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Highlights

• EKF approach is applied to reduce uncertainty and produce better estimations

for PDR.

• A clustering algorithm is proposed to accurately distinguish stance phases.

• Sensor installation errors and path integral errors are properly corrected.

• The multi-sensor fusion method has been proved effective by optical apparatus.
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Abstract

The challenges of self-contained sensor based pedestrian dead reckoning (PDR) are

mainly sensor installation errors and path integral errors caused by sensor variance,

and both may dramatically decrease the accuracy of PDR. To address these challenges,

this paper presents a multi-sensor fusion based method in which subjects perform spec-

ified walking trials at self-administered speeds in both indoor and outdoor scenarios.

After an initial calibration with the reduced installation error, quaternion notation is

used to represent three-dimensional orientation and an extend Kalman filter (EKF) is

deployed to fuse different types of data. A clustering algorithm is proposed to accu-

rately distinguish stance phases, during which integral error can be minimized using

Zero Velocity Updates (ZVU) method. The performance of proposed PDR method is

evaluated and validated by an optical motion tracking system on healthy subjects. The

position estimation accuracy, stride length and foot angle estimation error are studied.

Experimental results demonstrate that the proposed self-contained inertial/magnetic

sensor based method is capable of providing consistent beacon-free PDR in different

scenarios, achieving less than 1% distance error and end-to-end position error.
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1. INTRODUCTION

PDR by using wearable inertial/magnetic sensors has been a research hotspot in

safety application, medical monitoring, intelligent space and other commercial appli-

cations. PDR implies continuous location of pedestrian by quantification of human

lower limbs locomotion. Extensive researches have been conducted on how to fuse in-5

ertial/magnetic sensor measurements for accurate orientation and position estimation.

Providing accurate estimation of pedestrian orientation and location information for

both indoor and outdoor scenes is of interest to a wide variety of application domains,

including:

• Emergency and Safety: PDR systems provide emergency services with real-time10

orientation and position information of rescue teams in areas with low visibility

such as smoke-filled buildings or underground stations.

• Military and defense: Localization and information technologies are used by

soldiers to self-locate, collect, collate, and convey information.

• Intelligent spaces and resource-efficiency: In order to fulfill the goal of intelli-15

gent spaces, it is essential to gain continuous location of individuals indoors.

Use cases even extend into motion monitoring in patients rehabilitation with

chronic lower limbs diseases, and performance evaluation in the fields of com-

petitive sport and digital entertainment industries.

1.1. Related Work20

Various types of techniques have been introduced to implement PDR. PDR systems

using pedometer existed but they can only be used to measure linear distance traveled.

A prevalent practice is to deploy Global Positioning System (GPS), which is limited

by low precision (5∼ 30 meters) and can not meet the requirement of pedestrians who

might walk in sidewalks, public squares and even tunnels[1, 2, 3]. Especially, GPS25

signals are unavailable in indoor scenes where most individuals spend the majority of

their time. However, the positioning of a subject on the correct floor in a multistory
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building can be achieved on the premise of accurate position and orientation estimation

[4]. To address these limitations, PDR has been investigated using ultrasound or vision

technologies in highly specialized laboratory containing expensive equipment, which30

was complicated and requires specially trained operators. The time and cost required

to setup, deploy and maintain these equipment have prohibited routine deployment

consequently. Adopting semantic properties or tags into the building fabric to act as

landmarks is another solution, Xiao et al. [5] provides a framework for context-aware

navigation services for vision impaired people, integrating intelligence into navigation35

environment; Millonig et al. [6] rely on landmarks to identify pedestrian flows and to

imply landmark information into navigation services for pedestrians. These methods

merely work well in modified buildings and cannot be rapidly deployed in arbitrary

locations, i.e. in many cases beacon-free solutions are preferable since they do not

depend on a pre-installed infrastructure. Other researchers have deployed customized40

communications systems such as GSM, WiFi, and RFID [7], which tend to result in

sub-optimal localization on account of the limited communications access points and

coverage overlap, and accuracies of several meters are normally reported.

In short, the aforementioned platforms and systems tend to be impractical for rou-

tine applications. The burgeoning development of wearable technology has offered45

a new solution to meet the demands of accurate and beacon-free PDR. Innovation

of compact and low cost inertial/magnetic sensor module offer an alternative to ex-

isting PDR methods. Wearable inertial/magnetic sensors are portable and easy to

maintain, allowing PDR to be carried out ambulatory and eliminating site-specific

constraints. Meanwhile, this kind of human-centered application can be boosted by50

combining the emerging body sensor network (BSN) [8, 9] and sensor fusion tech-

nology [10]. As an interdisciplinary technology, wearable sensor network composed

of micro-electromechanical systems, power electronics, control theory and computer

technology is a perfect blend of fashion, convenience and interconnection [11]. Specif-

ically, the embedded triaxial accelerometer can be employed as an superior pedometer55

and the magnetometer as a heading information source. Both [12] and [13] adopted

smart-phones(with embedded inertial/magnetic sensors ) combined with floor plans

for indoor location tracking, which are convenient for fast operation but the location
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accuracy is limited, besides, there will always be uncertain heading offsets between the

smartphone orientation and the user’s moving direction.60

In literature, many self-contained methodologies have been proposed for PDR based

on wearable sensors. These methodologies integrate step lengths and orientation esti-

mations at each detected step, so as to compute the absolute position and orientation of

a pedestrian. Godha and Lachapelle [14] proposed a foot mounted inertial system to

evaluate pedestrian dead reckoning system performance under challenging GPS condi-65

tions. Some PDR approaches assume a smooth walk on horizontal surfaces [15], and

others are valid for uneven terrain, Park et al. [16] even conducted PDR on running

trials and detected zero velocity intervals accurately.

