Time to restore aggregation accuracy by a corrective operation
'B ≤) Recovery time of Node �

? Time to propagate a node descriptor to another node
= ∈ N Total number of nodes
< ∈ N Number of batches of faulty nodes
: ∈ N, < ¤: ≤ = Number of faulty nodes at each batch
_ ∈ [0, 1] Calibration factor
'"(� Root mean square error
�R, �GR Total inconsistency cost of regression and generalized

regression calibration methods
�D Predicted inconsistency cost of DIAS

A system runtime) is studied over which the inconsistency
cost is traced as well as the detection time 3 ≤) of Node �

identifying Node � as faulty. Without loss of generality, Node
� triggers at time 3 fault correction after a threshold time
period C ≤) during which (3−C, 3−C+1, ..., 3−1, 3) the fault-
detection criterion is satisfied, e.g. a heartbeat message is not
received. Otherwise, Node � performs fault tolerance, awaiting

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 5

Table II
MODELING FAULT SCENARIOS BETWEEN THE PAIR OF NODES � AND �

DURING SYSTEM RUNTIME) AND THE RELATIVE INCONSISTENCY COST

dB BY THE FALSE POSITIVE AND FALSE NEGATIVE OUTCOMES. THESE

SCENARIOS ARE FORMALIZED WITH NODE � MONITORING THE HEALTH

STATUS OF NODE �. THE SCENARIOS ARE MODELED BASED ON THE

FOLLOWING INFORMATION: (I) THE HEALTH STATUS OF THE NODES, I.E.
WHICH OF THE TWO NODES ARE ON/OFF (HEALTHY/FAULTY). (II) THE

TIMING OF THE FAULTS ��, �� , I.E. WHICH NODE IS FAULTY FIRST. COST

CALCULATIONS RELY ON THE DETECTION TIME 3 OF NODE � AND THE

DETECTION THRESHOLD C .

Fault Scenario (B)
Relative

Inconsistency Cost (dB)

Depiction
Health
Status

Faults
Timing

False
Positive

False
Negative

�: ON

�: ON
-)−3

)−C -

A: ON

B: OFF
��

��−3
��−C

3−��

)−��

�: OFF

�: ON
��

��−3
��−C

-

A: OFF

B: OFF
�� < ��

��−3
��−C

)−��

)−��
= 1

A: OFF

B: OFF

�� > �� ,

3 < ��

��−3
��−C

)−��

)−��
= 1

A: OFF

B: OFF

�� > �� ,

3 > ��

-

3−��

��−��
,

)−��

)−��
= 1

A: OFF

B: OFF
�� = ��

��−3
��−C

)−��

)−��
= 1

further for the heartbeat messages to arrive and relying on
underlying preventive maintenance mechanisms for recovery.
Both Node � and � can become faulty at any time ��, �� ≤)

respectively. At each time g ∈ {1, ...,)} the nodes can be in
one of the states of Figure 3. False negative and false positive
states generate at each time g an inconsistency cost value for
a given fault scenario B ∈ {1, ..., ;} out of ; possible fault
scenarios shown in Table II. Moreover, for a fault scenario
B, the time during which the pair of Nodes � and � are in a
false negative or false positive state out of the total time period
in which they can be in such a state during system runtime
is measured by d−B and d+B respectively. Therefore, the total
inconsistency cost � generated by a pair of agents during the
system runtime) can be measured as follows:

� = �− + �+
=

;∑

B=1

(n−B · d−B + n+B · d+B), (1)

where n−B and n+B are the total (maximum) inconsistency cost

that can be generated during system runtime by a fault scenario
B. These can be a result of a constant unit of inconsistency cost
value generated at each time point g or they can be the output
of functions n−B =

∑)
g=1

5 − (g), n+B =
∑)

g=1
5 + (g) representing

an analytical or empirical model [32], [33], [34]. The fault
scenarios of Table II are illustrated as follows:

1. �: ON, �: ON – Both nodes do not defect.
The inconsistency cost by a false positive outcome is
generated during the time period) − 3 in which Node
� erroneously detects Node � as faulty, while it is not.
The maximum time during which nodes can be in this
state is) − C.

2. �: ON, �: OFF – Node � becomes faulty at time ��,
while Node � does not defect.
If fault detection occurs before ��, the inconsistency cost
by a false positive outcome is generated during the time
period �� − 3, with a maximum duration of �� − C. If
fault detection occurs after ��, the inconsistency cost by
a false negative outcome is generated during the time
period 3 − ��, with a maximum duration of) − ��.

3. �: OFF, �: ON – Node � becomes faulty at time ��,
while Node � does not defect.
If fault detection occurs before ��, the inconsistency cost
by a false positive outcome is generated during the time
period �� − 3, with a maximum duration of �� − C.

4. �: OFF, �: OFF – Node � becomes faulty at time ��

and Node � at �� > ��.
If fault detection occurs before ��, the inconsistency cost
by a false positive outcome is generated during the time
period �� − 3, with a maximum duration of �� − C.
The inconsistency cost by a false negative outcome is
generated during the time period) − �� that is also the
maximum duration. This is because Node � is faulty to
perform fault detection of Node �.

5.1 �: OFF, �: OFF, 3 < �� – Node � becomes faulty at
time �� and Node � at �� < ��.
If fault detection occurs before ��, the inconsistency cost
by a false positive outcome is generated during the time
period �� − 3, with a maximum duration of �� − C.
The inconsistency cost by a false negative outcome is
generated during the time period) − �� that is also the
maximum duration. This is because Node � becomes
faulty and is unable to perform fault correction of Node
�.

5.2 �: OFF, �: OFF, 3 > �� – Node � becomes faulty at
time �� and Node � at �� < ��.
The inconsistency cost by a false negative outcome is
generated during the time period 3 − ��, with a max-
imum duration of �� − ��. This represents the lag of
detecting the faulty Node �. There is also an additional
inconsistency cost by a false negative outcome during the
time period) − �� that is also the maximum duration.
This is because Node � becomes faulty and is unable to
perform fault correction of Node �.

6. �, �: OFF – Node � and � become faulty at time
�� = ��.
The inconsistency cost by a false positive outcome is

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 6

generated during the time period ��−3, with a maximum
duration of �� − C. The inconsistency cost by a false
negative outcome is generated during the time period
)−�� that is also the maximum duration. This is because
Node � becomes faulty and is unable to perform fault
correction of Node �.

As proven below, these fault scenarios are sufficient to
model the overall system health status:

Theorem 1. The fault times ��, �� of each possible pair of a

Node � monitoring the health status of Node � are sufficient

to calculate the health status of a decentralized system of =

nodes that arbitrary defect in < batches, each of size : < =.

