190 research outputs found

    A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking

    Get PDF
    Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based (host-centric) Internet infrastructure. NDN can overcome the fundamental limitations of the current Internet, in particular, Denial-of-Service (DoS) attacks. However, NDN can be subject to new type of DoS attacks namely Interest flooding attacks and content poisoning. These types of attacks exploit key architectural features of NDN. This paper presents a new intelligent hybrid algorithm for proactive detection of DoS attacks and adaptive mitigation reaction in NDN. In the detection phase, a combination of multiobjective evolutionary optimization algorithm with PSO in the context of the RBF neural network has been applied in order to improve the accuracy of DoS attack prediction. Performance of the proposed hybrid approach is also evaluated successfully by some benchmark problems. In the adaptive reaction phase, we introduced a framework for mitigating DoS attacks based on the misbehaving type of network nodes. The evaluation through simulations shows that the proposed intelligent hybrid algorithm (proactive detection and adaptive reaction) can quickly and effectively respond and mitigate DoS attacks in adverse conditions in terms of the applied performance criteria

    The use of computational intelligence for security in named data networking

    Get PDF
    Information-Centric Networking (ICN) has recently been considered as a promising paradigm for the next-generation Internet, shifting from the sender-driven end-to-end communication paradigma to a receiver-driven content retrieval paradigm. In ICN, content -rather than hosts, like in IP-based design- plays the central role in the communications. This change from host-centric to content-centric has several significant advantages such as network load reduction, low dissemination latency, scalability, etc. One of the main design requirements for the ICN architectures -since the beginning of their design- has been strong security. Named Data Networking (NDN) (also referred to as Content-Centric Networking (CCN) or Data-Centric Networking (DCN)) is one of these architectures that are the focus of an ongoing research effort that aims to become the way Internet will operate in the future. Existing research into security of NDN is at an early stage and many designs are still incomplete. To make NDN a fully working system at Internet scale, there are still many missing pieces to be filled in. In this dissertation, we study the four most important security issues in NDN in order to defense against new forms of -potentially unknown- attacks, ensure privacy, achieve high availability, and block malicious network traffics belonging to attackers or at least limit their effectiveness, i.e., anomaly detection, DoS/DDoS attacks, congestion control, and cache pollution attacks. In order to protect NDN infrastructure, we need flexible, adaptable and robust defense systems which can make intelligent -and real-time- decisions to enable network entities to behave in an adaptive and intelligent manner. In this context, the characteristics of Computational Intelligence (CI) methods such as adaption, fault tolerance, high computational speed and error resilient against noisy information, make them suitable to be applied to the problem of NDN security, which can highlight promising new research directions. Hence, we suggest new hybrid CI-based methods to make NDN a more reliable and viable architecture for the future Internet.Information-Centric Networking (ICN) ha sido recientemente considerado como un paradigma prometedor parala nueva generación de Internet, pasando del paradigma de la comunicación de extremo a extremo impulsada por el emisora un paradigma de obtención de contenidos impulsada por el receptor. En ICN, el contenido (más que los nodos, como sucede en redes IPactuales) juega el papel central en las comunicaciones. Este cambio de "host-centric" a "content-centric" tiene varias ventajas importantes como la reducción de la carga de red, la baja latencia, escalabilidad, etc. Uno de los principales requisitos de diseño para las arquitecturas ICN (ya desde el principiode su diseño) ha sido una fuerte seguridad. Named Data Networking (NDN) (también conocida como Content-Centric Networking (CCN) o Data-Centric Networking (DCN)) es una de estas arquitecturas que son objetode investigación y que tiene como objetivo convertirse en la forma en que Internet funcionará en el futuro. Laseguridad de NDN está aún en una etapa inicial. Para hacer NDN un sistema totalmente funcional a escala de Internet, todavía hay muchas piezas que faltan por diseñar. Enesta tesis, estudiamos los cuatro problemas de seguridad más importantes de NDN, para defendersecontra nuevas formas de ataques (incluyendo los potencialmente desconocidos), asegurar la privacidad, lograr una alta disponibilidad, y bloquear los tráficos de red maliciosos o al menos limitar su eficacia. Estos cuatro problemas son: detección de anomalías, ataques DoS / DDoS, control de congestión y ataques de contaminación caché. Para solventar tales problemas necesitamos sistemas de defensa flexibles, adaptables y robustos que puedantomar decisiones inteligentes en tiempo real para permitir a las entidades de red que se comporten de manera rápida e inteligente. Es por ello que utilizamos Inteligencia Computacional (IC), ya que sus características (la adaptación, la tolerancia a fallos, alta velocidad de cálculo y funcionamiento adecuado con información con altos niveles de ruido), la hace adecuada para ser aplicada al problema de la seguridad ND

