590 research outputs found

    Self-Contained Pedestrian Tracking During Normal Walking Using an Inertial/Magnetic Sensor Module

    Get PDF
    This paper proposes a novel self-contained pedestrian tracking method using a foot-mounted inertial and magnetic sensor module, which not only uses the traditional zero velocity updates, but also applies the stride information to further correct the acceleration double integration drifts and thus improves the tracking accuracy. In our method, a velocity control variable is designed in the process model, which is set to the average velocity derived from stride information in the swing (nonzero velocity) phases or zero in the stance (zero-velocity) phases. Stride-based position information is also derived as the pseudomeasurements to further improve the accuracy of the position estimates. An adaptive Kalman filter is then designed to fuse all the sensor information and pseudomeasurements. The proposed pedestrian tracking method has been extensively evaluated using experiments, including both short distance walking with different patterns and long distance walking performed indoors and outdoors, and have been shown to perform effectively for pedestrian tracking

    Use of an inertial/magnetic sensor module for pedestrian tracking during normal walking

    Get PDF
    The ability to track pedestrians without any infrastructure support is required by numerous applications in the healthcare, augmented reality, and entertainment industries. In this paper, we present a simple self-contained pedestrian tracking method using a foot-mounted inertial and magnetic sensor module. Traditional methods normally incorporate double integration of the measured acceleration, but such methods are susceptible to the acceleration noise and integration drift. To avoid this issue, alternative approaches which make use of walking dynamics to aggregate individual stride have been explored. The key for stride aggregating is to accurately and reliably detect stride boundary and estimate the associated heading direction for each stride, but it is still not well solved yet due to sensor noise and external disturbance. In this paper, we propose to make use of the inertial sensor and magnetometer measurements for stride detection and heading direction determination. In our method, a simple and reliable stride detection method, which is resilient to random bouncing motions and sensor noise, is designed based on gyroscope and accelerometer measurements. Heading direction is then determined from the foot's orientation which fuses all the three types of sensor information together. The proposed pedestrian tracking method has been evaluated using experiments, including both short distance walking with different patterns and long distance walking performed indoors and outdoors. The good experimental results have illustrated the effectiveness of the proposed pedestrian tracking method

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Robust localization with wearable sensors

    Get PDF
    Measuring physical movements of humans and understanding human behaviour is useful in a variety of areas and disciplines. Human inertial tracking is a method that can be leveraged for monitoring complex actions that emerge from interactions between human actors and their environment. An accurate estimation of motion trajectories can support new approaches to pedestrian navigation, emergency rescue, athlete management, and medicine. However, tracking with wearable inertial sensors has several problems that need to be overcome, such as the low accuracy of consumer-grade inertial measurement units (IMUs), the error accumulation problem in long-term tracking, and the artefacts generated by movements that are less common. This thesis focusses on measuring human movements with wearable head-mounted sensors to accurately estimate the physical location of a person over time. The research consisted of (i) providing an overview of the current state of research for inertial tracking with wearable sensors, (ii) investigating the performance of new tracking algorithms that combine sensor fusion and data-driven machine learning, (iii) eliminating the effect of random head motion during tracking, (iv) creating robust long-term tracking systems with a Bayesian neural network and sequential Monte Carlo method, and (v) verifying that the system can be applied with changing modes of behaviour, defined as natural transitions from walking to running and vice versa. This research introduces a new system for inertial tracking with head-mounted sensors (which can be placed in, e.g. helmets, caps, or glasses). This technology can be used for long-term positional tracking to explore complex behaviours

    Design and Testing of a Multi-Sensor Pedestrian Location and Navigation Platform

    Get PDF
    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided

    An Autonomous Waist-Mounted Pedestrian Dead Reckoning System by Coupling Low-Cost MEMS Inertial Sensors and GPS Receiver for 3D Urban Navigation

    Get PDF
    Global positioning system (GPS) offers a perfect solution to the 3-dimension(3D) navigation. However, the GPS-only solution can’t provide continuous and accurate position information in the unfavourable environments, such as urban canyons, indoor buildings, dense foliages due to signal blockage, interference, or jamming etc. A pedestrian dead reckoning (PDR) system integrating the self-contained inertial sensors with GPS receiver is proposed to provide a seamless outdoor/indoor 3D pedestrian navigation. The MEM sensor module attached to the user’s waist is composed of a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis digital compass and a barometric pressure sensor, which doesn’t rely on any infrastructure. The positioning algorithm implements a loosely coupled GPS/PDR integration. The sensor data are fused via a complementary filter to reduce the integral drift and magnetic disturbance for accurate heading. The four key components of the PDR algorithm: step detection, stride length estimation, heading and position determination are described in detail and implemented by the microcontroller. The step is detected using the accelerometer signals by the combination of three approaches: sliding window, peak detection and zero-crossing. The step length is estimated using a simple linear relationship with the step frequency. By coupling the step length, azimuth and height, 3D navigation is achieved. The performance of the proposed system is carefully verified through several field outdoor and indoor walking tests. The positioning errors are below 3% of the total traveled distance. The main error source comes from the orientation estimation. The results indicate that the proposed system is effective in accurate tracking