Proof: The size of the health status space in a decentral-
ized system of = nodes, where each node monitors the health
status of all other nodes, is =2 − = as each node monitors the
health status of all other = − 1 nodes. The fault times ��, ��

≠ 0 and the six fault scenarios they determine (outlined in
Table II) are sufficient to calculate this space, if the number
of node pairs determined at each fault scenario sum up to
=2 − =. For each fault scenario, the number of node pairs are
determined as follows:

• �: ON, �: ON, �� = �� = 0

Each of the = − <: healthy nodes monitors the health
status of all other =−<: −1 healthy nodes, i.e. nodes do
not monitor their own health status. This is the number
of healthy node pair variations without repetition:
(

= − <:

2

)

2! =
(= − <:)!

2!(= − <: − 2)!
= (= − <:) (= − <: − 1)

(2)
• �: ON, �: OFF, �� = 0 < �� ≤) and

�: OFF, �: ON, �� = 0 < �� ≤)

Each of the = − <: healthy nodes monitors the health
status of all other <: faulty nodes and vice versa for
these two fault scenarios. The total number of these node
pairs for both fault scenarios are calculated as:

2<: (= − <:) (3)

• �: OFF, �: OFF, 0 < �� < �� ≤) and
�: OFF, �: OFF, 0 < �� < �� ≤)

These fault scenarios involve :2 pairs of faulty Nodes
� and � for each possible pair of different batches of
faulty nodes. The total number of all possible batch pairs
in which a pair of two faulty Nodes � and � reside is
the number of batch pair variations without repetition.
Therefore, the total number of these faulty node pairs for
both fault scenarios is calculated as follows:

:2

(

<

2

)

2! = :2
<!

2!(< − 2)!
2! = <:2 (< − 1) (4)

• �, �: OFF, 0 < �� = �� ≤)

This fault scenario involves :2−: pairs of faulty Nodes �

and � defecting at the same time at each of the < batches
of faulty nodes. This is the number of faulty node pair
variations without repetition:

<

(

:

2

)

2! = <
:!

2!(: − 2)!
2! = <: (: − 1) (5)

The number of node pairs from all fault scenarios sum up as
follows:

Fault scenario 1, Eq. 2
︷ ︸︸ ︷

(= − <:) (= − <: − 1) +

Fault scenario 2 & 3, Eq. 3
︷ ︸︸ ︷

2<: (= − <:) +

Fault scenario 4 & 5, Eq. 4
︷ ︸︸ ︷

<:2 (< − 1) +

Fault scenario 6, Eq. 5
︷ ︸︸ ︷

<: (: − 1) = =2 − =, (6)

which is the overall health status space of a decentralized
system.

V. MODEL APPLICABILITY

This section illustrates the applicability of the fault scenarios
for self-healing in decentralized in-network data aggregation.
Fault detection, fault correction and fault tolerance are illus-
trated.

A. Fault detection via gossip-based communication

Gossip-based communication [6] is selected for fault detec-
tion given the following: (i) It is a communication protocol
for large-scale and highly decentralized systems that falls
within the scope of this paper. (ii) It is general-purpose and
fundamental as it can be widely used for fast information
dissemination, new information discovery, preserving network
robustness by keeping the network connected, and other core
operations required in decentralized systems [35], [6], [36].
(iii) It finds real-world applicability in several systems such
as peer-to-peer networks [35], cloud computing [37], [38], Big
Data systems [39], distributed ledgers [40], [41], middleware
systems [42] etc. (iv) It is probabilistic in nature and as a result,
fault detection based on gossiping communication comes with
uncertainties within which dilemmas of fault correction vs.
fault tolerance can be systematically studied.

Gossip-based communication realizes health status moni-
toring as illustrated in Figure 2c. Nodes execute a gossiping
protocol such as the peer sampling service [35] that equips
each node with a limited-size list of node descriptors, each
containing the IP address, port number, timestamp and appli-
cation information. This list is the partial view that nodes have
of the system. It is periodically updated with new random node
descriptors during peer-to-peer gossip exchanges with other
random nodes selected from the partial view (the same list).

The health status of the parent node is locally determined
by the time period passed since the last time the descriptor2

of the parent node was present in the partial view of the
node in which the self-healing agent resides. If the threshold
C is surpassed, the parent node is considered faulty and fault

2Descriptors of the parent node with a timestamp value later than the
migration time are the ones counted. Earlier descriptors of the parent node
may be present and circulated in the network. They are eventually replaced
with the latest one during the gossip exchanges [35].

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 7

correction is initiated. Otherwise, fault tolerance is performed
by awaiting further for the parent node descriptor to arrive by
relying on underlying gossip-based communication.

An effective choice of the threshold C depends on the system
size and the internal configuration of the gossip-based com-
munication protocol: (i) The size of the partial view. (ii) The
execution period. (iii) The node and view selection policy that
determine the level of randomization in the communication
and exchange of node descriptors respectively. The threshold
choice also depends on the external environment, e.g. latency,
convergence speed of the communication model, bandwidth
and load of the network [4]. Even if all these uncertainties
that determine whether the parent node is truly faulty or
not are controlled, the dilemma of the self-healing agent
remains: is it fault tolerance or fault correction that results
in lower inconsistency cost? Given that the inconsistency cost
is context/application dependent, this paper introduces the
computational case study of decentralized data aggregation
within which inconsistency cost is assessed.

B. Computational case study: decentralized data aggregation

The computational problem of dynamic in-network data
aggregation is studied [43]. More specifically, this paper
studies how self-healing can improve the accuracy in decen-
tralized computations of aggregation functions when nodes
fail. The computational case study is the following: Each
node in the network is a data supplier and data consumer

(extreme performance benchmark). Data suppliers generate
and share data (streams) with data consumers. Data consumers
collect data (streams) from data suppliers and compute/update
aggregation functions such as average, summation, count,
maximum/minimum and other. When a data supplier discon-
nects from the network, data consumers need to update their
aggregation function by performing a reverse computation, i.e.
rollback, that removes the counted input data of the departing
data supplier.

Preserving accurate estimations of aggregation functions in
this computational case study is challenging given that (i)
data suppliers and consumers need to discover each other in
a decentralized unstructured network, (ii) data suppliers can
change the input data of the aggregation functions, (iii) data
consumers may compute any aggregation function given the
input data of data suppliers and (iv) reverse computations are
required when data suppliers leave the network. In contrast
to earlier decentralized aggregation methodologies such as
gossiping [44], [45], tree-based [46] or synopsis diffusion [47],
DIAS3, the Dynamic Intelligent Aggregation Service [5], [48],
[9] is a decentralized gossip-based aggregation system de-
signed to meet all these requirements4 and therefore it is used

3Available at http://dias-net.org (last accessed: March 2021).
4This is made possible by using an efficient and scalable distributed memory

system based on probabilistic data structures, the Bloom filters [49]. Based on
Bloom filters, a data supplier can reason whether it has earlier communicated
with a data consumer to share data and vice versa a data consumer can reason
whether is has earlier communicated with a data supplier to aggregate data.
Data suppliers and consumers can also reason about what data have been
shared and aggregated, i.e. the most recent ones or outdated ones, so that
aggregation inaccuracies are minimized, while unnecessary communication is
limited. Further information about DIAS is out of the scope of this paper and
can be found in earlier work [5], [48], [9] .

to assess how well the inconsistency cost of the fault scenarios
predicts the aggregation inaccuracies.

