
Empirical and Analytical Perspectives on the
Robustness of Blockchain-related Peer-to-Peer

Networks

D I S S E RTAT I O N
zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
Sebastian Henningsen

Präsident (komm.) der Humboldt-Universität zu Berlin
Prof. Dr. Peter Frensch

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät
Prof. Dr. Elmar Kulke

1. Gutachter: Prof. Dr. Björn Scheuermann (HU Berlin)
2. Gutachter: Prof. Dr. Hannes Hartenstein (KIT)
3. Gutachter: Prof. Dr. Roger Wattenhofer (ETH Zürich)

Tag der Einreichung: 15.03.2021

Tag der mündlichen Prüfung: 9.03.2022

Empirical and Analytical Perspectives
on the Robustness of

Blockchain-related Peer-to-Peer
Networks

Sebastian Henningsen

A B S T R A C T

The inception of Bitcoin has sparked a large interest in decentralized
systems, leading to significant research and development efforts being
invested into building blockchain-based decentralized applications.
These decentralized applications oftentimes mimic existing functional-
ity and seek to replace their existing centralized counterparts without
the alleged shortcomings. In particular, popular narratives imply that
decentralization automatically leads to a high security and resilience
against attacks, even against powerful adversaries.

In this thesis, we investigate whether these ascriptions are appropri-
ate and if decentralized applications are as robust as they are made out
to be. To this end, we exemplarily analyze three widely-used systems
that function as building blocks for blockchain applications: Ethereum
as basic infrastructure, IPFS for distributed storage and lastly “stable-
coins” as tokens with a stable value. As reoccurring building blocks
for decentralized applications these examples significantly determine
the security and resilience of the overall application. Furthermore,
focusing on these building blocks allows us to look past individual
applications and focus on inherent systemic properties.

The analysis is driven by a strong empirical, mostly network-layer
based perspective; enriched with an economic point of view in the con-
text of monetary stabilization. The resulting practical understanding
allows us to delve into the systems’ inherent properties and transition
beyond mere empirical considerations.

The fundamental results of this thesis include the demonstration
of a network-layer Eclipse attack on the Ethereum overlay which can
be leveraged to impede the delivery of transaction and blocks as
well as to exclude honest participants from the network — with dire
consequences for applications built on top of Ethereum. Furthermore,
we extensively map the IPFS network through (1) systematic crawling
of its DHT, as well as (2) monitoring content requests. We show that
while IPFS’ hybrid overlay structure renders it quite robust against
attacks, this virtue of the overlay is simultaneously a curse, as it allows
for extensive monitoring of participating peers and the data they
request. Lastly, we exchange the network-layer perspective for a mostly
economic one in the context of monetary stabilization. Deeply rooted
in existing economic literature and concepts, we present a classification
framework to (1) map out the stablecoin landscape and (2) provide
means to pigeon-hole future system designs. With our work we not
only scrutinize ascriptions attributed to decentral technologies; we
also reached out to IPFS and Ethereum developers to discuss results
and remedy potential attack vectors.

v

Z U S A M M E N FA S S U N G

Die Erfindung von Bitcoin hat ein großes Interesse an dezentralen
Systemen geweckt, welches sich in einer Fülle an Forschungsarbeiten
sowie der Entwicklung zahlreicher dezentralisierter Softwaresysteme
niederschlägt. Diese dezentralisierten Anwendungen imitieren häufig
bestehende zentralisierte, Systeme und versuchen die gleiche Funk-
tionalität ohne die, angeblichen, Schwächen bereitzustellen. Eine
häufige Zuschreibung an dezentrale Systeme ist dabei, dass eine
Dezentralisierung automatisch zu einer höheren Sicherheit und Wider-
standsfähigkeit gegenüber Angriffen führt.

Diese Dissertation widmet sich dieser Zuschreibung, indem unter-
sucht wird, ob dezentralisierte Anwendungen tatsächlich so robust
sind. Zu diesem Zweck werden exemplarisch drei Systeme untersucht,
die häufig als Komponenten in komplexen Blockchain-Anwendungen
benutzt werden: Ethereum als Infrastruktur, IPFS zur verteilten Daten-
speicherung und schließlich “Stablecoins” als Tokens mit Wertstabil-
ität. Die Sicherheit und Robustheit dieser einzelnen Komponenten
bestimmt maßgeblich die Sicherheit des Gesamtsystems in dem sie ver-
wendet werden; darüber hinaus erlaubt der Fokus auf Komponenten
Schlussfolgerungen über individuelle Anwendungen hinaus.

Für die entsprechende Analyse bedient sich diese Arbeit einer em-
pirisch motivierten, meist Netzwerklayer-basierten Perspektive — an-
gereichert mit einer ökonomischen im Kontext von Wertstabilen To-
kens. Dieses empirische Verständnis ermöglicht es Aussagen über die
inhärenten Eigenschaften der studierten Systeme zu treffen.

Ein zentrales Ergebnis dieser Arbeit ist die Entdeckung und Demon-
stration einer “Eclipse-Attack” auf das Ethereum Overlay. Mittels eines
solchen Angriffs kann ein Angreifer die Verbreitung von Transaktionen
und Blöcken behindern und Netzwerkteilnehmer aus dem Overlay
ausschlieSSen. Des weiteren wird das IPFS-Netzwerk umfassend
analysiert und kartografiert mithilfe (1) systematischer Crawls der
DHT sowie (2) des Mitschneidens von Anfragenachrichten für Daten.
Erkenntlich wird hierbei, dass die hybride Overlay-Struktur von IPFS
Segen und Fluch zugleich ist: Auf der einen Seite ist das Gesamtsys-
tem robust gegen Angriffe, auf der anderen Seite ist eine umfassende
Überwachung der Netzwerkteilnehmer möglich. Im Rahmen der
wertstabilen Kryptowährungen wird ein Klassifikations-Framework
vorgestellt und auf aktuelle Entwicklungen im Gebiet der “Stable-
coins” angewandt. Mit diesem Framework wird somit (1) der aktuelle
Zustand der Stablecoin-Landschaft sortiert und (2) ein Mittel zur Ver-
fügung gestellt, um auch zukünftige Designs einzuordnen und zu
verstehen.

vii

A C K N O W L E D G E M E N T S

This thesis concludes a long research journey with many people,
changes in direction and influences along the way. However, it is a
journey with too many people to name them all, so please do not
feel discouraged if you do not appear in this expression of gratitude –
chances are high I still hold your influence dearly.

First, I would like to express my gratitude to my advisor Björn
Scheuermann, who employed me all these years and has enabled
countless opportunities for personal growth. Furthermore, I want to
thank my two reviewers Roger Wattenhofer and Hannes Hartenstein.

My scientific journey began with my bachelor’s thesis in Kaiser-
slautern with Jens Schmitt and Michael Beck, who sparked my interest
in computer network research. Without their continuous dedication,
patience and support I would not be where I am today. Jens and
Michael, I cannot thank you enough.

During my time in Björn Scheuermann’s group, I’ve had the plea-
sure to meet and work with many inspiring people, the exchange with
whom has improved my skills and work significantly. Among many
others, Florian Tschorsch, who has always been a role model for me
(which he was most likely not aware of), as well as Stefan Dietzel.
Stefan, thank you for your numerous and extensive comments on
my early papers, which has really helped me to structure my written
thoughts and make them more accessible. In that period, I shared
my office with Roman Naumann and Samuel Brack, thank you both
for the numerous discussions and support on work-related problems,
your perspectives have helped me in my research countless times.
Besides work, I also had a great time slacking in 4321 with you.

The majority of papers for this thesis was written at the Weizen-
baum Institute, a remarkable place which has broadened my horizon
dramatically, but with too many people that I hold dear and enlight-
ening connections to name them all. Therefore, I will focus on my
research group: Martin Florian, Ingolf Pernice, Roman Proskalovich,
Sophie Beaucamp, Moritz Becker and Leonhard Balduf.

Martin, this thesis would not have been possible without you. Your
insights, comments, questions and (moral) support were what enabled
me to finish this dissertation, thank you so much! Ingolf, spending
time and working with you has always been a pleasure, stay as humble
and empathetic as you are. Similarly for Roman, thank you both for
the enlightenment in economics and thank you Roman for introducing
me to the wonderful confectionery Zefir. Sophie, while your analytical
skills never cease to impress me, I am mainly fascinated by your
ability to match my cheekiness, which has made working with you

ix

x

very enjoyable. Thank you for insights into the intricacies of the law
and for exploring various places in Berlin with me. Moritz, thank you
for introducing me to the critical and meta perspective of social science
which makes me question everything. Leo, thanks for reintroducing
me to the concept of clean code, after years of academic coding. Last
but not least, I want to thank our assistant Jana Pinheiro for the good
vibes and the immense load of trouble that she shielded away from
us.

During my PhD I have supervised a total of 26 bachelor’s and
master’s theses and had the pleasure to work with many talented
students, most notably Leo Balduf, Ansgar Lößer, Sebastian Rust,
Daniel Teunis and Joel Witzke. Especially Daniel, Leo, and Sebastian
have contributed significantly to the evaluation sections of this thesis,
thank you all!

Last but not least, my friends and family contributed significantly to
the success of this dissertation through their support and encourage-
ment in difficult times, by enduring my stressful phases and simply
by providing safe spaces for me. Glenn Daly, Fabian Kalt, Marei
Kerschl, Marlene Metzger and Kamila de Pasquale, thank you for
the wonderful time in Berlin. Simon Birnbach, Thomas Lottermann,
Lukas Übelacker, Frederik Walk and Sebastian Wolff, thank you for
the endless hours in discord and for friendships that defy vast spatial
distances. I would also like to express my gratitude towards my par-
ents, Doris Fischer-Henningsen and Michael Henningsen, who gave
me the room and possibilities to thrive while inspiring me to follow
in their steps as a researcher. Thank you all for everything, I could not
have wished for better people in my life.

My deepest gratitude deserves my girlfriend, Marie Sofie Jacob.
Marie, you continue to fascinate and inspire me every day. I cannot
thank you enough for the endless support and love, positive energy
and freedom that you provide me.

C O N T E N T S

1 introduction 1

1.1 Motivation & Problem Statement 1

1.2 Outline & Contributions 4

2 preliminaries 7

2.1 A Motivation to Peer-to-Peer-Networking 7

2.2 Kademlia . 10

2.3 Introducing Bitcoin & Ethereum 12

2.4 The Bitcoin Overlay . 25

2.5 Eclipse Attacks . 31

2.6 Blockchain Application Stack Model 33

3 eclipse attack on ethereum 36

3.1 Overview . 36

3.2 Related Work . 38

3.3 Background: the Ethereum Network Stack 40

3.4 Node Discovery and Selection 42

3.5 The False Friends Attack 45

3.6 Analysis of the False Friends Attack 47

3.7 Evaluation . 53

3.8 Countermeasures . 58

3.9 Eclipse Attacks in the Wild 61

3.10 Chapter Summary . 63

4 mapping the interplanetary filesystem 65

4.1 Overview . 65

4.2 Related Work . 68

4.3 The Interplanetary Filesystem 70

4.4 Understanding the Overlay Structure 77

4.5 Measuring the Interplay between G̃, G and G ′ 79

4.6 Crawling the Kademlia DHT 83

4.7 Crawling Results . 86

4.8 Interim Conclusion . 101

4.9 Monitoring Data Requests 102

4.10 Example Monitoring Study 106

4.11 Privacy Risks . 111

4.12 Chapter Summary . 118

5 monetary stabilization in cryptocurrencies 121

5.1 Overview . 121

5.2 Related work . 123

5.3 Analysis Methodology 124

5.4 Stabilization techniques 125

xi

xii Contents

5.5 Stabilization techniques: Discussion 131

5.6 Exchange rate regimes 135

5.7 Monetary regimes . 140

5.8 Decentralization and Trust 142

5.9 Chapter Summary . 143

6 conclusion 146

7 appendix 149

7.1 IPFS . 149

7.2 Value stabilization in cryptocurrencies 159

Bibliography 161

1
I N T R O D U C T I O N

1.1 motivation & problem statement

The advent of Bitcoin [202] and the accompanying hype in “blockchain
technology” has sparked a renewed and significant interest in decen-
tralized systems without a central authority. Since Bitcoin’s inception,
a plethora of alternative cryptocurrencies (so-called altcoins) have seen
the light of day [9, 257], increasing the interest in “blockchain”1 1 With “blockchain”

we refer to open,
permissionless,
systems without
fixed identities, e.g.,
Bitcoin, and not
Byzantine agreement
systems.

to
such degrees that it has reached even government actors [3, 259].

This hype in blockchain is driven by a popular story: the “trust-
lessness”2

2 Other disciplines
have criticized
computer science’s
narrow definition of

“trust” as trust in,
for example, Bitcoin
is merely shifted
towards developers
and exchanges [31].

of Bitcoin and other cryptocurrencies, i.e., the ability to
reach consensus and, as a consequence, conduct payments, among
distrusting actors without a trusted third party, liberates people from
(allegedly) failure-prone intermediaries, such as banks. A common
inference and narrative from the alleged inherent decentralization of
such systems is their robustness against (Denial-of-Service-) attacks
and censorship — even in the presence of powerful adversaries like
state actors.

But are practically deployed applications as decentralized and ro-
bust as they are made out to be? Are these ascriptions appropriate?

In this thesis we tackle these questions by studying specific sys-
tems, which are widely adopted in the real world, from a conceptual
and empirical perspective. Particularly, we argue and showcase that
decentralization does not automatically entail robustness.

Blockchain applications are employed in a variety of different con-
texts, examples include but are not limited to:

• decentral autonomous organizations (DAOs), decentralized sys-
tems for governing social communities [74],

• self-sovereign identities [82],

• decentralized finance (DeFi), partially automated and complex
financial derivatives [268], and

• distributed file-hosting [154].

Since Bitcoin’s inception in 2009 as a decentralized payment system,
blockchain applications have evolved dramatically into highly complex
systems involving multiple stand-alone components, whose composi-
tion is more than the sum of the individual parts. In this thesis, we
refrain from studying specific and entire applications, as the degree
of complexity is prohibitive and, additionally, any such assessment
would be outdated quickly. Instead, we disentangle this complexity

1

2 introduction

Applications

Infrastructure
Ethereum

Storage
IPFS

Stable Currency
Stablecoins

executed on

exec. on

access dataincen.

Figure 1: Blockchain application stack as well as the respective systems
that we will investigate in the course of this thesis.

by focusing on individual components from different layers of the
“blockchain application stack” model (introduced in detail in Sec-
tion 2.6); the idea being that the robustness and decentralization of a
blockchain application as a whole are only as good as application’s
weakest component.

We identified three important building blocks of blockchain appli-
cations33 Oftentimes also

referred to as
decentralized

applications (dApps).

, which are gathered in a blockchain application stack model4

4 Loosely inspired by
non-scientific ideas

of a decentralized
application stack,

e.g., [95],

depicted in Figure 1 — all of which will be covered throughout this
thesis. The infrastructure block is inspired by the insight that Bitcoin,
Ethereum and the like are not only used for decentralized payments,
but are rather seen as an infrastructural basis for building more com-
plex applications on top of them. These dApps rely on properties
and guarantees provided by the underlying blockchain system in
terms of consensus and lack of intermediaries in order to build novel,
distributed and decentralized applications. Having a blockchain in-
frastructure in place is not sufficient for many applications, however,
as storing larger quantities of data directly “on-chain” is prohibitively
expensive. Therefore, dApps use other peer-to-peer (P2P) systems
as a storage layer for storing their application data, which are then
cryptographically linked to the decentralized execution on some kind
of infrastructure. Lastly, due to the inherent lack of a central entity for
rule-enforcement in decentralized systems, participants are instead
motivated to fulfill relevant tasks for the system through (monetary)
incentives. One such example is the mining of new blocks in per-
missionless blockchains in, e.g., Bitcoin, where participation in the
process yields monetary rewards in the form of bitcoins (cf. Sec-
tion 2.3). However, the value of these coins fluctuates dramatically,
potentially leading to misaligned incentives. Therefore, we argue
that monetary stabilization is a crucial building block for blockchain
applications for maintaining stable incentives.

In this dissertation, we devote one chapter to each layer, commenc-
ing with the infrastructure layer in Chapter 3, the storage layer in

1.1 motivation & problem statement 3

Chapter 4 and closing with the layer of monetary stabilization in
Chapter 5. From each layer, we will study one representative system
which serves as an illustrative example of layer-inherent properties.
The representative example systems from each layer that we will
study are: Ethereum at the infrastructural layer, the Interplanetary
Filesystem (IPFS) as a popular solution for distributed storage and
stablecoins, as an essential building block for monetary stabilization.
To study their robustness we will mostly adopt a network layer per-
spective (in correspondence to the OSI model), i.e., focus on gaining a
thorough understanding of the overlay to assess possible attack vectors
on the network layer as well as their implications for the system as a
whole. Therefore, the research focus lies mostly on the P2P networks
and overlays on which blockchain- and other decentralized systems
are based upon. Towards the end of this thesis, when studying mone-
tary stabilization, we will instead adopt a combination of economic
and technical perspectives. Specifically, we will investigate economic
robustness, i.e., studying the implications of adverse market condi-
tions and rational economic behavior on the stability of stablecoin
systems in relation to their technical implementations.

This thesis is primarily based on previously published collaborative
work [1, 6–9]. Despite the focus on gaining an empirical understand-
ing, the aim of these works (and therefore this thesis) is to transition
beyond empirical snapshots and instead gain insights into system-
inherent properties. Hence, the goal is not to give a cutting-edge,
up-to-date description of Ethereum, IPFS and stablecoins, especially
since the blockchain ecosystem is evolving at a rapid rate, but rather
gain a deeper understanding.

The attentive reader might wonder whether the example systems
on each layer, Ethereum, IPFS and stablecoins, are reasonable repre-
sentatives. We would argue so, as prominent dApps utilize at least
one representative system:

• Aragon [74], one of the largest DAO platforms, is mainly based
on Ethereum and IPFS,

• Microsoft ION [82], a large-scale platform for decentralized,
self-sovereign identities, builds on top of Bitcoin and IPFS,

• Filecoin [154] and BitTorrentToken [39] combine a cryptocurrency
to incentivize distributed file hosting on IPFS and software forks
thereof, and

• decentralized finance (DeFi) [126, 222] uses stablecoins to build
complex financial derivatives.

4 introduction

1.2 outline & contributions

Commencing on the infrastructure layer, Ethereum is the second
largest cryptocurrency after Bitcoin (cf. Section 2.3) by market cap-
italization and the first to enable the creation of smart contracts —
small programs that are executed redundantly by every node in the
network. Due to these smart contracts, Ethereum is popular among
application developers and acts as the infrastructural basis for a va-
riety of projects [74, 126, 270]. In Chapter 3 we show that Ethereum
is vulnerable to eclipse attacks, i.e., attacks on the network layer that
enable Denial-of-Service (DoS), double spending of funds, advantages
in the mining process and endanger the availability of decentralized
applications. Our attack targets the Kademlia-based peer discovery of
Ethereum — an ill-suited design choice as Kademlia is not optimized
for building overlays that can withstand deliberate attacks (cf. Sec-
tions 2.2 and 2.4.2). Instead of overwriting the whole Kademlia-based
discovery table with a multitude of Sybil nodes as in a previous attack
by Marcus et al. [168], we specifically target the interplay between
peer discovery and connection management. In particular, we exploit
the public structure of Ethereum’s peer discovery logic by inserting a
small number of carefully crafted Sybil identities which are favored
over other benign nodes during connection establishment. Therefore,
despite the subnet restrictions implemented in Go Ethereum (Geth)
v1.8.0 in response to the preceding attack by Marcus et al. [168], we
only need two IP addresses from distinct /24 subnets for a successful
attack.

During the process of responsible disclosure with the Ethereum
foundation55 Yielding rank 13

(at the time of
writing) within the

top 20 of Ethereum’s
bug bounty

leaderboard (bounty-
.ethereum.org/).

and the resulting personal exchange with their develop-
ers, we designed hot fixes to address our attack (implemented in Geth
v1.9.0 and subsequent versions). Although mitigating the immediate
threat, we argue that these countermeasures are not enough: Ethe-
reum should rather abstain from Kademlia altogether and instead
move towards a more suitable peer discovery logic (e.g., Bitcoin’s
Addrman, cf. Section 2.4). Thus, given our attack, the narrative of
decentralization entailing robustness is challenged.

Moving on to the storage layer, several systems are emerging concur-
rently, all of them seeking to establish a storage layer for decentralized
applications, such that the data does not have to be stored directly
“on” the blockchain, which would be costly. Examples of storage so-
lutions include IPFS [34, 6], BitTorrentFS [39] and Swarm [106] — for
a qualitative comparison, the reader is referred to [70]. In this thesis,
we focus on Interplanetary Filesystem (IPFS) as the representative of
the storage layer (cf. Chapter 4), as it is the most mature and furthest-
developed distributed storage system. The question arises whether
IPFS is actually suited to fulfill this role in terms of robustness and

https://bounty.ethereum.org/
https://bounty.ethereum.org/

1.2 outline & contributions 5

decentralization. Especially censorship and DoS are viable threats that
a distributed storage solution has to cope with.

To this end, we analyzed IPFS’ inner workings and monitored the
IPFS network from several perspectives. IPFS resembles classical
P2P networks, particularly filesharing systems, in that content and
peers are managed through a combination of a Kademlia-inspired
distributed hash table (DHT) and flooding to one-hop neighbors. This
peculiar combination safeguards IPFS from suffering the same fate as
Ethereum in Chapter 3 through a similar attack. For our monitoring
study, we exploit both the Kademlia-based DHT lookups as well as
the one-hop flooding of content requests:

• by crawling6 6 The respective
crawler is
maintained at
github.com/wiberlin/-
ipfs-crawler.

the Kademlia-based DHT to obtain a (partial) view
of the overlay graph,

• by running monitoring nodes which were connected to a large
share of the network, and

• by sniffing the one-hop flooding traffic of content requests, yield-
ing a trace of who requested what data when.

Equipped with these perspectives we give a thorough view of IPFS’
overlay and content-distribution network. We conclude that the net-
work is still relatively decentralized in that most traffic is generated
by normal users and not infrastructure nodes. Furthermore, through
sacrificing performance and user privacy, IPFS achieves resilience
against Sybil and network partitioning attacks. However, with a sim-
ilar setup to ours, an adversary can easily extract which nodes host
specific content, which can be leveraged for DoS attacks on blockchain
applications storing their data on IPFS.

Last but not least, we shift the focus to monetary stabilization in
cryptocurrencies, implemented in the form of so-called “stablecoins”
in Chapter 5. Stablecoins promise the best of two worlds: a permis-
sionless cryptocurrency like Bitcoin, combined with the price stability
of fiat currencies (e.g., USD, Euro) [9]. This combination makes them
an interesting target to research, as their goal lies in the realm of
economics, while their implementation is purely technical. Asking
about the robustness and resilience of these coins is therefore not
only bound to technical considerations as in the two preceding chap-
ters, but also related to stability under adverse market conditions
and rational agents. For this endeavor we present a comprehensive
taxonomy on monetary stabilization in cryptocurrencies, taking ac-
count insights from monetary theory of traditional fiat currencies from
existing economic literature as well as specificities of cryptocurrencies.
The application of this taxonomy yields a classification and deep un-
derstanding of the stablecoin landscape, allowing us to reason about
fundamental properties and limitations instead of individual projects.
Equipped with our framework, we argue that many stablecoins are

https://github.com/wiberlin/ipfs-crawler
https://github.com/wiberlin/ipfs-crawler

6 introduction

either use problematic combinations of stabilization techniques and
stability goals which could render them vulnerable against economic
attacks, or not fully permissionless, due to the involvement of trusted
parties. Since our publication, significant work with a similar hybrid
perspective has been conducted on the general stability of decentral-
ized finance (DeFi) [126, 145, 146, 222, 281].

In summary, we provide strong empirical perspectives on real-world
systems which we leverage to gain in-depth insights on inherent sys-
temic properties and limitations on the portrayed systems itself. We
argue that decentralization does not automatically entail robustness.
On the contrary, decentralized systems have to be carefully designed
to withstand a variety of potential attack vectors while maintaining
their decentralization. Furthermore, we bridge the gap between sci-
entific insights and practice through collaboration with the respective
developers; reflected, e.g., in the changes in Go Ethereum v1.9.0 and
IPFS. Before diving into the technical details of the eclipse attack
on Ethereum in Chapter 3, we first give an introduction to the P2P
paradigm, permissionless blockchains and the role of P2P overlay
structure in these blockchain systems.

2
P R E L I M I N A R I E S

2.1 a motivation to peer-to-peer-networking

Resembling “blockchain”, which is en vogue at the time of writing,
peer-to-peer (P2P) networks have been a subject of interest as well in
the 1990s and 2000s — attracting significant research and development
effort, resulting in an abundance of research papers, implementations
and products. Due to the immensity of material, any introduction to
P2P networking is necessarily incomplete. Therefore, we will focus
on a concise overview of ideas and developments, especially changes
in narratives, that are important for this particular thesis. For further
introduction, the reader is kindly referred to the excellent books [44,
165, 247] and surveys [14, 260, 262] on the topic.

First, what are P2P networks? In this thesis we adopt the following
definition:

Definition 1. The P2P paradigm is the antagonist to classical client-server
architectures in that there is no clear distinction between nodes serving
requests of client nodes but that each node can act as client and server
simultaneously.

Other definitions [165] follow the literate meaning of “peer”, fur-
thermore requiring an egalitarian system, i.e., in which peers are
equally privileged and equipped with equal powers. However, this
addition excludes hybrid architectures (e.g., Gnutella [248, 251, 274],
early Skype [28, 127]) which differ from the traditional client-server
model and can thus be considered P2P systems as well. Hence, we
argue that egalitarian systems such as the ones covered in this thesis
(e.g., Bitcoin, Ethereum, IPFS) are merely a sub-form of the general
P2P paradigm.

In most P2P networks, participants establish application layer con-
nections over the Internet, forming a so-called overlay. Overlay prox-
imity is, therefore, logical and does not necessarily correlate with
geographic proximity, i.e., nodes can be logical neighbors while resid-
ing on different continents. The shape and properties of the resulting
overlay graph have severe impacts on the robustness against failures
and attacks as well as the performance of the overall network. The use
case dictates the requirements, e.g., low latency, high resilience against
failures, etc., and an overlay must be designed accordingly. Hence,
the design of a P2P system (and it’s resulting overlay) necessarily in-
volves trade-offs and, as we will see in Chapter 3, choosing an overlay
unsuitable for the specific use case can even impose security risks.
Overlays can be roughly divided into three non-exclusive categories:

7

8 preliminaries

unstructured, hybrid with central servers and structured. [44, 247].
As a rule of thumb: that the more structure there is, the better the
performance (e.g., latency of content retrieval) of the network at the
cost of attack resilience.

Initially, the main narrative around the benefits of P2P networks
was performance77 Since there are no

systematic studies,
there can only be

hints to support the
claim, e.g., searching

the ACM digital
library for

“peer-to-peer” AND
“scalability in

abstract” yields 2560
results, whereas

“censorship” only
yields 83.

(e.g., [152] and [247, p. 9]): with growing interest
in digital technologies and more widespread adoption of the Internet,
centralized servers were not able to scale, especially when transferring
large files, with bandwidth being a major bottleneck. Kumar and
Ross [152] elegantly modeled P2P file distribution and showed that
when peers provide their bandwidth to distribute data themselves,
the system can scale to an unlimited number of users.

The distribution of large data items to a set of recipients was subse-
quently the subject of optimization, leading to a variety of structured
overlays, especially in the form of distributed hash tables (DHTs). The
key idea behind these systems is a typical divide & conquer approach:
assign keys to data items in the form of hashes and partition the key
space, such that each peer is responsible for only a subset of the key
space (and corresponding data items). Among the many proposals of
such DHTs, Kademlia [170] and variants thereof are the most frequently
used in practice, e.g., in BitTorrent [217], eMule [244], IPFS [6], Ethere-
um [8], I2P [278]. There are several conceivable reasons for Kademlia’s
popularity in practice, as will be elaborated on in Section 2.2. In sum-
mary, it displays a logarithmic (in the total number of peers) lookup
performance with low overhead in terms of connection management
while being easy to implement and robust against churn. While other
approaches may be superior in theory, Kademlia seems to achieve a
good balance between implementation difficulty and performance in
the real world.

The narratives of better performance and scalability of P2P sys-
tems in comparison to client-server architectures were challenged by
advances in other areas, as highlighted in Mager et al. [164] by the
example of the Wuala file distribution service. Wuala, an online stor-
age service similar to Dropbox [87], deliberately transitioned from a
hybrid P2P architecture in which peers distributed data among them-
selves together with a central server towards a classic client-server
model. In an interview Luzius Meisser [164], the co-founder of Wuala,
states several reasons for this decision: (1) a price-drop of about one
order of magnitude in bandwidth costs, (2) marginal contribution of
peers to data distribution, (3) complexity of hybrid architectures in
comparison to a central-server one and (4) prevalence of mobile and
battery constrained devices.

The significant lower bandwidth costs diminished the economic
incentive which, apparently, was the main driving factor to endure
the additional complexity of a hybrid architecture. To fully reap
the benefits of peer-assisted data distribution and storage, one has

2.1 a motivation to peer-to-peer-networking 9

to maintain a healthy overlay in the face of churn and unreliable
peers, which involves additional communication overhead [41, 227].
In the presence of an ever-increasing number of battery constrained
devices [164], additional communication (which equals additional
energy consumption) is highly undesirable.

Naturally, Wuala is only one example application, but we argue that
the four arguments stated for a switch towards a centralized architec-
ture instead of a P2P one are applicable to the P2P paradigm in general,
when performance and scalability are the main selling points. Inciden-
tally, Wuala’s transition came at a time when interest in P2P networks
was declining in general8 8 The

discontinuation of
the IEEE conference
on Peer-to-Peer
Computing or the
USENIX workshop
on Peer-to-Peer
Systems serve as
additional hints.

, as can be seen in Figure 2, which depicts the
Google n-gram “popularity” of the term P2P over time. The Google
n-gram dataset consists of a large collection of books; hence, the y-axis
of Figure 2 depicts the relative frequency of the terms “Peer-to-Peer
network” and “p2p network”(case insensitive). It can be seen that the
relative frequency of P2P reached a peak around 2005 with a steady
decline until 2015, at which point it rises again—potentially due to the
increasing interest in Bitcoin and its overlay which commenced at that
time [131]. However, the declining interest in the topic does not imply

0e+00

2e-09

4e-09

6e-09

1980 1985 1990 1995 2000 2005 2010 2015

Year

Fr
eq

ue
nc

y

n-gram p2p network peer-to-peer network

Figure 2: The frequency of P2P n-grams over time as a proxy for
interest in the topic (obtained using Google’s n-gram search).

that the P2P paradigm in general is not useful. In contrast, some
ideas of P2P networks were incorporated in other technologies (e.g.,
[71] and [247, p. 13f.]), whereas other systems with different design
goals than performance/scalability prevailed. The TOR network [254,
256], Bitcoin [202] and related cryptocurrencies [256], BitTorrent [217],
IPFS [34, 6] as well as Freenet [229] are united by shared narratives:
Instead of performance and scalability, these P2P systems focus on
resilience against attacks (and/or law enforcement in general) and

10 preliminaries

censorship-resistance due to an inherent lack of central authority. This
change in perspective is also reflected in the overlay structure, as can
be illustrated by the projects that are covered in this thesis: Bitcoin (cf.
Section 2.4) uses an unstructured overlay with flooding — robust but
not efficient. Ethereum (cf. Chapter 3) combines flooding with Kadem-
lia, a non-optimal combination which renders Ethereum vulnerable
to eclipse attacks, as will be demonstrated in the corresponding sec-
tion. IPFS combines Kademlia-based lookups with one-hop flooding
(e.g., flooding to all direct neighbors) to retrieve content, making it
robust against Sybil and related attacks (cf. Section 2.4.1) but delib-
erately sacrificing performance and user privacy for this additional
robustness.

In the following we dig deeper into Kademlia, a DHT which un-
derlies Ethereum as well as IPFS, before introducing Bitcoin and
Ethereum.

2.2 kademlia

Both Ethereum and IPFS implement their own variants and flavors of
Kademlia which differ from the presented textbook version in some
aspects. In the respective chapters (Chapter 3 and Chapter 4) we will
highlight the implications of these differences when diving deeper
into the matter.

0

0

0

0 1

1

0

1

1

0 1

1

0

1

0 1

1

0

0 1

1

0 1

Figure 3: Kademlia structures its overlay according to the xor distance
between nodes. When pictured as a binary tree, the marked
buckets arise for the black node.

Kademlia is a UDP-based, P2P DHT that is used to locate decentrally
stored data efficiently [170]. Similar to other DHTs, Kademlia imposes
a structure on the participating peers, as well as the data they store,
and provides a lookup mechanism to iteratively approach a target ID
in a logarithmic number of steps. To that end, each node is uniquely
identified by its randomly generated node ID — in Ethereum and
IPFS the 256-bit9

9 Node IDs and keys
in the original

Kademlia proposal
are 160-bit long. SHA-2 hash of a public key [34, 271]. Data items

share the same representation: a data item’s key is the 256-bit hash of
the data itself.

2.2 kademlia 11

Node and data IDs are effectively treated as the leaves of a binary
tree, as depicted in Figure 3. The leftmost leaf of the tree corresponds
to the node with ID 0000 . . ., or 0

b, b = 256 in regular language
representation. Similarly, the rightmost leaf holds the node ID 1111 . . .,
1
b. Each nodes structures the ID space by partitioning the binary

tree into subtrees in dependence on the distance to its own node ID.
Consider node N with ID(N) = 0011 (b = 4 in this case), as shown
in Figure 3, as an illustrative example. The first subtree contains
all nodes whose ID differs from ID(N) = 0011 in the first bit, i.e.,
every ID starting with 1: {1000, 1001, . . . 1111}. Similarly, the second
subtree contains all nodes whose ID differs in the second bit, yielding
{0100, 0101, 0110, 0111}. Therefore, nodes in the i-th subtree differ
in the i-th bit, thus, the last subtree only contains ID(N) itself. Put
differently, the first subtree is “responsible” for half of the ID space,
the second for 1

4
, etc.

The partition into subtrees depends on the length of the common
prefix between two node IDs, or, equivalently, on the number of
leading zeros of their XOR. The equivalent representation in terms of
XOR is important with regards to Kademlia’s definition of (logical)
closeness: the closeness of two IDs x, y is defined as their bitwise
XOR, taken as an integer value, i.e., d(x, y) := x⊕ y. The xor metric
is symmetric, i.e., ∀x, y : d(x, y) = d(y, x), yielding a simpler, yet still
effective, routing structure than, for example, in Chord [170]. Due to
this symmetry, nodes can elegantly update their routing tables while
being traversed during another node’s lookup. Given the xor distance
metric, subtree i contains those node IDs whose distance to ID(N) is
in [2i, 2

i+1). Hence, the smaller the subtree number, the closer the
corresponding node IDs are to N in terms of d: the first subtrees
contain node IDs that are logically far away, whereas later subtrees’s
IDs are logically close.

In practice, nodes do not store entire subtrees (as the first subtree
would contain about half of the network) but rather subsets of these
trees of size k. These subsets are called k-buckets (or simply bucket) and
store up to k neighbors10 10 In IPFS k = 20,

in Ethereum k = 16.
. Due to the size limitations, nodes “know”

all IDs in their (logical) proximity while having some shortcuts to
(logical) distant nodes. Furthermore, when bootstrapping, a node N

performs a lookup for its own ID ID(N), to which other nodes return
their closest neighbors to ID(N). Due to the symmetry of d(., .), these
are also the closest neighbors to N, effectively populating the higher-
index buckets which hold the nodes in close logical proximity to N.
Bucket entries are implicitly sorted through a “least-recently-seen”
policy, implicitly implementing a bias towards long-running nodes.

Intuitively, this explains the logarithmic number of steps to lookup
data: in Kademlia, data is stored at nodes whose node ID is “close” to
the data’s key. During a lookup, nodes iteratively11

11 In the original
Kademlia proposal
the lookup is handled
recursively.query their closest

neighbors to a target ID, effectively traversing at least one subtree in

12 preliminaries

each lookup step until the desired content is found. In summary, in a
network with N peers, Kademlia achieves a lookup performance of
O(logb(N)) while maintaining O(b · logb(N)) routing table entries at
each node [247].

Lookups in Kademlia are effective when nodes collaborate and
follow the protocol and experience crash failures at most. However,
things change in light of deliberate adversarial behavior: similar to
other DHTs, Kademlia is vulnerable to a variety of attacks due to
the deterministic lookup [29, 115]. Most importantly, Kademlia is
susceptible to Sybil (and related) attacks, which we will cover in
Section 2.4.1 and Section 2.5.

2.3 introducing bitcoin & ethereum

Bitcoin, proposed by Satoshi Nakamoto1 in 2008 [202] on the Cryp-
tography mailing list [203] is the first fully decentralized digital cash
system, also called a “cryptocurrency”. In that, Bitcoin ends the 25-
year long search for a fully decentralized digital cash system without
trusted third parties, by cleverly combining existing ideas and tech-
niques such as linked hash/signature chains [129, 169], Hashcash
Proof-of-Work [20], b-money [65], Merkle Trees [177] and Byzantine
Quorum systems [155, 166]. This combination yields a linked hash
chain of so-called blocks, where each block’s hash depends on the
preceding block while additionally being a Proof-of-Work (PoW). Due
to the interlinkage of blocks the resulting data structure is commonly
referred to as blockchain1212 Originally “block

chain”, the term has
since evolved into a

separate noun.

. Since its advent, Bitcoin has started a mas-
sive hype around the theme of “blockchain” which has since become
a nebulous term covering various concepts, ranging from distributed
databases to actual cryptocurrencies [272]. Furthermore, said hype has
lead to a plethora of alternative cryptocurrency designs, a vast body of
scientific research [19, 26, 43, 125, 257], government plans on building
up “blockchain infrastructures” [259] and a variety of startups in the
financial and banking sector [135].

Ironically, the inception of Bitcoin is closely related to the financial
crisis in 2007/2008 and is rooted in the libertarian cypherpunk and
crypto-anarchistic movements [252] — seeking to replace the existing
banking system rather than fostering it [142].

The entanglement with the financial crisis is even written in Bitcoin’s
so-called genesis block, i.e., the first block of the blockchain which was
created by Satoshi Nakamoto themselves13

13 General term,
since the gender and

number of persons
behind the

pseudonym are
unclear.

. Not only does this first
block represent the transition of Bitcoin from a mere proposal into an
actual running system, it is also hard-coded into the Bitcoin source

1 The name is a pseudonym and it remains unknown who Satoshi Nakamoto is. While
it is conjectured the pseudonym stands for an entire group, several individual suspects
have been discussed. Despite the lack of definite proof on Satoshi’s identity/identities,
there exists one good heuristic on the matter, namely, that anyone claiming to be
Satoshi Nakamoto is not the real person.

2.3 introducing bitcoin & ethereum 13

code to bootstrap new peers joining the network. The genesis block
contains the message “The Times 03/Jan/2009 Chancellor on brink
of second bailout for banks”, referring to a headline in “The London
Times” on the U.K. considering a second bailout for struggling banks
in the midst of the financial crisis in 2008/2009.

In contrast to the traditional banking system, in the original Bitcoin
proposal there is no place for trusted third parties such as banks and
nation states [252]. The combination of these crypto-anarchistic and
libertarian roots and the time of financial instability may, on the one
hand, explain Bitcoin’s initial appeal to a variety of people and the
resulting hype around “blockchain”. On the other hand, another rea-
son for Bitcoin’s success could lie in the fact that Bitcoin and related
systems are academically pleasant to study: Firstly, Bitcoin’s individ-
ual parts are surprisingly simple to grasp; it is their combination and
interplay that constitutes a complex, decentralized P2P digital cash
system. Secondly, Bitcoin solves a computer science problem that has
remained open for 25 years, opening up plenty of new ideas to study,
use cases to explore and systems to design.

One of these new systems is Ethereum [271], the meanwhile second
largest cryptocurrency after Bitcoin by market capitalization. Ethe-
reum enhances Bitcoin’s design by enabling users to not only send
payments but conditioning payments on arbitrarily complex logics.
Whereas Bitcoin’s main goal is a payment system, Ethereum leverages
the same principles to build a decentralized, heavily redundant com-
puting infrastructure, accompanied by a payment system. Ethereum
is the subject of study of Chapter 3 and partially of Chapter 5 in this
thesis. Therefore, in the following, we give a technical introduction to
Bitcoin and Ethereum, the two largest cryptocurrencies at the time of
writing. Although Bitcoin is not the explicit subject of study in this
thesis, understanding the necessary basics of Ethereum is significantly
easier when explained from the vantage point of Bitcoin. Hence, the
technical introduction starts with a brief description of Bitcoin (cf.
Section 2.3.1) and transitions into Ethereum later on (cf. Section 2.3.2).
Note that this introduction is necessarily incomplete. For more de-
tails, the reader is advised to consult the Bitcoin and Ethereum white
papers [202, 271]. Furthermore, Tschorsch and Scheuermann [257] con-
tains an exhaustive description of Bitcoin and paints a bigger picture
of Bitcoin’s place in academic literature; as does Wattenhofer [265] for
Byzantine Agreement Systems.

2.3.1 Bitcoin Primer

2.3.1.1 Transactions

In a nutshell, Bitcoin is a technology that enables the possibility to
achieve a consensus among non-trusting participants in an open sys-

14 preliminaries

tem without previously established identities, also called a permis-
sionless system. Permissionless in the sense that anyone can join or
depart the system at any time and there exists no instance that assigns
identities to entities. This lies in stark contrast to traditional Byzantine
consensus and quorum approaches which require a-priori knowledge
of participating entities [265, 272]. Intuitively, Byzantine consensus
algorithms establish a consensus even in the presence of Byzantine
adversaries, i.e., arbitrary node faults and attacks, through robust
voting; thus in an permissionless environment these systems would
be highly vulnerable to Sybil attacks (cf. Section 2.4.1).

Bitcoin solves the consensus problem in permissionless settings
by lifting the consistency-assumption of classical Byzantine quorum
systems: consensus in Bitcoin is only eventually consistent and there
is no computable function to determine the point in time when it
will be consistent [265]. In other words, while traditional Byzantine
fault tolerance (BFT) protocols ensure one consistent view on the
shared data of all network participants whenever an update to the
shared is issued, Bitcoin only gives the guarantee of the existence of
a point in time where all views will be consistent. Hence, in theory,
whenever funds are moved through Bitcoin, the participating parties
have no mechanism to compute whether their exchange is part of the
consensus and can be considered final. In reality, Bitcoin overcomes
this theoretical limitation through clever heuristics which yield points
in time when participants can be sufficiently sure that their exchange
of funds is part of the consensus.

The consensus in Bitcoin is established over a ledger containing
coin ownership information, i.e., the amount of coins each “account”
holds. This ledger is distributed and replicated at every node through
a P2P network, hence, without updates to the ledger, each node has
the same state14

14 In that, Bitcoin is
more a heavily
replicated state
machine than a

database, a
commonly used term

to explain the
technically involved

system to
non-technicians.

.

Consider the example in Figure 4 of Alice and Bob — an example
which will re-occur throughout this section. Alice and Bob both own
certain amounts of Bitcoin, n in the case of Alice and m in the case
of Bob. It has to be noted that coin ownership in Bitcoin differs
from ownership in traditional banking in that coins are not stored in
accounts associated to identities but rather “in” asymmetric key pairs,
which are called addresses. Alice owns a set of coins, identified by a
hashed public key, if she can prove that she owns the corresponding
private key. Therefore, in Bitcoin’s design and narrative, ownership is
defined solely through knowledge of secret keys — everybody with
the private key to an address is, for the Bitcoin system, a legitimate
owner of the funds in that address15

15 This notion of
ownership is barely

relatable to the legal
definition of

everyday life. In this,
this one vivid

example of “code is
law” [157, p. 4ff.].

. Another difference is that coins
are not enumerated as in the real world or in Chaum et al. [52, 53].

For the sake of explanation, we assume that Alice has exactly 5 coins
in one address. To send 5 coins to Bob she creates a so-called transaction
T with her address as input and Bob’s address as output; though more

2.3 introducing bitcoin & ethereum 15

A1: 5.0 BTC

A2: 2.3 BTC

A3: 0.1 BTC

B1: 3.0 BTC

B2: 0.0 BTC

Transaction T

By: Alice
Unlock A1

Lock in B2

Figure 4: A transaction of 5 BTC from Alice to Bob. Icon attribution:
[133, 134].

inputs and outputs are possible in general. The transaction T contains
a signature of the transaction data using Alice’s private key (thereby
also ensuring the transaction’s integrity). This unlocks all five Bitcoins
in input A1 which must be spent completely by assigning them to
new outputs (in this case B2), as all unspent coins are collected as fees
by miners. Subsequently, she broadcasts this transaction to all her
neighboring peers which spread the information to all other nodes in
the network through flooding. All receiving peers check the validity of
the transaction, e.g., if the signature matches the public key, so that it
is only forwarded if it passes all validation checks. Eventually, Alice’s
transaction has been spread throughout the overlay network to every
peer and has entered each peers memory pool (mempool): the set of all
transactions which have been recently observed but are not yet part of
the consensus.

2.3.1.2 Blocks & Consensus

The consensus is formed through a process called mining. To that end,
a subset of peers in the network participates in the mining process
(these peers are also referred to as miners) in that they take a set of
transactions and gather them into so-called blocks in exchange for a
monetary reward in the form of newly created Bitcoins and transaction
fees. Blocks contain meta data and a list of transactions. In general,
transactions are only considered valid if they are included in a block
and said block is, subsequently, appended to the current blockchain.
But a block cannot simply be created; instead a computationally
intense Proof-of-Work has to be solved in order to create a valid
block. In its design, Bitcoin intends to resemble gold in the real world,
solving the PoW, which creates new Bitcoins in the process, parallels
the mining for gold — hence the name.

Intuitively, blocks fulfill two roles:

1. establishing a total order among the transactions, and

16 preliminaries

2. restricting “write-access” to the shared ledger, or, equivalently,
restricting the rate of state transitions of the Bitcoin system as a
whole.

The total ordering is used to avoid inconsistencies in the state of the
shared ledger. Without a total ordering of transactions different peers
could potentially end up with different ledgers — inconsistencies
which would render Bitcoin inoperable. Regarding the second role,
without limits on block-creation, Sybil attacks would be possible (cf.
Section 2.4.1) and data races between simultaneously-issued blocks
would be common1616 Even with a PoW

data races still occur
in Bitcoin, but a lot

less frequent (cf.
Section 2.3.1.4).

. Requiring the solution to a PoW with every
block creation limits the rate at which blocks are found and therefore
restricts the rate at which the shared ledger is advanced through
transactions.

Figure 5 depicts the structure of a block. A block consists of a block
header (light gray) containing meta information and a block body
(white) containing the transactions. The block header comprises of

• a SHA-256 hash over the entirety of the block header,

• the hash of the previous block,

• a nonce1717 Number used
once.

(for the mining process),

• the current time (with some margin for error), and

• the root hash of the Merkle-tree in the block body, in which the
transactions are stored as leaves; thus yielding a total ordering
through the hash tree structure.

Finding a block involves altering the nonce and time fields of the
block header, such that the resulting SHA-256 hash of the block starts
with a pre-defined number of zeros. Due a hash functions’ collision
and pre-image-resistant nature the PoW is hard to compute but easy
to verify. Therefore, mining involves brute-forcing SHA-256 hashes
until a suitable combination of nonce and time is found whose re-
sulting block hash exhibits enough leading zeros. Verification is as
simple as computing the hash of the block header (in which a block’s
transactions are included through the Merkle-root of the transaction
tree) and checking, if the resulting hash of the block header starts with
the pre-defined number of zeros. The effect of each block pointing
to one predecessor can be seen in Figure 5: it yields an append-only
structure of chained blocks1818 Similar to the

chained commit
structure in the
version control

system Git.

, thus the name blockchain. Due to the
structure of a hashed list, data inside the blockchain is immutable,
since block Bi’s hash depends on the block hash of Bi−1 and any
change of information in block would result in new block hashes in
all succeeding blocks (and therefore invalid PoWs). The immutability
presents legal challenges, since data cannot be erased globally [2];
though one can simply delete potentially illegal data locally without
diminished security guarantees [4].

2.3 introducing bitcoin & ethereum 17

Each block, through its transactions, represents a change to the
global ledger in that the coin balances of a subset of addresses are
changed. Therefore, instead of storing a global ledger state of which
address owns which amount of coins at time t with a blockchain of
length N, this global state St is implicitly represented through the
chain of blocks itself. To obtain St, one has to traverse the chain of
blocks from the genesis block (=state S0) and successively apply every
transaction of each block Bi, f.a. i = 0, . . . , N:

S0

B0→ S1

B1→ . . .
BN→ St (1)

The term “state” already hints at the fact that Bitcoin (and related sys-
tems) can be equivalently understood as a massively replicated state
transition system. We will go into the details on this interpretation in
Section 2.3.2.1 when transitioning from Bitcoin to the more general
system model of Ethereum.

BlockHash

PrevBlockHash

Nonce Time

MerkleRoot

Tx Tx Tx . . .

BlockHash

PrevBlockHash

Nonce Time

MerkleRoot

Tx Tx Tx . . .

BlockHash

PrevBlockHash

Nonce Time

MerkleRoot

Tx Tx Tx . . .

Figure 5: Blockchain and block structure (inspired by Fig. 1 in [257]).

2.3.1.3 Analysis of the Mining Process

Returning back to Alice and Bob, after broadcasting her transaction T

in which Alice sends 5 coins to one of Bob’s addresses, the transaction
is eventually included by a miner in a block B. In fact, T is likely
to be overheard by several miners, which include T into several pre-
blocks B1, . . . , Bn; that is blocks without a valid PoW yet and in direct
succession to tip of the blockchain, i.e., the last-known valid block,
say, Bv. The miners are simultaneously competing to find suitable
nonce and time fields such that the hash of their respective block
Bi starts with the required number of leading zeros. As soon as a
miner finds a PoW, it broadcasts the block Bi to all other peers in the
network, which, after verifying the PoW, append the block to their
local blockchains (i.e., Bv), updating the ledger. Since B1, . . . Bn point
to the same predecessor block, the other miners stop their search and
start anew with Bi as the new tip of the blockchain, since only the first
miner to find a successor block to Bv receives a monetary reward for
finding the block.

Alice’s transaction T is now, in block Bi, part of the blockchain
and started to be considered part of the consensus, neglecting the
eventual consistency through potential blockchain-reorganizations,

18 preliminaries

which are covered in Section 2.3.1.4. Assuming Bi (and therefore T)
are considered sufficiently final (i.e., Bi is not going to be changed with
high probability), this enables Bob to spend his 5 newly received coins
by repeating the same process: (1) unlock the address by providing a
valid signature, (2) broadcast the transaction T ′ to the network and (3)
wait for T ′ to be included in some block B ′ and to eventually fulfill a
heuristic for block finality.

How long do Alice and Bob have to wait until their respective
transactions are mined into a block? In other words: how long does it
take to find a suitable PoW for a block?

The PoW can be seen as a stochastic process1919 An approximation,
of course. In practice,

the time until a
transaction is mined

into a block also
depends on the fees
paid to the miners

(higher fees→
quicker inclusion

into a block) and the
number of

transactions in the
mempool.

, enabling insights in,
e.g., the expected number of operations (and therefore the expected
waiting time) to find a solution. Hash functions are approximations of
random oracles [32] and strive to achieve a roughly uniform distribu-
tion of hash values. That is, each bit of the output hash h⃗ = (h1, . . . , hn)
has equal probability of 1

2
of being 0 or 1; independently of the other

bits. Assume the PoW is to find a hash h⃗ with d leading zeros, the
probability to find such a hash by performing one hash operation is

P[h1 = 0 ∧ h2 = 0 . . .∧ hd = 0] (2)
independence

= P[h1 = 0] · . . .P[hd = 0] (3)

=
(︂

1

2

)︂d
= 2

−d. (4)

Let X be a random variable (r.v.) denoting the number of operations
necessary to find a block. The process of finding a block can be seen
as a sequence of Bernoulli trials with success probability 2

−d until the
first success, therefore, X is geometrically distributed. In expectation,
the number of operations to find a block is then2020 The expected

value of a
geometrically

distributed r.v. is 1

p ,
where p denotes the

success probability of
the Bernoulli trial.

E[X] =
1

2
−d

= 2
d. (5)

Hence, the number of operations required, and therefore the time
to find a suitable hash, grows exponentially with the requirement
of leading zeros, d. Equivalently, the time to find a solution to the
PoW (and therefore a block) is inverse proportional to the invested
computing power.

In Bitcoin, the requirement on the number of leading zeros (also
called the difficulty) is periodically adjusted (roughly every two weeks
[257]) to scale with the hashing power of the system to achieve a,
relatively, constant rate of block creation. The target expected block
interval in Bitcoin is 10 min, i.e., a new block is found every 10 min on
average. At the time of writing, the difficulty in the Bitcoin network
requires a block hash with 76 leading zeros, yielding an expected num-
ber of hash operations of roughly 7.56 · 10

22 — requiring an aggregated
network hash rate in the ballpark of Exa hashes per second. On the one

2.3 introducing bitcoin & ethereum 19

hand, this massive amount of computational resources (and therefore
energy) is considered a significant environmental problem [84, 150]
which has sparked research efforts into alternative consensus mech-
anisms [241], e.g., Proof-of-Stake (PoS) [26] or hybrid trust models
such as Ripple [16, 236] and Stellar [5, 162]. However, these alter-
native approaches require more trust assumptions than PoW-based
consensus [67, 112], making it unlikely that Bitcoin will shift away
from PoW. On the other hand, the invested computational resources
can be seen as a high level of security instead of an environmental
hazard. The more hashing power is invested in Bitcoin, the more
resilient it becomes against so-called 51 %-attacks, which are covered
in Section 2.3.1.4.

On a side note, the only motivation, when assuming economically
rational agents, to participate in the mining process is the monetary
reward received for successfully creating a new block. If the expected
reward, i.e., the block reward discounted by the probability to find a
block exceeds the cost to maintain and operate the necessary comput-
ing hardware, it is economically rational for an agent to participate in
the mining process. As invested hashing power is “proportional” to
robustness against 51 %-attacks, the price at which a cryptocurrency
trades against fiat currencies (e.g., Euro, Dollar, etc.) is a driving factor
of a cryptocurrency’s resilience.

2.3.1.4 Blockchain Forks

Only blocks (and thus their transactions) with a valid PoW are ac-
cepted by other peers in the network, therefore, only valid blocks
will lead to a change in the global ledger state. Validity criteria are,
e.g., that blocks are below a certain size and contain no conflicting
transactions, i.e., where the same input address is spent multiple
times. For example, assume Alice wants to spend her 5 coins to Bob
and Carol simultaneously by creating and broadcasting two trans-
actions, as depicted in Figure 6. Each miner will only accept and
include one into a new block, so that in the end either T or T ′ can
be valid. However, in the description so far we assumed perfect data
transmission between peers and no data races: all peers receive all
information in a timely fashion and two blocks are not mined at the
same time — assumptions that do not hold in practice. Peers may
experience connection problems and/or two contesting blocks may
be found almost simultaneously, leading to conflicts as to which of
the contesting blocks should end up in the blockchain. Considering
the example of Alice, Bob and Carol in Figure 6, it is possible that
one part of the network knows only about T , whereas the other part
only knows T ′ and both end up in respective blocks B1 and B2. The
probabilistic nature of the PoW, as well as network delays etc. make it
possible that one part of the network, P1, learns about a block B1 first,
whereas the other part, P2, learns about another block B2 first — both

20 preliminaries

A1: 5.0 BTC

A2: 2.3 BTC

A3: 0.1 BTC

B1: 3.0 BTC

B2: 0.0 BTC

C1: 0.0 BTC

Transaction T

By: Alice
Unlock A1

Lock in B2

Transaction T ′

By: Alice
Unlock A1

Lock in C2

Figure 6: An attempted double spend of Alice (address A1) to Bob
and Carol. Icon attribution: [133, 134].

immediate successors of block B; see Figure 7. Since both blocks are
valid each peer in Pi is “right” to believe that their respective block is
the correct successor of B while the other block has to be discarded.