Hybrid systems are gaining more attention recently. Widyawan et al. [17] pro-

posed multimoding sensor data fusion for robust navigation in unknown environments.70

Faragher et al. [18] developed a hybrid indoor navigation system that is independent

of a centrally-established database and pre-supplied building map. Hybrid systems

seem to be the most promising solution but they introduce additional complexity to the

system and multidisciplinary fusion is still a issue with great challenge [19].

An ideal PDR would be conducted on condition that both walking velocity and75

heading angle are accurately determined at all instants for positions to be determined.

However, both previous values and variable quantities are estimated rather than de-

termined accurately, which inevitably causes large errors. PDR positioning accuracy

normally ranges from 0.3% to 10% of the total travelled distance [20], but the accu-

racy of implemented algorithm strongly depends upon the road condition, travel time,80

sensor performance, magnetic disturbances and several other factors. The aim of this

paper is to develop a method which merely relies on self-contained inertial/magnetic

sensor for accurate estimation of PDR, as well as validate an improved ZVU method

for PDR against an off-the-shelf optical motion tracking system.

1.2. Outline85

In this paper, we intend to adopt shoe-mounted inertial/magnetic sensors to achieve

self-contained PDR with minimized error in different scenarios without aiding from

any other complementary technologies. An effective approach was proposed to tackle
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the issue of pedestrian navigational errors due to sensor misplacement and sensor vari-

ance, which are only driven by data from the inertial/magnetic sensor. With the aim90

of applying the algorithm into different scenarios with limited on-board computational

ability, an wearable sensor based pedestrian dead reckoning method is adopted. In our

framework, the inertial/magnetic sensor is regarded as the proprioceptive sensor, which

provides the state prediction under EKF; the available ground truth from optical system

serves as a tool for algorithm verification.95

This paper is structured as follows: problem formulation and multi-sensor fusion

methodology are first introduced in section II, followed by the experimental analysis in

section III; the discussion and a brief comparison with recent work will be presented in

section IV; while section V gives the conclusion.

2. PROBLEM FORMULATION AND MULTI-SENSOR FUSION METHOD-100

OLOGY

In general, pedestrian dead reckoning systems track three-dimensional position and

orientation by estimating the complete trajectory of the attached sensor system [21].

Orientation is normally updated by sensing gravity and geomagnetic field. Meanwhile,

the updates of position are based on path integration, which is the process of calculating105

current position of a pedestrian by using a previously determined position and advanc-

ing that position based on the speed over elapsed time. Similarly, animals such as ants

and rodents are able to estimate their current location relative to their nest continuously

based on their movements from their last known location. As for PDR, walking speed

can be obtained by integrating the corresponding linear acceleration which can be quan-110

tified by accelerometer on condition that the effects of gravity are properly deducted.

The numerical integration process is prone to cumulative errors in that each position es-

timation is relative to the previous process. The widely adopted ZVU method still rely

on the accurate definition of stance phase interval, which remains a challenge in this

field. Moreover, issues still exist regarding false stance phase detection, and optimal115

sensor positioning.

In consideration of the aforementioned problems, the performance of PDR can be
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(a) Experiment in Essex Robot Arena (b) Experiment in the stairwell

Figure 1. Sensors mounted on the subject at different location in Robot Arena and stairwell

improved significantly with a definite initial state and proper corrections through the

journey. In this study, PDR is conducted by an ambulatory wearable sensor system.

The measurements are provided by an inertial/magnetic sensor system made by Xsens120

attached to the foot, as shown in Fig. 1. No pre-installed infrastructure is needed for

this system, while an optical motion capture system named Vicon was adopted in this

study just for validation of proposed method. Hence, each data set is composed of two

data subsets: one from body attached sensors including three-dimensional (3D) linear

acceleration, angular speed and magnetic field intensity, and the other data subset from125

Vicon system including 3D position and 3D orientation, i.e. the ground truth. Besides,

Xsens system directly output 3D orientation but the output is prone to error caused by

magnetic disturbance.

The performance specification of Xsens sensor system is presented in Table 1. Each

inertial/magnetic sensor consists of a triaxial accelerometer, a triaxial gyroscope and a130

triaxial magnetometer. Raw sensor data is logged to the data logger placed on the waist

at a sampling rate of 100Hz, and the data can be forwarded to a receiver via Bluetooth.

