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Abstract

Information-Centric Networking (ICN) has recently been considered as a promising paradigm for
the next-generation Internet, shifting from the sender-driven end-to-end communication paradigm
to a receiver-driven content retrieval paradigm. In ICN, content -rather than hosts, like in IP-based
design- plays the central role in the communications. This change from host-centric to content-
centric has several significant advantages such as network load reduction, low dissemination latency,
scalability, etc. One of the main design requirements for the ICN architectures -since the beginning
of their design- has been strong security.

Named Data Networking (NDN) (also referred to as Content-Centric Networking (CCN) or
Data-Centric Networking (DCN)) is one of these architectures that are the focus of an ongoing
research effort that aims to become the way Internet will operate in the future. Existing research
into security of NDN is at an early stage and many designs are still incomplete. To make NDN
a fully working system at Internet scale, there are still many missing pieces to be filled in. In
this dissertation, we study the four most important security issues in NDN in order to defense
against new forms of -potentially unknown- attacks, ensure privacy, achieve high availability, and
block malicious network traffics belonging to attackers or at least limit their effectiveness, i.e.,
anomaly detection, DoS/DDoS attacks, congestion control, and cache pollution attacks. In order
to protect NDN infrastructure, we need flexible, adaptable and robust defense systems which can
make intelligent -and real-time- decisions to enable network entities to behave in an adaptive
and intelligent manner. In this context, the characteristics of Computational Intelligence (CI)
methods such as adaption, fault tolerance, high computational speed and error resilient against
noisy information, make them suitable to be applied to the problem of NDN security, which can
highlight promising new research directions. Hence, we suggest new hybrid CI-based methods to
make NDN a more reliable and viable architecture for the future Internet.

3



Biography

Amin Karami was born in Tehran, Iran. He received a bachelor’s degree in Computer Engineering

majoring Hardware from Islamic Azad University of Qazvin, Iran in 2007 and a master’s degree
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Chapter 1

Introduction

1.1 Background of Named Data Networking

Today, several research projects, both in Europe (PSIRP [3], 4WARD [4], PURSUIT 1, SAIL 2,

COMET 3 and CONET [5]) and in the US (CCN [6], DONA [7] and NDN [8]) investigate new

network architectures based on Information-Centric Networking (ICN) paradigm. These approaches

differ with respect to their specific architectural properties, assumptions and objectives. In general,

They have been proposed as a solution for a viable and vital replacement for the current IP-based

Internet due to the fundamental limitations of the Internet in supporting today’s content-oriented

services [2, 9, 10, 11]. This change from host-centric to content-centric has several significant

advantages such as network load reduction, low dissemination latency, scalability, etc. One of the

main design requirements for the ICN architectures -since the beginning of their design- has been

strong security [12, 13, 14]. Named Data Networking (NDN) [15] is a prominent example and

ongoing research effort of ICN design. The main goal of NDN is to support the dissemination of

named content rather than the current host-centric (end-to-end) delivery of content to a named

host. Fig. 1-1 shows the fundamental difference between NDN and IP-based Internet. The process

of requesting a content (data) by a consumer is also illustrated in Fig. 1-2. Users only value what

they download and are not interested about where content is actually stored. The IP layer is the

opposite and only cares about the where, not about the what. This gap becomes a source of several

problems such as security.

In NDN, a consumer asks for a Content (Data) by sending an Interest request using name prefix

1http://www.fp7-pursuit.eu/
2http://www.sail-project.eu/
3http://www.comet-project.org/
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Figure 1-1: NDN (content-centric) vs. IP (host-centric)

(content identifier) instead of today’s IP prefix (content location). An Interest packet is routed

towards the location of the content’s origin where it has been published. Any router (intermediate

node) on the way checks its cache for matching copies of the requested content. The requested

content is returned by any node that holds a copy of the content in its cache. On the way back, all the

intermediate nodes store a copy of the content in their caches to satisfy subsequent users interested

in that content (i.e., in-network caching). In this paradigm, storage for caching information is part

of the basic network infrastructure so that NDN (and all ICN architectures) enables efficient and

application-independent caching structure. NDN improves data availability by integrating caching

within the network and ensure the integrity and provenance of content by moving from securing the

communication channel to securing the content [6, 16]. All communication in NDN is performed

using two distinct types of packets: Interest and Data (Fig. 1-3). Both types of packets carry

a name, which uniquely identifies a piece of data that can be carried in one data packet [17, 18].