    Key Management in Wireless Sensor Networks, IP-Based Sensor Networks, Content Centric Networks

    Get PDF
    Cryptographic keys and their management in network communication is considered the main building block of security over which other security primitives are based. These cryptographic keys ensure the privacy, authentication, integrity and non-repudiation of messages. However, the use of these cryptographic keys and their management in dealing with the resource constrained devices (i.e. Sensor nodes) is a challenging task. A number of key management schemes have been introduced by researchers all over the world for such resource constrained networks. For example, light weight PKI and elliptic curve cryptography schemes are computationally expensive for these resource constrained devices. So far the symmetric key approach is considered best for these constrained networks and different variants of it been developed for these networks (i.e. probabilistic key distribution approach). The probabilistic key distribution approach consumes less memory than the standard symmetric key approach but it suffers from the connectivity issues (i.e. the connectivity depends on the common shared keys between the nodes). Most of those schemes were proposed by considering static sensor networks (e.g. Industrial process monitoring, Environmental monitoring, movement detection in military applications, forests etc.). However, the use of these existing key management schemes for mobile wireless sensor networks applications introduces more challenges in terms of network connectivity, energy consumption, memory cost, communication overhead and protection of key materials against some well known attacks. Keeping these challenges in mind, previous research has proposed some key management schemes considering the mobility scenarios in ad hoc networks and wireless sensor networks (e.g. vehicular networks, health monitoring systems).However these schemes consume more resource because of a much higher communication packet exchange during the handover phase for the authentication of joining and leaving nodes than the static networks where there is no extra communication for the handover and authentication. The motivation of this research work is to investigate and propose new algorithms not only to improve the efficiency of these existing authentication and key management schemes in terms of connectivity, memory and security by considering the mobility scenario in wireless sensor networks, but also to develop new algorithms that suit these constrained networks than the existing schemes. First, we choose the existing key pool approach for authentication and key management and improve its network connectivity and resilience against some well known attacks (e.g. node capturing attacks) while reduce the memory cost by storing those key pools in each sensor node. In the proposed solution, we have divided the main key pool into two virtual mutually exclusive key pools. This division and constructing a key from two chosen keys, one from each key pool, helps to reduce the memory cost of each node by assigning fewer keys for the same level of network connectivity as the existing key pool frameworks. Although, the proposed key pool approach increases the network resilience against node compromission attacks because of the smaller number of keys assigned to each node, however it does not completely nullify the effect of the attacks. Hence we proposed an online mutual authentication and key establishment and management scheme for sensor networks that provides almost 100\% network connectivity and also nullifies the effect of node compromission attacks. In the proposed online key generation approach, the secret key is dependent on both communicating parties. Once the two communicating parties authenticate each other, they would successfully establish a secret communication key, otherwise they stop communication and inform the network manager about the intruder detection and activity. The last part of the thesis considers the integration of two different technologies (i.e. wireless sensor networks and IP networks). This is a very interesting and demanding research area because of its numerous applications, such as smart energy, smart city etc.. However the security requirements of these two kind of networks (resource constrained and resourceful) make key management a challenging task. Hence we use an online key generation approach using elliptic curve cryptography which gives the same security level as the standard PKI approach used in IP networks with smaller key length and is suited for the sensor network packet size limitations. It also uses a less computationally expensive approach than PKI and hence makes ECC suitable to be adopted in wireless sensor networks. In the key management scheme for IP based sensor networks, we generate the public private key pair based on ECC for each individual sensor node. However the public key is not only dependent on the node's parameter but also the parameters of the network to which it belongs. This increases the security of the proposed solution and avoids intruders pretending to be authentic members of the network(s) by spreading their own public keys. In the last part of the thesis we consider Content Centric Networking (CCN) which is a new routing architecture for the internet of the future. Building on the observation that today's communications are more oriented towards content retrieval (web, P2P, etc.) than point-to-point communications (VoIP, IM, etc.), CCN proposes a radical revision of the Internet architecture switching from named hosts (TCP/IP protocols) to named data to best match its current usage. In a nutshell, content is addressable, routable, self-sufficient and authenticated, while locations no longer matter. Data is seen and identified directly by a routable name instead of a location (the address of the server). Consequently, data is directly requested at the network level not from its holder, hence there is no need for the DNS). To improve content diffusion, CCN relies on data distribution and duplication, because storage is cheaper than bandwidth: every content - particularly popular one - can be replicated and stored on any CCN node, even untrustworthy. People looking for particular content can securely retrieve it in a P2P-way from the best locations available. So far, there has been little investigation of the security of CCNs and there is no specific key management scheme for that. We propose an authentication and key establishment scheme for CCNs in which the contents are authenticated by the content generating node, using pre-distributed shares of encryption keys. The content requesting node can get those shares from any node in the network, even from malicious and intruder ones, in accordance with a key concept of CCNs. In our work we also provide means to protect the distributed shares from modification by these malicious/intruder nodes. The proposed scheme is again an online key generation approach but including a relation between the content and its encryption key. This dependency prevents the attackers from modifying the packet or the key share