The wearable sensors were fitted with stretchable hook-and-loop fastener for steady

fastening and user comfort during the experiment.
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Table 1. SENSOR PERFORMANCE SPECIFICATION

Unit Accelerometer Gyroscope Magnetometer

Dimensions 3 axes 3 axes 3 axes

Dynamic Range ±50m/s2 ±1200deg/s ±750mGauss

Bandwidth (Hz) 30 40 10

Linearity (% of FS) 0.2 0.1 0.2

Bias stability (unit 1σ ) 0.02 1 0.1

Alignment Error (deg) 0.1 0.1 0.1

2.1. Initial state estimation and sensor alignment135

Problems arise due to the variability in sensor positioning for the same trial across

different subjects and for the same individual. There are often cases when the sen-

sor frame are not axis aligned to the subject whose orientation needs to be estimated,

however, the target is to record the sensor data in the body coordinate rather than the

sensor coordinate. To tackle this problem, after the sensor installation, we calculated140

the initial orientation and the initial rotation matrix Rtrans which performs the initial

transformation of the sensor frame. In this case, the sensor data are expressed in the

body coordinate as targeted.

Initial orientations are usually determined by standard gravity and local magnetic

field. Specifically, initial pitch and roll can be calculated by sensing the gravity vector145

at rest using accelerometers. Due to the inability of an accelerometer to sense the head-

ing angle change in the X-O-Y plane. A magnetometer provides the other reference

vector [mx,my,mz]
T . Other than gravity which is vertically downward, there is an angle

between earth magnetism vector and the X-O-Y plane. i.e. the magnetic inclination

indicated by β in Fig. 2(a). On condition that the sensor orientation of the sensor is ad-150

just to north, the vector turn to [mx,0,mz]
T . In this paper, gravity vector is first used to

rotate the body frame to the same X-O-Y plane of ground frame then the magnetometer

is adopted to calculate the difference of heading.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 : Declination 

 : Inclination 

(a) Magnetic declination and inclina-

tion

GY

GX

GZ

BZ

BX

BY

( )G BO O
yaw

yaw

(b) Heading estimation by magne-

tometer

Figure 2. Geomagnetic component and the heading determination

The initial roll angle φ , pitch angle θ and heading angle ψ can be calculated in

formula (1). 



φ = arctan(ay,az)

θ = arctan(−ax,ay ∗ sφ +az ∗ cφ)

ψ = arctan(my ∗ cφ +mx ∗ sφ ∗ sθ

−mz ∗ sφ ∗ cθ ,mx ∗ cθ −mz ∗ sθ)

(1)

where c and s denote cosine and sine functions respectively. ax, ay and az represent

acceleration magnitudes, mx, my and mz are magnetometer measurements.155

The next issue is to calculate the initial rotation matrix Nini which performs the
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Figure 3. Quaternion update using proposed initial alignment method

sensor frame transformation.

Nini =Rψ Rθ Rφ

=




cψ −sψ 0

sψ cψ 0

0 0 1







cθ 0 sθ

0 1 0

−sθ 0 cθ







1 0 0

0 cφ −sφ

0 sφ cφ




=




cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ




(2)

Fig. 3 shows an example of initial alignment process, the initial quaternion q0 be-

comes close to (1,0,0,0) when the subject was at rest by conducting the alignment

operation. While Table 2 shows the elements of the quaternion for the six key sam-

ples. The ideal orientation of the sensor after initial alignment is represented by the

quaternion (1, 0, 0, 0) in the navigation frame.160

By applying the proposed initial alignment, the sensor data would be expressed in

the body coordinate whose orientation is supposed to be recorded. The new X axis in

ground frame is chosen by the advancing direction of the subject while keeping the Z

axis straight up. Y axis can be obtained according to right handed Cartesian coordinate

system.165
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Table 2. QUATERNION UPDATES WITH INITIAL ALIGNMENT

Sample q0 q1 q2 q3

1 0.67538 0.02347 0.73714 -0.01705

2 0.67525 0.02364 0.73746 -0.01784

3 0.67549 0.02351 0.73723 -0.01738

4 0.99998 -0.00032 0.00459 -0.00132

5 0.99998 -0.00072 0.00370 -0.00139

6 0.99999 -0.00019 0.00416 -0.00155

2.2. Multi-sensor fusion based orientation updates

As a nonsingular description of 3D orientation, quaternion is more efficient than

direction-cosine matrix and Euler angles methods, and quaternion is unique up to sign.

A unit quaternion vector with unit magnitude can be interpreted to indicates a rotation

about a unit vector~n through angle θ .

~q = cos
θ
2
+ sin

θ
2
·~n (3)

An alternative representation of a quaternion is a vector with a real component q0 and

a complex part, which can be described in the following vector format:

~q = q0 +q1~i+q2~j+q3~k (4)

In this paper, the corresponding continuous nonlinear system can be expressed as

follows:

ẋ = f (x,ω)+w (5)

y = h(x)+ v (6)

where x =
[
~q ~bω

]T
is the systematic state vector, and gyroscope bias is rep-

resented by ~b =
[
bωx bωy bωz

]T
, in which ω represents angular velocity vector

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[
ωx ωy ωz

]
, meanwhile, y = [~a] =

[
ax ay az

]
is the systematic observation vec-

tor. In this way, the rotary motion of rigid body can be discribed as

q̇ =


[~ω×] ~ω

−~ωT 0


 ·q (7)

where

[~ω×] =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (8)

with [~ω×] representing the skew-symmetric matrix. The inertial/magnetic sensor

variances are assumed as random walk process, which is driven by zero-mean Gaus-170

sian models, denoted as ~va, ~vg and ~vm , respectively. The real angular velocity, real

acceleration and the magnetic field are related with gyroscope, accelerometer and mag-

netometer measurements in the following quaternion kinematic matrix.