Data names in NDN are hierarchically structured, e.g., eight fragment of a YouTube video would

be named /youtube/videos/A45tR7Kg5/8. In addition to the data name, each Interest packet also

carries a random nonce generated by the consumer. A router checks both the name and nonce

of each received Interest packet. If a newly arrived Interest packet carrying the same name as a

previously received Interest packet from a different consumer, or a previously forwarded Interest
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(a) Host-Centric Networking

(b) Information-Centric Networking

Figure 1-2: Host-Centric Networking vs. Information-Centric Networking

looped back, the router drops the Interest packet. Therefore Interest packets cannot loop. Each

Figure 1-3: CCN packet types

NDN router maintains three major data structures [19]:

1. The Pending Interest Table (PIT) holds all not yet satisfied Interest packets that were sent

upstream towards potential data sources. Each PIT entry holds one or multiple incoming

physical interfaces and their corresponding Interest packets.
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2. The Forwarding Information Base (FIB) forwards Interest packets to one or multiple physical

network interfaces based on the forwarding strategies. The strategy module makes forwarding

decisions for each Interest packet.

3. The Content Store (CS) or buffer memory temporarily buffers data packets for data retrieval

efficiency.

Figure 1-4: Overview of the NDN architecture

Fig. 1-4 gives an overview of the NDN architecture. According to Fig. 1-4, when a NDN router

receives an Interest packet, it first checks its CS (cache). If there is no copy of the requested content,

it looks up its PIT table. If the same name is already in the PIT and the arrival interface of the

present Interest is already in the set of arrival interface of the corresponding PIT entry, the Interest

is discarded. If a PIT entry for the same name exists, the router updates the PIT entry by adding

a new arrival interface to the set. The Interest is not forwarded further. Otherwise, the router

creates a new PIT entry and forwards the present Interest using its FIB. When an Interest packet

is satisfied by the content’s origin where it was published, on the way back, all the intermediate

nodes store a copy of content in their caches to answer to probable same Interest requests from

subsequent requester [12, 20].

Security in the NDN needs to be implemented differently than in current, host-centric networks. In

the current Internet most security mechanisms are based on host authentication and then trusting
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the data that the host delivers. In contrast, in the NDN, security mechanisms must be relied

upon Information Object (IO) itself, not based on the network nodes [6, 7]. Consequently, new

information-centric security concepts are required that base security on the information itself [21].

With this new paradigm new kinds of attacks and security challenges -from Denial of Service (DoS)

to (user and cache) privacy attacks- will arise that we must provide an efficient and effective security

mechanism in NDN. Exiting research into the security in NDN is at an early stage and many designs

are still incomplete. To make NDN a practically working system at Internet scale, there are still

many pieces to be filled in. This new Internet architecture should be resilient against existing

security problems to defense against new forms of -potentially unknown- attacks, achieve high

availability of content, ensure data and cache privacy, and block malicious network traffics belonging

to attackers or at least limit their effectiveness. To do so, we picked four central topics which

take NDN toward a more reliable and viable architecture including anomaly detection, mitigating

DoS/DDoS attacks, congestion control/avoidance and mitigating cache pollution attacks. The

research problems and our countermeasures are presented in the next sections.

1.2 Research Problem

The following features are the most security-related challenges which NDN should be resilient

against them or at least limit their effectiveness with the current systems:

• Anomaly Detection: Attacks and anomalies are deliberate actions against data, contents,

software or hardware that can destroy, degrade, disrupt or deny access to a computer network

[22]. Hence, the contents should be resilient against both DoS and new forms of -potentially

unknown- attacks or at least limit their effectiveness [23]. In order to disarm new kinds of at-

tacks, anomalous traffics, and any deviation, not only the detection of the malevolent behavior

must be achieved, but the network traffic belonging to the attackers should be also blocked

[24, 25, 26]. In this dissertation, we present an intelligent method for anomaly detection in

NDN which is described in detail in Chapter 3 and published on NEUROCOMPUTING,

Elsevier, [JCR-2013: 2.005 Q1] (28/121 Q1 COMPUTER SCIENCE, ARTIFI-

CIAL INTELLIGENCE) [12]:

A. Karami and M. Guerrero-Zapata (2015), A Fuzzy Anomaly Detection System based on

Hybrid PSO-Kmeans in Content-Centric Networks, Neurocomputing, 149:Part C, pp. 1253-

1269.
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And an upcoming book chapter in:

Advanced Research on Hybrid Intelligent Techniques and Applications. IGI Global, Hershey,