    Empirical and Analytical Perspectives on the Robustness of Blockchain-related Peer-to-Peer Networks

    Get PDF
    Die Erfindung von Bitcoin hat ein großes Interesse an dezentralen Systemen geweckt. Eine häufige Zuschreibung an dezentrale Systeme ist dabei, dass eine Dezentralisierung automatisch zu einer höheren Sicherheit und Widerstandsfähigkeit gegenüber Angriffen führt. Diese Dissertation widmet sich dieser Zuschreibung, indem untersucht wird, ob dezentralisierte Anwendungen tatsächlich so robust sind. Dafür werden exemplarisch drei Systeme untersucht, die häufig als Komponenten in komplexen Blockchain-Anwendungen benutzt werden: Ethereum als Infrastruktur, IPFS zur verteilten Datenspeicherung und schließlich "Stablecoins" als Tokens mit Wertstabilität. Die Sicherheit und Robustheit dieser einzelnen Komponenten bestimmt maßgeblich die Sicherheit des Gesamtsystems in dem sie verwendet werden; darüber hinaus erlaubt der Fokus auf Komponenten Schlussfolgerungen über individuelle Anwendungen hinaus. Für die entsprechende Analyse bedient sich diese Arbeit einer empirisch motivierten, meist Netzwerklayer-basierten Perspektive -- angereichert mit einer ökonomischen im Kontext von Wertstabilen Tokens. Dieses empirische Verständnis ermöglicht es Aussagen über die inhärenten Eigenschaften der studierten Systeme zu treffen. Ein zentrales Ergebnis dieser Arbeit ist die Entdeckung und Demonstration einer "Eclipse-Attack" auf das Ethereum Overlay. Mittels eines solchen Angriffs kann ein Angreifer die Verbreitung von Transaktionen und Blöcken behindern und Netzwerkteilnehmer aus dem Overlay ausschließen. Des weiteren wird das IPFS-Netzwerk umfassend analysiert und kartografiert mithilfe (1) systematischer Crawls der DHT sowie (2) des Mitschneidens von Anfragenachrichten für Daten. Erkenntlich wird hierbei, dass die hybride Overlay-Struktur von IPFS Segen und Fluch zugleich ist, da das Gesamtsystem zwar robust gegen Angriffe ist, gleichzeitig aber eine umfassende Überwachung der Netzwerkteilnehmer ermöglicht wird. Im Rahmen der wertstabilen Kryptowährungen wird ein Klassifikations-Framework vorgestellt und auf aktuelle Entwicklungen im Gebiet der "Stablecoins" angewandt. Mit diesem Framework wird somit (1) der aktuelle Zustand der Stablecoin-Landschaft sortiert und (2) ein Mittel zur Verfügung gestellt, um auch zukünftige Designs einzuordnen und zu verstehen.The inception of Bitcoin has sparked a large interest in decentralized systems. In particular, popular narratives imply that decentralization automatically leads to a high security and resilience against attacks, even against powerful adversaries. In this thesis, we investigate whether these ascriptions are appropriate and if decentralized applications are as robust as they are made out to be. To this end, we exemplarily analyze three widely-used systems that function as building blocks for blockchain applications: Ethereum as basic infrastructure, IPFS for distributed storage and lastly "stablecoins" as tokens with a stable value. As reoccurring building blocks for decentralized applications these examples significantly determine the security and resilience of the overall application. Furthermore, focusing on these building blocks allows us to look past individual applications and focus on inherent systemic properties. The analysis is driven by a strong empirical, mostly network-layer based perspective; enriched with an economic point of view in the context of monetary stabilization. The resulting practical understanding allows us to delve into the systems' inherent properties. The fundamental results of this thesis include the demonstration of a network-layer Eclipse attack on the Ethereum overlay which can be leveraged to impede the delivery of transaction and blocks with dire consequences for applications built on top of Ethereum. Furthermore, we extensively map the IPFS network through (1) systematic crawling of its DHT, as well as (2) monitoring content requests. We show that while IPFS' hybrid overlay structure renders it quite robust against attacks, this virtue of the overlay is simultaneously a curse, as it allows for extensive monitoring of participating peers and the data they request. Lastly, we exchange the network-layer perspective for a mostly economic one in the context of monetary stabilization. We present a classification framework to (1) map out the stablecoin landscape and (2) provide means to pigeon-hole future system designs. With our work we not only scrutinize ascriptions attributed to decentral technologies; we also reached out to IPFS and Ethereum developers to discuss results and remedy potential attack vectors