~ω = ωr +~bω +~vg

~a = qS
N( ~aa +g)qS−

N +~va

~h = qS
NhmqS−

N +~vm

(9)

where~va, ~vg and~vm are noise signals of accelerometer, gyroscope and magnetometer,

respectively. As defined here qS
N rotates a vector in the navigation frame to the sensor

frame, and qS−
N is the corresponding complex conjugate.

~g =
[
0 0 g

]T
(10)

Nonlinear equations f (x,ω) and h(x) can be expressed as follows;

f (x,ω) =




1
2




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0







0

ωx−bωx

ωy−bωy

ωz−bωz




0

0

0




(11)
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h(x) =
[
CS

N (q) 03×3

]

 ~g

03×1


 (12)

where the partial derivative of f (x,ω) with respect to vector x can be written as

A =
1
2




0 −ωx +bωx −ωy +bωy −ωz +bωz q1 q2 q3

ωx−bωx 0 ωz−bωz −ωy +bωy −q0 q3 −q2

ωy−bωy −ωz +bωz 0 ωx−bωx −q3 −q0 q1

ωz−bωz ωy−bωy −ωx +bωx 0 q2 −q1 −q0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




(13)

where the partial derivative of h(x) with respect to vector x can be written as

H = g ·




−2q2 2q3 −2q0 2q1 0 0 0

2q1 2q0 2q3 2q2 0 0 0

2q0 −2q1 −2q2 2q3 0 0 0


 (14)

The error covariance matrix can be written as

P̂k = Ak−1Pk−1AT
k−1 +Q (15)

When observed values are available, i.e., stance phase is detected, the accelerome-

ter measurement (acceleration of gravity) can be used to correct the estimated system-

atic state. The correction of~a can be written as

xk = x̂k +Kk (~ak−H~g) (16)

Pk = (I7×7−KkHk) P̂k (17)

where Kk is the kalman filter gain, which can be calculated by

Kk = P̂kHT
k

(
HkP̂kHT +R

)−1
(18)

The EKF filter described in this section continuously build the sensor variance175

model and makes the corrections. In this way, path integral errors caused by sensor

variance could be minimized, which is presented in the following sections.
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2.3. Stance Phase detection

Each step we take when we walk can be segmented into several phases which form

the gait cycle. The primary phases are stance and swing. Provided that at least one180

foot is in contact with the ground at any given moment during normal walking, i.e.,

no flight phase exists when running. The foot to which the sensor is attached stands

steady on the ground in the stance phase. In the swing phase, the corresponding foot

uplifts from behind the pedestrian, swings forward and ends at the next stance phase.

The foot then uplifts from behind the pedestrian before swinging forward again for the185

next stance phase. As shown in Fig. 4. According to literature, the foot is in stance

phase for roughly 60% of the walking time and swing phase take up for the remaining

40% [14][22].

In general, the fundamental cycle of a pedestrian dead reckoning systems includes:

• Identify data segmentations of the walking motion information corresponding to190

individual steps.

This is achieved by detecting cycles in the sensor data caused by the repetitive

motion of walking. This involve searching for repeating data patterns, the inertial

measurement peak values due to heel-strike are chosen as judgment index in this

paper. Experimental results show that they are well suited to step segmentation.195

• Determine the stance phase and swing phase in each gait cycle.

Three indicators were evaluated to determine stance phase as detailed in this

section. Meanwhile, a simple K-mean clustering algorithm is proposed to distin-

guish true stance phases from false stance phases.

• Estimate the foot velocity, foot position and heading angle using sensor data step200

by step, which is the process of estimating the value of any variable quantity by

using an earlier value and adding whatever changes have occurred in the mean-

time.

Gyroscope has been deemed to be more dependable than accelerometer in algo-

rithmical stance phase detection [23]. In this paper, three indicators are deployed to

determine stance phase when the subject stands steady on the ground (usually lasts

14
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Figure 4. A typical stance phase between two consecutive swing phase

0.2∼ 0.4 seconds in each step). Stationary states are calculated by taking the squared

Euclidean norm of acceleration in formula (19),

A =
√
(ax/‖g‖)2 +(ay/‖g‖)2 +(az/‖g‖)2 (19)

where ax, ay and az represent the triaxial acceleration measurements.

It is assumed that the measurements of triaxial accelerometer are essentially con-

stant in stance phase and the magnitude of composed acceleration vector is approxi-

mately equal to local gravity, in this case, the acceleration moving variance M is de-

ployed as the second indicator (20),

M =
1
N

i= j

∑
i= j−N

((Si− S̄N)
2 (20)

where S̄N is the mean of Si over N samples,205

Meanwhile, angular rate energy Egyro is adopted as the third indicator (21). The

second origin moment rather than second central moment is used to detect stance phase.