How are these conflicts resolved?

These so-called forks in the blockchain are resolved by the longest-
chain-rule: new blocks are always attached to the currently longest
chain of blocks2121 Note, that local,

individual decisions
by each peer

eventually lead to a
global convergence.

. In our scenario, proponents of B1 (i.e., peers in P1)
would attach their subsequent blocks to B1, whereas peers from P2

would attach theirs to B2. The rate at which new blocks are found
is directly proportional to the invested computational resources (cf.
Section 2.3.1). Let Mi denote the aggregate hash power of peers in
Pi for i ∈ {1, 2}, respectively. As thoroughly laid out by Tschorsch
and Scheuermann [257], unless both parts of the network have exactly
equal computing power, one chain will grow faster, on average, than
the other. Therefore, if M1 > M2, the chain appended to B1 will
eventually be longer than the chain appended to B2 (and vice versa).
In that case the longest-chain-rule ensures that all peers in the network
will start to attach newly found blocks to the longest chain, thus
resolving the fork by discarding the shorter chain. In the example
depicted in Figure 7, B2 is discarded, since the chain of B1 is longer.
Discarded blocks are considered invalid in that the state changes
induced by their transactions are not applied; hence, the discarded
transactions are treated as if they never occurred.

2.3 introducing bitcoin & ethereum 21

B. . .

B1 B ′
1

B2

Figure 7: Example of a fork: B1 and B2 are found almost simulta-
neously. The fork is resolved since B1 ← B ′

1
is the longer

chain.

2.3.1.5 Transaction Finality & 51 % Attacks

The combination of forks (involving a potentially unlimited number
of blocks) and the invalidness of transactions not included in the main
blockchain lead to the eventual consistency of Bitcoin’s consensus [265].
Traditionally, Byzantine consensus protocols (such as PBFT [51]) strive
for consistency, i.e., all nodes in the system agreeing on the same value
within a bounded, finite time interval [265]. In Bitcoin, due to the
presence of forks, only a weaker form of consistency, namely eventual
consistency is reached: eventually forks are resolved, and all nodes
agree on the same state again. When Alice performs a transaction to
Bob she can, in theory, never be sure that her transactions remains
valid and is not rendered invalid by a potential longer partial chain
in the future. In practice, however, the probability of a fork declines
with its length; most forks occurring during normal operation of the
Bitcoin network are shorter than 4 blocks [81]. As a heuristic, people
consider transactions final and valid after six blocks22 22 At Bitcoin’s block

creation rate roughly
an hour.

, i.e., there are
six blocks on top of the block in which the transaction is situated.

Although the probability for accidental forks decreases exponen-
tially in the length of the fork, an adversary might create a forked
chain in secret. Upon release, honest node would switch to this chain
as long as it is longer than the chain known so far — requiring the
adversary to hold at least 51 % of the hashing power in the system.
These kind of attacks are therefore referred to as 51 %-attacks. Such an
attack enables an adversary Alice to double spend coins by first broad-
casting a transaction TB to Bob while retaining a secret chain with
a transaction TC spending the same funds to Carol. As soon as Bob
accepts the transaction as valid and exchanges the goods (e.g., after six
blocks), Alice releases her, longer, secret chain; rendering TB invalid
and depriving Bob of his deserved funds. Due to the immense hashing
power invested into Bitcoin, obtaining 51 % of the networks hashing
power is unlikely. However, 51 % attacks (and resulting double spends)
have repeatedly happened with smaller currencies [18]23

23 crypto51.app/
estimates and sorts
cryptocurrencies by
their estimated costs
to carry out a
51 %-attack.

.

https://www.crypto51.app/

22 preliminaries

State S

A1: 5.0 A2: 2.3

A3: 0.1 B1: 3.0

D1: 4.0 E1: 10

Block B
T : spend A1 to B2

S: spend D1 to D2 (1.0)
and E1 (3.0)

State S ′

A1: 0.0 A2: 2.3

A3: 0.1 B1: 3.0

B2: 5.0 D1: 0.0

D2: 5.0 E1: 13

Figure 8: Bitcoin can be seen as a massively replicated state machine.
This figure illustrates the state change induced by, among
others, the transaction from Figure 4.

2.3.2 Ethereum and Smart Contracts

2.3.2.1 From Transactions to Smart Contracts

On the user-level, transactions are the transfer of ownership of coins
from a set of addresses to another set of addresses. Looking from a
global, ledger-level, a transaction (a block to be precise) advances the
state of a massively replicated state transition system, as abstractly
depicted in Figure 8. The current state of, say Bitcoin, consists of the
individual coin balances of each address. This state, formed by the
entirety of all coin balances, is replicated at every full node2424 Only full nodes

and miners store the
whole blockchain,

other peers utilizing
simple payment
verification may

choose to trade
security for

performance by
storing only parts of
the chain and relying

on full nodes for
fetching those

parts [202].

and is
advanced globally with every new block.

In Bitcoin, a transaction is a small program, written in a stack-based,
Turing-incomplete language which is executed by every full node in
the network, as soon as it is included into a block. In theory, this allows
for the creation of quite involved transactions, e.g., transactions only
executed when k-out-of-n signatures are present; in practice, however,
the expressiveness is purposely limited due to security concerns [257].
Most transactions follow these steps:

1. Sign the public key of the source address with the corresponding
private key

2. Push the hash on the stack

3. Compute the hash of the public key in the blockchain

4. If equal: the source coins are successfully unlocked and locked
with the destination script.

This restricted programming language is a deliberate design choice of
Bitcoin — in theory there are no restrictions on the expressiveness of
a transaction scripting language. The cryptocurrency Ethereum [271]
chose the exact other direction as Bitcoin by using a full-fledged Turing-
complete virtual machine instead of a simple transaction-script.

2.3 introducing bitcoin & ethereum 23

2.3.2.2 Ethereum — A Payment System with Turing-Complete State Tran-
sitions

Ethereum is the second largest decentralized P2P cryptocurrency,
allowing users to exchange digital tokens on a blockchain, resembling
Bitcoin. Unlike Bitcoin, Ethereum’s transaction scripting language is
Turing-complete and hence allows for arbitrary programs to be run
when transactions are executed, allowing the creation of so-called
smart contracts:25 25 Scholars have

repeatedly pointed
out that these
programs are neither

“smart” nor
contracts and even
Vitalik Buterin, one
of Ethereum’s
founders, has
expressed his regrets
for choosing that
terminology [46].

pieces of code that reside “on” the blockchain and
whose execution can be triggered through transactions. The high
popularity of Ethereum mainly stems from this possibility to create
smart contracts and has lead to a massive ecosystem of developers
and users. The most successful application of smart contracts is
the ERC20

26

26 ERC = Ethereum
Request for
Comment.

token standard [96], which is and was widely used
to conduct so-called initial coin offerings — in theory a method of
financing startups which has in practice also been used for extensive
scamming [140, 279]. It allows the creation of fungible tokens whose
exchange adheres to the same safety and security guarantees as the
exchange of Ethereum inherent cryptocurrency, Ether.

Smart contracts are normal addresses which can also hold a balance
of coins. If the code of a smart contract is to be executed, a transac-
tion encoding the necessary parameters for execution is send to the
contract’s address. Similarly to normal programs, smart contracts
can have internal variables, e.g., the total supply and each addresses’
balance in the case of ERC20 tokens. These variables are stored in
Merkle-Trie-like structures by every full node; the current root hash of
these structures is part of Ethereum’s block header and therefore part
of the blockchain consensus.

Therefore, and in contrast to Bitcoin, the state of Ethereum does
not only consist of coin balances at each address, but also the internal
variables of each smart contract. Resembling Bitcoin, Ethereum can be
seen as a massively replicated state machine, whose state is advanced
only through the execution of transactions27

27 A common
misconception
among
non-technicians,
where smart
contracts are often
seen as permanently
running programs,
being able to
constantly monitor
and react to changes
in the environment.

. That is, transactions are
gathered in blocks which also require a PoW28

28 Although
Ethereum intends to
transition from PoW
towards PoS, cf.
Section 2.3.1).

and yield a mining
reward. Appending a block to the Ethereum blockchain (and therefore
advancing the global state) involves executing all called smart contracts
by each node in the system.

Smart contracts are compiled into and stored in a dedicated as-
sembly language, specifically designed for the use case of Ethere-
um, e.g., Keccak-256 hashes (the hash function of Ethereum) can be
computed natively and methods from other smart contracts can be
called, similar to libraries. Ethereum’s assembly code is executed
on the so-called Ethereum Virtual Machine (EVM), though a transition
to an Ethereum-flavored web assembly is planned [104]. While the
Turing-completeness of Ethereum’s programming language allows for
maximum expressiveness, some restrictions are necessary to avoid un-
limited computation times. To this end, each instruction on the EVM

24 preliminaries

has an associated cost called “gas”. Hence, to execute a smart con-
tract, the initiator of the respective transaction has to sufficient funds
to cover the gas costs for the entirety of every executed instruction
within the smart contract2929 I.e., the costs are

sent with the
transaction initiating

the execution.

. These gas costs and the maximum gas
limit in a block bound the maximum number of instructions that can
be executed. Restricting the number of possible instructions through
associated gas costs is a reasonable design choice, since a smart con-
tract is executed on every full node in parallel. Non-termination, e.g.,
through (non-)intentional infinite loops, would stall the entire net-
work if not properly prevented. Determining suitable gas costs for
each instruction that approximate the necessary computational load
of an instruction is a problem in itself. Yang et al. [275], for example,
demonstrated that the gas costs are too low for the expected runtime,
especially on less powerful devices. Due to the undecidability of the
halting problem [258] there is only a-posteriori knowledge on whether
a transaction executing a smart contract has sufficient funds to cover
the constract’s resulting gas costs. In case a smart contract does not
have sufficient funds for the execution to be finished, it is terminated
and the state is rolled back before the execution of this particular
smart contract while still consuming all provided gas.

The design choice for a Turing-complete smart contract language
has been criticized in the past [138, 210] due to (1) verification issues
and (2) the nature of smart contracts. Regarding (1), less expressive
languages would be easier to verify and proposals for alternative
programming language designs exist [210], although a transition to-
wards a non-Turing complete language is unlikely, especially due to
compatibility issues. Critics of the Turing-complete language point
out that (2) most smart contracts do not need the expressive power
of such a language, since they are relative small programs, lacking
control flow characteristics offered by Turing-completeness in the first
place [138]. However well-founded these arguments may be, it is
unlikely that Ethereum will adopt another, less expressive, instruc-
tion set, in particular when switching to web assembly in the long
term [104].

Smart contracts and the corresponding development ecosystem are
the main reason why Ethereum is so widely used as an infrastructural
layer for blockchain applications. First, these contracts are written in
a developer-friendly dialect which bears similarities to JavaScript—
a programming language many developers already know. Second,
the Ethereum blockchain is running sufficiently stable and provides
novice-friendly APIs that enable a manageable learning curve while
also hiding the majority of the complexity under Ethereum’s hood.
Third, smart contracts can be interleaved similar to libraries, allowing
the creation of highly complex systems, e.g., initial coin offering (ICO)
tokens such as ERC20, DeFi (in particular stablecoins, cf. Chapter 5,
[126, 222]) and DAOs [74].

2.4 the bitcoin overlay 25

2.4 the bitcoin overlay

In the last sections we implicitly touched various aspects of the Bitcoin
overlay — in this section we explicitly address (1) the requirements
Bitcoin’s overlay has to fulfill and (2) the differences to traditional
P2P networking in terms of narrative and overlay structure. Although
this thesis focuses on Ethereum as main application example, Bitcoin
provides valuable insights through its well-thought-out design; allow-
ing us to generalize the requirements an overlay for permissionless
blockchain systems has to fulfill and to contrast those requirements to
Ethereum’s design choices and our exploitation thereof (cf. Chapter 3,
where we also provide an in-depth analysis of Ethereum’s P2P overlay).
Note that the discussion here is necessarily limited, for an extensive
survey on network layer aspects of permissionless cryptocurrencies in
general (not only Bitcoin), the reader is referred to [208].

As already elaborated on in previous sections (cf. Section 2.3.1),
the main mode of operation in Bitcoin is broadcast30 30 Other modes

include
bootstrapping newly
joined peers and
gossiping about
neighboring nodes.
On a side note: while
“gossiping about
neighbors” may seem
perfectly fine for
computer scientists,
it is a clear anthropo-
morphization of
technology [267].

: transactions
and blocks originating at one node have to be distributed to all other
nodes in the network. In this, Bitcoin differs from traditional P2P
systems such as DHTs which are optimized for multicast: data items
are requested and obtained by only a subset of peers. Furthermore,
and in contrast to distributed hash tables (DHTs), Bitcoin’s main
optimization variable is not performance of data transmission but
rather the robustness of information delivery against attacks and
failures.

Bitcoin (as well as Ethereum and other permissionless cryptocurren-
cies) rely on the synchronicity and consistency of each peer’s shared
ledger: updates reach every peer eventually, inconsistencies are there-
fore short-lived [131]. If the network is partitioned, the shared ledgers
may become out-of-sync (potentially purposely through an adversary),
effectively leading to several isolated and diverging replicated state
machines — one in each partition. The divergence is resolved through
the longest-chain-rule as soon as the partition ceases to exist and
connectivity is restored: the partition with the largest share of hashing
power will eventually dominate the others, uniting them again on one
chain and discarding all state changes that are not part of the dominat-
ing chain. Discarded transactions are treated as if they never occurred,
enabling the double spending of funds, if an adversary where able to
partition the network [131, 8, 168]. Adversarial overlay partitions are
mainly enabled through so-called Sybil attacks.

2.4.1 The Sybil Problem

“On the Internet, nobody knows you’re a cat”31

31 My sincerest
gratitude goes to
Marie Sofie Jacob for
painting the sketch.

, this cartoon caption
illustrates a fundamental problem in P2P networking: interactions
on the Internet do not happen between entities of the real world

26 preliminaries

Figure 9: “On the Internet nobody knows you’re a cat.” vividly illus-
trates the Sybil problem. Based on a cartoon turned meme
from Peter Steiner, originally published on July 5, 1993 in
The New Yorker.

(e.g., cats), but rather informational abstractions of those entities,
called identities [86, 139]. This enables real-world entities to liberate
themselves from their inherent physical attributes (e.g., sex, looks or
humanness in the case of the depicted cat), which may be one reason
to communicate online [200]. In addition to physical attributes, the
identity abstraction allows the possibility of freely choosing a digital
persona and, therefore, social circles [157, p. 17f.].

While liberating, this free creation of identities also has problematic
repercussions — most notably for our purposes is the ability of one
entity to have multiple distinct identities. Examples include one person
having multiple accounts in forums or social media sites. For other
entities these distinct identities are nothing out of the ordinary and,
in most cases, indistinguishable from honest participants for which
“number of entities = number of identities” holds.

Leading from social to computer science, the ability of one entity
to possess several identities is a core problem in P2P systems: an (ad-
versarial) entity may start multiple instances of a P2P network’s client
software. It has to be noted that this process is less resource-intense
in terms of human labor than creating and maintaining multiple ac-
counts on social media sites and, additionally, automatable, i.e., posing
a significant threat to P2P systems.

In a seminal work by Douceur [86], this adversarial behavior in the
context of P2P systems has been defined as a Sybil attack 32

32 The name Sybil
attack refers to the

book “Sybil” by
Flora Schreiber [235]

on the treatment of
Sybil Dorsett for

multiple personality
disorder [86]. , replacing

the previously occasionally used term “pseudospoofing”.

2.4 the bitcoin overlay 27

Sybil attacks are especially problematic in voting/consensus and
escrow systems [54], since one adversarial entity may seize voting
power by spawning several identities. But also for P2P systems in
general, whose mode of operation relies on the assumption that when
selecting a subset of peers not all of them will be malicious, the Sybil
attack poses a significant threat. In the case of DHTs for example, it
enables attackers to perform denial of service attacks by strategically
positioning Sybil nodes in the overlay which do not forward incoming
queries or actively spread malicious information to bring lookups to a
halt.

In the case of permissionless blockchain systems such as Bitcoin and
Ethereum, the largest threats through Sybil nodes lies in partitioning
the replicated state machine to either force a Denial-of-Service or
double spend funds (cf. Section 2.4). These partitioning attacks are
referred to as eclipse attacks, where an attacker isolates individual peers
or even parts of the network such that all neighboring identities of
a victim peer are operated by the adversarial entity33 33 Technically,

eclipse attacks can
also be conducted by
cooperating entities
without Sybil
identities. However,
the large amount of
necessary identities
to successfully
mount eclipse attacks
in today’s P2P
networks makes this
cooperation virtually
impossible. Therefore,
oftentimes an eclipse
Attack requires Sybil
identities.

, enabling the
attacker to filter the information the victim sends and receives.

In many P2P systems, creating an identity is as easy as computing
an asymmetric key pair, so what are potential remedies against such
attacks? As shown by Douceur [86], it is impossible to fully thwart
the possibility of Sybil attacks without (1) unrealistic assumptions on
uniform resource distribution and simultaneous coordination of enti-
ties or (2) a trusted authority to vouch for the equivalence of identity
and entity. Since (1) is not given in practice, a trusted authority is the
only approach to fully solve the Sybil problem. However, oftentimes a
trusted authority is not desirable, in particular when considering cryp-
tocurrencies like Bitcoin which aim to be as decentralized as possible.
Therefore, P2P systems in practice tie the creation of identities to some
finite resource and/or implicitly and partially rely on the existence
of some authority. Bitcoin has to defend against Sybil attacks on the
consensus as well as the network layer and relies on both the scarcity
of physical resources as well as the existence of a central authority in
the process.

On the consensus layer, the process of finding new blocks can be
understood as probabilistic voting mechanism. Instead of weighting
each identities’ vote equally, the computationally expensive task that
has to be completed (PoW), effectively weighs each entities vote by
its computing resources (cf. Section 2.3.1). Hence, the creation of
additional identities to skew the voting process is futile, since only
the physical resource determines the weight of ones vote and not the
number of identities that are voting.

On the network layer, Bitcoin uses physical features and relies on the
existence of a trusted authority to make Sybil attacks expensive. We
take a deeper dive into Bitcoin’s networking logic as it illustrates viable

28 preliminaries

real-world solutions against the Sybil problem while highlighting the
limitations of said solutions at the same time.

2.4.2 Bitcoin Overlay Structure and Sybil Protection Mechanisms

In Bitcoin the so-called “AddrMan” (short for AddressManager) man-
ages known IP addresses of other peers in a table-like data struc-
ture [75, 131].3434 We refer to

Bitcoin Core v0.19.1
in the following, but
the general logic has
been relatively stable

and probably will
remain similar in the

future.

In a nutshell AddrMan’s design goal is simple: ensure
that an adversary cannot overwrite the whole table with Sybil nodes.
To that end, addresses are sorted into groups based on a combination
of cryptographic hashing and a secret key35

35 An idealized
representation of the

actual
implementation.

:

targetbucket = Hash(IP + secret key). (6)

Thus, making the sorting (1) impossible to predict for an adversary
due to the secret and (2) uniformly distributed, due to the hashing.
Furthermore, AddrMan employs a two-stage storage, where the first
stage only contains addresses the local AddrMan has heard about
whereas the second stage holds addresses that AddrMan has success-
fully contacted before. Since buckets have a limited capacity, AddrMan
randomly evicts an old entry — previously with a bias towards least
recently seen addresses, which has been updated to random eviction
with the work of Heilman et al. [131].

2.4.2.1 How does this “solve” the Sybil problem?

The (uniform) randomness ensures that an adversary needs a sig-
nificant number of Sybil nodes to have a reasonable probability to
receive a connection from the victim node [131]. Additionally, since
the mapping to buckets is based on the IP address, these Sybil nodes
must come from a variety of different networks (/16 for IPv4, /32

for IPv6 [75, 76]) — otherwise Sybil nodes would be assigned to the
same bucket, effectively competing for the same connection “slot”. To
successfully thwart Sybil attacks with this approach, the acquirement
of many IP addresses in distinct subnets needs to be prohibitively
expensive — which it is in practice. IP subnet allocation is centrally
governed by the Internet Corporation for Assigned Names and Num-
bers (ICANN). In its function as a trusted authority it (1) maps IP
subnets to entities and (2) establishes a notion of scarcity of the in-
herently digital resource of IP addresses. By mapping IPs from the
same /16 subnet (for IPv4) to the same bucket as a Sybil protection
mechanism, Bitcoin relies on the scarcity of IP addresses and therefore
the ICANN as a trusted authority. As noted by Heilman et al. [131],
despite these restrictions, botnets are still viable attack vehicles, as
their inherent distribution circumvents IP subnet restrictions. Poten-
tial remedies aim towards maintaining entries of benign nodes in
the buckets by only evicting offline peers, instead of favoring least-

2.4 the bitcoin overlay 29

recently-seen ones. As long as there is at least one legitimate peer in
the buckets, a Sybil attack may deteriorate network performance but
will not lead to an eclipse of the victim [131].

In addition to IP subnet restrictions and bucket eviction mechanisms,
Bitcoin binds real-world resources as a Sybil protection measure since
the expenditure of these resources further increases the cost of an
attack. This can be illustrated by how Bitcoin decides if it should evict
an old connection in favor for a new one [77]. The main risk associated
with evictions is replacing an honest peer with an adversarial one, as
stated in the comments:

The strategy used here is to protect a small number of peers for
each of several distinct characteristics which are difficult to forge.
In order to partition a node the attacker must be simultaneously
better at all of them than honest peers.

To that end, Bitcoin uses several metrics to protect connections from
eviction; in particular it protects four nodes, respectively, which:

• have minimum ping times36 36 Moving average of
measurements.

,

• are from distinct /16 subnets (/32 for IPv6),

• most recently sent transactions,

• most recently sent blocks and

• which have the longest uptime.

The minimum ping time limits the scalability of a potential attack
on several distinct Bitcoin nodes in parallel, since an adversary can
not have minimum ping times to multiple geographical distributed
nodes at once. To be considered a good connection candidate, an
adversary has to spend his bandwidth to forward transactions and
blocks, and invest computing resources for a prolonged period of time.
Not only does this expenditure of real-world resource render Sybil
attacks on Bitcoin expensive, it also forces the adversary to perform
useful tasks for the network by distributing blocks and transactions
when launching an attack. The necessary resources to conduct such
an attack may outweigh the potential gains of the adversary, as will
be discussed in section 3.9.

2.4.3 Why is the Sybil problem still a problem then?

Given the Sybil-protection mechanisms of Bitcoin one could argue that
tying identities to real-world resources seems like a viable solution to
the Sybil problem, rendering additional research superfluous. While
intriguing at a first glance, the main problem with these approaches
is the resource inequality between entities in a network, a fact al-
ready highlighted by Douceur [86]. Normal users tend to have less

30 preliminaries

resources than an adversary (which, even it is not true, is a reasonable
assumption for a threat model). Hence, any precautions regarding
the creation of identities (e.g., PoW) or requirements as to uptime,
bandwidth and other computing resources should not be prohibitive
for normal users3737 For example, in

S/Kademlia [29] the
ID creation is tied to
a PoW which should
not take too long for

users on weak
devices. However, at

the same time the
PoW is hardly a

challenge for a
sufficiently equipped
adversary. See [221]

for a simple cost
calculation for

differently equipped
adversaries.

. Therefore, the Sybil problem is still very much a
problem and, as Douceur [86] highlighted, generally unsolvable — it
is only possible to raise the bar for an attacker by raising the costs
associated with a Sybil attack.

Reality is often not as bleak, however. The (implicit) adversary
model used by Douceur [86] is situated on two extremes of a spec-
trum: on one hand, Sybil identities are prohibited by a trusted third
party, on the other hand there is no prior knowledge on other nodes
whatsoever. However, practice may lie between two these extremes
when a node operator does have knowledge about some identities
and their respective entities. This allows the creation of a few trusted
connections for which the operator can be optimistic that no Sybil (or
related) attack will be carried out.

2.4.4 Scalability & Overlay Topology

In summary, Bitcoin purposely sacrifices performance in terms of
message delivery for robustness. In optimizing the overlay for robust-
ness and security against Sybil attacks, Bitcoin resembles the TOR
network [256], which deliberately routes packets over multiple hops to
ensure the anonymity of a packet’s origin; also sacrificing performance
(end-to-end delay) in the process. Similar to Gnutella (cf. Section 2.1)
Bitcoin utilizes an unstructured overlay and flooding to spread infor-
mation on new transactions and blocks to every peer. Additionally,
during the flooding of new transactions, they are not forwarded imme-
diately to neighboring peers — instead a random Poisson-distributed
delay is imposed. This so-called diffusion3838 The original

trickling mechanics
have been replaced by

diffusion in bitcoin
core 0.13.0 [78], but
the current approach

serves the same
purpose.

of transactions aims at
obscuring network layer identity of a transaction’s issuer as well as to
make it harder to assess the topology of the network as a whole [72,
207]. Bitcoin’s overlay topology as well as individual nodes can be
inferred to some degree through exploiting under-connectedness of
clients [38], timing analysis [178, 207] and purposely crafting invalid
transactions [73, 124]. However, these approaches have limited ex-
pressiveness [207], are prohibitively expensive [73] and/or are easily
thwarted [124]. Nevertheless, individual Bitcoin clients do not seem
to enjoy network level anonymity [38, 99, 204], regardless of trickling
or diffusion [99]. Proposals for privacy-preserving data dissemination
strategies [98, 204, 261] are currently not implemented in Bitcoin.

As robust as the Bitcoin overlay may be, the deliberate choice of
sub-optimal performance in terms of message delivery delay as well
as the requirement of keeping all peers (and therefore the replicated
state machine) synchronized impose a severe issue: scalability in terms

2.5 eclipse attacks 31

of transaction throughput. New blocks have to reach a sufficiently
high share of all peers in the network, even ones with small band-
width. Croman et al. [64] suggest a minimum threshold of 90 %, i.e.,
90 % of peers should receive new blocks in time. This limits (1) the
maximum size of blocks, which is 4 MB39 39 The original limit

was 1 MB, which
sparked significant
controversies, two
hard forks of
Bitcoin [79, 80] and
has been replaced by
a block weight limit
during the
Segregated Witness
update [163].

, and (2) the inter-block rate,
effectively bounding the maximum possible rate of transactions per
second that can be processed by the Bitcoin network at 27 transactions
per second [64]. When the number of new transactions exceeds the
maximum throughput for a sustained period of time, i.e., the network
is overloaded, transaction fees (which are paid to miners) begin to
rise, as miners preferably include transactions with the highest fees
in their blocks [257]. Note, that this is not simply limited to Bitcoin,
Ethereum exhibits the same problem and both cryptocurrencies have
shown signs of congestion in the past [181, 270].

The most promising remedy to the scalability problems of ma-
jor cryptocurrencies are so-called layer-2-solutions, e.g., the Light-
ning [216] network for Bitcoin and the Raiden [206] network for Ethe-
reum, which are out of scope of this thesis and are simply mentioned
for the sake of completeness. Intuitively, parties establish a payment
(or, more general: state-)channel to process payments off-chain and
only initiate transactions in the Bitcoin network in the case of disputes
or to open/close said state-/payment channels [125].

In the following we will dive deeper into eclipse attacks on P2P
systems and give an overview of the literature on said topic, before
moving on to our attack on Ethereum in Chapter 3.

2.5 eclipse attacks

Eclipse attacks on P2P systems are well-researched, with a vast body
of literature concerning attacks and potential countermeasures [50,
56, 115, 239, 240]. There are several sub-forms of eclipse attacks, in
its “purest” form, adversarial nodes block and filter the victim’s view
of the network, segregating it from other honest peers — analogous
to solar eclipses (hence the name). To this end, an attacker occupies
all in- and outgoing connection slots of a target node, as depicted
in Figure 10: the overlay is considered as a graph, with nodes as
vertices and connections among them as edges. The victim node t

is exclusively connected to adversarial nodes a1, a2, a3 — hence, any
request issued by t to other honest nodes v1, v2 (or vice versa) is
filtered, i.e., manipulated or simply dropped, by the attacker.

Other forms of eclipse attacks include localized and topology aware
eclipse attacks [115] which exploit the overlay structure of DHTs such
as Kademlia (cf. Section 2.2). Instead of individual peers, parts of
the logical node ID space are poisoned with adversarial nodes. In
filesharing networks such as KAD for example, this can be used to
make certain search keywords (which also correspond to keys in

32 preliminaries

t

a1

a2

a3

v1

v2

. . .

Figure 10: Illustration of an eclipse attack

the overlay) unreachable [147, 161], allowing an adversary to return
arbitrary data to nodes searching for specific keywords.

An eclipse attack does not necessarily require a Sybil attack, a
complot of several distinct adversarial nodes may also be conceivable,
but is often preceded by one. Especially on modern P2P systems in
the context of blockchain applications, the amount of distinct entities
required for an eclipse attack necessitates a Sybil attack [131, 8, 168,
220]. As the Sybil problem is potentially unsolvable under realistic
network conditions and in purely permissionless settings [86, 161],
countermeasures against eclipse attacks can only raise the bar for
an adversary instead of assuring a complete absence of attacks in
the future. However, as, e.g., in the case of Bitcoin, the introduced
countermeasures require a powerful adversary with control over a
small botnet or ISP-grade resources [131].

Many countermeasures can be classified as (1) introducing some
kind of trusted third party or (2) introducing randomness & redun-
dancy in the peer selection and lookup process. For a detailed analysis
of countermeasures, the reader is referred to [50, 57, 239]. Trusted
third parties have been proposed to limit the creation of node IDs, e.g.,
by cryptographically signing them, rendering Sybil attacks virtually
impossible, as these centralized parties ensure identity = entity [50,
238, 239, 245].

While effective at reducing the Sybil problem, centralized, trusted
third parties are not desirable or practical in certain circumstances,
especially in permissionless settings. In these situations, countermea-
sures can only increase the necessary resources an adversary has to
invest for a successful attack. Popular are IP restrictions, e.g., by tying
node IDs to IP addresses [168, 245], and/or by restricting the number
of node IDs from one /8, /16 subnet in internal routing structures
[75, 8, 147]. As discussed in Section 2.4.2, the reasoning is that IP
addresses are scarce and obtaining many of them in distinct subnets

2.6 blockchain application stack model 33

is challenging. To cope with powerful adversaries, e.g., in the case of
(rented) botnets which consist of many diverse devices spread over a
variety of IP subnets, performance is often sacrificed for robustness
[29, 115, 213]. This trade-off entails replicating content lookups over
multiple, disjoint paths [29, 213], or even letting lookups diverge,
resembling a hybrid of structured search and flooding.

Transitioning from the general case of eclipse attacks on arbitrary
P2P networks, what are the implications of eclipse attacks on block-
chain systems such as Bitcoin and Ethereum? The main implication
of these attacks are the ability of an adversary to double spend funds
[131]. Normally, double spends are resolved by only including one
of the two conflicting transactions into the global consensus. Even if
blockchain forks occur, they are eventually resolved (cf. Section 2.3.1.4).
If a victim is eclipsed, the conflicting forks can be maintained for a
prolonged period of time, as the adversary filters and blocks the
message exchange between victim and the rest of the network. Com-
bined with some mining power on part of the attacker, the victim
can be fooled into believing that the received transaction is valid, e.g.,
through mining a sufficient number of blocks on top of the doubly
spent transaction, leading to an exchange of goods for the allegedly
received money. As soon as the adversary receives her product, the
eclipse attack is terminated and the deliberate adversarial fork of the
blockchain at the victim is resolved — yielding funds and product for
the adversary.

Beyond double spending, eclipse attacks have also been proposed
to obtain a mining advantage, i.e., receive a larger share of the re-
wards than the computing power would entail [205]. However, the
conclusions in [205] on combining stubborn mining with an eclipse
attacks are debatable, as miners seem to be well-connected among
themselves and to the Bitcoin network40 40 https://bitcoinfi-

bre.org/.
, rendering such an attack

futile. In Ethereum, double spending eclipse attacks are not only
possible on the native Ether-token, but also on other tokens, e.g.,
ERC20 and related standards. Furthermore, eclipse attacks can simply
be used to achieve a DoS of smart contract execution, affecting the
availability of applications.

2.6 blockchain application stack model

As already hinted upon in the introduction, we study the robustness of
blockchain applications in this thesis by dissecting them into different
building blocks or layers which are then investigated individually.
Specifically, from each building block we pick one popular represen-
tative system. This method has two advantages: (1) these building
blocks are popular among several distinct blockchain applications,
allowing us to transition beyond individual applications, and (2) in-

https://bitcoinfibre.org/
https://bitcoinfibre.org/

34 preliminaries

Applications

Infrastructure
Ethereum

Storage
IPFS

Stable Currency
Stablecoins

executed on

exec. on

access dataincen.

Figure 11: Blockchain application stack as well as the respective sys-
tems that we will investigate during the course of this thesis.

sights on building blocks are interesting in other contexts and not only
limited to blockchain — in particular for IPFS on the storage layer.

We identified three essential blocks (or layers) that will be studied
in this thesis, depicted in Figure 11 (the same as in the introduction):
the infrastructural layer, distributed storage layer and currency stabi-
lization. Interdependencies may occur between these blocks that may
adversely affect the overall application, e.g., if services are incentivized
through tokens and these token drop in value [145, 146]. An example
would be the hash rate (and therefore the security against 51 % attacks)
of a cryptocurrency which is directly dependent on the price of the
respective coin. While an interesting topic and touched upon lightly
throughout this thesis, the focus lies less on interdependencies and
more on gaining an in-depth understanding of the individual blocks.

The infrastructural layer is what enables blockchain applications in
the first place, so it is necessary to study a popular example. Ethereum
is the subject of choice, since it is the most popular smart contract
platform and therefore is the basis of many applications. Examples
include ERCi tokens (i ∈ {20, 223, 721, 777}) and ICOs thereof [223,
279], Aragon DAO [74] and, most importantly, Cryptokitties [270].
Applications building upon Ethereum (or other blockchains in general)
rely on the guarantees the underlying system is providing, hence, any
adversarial action on the infrastructure also impacts the respective
applications. In the next chapter (cf. Chapter 3) we will see how
eclipse attacks on Ethereum can impact applications, e.g., through
double spending tokens and DoS.

Although platforms like Ethereum permit the storage of data in
smart contracts, the costs are prohibitively expensive for even medium-
sized files and folders, due to the redundant storage at every node in
the network. Therefore, applications requiring to store more than just,
e.g., internal variables, resort to external, distributed storage solutions.
Thus, we argue that the storage layer, with IPFS as the subject of study
as it is the most popular and mature system, is an important building

2.6 blockchain application stack model 35

block for blockchain applications and beyond. To intertwine an appli-
cation on, say, Ethereum with a storage system as IPFS, for example,
one stores the hash and address of the corresponding data item on the
blockchain41

41 In the case of
IPFS the address
corresponds to the
content, i.e., it is
self-certifying (cf.
Chapter 4).

and the data itself on the storage network. Retrieving
the data for the application then involves a lookup operation for the
respective address and ensuring data integrity. The main concern
arising through such a setup is the “health” of the storage network in
terms of robustness, centralization, availability, et cetera. For example,
a DoS attack on the storage network to bring down availability impacts
the blockchain application as well. Similarly, if the data is essential
for the application but hosted on a centralized server (or a distributed
system that has become relatively centralized over time), the benefits
of running the application on a blockchain are questionable. In Chap-
ter 4 we take a deep dive into the networking- and content-side of
IPFS, allowing us to reason about the health, robustness and degree
of centralization of the network.

Lastly, incentives play an important role in decentralized, permis-
sionless systems, as one cannot rely on the altruism of network partic-
ipants alone to keep the systems running. Keeping Ethereum running
and secured costs a significant amount of (computational) resources;
data on IPFS has to be hosted and replicated. To this end, participants
are economically incentivized to expend computational resources in
Ethereum and related schemes are in planning for IPFS through a
payment token for data hosting named Filecoin [154]. However, prices
of cryptocurrencies are notoriously volatile. Therefore, we argue that
value stabilization in cryptocurrencies in the form of stablecoins is
another important building block for blockchain applications. Stable-
coins strive to achieve the best of two worlds by combining (1) the
stability of fiat currencies (e.g., USD, EUR), with (2) a permissionless
setting like Bitcoin or Ethereum. Despite their use in payments, sta-
blecoins are also essential for decentralized finance (DeFi) — complex
financial derivatives on top of Ethereum [268]. In Chapter 5, we will
see if stablecoins are able to fulfill their ambitious goals. To this end,
we adopt an economic perspective to reason about stability, also in the
presence of adversarial market forces, complemented with technical
considerations.

3
E C L I P S E AT TA C K O N E T H E R E U M

3.1 overview

A dependable and secure network layer is vital for blockchain sys-
tems, as they build on the assumption of equal information at every
peer [131, 257]. As we have seen in Section 2.4.2, this assumption
is violated if eclipse attacks are possible. In an eclipse attack (cf.
Section 2.5), an adversary monopolizes the connections of a victim,
effectively filtering the victim’s view of the blockchain. This opens up
attack vectors for, e.g., Denial-of-Service (DoS), double spending and
stubborn mining [205]. In Section 2.4.2 we have also seen how Bitcoin
quite successfully copes with the threat of Sybil/eclipse attacks by
making such attacks costly to mount. Briefly summarized, Bitcoin
establishes an unstructured overlay by randomly choosing peers from
a large set of known nodes, such that no localized attacker can monop-
olize the set of known nodes [75] — demonstrating reasonable design
approaches for building a robust overlay in the context of blockchain
systems. Bitcoin is not immune to network layer attacks, of course,
but it’s overlay design makes them costly.

Ethereum, on the other hand, does not take into account the exist-
ing knowledge from Bitcoin’s network layer and instead opts for a
structured, Kademlia-based (cf. Section 2.2) construction. Since Kadem-
lia was designed for efficient content lookup and data distribution
instead of overlay robustness, vulnerabilities arise [8, 168]. These
attacks, the first4242 Notions as

“first”/“second”
imply a time-wise

happens-before order
of papers that was

not given in this
particular

circumstance:
Marcus et al.

published their
findings while we

were in the midst of
a publication.

by Marcus et al. [168] and the second by us [8],
which is presented in this chapter, exploit the structure imposed by
Kademlia to perform eclipse attacks on Ethereum peers with very
little invested resources. In particular, our attack succeeds, in most
cases, in a matter of hours with a newly-started client and requires
only two IP addresses from distinct /24 networks.

Both attacks focus on Go Ethereum (Geth) [105], although other
clients, e.g., Parity/OpenEthereum [153] seem to be vulnerable as
well, briefly judging by their code. However, neither Marcus et al.
[168] nor we [8] did verify this claim empirically, as a focus on Geth is

This chapter is based on previous collaborative work [8]. Understanding, finding and
analyzing the potential attack vectors as well as planning the evaluation was done
by myself (refined in extensive, insightful and incredibly helpful discussions with
Martin Florian). Daniel Teunis mostly implemented and conducted the evaluation of
the attack (Figures 17 and 18). As it’s common, all authors contributed to the text of
the paper; with some extensions and refinements by myself for this chapter.

36

3.1 overview 37

reasonable: (1) it is the official reference implementation of Ethereum
and (2) it is estimated to be used in roughly 76 % of clients [143].

Although both attacks target the structure imposed by Kademlia,
they differ in execution, in that Marcus et al. [168] take a straight-
forward approach, while our idea is a bit more involved. Marcus
et al. [168] flood an Ethereum victim node’s discovery table with Sybil
nodes [86] (cf. Section 2.4.1) directly after the victim has been restarted.
This entails that any selection of peers for connection establishment
only involves Sybil nodes. The discovery table is a Kademlia-style
bucket structure, such that flooding this table simply involves filling
each k-bucket with Sybils. The attack is lightweight, since generating
a new node ID, and henceforth a new Sybil node, involves only an
ECDSA key pair generation. As an answer to the discovered attack
vector, Geth ⩾ v1.8.0 introduces several countermeasures to increase
the difficulty and necessary resources to flood the complete discovery
table. One of these restrictions is the limitation of identities from the
same /24 IPv4 subnet, which makes the attack of Marcus et al. [168]
unattractive due to its high costs.

However, these countermeasures are not enough, and, as we show
in this chapter, eclipse attacks on Geth ⩽ v1.9.043 43 We responsibly

disclosed our
findings to the
Ethereum foundation
which led to (1) a
bug bounty of 8000
points, yielding a
place within the top
20 of Ethereum’s bug
bounty leaderboard
(bounty.ethere-
um.org/) and (2) a
personal exchange
with the
corresponding
developers and
subsequent hot fixes
in Geth v1.9.0.

are still possible
with very limited effort. Instead of overwriting the complete discovery
table with Sybil nodes, for our attack, we subtly insert adversarial
nodes with carefully selected node IDs, exploiting the interplay be-
tween Kademlia-based peer discovery and connection management.
In particular, we exploit how Geth selects peers from the discovery
table for establishing connections which are subsequently used for
transmitting transactions and blocks. Despite the subnet restrictions
implemented in Geth v1.8.0, we only need two IP addresses from dis-
tinct /24 subnets for a successful attack. Additionally, and in contrast
to [168], we do not necessarily require a restart of the victim node
when peer churn is high and existing connections will eventually be
dropped, although a restart significantly accelerates the attack.

Geth chooses new peers either by (1) directly selecting nodes from its
discovery table or by (2) starting a Kademlia-style lookup to a random
target, which yields new node contact information. We compromise
both mechanisms in slightly different ways, but always exploiting the
fact that node IDs in Kademlia are public, static and can be used to
infer a node’s bucket structure, i.e., which node ID will be mapped to
which bucket. This allows us to generate suitable node IDs (= ECDSA
key pairs) such that we are able to insert a limited number of Sybil
nodes into the victim’s discovery table, one Sybil node per bucket,
with an activity pattern that favors these Sybils when new connections
are set up through (1). For new contacts resulting from (2), lookup
operations, we pre-compute a large number of node IDs and present
tailored choices when queried during a lookup, effectively offering
“better” (albeit false) peers than all honest nodes visible to the victim.

https://bounty.ethereum.org/
https://bounty.ethereum.org/

38 eclipse attack on ethereum

In the remainder of this chapter we dive into the details of this
attack. Our contributions can be summarized as follows:

• The discovery, description and evaluation4444 On our own
Ethereum node,

without harming any
other network

participants.

of an eclipse attack
on Geth versions ⩽ v1.9.0 that exploits fundamental properties
of Geth’s peer discovery logic.

• A description and theoretical analysis of Ethereum’s network
layer management algorithms, based on an analysis of the Geth
codebase; previously available information is scarce.

• A juxtaposition of possible and implemented countermeasures;
both easy fixes to prevent the presented attack and ideas for tack-
ling the fundamental challenge of securing Ethereum’s overlay
network.

On a side note, we chose to name our attack the “False Friends
Attack”, due to the history of explaining these technical concepts to
people without technical backgrounds. When working in an interdisci-
plinary environment, as the authors during the creation process of this
attack, the language barrier between technicians and non-technicians
impedes conversations on purely technical concepts. Hence, by pre-
senting technicalities in terms of the real world, at least some knowl-
edge can be transfered through this barrier. The most successful
explanation appeared to be associating nodes on the network with
people and referring to overlay connections as friendships. An Ethe-
reum node is, therefore, looking for people to befriend (= establish
overlay connections) while keeping a list of potential friends (= the dis-
covery table) to call, when an actual friend leaves (= disconnects). The
attack now involves creating fake friends in such a fashion that they
specifically fulfill what the victim node is looking for in a friend (=
crafting suitable node IDs for each bucket and the lookup operation).

In the following, after establishing related work (cf. Section 3.2) and
the necessary background to Ethereum’s network stack (cf. Sections 3.3
and 3.4), we present the false friends attack as well as a theoretical
analysis in Sections 3.5 and 3.6. The chapter finishes with a real-
world evaluation of the attack in Section 3.7, as well as a discussion of
countermeasures and deliberations on the cost/benefit ratio of eclipse
attacks real-world systems.

3.2 related work

The literature on security considerations in peer-to-peer networks in
general and Kademlia-based networks in particular is vast; in the
following we focus on research most closely related to our attack, as
an introduction to eclipse attacks in general was given in Section 2.5.

3.2 related work 39

3.2.1 Attacks on Kademlia-based networks

The security of Kademlia [170] and its inspired implementations have
been studied extensively [147, 161, 245, 264]. Steiner et al. [245] explore
the space of possible attacks and implications whereas subsequent
works focus on optimizations of these attacks [161, 264] and circum-
venting implemented countermeasures [147]. Most approaches require
the ability to arbitrarily choose node IDs. Therefore, many mitigations
focus on restricting the generation of node IDs by some form of trusted
third party, e.g., through cryptographic signatures [29, 50, 97, 238, 239,
245].

Similar to our false friend attack where we insert carefully selected
node IDs into the victim’s discovery table, [264] present a low-resource
approach to poison routing entries in the KAD network. Given multi-
ple attacking nodes, the ID space is partitioned and routing entries are
hijacked by spoofing messages. In Ethereum, message spoofing and
arbitrary node ID choice are impossible, making our attack conceptu-
ally different, though closely related to previous attacks on the KAD
network. Most notably, [161] also conjecture that a purely trustless
countermeasure cannot exist, due to the fundamental problem of Sybil
identities [86].

3.2.2 Eclipse Attacks in Blockchain Systems

Heilman et al. [131] were the first to study eclipse attacks on peer-
to-peer blockchain systems, in particular Bitcoin. Eclipsing Bitcoin
peers requires an extensive amount of IP addresses, comparable to
ISP-grade resources or small botnets and the implemented counter-
measures further increase these costs. However, despite the introduced
countermeasures, eclipse attacks are still possible when exploiting
BGP [15, 255]. In these attacks, an adversary hijacks routing prefixes
to insert itself as a man in the middle within the communication of
Bitcoin nodes. Due to the lack of encryption in the Bitcoin overlay,
packets can not only be delayed or dropped but even tampered with.
Routing attacks on BGP are facilitated, as there are strong centraliza-
tion tendencies in hosting providers, e.g., Amazon AWS and Hetzner
are popular places for hosting full Bitcoin nodes. Gervais et al. [116]
incorporate previous security considerations and provide a quanti-
tative framework to reason about the fundamental tradeoff between
security and performance in PoW blockchains.

Eclipse attacks are not only possible on Bitcoin itself but also on
payment channel networks, such as the Lightning network [125, 225,
228]. Synchronization and timely response times are especially im-
portant in layer-two protocols, enabling time-dilation attacks to steal
funds by delaying the transmission of blocks to a victim in order to
commit a fraudulent channel state to the blockchain [225].

40 eclipse attack on ethereum

For Ethereum, [117] describe an attack on the block synchronization
mechanism. When an Ethereum peer misses a block, it will start a
synchronization with exactly one neighboring peer. An adversary can
leverage this behavior to indefinitely stall the synchronization or inject
an adversarial chain of blocks.

As noted throughout this chapter, several eclipse attacks on Ethe-
reum are described in [168]. Our approach differs since we do not
fill the complete table with adversarial nodes instead insert node IDs
with specific properties.

The detection of eclipse attacks has been studied for traditional
P2P networks, see for example [57, 136]. These approaches aim at
detecting malicious response patterns through diverging lookups
[115] or through network topology assessments [57]. In the context
of blockchain systems the current state of the discussion is unclear.
Signatures of packet arrivals [11] and block arrival times [273] have
been proposed as suitable detection mechanisms, while others have
argued that the large variance of, e.g., block arrivals makes such
detections susceptible to a high degree of misclassification [225].

3.3 background : the ethereum network stack

In the following, we introduce the overall architecture of Ethereum’s
Peer-to-Peer network as implemented in Go Ethereum v1.8.0. Un-
like similar descriptions in related works [143, 168], the information
presented here uses a naming of high-level components that is more
strongly aligned with the official Ethereum terminology.

The overall network architecture of Ethereum is summarized in
Figure 12. Ethereum’s network layer consists of four major compo-
nents, namely: discv4 for node discovery; RLPx as a secure transport
layer; DEVp2p for session management on top of RLPx and the actual
Ethereum protocol (eth) which runs on top of DEVp2p. The Whisper
protocol (for decentralized applications) and the Swarm protocol (for
decentralized file storage) are other subprotocols on top of DEVp2p.

DEVp2p not only provides the foundation for the Ethereum protocol
and other application protocols, it also manages connections to other
peers, the entirety of which forms the overlay on which blocks and
transactions are distributed. Geth by default has a total of 25 TCP
connections to other peers speaking the Ethereum protocol. Of these 25

slots, 17 are reserved for inbound connections (initiated by other peers),
whereas the remaining 8 are allocated for outbound connections. In
this case, inbound means that a remote peer sent a SYN-packet to start
a TCP connection with the local peer. No further restrictions apply
to inbound connections; if an inbound slot is available Geth simply
accepts any connecting peer that supports the Ethereum protocol and
operates on the same network (main, testing, etc.). The 8 outbound

3.3 background : the ethereum network stack 41

discv4 Peer Discovery

DEVp2p Peer Management

RLPx Transport Layer

Node proposals:
ReadRandomNodes,

Lookup

manages connections

FindNode, ping

Start/Recv. Conn.

Eth, Swarm,

Whisper

Figure 12: Overview of the Ethereum Network Stack.

slots are therefore especially important, as they are the most difficult
ones obtain control of for an attacker mounting an eclipse attack.

In contrast to DEVp2p, the discv4 node discovery stores information
about all node types in the overlay. This includes nodes without
support for the Ethereum protocol (which is a perfectly valid case
in the design logic of Ethereum’s protocol stack). The discv4 node
discovery is inspired by the Kademlia DHT (cf. Section 2.2) in that
information about known overlay nodes is stored in a table separated
into k-buckets.

This discovery table is used by DEVp2p to obtain outgoing connec-
tion candidates. Every time not all outbound slots are occupied, the
DEVp2p peer management queries the discovery table in two distinct
fashions depicted in Figure 13.

First, half of the currently empty slots (rounded down) are filled with
a direct request to the discovery table via the function ReadRandom-
Nodes. Second, the remaining slots are filled from the lookup-buffer,
which holds the result of a Kademlia-like lookup to a random target
ID. Note that this procedure is repeated every time an outbound slot
becomes available. Therefore, Geth fills half of the currently available slots
with each mechanism. Depending on the situation, this skews the
distribution of outbound connections towards either mechanism. If
only one slot becomes available at a time, the lookup-buffer is favored
(ReadRandomNodes gets ⌊0.5⌋ = 0 slots). Otherwise, if two lookup-
buffer slots become available repeatedly, ReadRandomNodes is favored
in comparison to the lookup-buffer.

Our false friends attack exploits these two interfaces between node
discovery and peer management. The discovery table therefore con-
stitutes a particularly important component of Ethereum for our pur-
poses, and deserves a closer look.

42 eclipse attack on ethereum

n > 0 free
outbound

slots

Read
⌊n/2⌋
nodes

from table

Lookup-
buffer

empty?

Read
n− ⌊n/2⌋

nodes
from

lookup-
buffer

Lookup to
random
target

yes no

Figure 13: How outbound connections are established.

3.4 node discovery and selection

Although Ethereum’s node discovery table largely resembles a Kadem-
lia routing table, its sole purpose is to manage a set of known nodes
which serves as a basis for establishing connections in DEVp2p. In
[161] it is conjectured that Kademlia was chosen as a basis due to fu-
ture plans to shard the blockchain, i.e., to partition it over the network
for increased transaction throughput and scalability.

3.4.1 Node IDs

As in Kademlia, node IDs in Ethereum serve as public identifiers
for each node in the Ethereum network. A node ID in Ethereum is a
marshaled 512-bit ECDSA public key. However, distance computations
only operate on Keccak256-hashes [36] of node IDs, effectively yielding
node IDs with 256-bit length. When referring to node IDs in the
following, this involves hashed ECDSA public keys. Node IDs are
supposed to be static, as stated in the official Ethereum documentation:

Each node is expected to maintain a static private key which is
saved and restored between sessions. It is recommended that the
private key can only be reset manually [...].2

It is easy to generate and use many different identities by creating
ECDSA key pairs.

3.4.2 Buckets and Log-Distance-Metric

The buckets of Geth’s discovery table hold up to k = 16 nodes each.
Exactly as in Kademlia, the nodes in each bucket share a common

2 https://github.com/ethereum/devp2p/blob/
6504d410bc4b8dda2b43941e1cb48c804b90cf22/rlpx.md

https://github.com/ethereum/devp2p/blob/6504d410bc4b8dda2b43941e1cb48c804b90cf22/rlpx.md
https://github.com/ethereum/devp2p/blob/6504d410bc4b8dda2b43941e1cb48c804b90cf22/rlpx.md

3.4 node discovery and selection 43

property: the distance, according to some metric, between their node
ID and the local node’s ID is the same. [143, 168] state that Ethereum
uses the so-called log-distance metric. We argue that this metric is
identical to the distance metric used to determine buckets in Kademlia.
Marcus et al. [168] define the log-distance between two hashes be
as ⌊log

2
(N1 ⊕N2)⌋, or equivalently, 255 - the length of their common

prefix — which is exactly how buckets are organized in Kademlia. Due
to the uniqueness assumption of node IDs, this yields |{0, ..., 255}|= 256

possible distances.

In response to the eclipse attack by [168], Geth ⩾ 1.8.0 restricts the
number of buckets to 17, starting from the furthest distance of 255 to
the minimum possible log-distance of 239.

The log-distance metric leads to a skewed distribution of nodes
between buckets: most of the lower buckets are empty, since the
probability to fall into a specific bucket decays exponentially with the
associated distance [170].

3.4.3 Entering a Bucket

A local node learns of neighboring nodes either by receiving an unso-
licited ping packet through a lookup operation. The lookup process
also initiates a ping/pong exchange, which then triggers the node to
be added to the discovery table. In any case, before a node enters the
discovery table, a number of checks are performed which are depicted
in Figure 14. Assume that the local node receives either a ping packet
or a pong reply to a previously sent ping. Two cases are to be distin-
guished: first, the node may already be in its respective bucket; in
this case it is simply moved to the first position. This induces a “least
recently active” sorting of the nodes within a bucket [170], where
activity simply means sending (responding to) a ping-packet. Second,
in case the node is not already in a bucket, it is added if the bucket
is not full. If the bucket is already full, candidate nodes are stored
in a replacement list that stores up to ten nodes (as in the original
Kademlia proposal [170]).

Every 5 s (on average), the last node of a random bucket is pinged
and replaced with a random node from the respective replacement list
if it fails to respond. In contrast to buckets, the replacement list is a
simple FIFO queue that evicts the last entry every time a previously
unknown node is added to the list. Last but not least, a node is only
added to its respective bucket (or replacement list) if it meets certain IP
address restrictions: Geth restricts the number of IP addresses coming
from the same /24 subnet to two per bucket, and to ten in the whole
discovery table.

44 eclipse attack on ethereum

Unsolicited
ping/
Reply

to pong

Node
already in

bucket?

Bump
to front

Bucket
full?

Add to
bucket

Already
in replace-
mentList?

Do
nothing

Add to
replace-

mentList

yes

no

no

yes

yes no

Figure 14: How nodes enter buckets.

3.4.4 FindNode-Requests

Lookups in Ethereum are used, among other things4545 FindNode
requests are also used

to populate the
discovery table and
to resolve node IDs

to IP addresses [168],
which is outside the

scope of this work.

, to discover new
peers. These lookups are performed iteratively by sending so-called
FindNode requests, to which the recipient answers with a neighbors
packet containing information about nodes from its discovery table.