The inconsistency cost is measured by the average rela-
tive approximation error in the estimation of the aggregation
functions among all data consumers in the network. In other
words, the inconsistency cost measures how far the estimation
of the aggregates is from the actual true values of the aggre-
gates. Apparently, when nodes hosting data suppliers become
faulty, reversed (rollback) computations are required by data
consumers that have earlier aggregated data of these now faulty
data suppliers. Without such computations, the estimations
of the aggregates diverge from the actual ones generating
inconsistency cost (false negative state in Figure 3c). However,
inconsistency cost may also result by reversed (rollback) com-
putations because of an erroneous gossip-based fault detection,
e.g. a very low threshold value C that determines the node
hosting the data supplier as faulty when actually it is not
(false positive state in Figure 3d). Therefore, the self-healing
dilemma is highly applicable in this computational case study
and the rest of this section introduces the functionality of the
fault correction and fault tolerance in DIAS.

C. Fault-corrective aggregation

This paper extends an earlier self-corrective aggregation
mechanism [9] for nodes joining and leaving the network
into a fault-correction mechanism when nodes arbitrary fail.
The rationale of self-correction when a node with a data
supplier leaves the network is the following: A self-healing
agent creates a replica of the data supplier with which it
migrates to a remote random neighboring host node (see
Figure 2b) selected via the peer sampling service5 based on
which DIAS operates. The migrated data supplier initiates
corrective rollback operations with the data consumers in the
network to update the aggregation functions. This process
either completes or is interrupted when the self-healing agent
detects6 via the peer sampling service that the parent node
has joined again the network. In the latter case, the migrated
self-healing agent together with the migrated data supplier
return back to the parent node to continue their operations
as before. Migrations can be consecutive if the migrated host
node leaves the network as well. More information about the
protocol specification and evaluation results can be found in
earlier work [9].

The limitation of this mechanism is that self-corrective oper-
ations are initiated reactively by the parent node before leaving
the network. This is not realistic in a scenario of arbitrary
node failures that can terminate all local processes before
self-corrective operations are initiated. This paper extends this
model by proactively migrating each self-healing agent to a
remote host, where it runs as a daemon monitoring the health

5Random selection of the migration host is performed for load-balancing.
Without loss of generality, DIAS reuses the peer sampling service for the
purpose of the migrations to limit the need for another such mechanism that
comes with additional performance overhead, i.e. communication, processing
and storage cost. Other methodologies for migration include random walks in
the network or allocating dedicated nodes for redundancy [7].

6The returned parent node is detected when its descriptor appears in the
partial view of the migrated node with a timestamp value later than the leave.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 8

status of the parent node as shown in Figure 2c. Monitoring is
performed by reusing the peer sampling service7 according to
the fault-detection mechanism introduced in Section V-A so
that no other performance overhead is introduced.

D. Fault-tolerant aggregation

The alternative to fault correction is fault tolerance that
determines no corrective operations until the threshold C is
reached. Fault tolerance eliminates inconsistency costs origi-
nated by false positive states (see Figure 3d). Moreover, fault
tolerance is cost-effective when the faulty node can recover
promptly, given the time required for corrective operations to
complete. More specifically, fault tolerance eliminates incon-
sistency cost if it holds:

�� + C + 2 > '� + ? (7)

where �� is the time when Node � becomes faulty, C is the
fault-detection threshold and 2 is the duration for the corrective
operations to restore a required aggregation accuracy level. On
the other side of the inequality, '� is the time when Node �

recovers8 and ? is the time required by Node � to detect
the recovery, i.e. propagation time of the Node � descriptor
by the peer sampling service. This inequality can be used to
determine threshold values C for each node given empirical
models for '� − ��, which are though not the focus of this
paper. Instead, different threshold values and their influence
on inconsistency cost are studied.

VI. EXPERIMENTAL METHODOLOGY

This study has the following three objectives: (i) Profiling of
the inconsistency cost generated by the modeled fault scenarios
under varying fault scales, fault profiles and fault-detection
thresholds. (ii) Validation of whether the inconsistency cost
of the modeled fault scenarios is a good general predictor of
the accuracy observed in the application scenario of decentral-
ized aggregation of real-world power consumption data. (iii)
Comparison of different model calibrators for the prediction of
aggregation accuracy. Table III outlines the experimental pa-
rameterization9. All studied systems are implemented with an
improved version [51] of the Protopeer prototyping toolkit [52]
for distributed systems.

The following scales of faulty nodes are studied:
{10%, 20%, ..., 80%} of the total number. Three fault profiles
are introduced that come with 1, 2 and 4 batches of faulty
nodes respectively: (i) 1st profile: All faulty nodes defect in one
batch on half of system runtime that is on the 1600

th epoch.
(ii) 2nd profile: Faulty nodes defect in two batches, with half of

7Other mechanisms such as heartbeat messages [50], [31] can be used.
8The scenario in which �� + C +2 < '� + ? is more complex to determine

whether fault tolerance or fault correction should be performed as it depends
on the relation of C and ?, the data consumers with which corrective operations
have been performed and their aggregated data.

9The system parameterization of the peer sampling service and DIAS is
chosen based on earlier experimental findings [35], [5], [9], [48] and on the
rationale of a cost-effective operation of the decentralized data aggregation
under no faulty nodes. In this way, the effect of the faults on the data
aggregation and how this effect can be controlled via a self-healing tuning
(choice of threshold) can be isolated and studied systematically.

Table III
AN OVERVIEW OF THE EXPERIMENTAL PARAMETERIZATION.

System Parameter Value System Parameter Value

ECBT data10 [5] Day 199 (January 4
th) DIAS execution period 1B

Num. of nodes 3000 Num. of aggregation sessions [5] 4
Num. of epochs 3200 Partial view size [35] 50
Epoch duration 250<B Swap parameter [35] 24
Fault scales 10%, 20%, ..., 80% Healer parameter [35] 1
Fault profiles (Table IV) 1st, 2nd, 3rd Fault detection threshold [100, 800] with step 25
Num of epochs for bootstrapping 400

the faulty nodes defecting on the 1332
nd epoch and the other

half on the 2264
th epoch. (iii) 3rd profile: Faulty nodes defect

in four batches of equal size on the 1060
th, 1620

th, 2180
th and

2740
th epoch. Such parameters can accurately model failures

observed in real-world systems, i.e. failure bursts correlated
in time/space [53], [54], [27], while the evaluated parameter
space with extreme fault scales stretches the experimental
evaluations. Table IV summarizes the applicability of the three
fault profiles to the modeled fault scenarios. Note in particular
that nodes can defect in any of these batches except the case
of the 4th and 5th fault scenarios that determine faulty nodes
in different batches, while either Node � or � defects first.
In the 2nd profile, Node � cannot defect at the 2nd batch if
it defects first and respectively, Node � cannot defect at the
1st batch if it defects second. Similarly in the 3rd profile, the
node that defects first cannot defect at the 4th batch and the
node that defects second cannot defect at the 1st batch.