As defined in the following energy detector[23]:

E =
1

σ2
ωW

j+W−1

∑
i= j

‖ωi‖2 (21)

R̂ =





1,A < λ1
⋂

M < λ2∩E < λ3

0, other value
(22)
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where W is the window size selected according to the sensors sampling rate; ωi =

[ωx,i,ωy,i,ωz,i]
T is the triaxial angular velocity vector, σ2

ω is the gyroscope noise vari-

ance. λ1, λ2 and λ3 are empirically predefined thresholds. The detection results (R̂)

are sequences consist of “zero” and “one”. The algorithm continually finds the interval

when ZVU is valid and updates the corresponding vG(t) as [0,0,0]T base on the above210

three indicators.

In consideration of potential short-term sensor measurement fluctuations, time con-

straint is a good supplement to verify the stance phase detection results by evaluating

the time durations of each phase. The principle is that a true stance phase can be

declared only when the detection statistics fall in specified period of time. In gen-215

eral, a fixed time constraint only works well for the specific pedestrian data, which is

not suitable for pedestrian data of different walking scenarios. Therefore, an adaptive

time constraint is required to provide robust PDR solutions. In this paper, the k-mean

clustering algorithm is adopted to filter potential gait phases and automatically yield

the adaptive time constraint parameters. As illustrated in Fig. 5, the k-mean clustering220

algorithm efficiently classifies the detected stance phases into true and false clusters ac-

cording to time durations, so that the fluctuation-induced false stance phases could be

eliminated. Meanwhile, the extreme values of each cluster are illustrated by blue line

shown in Fig. 5. In this case, the k-mean algorithm can yield adaptive time constraint

parameters to eliminate the false stance phase detection due to sensor measurement225

fluctuations. Fig. 6 shows the effect of the window size W on the step number de-

tection. 25 different window size are selected, i.e., from 1 to 25, and the correct step

number is 56 in the trial. It turned out that the optimal window size is neither too big

nor too small.

2.4. Zero-velocity-update-aided pedestrian dead reckoning230

In this paper, the basic linear physics of walking movement is as follows:

ak ∈ R3×1 : acceleration in sensor coordinate

vk ∈ R3×1 : velocity in the ground navigation coordinate

pk ∈ R3×1 : position in the ground navigation coordinate

ωk ∈ R3×1 : angular velocity in sensor coordinate235
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And the kinematics equations of PDR for a discrete system are as follows:



ak

vk

pk


=




qk−1ak−1q∗k−1

vk−1 +
τ
2 (ak +ak−1−2g)

pk−1 +
1
2 (vk−1 + vk)τ + 1

2 ak−1(τ)2


 (23)

where k represents the time index, τ denotes the sampling interval (10 millisec-

onds in this paper), g is the local gravity, Further, qk is the quaternion describing the

orientation of the system, the triple product qk−1akq∗k−1 denotes the rotation of ak by

qk.240

This formula is used to move the foot until a new update is received from the iner-
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tial/magnetic sensors. The sensor measurement noise is inevitable and constantly ac-

cumulated because position information is estimated in a cumulative way, which leads

to deviation from the ground truth. Generally, foot velocity is obtained by numerically

integrating corrected foot acceleration measurements obtained during the swing phase.245

Accurate foot velocity estimation is the premise of position estimation. To achieve ac-

curate pedestrian dead reckoning of an subject equipped with foot-mounted sensors, a

widely used ZVU method was adopted to correct the integral error and inherent sensor

variance error at the end of each step. ZVU was first introduced in a PDR context in

the NavShoe project by Foxlin [24]. It is convenient to incorporated ZVU into the PDR250

system by formulating it as pseudomeasurements of zero velocity. ZVU must only be

implemented when the foot is completely at the stance phase[25][26].

In this case, integration of inertial data only occur in the swing phase, reducing the

integral error of position estimation of the foot to which the sensor is attached. Note

that the accelerometer measures all forces that are applying on the sensor including255

gravity, which is irrelevant to foot locomotion. In this case gravity vector should be

deducted properly. Assuming that the bias error of accelerometer in a gait cycle is

stable, we set the foot velocity to zero at the end of each swing phase based on the

periodicity of walking movement.

The foot acceleration in dynamic phase can be expressed as

aN (t) = ãN (t)+ ε (24)

where ãN is the true motion acceleration, ε is the bias error of the accelerometer. As-

suming that the bias error is fixed in one gait cycle. Then The foot velocity is supposed

to be zero during the whole stance phase. And the dynamic phase speed can be calcu-

lated by the formula:

vN (t) =

t∫

0

aN (τ)dτ =

t∫

0

[ãN (τ)+ ε]dτ

= ṽN (t)+ εt

(25)

The bias error of acceleration during a gait cycle can be estimated as

ε =
vN (T )

T
(26)
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Figure 7. Foot velocity prior to applying ZVU (red dotted curve), and after applying ZVU (blue curve). The

estimation of three-dimensional foot velocity: forward, left and upward (top to down)

where T is the duration of dynamic phase.260

After the foot velocity correction we can obtain corrected position information:

p(t) =
∫

ṽN (t)dt (27)

Fig. 7 shows the improvement of three-dimensional foot velocity estimation with

ZVU. It is obvious that ZVU properly eliminates the integral error caused by sensor

variance. Some researchers developed a smoother for velocity and position estimation[27],

however, a delay would be introduced, which limits real time applications, and it is

still controversial upon the real effect on PDR. The flowchart of the whole proposed265

approach is shown in Fig. 8.