The most important use of lookups in our scenario is to populate
the so-called lookup-buffer. As already outlined, the lookup-buffer is
one of two methods by which the DEVp2p subsystem finds new nodes
to connect to. When the lookup-buffer is empty, Geth populates it
by starting a lookup to a random target. That is, it sends a FindNode
request to peers that are “close” to the random target. For lookups,
Ethereum uses the plain xor metric instead of just the length of the
common prefix. To illustrate, let N1, N2 be two node IDs and t a
(random) target ID. For Ethereum (and likewise Kademlia), N1 is
closer to t than N2 iff. N1 ⊕ t < N2 ⊕ t, where ⊕ denotes the bitwise
xor operation and the result is taken as the binary representation of
an unsigned integer. To ease notation, we define the abbreviation <t

as N1 <t N2 :⇔ (N1 ⊕ t < N2 ⊕ t).
The iterative lookup procedure to populate the lookup-buffer is

visualized in Algorithm 1. First, a random target ID t is chosen.
Subsequently, all known peers from the discovery table are sorted
according to <t, effectively yielding the 16 peers that are closest to
the random target t. In a next step, a FindNode request is sent to
each of these 16 peers, asking them for their respective neighbors that

3.5 the false friends attack 45

are closest to t. If successful, each queried peer will answer with a
neighbors packet containing up to 12 peers (1280 byte). All received
neighbors are combined, sorted by <t, and again restricted to the
16 peers closest to the random target t. This yields the result set of
the first round. This process is iterated until the result set eventually
stabilizes. If a result set contains the same peers as the result set of
the previous iteration, the procedure terminates.

Algorithm 1 Populate Lookup-buffer

t← random node ID
N0 ← {16 closest known peers to t}

loop
for oi ∈ N0 do

Fi ← {closest peers of oi to t, as returned by oi}

N← N0 ∪
⋃︁

15

i=0
Fi

N1 ← sort(N, t)[0 : 15] // 16 closest to t

if N0 = N1 then return N0

else
N0 ← N1

3.5 the false friends attack

After having established the necessary background in the previous
sections, we now describe the details of our false friends attack, with
an in-depth analysis of the attack following in Section 3.6.

To eclipse a victim, its 8 slots for outbound connections as well as
the 17 slots for inbound ones have to be filled with adversarial nodes.
The inbound connections slots can easily be filled since Geth does not
impose any restrictions on inbound connections. Hence, it suffices to
start multiple Geth instances on different ports and configure them to
repeatedly connect to the victim. Due to the lack of restrictions, one
moderately powerful host with one IP address is enough to fill the
inbound slots. Note that these Geth instances do not need to actively
participate in block and transaction distribution.

To fill the outbound connection slots, we have to make sure that
only adversarial nodes are proposed to the DEVp2p peer management
via the two mechanisms (cf. Section 3.3). Whereas [168] fills the whole
discovery table with Sybil nodes to ensure that only adversarial nodes
can be proposed to the peer management, we achieve the same result
with only one Sybil node per neighbor table bucket. It suffices to have
one Sybil node in each bucket of the neighbor table to make sure that
only adversarial nodes are returned to the peer management. This
effectively circumvents the implemented countermeasures and still
needs very little resources (two IP addresses in distinct /24 subnets).

46 eclipse attack on ethereum

In contrast to [131, 168] we do not necessarily require a restart
of the victim node for our attack to be successful, though it speeds
up the attack. In both cases, an adversary has to wait until existing
connections are terminated for other reasons, such as timeouts. Our
measurements (discussed in Section 3.7) indicate that connections on
the Ethereum network are rather short-lived and a successful attack
against a non-restarting victim node is, in principle, possible.

Our attack is facilitated by the fact that countermeasures 2 and
3 from [168] were not implemented in Geth. Countermeasure 2, a
fixed mapping between the IP address and ECDSA key would raise
the requirements for a false friend attack to 25 unique IP addresses
(one for each connection slot). While moderately increasing the nec-
essary resources for an adversary, the impediment for the network
is significant, since multiple Geth instances behind a NAT would be
impossible. Countermeasure 3, making the mapping of IDs to buckets
in the neighbor table secret, is a viable mechanism to drastically raise
the bar for an attacker. In essence, this proposal is similar to our pro-
posal of eliminating Kademlia altogether (cf. Section 3.8) However, as
one would lose the benefits of Kademlia in case routing ever becomes
relevant, the developers chose not to implement countermeasure 3 nor
followed our proposal.

3.5.1 Taking Over ReadRandomNodes

The function ReadRandomNodes returns (per default) at most 4 nodes
from the discovery table, which are then used by the peer management
to establish outbound connections. Most importantly, ReadRandom-
Nodes only returns the head of randomly chosen buckets. Presumably,
this design choice is due to the implicit sorting by activity within a
bucket (cf. Section 3.4): peers in the front of a bucket are more active
and/or have a better latency than the others and are therefore favorable
to connect to. This behavior can easily exploited by an adversary, since
the sorting by activity merely requires the adversary to regularly send
a ping-packet to stay ahead of the other peers. Therefore, it is sufficient
for an attacker to populate each bucket with one node instead of the
whole discovery table. To this end, the adversary repeatedly generates
new ECDSA key pairs, computes the node ID and checks whether this
particular ID is mapped to the desired bucket.

Current versions of Geth maintain 17 buckets and implement an
IP-based restrictions such that at most 2 nodes from the same /24

subnet can be included in the same bucket and at most 10 nodes from
the same /24 subnet can be in the whole discovery table. With these
current properties of Geth, only two IPs from distinct /24 subnets are
necessary for successfully compromising ReadRandomNodes.

3.6 analysis of the false friends attack 47

3.5.2 Exploiting the lookup-buffer

The lookup-buffer is the second source used by DEVp2p to get poten-
tial peers to connect to. It is populated with a Kademlia-like iterative
lookup of a random target ID. To this end, the local node sends Find-
Node-Requests with a random target to those nodes from the discovery
table that are closest to that target (cf. Section 3.4.4). From the received
node set, the 16 closest nodes are used to populate the lookup-buffer,
sorted by their distance to the target. DEVp2p then partially fills the
open outbound connections slots by going through the lookup-buffer
from the top (i.e. minimum distance).

To fill the lookup-buffer with adversarial nodes two steps are nec-
essary: First, an adversarial node must be queried during the look-
up-process. Second, the node IDs returned by the adversary must be
smaller than all other node IDs returned during the lookup. The first
step is always given when there is an adversarial node in each bucket:
the xor distance is mainly influenced by the length of the common
prefix and each bucket stores node IDs with a specific common prefix
length. Therefore, an adversarial node in each bucket ensures that
the attacker is always queried during a lookup (cf. Section 3.6.2 for a
detailed analysis).

The second step can easily be solved by generating sufficiently many
node IDs. Since node IDs are hashed ECDSA keys, they are uniformly
distributed over the ID space; hence, the more node IDs we generate,
the higher the chances to be smaller than the rest of the returned
IDs. In the end, by choosing the number of pre-computed keys high
enough, it is very likely that all of our 16 closest IDs are closer to the
target than any ID naturally occurring in the Ethereum network.

3.6 analysis of the false friends attack

In the following we analyze the mechanics of our false friends attack.
We compute the expected number of necessary key pair generations
and for entering every bucket and to exploit the lookup-buffer. Fur-
thermore, we study the probability of receiving FindNode-Requests
with different hypothetical bucket sizes.

3.6.1 Entering a Bucket

Our false friend attack requires one adversarial node in each bucket.
The question arises how many key pairs we have to generate and how
much time it takes to do so.

Since SHA256 is a cryptographic hash function, we assume node
IDs to be uniformly distributed [100], i.e., each bit has a probability
of 1

2
of being 0 or 1. Therefore, each ECDSA key pair generation

with subsequent hashing corresponds to fair coin tosses repeated

48 eclipse attack on ethereum

independently of each other. Let N be the hashed node ID of the
victim node, i.e., N is fixed. Then, for some generated hashed node
ID, say h, the probability that the first bit of h is equal to the first bit
of N is 1

2
. Recall that the log-distance metric measures the length of

the common prefix between N and h (cf. Section 3.4.2). Hence, with
probability 1

2
, the two hashes differ at the first bit, which corresponds

to a log-distance of 255. For subsequent buckets the concept is similar:
the probability to have a log-distance of 254 is 1

4
since we have to

be equal in the first and second bit, i.e., 1

2
· 1

2
= 1

4
. In summary, the

probability to have a specific log-distance to a given target hash is

p := P[log-distance(h1, h2) = i] = 2
i−256. (7)

Changing perspective, we can now calculate the expected number
of necessary key pair generations to fall into a specific bucket. Finding
a key pair for a desired bucket, or equivalently, a desired log-distance,
can be modeled as a series of independent Bernoulli trials until the
first success. Each key pair generation is a Bernoulli trial with success
probability p (from Equation (7)). Repeatedly performing Bernoulli
trials and stopping at the first success yields a geometric distribution.
Therefore, generating key pairs for a specific bucket can be modeled
as a geometric distribution, with expectation

E[# key pair generations for log-distance i] =
1

p
= 2

256−i. (8)

For example, to generate an ID with the (in Ethereum) lowest possible
log-distance of 239 one would, on average, need 2

17 = 131072 key
pair generations and hash operations. Generating a node ID for every
bucket requires an average number of operations of

255∑︂
i=239

2
256−i =

17∑︂
i=1

= 2
i = 262142. (9)

Note that these node ID generations need to be performed only once
per victim node. Furthermore, in Section 3.7.1 we will see that even
on a moderately powerful machine, 35000 node IDs can be generated
per second.

3.6.2 Computing the Probability to Receive a FindNode-Request

In the following we analyze how probable it is to be asked during a
FindNode-Request round. Recall from the previous section that we
insert an adversarial node ID into each bucket for our false friends
attack. Hence, searching for the 16 closest neighbors will always return
at least one attacker-controlled node ID.

3.6 analysis of the false friends attack 49

One could imagine that a simple countermeasure to the attack in
Geth v1.8.0 is to simply increase the size of the buckets to hold more
than k = 16 nodes. In the following we analyze the probability for
an attacker to receive a FindNode-Request in different scenarios. As
we will see, increasing the bucket size does not introduce significant
hurdles for an adversary.

For the lookup-process, the victim generates a random target ID, say
D, and computes its k closest neighbors to D. “Close” is defined in
terms of the simple xor metric; for two IDs a, b the distance is defined
as d(a, b) := a⊕ b, taken as integer. Under the xor metric, node IDs
that have a longer common prefix D are thus considered closer than
ones with a shorter common prefix. Each bucket partitions the binary
tree of node IDs into branches by their common prefix. Therefore, the
closest neighbors to D are the ones in D’s bucket.

We can assume that node IDs are uniformly distributed in {0, 1,

. . . , 2
256 − 1} since they are hashed public keys with 256 bit length.

Without loss of generality, let us map node IDs to be within [0, 1].
As a simplification, assume them to be continuously and uniformly
distributed on said interval.

On a side note, in the following we refer to node IDs and distance
between them as if they were real numbers on the unit interval with
the <-relation — simply to ease the understanding. This does not im-
pede analytical exactness: apart from the assumption of continuously
distributed node IDs, xor operations and the normalization induce
permutations of node IDs but to not alter the general structure. The
xor distance metric is unidirectional [170], i.e., for a fixed x and fixed
distance c, there exists exactly one y s.t. d(x, y) = c. Therefore, since
node IDs are uniformly distributed, so are the distances to a specific
target.

To illustrate, consider a lookup target ID D and node IDs X1, . . . , Xm,
for a moment not normalized but as binary strings of length n. Each
possible binary string is equally likely: P[X1 = x] = 2

−n. Hence, for a
fixed D:

P[d(D,X) = c] = P[X = x] = 2
−n, (10)

where x is the ID with d(D, x) = c.
To summarize this side note, we can omit the transformation in-

duced by the xor distance and treat node IDs as numbers in [0, 1] with
the normal, well-known relations between them when talking about
distance.

3.6.2.1 Situation with Larger Buckets

Let D ∈ [0, 1] be the uniformly random target ID chosen by the lookup-
process and Y1, . . . , YN be the IDs of honest nodes stored in the bucket

50 eclipse attack on ethereum

of D, say b. We consider the case k > N > 16, i.e., the bucket is at its
capacity limit with adversarial and benign nodes.

Assume for the moment that the adversary has exactly one node
ID in b, with ID Z. Although the Y1, . . . , YN share a common prefix,
their suffix is distributed uniformly at random because node IDs are
hashes. For an attacker to receive a FindNode-Request it suffices to
be smaller (w.r.t. D) than the 17-th closest ID, i.e., the 17-th order
statistic. We denote the ordering of IDs Yi with respect to D as
Y(1) <D Y(2) <D . . . <D Y(N), where Y(1) is the node with minimum
distance to D. It now remains to compute the following probability:

P[Z < Y(17)]. (11)

The density of Z is fZ(z) = 1, due to its uniformity. Similarly, let
fY(y) denote the density of some Y. To compute Equation (11), we
have to consider the joint distribution of Z and Y(17) in the cases where
Z < Y(17). Note that Z and Yi are independent. We then obtain for any
independent Y:

P[Z < Y] =
∫︂

1

y=0

∫︂y
z=0

fY,Z(y, z)dzdy (12)

=
∫︂

1

y=0

∫︂y
z=0

fZ(z)dz⏞ ⏟⏟ ⏞
=y

fY(y)dy (13)

=
∫︂

1

y=0

y · fY(y)dy (14)

= E[Y]. (15)

It is well-known that the order statistics of uniform variables are
Beta-distributed [114], i.e., Y(l) ∼ Beta(l,N + 1 − l). Inserting that into
Equation 15 we get

P[Z < Y(l)]
(15)
= E[Y(l)]

Beta distr.=
l

N + 1

. (16)

In general, the attacker can have multiple, say a ∈ N nodes in
the bucket b. To get queried, at least one attacker ID has to be within
the closest nodes. Denote the adversarial IDs by Z1, . . . , Za ∼ U[0, 1].
Then we obtain:

P[At least one attacker ID within l closest] (17)

= 1 − P[Z1 > Y(l) ∧Z2 > Y(l) ∧ . . . Za > Y(l)] (18)
i.i.d.= 1 − P[Z1 > Y(l)] · . . . ·P[Za > Y(l)] (19)

(16)
= 1 −

[︃
1 − (

l

N + 1

)
]︃a

. (20)

3.6 analysis of the false friends attack 51

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20

Number of Adversarial Nodes

Pr
ob

.t
o

re
cv

.a
Fi

nd
N

od
e-

R
eq

.
No. Nodes

32

136

272

Figure 15: Probability for a single bucket that an adversary gets
queried with a FindNode-Request for a given number of
adversarial nodes in the bucket.

Intuitively, the more adversarial nodes there are in bucket b, the more
unlikely it becomes not to get queried during the lookup-process.

Figure 15 shows the result of Equation (20). It depicts the probability
for the adversary to receive a FindNode-Request over the number of
adversarial nodes in bucket b, which is assumed to be at full capacity,
i.e., k = N + a46 46 In Figure 15, the

numerator of
Equation (20) is to
this end adapted to
N + 1 − a.

. For the number of nodes per bucket we consider
three cases:

1. k = 32, double the size of current buckets.

2. k = 136, i.e., the size of a bucket corresponds to half of the
current size of the complete discovery table.

3. k = 272 which corresponds to the maximum size of the current
discovery table (17 buckets à 16 nodes each).

3.6.3 Filling the Lookup-buffer with Pre-Computed Node IDs

Recall, that in order to take over the lookup-buffer, we identified two
necessary steps: First, an adversarial node must be queried during
the lookup-process. In a second step, the node IDs returned by the
adversary must be smaller (with respect to the random target) than
all other node IDs returned during the lookup. Intuitively, this can
be ensured by pre-computing a large number of node IDs, since each
ID generation corresponds to a draw from the uniform distribution.
Every draw has the same probability to be smaller than any other
node ID on the Ethereum network. Therefore, the more node IDs
we generate, the more likely this event becomes. The question that
remains is the following: how many ECDSA key pairs should an

52 eclipse attack on ethereum

adversary generate in advance to almost always return the smallest
node ID?

To model this scenario, assume all other nodes already replied to
the FindNode-Request with target D, which yields node IDs (sorted
w.l.o.g) 0 ⩽ X1, < X2 . . . < Xm ⩽ 1. 4747 Technically, the

sorting is w.r.t. to
<D. As outlined

before, the xor
operation only

induces a
permutation of the
Xi, preserving the

uniform distribution.
We therefore

purposely omit the
xor operation for the

ease of
understanding.

For a new node ID to be the
minimum, it has to be smaller than the minimum of the honest IDs,
which is X1. Therefore, it suffices to find the distribution function
of X1 and use Equation (15). The minimum of independent uniform
random variables has the following distribution function:

P[min{X1, . . . , Xm} ⩽ x] = 1 − (P[X1 > x] . . .P[Xm > x]) (21)

= 1 − (1 − x)m = FXmin(x), (22)

with the density fXmin(x) = m(1 − x)m−1. Let Y ∼ U[0, 1] represent a
node ID generation and let X := min{X1, . . . , Xm} Using Equation (15)
and integration by parts we obtain:

P[Y < X] =
∫︂

1

t=0

t ·m(1 − t)m−1dt (23)

= [−t · (1 − t)m]1
0⏞ ⏟⏟ ⏞

=0

+
∫︂

1

t=0

(1 − t)mdt (24)

=
[︂
−

1

m + 1

(1 − t)m+1

]︂
1

0

(25)

=
1

m + 1

. (26)

In other words, every generated node ID has a chance of p := 1

m+1

of being the minimum node ID. Therefore, repeating the process
of generating node IDs again yields a Bernoulli trial with success
probability p.

In reality, we do not know the other node IDs before we start
generating our own, meaning that whether a draw was successful
cannot be determined. Instead, an adversary pre-computes a large
number of IDs and simply returns the smallest ones with respect to
the random target, if she receives a FindNode-Request. Still, we can
bound the probability that at least one of our draws is smaller than
the minimum returned by the honest nodes. Let there be m node
IDs in the Ethereum network and n pre-computed node IDs by the
adversary. For convenience, we define Ymin := min{Y1, . . . , Yn} and
Xmin := min{X1, . . . , Xm}.

P[Ymin < Xmin] = P[Yi < Xmin for at least one i] (27)

= 1 − (P[Y1 > Xmin] . . .P[Yn > Xmin]) (28)

= 1 − (1 −
1

m + 1

)n (29)

3.7 evaluation 53

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1e+03 1e+04 1e+05 1e+06

Number of precomputed IDs

Pr
ob

.t
o

re
tu

rn
sm

al
le

st
ID

No. Nodes
9000

25000

5e+05

Figure 16: Probability that the lowest node ID is returned, depending
on the number of honest nodes in the network.

The resulting probability is depicted in Figure 16 for different choices
of n, the number of node IDs in the network. It can be seen that
the more honest nodes there are, the smaller the probability for an
adversary to have the minimal node ID becomes.

The red (solid) and green (short dashed) lines depict a situation
where every node ID would correspond to an actual node on the
Ethereum network. The red (solid) line shows the probability for
n = 9000 nodes, as reported by Ethernode48 48 https: // www.

ethernodes. org/
network/ 1

. The green (short dashed)
line corresponds to n = 25000 nodes in the network, the sum of all ap-
proaches discussed in [143]. The blue (long dashed) line corresponds
to an upper bound on the number of node IDs of n = 5 · 10

5 nodes. In
all cases, however, 5 · 10

6 pre-computed ECDSA key-pairs are enough
to return the minimal node ID almost certainly.

Note that we have to distinguish between node IDs in the discovery
table and actual nodes on the main Ethereum network. The Ethereum
protocol is running concurrently with other protocols on the same
communication channels and packet structures; therefore the number
of node IDs is ten times larger than the number of Ethereum nodes
at roughly 3 · 10

6 node IDs [143]. In case of returning the smallest ID
for a FindNode-Request, this behavior slightly raises the bar for an
attacker.

3.7 evaluation

We evaluated the previously described concepts using a victim node
deployed specifically for this task. The victim had the latest Geth
version from Github (v1.8.20) and was connected to the Ethereum
main network.

https://www.ethernodes.org/network/1
https://www.ethernodes.org/network/1
https://www.ethernodes.org/network/1

54 eclipse attack on ethereum

0

5

10

15

0 50000 100000 150000

Number of Generated node IDs
D

ur
at

io
n

[s
ec

]

No. Threads
1

2

4

Figure 17: Mean duration of node ID generation with different num-
bers of parallel threads. The (very small) error bars show
the 95% confidence interval for 100 runs.

3.7.1 Pre-Computing Node IDs

The generation of node IDs is essential for placing a node in each
bucket and to ensure that the lowest ID is returned during the lookup-
process. Therefore, we measured the calculation time for new ECDSA
key pairs and the corresponding hashes. Our measurements were
conducted on a system with an Intel® Core™ i5-6600K processor
with four logical cores. The results depicted in Figure 17 show that,
on average, 35000 ECDSA keys and corresponding hashes can be
generated per second when using four parallel threads. Generating
a node ID to enter bucket number 239 (the smallest bucket) would
therefore only take 7 s on average. For the real-world implementation
of the attack, we pre-computed 5 · 10

6 node IDs to hijack the lookup-
buffer. Computing this many IDs takes roughly 3 min using four
parallel threads and 11 min with a single thread. Note that even
when attacking different victim nodes this computation has to be
performed only once, since the target of a lookup does not depend on
any victim-specific information.

3.7.2 Attack Implementation

First, to compare the performance of the attack to [168], we repeatedly
attacked a recently restarted victim. Our attack relies on connection
slots becoming available due to high peer churn. The reliance on
churn implies a delay, as previously established connections must be
terminated before their slots can be occupied by an adversary. Note
that we do not necessarily require a restart of the victim, however,
the waiting time is significantly smaller (in the order of minutes) for
recently restarted nodes.

3.7 evaluation 55

10

20

30

40

50

60

120

240

360

480

720

960

Ti
m

e
U

nt
il

Ec
lip

se
[m

in
s]

Figure 18: Log-scale box plot of attack durations when attacking a
recently started victim. The plot depicts the median dura-
tion as well as the upper and lower quartile and all outliers
outside 1.5 times the interquartile range.

The attack was started immediately after the victim node became
online. No connection slot was yet occupied, but the neighbor table
always contained benign nodes, due to countermeasures introduced
in [168]. We measured the time until every slot was filled with an
attacker-controlled node, with a cutoff timeout of 24 h after which the
experiment was restarted. One could argue that also in unsuccessful
attempts, the victim would eventually have been eclipsed. The attack
was repeated 50 times, out of which 45 times were successful within
the cutoff timeout, whereas 5 attempts did not complete in that time.
Figure 18 shows the results in a log-scale box plot. The box depicts
the upper and lower quartile of measured durations, the median is
indicated as a solid line inside the box. Measurements outside 1.5
times the interquartile range are considered as outliers, plotted as
dots.

It can be seen that out of the 45 successful attacks 75 % completed
in just over 60 min, indicating that an adversary can eclipse recently
restarted nodes within a reasonable time span. This finding implies
that peer churn in the neighbor table and in the peer management is
high in recently restarted nodes.

3.7.3 Distribution of Connection Durations

Since recently restarted nodes exhibit low-duration connections and
high churn, the question arises if the same behavior is true for long-
running nodes, i.e., how connection durations are distributed. To this
end, we ran a unaltered Geth node for 450 hours (almost 19 d) and
logged the duration of every connection. The results are depicted
in Figure 19, showing the cumulative distribution of durations in

56 eclipse attack on ethereum

the trace. To improve the readability of the figure, we excluded con-
nections with a duration shorter than 60 s, which were 90.3 % of all
connections, yielding a total of 361 connections. We suspect the hetero-
geneity of the discovery table as the major cause for the abundance of
connections shorter than 60 s [143]. Ethereum is embedded in a family
of protocols (Section 3.3), all of which use the same ports and message
structures. Kim et al. [143] report that only 10 % of node IDs in the
discovery table correspond to peers speaking the Ethereum protocol,
out of which only 50 % operate on the Ethereum main network. Hence,
in the majority of situations DEVp2p tries to establish connections to
peers which are not useful and immediately discards them again.

It can be seen in Figure 19 that the longest connection duration was
17.4 d, but the majority of connections was much shorter lived. The
quantile shows that 95 % of the considered connections were shorter
than 5.5 d; only 18 connections were longer than this duration. Though
the peer churn is lower than in a restarted node, it is still surprisingly
high for which we have several conjectures: Geth’s development cycle
is fast and requires frequent updates, either due to security fixes or
protocol changes. Additionally, read (write) timeouts of 20 s (30 s) on
the TCP-level are relatively small compared to other networks like
Bitcoin. On the UDP-level, timeouts are set at 500 ms, while [113]
report average inter-node latencies of roughly 180 ms, with 10 % of
peers having a latency higher than 276 ms. Consequently, buckets in
the discovery table experience a high level of churn, making it easy to
enter even fully filled ones.

Given that most connections on the Ethereum network are rather
short-lived, we conducted a proof-of-concept attack without restarting
the victim. We let the victim node run without any attack activity for
72 hours to populate the discovery table, mimicking a more realistic
network state. In our experiment the false friends attack was successful
after 4.7 d (114 hours). In two subsequent experiments, the victim was
left with only one benign connection after 4.9 d and 9.5 d, respectively
(i.e., the node was only one connection away from being fully eclipsed).
We deliberately did not investigate this further as (1) assuming a
recently restarted victim is common for eclipse attacks [131, 168] and
(2) restarts happen regularly on the Ethereum network due to the
rapid development and subsequent node upgrades.

3.7.4 Scaling the Attack

In the description thus far we focused on attacking a single Ethereum
node, the attack can easily be scaled to multiple nodes simultaneously.
The pre-computation of a large of number of node IDs has to be
carried out only once as the resulting database of ECDSA key pairs
can readily be used for another victim. An attacker also needs only
two IPs from distinct /24 subnets to attack an arbitrary number of

3.7 evaluation 57

95% quantile0.00

0.25

0.50

0.75

1.00

0 5 10 15

Duration [day]

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 19: Cumulative distribution of durations in the trace. of the
considered durations were shorter than 5.5 d.

nodes, as the restrictions are enforced per node. The main bottleneck
when scaling the attack is, therefore, starting a sufficient number of
Geth clients.

Recall that connections are established based on (1) a node’s buckets
and (2) the result of a lookup operation (cf. Section 3.5), i.e., not every
inserted node ID is necessarily chosen for a connection. Each started
Geth client is equipped with one of the suitably crafted node IDs,
fitting the corresponding entry the victim’s routing table or respective
lookup operation. Therefore, the re-usability of these Geth instances
depends on (1) the xor distance of victim node IDs and (2) the random
lookup targets.

Consider the case of two victim nodes N1, N2 with IDs X1 and X2

as an example: when X1 and X2 differ in the first bit, the Geth clients
with IDs used to populate the buckets of N1 can only be used to
populate the first two buckets of N2 (and vice versa), as the employed
node IDs for N1 successively share more bits with X1 the higher
their target bucket becomes. Regarding the lookup, since the targets
are chosen uniformly at random, they differ already in the first bit
with probability 1

2
, making it unlikely that node IDs (and thus Geth

instances) can be re-used for another victim node.

In the worst case scenario of maximal different node IDs and lookup
targets, 48 Geth clients would be necessary to eclipse all 25 connections
of both peers, requiring a moderately powerful server to host these
instances of Geth49

49 In our
experiments we
deployed a server
with 16 cores and
16 GB RAM to host
25 Geth clients.

. Hence, as an approximation, the computing
resources required to scale the attack rise linearly in the number of
victims.

58 eclipse attack on ethereum

3.8 countermeasures

3.8.1 Proposed Countermeasures

Before addressing potential countermeasures, let us recapitulate the
problems first which lead to the vulnerabilities addressed in the previ-
ous sections.

First, node IDs are public and relatively static which, in itself, is not
problematic. Although overlays with dynamic node IDs are imaginable
(e.g., in the I2P anonymity overlay [89, 278]), static node IDs are a
reasonable design choice. However, public and static node IDs are
problematic when the entire internal structure of known peers depends
only on these IDs. The possibility to forecast the bucket structure of any
node given its ID (implying the ability to determine which nodes are
queried during a lookup) is the major driving factor of our attack on
Ethereum as well as other related attacks on Kademlia (cf. Section 3.2).

Secondly, Kademlia exhibits logarithmic state complexity, i.e., in
a network with N nodes and bucket size b, each node stores O(b ·
logb(N)) routing table entries [247]. While desirable for content distri-
bution, this behavior severely limits the set of nodes to which overlay
connections can possibly established. As highlighted by Marcus et al.
[168], even when contacting N = 25.000 nodes (which was the entirety
of the Ethereum network in 2017), only 168 routing table entires would
be in the routing table, on expectation. This entails an unnecessarily
reduced diversity in the overlay construction process, which is vital
for robustness (cf. Section 2.4.2).

Several quickly realizable modifications to Geth are conceivable
that will immediately increase the costs of a successful false friends
eclipse. As we saw in Section 3.6.2, increasing the bucket size is not
promising. One possibility are more stringent IP subnet restrictions in
the discovery table and on the DEVp2p connection layer. Enforcing
any subnet restriction on the replies of FindNode-Requests would
increase the number of unique IP addresses necessary for a successful
attack. Another low-invasive countermeasure is to consider all known
nodes in ReadRandomNodes, instead of only the heads of each bucket.
Furthermore, we are only able to perform our attack without requiring
a restart of the victim node because peering relationships in Ethereum
are currently very short-lived. Increasing timeouts on both the TCP-
and UDP-level could decrease this volatility.

On a more fundamental level, we argue that the complexity of Geth’s
current node selection logic is a major enabler for attacks such as [168]
and our false friends attack. New peers are chosen based on their
node ID, which arguably does not make any sense if the goal of
the resulting overlay is flooding identical information to all nodes
(in contrast to ID-based routing). Node IDs are, however, trivially
manipulatable by adversaries to optimize the placement of adversary

3.8 countermeasures 59

nodes in peer discovery tables. The complexities of ID-based peer
selection are therefore not only unnecessary, but also detrimental to
security. For a sustainable, long-term fix we strongly suggest to ignore
node IDs for all aspects of peer discovery for the Ethereum protocol.
Instead, peering decisions should be weighted by more expensive-
to-manipulate node characteristics, such as IP addresses or, perhaps,
publicly locked Ether stake linked to individual nodes. With respect
to minimizing the risk of peer sets filled with adversarial nodes, we
suspect that a node selection that closely resembles a uniform draw
from the population of all nodes is optimal.

It remains unclear why Ethereum chose a structured Kademlia
overlay as the basis for peer discovery, when Kademlia was designed
for a completely different use case (cf. Section 2.2). Furthermore,
especially with Bitcoin as a prime example of a dependable network
layer, specifically designed for the “blockchain scenario”, the design
choice to go for Kademlia instead of simply copying Bitcoin’s well-
designed system is not reasonable.

Decades of research on Sybil-attacks in peer-to-peer networks [86]
suggest that in a completely trustless setting it is only viable to make
the creation of a multitude of adversarial nodes expensive, not im-
possible. The implications of this are twofold. First, in the typical
blockchain scenario one honest node is sufficient to prevent an eclipse
attack50 50 At least in the

case of PoW, it
differs for PoS.

. Therefore, the probability of filling the whole peer list with
adversarial nodes must be minimized by means that are robust to a
potentially substantial population of Sybil nodes. Second, nodes that
are profitable targets for eclipse attacks (high-profile merchants, min-
ers) should not rely on a purely trustless node selection logic. Instead,
these nodes should statically include known and trusted nodes into
their peer list, as seems to be practice in the Bitcoin network [131]. In
other words, potentially attractive targets might want to invest manual
effort to choose their friends wisely.

3.8.2 Implemented Countermeasures

In response to our responsible disclosure and subsequent discussions51 51 We want to thank
Felix Lange for his
time and the fruitful
discussions.

the Ethereum developers implemented several low-key countermea-
sures that have been incorporated into the v1.9.0-release of Geth. These
changes mitigate the immediate threat of false friends eclipse attacks
and raise the bar for an attacker by requiring an increased number
of Sybil nodes to carry out an attack. Admittedly, we still strongly
suggest to fade out the structured Kademlia-based discovery for a less
structured approach, e.g., the addrman used in Bitcoin.

60 eclipse attack on ethereum

3.8.2.1 Raising the Number of Connections to 50

Before Geth v1.9.0, each node established a total of 25 connections by
default, 8 of which are outbound and 17 are inbound. The number of
outbound connections in Geth is defined as

of outbound = ⌊max peers
3

⌋ = ⌊25

3

⌋ = 8. (30)

The total number of connections a Geth node establishes has been
doubled from 25 to 50, effectively doubling the number of outbound
connections as well. Therefore, an adversary would require more
resources to successfully eclipse a victim. Furthermore, since the
false friends eclipse is only successful when existing connections to
honest nodes are dropped, the increased limit raises the chances of
maintaining a long-lived connection to an honest node, thwarting the
eclipse as long as these connections are sustained.

3.8.2.2 ReadRandomNodes Considers All Nodes

The function ReadRandomNodes now selects nodes uniformly at ran-
dom from the set of all nodes in the table, instead of just the bucket
heads. An adversary would have to overtake the whole table to deter-
ministically ensure that only adversarial nodes are returned. However,
the maximum number of nodes in the table is relatively small: 17

buckets with a maximum of 16 nodes, i.e., 272 possible nodes in total.
Assuming 18 adversarial nodes as used throughout this paper, the
chances of selection an attacker-node at random are 18

272
≈ 7 %. In

practice, having a full table is very unlikely, due to Kademlia’s distance
metric: the size of the potential node set of each bucket decreases
exponentially. While the first buckets are always filled, the later ones
tend to be almost empty most of the time. Marcus et al. [168] report
an average table population of 168 nodes, therefore increasing the
chances of randomly selecting an adversarial node to ≈ 11 %.

We argue that while selecting peers uniformly at random is a de-
sirable strategy with respect to robustness, the node set from which
peers are drawn should be sufficiently large.

3.8.2.3 Throttle Inbound Connection Attempts

A major facilitator of our false friends eclipse is the ability to establish
inbound connections from the same IP address. All inbound connec-
tion slots could be filled during our evaluation by running just one
server. Since IP addresses are the most costly part in such an attack
(in comparison to memory or computational power), increasing the
necessary number of addresses to fill inbound connection slots is vital
to raise the bar for an attacker.

Since Geth v1.9.0, inbound connection attempts from the same IP
now have to wait 30 s. While this is a first step in raising the bar

3.9 eclipse attacks in the wild 61

for an attacker, we argue that this is not enough. Additional subnet
restrictions on inbound connections (e.g., only 2 IPs from the same
/24 subnet) are an effective and low-invasive way of making an eclipse
more difficult.

3.8.2.4 Unchanged: The lookup-buffer

A major component of our false friends attack is the exploitation of
the lookup buffer (cf. Section 3.5.2). With one adversarial node in
each bucket (which is still possible) and a sufficiently large number of
pre-computed node IDs, an adversary can still ensure that the lookup-
buffer is filled with only adversarial nodes. Since ReadRandomNodes
cannot be exploited without a significant resource-investment, a com-
promised lookup-buffer does not pose an immediate threat but implies
a non-negligible probability of choosing an adversarial node from the
discovery table with every call of ReadRandomNodes. Hence, the threat
of conducting an attack similar to ours is not convincingly mitigated.
We strongly suggest to enforce subnet restrictions or ignoring the
lookup-buffer completely for peer selection 52 52 The lookup-buffer

and further
mitigations have
potentially been
addressed in later
releases of Geth.

.

3.9 eclipse attacks in the wild

Given the potential attack vectors laid out in the previous sections,
how realistic is the threat of eclipse attacks on blockchain systems
such as Bitcoin or Ethereum53 53 Apparently large

enough to receive a
corresponding bug
bounty.

? Although there have been a plethora
of (partially successful) attacks on Bitcoin, Ethereum and the like,
to the best of our knowledge, there has been no reported case of
adversarial eclipse attacks on Bitcoin and Ethereum or any other
major cryptocurrency. While surprising initially, there are reasonable
economic arguments in terms of the cost/benefit ratio why eclipse
attacks are unpopular amongst adversarial persons: eclipse attacks are
complex and induce costs that are not matched by the potential profit
in comparison to other attacks. We will elaborate on the potential
costs and benefits in the following.

First, targeted eclipse attacks are hard to launch, due to the informa-
tion required. While it is easy to simply launch an attack as described
in this chapter on a random node, eclipsing a specific target to steal
funds through, e.g., double spending, is a significantly harder chal-
lenge. When identifying a potential target an adversary has to gain
knowledge of the target’s network layer address by only having in-
formation about its addresses (Bitcoin) or accounts (Ethereum). Both
Bitcoin and Ethereum provide, for a good reason, no link between
coins and peers which hold them — Bitcoin even tries to obfuscate
the origin of transactions further through diffusion (cf. Section 2.4).
Hence, an adversary needs at least some knowledge on the network
topology to establish the link between coin holder and node on the

62 eclipse attack on ethereum

network. This is not easily obtainable and requires large-scale mea-
surements [207].

Second, eclipse attacks require a constant investment of resources.
On the one hand, maintaining the attack itself by running the necessary
nodes needs time and resources, but apart from a Denial-of-Service
(DoS) not much is gained through simply eclipsing a peer. Double
spending funds or obtaining a mining advantage, the most commonly
cited “use cases” for eclipse attacks [131, 168, 205], require substantial
amounts of mining power. Therefore, even when eclipse attacks are
possible with little time and resources, as demonstrated in this chapter,
turning that attack into profit involves further investments.

In contrast to Ethereum, attacks on Bitcoin require substantial re-
sources, for example. Heilman et al. [131] were the first to showcase
eclipse attacks against Bitcoin — attacks which require a significant
number of distinct IP addresses and can therefore "not easily be
launched from a legitimate cloud service", but require the resources
of a small botnet or organization instead [131]. Further hardening of
Bitcoin since the first eclipse attack’s disclosure has additional raised
the bar for eclipse attacks [255]; requiring 5-6 weeks of Tier-1 or large
Tier-2 ISP resources to divert BGP traffic and inject packets in real time.
Furthermore, this assumes no errors or setbacks during this period,
rendering the eclipse attack presented in [255] fully impractical and
easily solvable by encrypting Bitcoin’s traffic5454 However, as

demonstrated in [15],
BGP-based routing

attacks on Bitcoin
can severely degrade

the performance of
the network

.

Third, other forms of attacks yield higher rewards with higher
certainty. Given the difficulty in launching targeted eclipse attacks, re-
sulting in uncertainty about the potential benefit, the amount of gains
through a mining advantage or double spends are small in comparison
to other attacks. Especially for Ethereum, funds can be stolen through
the exploitation of smart contracts, as has been demonstrated vividly
in the past [19, 60, 66, 214, 223, 226, 282] — a process which is more
reliable and requires less resources than an eclipse attack. Due to the
rapidly emerging technology, new attack targets emerge, as has been
shown by Gudgeon et al. [126] and Qin et al. [222] in the context of
decentralized finance (DeFi). Decentralized finance is an architecture
on top of blockchain platforms (e.g., Ethereum), consisting of decen-
tralized exchanges, lending markets and derivatives [126] — allowing
for a variety of new attacks and possibilities to steal funds. But also
simply scamming people for their wallet’s private keys or launching
51 % attacks on altcoins with low total hash rate are viable, probably
easier and more failsafe ways to steal money instead of eclipse attacks.

However, one should not be fooled into a false sense of security.
Although targeted eclipse attacks are probably unlikely to occur, eclips-
ing random nodes on the Ethereum network requires little resources,
as we have demonstrated in this chapter. The victim still experiences
as DoS which can, at a larger scale, even threaten the performance of
the network as a whole.

3.10 chapter summary 63

3.10 chapter summary

3.10.1 Summary

In this chapter we have seen that eclipse attacks on Ethereum are
possible. To this end, we presented the false friends attack, an eclipse
attack applicable to Geth (⩽ v1.9.0), the by far most popular Ethereum
node software. Our attack requires little resources: only 2 IPs from
distinct /24 subnets are sufficient for a successful attack. Moreover,
and in contrast to previous attacks, it can principally be successfully
mounted without assuming that the victim node reboots at some point.
Our discovery is even more striking when considering that counter-
measures against similar attacks were only recently introduced to the
Geth codebase and did not pose a significant challenge to circumvent.
We argue that the ongoing vulnerability of Geth is due to a fundamen-
tally unsuited node discovery approach. While we propose both short-
and long-term countermeasures to the false friends attack, existing
literature hints that in a completely trustless setting, eclipse attacks
can only be made expensive, not impossible. Potentially attractive
targets might wish to invest manual effort towards choosing their friends
wisely by establishing trusted connections to other known nodes on
the network, e.g., through interconnections between exchanges and/or
miners.

3.10.2 Conclusion

Linking back to the introductory remarks and questions from Chap-
ter 1: are ascriptions of robustness towards Ethereum appropriate?

On the one hand, the high degree of replication as well as the
sheer size of the Ethereum network makes it unlikely for an eclipsing
adversary to significantly impact the network as a whole. While indi-
vidual nodes may fall victim to eclipse and subsequent DoS attacks, a
network-wide partition is, at least with the attack vectors presented in
this chapter, unlikely. In this regard, due to its decentralized nature,
Ethereum can still be considered robust.

On the other hand, our proof-of-concept eclipse attack is a clear
argument against the narratives of robustness and instead reveals the
fragility of Ethereum’s networking logic. Although targeted eclipse
attacks to double spend funds or exclude specific network participants
from the remainder of the network are improbable, non-targeted DoS
attacks still remain an evident issue. Especially due to the low amount
of necessary resources, simply “trying out” becomes a viable option
for an adversary, which is also why we chose not to publish our code
of the attack. Due to the permissionless and “trustless” setting, the
problem of eclipse attacks is unlikely to be solved by purely technical
means, which is why we suggest to utilize existing trust relationships

64 eclipse attack on ethereum

between high-value actors. From this perspective, Ethereum cannot be
considered robust, especially since manual intervention with regards
to overlay connections is advised.

In the next chapter we will examine IPFS, a popular system for
distributed data sharing, as a representative of the storage layer in our
blockchain stack model (cf. Section 2.6). Similar to Ethereum, IPFS
is also based on a Kademlia-style DHT, suggesting the possibility of
similar attack vectors. As we will see, IPFS employs a hybrid overlay of
structured Kademlia lookups combined with unstructured flooding to
one-hop neighbors. This unusual combination and the high number of
established connections renders IPFS significantly more robust against
eclipse attacks and effectively thwarts the attack vectors presented in
this chapter. However, while increasing robustness, IPFS purposefully
sacrifices performance and, as we will see in the next chapter, user’s
privacy through this approach.

4
M A P P I N G T H E I N T E R P L A N E TA RY F I L E S Y S T E M

4.1 overview

Decentralized, peer-to-peer-based data storage systems are becom-
ing increasingly popular, especially in the context of blockchain ap-
plications and censorship-resistant data hosting. As laid out in the
beginning of this thesis (cf. Chapters 1 and 2), narratives around pre-
viously conceived data storage systems such as BitTorrent and related
filesharing networks [217, 263] were mainly focused on performance
and scalability, whereas newer projects put a stronger emphasis on
resilience against attacks and censorship. This shift in narratives is
also reflected in the systems’ designs, e.g., in an increased usage of
techniques common to unstructured overlay networks (as in Bitcoin, cf.
Section 2.4). The Interplanetary Filesystem (IPFS) is a prominent exam-
ple of a newer P2P data storage system [34] — a community-developed
peer-to-peer protocol and network providing public data storage ser-
vices. IPFS employs a hybrid approach between a structured Kademlia
overlay and broadcasting of so-called BitSwap requests for content to
directly connected peers, further supporting the hypothesis of shifted
narratives and system designs.

As a data storage system, IPFS is often cited as a fitting solution
for blockchain-based applications [13, 17, 159, 160, 201, 209, 234, 253]
and was previously used for mirroring censorship-threatened websites
such as Wikipedia55 55

https://github.com/-
ipfs/distributed–
wikipedia-mirror

. It is therefore located on the storage layer of
our blockchain application model (cf. Section 2.6), serving as a prime
example of distributed storage systems. Any Internet-enabled device
can participate as an IPFS node and nodes are operated without
explicit economic incentives. Data items (files, folders, ...) are not
replicated globally but are instead hosted by a small set of nodes, that
item’s providers, who make the data item available to other peers. Data

This chapter is based on extensive previous collaborative work [1, 6, 7]. The idea
for crawling the IPFS network, understanding its structure, as well as the initial
crawler design and evaluation should be attributed to myself (cf. Sections 4.3 to 4.8)
— in close coordination with Martin Florian. Sebastian Rust joined in the process
and significantly improved the quality of this work by redesigning the crawler and
through insightful discussions.
The idea of monitoring BitSwap requests originated in a discussion with Martin
Florian, was validated by myself in a proof-of-concept and subsequently became the
topic of Leonhard Balduf’s master’s thesis which I closely supervised. As a rule of
thumb: all heavy lifting on the data-side has been conducted by Leonhard Balduf, my
very own contributions are, besides the close supervision and rigorous discussions,
the popularity distributions (cf. Section 4.10.5) & the estimation of network size,
based on an idea of Martin Florian (cf. Section 4.9.3).

65

https://github.com/ipfs/distributed-wikipedia-mirror
https://github.com/ipfs/distributed-wikipedia-mirror
https://github.com/ipfs/distributed-wikipedia-mirror

66 mapping the interplanetary filesystem

items are addressed through immutable, cryptographically-generated
names which are resolved to their providers through a distributed
hash table based on Kademlia (cf. Section 2.2). While other solutions
exists, e.g., Ethereum’s Swarm [106] and BitTorrentFS [39], IPFS can
be considered to be the maturest and most widely used system.

Given IPFS’ reported attractiveness as a building block for decentral-
ized applications and censorship circumvention, the question arises
whether the network is actually suited to fulfill this role in terms of
robustness and decentralization. We are particularly interested in the
following questions:

• What are possible (non-exhaustive) avenues for monitoring and
mapping the IPFS network and what limitations do they entail?

• How many and what types of nodes participate in the IPFS
network? What kind of churn do they exhibit?

• How "decentralized" is the network — for example, in terms of
overlay structure and geographical distribution of nodes?

• How secure/robust is the current design against adversarial
nodes, especially regarding its open nature and the inherent
Sybil problem (cf. Section 2.4.1)?

In this chapter, we present the results of comprehensive empirical
studies on the IPFS overlay network to address these questions5656 A condensed

version of these
results can be found

in my talk at
ProtocolLabs,

https://www.youtube-
.com/watch?v=-

jQI37Y25jwk.

. At
the heart of our methodology lies the exploitation of IPFS’s afore-
mentioned hybrid architecture for content retrieval: (1) Kademlia
DHT lookups combined with (2) broadcasting of data requests to all
connected neighbors. In particular, we investigate possible avenues
for measurements and (potentially unintended) monitoring enabled
through this design.

With respect to (1), the DHT, we find that similar to other Kademlia-
based systems [217, 246], connections corresponding to DHT routing
table entries can be learned through carefully crafted, iterative peer
discovery queries. To this end, we developed ipfs_crawler, specifically
designed to extract IPFS’s overlay topology57

57 The code of our
ipfs_crawler and

evaluation is
maintained at

https: // github.
com/ wiberlin/

ipfs-crawler . We
use ipfs_crawler to

conduct and
visualize periodic
measurements at

https://trudi.-
weizenbaum–

institut.de/ipfs_-
analysis.html.

. We crawled the IPFS
DHT back-to-back, i.e., starting the next crawl as soon as the previous
finished, for 7 d in Nov. 2019 (C1) and again in Feb. 2021 (C2) for
a period of 14 days — results relate to the Nov. 2019 crawl, with
comparisons to Feb. 2021 when appropriate (the complete report for
C2 can be found in the Appendix, cf. Section 7.1.1). The obtained
dataset enables insights in the geographic distribution of nodes, graph
properties of the overlay and usage patterns. For example, we suspect
that most nodes are operated by private individuals on a “as needed”
basis. Furthermore, in contrast to prior works on Kademlia [232], IPFS’
overlay network does not seem to be scale-free, especially in the case
of graphs from C2, whose degree distributions do not plausibly stem
from a power-law, log-normal or Poisson distribution. Interestingly,

https://www.youtube.com/watch?v=jQI37Y25jwk
https://www.youtube.com/watch?v=jQI37Y25jwk
https://www.youtube.com/watch?v=jQI37Y25jwk
https://github.com/wiberlin/ipfs-crawler
https://github.com/wiberlin/ipfs-crawler
https://github.com/wiberlin/ipfs-crawler
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html

4.1 overview 67

this renders the IPFS overlay robust against random failures and
targeted removal of nodes with the highest degree.

While crawling the DHT enables insights into the overlay topology,
(2) the broadcasting data requests, enables the monitoring of data
access patterns and trends. We present a passive monitoring method-
ology for collecting and processing BitSwap data requests of a large
share of the network and a monitoring setup as an instance of the
methodology58 58 The corresponding

tools are maintained
at
https://github.com/-
mrd0ll4r/ipfs–
resolver.

. Our system enables us to reveal who requested which
data item when, i.e., which nodeID and IP address requested which
content identifier (CID) at what timestamp — putting the privacy of
users at risk. We collected measurements for nine months using two
spatially diverse monitoring nodes, yielding traces of 9.68× 10

9 data
request entries in total.

Equipped with the obtained dataset, we highlight possible angles
for analyses:

• the estimation of the size of the network (including non-DHT
nodes),

• analyses of activity levels and structure (e.g., geography-based
usage patterns),

• derived content popularity distributions, and

• the feasibility of privacy attacks, by identifying node IDs of
HTTP/IPFS gateways.

An adversary with a similar setup to ours can determine (1) which IP
addresses are interested in a given CID, (2) which CIDs were requested
by a particular node, and, with negligible deniability, (3) whether a
node (and hence its user) has downloaded a specific (CID-referenced)
data item in the recent past.

The remainder of this chapter is structured as follows. After dis-
cussing related work in Section 4.2, we give a concise overview on
the IPFS system based on white papers, public online discussions,
and code in Section 4.3. Notably, we describe the state of IPFS v0.459 59 With additional

notes to subsequent
versions v0.5 and
v0.6 which
incorporated DHT
hardening efforts in
reaction to Eclipse
attacks [220] as well
as significant
implementation
changes to the DHT
in general.

implementations, and contrast it with the design documents, when nec-
essary. Commencing with the DHT aspects, in Section 4.4 we describe
the limits of what can be learned through crawling. Subsequently, we
present the results of a ground-truth setup in Section 4.5, allowing
us to quantify the limits described in Section 4.4. In Section 4.6 we
first describe our ipfs_crawler which we developed specifically for the
task of obtaining snapshots from the IPFS DHT. The results of the
crawl are described in Section 4.7 for which we repeatedly crawled
the network to obtain its overlay topology, thereby also enumerating
all DHT-enabled nodes and their addresses. Equipped with the data
of these crawls, we analyze usage patterns, spatial distribution of
nodes and graph properties of the overlay. After an interim conclusion
(cf. Section 4.8), we move on to BitSwap, introducing our monitoring

https://github.com/mrd0ll4r/ipfs-resolver
https://github.com/mrd0ll4r/ipfs-resolver
https://github.com/mrd0ll4r/ipfs-resolver

68 mapping the interplanetary filesystem

methodology and setup in Section 4.9. Specifically, we showcase meth-
ods to estimate the number of nodes in the IPFS network based on
combining measurements of several monitoring nodes, as well as defi-
nitions on content popularity. Subsequently, we apply the proposed
methods to our BitSwap dataset in Section 4.10. Last but not least,
we end this chapter with a discussion of privacy risks implied by our
methods and potential privacy-enhancement approaches (Section 4.11)
as well as concluding remarks in Section 4.12.

4.2 related work

A variety of P2P systems have been measured and monitored in the
past, through passive measurements, active crawling and probing, as
well as combined approaches. This vast body of literature provides
various fundamental insights on network crawling and characteriza-
tion [141, 176, 233, 243, 244, 246, 248, 249, 277], with applications to
real-world P2P systems like Gnutella [128, 248, 251], BitTorrent [217,
263] and KAD [176, 244]. In the following we will spotlight a selection
of important insights.

In their seminal work, Stutzbach and Rejaie [248, 249] study require-
ments and pitfalls with regards to obtaining accurate snapshots of P2P
overlays. Specifically, the duration of crawls should be as small as pos-
sible, to avoid distortions in the results due to churn. Steiner et al. [243,
244] crawled the KAD network to obtain the number of peers and their
geographical distribution as well as inter-session times. Wang and
Kangasharju [263], in response to [243], highlight the importance of
using more than one geographic vantage point and discuss important
considerations when combining network size estimates from crawls.
Salah et al. [232] studied the graph-theoretical properties of KAD and
contrasted their results with analytical considerations, indicating that
resilience to random outages as well as degree distributions coincide
with simulations. Similarly to KAD and other networks, the DHT
component of IPFS is also based on Kademlia [170].

More recently, P2P networks have received renewed attention in
the context of cryptocurrencies such as Bitcoin and Ethereum [257].
In a measurement setup similar to our BitSwap monitoring (cf. Sec-
tion 4.9), Neudecker et al. [207] inferred the topology of the Bitcoin
overlay through monitoring block and transaction distributions from
several spatially diverse nodes. A similar approach is repeated in [33].
Network-level measurements for topology inference have also been
conducted for the privacy-focused cryptocurrencies Monero [49] and
ZCash [69]. Apart from topology inference, the latency and bandwidth
of Bitcoin and Ethereum peers was measured to assess the systems’
degree of centralization [113] and to assess the network health of
Ethereum in general [111, 143], indicating centralization tendencies as
well as massive inefficiencies in Ethereum.

4.2 related work 69

We extend this line of research on P2P systems by developing and
performing measurement studies on IPFS — a highly popular data
storage network with various reported applications (see, e.g., [159,
160, 253] for a sample of academic projects). Although becoming
increasingly popular, IPFS has so far not been studied extensively by
the scientific community. Mostly, the I/O performance of retrieving
and storing data was studied in the past [17, 61, 62, 237], with partially
contrasting results. Furthermore, the end-to-end performance was
studied at the example case of DTube, a decentralized replica of
YouTube hosted on IPFS [85]. Ascigil et al. [17] report high latencies,
low throughput and high redundancy when retrieving data through
IPFS. Similarly, Shen et al. [237] report high latencies for large files
and large variances in the transmission speed. In [61, 62], the authors
optimize and evaluate the performance of IPFS in edge computing
settings. They report small latencies and high throughput when using
the global DHT as little as possible and running IPFS in a private local
network.

In contrast to these prior works on IPFS, we focus on grasping
the overlay structure and node composition of the public IPFS net-
work. Furthermore, we give a comprehensive, code review-supported
overview of IPFS’ “network layer”, revealing information not previ-
ously available in literature or documentation. We find that clients
maintain a large number of connections, a subset of which is stored
in the k-buckets of the underlying DHT and can be assessed through
crawling, which is covered in the first half of this chapter. Requests
for data are broadcast to all immediate neighbors, a DHT search is
secondary and only performed if none of the neighbors have the data.
While the “unstructuredness” helps the network to be more resilient
against attacks, e.g., eclipse attacks [238], to some extend, it comes at
the cost of privacy. This insight forms the basis of our following inves-
tigation, as we exploit IPFS’ broadcasting behavior through passively
collecting request messages from peers to learn about data shared on
IPFS — the second half of this chapter.

We build upon previously proposed crawling and measurement
methods (e.g., [246, 248, 263]). However, we also find that IPFS differs
substantially from more canonical Kademlia implementations, necessi-
tating enhancements to existing measurement approaches, especially
with regards to crawling. A simple crawler for the IPFS DHT has
been made available before60 60 https:

// github. com/
vyzo/ ipfs-crawl

that aims at enumerating all nodes in the
network. For this work, we developed a new crawler from scratch to
capture the entire overlay topology. It is optimized for short running
times to ensure the correctness of snapshots.