Table IV
APPLICABILITY OF THREE FAULT PROFILES TO EACH FALSE POSITIVE

(FP) AND FALSE NEGATIVE (FN) STATE OF THE FAULT SCENARIOS. THE

FREQUENCIES OF FAULT-SCENARIOS SUM UP TO =2 − = (THEOREM 1),
WHERE = IS NUMBER OF NODES IN THE NETWORK, : THE NUMBER OF

FAULTY NODES AT EACH BATCH OF DEFECTED NODES OUT OF A TOTAL OF

< BATCHES.

Health Frequency State Node
Defect Batch IDs

1st Profile
< = 1

2nd Profile
< = 2

3rd Profile
< = 4

1.
�: ON
�: ON (= −<:) (= −<: − 1) FP None ✗ ✗ ✗

2.
�: ON
�: OFF <: (= −<:) FP, FN � 1 1, 2 1, 2, 3, 4

3.
�: OFF
�: ON <: (= −<:) FP � 1 1, 2 1, 2, 3, 4

4. �: OFF
�: OFF

1

2
<:2 (< − 1) FP, FN

� ✗ 1 1, 2, 3

� ✗ 2 2, 3, 4

5. �: OFF
�: OFF

1

2
<:2 (< − 1) FP, FN

� ✗ 1 1, 2, 3

� ✗ 2 2, 3, 4

6. �, �: OFF <: (: − 1) FP, FN �, � 1 1, 2 1, 2, 3, 4

To address the first objective, the fault profiles are applied
to a decentralized network of 3000 nodes each running fault
detection with the peer sampling service [35] as illustrated in
Section V-A and with the respective parameters of Table III.
The threshold values of {100, 125, 150, ..., 775, 800} epochs
are evaluated. By knowing which nodes defect at which
time point during system runtime, all false positive and false
negative states in the six possible fault scenarios of Table II
can be measured and analyzed. This analysis is performed
exhaustively to profile the inconsistency cost across three
dimensions: 8 fault scales × 3 fault profiles × 29 thresholds =

696 experimental settings.
The finest-grain measurements of inconsistency cost are

performed with size 3000
2 − 3000 = 8997000 according to

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 9

Theorem 1: every node monitors the health status of every
other node in the network. Given the fault scale (:) and fault
profile (<), the health status of all node pairs is calculated
according to the equations of Table IV (Theorem 1) and these
calculations result in the relative frequencies of Figure 4.

A: ON, B: ON

A: ON, B: OFF

A: OFF, B: ON

A: OFF, B:OFF

B: OFF, A: OFF

A, B: OFF

20 40 60 80

H
e

a
lt
h

 S
ta

tu
s

Fault Scale [%]

source_filename_1 matrix using 1:2:3

20 40 60 80

Fault Scale [%]

source_filename_2 matrix using 1:2:3

20 40 60 80

1st Profile 2nd Profile 3rd Profile

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Fault Scale [%]

source_filename_3 matrix using 1:2:3

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4. Relative frequencies of the health status among all node pairs for
different fault scales and fault profiles.

To address the second objective, the modeled fault sce-
narios are evaluated by measuring how well they predict the
inconsistency cost of a self-healing computational/application
scenario with faulty nodes. This scenario is the decentralized
aggregation of DIAS in which self-healing is performed in
terms of fault correction (executing self-corrective opera-
tions, see Section V-C) and fault tolerance (postponing self-
corrective operations, see Section V-D). The prediction of the
inconsistency cost is the prediction of the aggregation accuracy
measured by the average relative approximation error between
the estimated aggregate values and the actual aggregates. In
other words, this paper assesses for all 696 experimental set-
tings how good predictor the total inconsistency cost (Equation
1) is of the average relative approximation error of DIAS
measured over all nodes and throughout system runtime.

The experiments focus on the summation (total power load)
of real-world power consumption data10 from ECBT, the Elec-

tricity Customer Behavior Trial during 2009-2010 in Ireland.
They are collected from smart meters with a frequency of 30
minutes. The power records of the 199th day (4.1.2009) are
used for the experiments that are 2 records/hour × 24 hours =
48 records uniformly distributed over the system runtime of
2800 epochs, plus 400 epochs for system bootstrapping. Out
of the total of 6435 residential and small-medium enterprise
consumers in the dataset, 3000 residential consumers are
mapped to the 3000 nodes of the decentralized network. Each
operates as both data supplier and consumer to evaluate the
most demanding computational scenario in which every node
shares and aggregates power consumption data.

Predicting the DIAS accuracy is highly challenging given
that the modeled fault scenarios are totally agnostic of the
applied (i) computational problem, i.e. aggregation, (ii) algo-
rithm, i.e. DIAS and (iii) data, i.e. power consumption. As
such, it is assumed that all fault scenarios ; can generate during
runtime a total (maximum) inconsistency cost of n−B = n+B = 1.
To improve prediction, three model calibration methods are
applied that rely on the profiling of inconsistency cost calcu-
lated for the first objective of this study. All three calibration
methods use application-independent features. One of these

10Avalable at http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
(last access: March 2021)

methods is totally agnostic of any information about the
aggregation problem or the DIAS algorithm, while the other
two use DIAS performance target data for fitting a model.
Therefore, significant comparisons can be made between a
non-calibrated prediction vs. calibrated predictions as well as
the application-agnostic calibrations vs. the ones that fit a
model to the data.

1) False negative calibration: The fault scenarios of Ta-
ble II with a false negative state given by) −��

) −��
= 1 assume that

the fault of Node � generates inconsistency cost throughout
the time period) − �� as the fault of Node � cannot be
anymore detected (and corrected) during this period. However,
recovery may occur earlier, which means in practice that the
inconsistency cost may be eliminated within a short period of
time, for instance, self-corrective operations in DIAS converge
in a finite time period [9]. Therefore, this calibration method
introduces the calibration factor _ ∈ [0, 1] as an additional
coefficient for these fault scenarios with false negative state.
For _ = 1, no calibration is performed. For each fault scale,
the _ value with the lowest root mean square error between
the predicted and the DIAS inconsistency cost is selected for
the comparison with the other calibration methods as shown
in Figure 5a.