    Key Management in Wireless Sensor Networks, IP-Based Sensor Networks, Content Centric Networks

    Get PDF
    Cryptographic keys and their management in network communication is considered the main building block of security over which other security primitives are based. These cryptographic keys ensure the privacy, authentication, integrity and non-repudiation of messages. However, the use of these cryptographic keys and their management in dealing with the resource constrained devices (i.e. Sensor nodes) is a challenging task. A number of key management schemes have been introduced by researchers all over the world for such resource constrained networks. For example, light weight PKI and elliptic curve cryptography schemes are computationally expensive for these resource constrained devices. So far the symmetric key approach is considered best for these constrained networks and different variants of it been developed for these networks (i.e. probabilistic key distribution approach). The probabilistic key distribution approach consumes less memory than the standard symmetric key approach but it suffers from the connectivity issues (i.e. the connectivity depends on the common shared keys between the nodes). Most of those schemes were proposed by considering static sensor networks (e.g. Industrial process monitoring, Environmental monitoring, movement detection in military applications, forests etc.). However, the use of these existing key management schemes for mobile wireless sensor networks applications introduces more challenges in terms of network connectivity, energy consumption, memory cost, communication overhead and protection of key materials against some well known attacks. Keeping these challenges in mind, previous research has proposed some key management schemes considering the mobility scenarios in ad hoc networks and wireless sensor networks (e.g. vehicular networks, health monitoring systems).However these schemes consume more resource because of a much higher communication packet exchange during the handover phase for the authentication of joining and leaving nodes than the static networks where there is no extra communication for the handover and authentication. The motivation of this research work is to investigate and propose new algorithms not only to improve the efficiency of these existing authentication and key management schemes in terms of connectivity, memory and security by considering the mobility scenario in wireless sensor networks, but also to develop new algorithms that suit these constrained networks than the existing schemes. First, we choose the existing key pool approach for authentication and key management and improve its network connectivity and resilience against some well known attacks (e.g. node capturing attacks) while reduce the memory cost by storing those key pools in each sensor node. In the proposed solution, we have divided the main key pool into two virtual mutually exclusive key pools. This division and constructing a key from two chosen keys, one from each key pool, helps to reduce the memory cost of each node by assigning fewer keys for the same level of network connectivity as the existing key pool frameworks. Although, the proposed key pool approach increases the network resilience against node compromission attacks because of the smaller number of keys assigned to each node, however it does not completely nullify the effect of the attacks. Hence we proposed an online mutual authentication and key establishment and management scheme for sensor networks that provides almost 100\% network connectivity and also nullifies the effect of node compromission attacks. In the proposed online key generation approach, the secret key is dependent on both communicating parties. Once the two communicating parties authenticate each other, they would successfully establish a secret communication key, otherwise they stop communication and inform the network manager about the intruder detection and activity. The last part of the thesis considers the integration of two different technologies (i.e. wireless sensor networks and IP networks). This is a very interesting and demanding research area because of its numerous applications, such as smart energy, smart city etc.. However the security requirements of these two kind of networks (resource constrained and resourceful) make key management a challenging task. Hence we use an online key generation approach using elliptic curve cryptography which gives the same security level as the standard PKI approach used in IP networks with smaller key length and is suited for the sensor network packet size limitations. It also uses a less computationally expensive approach than PKI and hence makes ECC suitable to be adopted in wireless sensor networks. In the key management scheme for IP based sensor networks, we generate the public private key pair based on ECC for each individual sensor node. However the public key is not only dependent on the node's parameter but also the parameters of the network to which it belongs. This increases the security of the proposed solution and avoids intruders pretending to be authentic members of the network(s) by spreading their own public keys. In the last part of the thesis we consider Content Centric Networking (CCN) which is a new routing architecture for the internet of the future. Building on the observation that today's communications are more oriented towards content retrieval (web, P2P, etc.) than point-to-point communications (VoIP, IM, etc.), CCN proposes a radical revision of the Internet architecture switching from named hosts (TCP/IP protocols) to named data to best match its current usage. In a nutshell, content is addressable, routable, self-sufficient and authenticated, while locations no longer matter. Data is seen and identified directly by a routable name instead of a location (the address of the server). Consequently, data is directly requested at the network level not from its holder, hence there is no need for the DNS). To improve content diffusion, CCN relies on data distribution and duplication, because storage is cheaper than bandwidth: every content - particularly popular one - can be replicated and stored on any CCN node, even untrustworthy. People looking for particular content can securely retrieve it in a P2P-way from the best locations available. So far, there has been little investigation of the security of CCNs and there is no specific key management scheme for that. We propose an authentication and key establishment scheme for CCNs in which the contents are authenticated by the content generating node, using pre-distributed shares of encryption keys. The content requesting node can get those shares from any node in the network, even from malicious and intruder ones, in accordance with a key concept of CCNs. In our work we also provide means to protect the distributed shares from modification by these malicious/intruder nodes. The proposed scheme is again an online key generation approach but including a relation between the content and its encryption key. This dependency prevents the attackers from modifying the packet or the key shares