Last but not least, although resilient, DHT is not invulnerable to at-
tacks. As showcased by Prünster et al. [220], IPFS’ connection manager
could be gamed to eclipse a peer with high probability — including
its non-DHT connections. Since IPFS v0.5, several countermeasures

https://github.com/vyzo/ipfs-crawl
https://github.com/vyzo/ipfs-crawl
https://github.com/vyzo/ipfs-crawl

70 mapping the interplanetary filesystem

have been introduced to mitigate the attack, increasing the neces-
sary resources by several orders of magnitude [220]. Also, due to
IPFS’s unstructured broadcasting of queries, eclipse attacks on IPFS
are significantly harder than in other Kademlia-based networks, e.g.,
Ethereum (cf. Chapter 3).

4.3 the interplanetary filesystem

In the following, we describe key aspects of IPFS’ design and discuss
particularities relevant to conducting measurement studies and in-
terpreting their results. It is worth noting that the development of
IPFS is ongoing, so that details of the design may change over time.
Here, we focus on inherent conceptual properties that change rarely
in deployed protocols.

4.3.1 In a Nutshell

As a broad overview, the design of IPFS can be summarized in the
following way:

• IPFS is a permissionless system with weak identities; anyone
can deploy a node on the IPFS overlay network.

• Data is transformed into a directed acyclic graph structure (so-
called Merkle DAG); each node is identified by the hash of its
content.

• Data items are stored and served by data providers, references
to which are stored in a Kademlia-based DHT

• Data items are requested from all connected overlay neighbors
and the DHT is queried for providers only after no neighbors
were able to offer the data.

• In contrast to information in the IPFS white paper [34], no pro-
posals of S/Kademlia [29] are implemented.

• Overlay connections can correspond to DHT routing table
(bucket) entries, but do not have to.

• By crawling the DHT we obtain a subset of all connections; we
estimate the size of that subset in Section 4.5.2.

• BitSwap resembles BitTorrent [217] Bitcoin’s inventory mecha-
nism [257]; by monitoring all incoming messages we obtain a
trace of who requested what data when (with some limitations).

• It is a default behavior for nodes that have downloaded a given
data item to cache it locally, effectively becoming a data provider
for that item.

4.3 the interplanetary filesystem 71

4.3.2 Node Identities and S/Kademlia

Anyone can join the IPFS overlay network, i. e., it is an open (per-
missionless) system with weak identities. Nodes are identified by
the hash of their public key, H(kpub). To ensure flexibility, IPFS uses
so-called “multi-hashes”: a container format capable of supporting
different hash functions. A multi-hash adds meta information about
the hash function and the digest length to a hash. By default, IPFS
uses RSA2048 key pairs and SHA256 hashes.

Creating a new IPFS identity is as simple as generating a new
RSA key pair — making the network highly susceptible to Sybil
attacks [86]. Towards increasing the cost of Sybil attacks, the IPFS
white paper [34] suggests that the Proof-of-Work-based ID generation
approach of S/Kademlia [29] is in use. However, based on our careful
review of the IPFS codebase, this is not the case. IPFS versions < v0.7
implement no restriction on the generation of node IDs, neither are
DHT lookups carried out through multiple disjoint paths, as proposed
in S/Kademlia. IP address-based Sybil protection measures, such
as limiting the number of connections to nodes from the same /24

subnet, are also not in use.
On the network layer, IPFS uses a concept of so-called “multi-

addresses” (or multiaddr for short). Similar to multi-hashes, these
multi-addresses are capable of encoding a multitude of network- and
transport layer protocols, including nested and proxied constructions.
Through multiaddrs, a node announces its capabilities (e.g., IPv4, IPv6,
QUIC, ...) and the network layer addresses at which it can be reached.

4.3.3 Content Identifiers (CIDs) and Data Integrity

IPFS uses a form of self-certifying filesystem (SFS) [171] to ensure the
integrity of data throughout its delivery. To this end, each data item d

is assigned a unique immutable address that is the hash of its content,
i.e., addr(d) = H(d). Recipients can recognize whether received data
was tampered with by comparing its hash with the requested address.
In IPFS, an addr(d) is encoded as a so called content identifier (CID).

Directories and files are organized as a Merkle DAG61 61 https:
// docs. ipfs.
io/ concepts/
merkle-dag/

. This con-
struction differs from Merkle Trees insofar as nodes can have more
than one parent and, in the case of IPFS, data on non-leaf nodes is
permitted. For example, a directory on IPFS is encoded as a node
containing the hashes of all entries in the directory in addition to meta-
data about each entry. Edges are directed from the upper layers of the
directed acyclic graph (DAG) to the lower levels with no possibility
to traverse the graph in the other direction. Large files are chunked
into smaller data blocks and encoded as multi-layered DAGs. This
construction ultimately allows for caching and deduplication of both
file contents and directory entries.

https://docs.ipfs.io/concepts/merkle-dag/
https://docs.ipfs.io/concepts/merkle-dag/
https://docs.ipfs.io/concepts/merkle-dag/
https://docs.ipfs.io/concepts/merkle-dag/

72 mapping the interplanetary filesystem

H(readme ∥ img)

name: example_dir/

readme.md: readme, 20 B
img/: img, 87 kB

readme: H(data)

readme.me: 20 B
data: Hello World

img: H(cat)

name: img/

internet_cat.jpg: cat, 87 kB

cat: H(data)

internet_cat.jpg: 87 kB
data: 87 kB of image data

Figure 20: IPLD tree of a simple directory.

In principle, IPFS can be used to store a variety of different contents.
The encoding of a data item can be derived from its CID already,
using a mapping known as Multicodec (conceptually similar to multi-
addresses and multihashes). Important Multicodecs for IPFS are

1. DagProtobuf, which encodes nodes for the IPFS Merkle DAG.
These objects usually encode files and directories on IPFS.

2. Raw, which are unencoded chunks of binary data. For IPFS as
a file system, these objects usually appear as (leaves of Merkle
DAG encoded) files.

3. DagCBOR and DagJSON, which are to-be replacements for Dag-
Protobuf. They encode the Interplanetary Linked Data (IPLD)
data model in the respective format. The IPLD data model is a
generalized formalization of hash-linked data types.

As an illustrative example, consider the directory in Figure 20,
consisting of a subfolder and two files. The folder example_dir/
consists of a file readme.md, as well as a subfolder img/ which holds
the image of the “on the Internet, nobody knows you’re a cat” cartoon
depicted in Figure 9 in Chapter 2. IPFS partitions data items into
blocks, each of which is identified by its respective CID. A CID is
simply the multihash (denoted by H(.) in Figure 20) of a block’s (meta)
data.

Given such a directory, IPFS starts building the Merkle DAG in a
bottom-up fashion. First, blocks are formed containing the files at
the leaves of the directory tree, the internet_cat.jpg image in our
example62

62 If files are too
large, they are

additionally chunked
into several blocks

. The resulting CID of the cat-block is formed by hashing

4.3 the interplanetary filesystem 73

the image data. Moving upwards, the img/ directory is modeled as
a block with exactly one link to the CID of the cat-block. Directories
contain meta data such as their name as well as the names and sizes
of the files within them. Note that IPFS leverages this fashion of
structuring data for deduplication: if other directories were to contain
internet_cat.jpg, they would link to the same CID. The CID of
img/ therefore depends on the CID of the cat-block which, in turn,
depends on the data contained in internet_cat.jpg; yielding the
self-certifying property. Lastly, the CID of example_dir is computed,
as it references the CIDs of the readme- and img-blocks. This topmost
CID is also referred to as the root hash. Hence, when writing about a
data item d, we normally refer to the root hash of d.

4.3.4 Content Retrieval

User
requests

CID c

Item
cached?

Done
Broadcast

request
for c

Received
Re-

sponses?

Download
c from

resp. peers

Query
DHT for c

Found
providers

for c?

Download
c from

providers

Return
error

yesno

yesno

yesno

Figure 21: Content lookup in IPFS: a combination of DHT and flood-
ing.

Data items are usually stored at multiple nodes in the network.
Nodes store content because they are its original author or because
they have recently retrieved it themselves — there is no automated
replication of content. Nodes normally serve the data items they store,
upon request. The nodes that store a given data item are consequently
referred to as that data item’s providers.

When an IPFS node v wishes to retrieve a data item with CID c (e.g.
based on a user request), it follows a two step strategy (s.a. Figure 21):

74 mapping the interplanetary filesystem

1. Ask all nodes it is currently connected to for c, using the BitSwap
subprotocol (Section 4.3.6)

2. If the first step fails, look up the providers P(d) for c in the DHT,
then request c from members of P(d) (Section 4.3.5).

Peers discovered through either stage are added to a session S(c),
which is used to scope subsequent request for data related to c. In the
general case, c initially references the root of a DAG of blocks, which
v subsequently requests from the peers in the session.

4.3.5 Content Retrieval: Kademlia DHT

IPFS uses a Kademlia-based DHT, with k = 20 (cf. Section 2.2).
Therefore, nodes and data records in the IPFS overlay network are
uniquely identified and located by their respective node IDs and CIDs.
Records in the IPFS DHT are lists of data providers for data items
stored in IPFS, and the keys to these records are consequently the
addresses of data items (H(d) for a data item d). An example scenario
illustrating this relationship is presented in Figure 22. Nodes can be

v0

{d0, d3}

v1

{d1}

v2

{d0, d2, d3}

v3

{d0}

d0 → {v0, v2, v3}

d1 → {v1}

d2 → {v2}

d3 → {v0, v2}

DHT

Figure 22: Data items and the DHT.

part of the IPFS overlay network but choose to not participate in the
DHT, by acting as so-called client nodes. Therefore, we distinguish
between the IPFS overlay which entails all nodes, including clients,
and the overlay without clients which consists of nodes that take part in
the DHT protocol. When no ambiguity may occur, we simply use the
term overlay for both.

IPFS uses a performance optimization in that buckets are unfolded,
i.e., created, only when necessary. As each bucket corresponds to
a common prefix length, the “later” buckets with a longer common
prefix length tend to be mostly empty, as the probability to encounter
a node that falls into a specific bucket decreases exponentially with
the common prefix length. To avoid storing mostly empty buckets,
IPFS creates them on the fly when necessary. This in turn implies
that we can not know in advance how many buckets a node on the
network has currently unfolded. Therefore, we employ a heuristic
when crawling a peer: if we receive the same nodes as a response

4.3 the interplanetary filesystem 75

to two subsequent requests we conclude that the farthest bucket has
been reached and cease polling the peer.

Peer-to-peer connections in IPFS are always based on TCP or other
reliable transport layer protocols. Consequently, the DHT component
of IPFS also uses (TCP-) connections (unlike many other Kademlia
implementations, which are datagram based [170]). Nodes are ejected
from buckets only if the connection with them is terminated for other
reasons and they have been inactive for 10 min, i.e., a ping has not
been successful.

4.3.6 BitSwap

The BitSwap protocol is the main “data trading module”63 63 https:
// github. com/
ipfs/ go-bitswap

of IPFS. It
is similar to BitTorrent [217] and is used for obtaining data items from
connected peers. BitSwap encompasses both (1) announcing interest
in CIDs and discovering providers, and (2) actually requesting and
receiving the referenced data. For both purposes BitSwap builds upon
a reliable transport layer such as TCP, QUIC, or even WebSockets.

4.3.6.1 Synchronizing Data Requests

For announcing interest in certain CIDs and discovering providers,
so-called want_lists are synchronized with connected peers, i.e.,
each node v maintains a want_list for each node it is connected
to. A want_list for a peer p consists of all CIDs that p is currently
looking for (as far as known). To notify relevant peers about desired
content, and thereby keep want_lists up to date, nodes usually send
out BitSwap messages (e.g., collections of WANT_HAVE or WANT_BLOCK
entries as described below) containing changes to previous want_-
list states, which are then applied as deltas. While it is possible to
send “full” want_lists, our measurement results indicate that this
is done rarely. If v receives a wanted block, it broadcasts a BitSwap
message containing a CANCEL entry to connected nodes; telling them
that the block in question is no longer requested. want_lists are not
persisted when a peer disconnects and re-issued upon reconnection.
Additionally, there are mechanisms in IPFS that cause nodes to re-
broadcast want_list entries in 30 s intervals if the referenced data has
not been downloaded yet. These messages serve little purpose for
IPFS, since want_list entries are kept synchronized and persisted as
long as the peers stay connected.

4.3.6.2 Transmitting Data

Assuming a user wants to retrieve a data item d referenced by a root
hash h, the user’s local IPFS node has to traverse the Merkle DAG
(cf. Section 4.3.3) downwards in order fulfill the request. To that
end, and for each unknown CID encountered during the process,

https://github.com/ipfs/go-bitswap
https://github.com/ipfs/go-bitswap
https://github.com/ipfs/go-bitswap

76 mapping the interplanetary filesystem

p1 p2
p3 p4

want_have c

have c have c

want_block c

block c

Figure 23: Obtaining a block with CID c via BitSwap.

the node adheres to the flow chart in Figure 21, i.e., it broadcasts a
request for the respective block to its neighbors and, in case of no
successful responses, starts an iterative lookup in the DHT. In the
case of successful responses to its broadcasts, it will cease to broadcast
requests for CIDs further down the Merkle DAG and will instead
focus on asking the peers which have responded to its initial request.
The mechanism is illustrated in Figure 23.

There are fundamentally two types of requests for transmitting
actual content data: WANT_BLOCK and WANT_HAVE, each referencing a
single CID. While these requests are, conceptually, messages, they
are in practice realized as collections in BitSwap messages supporting
multiple entries per message. Since IPFS v0.5 and the introduction
of WANT_HAVE, the BitSwap data transmission mechanism resembles
Bitcoin’s use of inventory messages [257]. The WANT_BLOCK request
type is the backwards-compatible formalization of “I am looking for
this block, send it to me if you have it”. The WANT_HAVE request
type was newly introduced and can roughly be understood as “I am
looking for this block, do you have it?”. Whereas WANT_BLOCK triggers
the transmission of a block of data (leading to a high redundancy at
the receiving side [17]), WANT_HAVE only signals the presence of the
requested block. Figure 23 depicts a typical procedure for obtaining a
data block with CID c using both request types (node p1 resolves c

via its peers p2, p3, p4, with p2 and p4 forming a session). Table 1 lists
the BitSwap request types used in IPFS v0.5 and above.

Providers of a data item d respond to a WANT_HAVE on CID c =
addr(d) with a HAVE message. The session S(c) for c is formed based
on received HAVEs and can be complemented with the results P(d)
from a DHT search (as noted previously; cf. Figure 21 for a visual
overview). WANT_BLOCK requests for c are sent to a subset of the peers
in S(c). This allows for optimizing requests for related content as well
as improving request parallelism and reducing redundancy: if a peer
has d, it probably also has some child blocks of d, if not all of them.
Having established a session for d, future requests for blocks related

4.4 understanding the overlay structure 77

Want Type Cancel Name Function

Block No WANT_BLOCK request to send a block iden-
tified by a given CID.

Have No WANT_HAVE request to indicate block avail-
ability for a given CID.

* Yes CANCEL cancels a previous request of
any type for the given CID.
Entries remain in the want_-
list indefinitely until either
a CANCEL is received or the
peer is disconnected.

Table 1: Request types of the BitSwap protocol as of IPFS v0.5. Each
requests references a CID and is described using the Want
Type and Cancel flags. Each response is to be directed at the
requester.

to d can be directed at the relevant peers rather than flooded to all
connected peers.

4.3.7 Caching Rules

One of the keystones of IPFS’ design is the caching and reproviding
of requested blocks. By default, the IPFS node software stores up to
10 GB of block data, with an optional garbage collection mechanism
being activated if the configured storage limit has been exceeded. The
garbage collector prioritizes some groups of blocks, such as blocks
containing metadata, attempting to keep them in the cache for as long
as possible. Users can also pin files to ensure their local availability; the
garbage collector then traverses the Merkle DAG and marks all blocks
associated with the pinned file, henceforth avoiding their removal.

4.4 understanding the overlay structure

IPFS nodes can be separated into two types: nodes that participate in
the DHT and nodes that do not, i.e., clients. We want to disentangle
the different kinds of overlays that arise through this distinction and
reason about what information can be measured. We distinguish
between the IPFS overlay (G̃), the IPFS overlay without clients (G) and
the overlay induced by DHT buckets (G ′). We explain the differences
in the following.

Overlay networks are commonly modeled as graphs with nodes
as vertices and connections between those nodes as edges. Let G̃ =
(Ṽ, Ẽ) be an undirected graph (due to the symmetry of TCP-connec-
tions), with Ṽ representing the nodes in the IPFS overlay and Ẽ the
connections among them. G̃ consists of all nodes, including clients.

78 mapping the interplanetary filesystem

Since clients do not contribute to the DHT, one of the core pillars
of IPFS, we focus most of our analysis on the IPFS overlay without
clients. Let V ⊆ Ṽ be the set of IPFS nodes that are not clients and
G := G̃[V] the induced subgraph of V , i.e., the graph with vertex set
V and all edges from Ẽ that have both endpoints in V . V can be, to
a large extent, learned by crawling the DHT buckets of each node,
whereas it is not straightforward to reason about Ṽ as client nodes are
not registered anywhere or announced on the network.

What exactly can be learned by crawling each node’s buckets? IPFS
attempts to reflect every new connection (inbound or outbound) to
DHT-enabled nodes (i. e., nodes that are not pure clients) in DHT
buckets. When connections are terminated for whatever reason, the
corresponding entry is deleted from the respective bucket in IPFS
versions < v0.5. Therefore, for v0.4. nodes, these node’s buckets, and
hence the DHT as a whole when we performed the measurement
study (cf. Section 4.7), contains only active connections. On a side
note, in newer versions of IPFS, routing entries are kept even if the
connection was terminated. The routing table periodically (at least
every 10 min) evicts peer entries that are not “useful”, which currently
means experiencing large round trip times (RTTs) or connection losses.
One can argue that these changes should not significantly impact our
considerations, as peers with terminated connections will be evicted
from the routing table nevertheless with IPFS merely being more
forgiving with respect to short connections outages.

If buckets were arbitrarily large, nearly all overlay links (E) would
(also) be part of the buckets. However, buckets are limited to k = 20

entries. This leads to situations where connections are established
but cannot be reflected in buckets. For example, during DHT look-
ups, IPFS establishes connections to all newly discovered nodes and
attempts to add them to buckets. To avoid maintaining a nearly infi-
nite number of connections, IPFS nodes start to randomly terminate
connections that are older than 30 s once their total number of connec-
tions exceeds 900 (default value). If relevant buckets are full at both
nodes, the connection exists without being reflected in any bucket
at all. Let G ′ = (V ′, E ′) be the bucket-induced subgraph of G, i. e.,
E ′ = {(vi, vj) ∈ E : vj is in a bucket of vi} and V ′ ⊂ V is the set of all
nodes used in E ′.

For visualizing the possible configurations, Figure 24 depicts an
example overlay network without clients (G), with the connections that
are reflected in buckets (G ′) redrawn on top. A connection between
two nodes can either

1. be reflected in buckets by both nodes (e. g., (v2, v3)),

2. be reflected in buckets by only one node (e. g., (v0, v1)) or

3. exist independently of bucket entries (e. g., (v0, v3)).

4.5 measuring the interplay between g̃ , g and g′ 79

v0 v1

v2
v3

G (Overlay)

v0 v1

v2
v3

G ′ (Buckets)

Figure 24: Types of connections: non-client overlay (bottom) and buck-
ets (top).

In practice, it therefore usually holds that E ′ is a strict subset of E

and G ′ therefore strict subgraph of G. Unlike G, G ′ is furthermore
a directed graph. The direction is important since lookups of data or
other nodes only consider the nodes stored in buckets.

In the case of a well functioning DHT it is expected that V ′ ≡ V

and Ṽ \ V ′ is exactly the set of client nodes. Event though it is likely
that not all node pairs from E are reflected in E ′, we expect that G ′

is strongly connected and that it is therefore, in principle, possible to
enumerate all non-client nodes V by crawling the DHT. Our crawling
results (cf. Section 4.7.1) support this assumption. Before delving into
our crawling methodology and the remaining insights gained through
it, we present an empirically founded estimation of the relationship
between G̃, G and G ′.

4.5 measuring the interplay between g̃ , g and g ′

In the following, we focus on the default behavior of nodes (with and
without NAT), the share of clients in the IPFS overlay (i.e., Ṽ \ V) and
how much of the overlay of DHT-enabled nodes (G) is reflected in
buckets (G ′).

4.5.1 Empirical Results of Monitoring nodes

First, we started an IPFS node, version v0.5.0-dev with default settings
and a public IP address, without any firewall. Every 20 s, we queried
the number of overlay connections, as well as the number of nodes
in the node’s buckets for a total of 3 d. For the number of overlay
connections we relied on the API that IPFS offers in this case, whereas
the number of nodes was extracted through our external crawling tool
(discussed in Section 4.6). The results are depicted in Figure 25, which
shows the number of overlay connections (edges from Ẽ, solid red
line), connections with DHT-enabled nodes (edges from E, dashed
green line) and the number of connections in the buckets (edges from
E ′, dashed blue line). The measurement began simultaneously with

80 mapping the interplanetary filesystem

0

200

400

600

800

1000

1
0
/0

1
1
8
:00

1
1
/0

1
0
6
:00

1
1
/0

1
1
8
:00

1
2
/0

1
0
6
:00

1
2
/0

1
1
8
:00

1
3
/0

1
0
6
:00

Timestamp
N

um
be

r
of

pe
er

s

Conn. Type
Overlay (G̃)

W/o clients (G)

Buckets (G ′)

Figure 25: Number of connections of an IPFS node with default set-
tings. We distinguish between all overlay connections, the
overlay without clients and the buckets.

the IPFS node itself, hence, the short start-up phase in the beginning.
It can be seen that the number of connections largely fluctuates around
a value, with up to 400 connections established in just a few minutes.
This behavior is due to the way IPFS handles its connection limit.

The default number of connections an IPFS node will establish
is 900, but it does not cap at that value. Instead, IPFS 1) starts a
new connection with every node it encounters when querying data
and 2) accepts every incoming connection at first. Roughly, if the
number of connections exceeds the limit, IPFS evicts connections
(uniformly) at random that are older than 30 s, until the upper limit
is satisfied again. For more information on the connection manager,
the reader is referred to [220]. Furthermore, 76 % of connections are
DHT-enabled, on average, indicating a notable difference between
the overlay with clients (G̃) and the one without (G). We performed
the same experiment for a node behind a firewall for a duration of
3 d, the results are shown in Figure 26. Several properties can be
observed from both experiments. Firstly, a node behind a NAT has
almost two orders of magnitude less connections than its non-NATed
counterpart. Secondly, most connections of the non-NATed node are
inbound connections, i.e., established from another peer on the network.
Since our node was idle and not searching for content or other peers,
it has no external trigger to start outbound connections. The NATed
node cannot accept incoming connections, hence, the low number
of connections. Note that the presented number of DHT-enabled
connections is occasionally smaller than the number of connections
corresponding to DHT bucket entries. The former is obtained via IPFS
API functions that may lag behind in reporting the protocols of peers.

Last but not least, we are interested in a more holistic perspective
on the different overlay types and number of nodes in the network.

4.5 measuring the interplay between g̃ , g and g′ 81

0

10

20

30

1
4
/0

1
1
9
:00

1
5
/0

1
0
7
:00

1
5
/0

1
1
9
:00

1
6
/0

1
0
7
:00

1
6
/0

1
1
9
:00

1
7
/0

1
0
7
:00

Timestamp

N
um

be
r

of
pe

er
s

Conn. Type
Overlay (G̃)

W/o clients (G)

Buckets (G ′)

Figure 26: The same as Figure 25, but behind a firewall.

0

25000

50000

75000

100000

125000

150000

175000

0
8
/0

1
1
9
:00

0
8
/0

1
2
3
:00

0
9
/0

1
0
3
:00

0
9
/0

1
0
7
:00

0
9
/0

1
1
1
:00

0
9
/0

1
1
5
:00

0
9
/0

1
1
9
:00

0
9
/0

1
2
3
:00

1
0
/0

1
0
3
:00

1
0
/0

1
0
7
:00

1
0
/0

1
1
1
:00

1
0
/0

1
1
5
:00

Timestamp

C
ou

nt

Overlay (G̃) W/o clients (G) Total IDs

Figure 27: Number of IDs seen, overlay connections and connections
to DHT-enabled peers of a node that has no connection
limit.

To this end we started an IPFS node (v0.5.0-dev) with a public IP
and a connection limit of 500000. Similar to the other experiments,
we logged the connections every 20 s for a total of 2 d. The results
are depicted in Figure 27, which shows the number of connections
over time, the number of DHT connections and the total number of
node IDs seen. On average, the node had 3.9 · 10

4 connections, 63.6 %
of which were DHT connections. Again, the vast majority of these
connections is inbound, since our node was idle. The number of
node IDs is steadily increasing, whereas the number of connections is
not, which could be due to a one-shot usage or people deleting the
configuration directory, which holds the private key, to solve errors.

82 mapping the interplanetary filesystem

4.5.2 Analysis of the Difference between E and E ′

In Figure 25 it is clearly visible that the buckets (E ′) store 22.2 % of
all connections between DHT-enabled nodes (E), due to the buckets’
limited capacity of k = 20 nodes (cf. Section 4.4). The connections
that are not reflected in E ′ can, therefore, not be found by crawling
the DHT nor be obtained through passive measurements alone. This
raises the question: why is the gap between connections stored in a
node’s buckets (E ′) and all overlay connections between non-client
nodes (E) so significant?

Analytically, we are interested in the following quantity: Given
N := |V | non-client nodes in the overlay, what is the expected number
of nodes stored in the buckets? The distribution of nodes to buckets is
highly skewed, since the first bucket is “responsible” for one half of
the ID space, the second bucket for one fourth etc. [8, 168].

The expected number of nodes in each bucket i is therefore
min{20, N · pi}, with pi := 2

−i. Although we do not encounter
every peer equally likely, this reasoning still holds: During bootstrap,
an IPFS node performs lookups for its own node ID as well as random
targets tailored for each bucket. The former ensures that it knows
all nodes in its direct neighborhood, partially filling the smallest,
non-empty bucket. The latter ensures that it knows some nodes
from each other bucket, filling them completely with high probability.
Which bucket will be the smallest non-empty bucket therefore only
depends on the total number of non-client nodes in the overlay.

Abusing notation, this yields:

E[# nodes in buckets|N nodes in overlay] (31)

=
256∑︂
i=1

E[# nodes in bucket i|N nodes in overlay] (32)

=
256∑︂
i=1

min{20, N · pi}. (33)

The result of this analytical consideration are depicted in Figure 28.
The solid red line corresponds to a “perfect” setting, where each
overlay connection would be stored in a bucket, whereas the dashed
blue line is the result of Equation (33). Plugging the empirically found
number of nodes from Section 4.7 into this formula yields an expected
number of bucket entries between 232 and 247, which coincides with
the measured average number of entries of 232.5 (max. 245).

So far, we’ve seen some indications on the relationship between the
IPFS overlay G̃, the overlay without clients G and what is stored in
buckets G ′. In the following, we are interested in obtaining measure-
ments of G ′ to learn more about the topology of the network.

4.6 crawling the kademlia dht 83

0

250

500

750

1000

1250

0 250 500 750 1000 1250

Number of Nodes in Overlay

N
um

be
r

of
N

od
es

in
Bu

ck
et

s
Type

Perfect

Buckets

Figure 28: Analytical approximation: number of overlay connections
vs. the number of nodes actually stored in the buckets.

4.6 crawling the kademlia dht

To crawl the Kademlia DHT, we specifically developed ipfs_crawler
from scratch to generate snapshots of the IPFS overlay network. How-
ever, its potential applications transcend IPFS. IPFS’ network layer is
implemented in the libp2p networking library, which originated as
part of the IPFS project but was modularized into its own standalone
library. Therefore, ipfs_crawler can easily be adapted to crawl other
libp2p-based networks.

4.6.1 Why Yet Another Crawler?

We resorted to developing our own crawler instead of re-using ex-
isting Kademlia crawlers [244] for two reasons: first, IPFS’ protocol
and handshake structure is highly complex and best used with the
provided API, which would be hard to integrate in existing crawlers.
Second, and more importantly, although the crawling literature on
Kademlia is vast, there are virtually no open source implementations.

Therefore, we made our code public and are cooperating with
IPFS/libp2p developers to incorporate the crawler into a periodic
monitoring infrastructure, since ipfs_crawler is an effective tool to
assess the state and health of the network. Additionally, the obtained
data and insights from crawling may be useful for engineers and
further research on, e.g., performance and resilience. As we previously
outlined in Section 4.4, ipfs_crawler is able to enumerate all peers
but cannot capture all links between those peers: in contrast to other
Kademlia implementations, IPFS establishes a connection with every
peer it encounters and maintains a large number of connections that
do not correspond to any DHT routing table entries.

84 mapping the interplanetary filesystem

4.6.2 Crawl Procedure

As described in Section 4.3, nodes in the network are identified
through a (multi-)hash of a public key. The crawler used new key pairs
in every run to thwart potential biases due to re-occurring IDs. More-
over, an IPFS node will not store our crawling nodes in its buckets,
since our nodes are marked as clients who do not actively participate
in the Kademlia communication6464 Nodes exchange a

list of protocols they
can serve. By not

including the DHT
protocol in said list,

other nodes know
that we cannot

answer DHT
messages.

.
Nodes can be found by issuing FindNode packets for some target

ID, i.e., the hash of a public key. To completely crawl a node, one has
to send a FindNode packet for each possible bucket. This is due to the
fact that a node returns its k closest neighbors to the target provided
in a FindNode packet. The closest neighbors to the target are the ones
in the bucket the target falls into. If the bucket in question is not full
(i.e., less than k entries), the closest neighbors are the ones in the target
bucket and the two buckets surrounding it (cf. Sections 2.2 and 3.6).

Since the bucket utilization of remote nodes is unknown, we do
not know in advance how many requests per node we have to send
for obtaining all of its DHT neighbors. ipfs_crawler, therefore, sends
FindNode packets to targets with increasing common prefix lengths
and stops once no new nodes are learned. This results in a significant
speed improvement as no requests are sent for buckets that are nearly
certainly empty (since the number of potential bucket entries decreases
exponentially with the common prefix length). Faster crawls, in turn,
enable us to capture more accurate snapshots of the dynamically
changing network.

ipfs_crawler starts by connecting to the IPFS bootstrap nodes, col-
lects their routing table content and successively tries to connect to
every peer it has not tried before until no more new nodes were
learned. Therefore, if the IPFS network were static and nodes replied
to requests deterministically, a crawl would always yield the same
results. Due to the inherent dynamics in the overlay this is not the case;
instead, repeated crawls allow us to observe changes in the overlay
over time.

As an example, consider Figure 29 which depicts the crawling pro-
cess for one node and said nodes’ bucket organization. The receiver’s
ID is 1101. The first bucket contains only peers whose ID xor 1101

starts with no leading zeros, hence, node IDs starting with 0. Similarly,
for an ID to be stored in the second bucket, the xor has to start with
one leading zero, yielding IDs starting with 10, and so on.

4.6.3 Features

For every peer it encounters, ipfs_crawler saves the following informa-
tion:

• the peer ID, i.e., the (multi-)hash of a public key,

4.6 crawling the kademlia dht 85

crawler crawled node v, id:1101

FindNode, id=0000

n1
, n2

, n3

FindNode, id=1000

n4

. . .

0* 10* 111* 1101

n1, n2, n3 n4 n5 -

0* 10* 111* 1101

n1, n2, n3 n4 n5 -

Figure 29: Sequence diagram of the crawl.

• all available addresses (e.g., IPv4, IPv6, relay, ...) of the peer and

• whether a connection could be established.

If a connection attempt was successful, it also includes

• the agent version (was not implemented for the Nov. 2019 crawl)
and

• the content of the routing table entries as an edge list with
timestamps when the respective edge was seen.

Taking the example in Figure 29, the edge list obtained from crawl-
ing node v would be (v, n1, t1), (v, n2, t1), . . . , (v, n5, t3).

ipfs_crawler enumerates the nodes in the network, but without
ground truth it is hard to assess the quality and completeness of a
crawl. Therefore, it might be desirable to perform a sanity check
whether some pre-defined IPFS-nodes are found through crawling.
These can be well-known nodes, such as the ipfs.io-gateway, or
self-run nodes, specifically started for the purpose of sanity checking
the results. If provided, ipfs_crawler checks if it found the respective
nodes and notifies the user in case it was not successful.

Furthermore, if configured, ipfs_crawler will cache the nodes it has
seen. The next crawl will then not only start at the bootstrap nodes
but also add all previously reachable nodes to the crawl queue. This
caching additionally increases the crawl speed, since it overcomes
the bottleneck of finding peers to connect to in the beginning of each
crawl.

4.6.4 Hash Pre-Image Computation

Unlike more canonical Kademlia implementations, whenever an IPFS
node receives a FindNode packet, it hashes the provided target and
searches for the nearest neighbors to that hash65

65 Similar to
Ethereum, cf.
Section 3.3). Therefore, to know

which target to send for which bucket, we need to compute pre-images

ipfs.io

86 mapping the interplanetary filesystem

that, when hashed, yield the desired common prefix length between
the FindNode target and the node ID of the node we are crawling. To
that end, we generated pre-images for every possible prefix of 24-bit
length. In other words, we computed 2

24 pre-images such that, for
each possible prefix of the form {0, 1}24, there is a hash starting with
that prefix.

Equipped with this table, one lookup operation is sufficient to pick
a pre-image that, when hashed by the receiver, will yield the desired
bucket. Note that this table can be used for an arbitrary number of
crawls, hence, the computation only had to be performed once.

4.7 crawling results

We repeatedly crawled the IPFS network from 2019-11-26 until 2019-12-
03 for a total duration of 7 d. We denote this set of crawls by C1 which
will be the main topic of this section. Additionally, we conducted
crawls for a two week period in the beginning of 2021 from 2021-01-24

until 2021-02-07, which we will denote by C2. If reasonable, the results
from C1 will be complemented by ones from C2, e.g., to illustrate
changes in the network. The complete report on C2 can be found in
the Appendix (cf. Section 7.1.1). Crawls were started one at a time
and back to back, in the sense that as soon as a crawl was finished,
a new one was started. We performed a total of 2400 crawls in C1,
with a single crawl taking an average of 4 min to complete. In C2, 5039

crawls were performed with a similar average duration per crawl.

The most important aspect of every crawler is its speed, as it directly
influences the accuracy of obtained snapshots [248]. Since the overlay
is changing during crawls due to peer churn, the longer a crawl
takes, the higher the risk of unwanted artifacts in the snapshots [249].
Therefore, our ipfs_crawler is optimized for small crawl times and
is able to crawl 50000 nodes in roughly 4 min, on average. Figure 30

depicts a boxplot summarizing the distribution of crawling times for
the two crawl sets in November 2019 and February 2021. The box
corresponds to the 25 % and 75 % quartiles, respectively, with the
median shown as the solid line. It can be seen that we were able to
significantly reduce the variance of the crawler’s runtime, although
sacrificing some performance in the process. Nevertheless, despite the
high variance in C1, 75 % of crawls took less than 5 min to complete
and only 2.7 % of crawls took longer than 10 min. Hence, most crawls
from C1 were quick, therefore adhering to the principles of Stutzbach
and Rejaie [248], allowing for confidence in the validity of the obtained
snapshots.

4.7 crawling results 87

2

3

4

5

8

10

20

30

40

50

Feb. 21 Paper (Nov. 19)
Crawler Version

C
ra

w
ld

ur
.[

m
in

s]

Figure 30: Boxplot of crawl durations of crawls from C1 in Nov. 2019

and from C2 in Feb. 2021.

Session Duration Percentage Number of sessions
5 minutes 56.92 2.188e6

10 minutes 26.11 1.00e6

30 minutes 2.68 1.0e5

1 hour 0.43 1.6e4

1 day < 0.01 32

6 days < 0.01 2

Table 2: Inverse cumulative session lengths: each row gives the num-
ber of sessions (and total percentage) that were longer than
the given duration.

4.7.1 Number of Nodes, Reachability and Churn

To get an idea for the size of the network, we first focus on the
number of nodes in the network and their session lengths. During
our 7 d crawl, we found a total of 3.09 · 10

5 distinct node IDs, with
an average number of 4.4 · 10

4 per crawl. This is consistent with the
results obtained in Section 4.5, hinting that both methods provide an
adequate view of V , the set of non-client nodes in the IPFS overlay.
Surprisingly, of all the nodes that were queried, the crawler was only
able to connect to 6.6 %, on average.

We suspect that most IPFS nodes in C1 are run by private people
connected through NAT. This hypothesis is supported by our results:
about 52 % of all nodes report only local IP addresses for other nodes
to connect to, which is exactly the behavior of nodes behind symmetric
NATs (cf. Section 4.7.2). Note that in IPFS versions ⩾ v0.5 reporting
local IPs to the DHT is uncommon. Instead, nodes start as clients and
only actively participate in the DHT if they succeed at finding their
externally reachable IP address and port. Regarding C1, if most nodes
are behind NATs, i.e., clients, they are also prone to short uptimes,
since these are probably used as client nodes which are shut down
after use.

88 mapping the interplanetary filesystem

0

10000

20000

30000

40000

50000

60000

70000

2
7
/1

1
0
6
:00

2
8
/1

1
0
6
:00

2
9
/1

1
0
6
:00

3
0
/1

1
0
6
:00

0
1
/1

2
0
6
:00

0
2
/1

2
0
6
:00

0
3
/1

2
0
6
:00

Timestamp

N
um

be
r

of
no

de
s

Node type
All

Reachable

Figure 31: Number of nodes over time, distinguished by all and reach-
able (=answered to our query) nodes. Times are in UTC.

Exactly this behavior can be observed regarding the session lengths,
which are depicted in Table 2. We define a session as the time dif-
ference between the crawl, when we were able to reach the node
and when it became unreachable again. The table depicts the inverse
cumulative session lengths: each row holds the number of sessions
(and their percentage) that were longer than the given duration. For
example, roughly 56 % of all sessions were longer than 5 min, or equiv-
alently, 44 % of all sessions were shorter than 5 min. Hence, participa-
tion in IPFS in C1 was dynamic and rather short-lived. In comparison,
computing the session lengths of C2 in the same fashion shows (cf.
Table 11) much longer sessions, i.e., 40 % were longer than 30 min,
25 % even longer than one hour. This yields an interesting insight, as
the significant increase in session lengths correlates with the exclusion
of clients behind NATs from the DHT; indicating that the remaining
peers might operate as always-on infrastructure. Note that these in-
frastructural nodes serve different purposes: while ProtocolLabs and
other entities operate DHT boosters6666

https://github.com/-
libp2p/hydra-booster.

, a closer inspection of the agent
versions indicates that between 25 % and up to 60 % of DHT-enabled
nodes are part of the storm botnet [224] (cf. Section 7.1.1). Note that in
Nov. 2019 and even the beginning of 2020, storm nodes did not play
a role, the emergence of these nodes commenced in mid-2020. For a
side note on storm nodes, the reader is referred to the Appendix (cf.
Section 7.1.1.1).

We also observed a periodic pattern in the number of nodes found
through crawling, as shown in Figure 31. The figure distinguishes
between all nodes and nodes that were reachable, i. e., the crawler
was able to establish a connection to these nodes. The significant
increase in the number of nodes at the end of the measurement period
could stem from other researchers’ nodes or even an attack on the
network. It can be seen that between noon and 7pm UTC, the number

https://github.com/libp2p/hydra-booster
https://github.com/libp2p/hydra-booster

4.7 crawling results 89

40000

50000

60000

70000

2
7
/1

1
0
5
:00

2
8
/1

1
0
5
:00

2
9
/1

1
0
5
:00

3
0
/1

1
0
5
:00

0
1
/1

2
0
5
:00

0
2
/1

2
0
5
:00

0
3
/1

2
0
5
:00

Timestamp

N
um

be
r

of
no

de
s

Type
Num. Nodes

Dom. Freq.

Figure 32: Hourly resampled Figure 31 with dominant Fourier-
frequency.

of nodes increases significantly. Interestingly, the periodic pattern
has indeed a period of 24 h, as a Fourier analysis reveals67 67 A big “thank you”

to Jochen Fink for his
support with the
Fourier analysis.

, illustrated
in Figure 32. The figure depicts the same data as in Figure 31 but
re-sampled to hours, as well as the dominant Fourier frequency, which
has a frequency of 24 h. This might hint at a usage pattern in that
users start their IPFS nodes on-demand in their spare time and shut
them down after use. Additionally, this underlines the hypothesis of
most nodes being operated by private people behind NATs, as the
number of reachable nodes, i. e., nodes we could connect to, does not
fluctuate as much. Although IPFS’ handling of nodes behind NATs has
significantly improved since C1in Nov. 2019, similar patterns in the
number of nodes over time can also be observed for C2 (cf. Figure 46).
However, the the fluctuations are less prominent and show a mixture
of a trend as well as other frequencies, with the dominant Fourier
frequency still being 24 h. One could argue that private users behind
NATs will tend to use their nodes in their spare time in the evening.
Hence, a usage pattern with peaks in the afternoon of UTC time hints
to many users in Asia, since UTC afternoon corresponds to evening
times in, e. g., China. A superposition of frequencies as observable
in C2, could stem from peaks in IPFS-usage from different countries;
a hypothesis that can be justified by the distribution of nodes over
countries.

4.7.2 Node Distribution over Countries and Protocol Usage

Table 3 depicts the top ten countries, both for all discovered nodes and
for nodes that were reachable by our crawler68

68 We use the
GeoLite2 data from
MaxMind for this
task, available at
https: // www.
maxmind. com .

These ten countries
contain 90 % (93.7 % in the case of reachable nodes) of the whole

https://www.maxmind.com
https://www.maxmind.com

90 mapping the interplanetary filesystem

All Reachable
Country Count Conf. Int. Country Count Conf. Int.
LocalIP 23900 ±173.9 US 1720 ±26.7

CN 5630 ±11.3 FR 630 ±17.7
DE 4220 ±33.4 DE 569 ±8.8
US 4100 ±54.1 CA 119 ±2.3
FR 1390 ±33.3 PL 73 ±2.1
CA 970 ±19.9 CN 58.6 ±0.5
PL 690 ±18.0 GB 26.6 ±0.2
IL 320 ±2.6 SG 20.9 ±0.2
GB 171 ±0.9 IL 15.0 ±0.4
HK 168 ±2.0 NL 12.9 ±0.1

Table 3: The top ten countries per crawl, differentiated by all discov-
ered nodes and nodes that were reachable. Depicted is the
average count per country per crawl as well as confidence
intervals.

network, already hinting at centralization tendencies regarding the
spatial distribution of nodes.

Again, it can be seen that 52 % of all nodes only provide local or
private IP addresses, thus making it impossible to connect to them.
This is in line with the default behavior of IPFS versions < v0.5,
when operated behind a NAT. When a node first comes online, it
does not know its external IP address and therefore advertises the
internal IP addresses to peers it connects to. These entries enter the
DHT, since IPFS aims to provide support for building private IPFS
networks. Over time, a node learns about its external multi-addresses
(multi-addresses contain address and port, cf. Section 4.3) from its
peers. An IPFS considers these observed multi-addresses reachable,
if at least four peers have reported the same multi-address in the
last 40 minutes and the multi-address has been seen in the last ten
minutes. This is never the case for symmetric NATs, which assign
a unique external address and port for every connection, yielding a
different multi-address for every connected peer. As mentioned before,
if node cannot successfully obtain an externally reachable and stable IP
address/port pair, they will refrain from acting as DHT enabled nodes
and therefore not advertise their local IP addresses to the network.

Furthermore, there is a significant difference visible especially be-
tween China and the U.S.: although most IPFS nodes are in China,
the vast majority of reachable nodes stems from the U.S. The notable
difference could stem from the great firewall of China, which severely
restricts the Internet access of Chinese users.

In comparison, in C2 from Feb. 2021, nodes with only local IPs do
not play a role anymore. Interestingly, more nodes from Korea and
Hong Kong emerged — possibly related to the political conflict and
on-going protests between Hong-Kong and China.

4.7 crawling results 91

Protocol Perc. of peers Abs. count
ip4 > 99.9 3.09e5

ip6 80.5 2.49e5

p2p-circuit 1.5 4.7e3

ipfs 1.3 3.9e3

dns4 < 0.1 207

dns6 < 0.1 93

dnsaddr < 0.1 12

onion3 < 0.1 1

Table 4: Protocol Usage.

As stated in Section 4.3, IPFS supports connections through multiple
network layer protocols; Table 4 shows the prevalence of encountered
protocols during our crawls. If a node was reachable through multiple,
say IPv4 addresses, we only count it as one occurrence of IPv4 to not
distort the count. The majority of nodes support connections through
IPv4, followed by IPv6, whereas other protocols are barely used at all.
The protocols “ipfs” and “p2p-circuit” are connections through IPFS’
relay nodes, “dnsaddr”, “dns4/6” are DNS-resolvable addresses and
“onion3” signals TOR capabilities. Similar results can be observed for
C2, with a decrease in the number of IPv6-capable addresses.

4.7.3 Graph Properties & Overlay Topology

A crawl yields a view on the nodes V ′ in the buckets of non-client
nodes, and their connections to each other, i.e., E ′. As discussed in
Section 4.4, we obtain a measurement of V ′ (which is approximately
V) and E ′ which is a strict subset of E. Nevertheless, G ′ = (V ′, E ′) is
the graph used by IPFS to locate data and nodes through the DHT and
therefore provides a lot of insights. Since there is a huge discrepancy
between all discovered and the reachable nodes, and since we cannot
measure the properties of unreachable nodes, we distinguish these
two classes in the analysis.

4.7.3.1 Degree Distribution

Commencing with studying the degrees of nodes, Figures 33 and 34

depict the cumulative log-log in-degree distribution for the crawl
on the 1st of December 2019, 00:00 UTC; note that other crawls yield
similar results. Aggregated degree statistics over all crawls are summa-
rized in Table 5. We differentiate between all found nodes (Figure 33)
and only reachable nodes (Figure 34). The (roughly) straight line in the
figure corresponds to a highly skewed distribution where some peers
have very high degree whereas most peers have a small degree. The
shape of the distribution indicates the possibility for a heavy-tailed
power-law distribution of degrees, as observed in other Kademlia

92 mapping the interplanetary filesystem

studies [232]. To test the power-law hypothesis, we proceed as out-
lined by Clauset et al. [59]: (1) estimate the power-law parameters
xmin and α using a maximum-likelihood approach, (2) calculate the
goodness-of-fit through bootstrapping6969 Bootstrapping

involves re-sampling
the sample data with

replacement to
quantify

uncertainties of
estimates [88].

and (3) compare the power-
law hypothesis to other alternative distributions using Vuong’s test
[119]. For the number of bootstrapping runs, we adhere to [59], i.e.,
for p-values with 2 decimal digit accuracy, 2500 simulation runs are
advised70

70 “[A] good rule of
thumb turns out to
be the following: if

we wish our p-values
to be accurate to

within about ϵ of the
true value, then we
should generate at

least 1

4
ϵ−2 synthetic

data sets
[=bootstrapping

runs].”

.

1e-07

1e-04

1e-01

1 10 100

Degree

C
D

F

Type
LNorm

PL

Pois

Figure 33: In-Degree distribution from the crawl on 1st of December
2019, 00:00 UTC, including all found nodes. Other crawls
yield similar shapes.

1e-04

1e-02

1e+00

1 10 100

Degree

C
D

F

Type
LNorm

PL

Pois

Figure 34: The same distribution as Figure 33, but only including
reachable nodes.

In Figures 33 and 34 three candidate distributions were fitted to
the data: power-law, log-normal and Poisson. By visual inspection
alone, both power-law and log-normal distributions seem viable as
potential distribution candidates. For Figure 33, both power-law and

4.7 crawling results 93

log-normal yield a p-value of p > 0.1 for step (2), the goodness-of-fit
(pPL = 0.75, pLN = 0.17). Therefore, in accordance with [59], both
distributions, power-law and log-normal, are potential candidates. A
comparison of both distributions using a log-likelihood ratio test yields
a p-value of p = 0.46, meaning that we cannot reject the null-hypothesis
that both distributions are equally far from the true distributions of the
data [119]. In other words, the observed degree distribution may have
plausibly be sampled from a power-law or a log-normal distribution.

For the degree distribution of reachable nodes in Figure 34, the
situation is less ambiguous. Again, following the three steps of testing
a power-law hypothesis by Clauset et al. [59], we obtain a significant
p-value for the log-normal distribution but not the power-law one
(pPL = 0.04 < 0.1, pLN = 0.33 > 0.1). Similarly, when comparing the
two hypotheses in step (3), the computation yields a preference for
the log-normal distribution, with a p-value of p = 0.07 < 0.1 and a
likelihood ratio in favor of the log-normal distribution — allowing us
to reject the power-law hypothesis.

These results are in contrast to prior measurements on Kademlia
systems which indicate a power-law distribution of degrees [232]. The
difference could be due to the limitations of the crawling methodology
itself (cf. Section 4.4), or stem from actual differences of IPFS in com-
parison to other Kademlia systems. Although the degree distributions
are not exact power-laws and the network can, by this measure alone,
not be considered scale-free, IPFS’ overlay (for C1) still exhibits similar
properties as scale-free networks, as we will see in Section 4.7.3.2.

Min. Mean Median Max.
total-degree 1 14.3 10.2 942.2

in-degree 1 7.2 3.0 935.5
out-degree 0 7.2 6.5 53.6

Table 5: Average of the degree statistics of all 2400 crawls.

Regarding the set of crawls from Feb. 2021, i.e., C2, the degree
distributions have dramatically different shapes (cf. Figure 48 in the
Appendix). Nodes in C2 have a significantly higher degree on average,
leading to a much more shallow CDF for small degrees. Interestingly,
about one third of all nodes lie within the degree interval [200, 230],
leading to significant differences between C1 and C2, as we will see in
the resilience analysis (cf. Section 4.7.3.3). This stems, among poten-
tial other reasons, from two factors: (1) significant improvements of
the libp2p networking library and our crawler and (2) longer session
lengths. Regarding (1), since IPFS v0.5, the Kademlia buckets are pop-
ulated much more rigorously and quickly after startup. Furthermore,
refreshments at least every 10 min lead to more nodes in buckets than
for older IPFS versions. We also improved our crawler, especially the
interplay with libp2p, leading to a higher throughput of crawl requests

94 mapping the interplanetary filesystem

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

Percentage of Crawls a Node was seen
C

um
ul

at
iv

e
Fr

eq
ue

nc
y

Figure 35: ECDF of how often the same nodes were within the top-
degree nodes.

and more reliability, which positively influences the number of edges
the crawler finds. In summary, in comparison to C1, the crawler is
able to enumerate V ′ evenly well as for C1, but performs significantly
better on enumerating E ′. Simultaneously, session lengths have be-
come significantly longer (clearly visible in Table 11 in the Appendix),
potentially due to more infrastructural nodes. Longer session lengths
correspond to longer uptimes and therefore more populated Kademlia
buckets.

Moving on from the general degree distribution, we focus our
analysis on the top degree nodes in the following. Top degree nodes
were defined as the 0.05 % of all nodes, yielding 22.2 nodes on average
for C1. We refrain from defining a number, say the 20 nodes with
the highest degree, since this would weigh crawls with fewer nodes
differently than crawls with a higher number of total observed nodes.
Figure 35 depicts a cumulative distribution of how many times the
nodes with the highest degree were seen in the crawls. If a node was
in the set of highest-degree nodes in one run but not in other runs, its
“percentage seen” would be 1

of crawls = 1

2400
= 0.0033 or 0.33 %. On

the other extreme, if a node was within the highest degree nodes in
every crawl, its percentage seen would be a 100 %.

The cumulative distribution in Figure 35 shows a high churn within
the highest degree nodes: approximately 80 % of nodes were only
present in 10 % of the crawls. Only a few nodes have a high degree in
the majority of all crawls; these nodes are the bootstrap nodes along
a handful of others. C2 differs in that 40 % of top degree nodes were
found in the majority of crawls, further underlining the hypothesis of
more infrastructural nodes in the DHT. Again, the reader is referred
to the Appendix in Section 7.1.1 for the complete crawl report on C2.

4.7 crawling results 95

4.7.3.2 Graph Metrics

The degree distribution already gives us insights into the properties
and topology of the overlay graph, i.e., that its degree distribution is
highly skewed and is at least similar to scale-free networks. In the
following we deepen our understanding of IPFS’ overlay topology
through comparisons of various graph metrics to Erdős-Rényi (ER)
[93] and Barabási-Albert (BA) random graphs [27] of the same size. ER
graphs are a family of random graphs with a fixed number of nodes N
and edges M, where the M edges are distributed among the potential
“edge slots” equally likely. Asymptotically, ER graphs are equivalent
to Gilbert random graphs [118], which also start with a fixed number
of nodes but populate every edge with a probability p, inducing
variability in the number of edges even for fixed p [93]. The degree
distribution of ER random graphs follows a Poisson distribution,
which differs from real-world networks such as the Internet, the world
wide web and the IPFS overlay.

Therefore, Barabási-Albert proposed an alternative method71

71 Preferential
attachment models
and the occurrence of
power-laws in
real-world data has
been studied before
Barabási-Albert [42].

for
creating random graphs, namely through preferential attachment [27],
i.e., newly joined nodes are more likely to establish a link to nodes
with a high degree. Graphs generated through preferential attachment
display similar properties as scale-free networks, since, due to the
attachment process, the degree distribution is asymptotically heavy-
tailed [42].

Note that there is one caveat when studying the IPFS overlay: should
the graph be studied as a directed or an undirected graph? Nodes
establish TCP/QUIC connections, therefore, an undirected graph
may seem reasonable. However, due to Kademlia and the resulting
property that one node can have a routing table entry to another
node but not necessarily vice versa (cf. Section 4.4), a directed graph
may seem more appropriate (and has been used in the past for other
Kademlia-based systems [232]). Unfortunately, overlay connections
also transport BitSwap messages, the second method of obtaining
content in IPFS, which are broadcast to all neighboring peers — hence
suggesting an interpretation as an undirected graph. We resolve this
conflict by adopting a hybrid perspective: in the following, we will
treat IPFS as a directed graph in the comparison to other graph families,
as metrics as the, e.g., average path length and betweenness centrality
are mostly affecting Kademlia lookups. In the resilience analysis, i.e.,
the resistance of the overlay against random and targeted failures, we
treat the graph as undirected, as in that case BitSwap plays a role as
well.

For the comparison, we considered the following metrics: the aver-
age path length L, the diameter D, the global clustering coefficient C
and the maximum betweenness centrality max(bi). The average path
length is defined as the mean of the length of shortest paths between
all pairs of nodes [42]. Let G = (V, E) be a graph with |V |= N, |E|= M

96 mapping the interplanetary filesystem

and let dij denote the shortest path from node i to j. Then the average
path length is commonly defined as:

L =
1

N(N− 1)

∑︂
i,j∈V,i ̸=j

dij. (34)

The diameter D is defined as the longest shortest path. For the
clustering coefficient C, also referred to as transitivity7272 Note that for the

transitivity, the
direction of a graph

is irrelevant.

, we follow
the definition of [42]. Intuitively, the clustering coefficient C gives
insights in how interconnected the neighborhood of a node v is, i.e.,
the interconnectedness between neighbors of v. More formally:

C =
3 · number of triangles

number of connected triples of vertices
. (35)

The betweenness centrality of a node v measures the importance and
centralization of a node, by considering the number of shortest paths
that traverse through v in ratio to all possible shortest paths between
any two nodes in the network [42]. The maximum betweenness is
therefore an indicator of the dominance of the most centralized node
(according to this metric). The betweenness centrality is defined as
follows, where njk is the number of shortest paths between j and k

and njk(i) the number of shortest paths that traverse i:

bi =
∑︂

j,k∈V,j ̸=k

njk(i)
njk

. (36)

The results of the comparison are gathered in Table 6. For the analy-
sis we chose the same measured graph as in the previous analyses, i.e.,
from the 1st of December 2019 at 00:00 UTC. The “GType” column de-
picts the corresponding graph, Erdős-Rényi (ER), Barabási-Albert (BA)
or IPFS, “Metric” refers to the previously introduced metrics and
“All”/“Reach.” refers to the two different types of IPFS graphs. The
latter two columns show the rounded mean and the respective confi-
dence intervals when appropriate. For the corresponding ER and BA
random graphs we generated ten graphs, respectively, and computed
the mean of each metric as well as 95 % confidence intervals.