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

F
a

u
lt
 S

c
a

le
 [

%
]

Calibration Factor λ

source_filename_1 matrix using 1:2:3

0 0.2 0.4 0.6 0.8 1

Calibration Factor λ

source_filename_2 matrix using 1:2:3

0 0.2 0.4 0.6 0.8 1

1st Profile 2nd Profile 3rd Profile

R
M

S
E

Calibration Factor λ

source_filename_3 matrix using 1:2:3

 0

 0.2

 0.4

 0.6

 0.8

 1
1st Profile 2nd Profile 3rd Profile

R
M

S
E

(a)

Training profiles: 1 | Validation profiles: 3

Training profiles: 1, 2 | Validation profiles: 3

Training profiles: 2 | Validation profiles: 3

Training profiles: 1 | Validaiton profiles: 2

Training profiles: 3 | Validation profiles: 2

Training profiles: 1, 3 | Validation profiles: 2

Training profiles: 2, 3 | Validation profiles: 1

Training profiles: 3 | Validation profiles: 1

Training profiles: 2 | Validation profiles: 1

20 40 60 80

G
e

n
e

ra
liz

e
d

 R
e

g
re

s
s
io

n
 M

o
d

e
ls

Failure Scale [%]

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

A
c
c
u

ra
c
y
 L

o
s
s

(b)

Figure 5. Calibration configurations and their prediction performance for two
calibration methods: (a) False negative calibration. (b) Generalized regression.
The best calibration configurations are marked for further comparison of the
different methods.

The other two model calibration methods are designed as
follows: For each experimental setting, a feature vector of size
12×5+2 = 62 is constructed. This vector contains 5 quantiles
(10th, 30th, 50th, 70th, 90th) of inconsistency cost for each of
the 12 calculations of the fault scenarios (Table II). These
values are extracted from the fault profiles applied to the peer
sampling service [35]. The feature vector also contains the
respective relative (to the maximum of 800) threshold and the
fault scale for each experimental setting. All values of the
feature vector are in the range [0, 1]. Application-level data,
i.e. the DIAS inconsistency cost, are used as target values

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 10

for training, while features are agnostic of DIAS. Regression
relies on the ordinary least squares model and its Python
implementation of the statsmodels11. The prediction based on
linear regression is validated with two schemes:

2) Regression: This second scheme uses all 696 experi-
mental settings to train the linear regression model without
regularization. It represents the best possible fit (intentional
overfit) to the inconsistency costs observed in DIAS.

3) Generalized regression: In this third scheme, training is
limited to certain fault profiles and validation is performed
on profiles on which training is not performed, assuming that
the inconsistency cost for different fault profiles is generated
from the same distribution. Figure 5b illustrates the prediction
performance of all possible combinations of training and
validation fault profiles for a generalized regression, measured
with the accuracy loss:

'"(� (�GR, �D) − '"(� (�GR, �R), (8)

where '"(� is the root mean square error, �R, �GR are the
inconsistency cost of regression and generalized regression
respectively and �D is the predicted inconsistency cost of
DIAS, i.e. the average relative approximation error of the
summation. For each of the three validation fault profiles,
the best fits observed in Figure 5b are selected to compare
generalized regression to the other predictors. Generalized
regression is performed with regularization12.

VII. EXPERIMENTAL EVALUATION

This section illustrates the profiling of the inconsistency
cost and how it can be used to improve the effectiveness of
self-healing in decentralized data aggregation. It also shows a
comparison of the calibration methods.

A. Profiling of inconsistency cost

For the first evaluation objective, the inconsistency cost is
profiled as follows: The density of the inconsistency cost and
the relative frequency of each fault scenario are measured
under varying fault scales, fault profiles and fault-detection
thresholds. Due to space limitations, Figures 6-8 focus on the
fault scales of 20%, 50% and 80% that depict the overall trend.

The following observations can be made in Figures 6-8:
(i) The inconsistency cost by false positive states has on
average higher magnitude than the one of false negative states
across the different fault profiles and scales. (ii) With an
increasing fault scale, the inconsistency cost slightly increases,
especially for the fault-scenario �: ON, �: ON, false positive.
However, the relative frequency of the inconsistency cost for
this fault scenario decreases, in exchange for an increase in
fault scenarios �: OFF, B: OFF, false positive, �: OFF, �:
OFF, false positive, �: OFF, �: OFF, false negative and �,
�: OFF, false positive and negative. (iii) For each fault profile
when nodes do not fail, the magnitude of the inconsistency cost

11Available at https://www.statsmodels.org/stable/index.html (last access:
March 2021).

12Elastic net is used with strength parameter of U = 0.07 and !1 = 0.05

representing the preference of LASSO regularization over the RIDGE one.

by false positives is respectively 22.37%, 17.2% and 16.07%
higher on average than the one with defecting nodes. For fault
scales of 20%, 50% and 80%, this difference is 13.0%, 20.99%
and 22.63% higher on average when nodes do not fail. (iv)
The inconsistency cost by false positives is minimized for
middle threshold values, i.e. 450 epochs for 20% fault scale,
350 epochs for 50% and 80% fault scale. There thresholds
though depend on the system size and parameters with which
the peer sampling service is chosen to operate, i.e. partial view
size, execution period, swap/healer parameters [35], [5]. In
other words, different configurations of the underlying system
yield to a different profiling of the inconsistency cost. (v) In
the second profile, the density of the inconsistency cost for
the fault scenario of �: ON, �: OFF, false negative, has two
peaks that originate from the two different times in which
the nodes defect (respectively three peaks at the 3rd profile).
Larger thresholds shift the peaks to larger inconsistency costs
(3 − �� is maximized) and increase the distance between the
peaks as also confirmed for the fault scenario �: OFF, �: OFF,
false negative. (vi) The relative frequency of fault scenarios
with a false positive state decreases for higher thresholds,
while it increases or remains constant for a false negative
state. All these observations confirm that the profiling of
the inconsistency cost generated by the fault scenarios can
provide a highly insightful analysis of the trade-offs involved
in tuning fault-detection mechanisms in decentralized systems
with uncertainties.

B. Self-healing decentralized data aggregation

More cost-effective self-healing mechanisms can be de-
signed, tailored to minimize the predicted inconsistency cost
of specific fault scenarios. Note for instance Figure 9 that
illustrates the applicability of self-healing in DIAS in the
three fault profiles and the fault scales of 20%, 50% and
80%. The actual aggregate of summation is compared to the
faulty estimate (no corrective operations) and two corrective
estimates (without any calibration): (i) A reference with a fixed
threshold at 100 epochs. (ii) The one with the threshold that
minimizes the inconsistency cost. Therefore, the profiling of
the inconsistency cost provides the required tuning to fault
detection to minimize the relative approximation error of the
aggregation. The root mean square error between the actual
sum and the faulty estimate (no self-corrective operations)
is on average 28.17% higher than the DIAS estimate with
the threshold resulting in minimal inconsistency cost. Across
fault profiles, the corresponding errors are 4.29%, 34.83% and
34.72% higher for the fault scales of 20%, 50% and 80%,
respectively. The DIAS corrective estimate with reference
threshold C = 100 performs worse than the faulty estimate
across all fault profiles and scales13, demonstrating the impli-
cation of an erroneous fault correction and, apparently, how
dramatic can a misconfiguration of fault detection be for a
decentralized application.