3. EXPERIMENTAL RESULTS AND ALGORITHM VALIDATION

To assess the overall algorithm, we conducted experiments in two scenarios: indoor

locomotion and outdoor positioning. For each scenario, we attached one Xsens iner-

tial/magnetic sensor module on the subjects’ instep. Four test subjects (two males and270

two females without a history of lower limb pathologic conditions) performed indoor

rectangular level walking in robot arena and stair climbing trials in the stairwell, as

well as outdoor trials performed in a 400 meters stadium track, with several repetitions

of each walking trial.
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3.1. Indoor experimental results275

The subjects were instructed to walk along the predefined rectangular path in the

robot arena, being covered by Vicon cameras, as shown in Fig. 9 The route is from

the origin (x = 0,y = 0,z = 0) with zero heading angle, and then along the clockwise

direction of the rectangular grid line for several laps, ending up at the origin, though

the route is not strictly required.280

Fig. 10 (a) and Fig. 10 (b) outline 3D foot velocity of walking trial in Robot Arena

and stairwell, respectively. No significant drift was observed from the two trials. Foot
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Figure 9. Indoor experimental scenario: the circular region in Essex robot arena

velocity in Z axis is the secondary components in level walking, when X axis and

Y axis alternately become the main component. While Z axis foot velocity becomes

the fundamental component in the whole process of stair climbing because the subject285

was keep rising up during the trial. Likewise, 3D foot position of two types of indoor

experiment presents the same trend. The dominant foot that the senor was attached

on started from the origin and then moved along the rectangular route clockwise for

two laps, ending up at (0.125, 0.038, 0.011) with a reverse heading angle (heading =

−177.3◦). Note that Vicon system does not work in staircase, so we took the layer290

height (0.16 meters) and width (0.3 meters) as ground truth instead. In Fig. 10 (c), the

3D foot position ends at (0.022, -1.094, 3.305), which is reasonable compared with the

available ground truth.

Moreover, the obtained foot velocity and position information can be useful for

stair ascent capacity evaluation. The trajectories of two types of trials are demonstrated

in Fig. 11 (a). and Fig. 11 (b), respectively. Pedestrian walking distance errors have

always been the primary concerns in literature [15] [28] [29], while the limitation of

evaluating the overall distance errors is the canceling effect of the positive and negative

errors occur in each stride. From this perspective, it is worth studying how the stride

length error changes in the course of trial. In general, a step represents the period or

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 10 20 30 40 50 60 70 77
−3

−2

−1

0

1

2

3

Time (s)

3D
 fo

ot
 v

el
oc

ity
 (

m
/s

)

 

 

x
y
z

(a) 3D foot velocity of rectangular level

walking in robot arena

0 5 10 15 20 25 30 35 40 45 48
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

3D
 fo

ot
 v

el
oc

ity
 (

m
/s

)

 

 x
y
z

(b) 3D foot velocity of stair climbing

0 10 20 30 40 50 60 70 77
−4

−3

−2

−1

0

1

2

3

4

Time (s)

3D
 fo

ot
 p

os
iti

on
 (

m
et

er
)

 

 

X
Y
Z

(c) 3D foot position of rectangular level

walking in robot arena

0 5 10 15 20 25 30 35 40 45 48
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

3D
 fo

ot
 p

os
iti

on
 (

m
et

er
)

 

 X
Y
Z

(d) 3D foot position of stair climbing

Figure 10. 3D foot velocity and position of walking trial in Robot Arena and stairwell

locomotion between two consecutive footfalls on opposite feet, while a stride is defined

as the same quantity with respect to the same foot. In this paper, stride length is defined

as the distance between the adjacent foot landing, which determine the walking speed

by dividing the elapsed time in one stride. Towards level walking trials, stride length S

can be calculated by

Sk =
√
(px,k− px,k−1)2 +(py,k− py,k−1)2 (28)

where Sk represents the stride length of k th step. px,k and py,k denote the X, Y coordi-

nate component of foot position in navigation frame, respectively.295

The stride length estimation results are analyzed. The overall estimation error in

this trial is slightly larger (0.41%) than that of Vicon, i.e., the ground truth. As for each

stride, the calculated results are less than the true value for 7 steps and larger than the

true value as to the remaining 21 steps. Maximum error appears in the 18th step with

0.0105m (1.31%), and the µ and σ are 0.482% and 0.376%, respectively.300

As can be seen from the bar chart, stride length errors are not likely to grow with

the increase of step number based on the small sample experiments, though there are

actually small increment when the subject changes walking direction, i.e., the moment
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(a) Foot trajectory of rectangular level walking in robot arena

(b) Foot trajectory of stair climbing

Figure 11. Foot trajectory of walking trial in (a) Essex Robot Arena and (b) stairwell

during which the subject made the turning at each corner. Still we can draw that the

PDR method works well in level walking trials and the position estimation errors are305

well controlled.