It can be seen that in terms of average path length IPFS resembles
the BA graphs more closely than ER graphs, which is expected given
the resemblance of IPFS’s (C1) degree distribution to a power-law.
As we will see in Section 4.7.3.3, IPFS responds to random failures
and targeted attacks similarly as scale-free networks, further underlin-
ing the similarities. Simultaneously, the clustering coefficient of the
measured overlay is significantly higher than for both random graph
models. This is in line with other results on diverse networks found
in the real world, e.g., power grids, neural networks, the Lightning
network and even actor collaborations [42, 132, 228, 266]. Common to
all these networks is the “small-world” property, i.e., a high clustering

4.7 crawling results 97

GType Metric All Reach
ba nodes 34856 1744

ba edges 139414 15651

ba apl 1.05±0.06 1.03±0.03

ba trans 3e-04 0.014

ba betw < 1e-04 1e-04

ba diameter 3±0.67 2.6±0.6
er nodes 34856 1744

er edges 148100 16157

er apl 7.37 3.60

er trans 3e-04 0.01

er betw 0.001 0.005

er diameter 15.5±0.38 6.3±0.35

ipfs nodes 34856 1744

ipfs edges 148100 16157

ipfs apl 4.25 4.08

ipfs trans 0.01 0.03

ipfs diameter 10 9

ipfs betw 0.003 0.062

Table 6: Comparison of measured graphs of the IPFS overlay at
1.12.19, 00:00 UTC with Erdős-Rényi & Barabási-Albert ran-
dom graphs.

of edges which leads to a logarithmic growth of the diameter of a
graph in the number of nodes N [266]. Note that a low diameter also
implies a low average path length, but not vice versa. Humphries and
Gurney [132] propose to compare the measured network g to the ER
model r in terms of clustering coefficients (Cg, Cr) and average path
lengths (Lg, Lr). These ratios are used to quantify “small-worldness”
as

S :=
γ

λ
, with γ =

Cg

Cr
, λ =

Lg

Lr
. (37)

When S ≫ 1, the studied graph is deemed small-world. For IPFS,
this yields Sall = 74 ≫ 1 and Sreach = 3 > 1, allowing a classification
as small-world, though S is moderately small in comparison to, e.g.,
actor collaboration networks [132].

Comparing to the results of C2 in the Appendix (cf. Section 7.1.1.3),
we can see a smaller number of nodes but about one order of magni-
tude more edges. As outlined above, this is, among other factors, due
to improvements in the libp2p networking library and our crawler
as well as longer session lengths. In comparison to C1, the graphs
from Feb. 2021 exhibit, unsurprisingly, a higher clustering coefficient,
smaller average path lengths and diameters. This significant difference
between graphs from C1 and C2 has an impact on the tolerance to

98 mapping the interplanetary filesystem

random failures and targeted node removals as we will see in the
following.

In summary, IPFS’ overlay in C1 resembles scale-free networks in
that the degree distribution is highly skewed with few peers having a
high degree and many peers with a low degree. Other graph metrics
like the diameter and average path length underline this similarity.
Furthermore, IPFS shows a higher clustering of edges than random
graphs and can therefore be considered a small-world graph. In the
following, we will see that IPFS graphs from C1 behave similarly to
random failures and targeted attacks as scale-free graphs, whereas
graphs from C2 are remarkably tolerant to targeted attacks.

4.7.3.3 Resilience Analysis

The resilience of empirically-obtained graphs against random failures
and targeted attacks has been subject of extensive investigation [12,
42, 232, 250]. To this end, the influence of deleted vertices or edges
on graph properties like diameter, average path length and size of
the largest connected component is studied. This gives insights into
how well the respective graph tolerates failures and attacks which can
in turn be leveraged to draw conclusions about, e.g., the availability
of services. For example, Albert et al. [12] study, among others, the
graph of the Internet at router and inter-domain level. While failures
are tolerated well, i.e., the diameter barely changes, which is used as
an indicator that performance will not degrade noticeably, targeted
attacks dramatically increase the diameter7373 Actually, the

Internet is a special
case, as it adapts to

outages
automatically,

yielding a case of
dynamic resilience

[42].

.
Failures are modeled through randomly (usually uniformly dis-

tributed) deleting vertices or edges, the former being much more
widespread, from the graph under investigation. Targeted attacks cor-
respond to deleting the “most valuable” vertices, which are normally
the highest degree nodes although definitions may very depending
on the context [228].

In [12], it is concluded that the Internet (or the world wide web)
is tolerant to random failures due to the scale-free property, i.e., the
skewed degree distribution. Randomly selecting nodes will, with
high probability, yield a low-degree node whose removal does not
significantly affect other nodes (and paths) in the graph. Further-
more, most paths traverse through one or multiple hubs with high
degrees, increasing the robustness against random failures. These
infrastructural nodes, however, render these graphs highly vulnerable
to targeted attacks through systematic removal of the highest de-
gree nodes. Through removing these nodes, paths originally running
through them are prolongated and, depending on the interconnected-
ness, even partitions may occur. In contrast, ER random graphs are
much more vulnerable to failures, as the degree distribution is not as
skewed and each node contributes more evenly to the graph, i.e., ER
random graphs lack large hubs. On the other hand, the lack of hubs

4.7 crawling results 99

makes them robust against targeted attacks. Peer-to-peer networks are
in many cases similar to scale-free graphs in terms of graph metrics
but also resilience [228, 232, 250], with the exception of Gnutella which
tolerates targeted attacks surprisingly well [250].

25

50

75

100

0 10 20 30 40 50 60 70 80 90

Percentage removed

Pe
rc

.i
n

co
nn

.c
om

p.

Type all reachable

Figure 36: Resilience of the measured graph (same as above) to ran-
dom removals, distinguished by all and reachable nodes.

For our analysis of IPFS, we simulate failures through randomly
deleting vertices, and attacks by deleting the nodes with the highest
degree. As a measure of the graph’s health, we consider the fraction
of nodes in the largest connected component, i.e., the fraction of nodes
that remain connected after the removal of vertices. For the analysis
we now treat the graph as undirected, as BitSwap requests between
nodes can be transmitted in both directions due to the reliable overlay
connection (cf. Section 4.7.3.2).

The results for random failures are depicted in Figure 36, distin-
guished by all nodes and the graph containing only reachable nodes.
On the x-axis we see the fraction of removed nodes, i.e., ranging
from 0 % to 95 % of all nodes in the original graph. On the y-axis
is the fraction of remaining nodes in the largest component, e.g., if
the graph has 100 vertices after the deletion of some, and 80 of those
remaining nodes reside in the largest connected component, then the
respective fraction is 80 %. We performed ten runs, the mean of which
is depicted by the thicker line in the middle, whereas the opaque lines
at the sides correspond to 95 % confidence intervals. The differences
between the graph of all nodes and the one restricted to only reachable
nodes could plausibly stem from the higher degree of connectedness
in the latter graph. Another factor might be the more homogeneous
degree distribution of the reachable graph, thus, removing a node is
not as severe [232]. As seen in Section 4.7.3.2, the graph of reachable
nodes has a higher clustering coefficient and maximum betweenness
centrality, i.e., more paths go through central nodes, making it more
robust against random failures. In general, IPFS’ resilience against

100 mapping the interplanetary filesystem

outages is good, as removing 80 % of all nodes still leaves a connected
component containing 50 % for the graph of all nodes and 75 % for the
graph of reachable nodes, respectively. These results are comparable
to similar considerations on the KAD [232] and Gnutella [250] overlays.

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90

Percentage removed

Pe
rc

.i
n

co
nn

.c
om

p.

Type all reachable

Figure 37: Resilience of the measured graph (same as above) to tar-
geted removals, distinguished by all and reachable nodes.

In Figure 37, the same information as in Figure 36 is depicted
for targeted removal of nodes with the highest degree. It can be
seen that (1) both types of graph (reachable vs. all nodes) differ
significantly and (2) attacks are tolerated less than random outages.
The graph of all nodes has many satellite nodes, i.e., vertices that
are connected to a node with high degree but were themselves not
crawlable and therefore have no other edges. Removing high degree
nodes thus quickly leads to a larger number of components of size 1

which is reflected in the low fraction of nodes that remain in one large
connected component. In contrast, the graph of reachable nodes has,
as we have seen above, a more homogeneous degree distribution —
removing high degree edges does therefore not lead to an immediate
partitioning as in the graph of all nodes. Still, the degree distribution
is sufficiently skewed such that removing 30 % to 40 % of the high
degree vertices quickly breaks down the largest connected component.

Interestingly, the resilience analysis for the IPFS overlay from Feb.
2021 yields dramatically different results (cf. for a discussion of
potential explanations Section 7.1.1) in that the graph of reachable
nodes tolerates failures and targeted attacks equally well, at least with
respect to maintaining most nodes in one connected component. In
that, the results are more comparable to the results on the Gnutella
overlay [250] than the, in principle, more similar KAD network [232].

4.8 interim conclusion 101

4.8 interim conclusion

IPFS is a hybrid between structured and unstructured overlays; sac-
rificing performance for improving robustness by combining a DHT
with broadcasting of data requests for content retrieval. In the first
half of this chapter, we’ve presented several approaches towards map-
ping IPFS overlay connections based on extracting information from
the DHT. To this end, we employed monitoring nodes and a crawler
specifically designed for taking snapshots of the IPFS overlay network.
While not every edge of the overlay graph is observable through crawl-
ing, we argue that the obtained topologies are still valuable as they
present a lower bound on the interconnectedness of IPFS nodes.

Through our monitoring nodes and a 7 d crawl (from 2019-11-26

until 2019-12-03) of the IPFS DHT, we obtain a holistic view on IPFS’
node population as well as indicators about the larger overlay structure
in terms of topology, geographical and protocol distribution. We
furthermore performed a two-week crawl in February of 2021 and
compared changes of IPFS in the recent past to our measurements.
In particular, we measured74 74 And, as

mentioned earlier,
continue to monitor
the overlay at
https://trudi.-
weizenbaum–
institut.de/ipfs_-
analysis.html.

how many and what type of nodes
participate in the network. While infrastructural nodes exist, short
session lengths as well as daily fluctuations in the number of nodes
indicate, among other factors, that a large share of nodes is operated
by private individuals.

In cooperation with ProtocolLabs, the developers of IPFS, we were
able to follow the development of the overlay, which has evolved
significantly in terms of stability and network health since the crawls
in Nov. 2019. Nevertheless, our conceptual insights into overlay
measurements and limitations thereof on IPFS versions < v0.5 still
hold with minor modifications for newer releases. Furthermore, our
monitoring and crawling setup was kept up-to-date with current
developments of IPFS and can readily be used.

Moving on, we leave the realm of DHT-based content retrieval to-
wards broadcast-based BitSwap content retrieval. In the next sections,
we will paint the missing half of the network layer “map” by mon-
itoring data request patterns of the BitSwap content exchange. In
particular, we investigate how BitSwap’s design enables the moni-
toring of data access patterns and trends and discuss the associated
risks for the privacy of users. We present (1) a passive monitoring
methodology for collecting and processing BitSwap data requests of
a large share of the network (cf. Section 4.9) and (2) a monitoring
setup as an instance of the methodology (cf. Section 4.10). Our system
enables us to reveal who requested which data item when, i.e., which
nodeID and IP address requested which CID at what timestamp.

Equipped with measurement traces over a nine month period using
two spatially diverse monitoring nodes (with 9.68× 10

9 data request
entries in total), we highlight possible angles for analyses: (1) estimat-

https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html

102 mapping the interplanetary filesystem

ing the size of the network (in juxtaposition to crawling results), (2)
analyzing activity levels and structure, (3) deriving content popularity
distributions, and (4) the feasibility of privacy attacks.

We will start with a concise overview of measurement setup (cf.
Section 4.9), followed by exemplary results of what is possible with
the data set (cf. Section 4.10), concluded by an assessment of privacy
risks (cf. Section 4.11).

4.9 monitoring data requests

Being a decentralized data storage system, IPFS is inherently hard to
monitor. Signaling messages and data are exchanged directly between
peers, without passing through centrally-controlled infrastructure that
could form a natural vantage point. In the beginning of this chapter,
we demonstrated how the IPFS network — the nodes, the connections
between them — can nevertheless be made visible (cf. Sections 4.4
to 4.8). In the following, we present a methodology for monitoring
data-related activity in IPFS — how many and which nodes request
which data. Notably, this also enables the systematic investigation
into what kinds of data are stored on IPFS. Providers only return
data when asked for the correct CID, so in order to investigate stored
content one must first learn about valid CIDs — which can be done
by observing data requests.

This section introduces our methodology for collecting, processing,
and interpreting BitSwap data requests. In Section 4.7 we apply our
methodology for conducting an exemplary measurement study on
IPFS that highlights the feasibility and potential of our approach.

4.9.1 Data Collection

Data collection can conceptually be described as a two-step process,
with each step leveraging different key features of IPFS’ design. Firstly,
we form connections to an unbounded number of nodes. This is possible
because, by design, anyone can deploy a node on the IPFS network
and the number of connections a node can maintain is only limited by
the IPFS software, i.e., not on a protocol level. Secondly, we collect all
BitSwap messages from connected nodes. As discussed in Section 4.3,
nodes send data requests to all nodes they are connected to, and hence
also to our monitoring nodes.

Collecting the BitSwap traffic of a peer allows learning which
CID c was requested at what time. The monitoring node pro-
duces, using a modified version of the IPFS software, a list of
(timestamp, node_ID, address, request_type, CID) tuples. No knowl-
edge is gained about whether (1) the data d referenced by c was
downloaded successfully, and (2) what d is (including whether it is
a file or a directory). The latter can be determined by downloading

4.9 monitoring data requests 103

and indexing c. The former can be determined if we also control a
provider for the data referenced by c and the data was downloaded
from that provider. Alternatively, if the requesting node sends a
CANCEL at some point, we can afterwards probe its cache by sending it
a request for c.

In the presented approach, monitoring nodes are passive. They
accept all incoming connections, but do not actively search for or
connect to peers. They thereby remain indistinguishable from regular
nodes in terms of connection initiation and generally do not send
BitSwap requests or data. In order to collect messages from a larger
portion of the IPFS network, multiple monitors with different node
IDs can be used in conjunction.

Our collection methodology implies a number of limitations. While
enabling low-cost and hard-to-detect monitoring, passive monitors
will generally only detect requests for root hashes of a Merkle DAG.
Requests for CIDs further down in the Merkle DAG are sent only to
peers in that CID’s session, i.e., peers that responded to the initial re-
quest (cf. Section 4.3.6). Since our monitoring nodes W do not provide
any data, they are not added to any session and will, therefore, not
receive any further requests. Furthermore, as outlined in Section 4.3.7,
IPFS caches downloaded data. Subsequent request for the same data
will be served from the local cache instead of broadcast via BitSwap.
We thus only see first requests for data from a peer, or requests after
their cache was purged.

4.9.2 Preprocessing

Each monitoring node produces a trace of BitSwap messages it received.
If necessary, traces from multiple monitors can be unified into one
global trace. When a node is connected to multiple monitors, we
receive broadcast want_list entries multiple times. To filter out
these duplicates, we consider want_list entries received by different
monitors to be identical if their source (node ID and address), request
type, and target CID match and their timestamps differ by at most
5 s. The window size of 5 s was chosen to account for most genuine
duplicates, potentially delayed due to high latencies. Larger values
lead to a higher chance of misclassifying regular re-broadcasts of
want_list entries as duplicates.

As outlined in Section 4.3.6.1, IPFS clients re-broadcast want_list
entries every 30 s, using an independent timer per connected peer.
These repeated broadcasts make up a significant portion of all requests
(> 50 % according to our measurements), skewing the numbers for
some analyses. We mark messages with identical source, request type,
and target CID as re-broadcasts if they were received within 31 s from
each other. Note that, as nodes maintain independent re-broadcast
timers for each connected peer, re-broadcast messages reach different

104 mapping the interplanetary filesystem

monitors at shifted times. Depending on the order of preprocessing
steps, this can lead to a misclassification of same-monitor re-broadcasts
as inter-monitor duplicates.

After data processing, we operate on a unified trace of (timestamp,
node_ID, address, request_type, CID, flags) tuples, where the flags
encode information about duplicate status and repeated broadcast
detection.

4.9.3 Estimating the Network’s Size

The data we gather through our monitoring methodology can be used
for estimating the total size N in terms of number of nodes of the
IPFS network. For example, using two monitors m1 and m2, and with
the simplifying assumption that each monitoring node selects peer
sets Pm1 and Pm2 uniformly and independently from the whole node
population, we can estimate the size of the network as:

NE =
|Pm1|·|Pm2|

|Pm1∩Pm2 |
, (38)

where NE is an estimation for N. This can be derived by considering
the population of N nodes as black balls in an urn, K := |Pm1| of which
are turned red through connections through m1. Then, the connections
of m2 can be seen as sampling n := |Pm2| balls without replacement —
yielding a hypergeometric distribution with k := |Pm1 ∩ Pm2| successes.
In other words, all parameters of the distribution except the population
size N are known, so we can leverage this knowledge of parameters
to perform a maximum likelihood estimate of N. If a random variable
X follows a hypergeometric distribution, its probability mass function
(PMF) is given by:

fX(k|N,K, n) =

(︁
K
k

)︁(︁
N−K
n−k

)︁(︁
N
n

)︁ . (39)

We define the likelihood function as L(N|K, k, n) := f(k|N,K, n). Recall
that to obtain a maximum likelihood estimation of N, we have to differ-
entiate the log-likelihood function. Using the Stirling approximation
(lnn! = n lnn−n) this yields

d lnL

dN
= ln

[︃
(N−n)(N− k)
N(N−K−n + k)

]︃
!= 0 (40)

⇐⇒ (N−n)(N− k)
N(N−K−n + k)

= 1 (41)

⇐⇒ N =
nK

k
(42)

⇒NE =
|Pm1|·|Pm2|

|Pm1 ∩ Pm2|
. (43)

4.9 monitoring data requests 105

The general case of r monitors can be handled through modeling
the system as a coupon collectors problem with group drawings, also
referred to as committee occupancy problem [101, 167, 242]. In this
setting, peers correspond to cards and are numbered 1, . . . , N. Assume
each monitor has w connections, then a monitor is a group drawing
of w cards/peers without replacement from the total set of peers —
hence, there are no duplicates within a drawing but only between
them. We furthermore assume these drawings to be independent
from one another. Typically, the question modeled is “What is the
probability that we have m distinct cards/peers after r draws of size
w?”. Let X be the number of distinct peers after r draws of size w,
then this probability is given by [167]:

P[X = m] =
(︃
N

w

)︃−r(︃
N

m

)︃ m∑︂
k=w

(−1)m−k

(︃
m

k

)︃(︃
k

w

)︃r

. (44)

In our setting, we know m (the size of union over all monitors), and N

is the quantity to be estimated. Hence, similarly as for Equation (38),
we can turn the probability density into a maximum likelihood estima-
tion of N. Differentiating the log-likelihood function (again, with the
help of the Stirling approximation), yields a non-closed-form solution
for N, given m, r,w, that has to be solved numerically:

N−N r

√︃
1 −

m

N
−w = 0. (45)

The accuracy of our estimation formulas is influenced by a number
of factors. For one, due to Kademlia, the peer selection is not uniform
but skewed. For example, nodes with node IDs close (in XOR metric)
to the node ID of m1 are more likely to be connected to m1 than nodes
further away. Additionally, we do not fully consider effects relating to
nodes’ peering "capacity" — a node already connected to m1 has one
less slot for forming new connections and is therefore minimally less
likely to be connected to m2 as well. As IPFS nodes establish anywhere
between 600 and 900 connections on average, with even higher peaks,
the effect of occupied capacities is probably negligible. With respect
to our > 2 monitors estimator, it must be pointed out that monitors
actually have a different number of connections at a given point in
time, i.e., w is not the same for all monitors. However, a heterogeneous
w increases the complexity of the modeling significantly.

In Section 4.10.3 we apply our estimators in practice and empirically
compare the result with alternative indicators for the size of the
network.

106 mapping the interplanetary filesystem

4.9.4 Content Popularity

Collected traces of BitSwap requests can be used to deduce the relative
popularity of CIDs, and hence the content they reference. Knowledge
of this popularity distribution is, e.g., an important building block
for the formal analysis of cache hit ratios (especially relevant for IPFS
gateways) [108]. It furthermore allows for more realistic network
simulations and user models. To this end, we define two different
popularity scores, one for capturing IPFS’ behavior “on the wire” and
one for approximating user behavior. For the former, we define a
CID’s raw request popularity (RRP) as the total number of requests
received for a particular CID during a given period. This number is
of interest for simulation studies and for improving the performance
of BitSwap. For approximating user behavior, we consider unique
request popularity (URP), the number of distinct peers that requested
a respective CID in the given time period. The motivation behind
URP is that requests for a CID coming from distinct peers indicate the
corresponding data item’s popularity among distinct users.

4.10 example monitoring study

We implemented our monitoring methodology and collected data from
the public IPFS network from March 2020 until February 2021. In the
following, we describe our setup and present exemplary observations
that it has allowed us to make, showcasing the feasibility and utility
of our approach.

4.10.1 Monitoring Setup

Our setup consists of a small number of monitoring nodes W and an
additional larger set of resolving nodes R. The nodes W function as
outlined in Section 4.9.1. We use the nodes R for actively resolving,
downloading and indexing content discovered through W.

The goal of W is to gather traces for as many peers as possible. To
that end, they accept all incoming connections and impose no limit
on the number of connections they maintain. They are furthermore
deployed on publicly reachable servers, i.e., not behind a NAT. For this
measurement study, |W|= r = 2, with one node situated in Germany
and one in the United States. The nodes were running a modified
version of the IPFS client v0.5.0-rc2 for the majority of the duration
of data collection. One node was later upgraded to IPFS v0.7 in late
October 2020.

The nodes R download and analyze content discovered via W’s
logging, using unmodified IPFS clients75

75 The corresponding
tools are maintained

at
https://github.com/-

mrd0ll4r/ipfs–
resolver

. For any CID c recorded
by W, the resolvers R try to resolve c to its respective block b and
all blocks in the Merkle DAG below b. Hence, although we do not

https://github.com/mrd0ll4r/ipfs-resolver
https://github.com/mrd0ll4r/ipfs-resolver
https://github.com/mrd0ll4r/ipfs-resolver

4.10 example monitoring study 107

actively enter a peer’s session for a data request, by resolving CIDs and
traversing their Merkle DAG we can extrapolate which content was
requested in the sessions. The nodes in R run on different machines, in
different locations around the globe, using different ISPs and unique
node IDs, to both rule out any network restrictions as well as being
able to find content with a high probability, if it is available on IPFS.
CIDs that could not be downloaded initially are recorded and the
downloads are retried at a later date.

4.10.2 Data Collection

We collected BitSwap traces continuously for nine months, yielding
over 500 GB of compressed traces. We maintained only one monitoring
node for the first two months and a total of two for the remaining
seven months. Since beginning the data collection, our monitors
underwent minor configuration and version changes as well as some
outages. We classify these as minor (>5 s) and major (>1 h) outages
and count the number of days during which they occurred. The us
monitor in the U.S. was running for a total of 285 days of which 6

days experienced at least one major outage and an additional 13 days
experienced at least one minor outage. The de monitor in Germany
was running for a total of 224 days of which 7 days experienced at
least one major outage and an additional 4 days experienced at least
one minor outage. We observed more than 510 million unique CIDs,
more than 350 million of which we were able to download and index.
For indexed CIDs, we store the metadata and links contained in the
respective blocks but discarded the data itself due to its immense size.

The remainder of this section showcases analyses possible with
our collected data, and with data collectable using our monitoring
methodology in general. We present results for:

• Estimating the size of the IPFS network.

• Assessing the level and structure of data-related activity.

• Investigating the popularity of content stored on IPFS.

We leave further analyses on the "file system" layer of IPFS that
are enabled through our methodology, e.g., of deduplication and the
structure of IPFS’ data graph, to future works.

4.10.3 Monitoring Coverage and Network Size

In the following, we take a closer look at traces collected in the week
from July 30th to August 6th, 2020. Over this period, our two monitors
saw 41647 and 41151 unique peers in total, respectively, for a union of
45115 peers. The monitors were connected to an average number of,

108 mapping the interplanetary filesystem

respectively, 6600 and 7000 peers, with the size of the union of unique
peers being 9300 on average. Notably, averages and weekly totals
differ significantly from each other, which is in line with previous
observations about churn in the IPFS network [6].

The collected data points allow us to apply the network size es-
timation formula we propose in Section 4.9.3. Doing so yields an
estimated average network size of 10811 with Equation (38) and 10800

with Equation (45) (setting w as the average of connections of both
monitors). While deriving a ground truth for this estimate is inher-
ently challenging [149], we can compare our results with alternative
indicators for the IPFS network’s size. Existing measurement infras-
tructure from previous studies (cf. Sections 4.3 to 4.8) gives us insights
into the portion of the network reachable through crawls of the IPFS
DHT7676 See also the

aforementioned
https://trudi.-
weizenbaum–

institut.de/ipfs_-
analysis.html.

. Crawls of the IPFS network during the discussed period re-
vealed a total of 36682 unique peers, with an average network size of
15900 peers per crawl. This hints at the fact that our method might
underestimate the current network size. However, measuring the size
of the IPFS network based on DHT crawls has limitations on its own.
For example, crawled IPFS nodes also propose DHT nodes to our
crawler that are in fact offline [220]. Such nodes are still counted by
the crawler, as even online nodes might be unreachable to it if they
reside behind NAT or other restrictive network devices. On the other
hand, our DHT crawler doesn’t enumerate client-only nodes that are
part of the IPFS network but not part of the DHT, which explains
why our monitors saw more unique node IDs over the discussed week
than our crawler. While a detailed evaluation of different network
size estimation approaches is out of the scope of this work and is left
for future investigations, the different estimates give us a ballpark
assessment of the number of nodes in the IPFS network.

Given estimations for the network’s size, we can now gauge the
coverage of our monitoring approach. We use the crawling-based
estimation of the network’s size in the following, being the larger
of the two and therefore more likely to underestimate our coverage.
At any given time, our monitoring nodes us and de were thereby
connected to, and hence receiving BitSwap messages from, 44 % and
41 % of the network, respectively. The joint setup combining traces
from both nodes had an average monitoring coverage of 58 %. Notably,
we achieved this coverage using only two passive monitoring nodes.
The monitoring coverage can be further increased by adding more
monitoring nodes or, complementary, by implementing a more active,
crawler-like (and perhaps targeted; cf. Section 4.11) peer discovery
mechanism.

https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html
https://trudi.weizenbaum-institut.de/ipfs_analysis.html

4.10 example monitoring study 109

RC1

v0
.5

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

May Jul Sep Nov Jan
Month

N
um

be
r

of
R

eq
ue

st
s

WANT_BLOCK WANT_HAVE

Figure 38: Transition of request types over time, from WANT_BLOCK to
the newer WANT_HAVE, indicated by the number of requested
entries per type. X-axis ticks mark the beginning of the
indicated month.

4.10.4 BitSwap Usage

Only a small portion of the nodes we monitored in the above pe-
riod were actively engaging in the BitSwap protocol, sending at least
one request or cancel. The two monitors saw 1657 and 1685 unique
BitSwap-active peers over the duration, respectively, with a union of
2073 unique BitSwap-active peers. Still, we observe a growing Bit-
Swap (and hence IPFS) usage between March 2020 and January 2021,
measured by the number of BitSwap data requests per day. Figure 38

depicts the view of monitor us on the number of requested CIDs
per day and entry type, with the two entry types stacked vertically.
Missing values indicate incomplete data due to outages. Annotated
with black lines are release dates for go-ipfs versions. We observe
an upwards trend in the total number of requested entries over the
entire duration, as well as a shift from WANT_BLOCK to WANT_HAVE. The
WANT_HAVE entry type was introduced with go-ipfs v0.5 (respectively,
in release candidates for that version), and we see its adoption around
that time. This shows a willingness of users to upgrade their clients.
The large spike at the beginning of August was registered by both of
our nodes, but we did not investigate further.

We also analyzed the collected CIDs for the Multicodec they refer-
ence. The Multicodec describes what type of data is referenced by a
CID, as outlined in Section 4.3.3. The results of our analysis over the
entire ≈ 9 months are presented in Table 7. Over this duration, we
collected a total of 9.68× 10

9 data requests in sum over both monitors
and calculate the share of these. We only count requested entries, not
CANCELs, and derive the data from raw, unprocessed traces of the two
monitors. We can see that, from the perspective of our monitoring
infrastructure, IPFS is used mostly for file storage.

110 mapping the interplanetary filesystem

Codec Share (%)

DagProtobuf 84.86

Raw 14.42

DagCBOR 0.70

GitRaw 0.01

EthereumTx < 0.01

Others (8) < 0.01

Table 7: Share of data re-
quests by Multi-
codec. (March
2020–January 2021)

Country Share (%)

NL 43.5

US 34.9

SG 9.0

DE 6.9

CA 1.6

Others < 4.0

Table 8: Share of data re-
quests by country.
(July 30th–August
6th, 2020)

Our collected traces also allow insights into the geographic patterns
of IPFS usage. We examined IP addresses from our unified, dedu-
plicated dataset over the period between July 30th and August 6th,
2020 and resolved them, as in Section 4.7, via the MaxMind GeoIP2

database. Table 8 shows the share of observed BitSwap data requests
per origin country. We see that nodes residing in the Netherlands
and the US together account for roughly 78 % of all observed activity
during this period.

4.10.5 Content Popularity

Applying the popularity scores we defined in Section 4.9.4 to the
collected traces for the July 30th to August 6th period allows us to
calculate the distribution of CID popularities. We compute the unique
request popularity (URP) on the unified traces of both monitors and
the raw request popularity (RRP) on the trace of the us monitor which
captures the raw request distribution arriving at one node. We present
the resulting empirical CDFs (ECDF) in Figure 39. It can be seen
that the majority of CIDs in both distributions have a low popularity
score, in particular, over 80 % of CIDs were only requested by one
peer, as depicted in Figure 39b. Although the distributions differ, both
seem highly skewed with few highly-requested CIDs and a majority
of “unpopular” ones. In contrast to other works on item popularity
reporting heavy-tailed, Zipf-like distributions [108], fitting a power-
law distribution to our measured scores (Figure 39) as laid out in [59]
(and already showcased in the analysis of Figures 33 and 34) yields
a p-value ≪ 0.1, both for RRP and URP, regardless of the choice
for a cut-off value xmin, with 2500 bootstrapping runs. We therefore
conclude that the power-law hypothesis has to be rejected, i.e., that
the measured popularity data does likely not follow a power-law
distribution.

It has to be noted that popular data items according to RRP are often
not resolvable, i.e., the data block the CIDs are pointing to cannot

4.11 privacy risks 111

0.0
0.2
0.4
0.6
0.8
1.0

1e+01 1e+03 1e+05

Number of requests

Em
p.

cu
m

.p
ro

b.

(a) RRP score

0.0
0.2
0.4
0.6
0.8
1.0

1 10 100

Number of unique peers

(b) URP score

Figure 39: ECDFs of content popularities. (July 30th–August 6th, 2020)

be found. This observation may stem from different factors. First,
BitSwap periodically re-broadcasts requests for CIDs it cannot resolve
(cf. Section 4.9.2). Furthermore, some peers issue an unexpectedly high
number of requests for the same data item — hinting at configuration
errors or non-standard usages of IPFS.

The ten most popular CIDs according to URP are resolvable. How-
ever, many of these most popular CIDs contain faulty content that we
were not able to extract, i.e., the respective data block can be obtained
from the network but cannot be parsed due to errors. The most re-
quested syntactically valid content according to URP stems from the
dAppNode-project77

77

https: // github.
com/ dappnode/
DAppNode, a project devoted to simplifying the process of

running and maintaining full nodes in various P2P networks.

4.11 privacy risks

The monitoring of data requests in IPFS provides useful insights for
tuning the network’s performance, assessing its level of use, and iden-
tifying key usage scenarios. However, our monitoring techniques can
also be used for tracking the behavior of individual users, implying
latent privacy risks. In the following, we flesh out these risks by
proposing a series of specific attacks on the privacy of IPFS users. As
a demonstration, we uncover the (normally hidden) node identifiers
corresponding to public IPFS/HTTP gateways and successfully track
requests initiated through these gateways. We also discuss counter-
measures, highlighting that the identified attacks are in part enabled
by core aspects of IPFS’s design, and that remedying them is a hard
challenge when other desirables from a decentralized data storage
system are taken into account.

4.11.1 Privacy attacks on IPFS

We define three specific attack vectors that can enable adversaries
to learn about the current and past data request behavior of IPFS
nodes: Identifying Data Wanters (IDW), Tracking Node Wants (TNW), and

https://github.com/dappnode/DAppNode
https://github.com/dappnode/DAppNode
https://github.com/dappnode/DAppNode

112 mapping the interplanetary filesystem

Testing for Past Interests (TPI). In the standard usage mode, IPFS users
access and distribute data via IPFS nodes under their own control.
Consequently, learning what data a node is or has been interested in
allows for direct conclusions about the (likely private) preferences of
its human operator7878 Note that even if

data items have been
encrypted before
being placed on

IPFS, metadata such
as request behaviors

and approximate
data sizes can still be

learned by an
adversary.

. We discuss the alternative, (public) gateway-
based usage mode of IPFS in Section 4.11.3.

4.11.1.1 Identifying Data Wanters (IDW)

The goal of the IDW attack is to discover nodes that are interested in a
given CID-identified data item. The setup of the attack is identical to
our monitoring setup. In fact, our deployed monitoring infrastructure
(cf. Section 4.10.1) already collects the necessary information for listing
node IDs that have requested a given CID. The effectiveness of the
attack (in the sense of the percentage of captured CID requests) is
proportional to the invested resources. By deploying more monitoring
nodes or using an active, crawling-like peer discovery approach, the
adversary can increase the number of nodes to which he maintains a
direct connection and from which he receives CID messages. Already
with one monitoring node, however, we were able to monitor more
than 40 % of the public IPFS network (cf. Section 4.10.3).

4.11.1.2 Tracking Node Wants (TNW)

The TNW attack revolves around tracking which data items a given
target node is interested in. It is therefore sufficient for the adversary
to maintain a connection to the target node and collect the requests
that the target node broadcasts. From a practical standpoint, a more
challenging aspect of the TNW attack is to determine the node ID
or IP address of the target node, as the adversary goal will likely be
the surveillance of the user or organization behind the node. While
different more general ways are conceivable to learn the IP address
of a victim, this is also possible by again leveraging IPFS itself: the
IDW attack can be used to discover nodes that are requesting some
CID only the victim is likely to know or be interested in (e.g., because
the adversary sent it to him). In Section 4.11.2, we demonstrate the
effectiveness of this approach on well-known public gateway nodes
on the IPFS network.

4.11.1.3 Testing for Past Interests (TPI)

In the TPI attack, the adversary seeks to confirm that a given node has
recently accessed a given data item. The attack leverages the fact that
IPFS nodes cache previously requested data items locally and serve
them to interested parties (cf. Section 4.3.7). This caching mechanism
is a cornerstone to the scalability and censorship-resistance of IPFS.
However, in its current form it also enables any adversary capable
of joining the IPFS network to test whether a given target node has

4.11 privacy risks 113

previously requested a given CID — by sending a CID request to the
target node. The target node will answer if the sought data item is in
its cache, and the data item will only be in the target node’s cache if it
was either requested or initially uploaded via the target node based
on a user request. Like for the TNW attack, the TPI attack can be
mounted with negligible resources required by an adversary once the
IP address or node ID of the victim becomes known.

4.11.2 Proof of Concept: Tracking Gateway Requests

IPFS offers a bridge to access the IPFS network and hosted content
through HTTP. While every node offers this translation locally by
default, there are also a number of public gateways available on the
regular HTTP-based web, maintained by the developer community
and a number of organizations. Public gateways are a convenient
way to access IPFS and aim to boost adoption of IPFS, showcase
examples, and enable access to the network in situations when running
nodes locally is infeasible. Public gateways also allow us to test
privacy attacks in a realistic setting without threatening users. In the
following, we outline a methodology that combines the IDW attack
with a tailored probing step for linking well-known public gateway
nodes (identified by their DNS names and IP addresses) to IPFS nodes
(with node IDs and often different IP addresses than the associated
HTTP endpoints). We apply the TNW attack on the identified nodes
and briefly discuss the results of this investigation, which might be
of independent interest. The success of the presented experiment
underlines the viability of the proposed attacks and the latent privacy
risks they imply for IPFS users.

4.11.2.1 Gateway Probing Methodology

We build upon our monitoring methodology (Section 4.9), extending it
by a probing step. We generate a unique block of random data, yielding
a unique CID c79 79 Obtaining a CID

duplicate is
improbable due to the
fact that CIDs are
based on
cryptographic hashes
of the data (s.a.
Section 4.3).

. We then launch a IDW attack on c, adding our
monitoring nodes W as providers for c to the IPFS DHT. Subsequently,
we ourselves request c through the HTTP-facing side of a public
gateway and wait for BitSwap messages to arrive. If nodes in W

are currently connected to the gateway, this usually happens within
seconds. Without a connection, we can rely on the gateway to find
a member of W through the DHT, and connect our nodes after that.
Once found and connected to W, the gateway will issue a want_list
update containing the CID c. The received BitSwap request for c

enables us to uniquely identify the IPFS side of the probed gateway.
Since c refers to a block of randomly generated data, it is unlikely
that any other user on the network would request c, yielding a large
confidence in the measured results.

114 mapping the interplanetary filesystem

4.11.2.2 Gateway Probing Results

We applied our gateway probing method to a list of 38 public gateways
curated by the IPFS project [219]. We repeated the measurements two
times, on the 31st of May and 8th of June 2020 and from two distinct
hosts situated in Germany and the U.S., respectively. For each date
and each gateway we used a different random seed so that c is unique
in each trial. The complete results as well as a replication of the
list of public gateways at the respective dates are gathered in the
Appendix, cf. Table 16. 24 of the gateways in above mentioned list
were functioning properly at the time of our tests, while 12 of the 38

were not usable, in line with the public list [219]. Using our probing
method, we were able to discover node IDs for all 24 functional public
gateways, receiving relevant BitSwap messages from them at least
once. We also discovered node IDs for two of the non-functional
gateways, i.e., our HTTP requests to them did not succeed but we still
received relevant BitSwap messages. We suspect a misconfiguration
on the HTTP end of those gateways.

After collecting data through our probing step, we cross-referenced
the discovered IPs and overlay IDs with peer lists from our monitoring
nodes W, focusing on discovering nodes that share IP addresses and
node IDs associated with multiple IP addresses. The probing and
cross-referencing uncovered that several public gateways in above list
were in fact associated with not just one but multiple nodes on the
IPFS network. We contacted the operators of one prominent gateway
with 9 associated IPFS nodes, who confirmed that, to their surprise,
we correctly identified all of their nodes. In total, we discovered 44

node IDs corresponding to well-known public gateways.

4.11.2.3 Public Gateway Requests

After successfully discovering the IPFS nodes associated with well-
known public gateways, we can launch a TNW attack on these gate-
ways. In the following, we discuss results collected from July 30th
to August 6th. Figure 40 depicts the number of BitSwap requests per
second that our two monitors received during this period. We unified
and deduplicated the traces from the two monitors as per Section 4.9.2.
We plot both gateway and non-gateway (“homegrown”) request rates,
illustrating that we can successfully track the requests sent by a target
node population. We find that a significant portion of gateway traffic
is due to a single public gateway operator, Cloudflare, and therefore
mark Cloudflare traffic explicitly in our results.

Our monitors were engaged in regular monitoring (as per Sec-
tion 4.9) during this experiment and thereby collected BitSwap mes-
sages from non-targeted nodes as well. As can be seen in Figure 40, we
in fact received far more requests from non-gateway nodes than from
gateway nodes. This observation might indicate that gateway usage is

4.11 privacy risks 115

0

20

40

60

80

0
7
/3

0
1
3
:00

0
7
/3

1
1
3
:00

0
8
/0

1
1
3
:00

0
8
/0

2
1
3
:00

0
8
/0

3
1
3
:00

0
8
/0

4
1
3
:00

0
8
/0

5
1
3
:00

Timestamp

R
eq

ue
st

s/
s

All GW Cloudflare Non-GW

Figure 40: Deduplicated BitSwap request rate by origin group. The
rate is calculated over one-hour slices of the unified, dedu-
plicated trace as explained in Section 4.9.2. Times are in
UTC.

similarly only a small part of total IPFS usage. However, we must ex-
pect that public gateways cache requested data at least as aggressively
as regular nodes — if data requested via HTTP is already cached, no
BitSwap request is generated and we thus cannot learn of this request.
Operational data from public gateway operators, for example about
observed cache hit ratios, might enable more conclusive insights w.r.t.
the popularity of public gateway services.

4.11.3 Privacy enhancement for decentralized data storage systems

The feasibility and relevance of the IDW, TNW and TPI attacks are
due to a number of inherent characteristics of IPFS:

1. Long-lasting node identifiers — as connections must be main-
tained, nodes retain their node ID and IP address(es) for ex-
tended periods of time.

2. No connection limits — there are no mechanisms in place that
can reliably prevent a small set of (adversary or monitoring)
nodes from maintaining connections with nearly all nodes in the
network, or a single adversary node from connecting to specific
victim nodes.

3. CID request broadcasts — as part of the BitSwap protocol, nodes
broadcast data requests to all nodes they are connected to.

4. Cooperative caching — nodes cache downloaded data and coop-
eratively serve it to other interested nodes.

116 mapping the interplanetary filesystem

5. Single-user nodes with no cover traffic — users accessing the
IPFS network via a locally installed IPFS client are represented
in the network as a node that relays only their own and actual
requests.

The weakening of these attack enablers poses a significant challenge
for designers of decentralized data storage systems. Naive counter-
measures can easily result in a significant deterioration of performance,
censorship-resistance or peer-to-peer scalability. For example:

1. Node identifiers can be cycled more frequently and an additional
anonymization layer for IP addresses can be used. The effective
cycling of node identifiers (i.e., existing connections need to be
teared down) essentially increases churn. Using an established
IP address anonymization service like Tor [254] limits the perfor-
mance of the data storage system to that of the service. It is an
open question how to best integrate IP address anonymization
functionality into IPFS itself and what the performance impact
of such a change would be. Parallels can likely be drawn to the
design and operation experience of privacy-centric systems such
as Freenet [58, 229].

2. Systems like IPFS thrive on their openness, on allowing anyone
to join the network and provide a node. Attempts to limit the
amounts of connections a single node can maintain are difficult
to design and limited in effect as adversaries can easily split
their connections between multiple Sybil [86] nodes. Introducing
per-connection costs, e.g., by requiring continuous Hashcash-
like [20] proofs of work from peers, will likely also result in
a decreased population of honest nodes while being of uncer-
tain effect against determined adversaries with access to cloud
computing resources.

3. Nodes could request data items only from nodes found via DHT
queries, rather than from their whole overlay neighborhood.
However, this would reduce IPFS’s robustness against censorship
attacks (cf. Section 4.3) while being of limited effect as (Sybil)
adversaries can also place themselves at key locations in the
DHT (e.g., the adversary can generate a node ID such that he
is co-responsible for a target CID, thereby being able to track
DHT lookups for that CID). On the opposite end, extending
BitSwap to support multi-hop requests or even flooding might
not be sufficient to confuse dedicated adversaries either, as the
identification of messages sources is provably feasible even in
decentralized flooding-based networks [207].

4. Users can manually remove problematic items from their node’s
cache. While this is definitely helpful against a time-delayed TPI

4.11 privacy risks 117

attack, it requires manual diligence and has no effect on IDW and
TNW attacks. More nondiscriminatory cache pruning would di-
rectly deteriorate censorship resistance and overall performance
by reducing the number of data copies in the network.

5. Adding realistic cover traffic to add plausible deniability to one’s
genuine data requests is hard — in order for fake data requests
to be effective they must be directed an actually existing CIDs
and follow realistic popularity distributions. Lists of existing
CIDs and their popularity distribution might be obtainable for
monitoring operators (cf. Section 4.10.5), but is not usually the
case for regular users.

Users could also use IPFS via a public gateway (cf. Section 4.11.2).
While this measure is both highly effective in terms of privacy-
protection (users can additionally access the gateway via an anonymiza-
tion service such as Tor) and already in active use by at least part of
the IPFS user base (based on our monitoring results and numerous
anecdotal evidence), it arguably weakens the benefits of IPFS as a
decentralized data storage system. Namely, by accessing content on
IPFS without also forming a node of the IPFS network users do not
contribute to the network’s scalability and censorship resistance.

Turning the gateway strategy on its head, regular IPFS users could
also provide gateway services, thereby both strengthening the IPFS
network and adding natural cover traffic to requests they themselves
send via their node. For increasing the use of smaller gateway services,
changes to the IPFS software are necessary so that the selection of
a gateway is handled automatically. The solution can be expanded
towards a form of onion routing [254], with data requests being routed
through three or more gateways and only the last gateway in the chain
performing an actual DHT- and BitSwap-based search, or a more
lightweight deniability-increasing approach like AP3 [197].

We leave the in-depth investigation of this and other potentially
promising privacy-hardening approaches for future works. We also
note that providing gateway services to other (anonymous) users
might imply some legal uncertainties. Gateway nodes can be led into
caching data the mere possession of which might be considered a
criminal act. Depending on jurisdiction, providers of hosting services
are often exempt from direct liability as long as they quickly remove
problematic data upon obtaining knowledge or awareness of its ex-
istence (see for example [94, Art. 14]) and it is plausible (albeit, to
the best of our knowledge, not certain) that such safe harbor rulings
would extend to small-scale IPFS gateway nodes.

118 mapping the interplanetary filesystem

4.12 chapter summary

4.12.1 Summary

In this chapter we provided a comprehensive, empirically-based per-
spective on network and content aspects of IPFS. We have seen that
extensive network layer monitoring of IPFS is possible through (1)
crawling the DHT which yields a subset of established connections
between peers, as well as (2) monitoring BitSwap content requests,
enabling us to paint an in-depth and holistic picture of IPFS’ adoption,
usage patterns and network health.

Regarding the DHT, we conducted a seven day crawl of the IPFS
DHT in Nov. 2019 (C1) and a two week crawl in Feb. 2021 (C2),
enabling insights about node population as well as indicators about
the larger overlay structure. In C1 we found a total of 4.4 · 10

4 on
average, 6.6 % responded to our connection attempts, as symmetric
NATs were not properly handled by IPFS at the time. Since Nov.
2019, the number of unreachable nodes in the network has decreased
significantly, with 1.1 · 10

4 nodes found in Feb. 2021, almost 50 % of
which could be dialed by our ipfs_crawler. Several indicators hint at
the fact that a majority of nodes is operated by private individuals,
e.g., short session lengths (for C1) and daily periodic fluctuations in
the number of nodes in the network. Interestingly, especially for C2,
the overlay graph is not scale-free and robust against random outages
as well as targeted attacks — resembling results on Gnutella [250]
instead of other Kademlia systems [232].

We published, maintained and improved the code of ipfs_crawler in
cooperation with ProtocolLabs — the designers of IPFS and the libp2p
networking library8080 https://github.-

com/scriptkitty/ipfs–
crawler.

. Furthermore, we made the tools and evaluation
scripts for processing crawl data public and easy to use, so that other
researchers can replicate our study and compare results.

Regarding the monitoring of BitSwap requests, we presented a
methodology for observing data-related activity in IPFS of large por-
tions of IPFS’ node population at low cost (more than 40 % with one
passive monitoring node). Our two monitoring nodes received in-
dicators for all CIDs that connected-to nodes request and look for.
We tested our methodology8181 Again, published

and maintained at
https://github.com/-

mrd0ll4r/ipfs–
resolver.

in a 9-month measurement study and
highlighted several angles for analyses. For example, we find that data-
related activity was increasing over time. For a studied 7-day period,
almost 80 % of activity can be attributed to just two countries and the
popularity of content items does not follow a power-law distribution.
Despite its potential for generating informative insights about the IPFS
network, the effectiveness of our monitoring approach also paints a
troubling picture with regard to user privacy. We described how our
methodology can be extended for realizing a range of privacy attacks
that ultimately enable low-resource adversaries to surveil the current

https://github.com/scriptkitty/ipfs-crawler
https://github.com/scriptkitty/ipfs-crawler
https://github.com/scriptkitty/ipfs-crawler
https://github.com/mrd0ll4r/ipfs-resolver
https://github.com/mrd0ll4r/ipfs-resolver
https://github.com/mrd0ll4r/ipfs-resolver

4.12 chapter summary 119

and past data requesting behavior of node-operating users. While not
covered in this chapter, the methodology and dataset enables, among
other things, in-depth investigations into the filesystem layer of IPFS
and the content stored on the network.

4.12.2 Conclusion

Given the diverse analyses and datasets gathered on IPFS through
our methodologies, what can be said with regards to the research
questions on IPFS from Section 4.1?

We have studied two potential avenues for monitoring and mea-
surements. Although limitations exists in the form of non-crawlable
connections, the constraint to root hashes in monitored BitSwap re-
quests and caching, the combination of both approaches allows for
painting a holistic picture of IPFS.

Although there are centralization tendencies, e.g., through infras-
tructural nodes such as IPFS/HTTP-gateways and DHT “boosters”82

82

https://github.com/-
libp2p/hydra-booster.

,
a significant share of IPFS nodes seems to be operated by private
individuals. Having studied IPFS for more than a year, we were able
to observe an increase in maturity and performance, but also in cen-
tralization. For example, a large share of active participants in the
DHT are boosters83 83 The largest share

of nodes seems to
stem from the

“Storm”-Botnet
which uses IPFS for
command & control
[224], which started
to emerge in 2020.

, specifically designed to bolster the performance
of DHT lookups. This evolution is clearly visible when comparing the
two sets of crawls C1 and C2 from Nov. 2019 and Feb. 2021, respec-
tively. The overlay topology suggest that IPFS’ overlay bears some
resemblance to scale-free and small-world networks, more so for C1

than for C2. Interestingly, the degree distribution does not necessarily
follow a power-law for both sets of crawls, though the difference is
more noticeable in C2 which has a surprisingly homogeneous degree
distribution. Subsequently, this renders graphs from C1 more vulner-
able to targeted node removals than graph from C2. The differences
between the two sets of crawls potentially stem from significant im-
provements of the libp2p networking library and our crawler as well
as higher number of long-running infrastructural nodes.

The unusual combination of an structured overlay as well as unstruc-
tured broadcasting for retrieving content makes IPFS robust against
adversaries, e.g., in the form of Sybil/eclipse attacks. Nevertheless pos-
sible [220], it requires significant resources by an adversary and is not
guaranteed to be successful. Although this resilience comes at the cost
of performance (in particular bandwidth), it is a desirable property to
have, especially in the context of blockchain applications which have
to be particularly robust against attacks. However, while contributing
to additional resilience, the privacy of IPFS users is severely impaired.
Not only is it possible to paint a complete picture of which nodeID/IP
address has requested what content at what time by simply moni-
toring data requests; through active polling even more information

https://github.com/libp2p/hydra-booster
https://github.com/libp2p/hydra-booster

120 mapping the interplanetary filesystem

can be extracted, e.g., which peers hold and serve which data items.
Regarding individual user’s privacy, this is clearly undesirable, as it
enables tracking not only by “individual” adversaries but also state
actors. Depending on a node’s jurisdiction, this is a two-edged sword.
One the one hand, these tracking capabilities are useful for thwarting
the distribution of illegal content such as child pornography (which
we found and reported to the German law-enforcement authorities
in the course of our studies). On the other hand, it can easily be
abused to persecute node operators sharing information that contests
an oppressive regime.

Extracting which nodes hold specific content can also be potentially
dangerous in blockchain applications. An adversary could employ a
monitoring setup similar to ours in combination with active polling to
obtain which nodes host the content that the application is relying on.
Depending on the degree of replication, the attacker might be able to
take down exactly those nodes in targeted attacks to effectively block
the respective content. Furthermore, while IPFS itself is moderately
decentralized as we have seen, the linkage between, e.g., Ethereum
and IPFS is often carried out through centralized services like Pinata
[83] — effectively questioning the benefits of IPFS in the first place.

Moving on from IPFS as one popular system for distributed storage
(whose potential far exceeds blockchain systems), we turn our atten-
tion the last building block of this thesis: monetary stabilization in
cryptocurrencies.

5
M O N E TA RY S TA B I L I Z AT I O N I N
C RY P T O C U R R E N C I E S

5.1 overview

Having studied Ethereum on the infrastructural layer and IPFS as
one popular representative system for distributed storage, we shift
our focus from a purely overlay-based perspective on decentralized
systems and their robustness towards a hybrid between computer
science and economics. This shift perspective is necessary to study the
final building block (cf. Section 2.6) of this thesis: monetary stabiliza-
tion in cryptocurrencies in the form of so-called “stablecoins”. These
cryptocurrencies promise the best of two worlds: a (permissionless)
system such as Bitcoin combined with the price stability of traditional
fiat currencies such as the US Dollar. The desire for cryptocurrencies
with stable value is mainly motivated by the large fluctuations in coin
prices of ordinary cryptocurrencies like Bitcoin and Ethereum. Their
volatility has often been cited as one of the reasons for every day user’s
reluctance to adopt Bitcoin and the like as means of payment [180, 231,
276]. This statement can be further underlined by the popularity of
existing stablecoins, as two of them are among the 30 largest cryptocur-
rencies by market capitalization: Tether [193] and Dai [185]. In that,
stablecoins aim to fulfill two of the three commonly cited functions of
money [276]84 84 Medium of

exchange, store of
value and unit of
account

: (1) medium of exchange and (2) store of value, whereas
normal cryptocurrencies are only able to fulfill (1). Stablecoins are
therefore a fascinating topic of research, as their roots and applications
lie in the technical realm of decentralized cryptocurrencies while their
goal is inherently economic.

Stablecoins are of importance for blockchain applications, in that
participants in these systems are often incentivized through monetary
rewards in the form of cryptocurrencies. Volatility in the value of the
reward may therefore lead to misaligned incentives. Additionally, sta-

This chapter is based on previous collaborative work [9]. Similar to the other publi-
cations, I conceived the initial idea of classifying existing stablecoin projects which
evolved into the taxonomy presented here through discussions with my co-authors
during the process of writing the publication. Finding, analyzing and classify-
ing existing projects was predominantly carried out by Ingolf Pernice and Roman
Proskalovich. Also, IP and RP as economists contributed the majority of insights
from sifting through existing economic literature. My role and contribution was to
provide technical counterbalance: a knowledgeable view of economics combined with
a computer science background, with the goal of enabling a transfer of knowledge
from economics to CS (the audience of [9]). This concerns particularly the monetary
regimes (cf. Section 5.7), exchange rate arrangements (cf. Section 5.6) and speculative
attacks (cf. Section 5.6.3).

121

122 monetary stabilization in cryptocurrencies

blecoins are one core building block for decentralized finance (DeFi),
where especially Dai is used as a foundation for complex deriva-
tives [126, 222, 268]. At the origin, DeFi applications are a consequent
progression of Bitcoin’s goals — seeking out to replace the traditional
financial system with decentralized, transparent and permissionless
alternatives. If DeFi adheres to these ideals is subject to debate [126,
268]. Independently of this debate’s outcome, one has to acknowledge
that DeFi has established itself as an increasingly popular blockchain
application which relies on the infrastructural layer (cf. Chapter 3) as
well as stablecoins.