    Heterogeneous data fusion for three-dimensional gait analysis using wearable MARG sensors

    Get PDF
    Gait analysis has become a research highlight. In this paper, we propose a computing method using wearable magnetic angular rate and gravity (MARG) sensor arrays with wireless network, which calculates absolute and relative orientation and position information of human foot motion during level walking and stair climbing process. Three-dimensional foot orientation and position were estimated by a Kalman-based sensor fusion algorithm and validated by ground truth provided by Vicon system. The repeatability of the alignment procedure and the measurement errors were evaluated on healthy subjects. Experimental results demonstrate that the proposed method has a good performance at both motion patterns. No significant drifts exist in the overall results presented in the paper. The measured and estimated information can be transmitted to remote server through internet. Moreover, this method could be applied to other cyclical activity monitoring

    Adaptive Cardinal Heading Aided for Low Cost Foot-Mounted Inertial Pedestrian Navigation

    Get PDF
    The use of a low-cost MEMS-based Inertial Measurement Unit (IMU) provides a cost-effective approach for navigation purposes. Foot-mounted IMU is a popular option for indoor inertial pedestrian navigation, as a small and light MEMS-based inertial sensor can be tied to a pedestrian's foot or shoe. Without relying on GNSS or other external sensors to enhance navigation, the foot-mounted pedestrian navigation system can autonomously navigate, relying solely on the IMU. This is typically performed with the standard strapdown navigation algorithm in a Kalman filter, where Zero Velocity Updates (ZVU) are used together to restrict the error growth of the low-cost inertial sensors. ZVU is applied every time the user takes a step since there exists a zero velocity condition during stance phase. While velocity and correlated attitude errors can be estimated correctly using ZVUs, heading error is not because it is unobservable. In this paper, we extend our previous work to correct the heading error by aiding it using Multiple Polygon Areas (MPA) with adaptive weighting factor. We termed the approach as Adaptive Cardinal Heading Aided Inertial Navigation (A-CHAIN). We formulated an adaptive weighting factor applied to measurement noise to enhance measurement confidence. We then incorporated MPA heading into the algorithm, whereas multiple buildings with the same orientation are grouped together and assigned a specific heading information as a priori. Results shown that against the original CHAIN, the proposed Adaptive-CHAIN improved the position accuracy by more than five-fold

    Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion

    Get PDF
    The challenges of self-contained sensor based pedestrian dead reckoning (PDR) are mainly sensor installation errors and path integral errors caused by sensor variance, and both may dramatically decrease the accuracy of PDR. To address these challenges, this paper presents a multi-sensor fusion based method in which subjects perform specified walking trials at self-administered speeds in both indoor and outdoor scenarios. After an initial calibration with the reduced installation error, quaternion notation is used to represent three-dimensional orientation and an extend Kalman filter (EKF) is deployed to fuse different types of data. A clustering algorithm is proposed to accurately distinguish stance phases, during which integral error can be minimized using Zero Velocity Updates (ZVU) method. The performance of proposed PDR method is evaluated and validated by an optical motion tracking system on healthy subjects. The position estimation accuracy, stride length and foot angle estimation error are studied. Experimental results demonstrate that the proposed self-contained inertial/magnetic sensor based method is capable of providing consistent beacon-free PDR in different scenarios, achieving less than 1% distance error and end-to-end position error

    A pedestrian navigation system based on low cost IMU

    Full text link
    © 2014 The Royal Institute of Navigation. For indoor pedestrian navigation with a shoe-mounted inertial measurement unit (IMU, the zero velocity update (ZUPT technique is implemented to constrain the sensors' error. ZUPT uses the fact that a stance phase appears in each step at zero velocity to correct IMU errors periodically. This paper introduces three main contributions we have achieved based on ZUPT. Since correct stance phase detection is critical for the success of applying ZUPT, we have developed a new approach to detect the stance phase of different gait styles, including walking, running and stair climbing. As the extension of ZUPT, we have proposed a new concept called constant velocity update (CUPT to correct IMU errors on a moving platform with constant velocity, such as elevators or escalators where ZUPT is infeasible. A closed-loop step-wise smoothing algorithm has also been developed to eliminate discontinuities in the trajectory caused by sharp corrections. Experimental results demonstrate the effectiveness of the proposed algorithms
    • …
    corecore