To get a more clear understanding of error distribution, Fig. 12 indicates the corre-

sponding frequency histogram, kernel density estimation and normal distribution fitting

of stride length error by different method, including proposed EKF method, factored

quaternion algorithm (FQA), Gradient descent algorithm (GDA) and complementary310

filter (CF) method. The statistical magnitude of proposed EKF method are: mean value

µ = 0.0051 and standard deviation σ = 0.0046. While the results of comparative meth-

ods are: factored quaternion algorithm (−0.016± 0.022), Gradient descent algorithm
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(a) Proposed EKF Method
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(b) Factored quaternion [28]
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(c) Gradient descent algorithm[30]
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(d) Complementary filter method[29]

Figure 12. Stride estimation error distribution by different methods

(−0.0086±0.017) and complementary filter algorithm (0.0039±0.0083) . Though the

mean error of proposed method is not the smallest, the standard deviations are remark-315

able smaller than the rest methods, which reflects the effectiveness of error-controlling.

In order to investigate the repeatability of the proposed PDR method, we invited

one subject to perform the rectangular walking trial for six times. The trial results

are listed in Table 3. All steps in six trials are correctly detected with the proposed320

method for stance phase detection, and an average distance error of 0.41% for level

walking was achieved within the indoor environment, as well as an average heading

error of 0.52◦ per turn. It is unreasonable to just compare the results against the lit-

erature because the system performance depends on several factors to a large extent,

including system hardware, sensor placement, road conditions, etc. Even though, our325

experimental results are comparable or better than similar research in the literature.

In terms of orientation estimation, Vicon observations and Xsens measurements

were presented to evaluate the effectiveness of proposed method. Since pitch angle

changes most significantly than roll and heading in normal walking. Fig. 13 demon-

strates the foot pitch angle estimation during one step by proposed method, Vicon and330

Xsens respectively. It is observed that the proposed method produces a better result (er-

rors no more than 3◦) than the typical kalman filter method adopted by Xsens (errors

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T10.8 11 11.2 11.4 11.6 11.8 12 12.2 12.4
−50

−25

0

25

50

P
it

ch
(d

eg
re

es
)

 

 

Proposed method
Xsens method
Ground truth

10.8 11 11.2 11.4 11.6 11.8 12 12.2 12.4
−10

−5

0

5

10

Time (s)

E
rr

or
(d

eg
re

es
)

 

 

Proposed method
Xsens method

Figure 13. Foot pitch angle estimation of one step by proposed method, Xsens and Vicon system, as well as

the difference errors of foot pitch angle estimation by proposed method and Xsens, respectively
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Figure 14. Heading change during rectangular level walking

exceed 5◦), which tend to be more error prone due to to magnetic disturbance.

The change of heading angle during the rectangular walking trial is indicated in

Fig. 14. In this experiment, the subject followed the clockwise and turned right for335

ten times, i.e. the heading changed 10× (−90◦) relative to the navigation coordinate,

ending up with a reverse heading (−177.3◦) with respect to initial state. Note that there

are some trip points when the heading is close to ±180◦, i.e., the heading could hop

from −180◦ to 180◦ due to the singularity character of Euler method. The definition

of heading states that the value should be in the range of ±180◦, so we made some340

adjustments every time the subject walked at the reverse direction as indicated by black

arrows in Fig. 14, ensuring that the heading angle falls into the set range.
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Table 3. INDOOR PDR RESULTS OF THE SAME SUBJECT FOR SIX TIMES

Trial Step count Walking Distance Calculated Number Error

no. (true value) distance %error heading of 90◦ per turn

(m) (◦) turnings (◦)

1 57 (57) 49.51 0.39% -176.4 10 0.4

2 60 (60) 48.73 0.74% 175.1 10 0.6

3 59 (59) 49.19 0.17% -172.9 10 0.7

4 56 (56) 50.85 0.32% -176.5 10 0.5

5 55 (55) 51.33 0.26% -173.2 10 0.7

6 59 (59) 50.46 0.56% 174.3 10 0.2

3.2. Outdoor experimental results

We asked the subjects to circle the 400 meter track in an stadium, and the subjects

were instructed to walk along the same specified track line (the fourth lane in this series345

of experiments, and the circumference is 423 meters). For comparison, we compared

our PDR results of the outdoor walking trajectory with those obtained by complemen-

tary filter (CF) in [28] and gradient descent algorithm (GDA) in [30]. Fig. 15 demon-

strates the navigation trail using three methods for one lap walk around the athletic

track overlaid onto Google map. We have conducted five outdoor trials of a specific350

subject and presented the results in Table 4 with measurement uncertainty. Note that

the number of total walking steps is ∼ 321 and the duration is ∼ 364 seconds in these

trials. The truth value of step number is provided by a pedometer. The corresponding

navigational trajectory are represented by different colors and line styles. The overall

shape of the estimated trajectories seem very similar to the forth athletic track but the355

proposed EKF method shows improvement over those computed using other methods.