    The Cloud-to-Thing Continuum

    Get PDF
    The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about the Internet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates

    Secure Communication in Disaster Scenarios

    Get PDF
    Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommunikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobilfunkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für Cloud-Dienste verbessert

    Cyber Physical System Security — DoS Attacks on Synchrophasor Networks in the Smart Grid

    Get PDF
    With the rapid increase of network-enabled sensors, switches, and relays, cyber-physical system security in the smart grid has become important. The smart grid operation demands reliable communication. Existing encryption technologies ensures the authenticity of delivered messages. However, commonly applied technologies are not able to prevent the delay or drop of smart grid communication messages. In this dissertation, the author focuses on the network security vulnerabilities in synchrophasor network and their mitigation methods. Side-channel vulnerabilities of the synchrophasor network are identified. Synchrophasor network is one of the most important technologies in the smart grid transmission system. Experiments presented in this dissertation shows that a DoS attack that exploits the side-channel vulnerability against the synchrophasor network can lead to the power system in stability. Side-channel analysis extracts information by observing implementation artifacts without knowing the actual meaning of the information. Synchrophasor network consist of Phasor Measurement Units (PMUs) use synchrophasor protocol to transmit measurement data. Two side-channels are discovered in the synchrophasor protocol. Side-channel analysis based Denial of Service (DoS) attacks differentiate the source of multiple PMU data streams within an encrypted tunnel and only drop selected PMU data streams. Simulations on a power system shows that, without any countermeasure, a power system can be subverted after an attack. Then, mitigation methods from both the network and power grid perspectives are carried out. From the perspective of network security study, side-channel analysis, and protocol transformation has the potential to assist the PMU communication to evade attacks lead with protocol identifications. From the perspective of power grid control study, to mitigate PMU DoS attacks, Cellular Computational Network (CCN) prediction of PMU data is studied and used to implement a Virtual Synchrophasor Network (VSN), which learns and mimics the behaviors of an objective power grid. The data from VSN is used by the Automatic Generation Controllers (AGCs) when the PMU packets are disrupted by DoS attacks. Real-time experimental results show the CCN based VSN effectively inferred the missing data and mitigated the negative impacts of DoS attacks. In this study, industry-standard hardware PMUs and Real-Time Digital Power System Simulator (RTDS) are used to build experimental environments that are as close to actual production as possible for this research. The above-mentioned attack and mitigation methods are also tested on the Internet. Man-In-The-Middle (MITM) attack of PMU traffic is performed with Border Gateway Protocol (BGP) hijacking. A side-channel analysis based MITM attack detection method is also investigated. A game theory analysis is performed to give a broade
    corecore