In this chapter we will investigate whether stablecoins are able to
fulfill their ambitious goal of providing a medium of exchange and
store of value in a permissionless fashion. In contrast to the preceding
chapters, where robustness was measured by purely technical means,
the robustness of a stablecoin system is additionally related to their
ability to maintain a stable value despite adversarial market forces. To
achieve this hybrid perspective of computer science and economics,
we develop a comprehensive taxonomy on stabilization approaches
for cryptocurrencies. The taxonomy combines insights on monetary
theory and stabilization of fiat currencies from existing economic lit-
erature with the specificities of cryptocurrencies. In particular, we
extracted generalized design features from existing stablecoin con-
cepts8585 We analyzed

white papers,
websites and, when
available, price data

of 24 stablecoin
projects.

to capture the (im)possibilities of cryptocurrencies, i.e., not all
techniques from the fiat world are applicable to stablecoins and vice
versa. Our taxonomy86

86 The complete
taxonomy can be

found in the
Appendix, cf.
Section 7.2.2.

tackles three broad questions that are reflected
in the structure of this chapter:

1. Which types of practical techniques are used to achieve stability?
(cf. Section 5.4)

2. In what way can the value of a cryptocurrency be linked to
that of an external currency (e.g., the US Dollar (USD), the
Euro (EUR))? (cf. Section 5.6)

3. What is the stabilization target (e.g., exchange rate to USD, infla-
tion, etc.)? (cf. Section 5.7)

We use our taxonomy to systematically explore and analyze the stable-
coin landscape, allowing us to highlight the current state of develop-
ment from different dimensions and uncover blank spots. Due to the
taxonomy, we are able to go beyond individual projects and instead
provide an abstract overview of concepts merged with approaches
from traditional monetary policy. This abstract perspective allows
us to reason about fundamental properties, risks and limitations of
stability techniques in practice, whereas the short-lived nature of most
cryptocurrencies quickly would render a mere survey of existing coins
obsolete. As our taxonomy bridges computer science and economics
it allows for transfer of expertise. This not only leads to the detection
of risks but also reveals avenues for future research.

5.2 related work 123

On a more detailed level, applying our framework to a total of
24 stablecoin projects, we find that simple tokenization of national
currency is the most popular stabilization technique. This approach
involves a 1:1 exchange of cryptocurrency for centrally deposited fiat
currency, e.g., employed in popular coins like Tether. More sophis-
ticated techniques have been planned for implementation, however,
many face inherent challenges such as not allowing a permanent re-
duction of the money supply. Furthermore, almost 40 % of surveyed
coins promote a problematic combination of exchange rate targeting
(i.e., stabilizing the exchange rate of the coin to a fiat currency) and
techniques for reducing the coin supply with either limited reserves
or a potentially unlimited supply of self-issued tokens. While more
research is encouraged, there are indications that this combination
might render them vulnerable to speculative attacks, i.e., scenarios in
which investors deliberately apply market pressure to push the price
of a coin below the stable value to make a profit [145, 146]. Given
these risks, the inability of respective coins to maintain a stable value
in the past, and insights from existing economic literature, we argue
that these so-called soft pegs are not maintainable in the long run.
Instead, more sustainable arrangements such as smoothing of short
term variations or hard pegs are preferable.

Lastly, almost all analyzed stablecoins rely on a trusted price feed
and therefore a functioning decentralized oracle. This assumption is
problematic, as existing research [10, 215, 280] does not solve the de-
centralized oracle problem for arbitrary values, and a general solution
might be impossible due to the lack of strong identities [86] or missing
incentive-compatibility.

The remainder of this chapter is structured as follows. After dis-
cussing related work (cf. Section 5.2), we specify our analysis method-
ology for building our framework and the classification of stablecoin
projects in Section 5.3. We devote a section to each big question
in our taxonomy: (1) avenues to achieve stability (cf. Sections 5.4
and 5.5), (2) exchange rate arrangements and stability guarantees
(cf. Section 5.6) and (3) stabilization targets in the form of monetary
regimes (cf. Section 5.7). In every section we first introduce the theo-
retical concepts before applying the taxonomy by classifying existing
stablecoin projects. Lastly, we touch upon decentralization and trust
in the presence of oracles in Section 5.8. Our hybrid perspective be-
tween computer science and economics provides a valuable transfer
of knowledge and opens up new perspectives on a predominantly
technical discussion.

5.2 related work

When we wrote the publication this chapter is based on [9], monetary
stability in cryptocurrencies had barely been studied by the scientific

124 monetary stabilization in cryptocurrencies

community. Since then, a plethora of surveys, classification and tax-
onomies have been proposed [45, 145, 198], even with one basically
identical copy of our work [199]. Despite these recent developments,
this related work section will not cover those. The related work at
the time of writing of [9], i.e., available papers and concepts, highly
influenced our method and the resulting taxonomy, and the reader
should be able to follow our considerations. Therefore, to not distort
this process, the following paragraphs cover what was available at the
time.

Iwamura et al. [137, 231] propose a combination of dynamic mining
reward and automatic inflation of coins. In a different approach, Cagi-
nalp et al. argue [48] that since cryptocurrencies have no underlying
value measured by “traditional techniques” that are used to value
stocks, bonds or derivatives, new models are necessary. Following
this idea, Caginalp [47] uses asset flow equations to model the price
of cryptocurrencies and derive conditions under which the models
differential equations stabilize. In contrast to proposing in-depth de-
signs of novel stabilization approaches, we focus on surveying existing
projects and outlining principal features of the design space.

Another branch of scientific research concerns itself with central
bank digital currency (CBDC) [30, 40, 68, 148]. We deliberately chose
not to cover this topic, since the central bank, as the central actor,
remains in control of both monetary policy and mining. Effectively,
this creates another form of national money, leaving monetary policy
aspects mostly unchanged.

There already exists variety of (non-scientific) classifications and
stablecoin lists,2 as well as prominent criticism of the concept itself.3

Although valuable and highly informative, in our analysis we take
a broader, more structured and systematic approach, as mentioned
earlier, by stepping away from specific projects and towards the un-
derlying concepts.

5.3 analysis methodology

We build our framework based on a combination of existing economic
literature and careful consideration of possibilities and impossibilities
in the cryptocurrency design space. For the former, we incorpo-
rate three classifications based on (1) monetary regimes [195], (2)
exchange-rate arrangements studied by the International Monetary
Fund (IMF) [110], and (3) stabilization techniques in employed in prac-

2 For example:
https://github.com/sdtsui/awesome-stablecoins
https://stablecoinindex.com/
https://media.consensys.net/the-stateof-stablecoins201879ccb9988e63

https://hackernoon.com/stablecoinsdesigninga-price-stablecryptocurrency-
6bf24e2689e5

3 https://prestonbyrne.com/2018/03/22/stablecoinsaredoomedtofail/

https://github.com/sdtsui/awesome-stablecoins
https://stablecoinindex.com/
https://media.consensys.net/the-state-of-stablecoins-2018-79ccb9988e63
https://hackernoon.com/stablecoins-designing-a-price-stable-cryptocurrency-6bf24e2689e5
https://hackernoon.com/stablecoins-designing-a-price-stable-cryptocurrency-6bf24e2689e5
https://prestonbyrne.com/2018/03/22/stablecoins-are-doomed-to-fail/

5.4 stabilization techniques 125

tice by major central banks [24, 122]. For the latter, we systematically
analyzed approaches proposed or used by various stablecoin projects
and merged these insights into an abstract perspective. In that, stable-
coins served a double-role of providing insights for the development
of our taxonomy as well as being the subject of classification under
said framework. Before diving into the details, we have to establish
what classifies as a stablecoin in our analysis.

In [144], stablecoins are identified as cryptocurrencies “whose values
are pegged to [i.e. stabilized relative to] some other fiat money or
asset with inherent value”. This definition of stablecoins, however,
is exceedingly narrow. In traditional economics, stability can go
beyond a long-term link to an foreign currency or some asset. As
a consequence, we broaden the definition to cryptocurrencies “with
mechanisms to mitigate fluctations in their purchasing power"87 87 Purchasing

power of a
currency describes
how many units of
certain goods,
services or other
currencies it can buy.

. The
scope of our analysis and classification is limited to stablecoins that
are (1) permissionless, (2) intended for general use as a currency, and
(3) provide a white paper and website. By permissionless [272] we
mean any coin or token that runs on a permissionless blockchain —
specifically including IOU-Tokens such as Tether [193]. We exclude
central bank digital currencies, pure utility tokens and stablecoins
without a website or corresponding white paper.

Exploring, classifying and understanding the stablecoin landscape
is a tedious task but a prerequisite for any further insights. Due to the
short lived nature of many coins, any such perspective is necessarily
a momentary snapshot of current projects, while our classification
taxonomy goes beyond individual projects.

At the time of writing we identified 24 projects that fit these crite-
ria88 88 Some projects

issue stablecoins
pegged to different
national currencies.
In these cases we
exclusively address
the coin pegged to
the USD.

. Classification details for individual projects can be found in the
Appendix, Section 7.2.1. Of these 24 projects, 13 are launched and
traded on exchanges. As a preview of the empirical application of our
taxonomy and subsequent discussions, we give an overview of their
performance in Table 9. The table summarizes the mean, standard
deviation, minimum and maximum price (in USD) of each launched
coin according to data gathered from https://coinmarketcap.com.
It can be observed that the projects show divergent performance and
general statistic characteristics, due to differences in stabilization tar-
gets, guarantees and techniques. In the following section, we start with
an investigation of stabilization techniques, i.e., the first overarching
question of our framework.

5.4 stabilization techniques

Fundamentally, all stabilization techniques are based on the elemen-
tary economic model of supply and demand. The price of a currency
can be modeled as the level at which its supply and demand meet each
other on the market. A change in price is therefore due to changes in
supply and/or demand — to maintain stability, any such change has

https://coinmarketcap.com

126 monetary stabilization in cryptocurrencies

Projects Obs. Mean Min. Max. Std. Dev.

NuBits (Nubits) 1587 0.819 0.030 1.264 0.332

BitShares (BitUSD) 1525 1.016 0.680 1.600 0.076

Tether (USDT) 1429 1.000 0.914 1.058 0.010

Karbo (Karbo) 904 0.299 0.005 2.066 0.418

Minex Coin (Minex Coin) 458 10.991 0.549 56.586 10.201

Maker (Dai) 404 1.002 0.939 1.053 0.010

Trusttoken (TrueUSD) 335 1.006 0.985 1.132 0.012

Digix (Digix Gold Token) 263 42.075 36.243 50.207 2.294

Sythetix (SUSD) 205 0.989 0.867 1.029 0.018

Stasis (EURS) 188 1.143 1.086 1.260 0.025

Centre (USD Coin) 118 1.013 0.983 1.037 0.008

Stronghold (USDS) 46 1.016 0.947 1.076 0.021

USC (USC) 32 0.912 0.656 1.027 0.152

Table 9: Basic descriptive statistics for available daily USD-prices of
stablecoin projects until the 7th of February 2019.

to be counteracted. The price of a currency describes how many units
of other currencies are given in exchange for it. The price can also be
expressed in terms of other goods or services. Thus, in presented con-
text the term can be seen as an equivalent to the currency’s exchange
rate and purchasing power.

Price [USD]

Quantity [units]Q2Q3 Q1

P2

P1

D ′

D

S

S ′

3

2

1

Figure 41: Examplary supply and demand model.

Figure 41
8989 Thanks to Georg

Gentzen for the
TikZ-version of our

initial sketch.

illustrates this concept, with price (in USD) on the y-
axis and quantity (coins in this case) on the x-axis. The solid S and
D curves depict the money supply and demand, respectively. On a
sidenote, the specific shape of the curves is merely an example. It
abstracts the market where a cryptocurrency is exchanged for goods,
services or other currencies. For some cryptocurrency setups, in the
short run, the money supply is independent of the price, this makes

5.4 stabilization techniques 127

the money supply curve a vertical line that is shifted in the long run.
The shape of the curve has no influence on the general rationale in the
following explanations of stability techniques.

Both curves intersect at (Q1, P1), yielding an equilibrium quantity
of Q1 and price of P1. Stablecoins aim to maintain a constant price,
say P1 in this example. Assume the demand decreases, i.e., users
would purchase fewer coins at each price level, effectively shifting the
demand curve to the left — from D to D ′. The new equilibrium, the
intersection of D ′ and S at (Q2, P2), has a smaller quantity (Q2) and
lower price (P2) — which violates the aim of maintaining a constant
price P1. To recover, one can (i) increase demand (shift D ′ to the right),
(ii) decrease supply (shift S to the left) or (iii) adjust both. Especially for
cryptocurrency systems, demand is much harder to influence directly
and instantaneously, therefore, supply is often the target of choice.
This is depicted in Figure 41, where supply is adjusted, shifting S to
S ′ which yields an equilibrium of (Q3, P1). Here, the quantity of coins
on the market (Q3) is smaller, but their price in terms of US dollars is
back to the desired level (P1).

Whatever deviation from the initial price, the stable purchasing
power can, theoretically, be restored by adjusting supply and demand.
Naturally, this model is a simplification and real-world examples are
a lot more involved — however, it provides helpful insights for the
analysis and classification of techniques for maintaining stability.

In the following, we give a systematic overview of techniques for
influencing supply and demand and subsequently discuss potential
risks and limitations. This overview compares techniques employed
by traditional central banks alongside with techniques unique to cryp-
tocurrencies. In our analysis we identified six major techniques: (i)
collateralization, (ii) interest rates, (iii) currency interventions, (iv)
open market operations, (v) dynamic block reward and (vi) dynam-
ically burned transaction fee. The usage of those techniques is not
mutually exclusive, a combination can be applied in practice.

5.4.1 Tokenization of collateral

Tokenization of collateral (or simply collateralization) links the coin
supply to the demand, so that any change in the demand incentivizes
market participants to change the supply accordingly. Each stablecoin
token is backed by a certain amount of (crypto-)currencies, assets
or fiat money. Users can create tokens by depositing an underlying
backing, the so-called collateral and can redeem (destroy) tokens to
receive their collateral. The entity which stores collateral might be
a smart contract or centralized (as in the case of Tether [193]) — the
limitations and drawbacks are discussed in Section 5.5.

The creation and destruction of coins through users provides a
mechanism for supply adjustment. On the one side, when demand

128 monetary stabilization in cryptocurrencies

increases, market participants can simply create new coins by deposit-
ing collateral, effectively increasing supply. Due to the excess demand,
a coin might trade at a price higher than the value of the underlying
collateral — in this case this arbitrage opportunity further incentivizes
the creation of new coins. On the other side, when demand decreases,
supply can decrease as well by redeeming coins in exchange for their
collateral and therefore destroying them. Similarly, a coin might trade
below the value of its collateral, creating arbitrage opportunities and
therefore incentives to destroy coins.

Note that the described incentives (and therefore the success of this
technique) rely on perfect transferability between coin and collateral: a
coin can always be redeemed for its collateral and vice versa, without
delays or any other friction. A violation of this assumption in practice
might make this technique less efficient and therefore a coin subject to
price swings.

A number of assets are conceivable as collateral. We distin-
guish three subcategory of collateralization: direct, proxy and self-
collateralization.

In direct collateralization, each token is backed by the asset pegged
to (i.e. the asset it is stabilized against). For example, if the goal
is a stable exchange rate to the Euro, each token is backed by one
Euro. This design resembles the approach of fiat currencies such as
the Bulgarian Lev backed by Euro or Djiboutian Franc backed by
US dollars. Examples of implemented projects include Stably [190]
and Tether [193]. The already implemented concepts show relatively
stable exchange rates to the USD. Stably [190] historically been able
to maintain within a band of 10 % around the peg, and Tether [193]
even within a band of 5 %. There are, however, examples with larger
deviations.

In proxy collateralization each token is not backed by the targeted
currency itself but instead by some other (crypto-)currency, asset or
basket of assets9090 Similar to what

Facebook’s Libra
intended [218]

. Different from direct collateralization, there is a gap
between collateral (e.g., Ether) and the stabilization target (e.g., USD):
falling prices of the collateral may lead to insufficient backing.

Self-collateralization is a subform of proxy collateralization. In this
technique, another token which is issued within the ecosystem of
the cryptocurrency itself is used as collateral. The collateral risk is
therefore elevated, since the fate of the ecosystem affects the stable-
coin as well as its backing. An already implemented example is the
stablecoin BitUSD [182] which is backed by the token BitShares [182].
While BitUSD [182] appeared relatively stable between 0.76 and 1.60

USD per BitUSD [182] for several years, it slumped below 0.67 USD
in December 2018 when collateral prices declined.

For self and proxy collateralization, the gap between collateral and
asset pegged to is mitigated with two (often combined) approaches:
first, requiring more collateral than necessary (over-collateralization)

5.4 stabilization techniques 129

and second, enforcing automatic re-collateralization (margin calls). In
over-collateralization, more backing is required than the actual price
goal of the token would suggest. As an example, say a stable token
backed with Bitcoin should trade at 1 USD, then over-collateralization
would require to deposit Bitcoin worth 1.5 USD to create a token. This
allows for some volatility of the collateral without risking that tokens
become undercollateralized, i.e., when the backing is worth less than
the price goal of the token.

Margin calls are triggered, if the value of the collateral falls below a
predetermined value, the “margin”, in order to avoid undercollater-
alized tokens. In a margin call either the creator of a token deposits
more collateral or the collateral is offered for sale on the market in
exchange for stable tokens. Given sufficient liquidity on markets, this
effectively rolls back the creation of a token and decreases its supply.

5.4.2 Use of interest rates

Interest rates are an instrument to guide a decentralized adjustment of
the money supply. For example, in the current real-world credit money
system, most of the money is created when commercial banks issue
loans to their clients [175]. The money stock decreases when loans
are paid back or money in circulation is used to make deposits which
lock money for a certain amount of time. Central banks set and adjust
the base interest rate to influence interest rates of the commercial
banks. The higher the rates, the smaller is the number of loans and
the higher is the number of deposits in the system and the smaller the
money supply becomes and vice versa for lower interest rates. The
effectiveness of the technique ultimately depends on the decisions of
the market participants to make deposits and to take loans.

Interest rates on deposits are in some stablecoin projects denominated
as parking or locking fees. In this technique, users lock their coins in
order to receive them back after a specific time with some additional
reward (interest). The interest is paid by the system, most often
through the minting of new coins. Higher interest rates make the
currency more attractive for investors — demand increases. At the
same time, as a higher fraction of currency is locked in deposits,
supply decreases; at least temporarily. In the long run, supply only
increases as deposits are paid back with interest rate. Among others,
“Stableunit” [189], “Minex Coin” [187] and “Nubits” [188] employ
interest rates on deposits.

Interest rates on loans are sometimes referred to as stability fees. Cur-
rent implementations of loans in cryptocurrencies can be seen as a
generalization of the collateralization technique: the stable token is-
sued when depositing collateral is a loan on that collateral. However,
to get the collateral back a user has to return the stablecoin and may
also need to pay a non-zero interest. The interest rate is used to con-

130 monetary stabilization in cryptocurrencies

trol the number of created coins. For instance, raising interest rates
makes borrowing stablecoins more expensive — supply decreases. An
example project that has launched a system with interest rates for both
deposits and loans is Maker [185] with its token Dai. Since December
2017, Dai has deviated from a 5 % band around the 1 USD peg, with a
single day at 0.94 USD.

5.4.3 Currency interventions

Currency interventions are a technique for a direct money supply
adjustment. Here, an abstract monetary actor in the form of multiple
persons and/or trading bots, intervenes in currency markets by buying
and selling coins in exchange for the currency to which the stablecoin
is pegged. When demand increases, coins are created and sold on
the market for reserves. This increases the money supply to match
the increased demand and subsequently normalize the price. In the
opposite situation, when demand decreases, coins have to be bought
back, decreasing supply and therefore stabilizing the price again. In
contrast to collateralization where market participants are incentivized
to stabilize the price through the backing with collateral, currency
interventions require active intervention by some actor related to the
stablecoin. Naturally, the purchase of coins requires that the monetary
actor has currency reserves that can be spent on the market. Once the
reserves are depleted, the exchange rate is governed by market forces,
which can lead to a drastic change in the price and damage trust —
further deteriorating the stability.

5.4.4 Open market operations

Open Market Operations (OMO) can be seen as a generalization of
the currency interventions technique. A monetary actor manually or
(semi-)automatically purchases external assets and pays them with
newly minted money which increases the money supply. The system
contracts supply by selling the assets back to the market91

91 We differentiate
between currency
interventions and

OMO to highlight
the specific feature of

the former. Buying
or selling the

targeted currency
against stablecoins

implies a more
effective impact on

the mutual exchange
rate as the supplies

of the targeted
currency and

stablecoin move in
the opposite direction

simultaneously.

. For in-
stance, if the Fed buys U.S. Treasury Securities on the open market,
it effectively increases the supply of dollars. Selling these securities
back to the market allows to decrease the supply again. A number of
stablecoins implicitly or explicitly consider replicating this technique.
The proposed designs, however, ignore certain safeguards often used
by national central banks.

The most important of these safeguards are eligibility and reversibility.
Eligibility demands that only highly secure and liquid third-party
assets can built central bank reserves [23], [21], [22] or [25], [55].
This ensures that supply can be decreased in the future by selling
the assets. The higher their price, the more money supply can be
absorbed. Reversibility requires, that OMO is automatically reversed

5.5 stabilization techniques : discussion 131

after a predetermined period. This ensures that, by default, supply
increases only short term.

To highlight negligence of the above safeguard principles, we differ-
entiated between three sub-categories:

Standard OMO classifies OMO implementations satisfying the eligi-
bility and reversibility safeguards. None of the proposed techniques
in current projects can be classified as such.

Proxy OMO violates at least one of the safeguards. Proposals in
projects like Celo [184] or Augmint [179] are examples.

Self-tokenizing OMO decreases supply not by selling external assets,
but other assets generated within their own ecosystem. Examples are
Basecoin [180], Carbon [183] and Fragments [186]. All these projects
target a 1-to-1 relationship between their stablecoin and the USD. To
decrease the money supply, the projects propose mechanisms that
create special-purpose tokens that are sold for stablecoins which are
then destroyed by the system. In theory, with such a design, supply
can be decreased to any desired level. This is different from standard
and proxy OMO that are restricted by the available reserves of exter-
nal assets. In practice, many open questions remain (addressed in
Section 5.5).

5.4.5 Use of dynamic block rewards and dynamically burned transaction
fees

Instead of a pre-defined change in the money supply as in Bitcoin
or Ethereum, the mining reward can depend on the current state
of the system. If supply needs to be increased this can be done by
increasing the mining reward. Since a very low or even negative
block reward is not practical, this technique can only increase supply.
Furthermore, increasing the mining reward is equivalent to “printing”
money since currency is issued without any backing. Note that a
variable block reward leads to variability in the hash rate due to
varying incentives to increase/decrease mining power — elevating the
risk of double-spending attacks [230]. To provide a way to decrease
supply, some projects suggest dynamically burned transaction fees, i.e.,
a part of transactions fees is not given to miners but burned instead.
Hence, the possibility to decrease supply is limited by the total volume
of fees over a period of time.

5.5 stabilization techniques : discussion

In the preceding section we presented the stabilization concepts un-
derlying the analyzed stablecoins. We purposefully disconnected the
in-depth description of the techniques from the discussion of their
merits and drawbacks for the sake of clarity, which is the center of
this section.

132 monetary stabilization in cryptocurrencies

5.5.1 Tokenization of collateral

While in theory collateralization in itself provides an elegant way
to link money supply and demand through the action of market
participants, it exhibits several risks and limitations that render this
technique less reliable in practice. Direct collateralization, due the to
link to fiat currencies or traditional assets, requires a trusted third party
that manages funds, assets and the correct issuance of tokens. While
the resulting counterparty risk can be remedied to some degree by,
e.g., escrow accounts and diversified banking partners, the necessity
of a trusted third party remains a major limitation.

Proxy collateralization could help to avoid above risks, since the col-
lateral can be another cryptocurrency (e.g., Bitcoin or Ether). However,
even if the counterparty risk can be eliminated, the requirement of
a trusted price feed gives rise to the oracle problem (cf. Section 5.8).
Furthermore, if the collateral’s value fluctuates (as it is the case for
cryptocurrencies), price risk of the collateral has to be mitigated. Mar-
gin calls are often cited as a remedy for collateral risk, however, margin
calls require the assumption that markets for the collateral asset are
liquid and large enough to allow for timely provision or absorption
of collateral. This assumption might become an issue for young sta-
blecoin projects or if expectations on the future development of the
collateral are dire.

As a subform of proxy collateralization, self collateralization exhibits
the same risks. Moreover, it suffers from additional systematic risk
between the collateral and the stablecoin, as the value of the collateral
is often a function of the future expected demand on the stablecoin.

5.5.2 Interest rates on deposits and loans

As discussed in Section 5.4, interest rates on deposits can reduce the
money supply only temporarily and thus should be coupled with
other techniques. When it comes to loans, an interesting question is
whether under-collateralized loans can be implemented at all. This is
the case in the regular economy, where wealth or future income can be
used as collateral. We argue that this is impossible in permissionless
cryptocurrencies due to the lack of strong identities and the resulting
vulnerability to Sybil attacks [86]. If under-collateralized loans were
implemented, rational actors would spawn multiple fake identities to
obtain loans and free money.

Theorem 1. In a permissionless setting without strong identities, under-
collateralized loans enable arbitrage to the point where only fully collateralized
loans are available.

Proof. Let L be a loan that can be taken by depositing an amount of
collateral C, with pL and pC denoting the respective prices. In an

5.5 stabilization techniques : discussion 133

under-collateralized setting pC < pL. A rational agent would seize the
arbitrage opportunity, spend pC on collateral and receive a loan with
value pL = pC + ϵ. The loan can be used to purchase more collateral
and create more loans, generating a profit of ϵi in each step i, until the
arbitrage opportunity closes due to increased collateral demand, i.e.
pC ≮ pL. Since there are no identities, the agent can refuse to repay
the loans he has taken without any risk, locking the collateral forever
and still generating a profit of

∑︁
ϵi.

Even with smart contracts that enforce payments and interest rates,
the lack of strong identities makes it easy to simply “exit-scam” the
system, i.e., to generate a new debt-free identity and start over without
negative consequences.

5.5.3 Currency Interventions

For currency interventions, the ability to maintain a peg during falling
prices is limited by the amount of available reserves and the monetary
authorities’ commitment to make use of them. Once the reserves
are depleted, the exchange rate is governed by market forces, which
can lead to a drastic change in the exchange rate. The usage of
currency interventions can, under certain assumptions, increase the
vulnerability to speculative attacks (cf. Section 5.6.3). The interplay
of full transparency of the system and gameability of the intended
interventions is an interesting open question.

5.5.4 Open market operations

The negligence of safeguards by techniques classified as proxy OMO
is no triviality. High quality (eligibility) of the assets seized by the
cryptocurrency system prevents erosion of its reserves that can be used
to buy back outstanding currency units. The programmatic reversal of
open market arrangements ensures that a long term expansion of the
money supply is not possible without manually overriding the default
policy. While reviewed projects only allow using cryptocurrencies
with a relatively long track record (Bitcoin, Ether), reversibility has
not been proposed yet.

In self-tokenizing OMO not reserves but special-purpose tokens
are sold against currency units. While the designs of the tokens vary,
all provide some form of success-related monetary incentive that is
payed out if a certain target price for the stablecoin is achieved. The
incentive is paid out in form of newly minted money supply. The
lower the probability of success, the higher the necessary incentives.
Risk is either remunerated by higher relative ownership of future
money growth or by a promised absolute increase of future minted
money. Excessive use thus may either lead to reduced ownership in

134 monetary stabilization in cryptocurrencies

risk remuneration or to an uncontrolled increase of promises of future
remuneration in the money supply. Similar to currency interventions,
OMO setups are vulnerable to speculative attacks (cf. Section 5.6.3).
Lastly, the technique can decrease supply only in the short run, as
long as token remuneration promises are not retracted.

5.5.5 Dynamic mining reward

Mining is a vital function of most cryptocurrency systems. The goal
of making the money supply dynamic should be subordinated to the
security and usability of the financial system. Low block rewards or
high difficulty, e.g., in phases of stagnating demand for the currency,
would lead to less incentive for miners to process transactions. This
would necessarily lead to lower transaction throughput, which would
not only reduce the liquidity of the coin, but also increase the risk
of double-spending attacks. Moreover, as this technique cannot be
used to reduce the money supply, it should be coupled with other
instruments.

0

0

0

0

0

4.2

8.3
8.3

8.3
8.3

4.2
12.5

0

20.8

4.2
20.8

8.3
20.8

8.3
25

37.5
41.7

Collateral. (Proxy)

OMO (standard)

Dyn. Burned TX Fee

Collateral. (Self)

Currency Inverv.

Int. Rates on Loans

OMO (proxy)

OMO (self-tokenizing)

Int. Rates on Deposits

Dyn. Mining Reward

Collateral. (Direct)

0 20 40 60

Fraction of projects in %

St
ab

ili
za

ti
on

Te
ch

ni
qu

es

Type All Proj. Impl.

Figure 42: Planned and implemented stabilization techniques.

5.5.6 Classification results and blank spots

Figure 42 shows a full list of techniques discussed in this section as well
as their prevalence of adoption in stablecoins projects, distinguished
by planned and implemented.

5.6 exchange rate regimes 135

The most popular technique according to our observations is direct
collateralization. It is followed by the use of dynamic mining reward,
interest rates on deposits and self-tokenizing OMO. None of these
methods can permanently decrease money supply. Current stablecoin
projects plan to launch primarily solutions which either require the
participation of a trusted third-party or are focused on techniques
that can decrease supply only temporarily and consequently are not
sustainable in the long term92 92 Or assume

constant growth in
monetary demand.

.
Interest rates on loans, currency interventions, standard OMO and

maybe even proxy OMO might be useful techniques as they allow for
decreasing the money supply permanently. However, exactly those
have been worked on to a lower degree: although well over 40 % of
projects plan some form of OMO, only around 4 % implemented their
proposed setup. Note that established monetary policy standards find
little acknowledgment — no project implemented the requirements
of standard OMO, although other types of OMO are introduced. As
there is little practical experience yet, risks and potentials of these
techniques are hard to assess.

But also for less complex approaches there are blank spots. None of
the reviewed projects has implemented dynamically burned transac-
tion fees or proxy collateralization93 93 MakerDAO’s Dai

could arguably
classified as proxy
col. with Ether.
However, we
purposely classified
Dai as interest-rate-
based-stabilization as
these are the main
drivers of the
incentive system
specified in their
white paper.

.

5.6 exchange rate regimes

So far we implicitly interpreted “stability” as stabilizing the price of
each stablecoin to exactly 1 EUR or 1 USD. While this seems to be an
intuitive approach, other so called exchange rate regimes are possible.

5.6.1 Types of exchange rate regimes

We base our framework upon a taxonomy of the IMF [110] which
splits exchange rate regimes into three main types: hard pegs, soft pegs
and floating regimes. These regimes are ordered hierarchically with
sub-types in our framework, (cf. the Appendix, Section 7.2.2).

A hard peg can come in one of two flavors: arrangements without
legal tender and so-called currency boards. In an arrangement without
legal tender a country chooses to simply use a well-known foreign
currency like the USD instead of issuing their own.94 94 Note that, on a

more general level,
currencies can also
peg against external
assets (e.g., gold).

We neglect
this case since it is clearly not useful for cryptocurrencies: it would
essentially mean to avoid them altogether. In a currency board the
domestic currency is backed 1:1 (or more) by reserves of the foreign
currency [107]. That is, for every issued unit of domestic currency,
there has to be at least one unit of the foreign currency in the reserves.

Different from hard pegs, soft pegs are characterized by weaker
commitments to a fixed rate, i.e., there does not need to be a 1:1
backing with reserves. Soft pegs come in a variety of different flavors.

136 monetary stabilization in cryptocurrencies

The most important are: conventional pegs, pegs with horizontal
bands and crawling pegs.

A conventional peg is defined by the level of allowed deviations. The
IMF specifies a maximum fluctuation of 1 % over a time period of
at least six months around the pegged value. A weaker form is the
so-called peg with horizontal bands, where the exchange rate is allowed
to fluctuate within a pre-announced (wider) range around the pegged
value. These peg types share a common property: the exchange rate
is constant over time. In contrast, crawling pegs allow for a gradual
adjustment in the exchange rate.

Last but not least, if the exchange rate is floating, little to no guaran-
tees are given about the stability of the value. Instead, the exchange
rate is determined by market forces to a large degree and monetary
interventions are kept to a minimum. Due to the fact that free float-
ing can lead to high volatility, some countries intervene aggressively
against short term fluctuations (cf. Section 5.4). This practice is known
as smoothing or floating with interventions.

5.6.2 Classification results and blank spots

10.4
0

0

16.1
4.2
4.2

20.8
0

4.2

13

37.5
41.7

39.6
20.8

50

Residual

Float Int.

Free Float

Hard Peg

Soft Peg

0 25 50 75 100

Fraction of proj. and countries in %

Ex
ch

an
ge

R
at

e
A

rr
an

ge
m

en
t

Type All Proj. Impl. IMF

Figure 43: Exchange rate arrangements: stablecoins and national cur-
rencies.

Figure 43 shows a comparison of exchange rate arrangements in
stablecoins and traditional central banks.9595 Note that the

category “residual”
refers mainly to

countries with
frequently changing

monetary policy
approaches.

The data for central banks
stems from a study of the IMF in 2016 [110].

The majority of stablecoins, more than 90 %, commit to achieve
some kind of peg. As in traditional central banking, in cryptocur-
rencies one has to distinguish between what is announced (de-jure)
and the historical exchange rate (de-facto). De-jure the majority of

5.6 exchange rate regimes 137

Projects ±1 % ±5 % ±10 % ±20 %

Tether (USDT) 12.11 1.05 0 0

Maker (Dai) 25.25 0.50 0 0

Trusttoken (TrueUSD) 30.75 0.60 0.60 0

Sythetix (SUSD) 33.66 3.90 0.98 0

Centre (USD Coin) 66.10 0 0 0

Stronghold (USDS) 80.43 8.70 0 0

BitShares (BitUSD) 70.95 30.23 13.84 4.26

NuBits (Nubits) 42.22 27.22 26.59 24.07

USC (USC) 56.25 31.25 31.25 25

Table 10: Percentage of days for which certain bands around the 1

USD peg are violated.

stablecoins commit themselves to a fixed 1:1 correspondence to the
USD in their white papers. Almost half of all projects, tries to enforce
this by establishing a currency board and storing the fiat currency
pegged to. Implemented examples include Tether [193], Stasis [191]
and Trusttoken [194].

The remainder (50 % of all projects), does not implement a currency
board and are therefore classified as a soft peg. Examples include
Maker [185], Stasis [190], Nubits [188], Synthetix [192] and Bitshares [182].
Most abstain from explicitly specifying bands and are therefore con-
ventional soft pegs96 96 Some projects

mention “some”
corridor around the
peg. As bands are
supposed to be
predetermined and
announced for
accountability
reasons, we still
classify them as
conventional pegs.

.
Table 10 shows the fraction of daily closing prices violating certain

thresholds between the launch of the respective coin and February
7, 2019. The table contains the subset of coins that pursue a 1-to-1
peg to the USD. De-facto, none of the already launched cryptocur-
rencies meets the demands that would be posed by the IMF for a
working conventional peg. Interestingly, even Tether [193] and Trust-
token [194] violate the requirements, despite implementing currency
boards. These fluctuations may stem from uncertainty caused by a
perceived lack of transparency and accountability or lower market liq-
uidity. National currencies in turn tend to use floating arrangements
more often. Although the majority of analyzed stablecoins pursues
pegs, concepts for floating arrangements with interventions are also
in development, e.g., MinexCoin [187] proposes interventions to keep
daily price changes from exceeding 5 %.

5.6.3 Vulnerabilities to speculative attacks

The usefulness of soft pegs is disputed in economic literature. This
standpoint is called the bipolar view [102, 269], and is broadly supported
by mainstream economists [63, 91, 92, 102]. The bipolar view suggests
that there are only two long-term viable options for currency regimes

138 monetary stabilization in cryptocurrencies

that care for exchange rates: hard pegs or floating with interventions.
Arguments include the short life expectancy of soft pegs and their
vulnerability to speculative attacks [102].

Speculative attacks on soft pegs are known from traditional central
banking [151, 211], but the threat is equally applicable to cryptocur-
rencies. This is especially relevant considering that 50 % of stablecoin
projects plan on using soft pegs.

If the market believes that a fixed exchange rate is not sustainable,
investors will start speculating against it to make a profit in the
event that it eventually breaks. To counteract, central banks have to
invest resources to defend the peg, which is costly and oftentimes
unsuccessful [212]. A vivid illustration of unsuccessful peg defense
is the Bank of England’s attempt to maintain a fixed Great Britain
Pound (GBP)-European Currency Unit (ECU) exchange rate during a
speculative attack in 1992 lead by the hedge fund “Quantum”9797 ECU was an

artificial currency
used within the

European Monetary
System before the

introduction of the
Euro in 1999 [90].

.
The investors and, subsequently, other market participants followed

a simple algorithm:

1. Borrow GPB and sell them, at market price, for German Marks
(DM); this is called a short sale.

2. When the peg fails and the exchange rate drops, buy back GBP
at a cheaper price and return to lender.

The selling of borrowed GBP for DM increases the supply of GBP
and reduces the supply of DM. Due to the fundamental principles of
demand and supply, this in turn leads to an appreciation of DM and
depreciation of GBP. To counteract and maintain the target exchange
rate, the Bank of England bought the excess GBP on the foreign
exchange market in exchange for their DM reserves. Furthermore,
the Bank of England also increased the base interest rate. Buying the
excess supply of GBP aimed at reducing the supply of GBP on the
markets, whereas the increase of the interest rate aimed to increase the
demand for GBP. However, after spending 15 billion USD in foreign
reserves in only a single day, the Bank of England eventually had to
abandon the pegged arrangement [90, 130]. The exchange rate on the
market dropped, yielding an estimated profit of 1.5 billion USD4.

There are two main sources that make speculative attacks on pegs
highly probable [151, 211]: unsustainably constructed pegs and un-
trustworthy commitment to defend the peg. A peg is unsustainable
if the central bank lacks sufficient reserves to invest in the case of a
speculative attack. In cryptocurrencies this vulnerability is increased
further, since they often have a small market capitalization and little
reserves in comparison to traditional financial assets and currencies.
Furthermore, the complete transparency of reserves due to the trans-

4 https://www.forbes.com/sites/steveschaefer/2015/07/07/forbes-flashback-george–
soros-british-pound-euro-ecb/4e0e93346131

https://www.forbes.com/sites/steveschaefer/2015/07/07/forbes-flashback-george-soros-british-pound-euro-ecb/4e0e93346131
https://www.forbes.com/sites/steveschaefer/2015/07/07/forbes-flashback-george-soros-british-pound-euro-ecb/4e0e93346131

5.6 exchange rate regimes 139

parency of the blockchain makes it easy for speculative attackers to
validate the success of their strategy [37].

Adapting [151] to cryptocurrencies, consider a situation where the
natural floating exchange rate would be lower then the peg. Potential
reasons for this mismatch might be new vulnerabilities or general
uncertainty in cryptocurrencies due to regulation. In both cases, the
stablecoin system would need to intervene over longer periods of time,
draining its reserves. Two long-term outcomes are possible: (1) the
peg holds or (2) the currency finally depreciates when the intervention
capabilities are depleted.

Now consider a user of the coin who chooses to hold her position.
This user will have no payoff in case (1) and negative payoff in case (2).
Therefore, the expected payoff from holding is negative. In contrast, if
the user sells her coins, the sale can be reverted with little cost in case
(1) and can avoid a loss in case (2). Therefore, the payoff for selling is
higher than for holding. Rational market participants will sell their
holdings.

The expected payoff of the sell strategy can even be increased
through leverage by borrowing coins98 98 Since efficient

credit markets have
not yet developed for
all cryptocurrencies,
the transaction costs
to execute
speculative attacks
might be increased.

. Speculators might borrow
large quantities of stablecoins at the pegged price and sell them on
the exchanges: if the stability system succeeds in defending the peg,
speculators can buy back the coins at the peg and revert their positions
with little losses. If the attack depletes the reserves of the system, the
peg can no longer withstand the selling pressure and the exchange
rate depreciates and becomes floating. Attackers can now buy back
the stablecoins much cheaper, give back borrowed coins and keep the
difference as profit.

5.6.4 Peg hard or do not peg at all?

As discussed, the bipolar view suggests hard pegs, float or float with
interventions.

While conclusions transferred from monetary policy studies should
be treated with caution, the bipolar view still offers insights useful
for cryptocurrency systems: hard pegs using full direct collateraliza-
tion and floating exchange rate arrangements are less vulnerable to
speculative attacks then soft pegs. This explicitly holds for all soft peg
implementations that do not allow for the retraction of most of the
money stock in any kind of market situation.

As discussed, currency interventions and open market operations
(OMO) that contract money supply by selling limited reserves are def-
initely concerned. Self-tokenizing OMO and interest rates on deposits
buy back coins against self-issued securities with potentially unlimited
supply. As discussed in Section 5.5, buyers of these special-purpose
tokens are incentivized by a share in newly minted money in the case
of long-term increasing demand for the stablecoin. As discussed in

140 monetary stabilization in cryptocurrencies

Section 5.6.3 speculative attacks entail almost no risk or costs for the
attacker, making repeated attempts in the short run possible. While in
the presence of speculators for and against the peg the first series of
speculative attacks might be neutralized, claims for risk remuneration
will stack up quickly. Leading to a decrease in relative ownership
of future remuneration, this will decrease the demand for the used
special-purpose tokens with every round of attack. Missing demand
for the self-issued tokens makes it impossible to absorb money supply
and defend against the attack. Further research is strongly encouraged
as the above setup is quite popular: almost 40 % of analyzed projects
consider it.

We do question though, if all kinds of soft pegs are equally vulner-
able in the case of cryptocurrencies. Soft-pegs relying solely on full
proxy and self-collateralization promise to provide sufficient collateral
to buy back the complete stock of money at any moment of time. This,
in turn, makes them immune to the above described attack [212] — as
long as the collateral remains sufficiently stable.

5.7 monetary regimes

Up to this point, we used the notion of “stability” in the sense of
low exchange rate volatility. In the following, we zoom out further,
stressing the difference between

• stabilizing the amount of another currency one cryptocurrency unit
can buy (exchange rate) and

• stabilizing the amount of goods and services one cryptocurrency
unit can buy (purchasing power).

Stable purchasing power is a goal which traditional central banks
and stablecoins both pursue. Stability of prices can be measured, e.g.,
through a basket of goods in a consumer price index (CPI). In practice
it can be influenced only via indirect measures. These encompass in-
terest rates, exchange rates and many others. The respective choice of
tools constitutes the monetary regime. Each monetary regime chooses
a certain core variable, the so-called nominal anchor, to construct its
monetary policy around. The chosen nominal anchor is used to choose
practical applications of monetary instruments and to evaluate their
effectiveness. It can be seen as the central element of the monetary
regime and as the measurement variable around which central bank
communication and also accountability line up.

Thus, while stable purchasing power is the overarching goal —
fixing exchange rates (so called exchange rate targeting) is only one of
several strategies to achieve it. Other monetary regimes focus on other
factors than the exchange rate, namely monetary targeting and inflation
targeting.

5.7 monetary regimes 141

Monetary targeting uses the amount of money as its nominal anchor
[196]. Assuming predictable velocity of money, the so-called Quantity
Equation of Money can be used to calculate the necessary money
supply to achieve a certain level of prices [109]99 99 Different versions

of the quantity
equation of money
arose after being
popularized by [103].
All have in common
that they relate the
aggregated flows of
money to aggregated
flows of goods and
services. The
equations offer
different perspectives
on the demand of
money.

. Correspondingly,
adjusting the money supply is a key means of intervention for a central
bank in such regimes.

Inflation targeting uses the change in a consumer price index as
nominal anchor [35]. The most characteristic differences to monetary
targeting lies in the publication of numerical inflation targets and the
commitment to hit them. Additionally, also commitment and ability to
achieve the inflation target, emphasis on transparency and increased
accountability are quoted characteristic of inflation targeting [196].

5.7.1 Regime-inherent aspects

While exchange rate targeting is a popular arrangement for cryptocur-
rencies and countries alike, it exhibits major drawbacks. First, as stated
in [212], exchange rate targeters lose the ability to pursue indepen-
dent monetary policy. Moreover, inflationary tendencies and shocks
are imported directly into the cryptocurrency. Third, as discussed
in Section 5.6.4, exchange rate targeting can lead to vulnerabilities
to speculative attacks. On the other hand, exchange rate targeting
offers convincing advantages from the perspective of cryptocurrencies.
First, pegging the value of a cryptocurrency to some other currency or
asset can reduce the volatility drastically, since price fluctuations of,
e.g., USD, are magnitudes smaller than in most cryptocurrencies [276].
Second, not even the most mature cryptocurrencies do succeed to be
used as unit of account for the purchase of goods or services [120,
276], so that prices are not typically quoted in cryptocurrency units.
Therefore, also from a usability perspective it is a reasonable choice to
strive for a stable relationship to fiat currencies.

Inflation targeting poses the obvious challenges of the definition
and tracking of an adequate basket of goods and services. More
importantly, goods usually are denominated in some national currency.
Purchasing power fluctuations of a volatile cryptocurrency measured
by a basket of dollar denominated goods should mainly be caused by
exchange rate variability. As a consequence inflation targeting and
exchange rate targeting would be close to equivalent.

Monetary targeting in a sense is already implemented by traditional
cryptocurrencies with predetermined block reward. More sophisti-
cated monetary targeting approaches might use literature around rule
based monetary policy (e.g. [173], [174], [158] or [172]) as first starting
point. If additional measures against exchange rates are to be taken,
managed floating regimes as promoted by [121, 156], might offer a
simple but sustainable alternative to exchange rate targeting. This
approach, however, mitigates only short term fluctuations.

142 monetary stabilization in cryptocurrencies

5.7.2 Classification results and blank spots

20.8
0

0

24

0

0

12.5
4.2

8.3

42.7
58.3

91.7

Inflation T.

Other

Monetary T.

Exch. Rate T.

0 25 50 75 100

Fraction of proj. and countries in %

M
on

et
ar

y
R

eg
im

e

Type All Proj. Impl. IMF

Figure 44: Monetary regimes: reviewed projects and central banks.

Applying the conceptual insights of our taxonomy to real-world
projects, we see in Figure 44 that the prevalence of exchange rate tar-
geting in the reviewed projects is in stark contrast to traditional central
banks (numbers for countries from [110]). Exchange rate targeting,
accounting for most than 90 % of all projects, is the clear favorite of
current approaches to cryptocurrency stabilization. Only 40 % of coun-
tries use a certain exchange rate as their currency’s nominal anchor.
While monetary targeting in combination with short term exchange
rate smoothing could be an interesting alternative, it has largely been
ignored by cryptocurrencies.

5.8 decentralization and trust

Last but not least, we depart from mainly economic questions and will
now discuss the design of stable cryptocurrencies in terms of their
"decentralization" and "trustlessness" — notions that cryptocurrencies
are commonly associated with and potentially owe their popularity
to. Ideally, stablecoins strive to achieve value stability in a permis-
sionless setting, similar to those of Bitcoin or Ethereum. As we have
seen throughout this thesis, the implication of weak identities that
a fully permissionless setting entails [272] opens up potential attack
vectors through the Sybil problem (cf. Section 2.4.1). The lack of a
strong cohesion between identity and entity renders various building
blocks for stablecoins impossible — therefore, with the current state of
knowledge, it is an open question whether an effectively price-stable
cryptocurrency can at all be realized in a fully permissionless setting.

For example, techniques based on the collateralization or holding
of "off-chain" assets (such as classical currencies) are inherently incom-

5.9 chapter summary 143

patible with a fully permissionless setup. Neither the actual existence
nor the correct management of off-chain collateral can, in general, be
secured through purely technical means. Rather than that, a form
of trust, either in one ore more well-known custodians or in a sur-
rounding legal framework and its enforcement mechanics, must be
assumed.

Techniques based on collateralization, interest rates and OMOs are
in principle compatible with a fully permissionless mode of opera-
tion as long as they act on assets whose ownership can be securely
tracked and managed in a permissionless manner (e.g., are recorded
on the same permissionless ledger). Even then, however, a fully per-
missionless mode of operation is only possible under a significant
caveat — the existence of a secure (permissionless) oracle for the cho-
sen nominal anchor. Oracles are system components that transfer
"external" information onto the blockchain. Monetary information,
such as the price of the cryptocurrency relative to another currency,
are required for monetary policy mechanisms. They are typically
not natively generated "on-chain" and must therefore be provided
by an oracle. Oracles can be trivially realized using a trusted party
that vouches for the correctness of data by means of cryptographic
signatures. However, this clearly reinstates a globally trusted actor (or
a group thereof). Completely permissionless oracles are, on the other
hand, still an active research field, with no sufficiently secure solutions
for, e.g., transferring price data, currently in sight [10]. It is possible
that secure permissionless oracles for arbitrary data are a theoretical
impossibility due to the Sybil problem (cf. Section 2.4.1) and game
theoretic weaknesses [145, 268]. In such a case, a final possibility for
the realization of completely permissionless stablecoins remains in the
deepened investigation of on-chain proxy variables for relevant nominal
anchors like current prices. We are currently aware only of the current
mining hash rate, as materialized, e.g., in the timing between blocks
and the current mining difficulty, as a potentially viable representative
of this class. More research is needed here to further test the viabil-
ity of this approach, especially in respect to incentive-compatibility,
gameability and security (cf. Section 5.5.5).

5.9 chapter summary

5.9.1 Summary

In this chapter, we systematically explored the enigma of monetary
stabilization in cryptocurrencies. To this end, we combined insights
from economic literature as well as blockchain-specific properties
into a comprehensive classification taxonomy. Equipped with this
framework, we classified 24 stablecoin projects according to their sta-
bilization mechanism, exchange rate agreement and monetary regime.

144 monetary stabilization in cryptocurrencies

This approach enabled us to go beyond individual proposals and
projects and instead put the focus on overarching concepts and inher-
ent limitations.

We find that direct collateralization, i.e., backing a crypto token di-
rectly by depositing a fiat currency, is the most prominent stabilization
technique. Moreover, our findings show that almost 38 % of surveyed
coins promote a problematic combination of exchange rate targeting
and either limited reserves or a potentially unlimited supply of self-
issued tokens to reduce the coin supply. There are strong indicators
that the above setup can result in a vulnerability to speculative attacks.
Zooming out, we suggest that short term smoothing of exchange rates
might offer a sustainable alternative to exchange rate targeting — the
current focus of over 90 % of projects.

We identified a number of further opportunities for technical and
economic research on cryptocurrency stabilization, such as on the re-
silience of self-tokenizing techniques, on the viability of secure permis-
sionless price feeds for informing policing decisions, and on the actual
effectiveness of monetary policy given the complete transparency of
both the policy and its enforcement.

5.9.2 Conclusion

A central conclusion from our work presented in this chapter is that ro-
bustness of systems aiming for monetary stability can not be assessed
by technical means alone but instead requires a more holistic per-
spective — which has been adopted by other researchers as well [126,
145, 146, 222, 268]. As an example, consider direct collateralization,
the technique of choice for many stablecoin designs with prominent
examples like Tether [123]. Although economically one of the more
sustainable approaches, through the interface with fiat currencies there
is always an inherent aspect of centralization. In the case of Tether
this would be the foundation/bank that manages the deposited funds,
yielding counterparty risk that permissionless settings strive to avoid.

Other employed techniques more suitable for permissionless sys-
tems that are technically sound suffer from their inability to contract
the money supply and are therefore economically unsustainable in
the long run. In subsequent works, fellow researchers have showed
that (speculative) attacks as well as adverse market conditions can
lead to deleveraging spirals, effectively breaching the goal of mone-
tary stability [268]. Factors for these spirals and attacks include, e.g.,
price swings in collateral (in the case of proxy-collateralization) and
subsequent margin calls of deposits, re-organization of transactions
and blocks by miners, as well as price (feed) manipulation. Especially
the second point, re-organizations of the order of transactions through
bribes to miners highlights a crucial issue: the application layer (the
stablecoin in this case) can adversely affect the infrastructure layer

5.9 chapter summary 145

by incentivizing miners to create and/or switch to specific forks. Re-
versely, miners on the infrastructural layer may leverage their power
of determining the order of transactions through, e.g., exploiting arbi-
trage opportunities and front/back-running [145]. These multitude of
potential attack vectors makes mitigating potentials risks and stabiliz-
ing coins even under adversarial conditions challenging and subject
to future research [145, 146].

6
C O N C L U S I O N

In this thesis we investigated whether the widespread narrative of
blockchain application’s inherent decentralization entailing robustness
against DoS attacks and censorship, is appropriate. To this end, we
identified three main building blocks or layers of blockchain applica-
tions in practice: infrastructure, storage and monetary stabilization.
Each layer was studied separately by investigating representative sys-
tems and their potential interconnections. By combining empirical
analyses and theoretical considerations we were able to provide new
insights and a fundamental understanding of these systems and the
layers that they represent. Additionally, this allowed us to reason
about the decentralization and robustness of blockchain applications
based on top of these systems. Regarding the infrastructure and stor-
age layer, we adopted a technical, network layer-based perspective on
two widely used P2P systems: Ethereum and IPFS. When investigat-
ing monetary stabilization, we complemented the technical side with
an economic point of view.

In order to adopt a network layer perspective, in Chapter 2 we first
introduced the concept of P2P networking, Bitcoin, Ethereum and
attack vectors that decentralized systems face, in particular, Sybil and
eclipse attacks. While the Sybil attack is, potentially fundamentally
unsolvable in permissionless settings, we have seen viable design
choices introduced in Bitcoin to raise the necessary resources for
launching successful Sybil or eclipse attacks to impractical degrees.

In Chapter 3, we saw that Ethereum’s overlay does not adhere to
these design choices and is therefore vulnerable to network layer
attacks. We demonstrated this vulnerability by presenting a low-
resource Eclipse attack which specifically targets the Kademlia-based
peer selection logic. In particular, by inserting a small number of
carefully crafted Sybil identities which are favored over other, benign,
nodes during connection establishment, we were able to successfully
eclipse a peer with only two IP addresses from distinct /24 networks.
As Ethereum is widely used as infrastructural basis for blockchain
applications, e.g., in the context of DeFi and Aragon DAO, eclipse
attacks can be leveraged for double spending funds or general DoS
of applications. Although eclipse attacks are rarely used for double
spends in practice due to other attack vectors with better risk/reward
profiles, DoS attacks against groups of nodes are still a genuine threat,
especially given the little amount of resources required to do so.
Lastly, we reviewed the countermeasures introduced to Ethereum in
the process of responsible disclosure with the Ethereum foundation.

146

conclusion 147

While the immediate threat is mitigated, we concluded that Kademlia
is not a suitable approach for building a robust overlay.

Kademlia also serves as the basis for IPFS, the representative system
on the storage layer studied in Chapter 4 — similar attack vectors
as in Chapter 3 were therefore conceivable. However, IPFS uses a
hybrid overlay structure between Kademlia-based DHT lookups as
well as one-hop flooding of content requests for finding data. Whereas
this unusual combinations renders eclipse attacks significantly more
difficult, it also enables extensive monitoring possibilities which we
exploit to paint a holistic and comprehensive perspective of IPFS’
network and content layer. To this end, we crawled the Kademlia DHT
and monitored data requests. Based on these extensive measurements,
we concluded that through sacrificing performance for robustness,
IPFS achieves a high resilience against censorship and DoS attacks,
while only showing moderate degrees of centralization.

Lastly, we turned our attention to monetary stabilization in cryp-
tocurrencies in the form of stablecoins in Chapter 5. These projects
try to achieve the best of two worlds: a permissionless cryptocur-
rency combined with the value stability of traditional fiat currencies.
For gaining a thorough understanding and to asses their stability,
we adopted a hybrid perspective between economics and computer
science, since these analyses are not only bound to technical consider-
ations, but also related to stability under adverse market conditions
and rational agents. Combining insights from monetary theory with
specificities of cryptocurrencies, we presented a comprehensive taxon-
omy on monetary stabilization in blockchain-based currencies. The
application of this taxonomy yielded a classification and deep under-
standing of the stablecoin landscape, which allowed us to go beyond
individual projects and instead reason about fundamental properties
and limitations. We concluded that many stablecoin designs are either
not fully permissionless, due to the involvement of trusted parties, or
use problematic combinations of stabilization techniques and stability
goals which could render them vulnerable against economic attacks.