Specifically, the trajectory for the proposed methods finished with an end-to-end error

of ∼ 2.59 meters, which is larger than CF method ( ∼ 1.96 meters) but the overall
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Figure 15. Outdoor experiments: Estimated walking trajectory of standard track overlaid onto Google map

Table 4. OUTDOOR PDR RESULTS USING THREE DIFFERENT METHODS

Method Step count Walking End-to-end Error Heading

distance (m) error (m) % (◦)

EKF 321±6 424.19±0.57 2.59±0.012 0.61 3.7±0.33

CF 321±6 423.83±0.81 1.96±0.036 0.46 7.1±0.49

GDA 321±6 424.72±0.49 3.48±0.075 0.82 -6.8±0.87

trajectory is more consistent with the fourth track lane. Note that the biggest heading

error occurs in the GDA method with the end heading angle of ∼ −6.8◦, which is de-360

viate from actual value. It can be concluded that the heading estimation error during

the trajectory decreases the overall estimation quality.

As shown in Table 5, the overall error in distance is ∼ 0.3% of the total traveled

distance, while the end-to-end (starting point to ending point) error is ∼ 0.65% of

the total distance for the outdoor walking trial. The operation time for the two laps365

walking experiment is more than 10 minutes (687 seconds), demonstrating the drift

reduction continue to work for a reasonable time. When comparing female and male
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Table 5. OUTDOOR PDR PERFORMANCE OF FOUR SUBJECTS

Subject Gender Step count Walking Error End-to-end Error

no. (true value) distance (m) % (W) error (m) % (E)

1 female 321 (321) 424.23 0.29% 2.74 0.64%

2 female 654 (654) 847.45 0.17% 3.66 0.87%

3 male 297 (297) 424.53 0.36% 2.79 0.66%

4 male 613 (613) 849.30 0.39% 1.92 0.45%

cohorts, male perform larger stride length and lower stride frequency than female. In

conclusion, these experiments show the effectiveness of the proposed PDR approach.

4. Discussion and Comparison With Recent Work370

In this section, we propose to compare our proposed PDR approach with similar

research in literature. The influence that the body part on which the sensor is placed

has on signals from inertial/magnetic sensors can be significant [31][32]. As for the

application in this study, higher stance phase detection accurate will be achieved when

the sensor is placed closer to the ground. The instep attached sensor perform better375

than the ankle attached sensor. We noticed that the distance calculated by the ankle at-

tached sensor was often shorter than the instep attached sensor. Possible causes include

inaccuracies in stance phase detection used for ZVU and the discrepancy between the

trajectory walked by the foot versus the trajectory traveled by the ankle, which is con-

sistent with the study of [15]. The factors that influence the accuracy of orientation380

estimation may include magnetometer interference, sensor housing error and invalid

specific domain assumptions, which may be revealed in further study.

In this paper, a PDR method based on inertial/magnetic sensors was proposed. The

sensor system monitors the subjects walking information using the proposed pedes-

trian dead reckoning algorithm. Experimental results demonstrate that drift and error385

are well controlled by sensor fusion algorithm. Without pressure sensor, RFID tags
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and GPS, the self-contained inertial/magnetic sensor based method achieves an aver-

age distance error of 0.35% and the average end-to-end position error is around 0.65%

of the total walked distance, taking account of various walking scenarios. It is difficult

to directly compare the results with different experiments, because the algorithm per-390

formance largely depend on the sensor type, the ground surface and the trajectory, etc,.

Even though, our experimental results are comparable to or better than the literature:

1) Adopting the same inertial/magnetic sensor, Feliz et al. [33] proposed a gyro-

scope based distance estimation method with 7.81% error, the averaged distance error

is 1.27% in [20] ; the position error of 0.4% was reported in the study of [29], which is395

quite accurate but lacks non-horizontal walking trials.

2) Adopting sensor of another vendor, the position accuracy of 0.3% reported in

[24]; the ∆XY radial distance error of 0.82% and the distance error of 0.27% reported

in [28]; the distance error of 1.1% and the position error of 1.2% were reported in [14],

the distance error of 0.43% for short distance walking and 4.31% for long distance400

indoor walking were reported in [34].

5. CONCLUSION

We have presented a multi-sensor fusion method to estimate the step length and

foot orientation based on inertial/magnetic feet attached sensors. Contrary to similar

works, a multisensor approach is applied in order to reduce uncertainty and to pro-405

duce better estimations. Towards this end, a stance phase detection algorithm based on

accelerometer and gyroscope measurements was presented, and an extended kalman

filter based sensor fusion system is proposed. Initial results are encouraging, and the

method has been proved effective for both short distance indoor walking trials and long

distance outdoor pedestrian dead reckoning. We conclude that PDR could be served as410

a good supplement of other navigation approaches, or to extend navigation into areas

where other navigation systems are unavailable.

Ongoing extended field experiments have been designed to validate and generalize

the results for a heterogeneous populations and walking conditions. The performance

of the proposed method could be further improved by taking into account the building415
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structure and magnetic turbulence. Future research might aim to further improve the

localization accuracy of the proposed method and conduct extensive trials across a large

sample of participants and walking pattern, ensuring that the proposed PDR method

is consistent across inter-subject. Another challenge is differentiating walking from

running, and recognizing motions such as carrying heavy loads and taking electric lift.420

The method need to be enhanced to handle these various scenarios.
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