13On average, the root mean square error between the actual sum and the
faulty estimate is 113.07% lower than the DIAS estimate with a reference
threshold of C = 100

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 11

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(a) Fault scale: 20%

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1
In

co
ns

is
te

nc
y

C
os

t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(b) Fault scale: 50%

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(c) Fault scale: 80%

Figure 6. The inconsistency cost of the fault scenarios (violins with density values on the left Y-axis) and their relative frequency (lines with values on the
right Y-axis) under a fault scale of 20%, 50% and 80% in the 1st fault profile. The solid lines depict the relative frequency for false positive (FP) states, while
the dashed lines the one for false negative (FN) states.

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: OFF, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FN (1)

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(a) Fault scale: 20%

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: OFF, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FN (1)

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(b) Fault scale: 50%

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: OFF, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FN (1)

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(c) Fault scale: 80%

Figure 7. The inconsistency cost of the fault scenarios (violins with density values on the left Y-axis) and their relative frequency (lines with values on the
right Y-axis) under a fault scale of 20%, 50% and 80% in the 2nd fault profile. The solid lines depict the relative frequency for false positive (FP) states,
while the dashed lines the one for false negative (FN) states.

C. Evaluation of model calibration methods

Figure 10 addresses the second and third objective of the
experimental evaluation that is the predictive performance
of the inconsistency cost by the modeled fault scenarios.
The average relative approximation error of the DIAS sum
estimations is compared to the calibrated predictions made by

the modeled fault scenarios under different thresholds in the
three fault profiles.

The followings observations are made: (i) The application
agnostic calibration methods, i.e. non-calibrated prediction
and false negative calibration, correlate well with DIAS, with
correlation coefficient of 0.83 and 0.82, respectively across

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 12

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1
In

co
ns

is
te

nc
y

C
os

t
A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: OFF, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FN (1)

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(a) Fault scale: 20%

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: OFF, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FN (1)

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(b) Fault scale: 50%

150 250 350 450 550 650 750

Thresholds

0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
C

os
t

A: ON, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

A: ON, B: OFF, FN

150 250 350 450 550 650 750

Thresholds

A: OFF, B: ON, FP

150 250 350 450 550 650 750

Thresholds

A: OFF, B: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FP

150 250 350 450 550 650 750

Thresholds

B: OFF, A: OFF, FN (1)

150 250 350 450 550 650 750

Thresholds

A, B: OFF, FP, FN

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Fr

eq
ue

nc
ie

s

(c) Fault scale: 80%

Figure 8. The inconsistency cost of the fault scenarios (violins with density values on the left Y-axis) and their relative frequency (lines with values on the
right Y-axis) under a fault scale of 20%, 50% and 80% in the 3rd fault profile. The solid lines depict the relative frequency for false positive (FP) states, while
the dashed lines the one for false negative (FP) states.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=725D
IA

S
 S

U
M

Epochs

(a) 1st fault profile,
20% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=375

D
IA

S
 S

U
M

Epochs

(b) 1st fault profile,
50% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=250

D
IA

S
 S

U
M

Epochs

(c) 1st fault profile,
80% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=575

D
IA

S
 S

U
M

Epochs

(d) 2nd fault profile,
20% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=400

D
IA

S
 S

U
M

Epochs

(e) 2nd fault profile,
50% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=250

D
IA

S
 S

U
M

Epochs

(f) 2nd fault profile,
80% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=625D
IA

S
 S

U
M

Epochs

(g) 3rd fault profile,
20% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=450

D
IA

S
 S

U
M

Epochs

(h) 3rd fault profile,
50% fault scale

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

D
IA

S
 S

U
M

Epochs

Actual

Faulty Estimate

Corrective Estimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

400 1100 1800 2500 3200

t=100

t=250

D
IA

S
 S

U
M

Epochs

(i) 3rd fault profile, 80%
fault scale

Figure 9. DIAS self-healing under 20%, 50% and 80% fault scales in the
three fault profiles. In the corrective estimates, the threshold of C = 100 is
shown as reference vs. the threshold that minimizes the inconsistency cost.

the fault profiles and scales. However, note the improvement

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(a) 1st fault profile,
20% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(b) 1st fault profile,
50% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(c) 1st fault profile,
80% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(d) 2nd fault profile,
20% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(e) 2nd fault profile,
50% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(f) 2nd fault profile,
80% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(g) 3rd fault profile,
20% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(h) 3rd fault profile,
50% fault scale

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

DIAS

No Calibration

FN Calibration

Regression

Generalized
Regression

 0

 0.5

 1

 1.5

150 350 550 750

E
rr

o
r

Thresholds

(i) 3rd fault profile, 80%
fault scale

Figure 10. Prediction performance of the calibration methods. 20%, 50%
and 80% fault-scale respectively for the three fault profile.

of the latter to match the magnitude of the DIAS errors.
These correlation values cannot be improved by more than

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 13

7.8% on average with the linear regression calibration. This
is an expected result as linear regression represents the best
fit, i.e. linear transformation, of the application-independent
features to the DIAS inconsistency cost data. On the contrary,
the correlation coefficient between DIAS and generalized
regression decreases to 0.79 on average. This confirms the
feasibility of selecting effective thresholds for fault detection
without information about the application that makes use
of self-healing. (ii) Without calibration, the fault scenarios
overestimate the magnitude of the DIAS errors, especially for
large fault scales and thresholds. This is because the modeling
of the total inconsistency cost assumes a uniform generation
of inconsistency cost during runtime for each fault scenario.
However, the magnitude of estimation errors in the summation
aggregation function as well as how errors cancel out each
other are highly dependent on the data. (iii) The hypothesis
that the inconsistency cost in false negative states with the
value of 1 (Table II) is a worst case scenario in practice is
actually confirmed: Across all thresholds, the root mean square
error between DIAS and the false negative calibration is on
average 0.51, 2.27, and 0.72 times lower than no calibration
for a fault scale of 20%, 50% and 80% respectively. These
numbers are 0.44, 1.25, and 1.47 times lower across the fault
scales for the 1st, 2nd and 3rd fault profile respectively.

VIII. CONCLUSION AND FUTURE WORK

This paper demonstrates how the performance of self-
healing systems operating in decentralized asynchronous en-
vironments is significantly influenced by uncertainties in fault
detection inherited from such systems. However, it also con-
cludes that this influence can be accurately predicted and miti-
gated by modeling a number of fault scenarios that identify the
origin of inconsistencies. This paper also shows how to mini-
mize inconsistencies by tuning appropriately fault detection at
the design phase. The significance of these findings stems from
application-independence: A high prediction performance in
the aggregation accuracy of real-world power demand data is
confirmed under 696 experimental settings of different fault
scales, fault profiles and fault detection thresholds.