In summary, each chapter contributed new insights into the studied
systems that, particularly in the case of IPFS, go well beyond block-
chain applications. Based on a thorough empirical understanding,
we were able to embed the analysis of each system and the respec-
tive insights into the broader context of robustness in decentralized
applications. Furthermore, we bridged the gap between scientific
research and practice through transfer of knowledge. In particular,
we collaborated with the Ethereum Foundation and ProtocolLabs (the
creators of IPFS and related libraries) — providing insights from our
research but also strengthening our understanding through fruitful
discussions and different perspectives.

Towards future works, the interdependencies between different
layers, i.e., infrastructural, storage and monetary stabilization, need

148 conclusion

further investigation. Their complex interplay bears potentials for
security risks and attack vectors that have yet to be studied. This
thesis provides an important step into that direction by diving into
each component separately and assessing each component’s impact
on potential applications.

7
A P P E N D I X

7.1 ipfs

7.1.1 Complete Crawl Report Feb. 2021

7.1.1.1 Basic Statistics

This is the complete report on the IPFS crawl from 2021-01-24 until
2021-02-07, i.e., C2. In the 14 d of crawling we performed a total
of 5039 crawls in total, each of which took 3.8 min to complete, on
average (the runtime distribution of crawls is depicted in Figure 30

in Section 4.7). We found an average number of 1.1 · 10
4 nodes per

crawl; the crawler was able to connect to 47 % of them. In total, we
found 1.37 · 10

5 distinct nodes during the whole crawl period. The

4000

6000

8000

10000

12000

14000

2
5
/0

1
0
0
:00

2
7
/0

1
0
0
:00

2
9
/0

1
0
0
:00

3
1
/0

1
0
0
:00

0
2
/0

2
0
0
:00

0
4
/0

2
0
0
:00

0
6
/0

2
0
0
:00

0
8
/0

2
0
0
:00

Timestamp

N
um

be
r

of
no

de
s

Node type
All

Reachable

Figure 45: Number of nodes over time, distinguished by all and reach-
able (=answered to our query) nodes. Times are in UTC.

number of nodes over time is depicted in Figure 45, where time is on
the x-axis and the node count on the y-axis. The figure distinguishes
between all nodes and nodes that were reachable, i.e., the crawler
was able to establish a connection to these nodes. In comparison to
C1, the number of total nodes has decreased significantly, as these
nodes are now treated as clients and do not participate in the DHT.
Nevertheless, a periodic pattern in the number of nodes is still visible;
a Fourier analysis yields a dominant frequency of 24 h. The fit to the
data is not as close as in C1, as can be observed in Figure 46, due to
the upwards trend in the number of nodes and other phase-shifted
frequencies.

149

150 appendix

10000

11000

12000

13000

2
5
/0

1

2
7
/0

1

2
9
/0

1

3
1
/0

1

0
2
/0

2

0
4
/0

2

0
6
/0

2

0
8
/0

2

Timestamp

N
um

be
r

of
no

de
s

Type Num. Nodes Dom. Freq.

Figure 46: Fourier analysis and dominant frequency of the number of
nodes. Ticks on the x-axis correspond to 00:00 UTC.

Session Duration Percentage Number of sessions
5 minutes 75.72 6.72e5

10 minutes 62.84 5.57e5

30 minutes 40.62 3.60e5

1 hour 25.26 2.24e5

1 day 1.0 8e3

6 days 0.16 1e3

Table 11: Inverse cumulative session lengths: each row gives the num-
ber of sessions (and total percentage) that were longer than
the given duration.

Using the crawl data, we interpolate the uptime of nodes, also re-
ferred to as a session, the results of which are gathered in Table 11. To
this end, we use a simple assumption: if we see a node in consecutive
crawls, we assume that it was online in the meantime. Therefore, the
crawl duration (3.8 min) is the granularity with which we can measure
the length of a session. The table depicts the inverse cumulative distri-
bution of uptimes: each row shows the number of sessions (and total
percentage) that were longer than the given duration. In comparison
to C1, session lengths have increased significantly: in Nov. 2019, only
around 2 % of all observed sessions were longer than 30 min, whereas
in Feb. 2021 roughly 40 % of all sessions exceeded this duration. Simi-
larly, the share of sessions longer than one hour is sixty times larger
in C2 than in C1.

With newer versions of the crawler we also gather agent versions,
the results of which are depicted in Figure 47. The plot shows the
number of nodes per agent version, restricted to the ten most-seen
versions throughout the entirety of the crawl. As mentioned in Sec-
tion 4.7, a large fraction of DHT-enabled nodes sends the “storm”

7.1 ipfs 151

agent version string. These nodes are part of the storm botnet that
infects, e.g., windows machines and consumer hardware [224]. Storm
uses IPFS as a command & control infrastructure. Interestingly, the
daily fluctuations in the number of storm agents might serve as an
indicator that these nodes are in fact operated by private individuals
whose computing device is infected with storm. This daily pattern of
storm nodes is likely contributing one “signal” that is superimposed
with other periodic patterns in Figure 46.

One might object that the influence of storm nodes, e.g., through
such a superposition, should be differentiated in the analysis or even
excluded altogether in order to focus on legitimate uses of IPFS. We
would argue that a holistic view of IPFS includes all usages, regardless
of their morality: it is what IPFS is partially used for — comparable
to TOR [256]. “Legitimate usage” implies a normative boundary and
leaving out the storm botnet from analyses does not necessarily yield
exclusively legitimate usages, as became evident in our discovery
of youth pornography on IPFS which we reported to German law-
enforcement authorities. Furthermore, extracting storm nodes is only
possible to some extend, due to their verbose agent version string. It
remains unclear if other, more normally appearing nodes, belong to
the same or another botnet, hence, even at the current moment, an
exclusion of respective agent versions alone is potentially insufficient
to eliminate all relevant storm nodes in the analysis. Additionally,
it is conceivable that the botnet will eventually switch to a more
sophisticated and stealthier method of identification, making it hard
to keep track of these nodes in that scenario.

0

1000

2000

3000

4000

2
6
/0

1
0
0
:00

2
8
/0

1
0
0
:00

3
0
/0

1
0
0
:00

0
1
/0

2
0
0
:00

0
3
/0

2
0
0
:00

0
5
/0

2
0
0
:00

0
7
/0

2
0
0
:00

Timestamp

C
ou

nt

storm

hydra-booster/0.7.3

go-ipfs/0.8.0-rc1/02d15ac

go-ipfs/0.7.0/ea77213e3

go-ipfs/0.7.0/ea77213

go-ipfs/0.7.0/

go-ipfs/0.6.0/d6e036a

go-ipfs/0.6.0/

go-ipfs/0.4.23/

go-ipfs/0.4.22/

Figure 47: Agent version distribution over time. Depicted are the ten
most-seen versions utilized by 88.4 %

of all nodes.

152 appendix

All Reachable
Country Count Conf. Int. Country Count Conf. Int.

CN 3700 ±20.1 US 1380 ±3.6
US 2290 ±4.3 CN 680 ±4.1
KR 796 ±2.1 KR 640 ±1.8

Unknown 772 ±1.7 HK 420 ±4.2
HK 650 ±6.0 Unknown 317 ±1.8
DE 414 ±0.3 DE 289 ±0.1

LocalIP 352 ±1.2 TW 185 ±2.2
TW 290 ±2.9 UA 160 ±1.5
FR 221 ±0.5 FR 155 ±0.3
UA 216 ±1.9 RU 148 ±0.9

Table 12: The top ten countries per crawl, differentiated by all discov-
ered nodes and nodes that were reachable. Depicted is the
average count per country per crawl as well as confidence
intervals.

7.1.1.2 Node Distribution over Countries and Protocol Usage

Table 12 depicts the top ten countries, distinguished by all discovered
nodes and for nodes that were reachable by the crawler. These ten
countries contain 83.5 % (79.8 % in the case of reachable nodes) of the
whole network.

The table shows the mean count per country per crawl as well
as 95 % confidence intervals (assuming a student t distribution of
observations, which is a reasonable assumption when considering
means). Furthermore, the statistics are distinguished between all and
only reachable peers. This means a row should be read as follows: for
country c we have seen “Count” peers from that country per crawl, on
average. The “Conf. Int.” column shows how large the spread around
this average value is.

Of all seen nodes 3.02 % only provide local or private IP addresses,
thus making it impossible to connect to them. This is in stark contrast
to C1 where around half of all nodes provided only local/private
IP addresses, highlighting the success of newer versions of IPFS in
identifying client nodes behind NATs.

IPFS supports connections through multiple network layer protocols;
Table 13 shows the prevalence of encountered protocols during our
crawls. If a node was reachable through multiple, say IPv4 addresses,
we only count it as one occurrence of IPv4 to not distort the count.
This is aggregated over all crawls: if a peer supported, e.g., IPv6

at some time, then it will be counted as supporting IPv6 in general.
The protocols “ipfs” and “p2p-circuit” are connections through IPFS’
relay nodes, “dnsaddr”, “dns4/6” are DNS-resolvable addresses and
“onion3” signals TOR capabilities. In comparison to C1 there are not
many differences except for the decline in IPv6-enabled nodes.

7.1 ipfs 153

Protocol Perc. of peers Abs. count
ip4 99.8 1.37e5

ip6 57.6 7.9e4

p2p-circuit 5.4 7e3

onion3 0.7 979

dns4 1.0 1356

p2p < 0.1 33

dns < 0.1 35

dnsaddr < 0.1 27

dns6 < 0.1 9

Table 13: Network statistics: protocol capabilities among IPFS peers.

7.1.1.3 Overlay Graph Properties

Figures 48 and 49 depict the log-log in-degree distribution, differen-
tiated by all and only reachable nodes, from the crawl on the 1st of
February 2021, 00:00 UTC — other crawls yielded similar shapes. In
contrast to the results in Nov. 2019, it can be seen that the degree
distribution of all nodes (cf. Figure 48) can, by visible inspection alone,
not be characterized by either a log-normal or power-law distribution.
This is also underlined by the p-values for both distributions of≪ 0.1

— the power-law and log-normal hypotheses therefore have to be
rejected [59]. Only the Poisson distribution has a p-value of > 0.1,
however, as can be seen in the figures only the tail of the empirical
distribution matches the Poisson distribution, effectively ruling out
this hypothesis as well. The reasons for this difference may lie in the
longer uptimes of nodes, as clients are now successfully excluded
from the DHT, or may be due to IPFS’ bucket structure, which renders
sampling through crawling necessarily incomplete with regard to the
number of edges. Regarding the distribution of reachable nodes in
Figure 49, the analysis yields a p-value of p = 0.26 > 0.1 for the power-
law distribution with xmin = 495. Log-normal and Poisson hypotheses
have to be rejected due to their p-value being≪ 0.1 or simply due to
a large xmin in the case of the Poisson distribution. Therefore, at least
the tail of the degree distribution, i.e., all degrees larger than xmin can
be plausibly characterized by a power-law.

One striking observation in comparison to C1 is the peak in degrees
of the graph of reachable nodes in the interval [200, 230]. Around one
third of all nodes are within this degree range. This has consequences
on other graph metrics but, most strikingly, on the resilience analysis
as the graph of reachable nodes tolerates failures and targeted attacks
surprisingly well — achieving comparable results to similar studies
on Gnutella [250].

Table 14 depicts the aggregated statistics on the degree of each
crawls’ graph. Depicted is the mean, median, minimum and maximum
degree, differentiated by in- and out-degree.

154 appendix

1e-05

1e-03

1e-01

1 10 100 1000

Degree
C

D
F

Type
LNorm

PL

Pois

Figure 48: In-Degree distribution from the crawl on 1st of February
2021, 00:00 UTC including all found nodes. Other crawls
yielded similar shapes.

1e-04

1e-02

1e+00

1 10 100 1000

Degree

C
D

F

Type
LNorm

PL

Pois

Figure 49: The same distribution as Figure 48, but only including
reachable nodes.

The fluctuation of top degree nodes is depicted in the cumulative
distribution in Figure 50. For the computation, each crawl’s highest
degree nodes (15 on average) were calculated and their re-occurrence
counted. If a node was in the set of highest-degree nodes in one run
but not in other runs, its “percentage seen” would be 1

of crawls . On
the other extreme, if a node was within the highest degree nodes in
every crawl, its percentage seen would be a 100 %. In comparison to
C1, Figure 50 shows less churn among the top degree nodes: although
60 % of top degree nodes were only present in 10 % of crawls, the
remaining 40 % have been seen in the the majority of crawls. This is
in line with longer observed session lengths in C2 in general.

Similar to Section 4.7.3.2, we computed various graph metrics of the
IPFS overlay graph and compared them to ER and BA random graphs

7.1 ipfs 155

mode min mean median max
total 23.8 312.4 273.1 3748.6

in 1.1 156.2 114.1 3581.5
out 8.7 156.2 162.0 187.9

Table 14: Average of the degree statistics of all 5039 crawls.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

Percentage of crawls a node was seen

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Figure 50: ECDF of how often the same nodes were within the top-
degree nodes.

– the methods and parameters are identical to Table 6. As above, we
used the crawl from the 1st of February 2021, 00:00 UTC, the results
are gathered in Table 15. It can be seen that the IPFS graphs in C2

have seven to eight times more edges than the equivalent graphs in C1

despite having less nodes. This stems, among potential other reasons,
from two factors: (1) significant improvements of the libp2p network-
ing library and our crawler and (2) longer session lengths. Regarding
(1), since IPFS v0.5, the Kademlia buckets are populated much more
rigorously and quickly after startup. Furthermore, refreshments at
least every 10 min lead to more nodes in buckets than for older IPFS
clients. We also improved our crawler, especially the interplay with
libp2p, leading to a higher throughput of crawl requests and more
reliability. Simultaneously, session lengths have become significantly
longer (clearly visible in Table 11), leading to fuller Kademlia buckets.
In summary, in comparison to C1, the crawler is able to enumerate V ′

evenly well but performs significantly better on E ′.
It can be seen that, similar to C1, the IPFS graphs exhibit similar

average path lengths as ER random graphs, although with a higher di-
ameter. The transitivity is, again, significantly higher than for random
graphs. Assessing the small-world behavior, we obtain Sall = 10 > 1

and Sreach = 2.4 > 1, which is in the same ballpark as C1 and still
allows for the qualitative categorization as a small-world graph. Quan-
titatively, the metric of small-worldness S is much lower for IPFS (both

156 appendix

GType Metric All Reach
ba nodes 11311 5249

ba edges 935327 801505

ba apl 1.01±0.01 1.00

ba trans 0.022 0.084

ba betw 1e-04 0

ba diameter 2.9±0.63 2.2±0.3
er nodes 11311 5249

er edges 939058 814201

er apl 2.53 1.98

er trans 0.015 0.058

er betw 2e-04 3e-04

er diameter 3 3

ipfs nodes 11311 5249

ipfs edges 939058 814201

ipfs apl 2.58 2.24

ipfs trans 0.152 0.161

ipfs diameter 5 4

ipfs betw 0.005 0.010

Table 15: Comparison of measured graphs of the IPFS overlay at
1.02.21, 00:00 UTC with Erdős-Rényi & Barabási-Albert ran-
dom graphs.

sets of crawls) than for the actor collaboration network, for example
[132]. In general, we can see that the IPFS graphs in C2 are not as
similar to scale-free networks as for the graphs in C1.

Moving on to the resilience analysis (cf. Figures 51 and 52), the
differences between the two sets of crawls become even more apparent.
While the graph of all nodes is, not surprisingly due to the higher
number of edges, more robust against failures and attacks, it still
exhibits similar behavior to the equivalent graph in C1. However,
the graph of reachable nodes is remarkable in the sense that it does
not partition into several connected components. Instead, despite the
deletion of nodes the fraction of connected remaining nodes stays high,
even when targeting the highest degree nodes. This can plausibly
be explained by the high clustering coefficient and homogeneous
degree distribution: neighborhoods are very well interconnected and
around one third of all nodes share the same (high) degree in the
interval [200, 230]. Hence, the difference between targeted and random
removal becomes less severe. Due to the high interconnectedness of
neighbors nodes tend to remain connected even when one of their
neighboring nodes is removed.

7.1 ipfs 157

70

80

90

100

0 10 20 30 40 50 60 70 80 90

Percentage removed

Pe
rc

.i
n

co
nn

.c
om

p.
Type all reachable

Figure 51: Resilience of the measured graph (same as above) to ran-
dom removals, distinguished by all and reachable nodes.

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90

Percentage removed

Pe
rc

.i
n

co
nn

.c
om

p.

Type all reachable

Figure 52: Resilience of the measured graph (same as above) to tar-
geted removals, distinguished by all and reachable nodes.

158 appendix

7.1.2 Gateway Probing Results

Results

2020-05-31, 10:30 AM 2020-06-08, 19:20 PM

de-small us-small de-small us-small

Gateway HTTP BitSwap HTTP BitSwap HTTP BitSwap HTTP BitSwap

10.via0.com working found working found
cdn.cwinfo.net
cloudflare-ipfs.com working found working found working found working found
gateway.blocksec.com
gateway.ipfs.io working found working found working found working found
gateway.originprotocol.com found found found found
gateway.pinata.cloud working found working found working found working found
gateway.serph.network
gateway.temporal.cloud working found working found working found working found
hardbin.com working found working found working found
ipfs.2read.net working found working found working found working found
ipfs.best-practice.se working found working found working found working found
ipfs.busy.org
ipfs.cf-ipfs.com found found found found
ipfs.cosmos-ink.net working found working found working found working found
ipfs.doolta.com
ipfs.dweb.link working found working found working found working found
ipfs.eternum.io working found working found working found working found
ipfs.fooock.com
ipfs.globalupload.io working found working found working found working found
ipfs.greyh.at working found working found working found working found
ipfs.infura.io working found working found working found working found
ipfs.io working found working found working found working found
ipfs.jeroendeneef.com working found working found working found working found
ipfs.lc not listed a

ipfs.leiyun.org not listed a working found working b

ipfs.mrh.io
ipfs.overpi.com working found working found working found working found
ipfs.privacytools.io
ipfs.runfission.com working found working found working found working found
ipfs.sloppyta.co working found working found working found working found
ipfs.stibarc.com working found working found
ipns.co working found working found working found working found
jorropo.ovh
ninetailed.ninja working found working found working found working found
permaweb.io
storjipfs-gateway.com
trusti.id working found working found working found working found

a Only present in later versions of the public gateway list.
b Possible that the BitSwap message was missed due to backpressure in the setup.

Table 16: Results of probing public gateways. The HTTP column
indicates whether we were able to request our content via
HTTP using the gateway. The BitSwap column indicates
whether we saw a request for our data via BitSwap.

7.2 value stabilization in cryptocurrencies 159

7.2 value stabilization in cryptocurrencies

7.2.1 Surveyed projects

A list of surveyed stablecoin projects and their respective
classification. Note that, “partially implemented” refers to the fact
that the coin itself is traded while not all announced stabilization
techniques are implemented yet.

Project (Stabilized Token) Status MR ERA T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Augmint (A-EUR) not impl. ERT soft peg - - - - yes yes - yes - - -
Aurora (Boreal) not impl. ERT soft peg - - - - yes - - yes - - -
Basecoin (Basis) retracted ERT soft peg - - - - - - - - yes yes -

BitShares (BitUSD) impl. ERT soft peg - - yes - - - - - - - -
Carbon (Carbon) impl. ERT soft peg - - - - - - - - yes yes -

Celo (Celo) not impl. ERT soft peg - - - - - - - yes yes yes -
Centre (USD Coin) impl. ERT hard peg yes - - - - - - - - - -

Digix (Digix Gold Token) impl. ERT hard peg yes - - - - - - - - - -
Fragments (Fragments) not impl. ERT soft peg - - - - - - - yes yes - -
Globcoin (GLC Token) impl. ERT hard peg yes - - - - - - - - - -

Karbo (Karbo) partially impl. MT free float - - - - - yes - - - yes -
Kowala (kUSD) not impl. ERT soft peg - - - - - - - - - yes yes

Maker (Dai) impl. ERT soft peg - - - - yes - - - - - -
Minex Coin (Minex Coin) impl. MT float. w. int. - - - yes - yes - - - - -

NuBits (Nubits) impl. ERT soft peg - - - yes - yes - - - yes -
Stableunit (Stableunit) not impl. ERT soft peg - - - - - yes - yes yes - -

Stably (StableUSD) impl. ERT hard peg yes - - - - - - - - - -
Stasis (EURS) impl. ERT hard peg yes - - - - - - - - - -

Stronghold (USDS) impl. ERT hard peg yes - - - - - - - - - -
Sythetix (SUSD) impl. ERT soft peg - - yes - - - - - - - -
Tether (USDT) impl. ERT hard peg yes - - - - - - - - - -

Trusttoken (TrueUSD) impl. ERT hard peg yes - - - - - - - - - -
USC (USC) impl. ERT hard peg yes - - - - - - - - - -

x8currency (X8C) not impl. ERT hard peg yes - - - - - - - - - -

Abbreviation Full text
MR Monetary regime
ERA Exchange range arrangement
MT Monetary targeting
ERT Exchange rate targeting
float. w. int. Floating with interventions
impl. Implemented
T1 Collateralization (direct)
T2 Collateralization (proxy)
T3 Collateralization (self)
T4 Currency interventions
T5 Interest rates with loans
T6 Interest rates with deposits
T7 Open market operations (standard)
T8 Open market operations (proxy)
T9 Open market operations (self-tokenizing)
T10 Dynamic mining reward
T11 Dynamically burned transaction fee

160 appendix

7.2.2 Taxonomy
E

xc
h

an
ge

ra
te

st
ab

il
iz

at
io

n
te

ch
n

iq
u

es

E
xc

h
an

ge
ra

te
ar

ra
n

ge
m

en
ts

M
on

et
ar

y
re

gi
m

es

"W
hi

ch
ty

p
es

of
p

ra
ct

ic
al

te
ch

ni
qu

es
ar

e
u

se
d

to
ac

hi
ev

e
st

ab
ili

ty
?"

"I
n

w
ha

t
w

ay
ca

n
th

e
va

lu
e

of
a

cr
yp

to
-

cu
rr

en
cy

be
lin

ke
d

to
ex

te
rn

al
cu

rr
en

ci
es

?"

"W
ha

t
is

th
e

st
ab

ili
za

ti
on

ta
rg

et
?"

Open
market

op.
(proper)

Direct
coll.

Open
market

op.
(proxy)

Proxy
coll.

Open
market

op.
(self)

Self
coll.

Currency
inter-

ventions

Interest
rates on

loans

Interest
rates on
deposits

Dyn.
mining
reward

Dyn.
burned
tx fee

H
ar

d
p

eg

No legal
tender

Currency
board

So
ft

p
eg

Conventional

Horizontal
bands

Crawling

Fl
oa

ti
ng

ar
ra

ng
em

en
ts

Free float

Floating with
interventions

Exchange
rate

targeting

Monetary
targeting

Inflation
targeting

B I B L I O G R A P H Y

publications by the author

[1] Leonhard Balduf, Sebastian A. Henningsen, Martin Florian,
Sebastian Rust, and Björn Scheuermann. “Monitoring Data
Requests in Decentralized Data Storage Systems: A Case Study
of IPFS”. In: submitted to ICDCS (2022).

[2] S. Beaucamp, S. Henningsen, and M. Florian. “Strafbarkeit
durch Speicherung der Bitcoin-Blockchain?” In: Multimedia und
Recht 2018.8 (Aug. 2018), pp. 493–564.

[3] Moritz Becker, Sebastian Henningsen, and Ingolf GA Per-
nice. “Umstrittene Expertise im Falle einer neuen Technologie:
eine explorative Untersuchung der Online-Konsultation zur
Blockchain-Strategie der Bundesregierung”. In: Weizenbaum
Series (2020).

[4] Martin Florian, Sebastian A. Henningsen, Sophie Beaucamp,
and Björn Scheuermann. “Erasing Data from Blockchain
Nodes”. In: Proceedings of the European Symposium on Security
and Privacy (EuroS&P) Workshops. IEEE, 2019, pp. 367–376. url:
https://doi.org/10.1109/EuroSPW.2019.00047.

[5] Martin Florian, Sebastian A. Henningsen, and Björn Scheuer-
mann. “The Sum of Its Parts: Analysis of Federated Byzantine
Agreement Systems”. In: CoRR abs/2002.08101 (2020). arXiv:
2002.08101. url: https://arxiv.org/abs/2002.08101.

[6] Sebastian A. Henningsen, Martin Florian, Sebastian Rust, and
Björn Scheuermann. “Mapping the Interplanetary Filesystem”.
In: Proceedings of the IFIP Networking Conference. IFIP, 2020,
pp. 289–297. url: https://ieeexplore.ieee.org/document/
9142766.

[7] Sebastian A. Henningsen, Sebastian Rust, Martin Florian, and
Björn Scheuermann. “Crawling the IPFS Network”. In: Proceed-
ings of IFIP Networking Conference. IFIP, 2020, pp. 679–680. url:
https://ieeexplore.ieee.org/document/9142764.

[8] Sebastian A. Henningsen, Daniel Teunis, Martin Florian, and
Björn Scheuermann. “Eclipsing Ethereum Peers with False
Friends”. In: Proceedings of the European Symposium on Security
and Privacy (EuroS&P) Workshops. IEEE, 2019, pp. 300–309. url:
https://doi.org/10.1109/EuroSPW.2019.00040.

161

https://doi.org/10.1109/EuroSPW.2019.00047
https://arxiv.org/abs/2002.08101
https://arxiv.org/abs/2002.08101
https://ieeexplore.ieee.org/document/9142766
https://ieeexplore.ieee.org/document/9142766
https://ieeexplore.ieee.org/document/9142764
https://doi.org/10.1109/EuroSPW.2019.00040

162 bibliography

[9] Ingolf G. A. Pernice, Sebastian A. Henningsen, Roman Proska-
lovich, Martin Florian, Hermann Elendner, and Björn Scheuer-
mann. “Monetary Stabilization in Cryptocurrencies - Design
Approaches and Open Questions”. In: Proceedings of Crypto
Valley Conference on Blockchain Technology (CVCBT). IEEE, 2019,
pp. 47–59. url: https://doi.org/10.1109/CVCBT.2019.
00011.

https://doi.org/10.1109/CVCBT.2019.00011
https://doi.org/10.1109/CVCBT.2019.00011

bibliography 163

other publications

[10] John Adler, Ryan Berryhill, Andreas G. Veneris, Zissis Poulos,
Neil Veira, and Anastasia Kastania. “Astraea: A Decentralized
Blockchain Oracle”. In: Proceedings of the International Conference
on Internet of Things (iThings) and Green Computing and Commu-
nications (GreenCom) and Cyber, Physical and Social Computing
(CPSCom) and Smart Data (SmartData). IEEE, 2018, pp. 1145–
1152. url: https://doi.org/10.1109/Cybermatics_2018.
2018.00207.

[11] Bithin Alangot, Daniël Reijsbergen, Sarad Venugopalan, and
Pawel Szalachowski. “Decentralized Lightweight Detection of
Eclipse Attacks on Bitcoin Clients”. In: Proceedings of the Con-
ference on Blockchain (Blockchain). IEEE, 2020, pp. 337–342. url:
https://doi.org/10.1109/Blockchain50366.2020.00049.

[12] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Er-
ror and attack tolerance of complex networks”. In: Nature
406.6794 (2000), pp. 378–382.

[13] Muhammad Salek Ali, Koustabh Dolui, and Fabio Antonelli.
“IoT data privacy via blockchains and IPFS”. In: Proceedings of
the Conference on the Internet of Things (IOT). ACM, 2017, 14:1–
14:7. url: https://doi.org/10.1145/3131542.3131563.

[14] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. “A
survey of peer-to-peer content distribution technologies”. In:
ACM computing surveys (CSUR) 36.4 (2004), pp. 335–371.

[15] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. “Hijack-
ing Bitcoin: Routing Attacks on Cryptocurrencies”. In: Pro-
ceedings of Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 375–392. url: https://doi.org/10.1109/SP.2017.29.

[16] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal,
Franck Youssef, and Erik Zenner. “Ripple: Overview and out-
look”. In: Proceedings of the Conference on Trust and Trustworthy
Computing (TRUST). Springer. 2015, pp. 163–180.

[17] Onur Ascigil, Sergi Reñé, Michal Król, George Pavlou, Lixia
Zhang, Toru Hasegawa, Yuki Koizumi, and Kentaro Kita. “To-
wards Peer-to-Peer Content Retrieval Markets: Enhancing IPFS
with ICN”. In: Proceedings of the Conference on Information-Centric
Networking (ICN). ACM, 2019, pp. 78–88. url: https://doi.
org/10.1145/3357150.3357403.

[18] Elikem Attah. Five most prolific 51% attacks in crypto: Verge,
Ethereum Classic, Bitcoin Gold, Feathercoin, Vertcoin. 2019. url:
https://cryptoslate.com/prolific-51-attacks-crypto-
verge-ethereum-classic-bitcoin-gold-feathercoin-vert
coin/.

https://doi.org/10.1109/Cybermatics_2018.2018.00207
https://doi.org/10.1109/Cybermatics_2018.2018.00207
https://doi.org/10.1109/Blockchain50366.2020.00049
https://doi.org/10.1145/3131542.3131563
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1145/3357150.3357403
https://doi.org/10.1145/3357150.3357403
https://cryptoslate.com/prolific-51-attacks-crypto-verge-ethereum-classic-bitcoin-gold-feathercoin-vertcoin/
https://cryptoslate.com/prolific-51-attacks-crypto-verge-ethereum-classic-bitcoin-gold-feathercoin-vertcoin/
https://cryptoslate.com/prolific-51-attacks-crypto-verge-ethereum-classic-bitcoin-gold-feathercoin-vertcoin/

164 bibliography

[19] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A sur-
vey of attacks on ethereum smart contracts (sok)”. In: Proceed-
ings of the Conference on Principles of Security and Trust (POST).
Springer, 2017, pp. 164–186. url: https://doi.org/10.1007/
978-3-662-54455-6_8.

[20] Adam Back et al. Hashcash-a denial of service counter-measure.
2002. url: http://www.hashcash.org/papers/.

[21] European Central Bank. Eligibility criteria and assessment. 2019.
url: https://www.ecb.europa.eu/mopo/assets/html/index.
en.html.

[22] European Central Bank. Guiding principles (with examples) of
Eurosystem-preferred eligible ABSs. July 2015. url: https://www.
ecb.europa.eu/mopo/implement/omt/html/abs_guiding_
principles.en.html.

[23] European Central Bank. Purchase programme for covered bonds.
2009. url: https://www.ecb.europa.eu/press/pr/date/
2009/html/pr090604_1.en.html.

[24] European Central Bank. The Eurosystem’s instruments. 2019. url:
https://www.ecb.europa.eu/mopo/implement/html/index.
en.html.

[25] Markets Committee of the Bank for International Settlements.
Monetary policy frameworks and central bank market operations.
Tech. rep. Bank for International Settlements, May 2009. url:
https://www.bis.org/publ/mktc04.pdf.

[26] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah
Azouvi, Patrick McCorry, Sarah Meiklejohn, and George
Danezis. “SoK: Consensus in the age of blockchains”. In: Pro-
ceedings of the Conference on Advances in Financial Technologies
(AFT). ACM, 2019, pp. 183–198. url: https://doi.org/10.
1145/3318041.3355458.

[27] Albert-László Barabási and Réka Albert. “Emergence of scaling
in random networks”. In: science 286.5439 (1999), pp. 509–512.

[28] Salman Baset and Henning Schulzrinne. “An Analysis of the
Skype Peer-to-Peer Internet Telephony Protocol”. In: Proceed-
ings of the Conference on Computer Communications (INFOCOM).
IEEE, 2006. url: https://doi.org/10.1109/INFOCOM.2006.
312.

[29] Ingmar Baumgart and Sebastian Mies. “S/Kademlia: A practi-
cable approach towards secure key-based routing”. In: Proceed-
ings of the Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2007, pp. 1–8. url: https://doi.org/10.1109/ICPADS.
2007.4447808.

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://www.hashcash.org/papers/
https://www.ecb.europa.eu/mopo/assets/html/index.en.html
https://www.ecb.europa.eu/mopo/assets/html/index.en.html
https://www.ecb.europa.eu/mopo/implement/omt/html/abs_guiding_principles.en.html
https://www.ecb.europa.eu/mopo/implement/omt/html/abs_guiding_principles.en.html
https://www.ecb.europa.eu/mopo/implement/omt/html/abs_guiding_principles.en.html
https://www.ecb.europa.eu/press/pr/date/2009/html/pr090604_1.en.html
https://www.ecb.europa.eu/press/pr/date/2009/html/pr090604_1.en.html
https://www.ecb.europa.eu/mopo/implement/html/index.en.html
https://www.ecb.europa.eu/mopo/implement/html/index.en.html
https://www.bis.org/publ/mktc04.pdf
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1109/INFOCOM.2006.312
https://doi.org/10.1109/INFOCOM.2006.312
https://doi.org/10.1109/ICPADS.2007.4447808
https://doi.org/10.1109/ICPADS.2007.4447808

bibliography 165

[30] Morten L. Bech and Rodney Garratt. “Central Bank Cryptocur-
rencies”. In: SSRN abs/3041906 (2017). url: https://papers.
ssrn.com/abstract=3041906.

[31] Moritz Becker. “Blockchain and the Promise(s) of Decentralisa-
tion: A Sociological Investigation of the Sociotechnical Imagi-
naries of Blockchain”. In: Proceedings of the Conference on Critical
Issues in Science, Technology and Society Studies. STS, 2020.

[32] Mihir Bellare and Phillip Rogaway. “Random Oracles are Prac-
tical: A Paradigm for Designing Efficient Protocols”. In: Proceed-
ings of the Conference on Computer and Communications Security
(CCS). ACM, 1993, pp. 62–73. url: https://doi.org/10.1145/
168588.168596.

[33] Sami Ben Mariem, Pedro Casas, and Benoit Donnet. “Vivisect-
ing blockchain P2P networks: Unveiling the Bitcoin IP net-
work”. In: Proceedings of the Conference on Emerging Network
Experiment and Technology (CoNEXT) Student Workshop. ACM,
2018.

[34] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File
System”. In: CoRR abs/1407.3561 (2014). arXiv: 1407.3561. url:
http://arxiv.org/abs/1407.3561.

[35] Ben S Bernanke, Thomas Laubach, Frederic S Mishkin, and
Adam S Posen. Inflation targeting. Princeton University Press,
1999.

[36] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Keccak”. In: Proceedings of the Conference on the The-
ory and Applications of Cryptographic Techniques (EUROCRYPT).
Springer, 2013, pp. 313–314. url: https://doi.org/10.1007/
978-3-642-38348-9_19.

[37] Mr Ashok Bhundia and Mr Mark R Stone. A new taxonomy of
monetary regimes. Tech. rep. International Monetary Fund, 2004.
url: https://www.imf.org/en/Publications/WP/Issues/
2016/12/31/A-New-Taxonomy-of-Monetary-Regimes-17690.

[38] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.
“Deanonymisation of Clients in Bitcoin P2P Network”. In: Pro-
ceedings of the Conference on Computer and Communications Secu-
rity (CCS). ACM, 2014, pp. 15–29. url: https://doi.org/10.
1145/2660267.2660379.

[39] BitTorrent. BitTorrent FileSystem (BTFS): Scalable Decentralized
File Storage. 2020. url: https://github.com/TRON-US/go-
btfs.

[40] Ole Bjerg. “Designing New Money - The Policy Trilemma of
Central Bank Digital Currency”. In: SSRN abs/2985381 (2017).
url: https://papers.ssrn.com/abstract=2985381.

https://papers.ssrn.com/abstract=3041906
https://papers.ssrn.com/abstract=3041906
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://www.imf.org/en/Publications/WP/Issues/2016/12/31/A-New-Taxonomy-of-Monetary-Regimes-17690
https://www.imf.org/en/Publications/WP/Issues/2016/12/31/A-New-Taxonomy-of-Monetary-Regimes-17690
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://github.com/TRON-US/go-btfs
https://github.com/TRON-US/go-btfs
https://papers.ssrn.com/abstract=2985381

166 bibliography

[41] Charles Blake and Rodrigo Rodrigues. “High Availability, Scal-
able Storage, Dynamic Peer Networks: Pick Two.” In: Proceed-
ings of the Workshop on Hot Topics in Operating Systems (HotOS).
USENIX Association, 2003, pp. 1–6.

[42] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez,
and D-U Hwang. “Complex networks: Structure and dynam-
ics”. In: Physics reports 424.4-5 (2006), pp. 175–308.

[43] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Nara-
yanan, Joshua A Kroll, and Edward W Felten. “Sok: Research
perspectives and challenges for bitcoin and cryptocurrencies”.
In: Proceedings of the Symposium on Security and Privacy (SP).
IEEE, 2015, pp. 104–121. url: https://doi.org/10.1109/SP.
2015.14.

[44] John Buford, Heather Yu, and Eng Keong Lua. P2P networking
and applications. Morgan Kaufmann, 2009.

[45] Dirk Bullmann, Jonas Klemm, and Andrea Pinna. “In search
for stability in crypto-assets: are stablecoins the solution?” In:
ECB Occasional Paper 230 (2019).

[46] Vitalik Buterin. vitalik.eth on Twitter. 2018. url: https://twi
tter.com/VitalikButerin/status/1051160932699770882?
ref_src=twsrc%5C%5Etfw.

[47] Carey Caginalp. “A Dynamical Systems Approach to Cryp-
tocurrency Stability”. In: CoRR abs/1805.03143 (2018). url:
http://arxiv.org/abs/1805.03143.

[48] Carey Caginalp and Gunduz Caginalp. “Opinion: Valuation,
liquidity price, and stability of cryptocurrencies”. In: Proceed-
ings of the National Academy of Sciences 115.6 (2018), pp. 1131–
1134.

[49] Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and
Paulo Verssimo. “Exploring the Monero Peer-to-Peer Network”.
In: Proceedings of the Conference on Financial Cryptography and
Data Security (FC). Ed. by Joseph Bonneau and Nadia Heninger.
Vol. 12059. Lecture Notes in Computer Science. Springer, 2020,
pp. 578–594. url: https://doi.org/10.1007/978-3-030-
51280-4_31.

[50] Miguel Castro, Peter Druschel, Ayalvadi J. Ganesh, Antony I. T.
Rowstron, and Dan S. Wallach. “Secure Routing for Structured
Peer-to-Peer Overlay Networks”. In: Proceedings of the Sympo-
sium on Operating System Design and Implementation (OSDI).
USENIX Association, 2002. url: http://www.usenix.org/
events/osdi02/tech/castro.html.

https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://twitter.com/VitalikButerin/status/1051160932699770882?ref_src=twsrc%5C%5Etfw
https://twitter.com/VitalikButerin/status/1051160932699770882?ref_src=twsrc%5C%5Etfw
https://twitter.com/VitalikButerin/status/1051160932699770882?ref_src=twsrc%5C%5Etfw
http://arxiv.org/abs/1805.03143
https://doi.org/10.1007/978-3-030-51280-4_31
https://doi.org/10.1007/978-3-030-51280-4_31
http://www.usenix.org/events/osdi02/tech/castro.html
http://www.usenix.org/events/osdi02/tech/castro.html

bibliography 167

[51] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault
Tolerance”. In: Proceedings of the Symposium on Operating System
Design and Implementation (OSDI). USENIX Association, 1999,
pp. 173–186. url: https://dl.acm.org/citation.cfm?id=
296824.

[52] David Chaum. “Blind Signatures for Untraceable Payments”.
In: Proceedings of the Cryptology Conference (CRYPTO). Plenum
Press, 1982, pp. 199–203. url: https://doi.org/10.1007/978-
1-4757-0602-4_18.

[53] David Chaum, Amos Fiat, and Moni Naor. “Untraceable
electronic cash”. In: Proceedings of the Cryptology Conference
(CRYPTO). Springer. 1988, pp. 319–327. url: https://doi.
org/10.1007/0-387-34799-2_25.

[54] Alice Cheng and Eric Friedman. “Sybilproof Reputation Mech-
anisms”. In: Proceedings of the SIGCOMM workshop on Economics
of peer-to-peer systems (P2PECON). ACM, 2005, pp. 128–132. url:
https://doi.org/10.1145/1080192.1080202.

[55] Samuel Cheun, Isabel von Köppen-Mertes, and Benedict Weller.
The collateral frameworks of the Eurosystem, the Federal Reserve
System and the Bank of England and the financial market turmoil.
Tech. rep. ECB Occasional Paper, 2009. url: https://www.ecb.
europa.eu/pub/pdf/scpops/ecbocp107.pdf?cfe69002f33a
9de3dfaaad38ce139e18.

[56] Thibault Cholez, Isabelle Chrisment, and Olivier Festor. “Eval-
uation of Sybil Attacks Protection Schemes in KAD”. In: Pro-
ceedings of the Conference on Scalability of Networks and Services
(AIMS). Springer, 2009, pp. 70–82. url: https://doi.org/10.
1007/978-3-642-02627-0_6.

[57] Thibault Cholez, Isabelle Chrisment, Olivier Festor, and Guil-
laume Doyen. “Detection and mitigation of localized attacks in
a widely deployed P2P network”. In: Peer Peer Netw. Appl. 6.2
(2013), pp. 155–174. url: https://doi.org/10.1007/s12083-
012-0137-7.

[58] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg,
and Brandon Wiley. “Protecting Free Expression Online with
Freenet”. In: IEEE Internet Comput. 6.1 (2002), pp. 40–49. url:
https://doi.org/10.1109/4236.978368.

[59] Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman.
“Power-Law Distributions in Empirical Data”. In: SIAM Rev.
51.4 (2009), pp. 661–703. url: https://doi.org/10.1137/
070710111.

[60] Matt Condon. Parity Wallet Hack 2: Electric Boogaloo. Nov. 2017.
url: https : / / hackernoon . com / parity - wallet - hack - 2 -
electric-boogaloo-e493f2365303.

https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1145/1080192.1080202
https://www.ecb.europa.eu/pub/pdf/scpops/ecbocp107.pdf?cfe69002f33a9de3dfaaad38ce139e18
https://www.ecb.europa.eu/pub/pdf/scpops/ecbocp107.pdf?cfe69002f33a9de3dfaaad38ce139e18
https://www.ecb.europa.eu/pub/pdf/scpops/ecbocp107.pdf?cfe69002f33a9de3dfaaad38ce139e18
https://doi.org/10.1007/978-3-642-02627-0_6
https://doi.org/10.1007/978-3-642-02627-0_6
https://doi.org/10.1007/s12083-012-0137-7
https://doi.org/10.1007/s12083-012-0137-7
https://doi.org/10.1109/4236.978368
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://hackernoon.com/parity-wallet-hack-2-electric-boogaloo-e493f2365303
https://hackernoon.com/parity-wallet-hack-2-electric-boogaloo-e493f2365303

168 bibliography

[61] B. Confais, A. Lebre, and B. Parrein. “Performance Analysis
of Object Store Systems in a Fog/Edge Computing Infrastruc-
tures”. In: Proceedings of the Conference on Cloud Computing Tech-
nology and Science (CloudCom). IEEE, 2016, pp. 294–301. url:
https://doi.org/10.1109/CloudCom.2016.0055.

[62] Bastien Confais, Adrien Lebre, and Benot Parrein. “An Object
Store Service for a Fog/Edge Computing Infrastructure Based
on IPFS and a Scale-Out NAS”. In: Proceedings of the Conference
on Fog and Edge Computing (ICFEC). IEEE, 2017, pp. 41–50. url:
https://doi.org/10.1109/ICFEC.2017.13.

[63] Andrew Crockett et al. “Monetary policy implications of in-
creased capital flows”. In: Changing Capital Markets: Implications
for Monetary Policy. Citeseer, 1994, pp. 331–364.

[64] Kyle Croman et al. “On Scaling Decentralized Blockchains - (A
Position Paper)”. In: Proceedings of the Conference on Financial
Cryptography and Data Security (FC) Workshops. Springer, 2016,
pp. 106–125. url: https://doi.org/10.1007/978-3-662-
53357-4_8.

[65] Wei Dai. B-money. 1998. url: http://www.weidai.com/bmoney.

[66] Phil Daian. Analysis of the DAO exploit. June 2016. url: https:
//hackingdistributed.com/2016/06/18/analysis-of-the-
dao-exploit/.

[67] Phil Daian, Rafael Pass, and Elaine Shi. “Snow white: Robustly
reconfigurable consensus and applications to provably secure
proof of stake”. In: Proceedings of the Conference on Financial
Cryptography and Data Security (FC). Springer, 2019, pp. 23–41.
url: https://doi.org/10.1007/978-3-030-32101-7_2.

[68] George Danezis and Sarah Meiklejohn. “Centrally Banked
Cryptocurrencies”. In: Proc. of Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2016.

[69] Erik Daniel, Elias Rohrer, and Florian Tschorsch. “Map-Z: Ex-
posing the Zcash Network in Times of Transition”. In: Proceed-
ings of the Conference on Local Computer Networks (LCN). IEEE,
2019, pp. 84–92. url: https://doi.org/10.1109/LCN44214.
2019.8990796.

[70] Erik Daniel and Florian Tschorsch. “IPFS and Friends: A Quali-
tative Comparison of Next Generation Peer-to-Peer Data Net-
works”. In: CoRR abs/2102.12737 (2021). arXiv: 2102.12737.
url: https://arxiv.org/abs/2102.12737.

[71] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. “Dynamo: amazon’s highly available key-value store”.
In: Proceedings of the Symposium on Operating Systems Principles

https://doi.org/10.1109/CloudCom.2016.0055
https://doi.org/10.1109/ICFEC.2017.13
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://www.weidai.com/bmoney
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1109/LCN44214.2019.8990796
https://doi.org/10.1109/LCN44214.2019.8990796
https://arxiv.org/abs/2102.12737
https://arxiv.org/abs/2102.12737

bibliography 169

(SOSP). ACM, 2007, pp. 205–220. url: https://doi.org/10.
1145/1294261.1294281.

[72] Christian Decker and Roger Wattenhofer. “Information propa-
gation in the Bitcoin network”. In: Proceedings of the Conference
on Peer-to-Peer Computing (P2P). IEEE, 2013, pp. 1–10. url:
https://doi.org/10.1109/P2P.2013.6688704.

[73] Sergi Delgado-Segura, Surya Bakshi, Cristina Perez-Sola, James
Litton, Andrew Pachulski, Andrew Miller, and Bobby Bhat-
tacharjee. “TxProbe: Discovering Bitcoin’s Network Topology
Using Orphan Transactions”. In: Proceedings of the Conference
on Financial Cryptography and Data Security (FC). Springer, 2019,
pp. 550–566. url: https://doi.org/10.1007/978-3-030-
32101-7_32.

[74] Aragon Developers. Aragon DAO Whitepaper. 2020. url: https:
/ / github . com / aragon / whitepaper / tree / 1b8d87ab7e41a
368d74a39320ec63a26535ecb03.

[75] Bitcoin Developers. Bitcoind. https://github.com/bitcoin/
bitcoin. 2020. url: https://github.com/bitcoin/bitcoin/
blob/d8ca51db5ddfb51c225c0c99f8aa1f5d68f0ad83/src/ad
drman.h%5C#L97.

[76] Bitcoin Developers. Bitcoind. https://github.com/bitcoin/
bitcoin. 2020. url: https://github.com/bitcoin/bitcoin/
blob/551dc7f664666cdc8cb6e6cab5522d70980778e8/src/ne
taddress.cpp#L528.

[77] Bitcoin Developers. Bitcoind. https://github.com/bitcoin/
bitcoin. 2020. url: https://github.com/bitcoin/bitcoin/
blob/9fb95ae8e3e4f10888a98fc99d704d97e2eb371f/src/ne
t.cpp#L850.

[78] Bitcoin Developers. PR #7840: Several performance and privacy
improvements to inv/mempool handling. 2016. url: https://gith
ub.com/bitcoin/bitcoin/pull/7840/commits.

[79] Bitcoin Cash Developers. Bitcoin Cash. 2017. url: https://www.
bitcoincash.org/.

[80] Bitcoin Gold Developers. Bitcoin Gold. 2017. url: https://
bitcoingold.org/.

[81] Blockchain.com Developers. Orphaned Blocks Statistic. 2020. url:
https : / / www . blockchain . com / en / charts / n - orphaned -
blocks.

[82] Microsoft Developers. Microsoft ION: DID Method implementa-
tion using the Sidetree protocol on top of Bitcoin. 2020. url: https:
//github.com/decentralized-identity/ion.

[83] Pinata Developers. Pinata — Add files to IPFS effortlessly. 2021.
url: https://pinata.cloud/.

https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1007/978-3-030-32101-7_32
https://doi.org/10.1007/978-3-030-32101-7_32
https://github.com/aragon/whitepaper/tree/1b8d87ab7e41a368d74a39320ec63a26535ecb03
https://github.com/aragon/whitepaper/tree/1b8d87ab7e41a368d74a39320ec63a26535ecb03
https://github.com/aragon/whitepaper/tree/1b8d87ab7e41a368d74a39320ec63a26535ecb03
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/d8ca51db5ddfb51c225c0c99f8aa1f5d68f0ad83/src/addrman.h%5C#L97
https://github.com/bitcoin/bitcoin/blob/d8ca51db5ddfb51c225c0c99f8aa1f5d68f0ad83/src/addrman.h%5C#L97
https://github.com/bitcoin/bitcoin/blob/d8ca51db5ddfb51c225c0c99f8aa1f5d68f0ad83/src/addrman.h%5C#L97
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/551dc7f664666cdc8cb6e6cab5522d70980778e8/src/netaddress.cpp#L528
https://github.com/bitcoin/bitcoin/blob/551dc7f664666cdc8cb6e6cab5522d70980778e8/src/netaddress.cpp#L528
https://github.com/bitcoin/bitcoin/blob/551dc7f664666cdc8cb6e6cab5522d70980778e8/src/netaddress.cpp#L528
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/9fb95ae8e3e4f10888a98fc99d704d97e2eb371f/src/net.cpp#L850
https://github.com/bitcoin/bitcoin/blob/9fb95ae8e3e4f10888a98fc99d704d97e2eb371f/src/net.cpp#L850
https://github.com/bitcoin/bitcoin/blob/9fb95ae8e3e4f10888a98fc99d704d97e2eb371f/src/net.cpp#L850
https://github.com/bitcoin/bitcoin/pull/7840/commits
https://github.com/bitcoin/bitcoin/pull/7840/commits
https://www.bitcoincash.org/
https://www.bitcoincash.org/
https://bitcoingold.org/
https://bitcoingold.org/
https://www.blockchain.com/en/charts/n-orphaned-blocks
https://www.blockchain.com/en/charts/n-orphaned-blocks
https://github.com/decentralized-identity/ion
https://github.com/decentralized-identity/ion
https://pinata.cloud/

170 bibliography

[84] Lars Dittmar and Aaron Praktiknjo. “Could Bitcoin emissions
push global warming above 2

◦C?” In: Nature Climate Change
9.9 (2019), pp. 656–657.

[85] Trinh Viet Doan, Tat Dat Pham, Markus Oberprieler, and Vaib-
hav Bajpai. “Measuring Decentralized Video Streaming: A Case
Study of DTube”. In: Proceedings of the IFIP Networking Confer-
ence. IFIP, 2020, pp. 118–126. url: https://ieeexplore.ieee.
org/document/9142739.

[86] John R Douceur. “The sybil attack”. In: Proceedings of the Work-
shop on Peer-to-Peer Systems (IPTPS). Springer, 2002, pp. 251–260.
url: https://doi.org/10.1007/3-540-45748-8_24.

[87] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sper-
otto, Ramin Sadre, and Aiko Pras. “Inside dropbox: under-
standing personal cloud storage services”. In: Proceedings of the
Internet Measurement Conference (IMC). ACM, 2012, pp. 481–494.
url: https://doi.org/10.1145/2398776.2398827.

[88] Bradley Efron and Robert J Tibshirani. An introduction to the
bootstrap. CRC press, 1994.

[89] Christoph Egger, Johannes Schlumberger, Christopher Kruegel,
and Giovanni Vigna. “Practical attacks against the I2P network”.
In: Proceedings of the Symposium on Research in Attacks, Intrusions,
and Defenses (RAID). Springer, 2013, pp. 432–451. url: https:
//doi.org/10.1007/978-3-642-41284-4_22.

[90] Barry Eichengreen. “The EMS crisis in retrospect”. In: SSRN
abs/264347 (2000). url: https://papers.ssrn.com/abstract
_id=253143.

[91] Barry Eichengreen and Ricardo Hausmann. “Exchange rates
and financial fragility”. In: Proceedings of the Symposium on
Economic Policy. 1999, pp. 329–368.

[92] Barry Eichengreen, Andrew K Rose, and Charles Wyplosz.
Speculative attacks on pegged exchange rates: an empirical exploration
with special reference to the European Monetary System. 1994. url:
https://www.nber.org/papers/w4898.

[93] Paul Erds and Alfréd Rényi. “On the evolution of random
graphs”. In: Publ. Math. Inst. Hung. Acad. Sci 5.1 (1960), pp. 17–
60.

[94] European Union. Directive 2000/31/EC, ’Directive on electronic
commerce’. June 2000. url: https://eur-lex.europa.eu/
legal-content/en/ALL/?uri=CELEX%3A32000L0031.

[95] Blockchains Expert. Decentralized Applications Stack. 2018. url:
https://hackernoon.com/decentralized-applications-
stack-3ac9ab8c4ad7.

https://ieeexplore.ieee.org/document/9142739
https://ieeexplore.ieee.org/document/9142739
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1145/2398776.2398827
https://doi.org/10.1007/978-3-642-41284-4_22
https://doi.org/10.1007/978-3-642-41284-4_22
https://papers.ssrn.com/abstract_id=253143
https://papers.ssrn.com/abstract_id=253143
https://www.nber.org/papers/w4898
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0031
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0031
https://hackernoon.com/decentralized-applications-stack-3ac9ab8c4ad7
https://hackernoon.com/decentralized-applications-stack-3ac9ab8c4ad7

bibliography 171

[96] Vitalik Buterin Fabian Vogelsteller. Ethereum Improvement Pro-
posal #20. Nov. 2015. url: https://eips.ethereum.org/EIPS/
eip-20.

[97] Romano Fantacci, Leonardo Maccari, Matteo Rosi, Luigi Chisci,
Luca Maria Aiello, and Marco Milanesio. “Avoiding Eclipse
Attacks on Kad/Kademlia: An Identity Based Approach”. In:
Proceedings of Conference on Communications (ICC). IEEE, 2009,
pp. 1–5. url: https://doi.org/10.1109/ICC.2009.5198772.

[98] Giulia C. Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi,
Bradley Denby, Shruti Bhargava, Andrew Miller, and Pramod
Viswanath. “Dandelion++: Lightweight Cryptocurrency Net-
working with Formal Anonymity Guarantees”. In: Proc. ACM
Meas. Anal. Comput. Syst. 2.2 (2018), 29:1–29:35. url: https:
//doi.org/10.1145/3224424.

[99] Giulia C. Fanti and Pramod Viswanath. “Anonymity Properties
of the Bitcoin P2P Network”. In: CoRR abs/1703.08761 (2017).
arXiv: 1703.08761. url: http://arxiv.org/abs/1703.08761.

[100] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryp-
tography Engineering - Design Principles and Practical Applica-
tions. Wiley, 2010. url: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-0470474246.html.

[101] Marco Ferrante and Monica Saltalamacchia. “The coupon col-
lector’s problem”. In: Materials matemàtics (2014), pp. 1–35. url:
http://mat.uab.cat/matmat_antiga/PDFv2014/v2014n02.
pdf.

[102] Stanley Fischer. “Exchange rate regimes: is the bipolar view
correct?” In: Journal of economic perspectives 15.2 (2001), pp. 3–24.

[103] Irving Fisher. “The Equation of Exchange 1896-1910”. In: The
American Economic Review 1.2 (1911), pp. 296–305.