Future work focuses on addressing some of the limitations
of this study as well as unfolding some new promising research
pathways: The prediction performance of the inconsistency
cost of other distributed application scenarios is required
for further validation. Other costs with more complex per-
formance trade-offs can be modeled, e.g. inconsistency vs.
communication cost. Comparing the inconsistency profiles
of different decentralized systems with different size, fault
profiles/models, connectivity and fault-detection mechanisms
can provide further new insights on how to design, deploy and
operate self-healing systems.

ACKNOWLEDGMENT

This study is supported by the Swiss National Science Foun-
dation (SNSF) as part of the National Research Programme
NRP77 Digital Transformation, project no. 187249.

REFERENCES

[1] S. Mei, X. Zhang, and M. Cao, Power grid complexity. Springer Science
& Business Media, 2011.

[2] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile
blockchain meets edge computing,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 33–39, 2018.

[3] R. Van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Middleware’98. Springer, 1998, pp. 55–70.

[4] A. Lavinia, C. Dobre, F. Pop, and V. Cristea, “A failure detection system
for large scale distributed systems,” International Journal of Distributed

Systems and Technologies (IJDST), vol. 2, no. 3, pp. 64–87, 2011.
[5] E. Pournaras, J. Nikolic, A. Omerzel, and D. Helbing, “Engineering

democratization in internet of things data analytics,” in 2017 IEEE

31st International Conference on Advanced Information Networking and

Applications (AINA). IEEE, 2017, pp. 994–1003.
[6] D. Shah et al., “Gossip algorithms,” Foundations and Trends® in

Networking, vol. 3, no. 1, pp. 1–125, 2009.
[7] M. Oyediran, T. Fagbola, S. Olabiyisi, E. Omidiora, and A. Fawole, “A

survey on migration process of mobile agent,” in Proceedings of the

world congress on engineering and computer science, vol. 1, 2016.
[8] D. Croce, F. Giuliano, I. Tinnirello, A. Galatioto, M. Bonomolo,

M. Beccali, and G. Zizzo, “Overgrid: A fully distributed demand
response architecture based on overlay networks,” IEEE Transactions

on Automation Science and Engineering, vol. 14, no. 2, pp. 471–481,
2016.

[9] E. Pournaras and J. Nikolić, “Self-corrective dynamic networks via
decentralized reverse computations,” in 2017 IEEE International Con-

ference on Autonomic Computing (ICAC). IEEE, 2017, pp. 11–20.
[10] R. Stanković, M. Štula, and J. Maras, “Evaluating fault tolerance

approaches in multi-agent systems,” Autonomous agents and multi-agent

systems, vol. 31, no. 1, pp. 151–177, 2017.
[11] M. A. Mukwevho and T. Celik, “Toward a smart cloud: A review

of fault-tolerance methods in cloud systems,” IEEE Transactions on

Services Computing, 2018.
[12] B. E. Isong and E. Bekele, “A systematic review of fault tolerance

in mobile agents,” American Journal of Software Engineering and

Applications, vol. 2, no. 5, pp. 111–124, 2013.
[13] A. Fedoruk and R. Deters, “Improving fault-tolerance by replicating

agents,” in Proceedings of the first international joint conference on

Autonomous agents and multiagent systems: part 2, 2002, pp. 737–744.
[14] O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum, “Towards adaptive

fault-tolerance for distributed multi-agent systems,” in Proceedings of

ERSADS, 2001, pp. 195–201.
[15] Y. Arfat and F. E. Eassa, “A survey on fault tolerant multi agent system,”

IJ Inf. Technol. Comput. Sci, vol. 9, pp. 39–48, 2016.
[16] A. Luna-Almeida, S. Aknine, J.-P. Briot, and J. Malenfant, “Plan-based

replication for fault-tolerant multi-agent systems,” in Proceedings of the

11th IEEE Workshop on Dependable Parallel, Distributed and Network-

Centric Systems (DPDNS’06), 2006, pp. 413–418.
[17] G. Jin, B. Ahn, and K. D. Lee, “A fault-tolerant protocol for mobile

agent,” in International Conference on Computational Science and Its

Applications. Springer, 2004, pp. 993–1001.
[18] B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, and M. Völz,

“Rollback-recovery without checkpoints in distributed event processing
systems,” in Proceedings of the 7th ACM international conference on

Distributed event-based systems, 2013, pp. 27–38.
[19] K. Park, “A fault-tolerant mobile agent model in replicated secure

services,” in International Conference on Computational Science and

Its Applications. Springer, 2004, pp. 500–509.
[20] S. Kumar and P. R. Cohen, “Towards a fault-tolerant multi-agent system

architecture,” in Proceedings of the fourth international conference on

Autonomous agents, 2000, pp. 459–466.
[21] D. Terry, “Toward a new approach to IoT fault tolerance,” Computer,

vol. 49, no. 8, pp. 80–83, 2016.
[22] D. Ratasich, M. Platzer, R. Grosu, and E. Bartocci, “Adaptive fault

detection exploiting redundancy with uncertainties in space and time,”
in 2019 IEEE 13th International Conference on Self-Adaptive and Self-

Organizing Systems (SASO). IEEE, 2019, pp. 23–32.
[23] R. Sterritt, “Autonomic computing,” Innovations in systems and software

engineering, vol. 1, no. 1, pp. 79–88, 2005.
[24] M. Panda and P. M. Khilar, “Distributed byzantine fault detection

technique in wireless sensor networks based on hypothesis testing,”
Computers & Electrical Engineering, vol. 48, pp. 270–285, 2015.

[25] A. Rahnama and P. J. Antsaklis, “Resilient learning-based control for
synchronization of passive multi-agent systems under attack,” arXiv

preprint arXiv:1709.10142, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2021 14

[26] L. Su and N. H. Vaidya, “Non-bayesian learning in the presence of
byzantine agents,” in International symposium on distributed computing.
Springer, 2016, pp. 414–427.

[27] S. Ghahremani and H. Giese, “Evaluation of self-healing systems: An
analysis of the state-of-the-art and required improvements,” Computers,
vol. 9, no. 1, p. 16, 2020.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM

(JACM), vol. 32, no. 2, pp. 374–382, 1985.
[29] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure

detector for solving consensus,” Journal of the ACM (JACM), vol. 43,
no. 4, pp. 685–722, 1996.

[30] N. Sridhar, “Decentralized local failure detection in dynamic distributed
systems,” in 2006 25th IEEE Symposium on Reliable Distributed Systems

(SRDS’06). IEEE, 2006, pp. 143–154.
[31] K. S. Gyamfi, J. Brusey, E. Gaura, and R. Wilkins, “Heartbeat design

for energy-aware IoT: Are your sensors alive?” Expert Systems with

Applications, vol. 128, pp. 124–139, 2019.
[32] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault

analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software

Engineering, 2018.
[33] G. P. Bhandari and R. Gupta, “Fault analysis of service-oriented systems:

a systematic literature review,” IET Software, vol. 12, no. 6, pp. 446–460,
2018.

[34] A. Gorbenko, A. Romanovsky, and O. Tarasyuk, “Fault tolerant internet
computing: Benchmarking and modelling trade-offs between availability,
latency and consistency,” Journal of Network and Computer Applica-

tions, vol. 146, p. 102412, 2019.
[35] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and

M. Van Steen, “Gossip-based peer sampling,” ACM Transactions on

Computer Systems (TOCS), vol. 25, no. 3, pp. 8–es, 2007.
[36] P. L. Snyder, G. Valetto, J. L. Fernandez-Marquez, and G. D. M.

Serugendo, “Augmenting the repertoire of design patterns for self-
organized software by reverse engineering a bio-inspired p2p system,”
in 2012 IEEE Sixth International Conference on Self-Adaptive and Self-

Organizing Systems. IEEE, 2012, pp. 199–204.
[37] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consolidation in

clouds through gossiping,” in 2011 IEEE International Symposium on a

World of Wireless, Mobile and Multimedia Networks. IEEE, 2011, pp.
1–6.

[38] J. Lim, K.-S. Chung, H. Lee, K. Yim, and H. Yu, “Byzantine-resilient
dual gossip membership management in clouds,” Soft Computing,
vol. 22, no. 9, pp. 3011–3022, 2018.

[39] X. Cao, S. Gao, and L. Chen, “Gossip-based load balance strategy
in big data systems with hierarchical processors,” Wireless Personal

Communications, vol. 98, no. 1, pp. 157–172, 2018.
[40] X. He, Y. Cui, and Y. Jiang, “An improved gossip algorithm based on

semi-distributed blockchain network,” in 2019 International Conference

on Cyber-Enabled Distributed Computing and Knowledge Discovery

(CyberC). IEEE, 2019, pp. 24–27.
[41] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzan-

tine fault tolerance,” Swirlds, Inc. Technical Report SWIRLDS-TR-2016,
vol. 1, 2016.

[42] T. Preisler, T. Dethlefs, and W. Renz, “Middleware for constructing
decentralized control in self-organizing systems,” in 2015 IEEE Interna-

tional Conference on Autonomic Computing. IEEE, 2015, pp. 325–330.
[43] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation

techniques for wireless sensor networks: a survey,” IEEE Wireless

Communications, vol. 14, no. 2, pp. 70–87, 2007.
[44] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation

in large dynamic networks,” ACM Transactions on Computer Systems

(TOCS), vol. 23, no. 3, pp. 219–252, 2005.
[45] D. Pianini, J. Beal, and M. Viroli, “Improving gossip dynamics through

overlapping replicates,” in International Conference on Coordination

Languages and Models. Springer, 2016, pp. 192–207.
[46] M. Ding, X. Cheng, and G. Xue, “Aggregation tree construction in sensor

networks,” in EEE 58th Vehicular Technology Conference. VTC 2003-

Fall, vol. 4. IEEE, 2003, pp. 2168–2172.
[47] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffusion

for robust aggregation in sensor networks,” ACM Transactions on Sensor

Networks (TOSN), vol. 4, no. 2, pp. 1–40, 2008.
[48] E. Pournaras and J. Nikolić, “On-demand self-adaptive data analytics

in large-scale decentralized networks,” in 2017 IEEE 16th International

Symposium on Network Computing and Applications (NCA). IEEE,
2017, pp. 1–10.

[49] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[50] M. Hasan and M. S. Goraya, “Fault tolerance in cloud computing
environment: A systematic survey,” Computers in Industry, vol. 99, pp.
156–172, 2018.

[51] F. Fanitabasi, E. Gaere, and E. Pournaras, “A self-integration testbed
for decentralized socio-technical systems,” Future Generation Computer

Systems, vol. 113, pp. 541–555, 2020.
[52] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Protopeer: a

p2p toolkit bridging the gap between simulation and live deployement,”
in Proceedings of the 2nd International Conference on Simulation Tools

and Techniques, 2009, pp. 1–9.
[53] M. Gallet, N. Yigitbasi, B. Javadi, D. Kondo, A. Iosup, and D. Epema,

“A model for space-correlated failures in large-scale distributed sys-
tems,” in European Conference on Parallel Processing. Springer, 2010,
pp. 88–100.

[54] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The failure trace archive:
Enabling comparative analysis of failures in diverse distributed systems,”
in 2010 10th IEEE/ACM International Conference on Cluster, Cloud and

Grid Computing. IEEE, 2010, pp. 398–407.

Jovan Nikolić is a Software Engineer at Google,
Zürich, Switzerland. Since 2019, he holds a MSc in
Computer Science from Swiss Federal Institute of
Technology (ETH) Zürich, Switzerland, and since
2015 a BSc degree in Electrical Engineering and
Computer Science from University of Belgrade, Bel-
grade, Serbia. He was a member of Computational
Social Science group, ETH Zürich from 2015 to
2019, conducting research focusing on intelligent
multi-agent systems, combinatorial multi-objective
optimization and machine learning.

Nursultan Jubatyrov is a Software Engineer at
Facebook, London, UK. He obtained a BSc degree
in Computer Science from Nazarbayev University,
Nur-Sultan city, Kazakhstan in 2019. From 2017 to
2018, Nursultan was working as a Research and En-
gineering Assistant at Computational Social Science
group, Swiss Federal Intitute of Technology (ETH)
Zürich, Switzerland. During this time, he conducted
research on the reliability of distributed systems.

Evangelos Pournaras is an Associate Professor at
Distributed Systems and Services group, School of
Computing, University of Leeds, UK. He is also
currently a research associate at UCL Center of
Blockchain Technologies. He has more than 5 years
experience as senior scientist and postdoctoral re-
searcher at ETH Zurich in Switzerland after having
completed his PhD studies in 2013 at Delft Univer-
sity of Technology in the Netherlands. Evangelos
has also been a visiting researcher at EPFL in
Switzerland and has industry experience at IBM T.J.

Watson Research Center in the USA. Evangelos has won the Augmented
Democracy Prize, the 1st prize at ETH Policy Challenge as well as 4 paper
awards and honors. He has published more than 75 peer-reviewed papers
in high impact journals and conferences and he is the founder of the EPOS,
DIAS, SFINA and Smart Agora projects featured at decentralized-systems.org.
He has raised significant funding and has been actively involved in EU projects
such as ASSET, SoBigData and FuturICT 2.0. Evangelos’ research interest
focus on distributed and intelligent social computing systems with expertise
in the inter-disciplinary application domains of Smart Cities and Smart Grids.