[104] Ethereum Foundation. Ewasm Design Overview and Specification.
2019. url: https://github.com/ewasm/design.

[105] Ethereum Foundation. Go Ethereum – Official Go implementation
of the Ethereum protocol. 2020. url: https : / / github . com /
ethereum/go-ethereum.

[106] Ethereum Foundation. Swarm – Storage and Communication for
a Sovereign Digital Society. 2020. url: https://ethersphere.
github.io/swarm-home/.

[107] Jeffrey A Frankel. “No single currency regime is right for all
countries or at all times”. In: Essays in International Finance 215

(1998).

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://doi.org/10.1109/ICC.2009.5198772
https://doi.org/10.1145/3224424
https://doi.org/10.1145/3224424
https://arxiv.org/abs/1703.08761
http://arxiv.org/abs/1703.08761
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.html
http://mat.uab.cat/matmat_antiga/PDFv2014/v2014n02.pdf
http://mat.uab.cat/matmat_antiga/PDFv2014/v2014n02.pdf
https://github.com/ewasm/design
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://ethersphere.github.io/swarm-home/
https://ethersphere.github.io/swarm-home/

172 bibliography

[108] Christine Fricker, Philippe Robert, and James Roberts. “A ver-
satile and accurate approximation for LRU cache performance”.
In: Proceedings of the International Teletraffic Congress (ITC). IEEE,
2012, pp. 1–8. url: http://ieeexplore.ieee.org/document/
6331818/.

[109] Milton Friedman. “Quantity theory of money”. In: The new
Palgrave dictionary of economics (2017), pp. 1–31.

[110] International Monetary Fund. Exchange arrangements and ex-
change restrictions: annual report. Tech. rep. International Mone-
tary Fund, 2016.

[111] Yue Gao, Jinqiao Shi, Xuebin Wang, Qingfeng Tan, Can Zhao,
and Zelin Yin. “Topology Measurement and Analysis on Ethe-
reum P2P Network”. In: Proceedings of the Symposium on Com-
puters and Communications (ISCC). IEEE, 2019, pp. 1–7. url:
https://doi.org/10.1109/ISCC47284.2019.8969695.

[112] P. Gai, A. Kiayias, and A. Russell. “Stake-Bleeding Attacks on
Proof-of-Stake Blockchains”. In: Proceedings of the Crypto Valley
Conference on Blockchain Technology (CVCBT). IEEE, 2018, pp. 85–
92. url: https://doi.org/10.1109/CVCBT.2018.00015.

[113] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Re-
nesse, and Emin Gün Sirer. “Decentralization in Bitcoin and
Ethereum Networks”. In: Proceedings of the Conference on Finan-
cial Cryptography and Data Security (FC). Springer, 2018, pp. 439–
457. url: https://doi.org/10.1007/978-3-662-58387-6_24.

[114] James E Gentle. Computational statistics. Springer, 2009.

[115] Daniel Germanus, Stefanie Roos, Thorsten Strufe, and Neeraj
Suri. “Mitigating Eclipse attacks in Peer-To-Peer networks”.
In: Proceedings of the Conference on Communications and Network
Security (CNS). IEEE, 2014, pp. 400–408. url: https://doi.
org/10.1109/CNS.2014.6997509.

[116] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios
Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. “On the Secu-
rity and Performance of Proof of Work Blockchains”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016. 2016,
pp. 3–16. url: https://doi.org/10.1145/2976749.2978341.

[117] Arthur Gervais and Karl Wüst. Ethereum Eclipse Attacks. ETH
Zurich, 2016. url: http://hdl.handle.net/20.500.11850/
121310 (visited on 12/11/2018).

[118] Edgar N Gilbert. “Random graphs”. In: The Annals of Mathemat-
ical Statistics 30.4 (1959), pp. 1141–1144.

[119] Colin S Gillespie. “Fitting heavy tailed distributions: the poweR-
law package”. In: CoRR abs/1407.3492 (2014). arXiv: 1407.3492.
url: https://arxiv.org/abs/1407.3492.

http://ieeexplore.ieee.org/document/6331818/
http://ieeexplore.ieee.org/document/6331818/
https://doi.org/10.1109/ISCC47284.2019.8969695
https://doi.org/10.1109/CVCBT.2018.00015
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1109/CNS.2014.6997509
https://doi.org/10.1109/CNS.2014.6997509
https://doi.org/10.1145/2976749.2978341
http://hdl.handle.net/20.500.11850/121310
http://hdl.handle.net/20.500.11850/121310
https://arxiv.org/abs/1407.3492
https://arxiv.org/abs/1407.3492

bibliography 173

[120] Florian Glaser, Kai Zimmermann, Martin Haferkorn, Moritz
Weber, and Michael Siering. “Bitcoin – asset or currency? re-
vealing users’ hidden intentions”. In: SSRN abs/2425247 (2014).
url: https://papers.ssrn.com/abstract_id=2425247.

[121] Morris Goldstein. Managed floating plus. policy analyses in interna-
tional economics. Peterson Institute for International Economics,
2002.

[122] Board of Governors of the Federal Reserve System. Policy Tools.
Feb. 2017. url: https://www.federalreserve.gov/monetary
policy/policytools.htm.

[123] John M. Griffin and Amin Shams. “Is Bitcoin Really Un-
Tethered?” In: SSRN abs/3195066 (2018). url: https : / /
papers.ssrn.com/abstract=3195066.

[124] Matthias Grundmann, Till Neudecker, and Hannes Hartenstein.
“Exploiting Transaction Accumulation and Double Spends for
Topology Inference in Bitcoin”. In: Proceedings of the Confer-
ence on Financial Cryptography and Data Security (FC) Workshops.
Springer, 2018, pp. 113–126. url: https://doi.org/10.1007/
978-3-662-58820-8_9.

[125] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick
McCorry, and Arthur Gervais. “SoK: Layer-Two Blockchain
Protocols”. In: Proceedings of the Conference on Financial Cryptog-
raphy and Data Security (FC). Springer, 2020, pp. 201–226. url:
https://doi.org/10.1007/978-3-030-51280-4_12.

[126] Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin
Livshits, and Arthur Gervais. “The Decentralized Financial
Crisis”. In: Proceedings of the Crypto Valley Conference on Block-
chain Technology (CVCBT). IEEE, 2020, pp. 1–15. url: https:
//doi.org/10.1109/CVCBT50464.2020.00005.

[127] Saikat Guha, Neil Daswani, and Ravi Jain. “An Experimental
Study of the Skype Peer-to-Peer VoIP System”. In: Proceedings
of the Workshop on Peer-To-Peer Systems (IPTPS). Springer, 2006.
url: http://www.iptps.org/papers-2006/Guha-skype06.
pdf.

[128] P. Krishna Gummadi, Stefan Saroiu, and Steven D. Gribble. “A
measurement study of Napster and Gnutella as examples of
peer-to-peer file sharing systems”. In: Comput. Commun. Rev.
32.1 (2002), p. 82. url: https://doi.org/10.1145/510726.
510756.

[129] Stuart Haber and W Scott Stornetta. “How to time-stamp a
digital document”. In: J. Cryptol. 3.2 (1991), pp. 99–111. url:
https://doi.org/10.1007/BF00196791.

[130] Adam Harmes. “The trouble with hedge funds”. In: Review of
Policy Research 19.1 (2002), pp. 156–176.

https://papers.ssrn.com/abstract_id=2425247
https://www.federalreserve.gov/monetarypolicy/policytools.htm
https://www.federalreserve.gov/monetarypolicy/policytools.htm
https://papers.ssrn.com/abstract=3195066
https://papers.ssrn.com/abstract=3195066
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1109/CVCBT50464.2020.00005
https://doi.org/10.1109/CVCBT50464.2020.00005
http://www.iptps.org/papers-2006/Guha-skype06.pdf
http://www.iptps.org/papers-2006/Guha-skype06.pdf
https://doi.org/10.1145/510726.510756
https://doi.org/10.1145/510726.510756
https://doi.org/10.1007/BF00196791

174 bibliography

[131] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Gold-
berg. “Eclipse Attacks on Bitcoin’s Peer-to-Peer Network”.
In: Proceedings of the USENIX Security Symposium. USENIX
Association, 2015, pp. 129–144. url: https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/
presentation/heilman.

[132] Mark D Humphries and Kevin Gurney. “Network small-world-
ness: a quantitative method for determining canonical network
equivalence”. In: PloS one 3.4 (2008).

[133] Icon “Alice” & “Carol” made by xnimrodx. url: www.flaticon.
com.

[134] Icon “Bob” made by Payungkead. url: www.flaticon.com.

[135] Deloitte Insights. Deloitte’s 2019 Global Blockchain Survey – Block-
chain gets down to business. 2019. url: https://www2.deloitte.
com/content/dam/Deloitte/se/Documents/risk/DI_2019-
global-blockchain-survey.pdf.

[136] Hatem Ismail, Daniel Germanus, and Neeraj Suri. “Detecting
and Mitigating P2P Eclipse Attacks”. In: Proceedings of the Con-
ference on Parallel and Distributed Systems (ICPADS). IEEE, 2015,
pp. 224–231. url: https://doi.org/10.1109/ICPADS.2015.
36.

[137] Mitsuru Iwamura, Yukinobu Kitamura, Tsutomu Matsumoto,
and Kenji Saito. “Can We Stabilize the Price of a Cryptocurren-
cy?: Understanding the Design of Bitcoin and Its Potential to
Compete with Central Bank Money”. In: SSRN abs/2519367

(2014). url: https://papers.ssrn.com/abstract=2519367.

[138] Marc Jansen, Farouk Hdhili, Ramy Gouiaa, and Ziyaad Qasem.
“Do Smart Contract Languages Need to Be Turing Complete?”
In: Proceedings of the Congress on Blockchain and Applications
(BLOCKCHAIN). Springer, 2019, pp. 19–26. url: https://doi.
org/10.1007/978-3-030-23813-1_3.

[139] Tim Jordan. Cyberpower: The culture and politics of cyberspace and
the Internet. Psychology Press, 1999.

[140] Wall Street Journal. A Flood of Questionable Cryptocurrency Offer-
ings. 2018. url: https://www.wsj.com/graphics/whitepaper
s/.

[141] K. Junemann, P. Andelfinger, and H. Hartenstein. “Towards
a Basic DHT Service: Analyzing Network Characteristics of a
Widely Deployed DHT”. In: Proceedings of Conference on Com-
puter Communications and Networks (ICCCN). IEEE, 2011, pp. 1–
7. url: https://doi.org/10.1109/ICCCN.2011.6005906.

[142] Henrik Karlstrøm. “Do libertarians dream of electric coins? The
material embeddedness of Bitcoin”. In: Distinktion: Scandinavian
Journal of Social Theory 15.1 (2014), pp. 23–36.

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
www.flaticon.com
www.flaticon.com
www.flaticon.com
https://www2.deloitte.com/content/dam/Deloitte/se/Documents/risk/DI_2019-global-blockchain-survey.pdf
https://www2.deloitte.com/content/dam/Deloitte/se/Documents/risk/DI_2019-global-blockchain-survey.pdf
https://www2.deloitte.com/content/dam/Deloitte/se/Documents/risk/DI_2019-global-blockchain-survey.pdf
https://doi.org/10.1109/ICPADS.2015.36
https://doi.org/10.1109/ICPADS.2015.36
https://papers.ssrn.com/abstract=2519367
https://doi.org/10.1007/978-3-030-23813-1_3
https://doi.org/10.1007/978-3-030-23813-1_3
https://www.wsj.com/graphics/whitepapers/
https://www.wsj.com/graphics/whitepapers/
https://doi.org/10.1109/ICCCN.2011.6005906

bibliography 175

[143] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Ma-
son, Andrew Miller, and Michael Bailey. “Measuring Ethereum
Network Peers”. In: Proceedings of the Internet Measurement Con-
ference (IMC). ACM, 2018, pp. 91–104. url: https://dl.acm.
org/citation.cfm?id=3278542.

[144] Seoyoung Kim, Atulya Sarin, and Daljeet Virdi. “Crypto-Assets
Unencrypted”. In: SSRN abs/3117859 (2018). url: https://
papers.ssrn.com/abstract_id=3117859.

[145] Ariah Klages-Mundt, Dominik Harz, Lewis Gudgeon, Jun-You
Liu, and Andreea Minca. “Stablecoins 2.0: Economic Founda-
tions and Risk-based Models”. In: Proceedings of the Conferece on
Advances in Financial Technologies (AFT). ACM, 2020, pp. 59–79.
url: https://doi.org/10.1145/3419614.3423261.

[146] Ariah Klages-Mundt and Andreea Minca. “(In) Stability for the
Blockchain: Deleveraging Spirals and Stablecoin Attacks”. In:
CoRR abs/1906.02152 (2019). arXiv: 1906.02152. url: https:
//arxiv.org/abs/1906.02152.

[147] Michael Kohnen, Mike Leske, and Erwin P. Rathgeb. “Con-
ducting and Optimizing Eclipse Attacks in the Kad Peer-to-
Peer Network”. In: Proceedings of the IFIP Networking Conference.
Springer, 2009, pp. 104–116. url: https://doi.org/10.1007/
978-3-642-01399-7_9.

[148] JP Koning. “Fedcoin: a central bank-issued cryptocurrency”.
In: R3 Report 15 (2016).

[149] Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta, Ken-
neth P. Birman, and Alan J. Demers. “Active and passive tech-
niques for group size estimation in large-scale and dynamic
distributed systems”. In: J. Syst. Softw. 80.10 (2007), pp. 1639–
1658. url: https://doi.org/10.1016/j.jss.2007.01.014.

[150] Max J Krause and Thabet Tolaymat. “Quantification of energy
and carbon costs for mining cryptocurrencies”. In: Nature Sus-
tainability 1.11 (2018), pp. 711–718.

[151] Paul Krugman. “A model of balance-of-payments crises”. In:
Journal of money, credit and banking 11.3 (1979), pp. 311–325.

[152] Rakesh Kumar and Keith W Ross. “Peer-assisted file distribu-
tion: The minimum distribution time”. In: Proceedings of the
Workshop on Hot Topics in Web Systems and Technologies (HotWeb).
IEEE, 2006, pp. 1–11. url: https://doi.org/10.1109/HOTWEB.
2006.355259.

[153] Parity Labs. Parity/OpenEthereum Client. 2020. url: https://
github.com/openethereum/openethereum.

[154] Protocol Labs. Filecoin: A decentralized network storage for human-
ity’s most important information. 2020. url: https://filecoin.
io/.

https://dl.acm.org/citation.cfm?id=3278542
https://dl.acm.org/citation.cfm?id=3278542
https://papers.ssrn.com/abstract_id=3117859
https://papers.ssrn.com/abstract_id=3117859
https://doi.org/10.1145/3419614.3423261
https://arxiv.org/abs/1906.02152
https://arxiv.org/abs/1906.02152
https://arxiv.org/abs/1906.02152
https://doi.org/10.1007/978-3-642-01399-7_9
https://doi.org/10.1007/978-3-642-01399-7_9
https://doi.org/10.1016/j.jss.2007.01.014
https://doi.org/10.1109/HOTWEB.2006.355259
https://doi.org/10.1109/HOTWEB.2006.355259
https://github.com/openethereum/openethereum
https://github.com/openethereum/openethereum
https://filecoin.io/
https://filecoin.io/

176 bibliography

[155] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The
Byzantine Generals Problem”. In: vol. 4. 3. ACM, 1982, pp. 382–
401. url: http://doi.acm.org/10.1145/357172.357176.

[156] Felipe Larraín and Andrés Velasco. “How should emerging
economies float their currencies?” In: Economics of Transition
10.2 (2002), pp. 365–392.

[157] Lawrence Lessig. Code: And other laws of cyberspace. Read-
HowYouWant. com, 2009.

[158] Andrew T Levin, Volker Wieland, and John Williams. “Robust-
ness of simple monetary policy rules under model uncertainty”.
In: Monetary policy rules. University of Chicago Press, 1999,
pp. 263–318.

[159] Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou,
Jia-Nan Liu, Yang Xiang, and Robert H Deng. “CrowdBC: A
blockchain-based decentralized framework for crowdsourcing”.
In: Trans. Parallel Distrib. Syst. 30.6 (2018), pp. 1251–1266. url:
https://doi.org/10.1109/TPDS.2018.2881735.

[160] Bin Liu, Xiao Liang Yu, Shiping Chen, Xiwei Xu, and Liming
Zhu. “Blockchain based data integrity service framework for
IoT data”. In: Proceedings of the Conference on Web Services (ICWS).
IEEE, 2017, pp. 468–475. url: https://doi.org/10.1109/
ICWS.2017.54.

[161] Thomas Locher, David Mysicka, Stefan Schmid, and Roger
Wattenhofer. “Poisoning the Kad Network”. In: Proceedings of
the Distributed Computing and Networking Conference (ICDCN).
ACM, 2010, pp. 195–206. url: https://doi.org/10.1007/978-
3-642-11322-2_22.

[162] Marta Lokhava, Giuliano Losa, David Mazières, Graydon
Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove, Rafa Mali-
nowsky, and Jed McCaleb. “Fast and secure global payments
with Stellar”. In: Proceedings of the Symposium on Operating
Systems Principles (SOSP). ACM, 2019, pp. 80–96. url: https:
//doi.org/10.1145/3341301.3359636.

[163] Eric Lombrozo, Johnson Lau, and Pieter Wuille. “Segregated
witness (consensus layer)”. In: Bitcoin Core Develop. Team, Tech.
Rep. BIP 141 (2015).

[164] Thomas Mager, Ernst Biersack, and Pietro Michiardi. “A mea-
surement study of the Wuala on-line storage service”. In: Pro-
ceedings of the Conference on Peer-to-Peer Computing (P2P). IEEE,
2012, pp. 237–248. url: https://doi.org/10.1109/P2P.2012.
6335804.

[165] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer-
netzwerke: Algorithmen und Methoden. Springer-Verlag, 2007.

http://doi.acm.org/10.1145/357172.357176
https://doi.org/10.1109/TPDS.2018.2881735
https://doi.org/10.1109/ICWS.2017.54
https://doi.org/10.1109/ICWS.2017.54
https://doi.org/10.1007/978-3-642-11322-2_22
https://doi.org/10.1007/978-3-642-11322-2_22
https://doi.org/10.1145/3341301.3359636
https://doi.org/10.1145/3341301.3359636
https://doi.org/10.1109/P2P.2012.6335804
https://doi.org/10.1109/P2P.2012.6335804

bibliography 177

[166] Dahlia Malkhi and Michael K. Reiter. “Byzantine Quorum
Systems”. In: Distributed Comput. 11.4 (1998), pp. 203–213. url:
https://doi.org/10.1007/s004460050050.

[167] Nathan Mantel and Bernard S Pasternack. “A class of oc-
cupancy problems”. In: The American Statistician 22.2 (1968),
pp. 23–24.

[168] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. “Low-
Resource Eclipse Attacks on Ethereum’s Peer-to-Peer Network”.
In: IACR 236 (2018). url: http://eprint.iacr.org/2018/236.

[169] Henri Massias, X Serret Avila, and J-J Quisquater. “Design of a
secure timestamping service with minimal trust requirement”.
In: Proceedings of the Symposium on Information Theory in the
Benelux. IEEE, 1999.

[170] Petar Maymounkov and David Mazières. “Kademlia: A Peer-to-
Peer Information System Based on the XOR Metric”. In: Proceed-
ings of the Workshop on Peer-to-Peer Systems (IPTPS). Springer,
2002, pp. 53–65. url: https://doi.org/10.1007/3-540-
45748-8_5.

[171] David Mazières. “Self-certifying file system”. PhD thesis. Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 2000.
url: http://hdl.handle.net/1721.1/86610.

[172] Bennet T McCallum. “Robustness properties of a rule for mon-
etary policy”. In: Carnegie-Rochester conference series on public
policy. Vol. 29. Elsevier. 1988, pp. 173–203.

[173] Bennett T McCallum. Credibility and monetary policy. 1984.

[174] Bennett T McCallum. “Issues in the design of monetary policy
rules”. In: Handbook of macroeconomics 1 (1999), pp. 1483–1530.

[175] Michael McLeay, Amar Radia, and Ryland Thomas. “Money
creation in the modern economy”. In: Bank of England Quarterly
Bulletin Q1 (Mar. 2014). url: https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2416234.

[176] Ghulam Memon, Reza Rejaie, Yang Guo, and Daniel Stutzbach.
“Large-scale monitoring of DHT traffic”. In: Proceedings of the
Workshop on Peer-to-Peer Systems (IPTPS). Springer, 2009, p. 11.
url: http://www.iptps.org/papers-2009/memon.pdf.

[177] Ralph C. Merkle. “A Digital Signature Based on a Conventional
Encryption Function”. In: Proceedings of the Cryptology Confer-
ence (CRYPTO). 1987, pp. 369–378. url: https://doi.org/10.
1007/3-540-48184-2_32.

[178] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta,
Dave Levin, Neil Spring, and Bobby Bhattacharjee. “Discover-
ing bitcoin’s public topology and influential nodes”. In: (2015).

https://doi.org/10.1007/s004460050050
http://eprint.iacr.org/2018/236
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
http://hdl.handle.net/1721.1/86610
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2416234
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2416234
http://www.iptps.org/papers-2009/memon.pdf
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32

178 bibliography

[179] Misc. Augmints Whitepaper. https://docs.google.com/docu
ment/d/1IQwGEsImpAv2Nlz5IgU_iCJkEqlM2VUHf5SFkcvb80A/
edit. visited on 2018-07-16. 2018.

[180] Misc. Basis Coin Whitepaper. https://www.basis.io/basis_
whitepaper_en.pdf. visited on 2018-07-13. 2017.

[181] Misc. Bitcoin congestion over time. 2020. url: https://charts.
woobull.com/bitcoin-congestion/.

[182] Misc. Bitshares Whitepaper. visited on 2018-07-16. 2015. url:
https://web.archive.org/web/20170822062343/http://
docs.bitshares.eu:80/_downloads/bitshares-financial-
platform.pdf.

[183] Misc. Carbon Whitepaper. https://www.carbon.money/whitep
aper.pdf. visited on 2018-07-16. 2018.

[184] Misc. Celo Whitepaper. Whitepaper classified Please request
access via community@celo.org. visited on 2018-11-30.

[185] Misc. Dai Whitepaper. https://makerdao.com/whitepaper.
visited on 2018-11-30. 2017.

[186] Misc. Fragments Whitepaper. https://fragments.network/
fragments-platform-whitepaper.pdf. visited on 2018-09-03.

[187] Misc. MinexCoin Whitepaper. https://minexcoin.com/whitep
aper. visited on 2018-09-07.

[188] Misc. NuBits Whitepaper. https://www.nubits.com/about/
white-paper. visited on 2018-07-13. 2014.

[189] Misc. StableUnit Whitepaper. https://stableunit.org/docume
nts/StableUnit-whitepaper.pdf. visited on 2018-09-03.

[190] Misc. Stably Whitepaper. https://s3.ca-central-1.amazon
aws.com/stably-public-documents/whitepapers/Stably+
Whitepaper+v6.pdf. visited on 2018-07-16. 2018.

[191] Misc. Stasis Whitepaper. https://www.docdroid.net/QdCqGO9/
stasis-white-paper-2.pdf. visited on 2018-07-16.

[192] Misc. Synthetix Whitepaper. https://havven.io/uploads/
havven_whitepaper.pdf. visited on 2018-07-16. 2018.

[193] Misc. Tether Whitepaper. https://tether.to/wp-content/
uploads/2016/06/TetherWhitePaper.pdf. visited on 2018-07-
16.

[194] Misc. Trusttoken Whitepaper. https://thetoken.io/TKN-White
Paper-en_US.pdf.

[195] Frederic S Mishkin. “International experiences with different
monetary policy regimes”. In: Journal of monetary economics 43.3
(1999), pp. 579–605.

[196] Frederic S Miskin. Monetary Policy Strategy. MIT Press, 2006.

https://docs.google.com/document/d/1IQwGEsImpAv2Nlz5IgU_iCJkEqlM2VUHf5SFkcvb80A/edit
https://docs.google.com/document/d/1IQwGEsImpAv2Nlz5IgU_iCJkEqlM2VUHf5SFkcvb80A/edit
https://docs.google.com/document/d/1IQwGEsImpAv2Nlz5IgU_iCJkEqlM2VUHf5SFkcvb80A/edit
https://www.basis.io/basis_whitepaper_en.pdf
https://www.basis.io/basis_whitepaper_en.pdf
https://charts.woobull.com/bitcoin-congestion/
https://charts.woobull.com/bitcoin-congestion/
https://web.archive.org/web/20170822062343/http://docs.bitshares.eu:80/_downloads/bitshares-financial-platform.pdf
https://web.archive.org/web/20170822062343/http://docs.bitshares.eu:80/_downloads/bitshares-financial-platform.pdf
https://web.archive.org/web/20170822062343/http://docs.bitshares.eu:80/_downloads/bitshares-financial-platform.pdf
https://www.carbon.money/whitepaper.pdf
https://www.carbon.money/whitepaper.pdf
https://makerdao.com/whitepaper
https://fragments.network/fragments-platform-whitepaper.pdf
https://fragments.network/fragments-platform-whitepaper.pdf
https://minexcoin.com/whitepaper
https://minexcoin.com/whitepaper
https://www.nubits.com/about/white-paper
https://www.nubits.com/about/white-paper
https://stableunit.org/documents/StableUnit-whitepaper.pdf
https://stableunit.org/documents/StableUnit-whitepaper.pdf
https://s3.ca-central-1.amazonaws.com/stably-public-documents/whitepapers/Stably+Whitepaper+v6.pdf
https://s3.ca-central-1.amazonaws.com/stably-public-documents/whitepapers/Stably+Whitepaper+v6.pdf
https://s3.ca-central-1.amazonaws.com/stably-public-documents/whitepapers/Stably+Whitepaper+v6.pdf
https://www.docdroid.net/QdCqGO9/stasis-white-paper-2.pdf
https://www.docdroid.net/QdCqGO9/stasis-white-paper-2.pdf
https://havven.io/uploads/havven_whitepaper.pdf
https://havven.io/uploads/havven_whitepaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://thetoken.io/TKN-WhitePaper-en_US.pdf
https://thetoken.io/TKN-WhitePaper-en_US.pdf

bibliography 179

[197] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter
Druschel, and Dan S. Wallach. “AP3: cooperative, decentral-
ized anonymous communication”. In: Proceedings of the ACM
SIGOPS European Workshop. ACM, 2004, p. 30. url: https:
//doi.org/10.1145/1133572.1133578.

[198] Makiko Mita, Kensuke Ito, Shohei Ohsawa, and Hideyuki
Tanaka. “What is Stablecoin?: A Survey on Price Stabilization
Mechanisms for Decentralized Payment Systems”. In: CoRR
abs/1906.06037 (2019). arXiv: 1906.06037. url: http://arxiv.
org/abs/1906.06037.

[199] Amani Moin, Kevin Sekniqi, and Emin Gün Sirer. “SoK: A Clas-
sification Framework for Stablecoin Designs”. In: Proceedings of
the Conference on Financial Cryptography and Data Security (FC).
Springer, 2020, pp. 174–197. url: https://doi.org/10.1007/
978-3-030-51280-4_11.

[200] Janet Morahan-Martin and Phyllis Schumacher. “Incidence and
correlates of pathological Internet use among college students”.
In: Computers in human behavior 16.1 (2000), pp. 13–29.

[201] Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya,
and Christoph Meinel. “A survey on essential components of a
self-sovereign identity”. In: Comput. Sci. Rev. 30 (2018), pp. 80–
86. url: https://doi.org/10.1016/j.cosrev.2018.10.002.

[202] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008. url: https://bitcoin.org/bitcoin.pdf.

[203] Satoshi Nakamoto. Mailinglist entry: Bitcoin P2P e-cash paper.
Nov. 2009. url: https://www.mail-archive.com/cryptograp
hy@metzdowd.com/msg09959.html.

[204] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra
Fedorova, and Ivan Beschastnikh. “Erlay: Efficient Transaction
Relay for Bitcoin”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019. ACM, 2019, pp. 817–831. url:
https://doi.org/10.1145/3319535.3354237.

[205] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi.
“Stubborn Mining: Generalizing Selfish Mining and Combining
with an Eclipse Attack”. In: Proceedings of the European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 2016, pp. 305–320.
url: https://doi.org/10.1109/EuroSP.2016.32.

[206] Raiden Network. What is the raiden network. 2018. url: https:
//raiden.network/.

https://doi.org/10.1145/1133572.1133578
https://doi.org/10.1145/1133572.1133578
https://arxiv.org/abs/1906.06037
http://arxiv.org/abs/1906.06037
http://arxiv.org/abs/1906.06037
https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.1016/j.cosrev.2018.10.002
https://bitcoin.org/bitcoin.pdf
https://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1109/EuroSP.2016.32
https://raiden.network/
https://raiden.network/

180 bibliography

[207] T. Neudecker, P. Andelfinger, and H. Hartenstein. “Timing
Analysis for Inferring the Topology of the Bitcoin Peer-to-Peer
Network”. In: Proceedings of the Conferences on Ubiquitous Intel-
ligence & Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Cloud and Big Data Comput-
ing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld). IEEE, 2016, pp. 358–367. url:
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0070.

[208] Till Neudecker and Hannes Hartenstein. “Network Layer As-
pects of Permissionless Blockchains”. In: IEEE Commun. Surv.
Tutorials 21.1 (2019), pp. 838–857. url: https://doi.org/10.
1109/COMST.2018.2852480.

[209] N Nizamuddin, K Salah, M Ajmal Azad, Junaid Arshad, and
MH Rehman. “Decentralized document version control us-
ing ethereum blockchain and IPFS”. In: Computers & Electrical
Engineering 76 (2019), pp. 183–197.

[210] Russell O’Connor. “Simplicity: A New Language for Block-
chains”. In: Proceedings of the Workshop on Programming Lan-
guages and Analysis for Security (PLAS@CCS). ACM, 2017,
pp. 107–120. url: https : / / doi . org / 10 . 1145 / 3139337 .
3139340.

[211] Maurice Obstfeld. “Models of currency crises with self-fulfilling
features”. In: European economic review 40.3-5 (1996), pp. 1037–
1047.

[212] Maurice Obstfeld and Kenneth Rogoff. “The mirage of fixed
exchange rates”. In: Journal of Economic perspectives 9.4 (1995),
pp. 73–96.

[213] Eunseuk Oh and Jianer Chen. “Parallel Routing in Hypercube
Networks with Faulty Nodes”. In: Proceedings of the Conference
on Parallel and Distributed Systems (ICPADS). IEEE, 2001, pp. 338–
345. url: https://doi.org/10.1109/ICPADS.2001.934838.

[214] Daniel Pérez and Benjamin Livshits. “Smart Contract Vulnera-
bilities: Does Anyone Care?” In: CoRR abs/1902.06710 (2019).
arXiv: 1902.06710. url: http://arxiv.org/abs/1902.06710.

[215] Jack Peterson and Joseph Krug. “Augur: a decentralized,
open-source platform for prediction markets”. In: CoRR
abs/1501.01042 (2015). url: http://arxiv.org/abs/1501.
01042.

[216] Joseph Poon and Thaddeus Dryja. “The bitcoin lightning net-
work: Scalable off-chain instant payments”. In: (2016). url:
https://www.bitcoinlightning.com/wp-content/uploads/
2018/03/lightning-network-paper.pdf.

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/COMST.2018.2852480
https://doi.org/10.1109/COMST.2018.2852480
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1109/ICPADS.2001.934838
https://arxiv.org/abs/1902.06710
http://arxiv.org/abs/1902.06710
http://arxiv.org/abs/1501.01042
http://arxiv.org/abs/1501.01042
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf

bibliography 181

[217] Johan A. Pouwelse, Pawel Garbacki, Dick H. J. Epema, and
Henk J. Sips. “The Bittorrent P2P File-Sharing System: Mea-
surements and Analysis”. In: Proceedings of the Workshop on
Peer-to-Peer Systems (IPTPS). Springer, 2005, pp. 205–216. url:
https://doi.org/10.1007/11558989_19.

[218] Diem Project. 2020. url: https://wp.diem.com/en-US/wp-
content/uploads/sites/23/2020/04/Libra_WhitePaperV2_
April2020.pdf.

[219] ProtocolLabs. IPFS Public Gateway Checker & Curated Gateway
List. 2020. url: https://ipfs.github.io/public-gateway-
checker/.

[220] Bernd Prünster, Alexander Marsalek, and Thomas Zefferer.
“Total Eclipse of the Heart - Disrupting the InterPlanetary File
System”. In: CoRR abs/2011.00874 (2020). arXiv: 2011.00874.
url: https://arxiv.org/abs/2011.00874.

[221] Bernd Prünster, Dominik Ziegler, Christian Kollmann, and
Bojan Suzic. “A Holistic Approach Towards Peer-to-Peer Se-
curity and Why Proof of Work Won’t Do”. In: Proceedings of
the Conference on Security and Privacy in Communication Net-
works (SecureComm). Springer, 2018, pp. 122–138. url: https:
//doi.org/10.1007/978-3-030-01704-0_7.

[222] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais.
“Attacking the DeFi Ecosystem with Flash Loans for Fun and
Profit”. In: CoRR abs/2003.03810 (2020). arXiv: 2003.03810.
url: https://arxiv.org/abs/2003.03810.

[223] Reza Rahimian, Shayan Eskandari, and Jeremy Clark. “Resolv-
ing the Multiple Withdrawal Attack on ERC20 Tokens”. In:
Proceedings of the European Symposium on Security and Privacy
(EuroS&P) Workshops. IEEE, 2019, pp. 320–329.

[224] Anomali Threat Research. The InterPlanetary Storm: New Mal-
ware in Wild Using InterPlanetary File Systems (IPFS) p2p network.
2020. url: https://www.anomali.com/blog/the-interplane
tary-storm-new-malware-in-wild-using-interplanetary-
file-systems-ipfs-p2p-network.

[225] Antoine Riard and Gleb Naumenko. “Time-Dilation Attacks
on the Lightning Network”. In: CoRR abs/2006.01418 (2020).
eprint: 2006 . 01418. url: https : / / arxiv . org / abs / 2006 .
01418.

[226] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas
Davi. “Sereum: Protecting Existing Smart Contracts Against Re-
Entrancy Attacks”. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS). The Internet Society, 2019.
url: https://www.ndss-symposium.org/ndss-paper/ser

https://doi.org/10.1007/11558989_19
https://wp.diem.com/en-US/wp-content/uploads/sites/23/2020/04/Libra_WhitePaperV2_April2020.pdf
https://wp.diem.com/en-US/wp-content/uploads/sites/23/2020/04/Libra_WhitePaperV2_April2020.pdf
https://wp.diem.com/en-US/wp-content/uploads/sites/23/2020/04/Libra_WhitePaperV2_April2020.pdf
https://ipfs.github.io/public-gateway-checker/
https://ipfs.github.io/public-gateway-checker/
https://arxiv.org/abs/2011.00874
https://arxiv.org/abs/2011.00874
https://doi.org/10.1007/978-3-030-01704-0_7
https://doi.org/10.1007/978-3-030-01704-0_7
https://arxiv.org/abs/2003.03810
https://arxiv.org/abs/2003.03810
https://www.anomali.com/blog/the-interplanetary-storm-new-malware-in-wild-using-interplanetary-file-systems-ipfs-p2p-network
https://www.anomali.com/blog/the-interplanetary-storm-new-malware-in-wild-using-interplanetary-file-systems-ipfs-p2p-network
https://www.anomali.com/blog/the-interplanetary-storm-new-malware-in-wild-using-interplanetary-file-systems-ipfs-p2p-network
2006.01418
https://arxiv.org/abs/2006.01418
https://arxiv.org/abs/2006.01418
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/

182 bibliography

eum-protecting-existing-smart-contracts-against-re-
entrancy-attacks/.

[227] Rodrigo Rodrigues and Barbara Liskov. “High Availability
in DHTs: Erasure Coding vs. Replication”. In: Proceedings of
the Workshop on Peer-to-Peer Systems (IPTPS). Springer, 2005,
pp. 226–239. url: https://doi.org/10.1007/11558989_21.

[228] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. “Dis-
charged Payment Channels: Quantifying the Lightning Net-
work’s Resilience to Topology-Based Attacks”. In: Proceedings
of the European Symposium on Security and Privacy (EuroS&P)
Workshops. IEEE, 2019, pp. 347–356. url: https://doi.org/10.
1109/EuroSPW.2019.00045.

[229] Stefanie Roos, Benjamin Schiller, Stefan Hacker, and Thorsten
Strufe. “Measuring Freenet in the Wild: Censorship-Resilience
under Observation”. In: Proceedings of the Symposium on Privacy
Enhancing Technologies (PETS). 2014, pp. 263–282. url: https:
//doi.org/10.1007/978-3-319-08506-7_14.

[230] Meni Rosenfeld. “Analysis of Hashrate-Based Double Spend-
ing”. In: CoRR abs/1402.2009 (2014). url: http://arxiv.org/
abs/1402.2009.

[231] Kenji Saito and Mitsuru Iwamura. “How to Make a Digital
Currency on a Blockchain Stable”. In: CoRR abs/1801.06771

(2018). url: http://arxiv.org/abs/1801.06771.

[232] Hani Salah, Stefanie Roos, and Thorsten Strufe. “Characterizing
graph-theoretic properties of a large-scale DHT: Measurements
vs. simulations”. In: Proceedings of the Symposium on Computers
and Communications (ISCC). IEEE, 2014, pp. 1–7. url: https:
//doi.org/10.1109/ISCC.2014.6912540.

[233] Hani Salah and Thorsten Strufe. “Capturing Connectivity
Graphs of a Large-Scale P2P Overlay Network”. In: Pro-
ceedings of the Conference on Distributed Computing Systems
(ICDCS) Workshops. IEEE, 2013, pp. 172–177. url: https :
//doi.org/10.1109/ICDCSW.2013.35.

[234] João Santos, Nuno Santos, and David Dias. “DClaims: A Cen-
sorship Resistant Web Annotations System using IPFS and
Ethereum”. In: CoRR abs/1912.03388 (2019). arXiv: 1912.03388.
url: http://arxiv.org/abs/1912.03388.

[235] Flora Rheta Schreiber. Sybil. Warner Books, Inc., 1975.

[236] David Schwartz, Noah Youngs, Arthur Britto, et al. “The ripple
protocol consensus algorithm”. In: Ripple Labs Inc White Paper
5.8 (2014).

https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://doi.org/10.1007/11558989_21
https://doi.org/10.1109/EuroSPW.2019.00045
https://doi.org/10.1109/EuroSPW.2019.00045
https://doi.org/10.1007/978-3-319-08506-7_14
https://doi.org/10.1007/978-3-319-08506-7_14
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1801.06771
https://doi.org/10.1109/ISCC.2014.6912540
https://doi.org/10.1109/ISCC.2014.6912540
https://doi.org/10.1109/ICDCSW.2013.35
https://doi.org/10.1109/ICDCSW.2013.35
https://arxiv.org/abs/1912.03388
http://arxiv.org/abs/1912.03388

bibliography 183

[237] Jiajie Shen, Yi Li, Yangfan Zhou, and Xin Wang. “Understand-
ing I/O performance of IPFS storage: a client’s perspective”. In:
Proceedings of the Symposium on Quality of Service (IWQoS). ACM,
2019, 17:1–17:10. url: https://doi.org/10.1145/3326285.
3329052.

[238] Atul Singh, Miguel Castro, Peter Druschel, and Antony I. T.
Rowstron. “Defending against eclipse attacks on overlay net-
works”. In: Proceedings of the ACM SIGOPS European Workshop.
ACM, 2004, p. 21. url: https://doi.org/10.1145/1133572.
1133613.

[239] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wal-
lach. “Eclipse Attacks on Overlay Networks: Threats and De-
fenses”. In: Proceedings of the Conference on Computer Commu-
nications (INFOCOM). IEEE, 2006. url: https://doi.org/10.
1109/INFOCOM.2006.231.

[240] Emil Sit and Robert Tappan Morris. “Security Considerations
for Peer-to-Peer Distributed Hash Tables”. In: Proceedings of
the Workshop on Peer-to-Peer Systems (IPTPS). Springer, 2002,
pp. 261–269. url: https://doi.org/10.1007/3-540-45748-
8_25.

[241] Jakub Sliwinski and Roger Wattenhofer. “ABC: Asynchronous
Blockchain without Consensus”. In: CoRR abs/1909.10926

(2019). arXiv: 1909.10926. url: http://arxiv.org/abs/1909.
10926.

[242] Wolfgang Stadje. “The collector’s problem with group draw-
ings”. In: Advances in Applied Probability (1990), pp. 866–882.

[243] Moritz Steiner, Ernst W. Biersack, and Taoufik En-Najjary. “Ac-
tively Monitoring Peers in KAD”. In: Proceedings of the Work-
shop on Peer-to-Peer Systems (IPTPS). Springer, 2007. url: http:
//www.iptps.org/papers-2007/SteinerBiersackEnnajjary.
pdf.

[244] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. “A
global view of kad”. In: Proceedings of the Internet Measurement
Conference (IMC). ACM, 2007, pp. 117–122. url: https://doi.
org/10.1145/1298306.1298323.

[245] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. “Ex-
ploiting KAD: possible uses and misuses”. In: Comput. Commun.
Rev. 37.5 (2007), pp. 65–70. url: https://doi.org/10.1145/
1290168.1290176.

[246] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack.
“Long term study of peer behavior in the KAD DHT”. In: Trans-
actions on Networking 17.5 (2009), pp. 1371–1384. url: http:
//doi.acm.org/10.1145/1665838.1665840.

https://doi.org/10.1145/3326285.3329052
https://doi.org/10.1145/3326285.3329052
https://doi.org/10.1145/1133572.1133613
https://doi.org/10.1145/1133572.1133613
https://doi.org/10.1109/INFOCOM.2006.231
https://doi.org/10.1109/INFOCOM.2006.231
https://doi.org/10.1007/3-540-45748-8_25
https://doi.org/10.1007/3-540-45748-8_25
https://arxiv.org/abs/1909.10926
http://arxiv.org/abs/1909.10926
http://arxiv.org/abs/1909.10926
http://www.iptps.org/papers-2007/SteinerBiersackEnnajjary.pdf
http://www.iptps.org/papers-2007/SteinerBiersackEnnajjary.pdf
http://www.iptps.org/papers-2007/SteinerBiersackEnnajjary.pdf
https://doi.org/10.1145/1298306.1298323
https://doi.org/10.1145/1298306.1298323
https://doi.org/10.1145/1290168.1290176
https://doi.org/10.1145/1290168.1290176
http://doi.acm.org/10.1145/1665838.1665840
http://doi.acm.org/10.1145/1665838.1665840

184 bibliography

[247] Ralf Steinmetz and Klaus Wehrle. Peer-to-peer systems and appli-
cations. Springer, 2005.

[248] Daniel Stutzbach and Reza Rejaie. “Capturing Accurate Snap-
shots of the Gnutella Network”. In: Proceedings of the Confer-
ence on Computer Communications (INFOCOM). IEEE, 2006. url:
https://doi.org/10.1109/INFOCOM.2006.347.

[249] Daniel Stutzbach and Reza Rejaie. “Evaluating the Accuracy of
Captured Snapshots by Peer-to-Peer Crawlers”. In: Proceedings
of the Workshop on Passive and Active Network Measurement (PAM).
Springer, 2005, pp. 353–357. url: https://doi.org/10.1007/
978-3-540-31966-5_33.

[250] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. “Char-
acterizing unstructured overlay topologies in modern P2P
file-sharing systems”. In: IEEE/ACM Trans. Netw. 16.2 (2008),
pp. 267–280. url: http://doi.acm.org/10.1145/1373990.
1373992.

[251] Daniel Stutzbach, Shanyu Zhao, and Reza Rejaie. “Characteriz-
ing files in the modern Gnutella network”. In: vol. 13. 1. 2007,
pp. 35–50. url: https://doi.org/10.1007/s00530-007-0079-
8.

[252] Lana Swartz. “What was Bitcoin, what will it be? The techno-
economic imaginaries of a new money technology”. In: Cultural
Studies 32.4 (2018), pp. 623–650.

[253] Antonio Tenorio-Fornés, Viktor Jacynycz, David Llop-Vila, An-
tonio A. Sánchez-Ruiz, and Samer Hassan. “Towards a De-
centralized Process for Scientific Publication and Peer Review
using Blockchain and IPFS”. In: Proceedings of the Hawaii Inter-
national Conference on System Sciences (HICSS). ScholarSpace,
2019, pp. 1–10. url: http://hdl.handle.net/10125/59901.

[254] “Tor: The Second-Generation Onion Router”. In: Proceedings
of the USENIX Security Symposium. USENIX Association, 2004,
pp. 303–320. url: http://www.usenix.org/publications/
library/proceedings/sec04/tech/dingledine.html.

[255] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk
Kang. “A Stealthier Partitioning Attack against Bitcoin Peer-
to-Peer Network”. In: Proceedings of Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 894–909. url: https://doi.org/
10.1109/SP40000.2020.00027.

[256] Florian Tschorsch. “Onions in the queue: an integral network-
ing perspective on anonymous communication systems”. PhD
thesis. Humboldt University of Berlin, Unter den Linden, Ger-
many, 2016. url: http://edoc.hu-berlin.de/dissertatione
n/tschorsch-florian-2016-06-06/PDF/tschorsch.pdf.

https://doi.org/10.1109/INFOCOM.2006.347
https://doi.org/10.1007/978-3-540-31966-5_33
https://doi.org/10.1007/978-3-540-31966-5_33
http://doi.acm.org/10.1145/1373990.1373992
http://doi.acm.org/10.1145/1373990.1373992
https://doi.org/10.1007/s00530-007-0079-8
https://doi.org/10.1007/s00530-007-0079-8
http://hdl.handle.net/10125/59901
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1109/SP40000.2020.00027
https://doi.org/10.1109/SP40000.2020.00027
http://edoc.hu-berlin.de/dissertationen/tschorsch-florian-2016-06-06/PDF/tschorsch.pdf
http://edoc.hu-berlin.de/dissertationen/tschorsch-florian-2016-06-06/PDF/tschorsch.pdf

bibliography 185

[257] Florian Tschorsch and Björn Scheuermann. “Bitcoin and Be-
yond: A Technical Survey on Decentralized Digital Currencies”.
In: IEEE Commun. Surv. Tutorials 18.3 (2016), pp. 2084–2123. url:
https://doi.org/10.1109/COMST.2016.2535718.

[258] Alan Mathison Turing. “On computable numbers, with an
application to the Entscheidungsproblem”. In: Proceedings of the
London mathematical society 2.1 (1937), pp. 230–265.

[259] European Union. European Union Blockchain Strategy. 2020. url:
https://ec.europa.eu/digital-single-market/en/blockc
hain-technologies.

[260] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. “A
survey of DHT security techniques”. In: ACM Comput. Surv.
43.2 (2011), 8:1–8:49. url: https://doi.org/10.1145/1883612.
1883615.

[261] Shaileshh Bojja Venkatakrishnan, Giulia C. Fanti, and Pramod
Viswanath. “Dandelion: Redesigning the Bitcoin Network for
Anonymity”. In: Proc. ACM Meas. Anal. Comput. Syst. 1.1 (2017),
22:1–22:34. url: https://doi.org/10.1145/3084459.

[262] Dan S. Wallach. “A Survey of Peer-to-Peer Security Issues”. In:
Proceedings of the Symposium on Software Security – Theories and
Systems (ISSS). Springer, 2002, pp. 42–57. url: https://doi.
org/10.1007/3-540-36532-X_4.

[263] Liang Wang and Jussi Kangasharju. “Measuring large-scale
distributed systems: case of BitTorrent Mainline DHT”. In: 13th
IEEE International Conference on Peer-to-Peer Computing, IEEE
P2P 2013, Trento, Italy, September 9-11, 2013, Proceedings. 2013,
pp. 1–10. url: https://doi.org/10.1109/P2P.2013.6688697.

[264] Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis
Foo Kune, Nicholas Hopper, and Yongdae Kim. “Attacking the
kad network - real world evaluation and high fidelity simula-
tion using DVN”. In: Security and Communication Networks 6.12

(2013), pp. 1556–1575. url: https://doi.org/10.1002/sec.
172.

[265] Roger Wattenhofer. The Science of the Blockchain. 1st. CreateSpace
Independent Publishing Platform, 2016.

[266] Duncan J Watts and Steven H Strogatz. “Collective dynamics of
small-worldnetworks”. In: Nature 393.6684 (1998), pp. 440–442.

[267] Joseph Weizenbaum. Computer power and human reason: From
judgment to calculation. WH Freeman & Co, 1976.

[268] Sam M. Werner, Daniel Pérez, Lewis Gudgeon, Ariah Klages-
Mundt, Dominik Harz, and William J. Knottenbelt. “SoK: De-
centralized Finance (DeFi)”. In: CoRR abs/2101.08778 (2021).
arXiv: 2101 . 08778. url: https : / / arxiv . org / abs / 2101 .
08778.

https://doi.org/10.1109/COMST.2016.2535718
https://ec.europa.eu/digital-single-market/en/blockchain-technologies
https://ec.europa.eu/digital-single-market/en/blockchain-technologies
https://doi.org/10.1145/1883612.1883615
https://doi.org/10.1145/1883612.1883615
https://doi.org/10.1145/3084459
https://doi.org/10.1007/3-540-36532-X_4
https://doi.org/10.1007/3-540-36532-X_4
https://doi.org/10.1109/P2P.2013.6688697
https://doi.org/10.1002/sec.172
https://doi.org/10.1002/sec.172
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778

186 bibliography

[269] John Williamson and Theodore H Moran. Exchange rate regimes
for emerging markets: reviving the intermediate option. Peterson
Institute for International Economics, 2000.

[270] Joon Ian Wong. CryptoKitties is causing ethereum network conges-
tion. 2017. url: https://qz.com/1145833/cryptokitties-is-
causing-ethereum-network-congestion/.

[271] Gavin Wood et al. “Ethereum: A secure decentralised gen-
eralised transaction ledger”. In: Ethereum project yellow pa-
per (2014), pp. 1–32. url: https://ethereum.github.io/
yellowpaper/paper.pdf.

[272] Karl Wüst and Arthur Gervais. “Do you Need a Blockchain?”
In: Proceedings of Crypto Valley Conference on Blockchain Technol-
ogy (CVCBT). IEEE, 2018, pp. 45–54. url: https://doi.org/
10.1109/CVCBT.2018.00011.

[273] Guangquan Xu, Bingjiang Guo, Chunhua Su, Xi Zheng, Kaitai
Liang, Duncan S. Wong, and Hao Wang. “Am I eclipsed? A
smart detector of eclipse attacks for Ethereum”. In: Comput.
Secur. 88 (2020). url: https://doi.org/10.1016/j.cose.
2019.101604.

[274] Beverly Yang and Hector Garcia-Molina. “Designing a Super-
Peer Network”. In: Proceedings of the Conference on Data Engi-
neering (ICDE). IEEE, 2003, pp. 49–60. url: https://doi.org/
10.1109/ICDE.2003.1260781.

[275] Renlord Yang, Toby Murray, Paul Rimba, and Udaya Param-
palli. “Empirically Analyzing Ethereum’s Gas Mechanism”.
In: Proceedings of the European Symposium on Security and Pri-
vacy (EuroS&P) Workshops. IEEE, 2019, pp. 310–319. url: https:
//doi.org/10.1109/EuroSPW.2019.00041.

[276] David Yermack. “Is Bitcoin a real currency? An economic ap-
praisal”. In: Handbook of digital currency. Elsevier, 2015, pp. 31–
44.

[277] Jie Yu and Zhoujun Li. “Active Measurement of Routing Table
in Kad”. In: Proceedings of the Consumer Communications and
Networking Conference (CCNC). IEEE, 2009, pp. 1–5. url: https:
//doi.org/10.1109/CCNC.2009.4784962.

[278] Bassam Zantout, Ramzi Haraty, et al. “I2P data communica-
tion system”. In: Proceedings of the International Conference on
Networks (ICN). XPS, 2011, pp. 401–409.

[279] Dirk A Zetzsche, Ross P Buckley, Douglas W Arner, and Linus
Föhr. “The ICO Gold Rush: It’s a scam, it’s a bubble, it’s a
super challenge for regulators”. In: University of Luxembourg
Law Working Paper 11 (2017), pp. 17–83.

https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1016/j.cose.2019.101604
https://doi.org/10.1016/j.cose.2019.101604
https://doi.org/10.1109/ICDE.2003.1260781
https://doi.org/10.1109/ICDE.2003.1260781
https://doi.org/10.1109/EuroSPW.2019.00041
https://doi.org/10.1109/EuroSPW.2019.00041
https://doi.org/10.1109/CCNC.2009.4784962
https://doi.org/10.1109/CCNC.2009.4784962

bibliography 187

[280] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine
Shi. “Town Crier: An Authenticated Data Feed for Smart Con-
tracts”. In: Proceedings of the Conference on Computer and Commu-
nications Security (CCS). ACM, 2016, pp. 270–282. url: https:
//doi.org/10.1145/2976749.2978326.

[281] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V. Le, and
Arthur Gervais. “High-Frequency Trading on Decentralized
On-Chain Exchanges”. In: CoRR abs/2009.14021 (2020). arXiv:
2009.14021. url: https://arxiv.org/abs/2009.14021.

[282] Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao, Min Yang,
and Yuan Zhang. “An Ever-evolving Game: Evaluation of
Real-world Attacks and Defenses in Ethereum Ecosystem”.
In: Proceedings of the USENIX Security Symposium. USENIX As-
sociation, 2020, pp. 2793–2810. url: https://www.usenix.
org / conference / usenixsecurity20 / presentation / zhou -
shunfan.

https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/2976749.2978326
https://arxiv.org/abs/2009.14021
https://arxiv.org/abs/2009.14021
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan

S E L B S TÄ N D I G K E I T S E R K L Ä R U N G

Ich erkläre, dass ich die Dissertation selbständig und nur unter Ver-
wendung der von mir gemäß § 7 Abs. 3 der Promotionsordnung
der Mathematisch-Naturwissenschaftlichen Fakultät, veröffentlicht im
Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr.
42/2018 am 11.07.2018 angegebenen Hilfsmittel angefertigt habe.

Sebastian Henningsen, 15. März
2021

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation & Problem Statement
	1.2 Outline & Contributions

	2 Preliminaries
	2.1 A Motivation to Peer-to-Peer-Networking
	2.2 Kademlia
	2.3 Introducing Bitcoin & Ethereum
	2.4 The Bitcoin Overlay
	2.5 Eclipse Attacks
	2.6 Blockchain Application Stack Model

	3 Eclipse Attack on Ethereum
	3.1 Overview
	3.2 Related Work
	3.3 Background: the Ethereum Network Stack
	3.4 Node Discovery and Selection
	3.5 The False Friends Attack
	3.6 Analysis of the False Friends Attack
	3.7 Evaluation
	3.8 Countermeasures
	3.9 Eclipse Attacks in the Wild
	3.10 Chapter Summary

	4 Mapping the Interplanetary Filesystem
	4.1 Overview
	4.2 Related Work
	4.3 The Interplanetary Filesystem
	4.4 Understanding the Overlay Structure
	4.5 Measuring the Interplay between Graphs
	4.6 Crawling the Kademlia DHT
	4.7 Crawling Results
	4.8 Interim Conclusion
	4.9 Monitoring Data Requests
	4.10 Example Monitoring Study
	4.11 Privacy Risks
	4.12 Chapter Summary

	5 Monetary Stabilization in Cryptocurrencies
	5.1 Overview
	5.2 Related work
	5.3 Analysis Methodology
	5.4 Stabilization techniques
	5.5 Stabilization techniques: Discussion
	5.6 Exchange rate regimes
	5.7 Monetary regimes
	5.8 Decentralization and Trust
	5.9 Chapter Summary

	6 Conclusion
	7 Appendix
	7.1 IPFS
	7.2 Value stabilization in cryptocurrencies

	Bibliography
	Selbständigkeitserklärung