Pennsylvania (USA), undergoing editing for 2015. [27]

• Cache Pollution Attacks: The ubiquitous in-network caching is a key NDN feature as it

reduces overall latency and improves bandwidth utilization for popular content [9, 20, 28, 29,

30]. However, pervasive caching strengthens the security problem of cache pollution attacks in

two generic classes: locality-disruption and false-locality [31, 32, 33, 34]. Locality-disruption

attacks continuously generate requests for new unpopular files to force routers (i.e., the vic-

tims of the attack) to cache unpopular content, thus degrading cache efficiency by ruining

the cache file locality. False-locality attacks repeatedly request the same set of unpopular

(i.e., fake popular) files, thus degrading the hit ratio by creating a false file locality at cache.

In this dissertation, a new cache replacement method in NDN is developed to detect and

mitigate these two types of cache pollution attacks in a timely manner, which is described in

detail in Chapter 4 and undergoing second revision on 27th Sept. 2014 in COMNET, El-

sevier, [JCR-2013: 1.282 Q2] (17/50 Q2 COMPUTER SCIENCE, HARDWARE

& ARCHITECTURE) [35]:

A. Karami, M. Guerrero-Zapata (2014), An ANFIS-based cache replacement method for mit-

igating cache pollution attacks in Named Data Networking In COMNET, Elsevier, undergoing

2nd revision on 27th Sept. 2014.

• DoS/DDoS Attacks: In contrast to today’s Internet, a key goal of the NDN project is

”security by design” [17, 32, 36]. Unlike the current Internet (host-based) approach in which

security, integrity and trust should be provided in the communication channel, CCN secures

content (information) itself and puts integrity and trust as the content properties [19, 37].

However, with this new paradigm, new kinds of attacks and anomalies -from Denial of Service

(DoS) to privacy attacks- will arise [38, 39]. The big question is how resilient will this new

NDN architecture be against DoS/DDoS attacks [17, 23]. An adversary can take advantage

of two features unique to NDN namely Content Store (CS) and Pending Interest Table (PIT)

to mount DoS/DDoS attacks specific to NDN such as Interest flooding attacks and content

poisoning [23, 40]. In this dissertation, we present a new intelligent hybrid algorithm for proac-

tive detection of DoS attacks and adaptive mitigation reaction in NDN, which is described

in detail in Chapter 5 and published on NEUROCOMPUTING, Elsevier, [JCR-2013:
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2.005 Q1] (28/121 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE)

[41]:

A. Karami, M. Guerrero-Zapata (2015), A Hybrid Multiobjective RBF-PSO Method for Mit-

igating DoS Attacks in Named Data Networking, Neurocomputing, 151:Part 3, pp. 1262-1282.

And an upcoming book chapter in:

Advanced Research on Hybrid Intelligent Techniques and Applications. IGI Global, Hershey,

Pennsylvania (USA), undergoing editing for 2015 [42].

• Congestion: Congestion takes place in NDN routers when the number of arrival data pack-

ets is higher than the queue’s capacity which causes an overflow in the routers’ buffer [43, 44].

When this happens a high data packet loss and increase in the end-to-end delay occur affect-

ing negatively on the performance, stability and robustness of the network [45, 46]. This leads

to under-utilization of the available resources and degradation of throughput and quality of

service [47, 48]. This research work develops an Adaptive Congestion Control Protocol in

NDN (ACCPndn) by learning capacities to control congestion traffics before they start im-

pacting the network performance, which is described in Chapter 6 and submitted to JNCA,

Elsevier, [JCR-2013: 1.772 Q1] (28/121 Q1 COMPUTER SCIENCE, ARTIFI-

CIAL INTELLIGENCE) [49]:

A. Karami, M. Guerrero-Zapata (2014), ACCPndn: Adaptive Congestion Control Protocol

in Named Data Networking by learning capacities In JNCA, Elsevier, submitted on 10th May

2014.

And later, another idea talked and presented at Xerox Co.:

M. H. Ardestani, A. Karami, P. Sarolahti and J. Ott (2013), Congestion Control in Content-

Centric Networking using Neural Network, Talk and Presentation in CCNxCon 2013, 5-6th

September 2013, Parc (Xerox Co.), California, USA [50].

In order to protect NDN infrastructure, we need flexible, adaptable and robust defense systems

or protocols, which can make intelligent decisions (ideally, in real-time) in detecting wide variety

of threats and unknown attacks, achieving high availability of content, ensuring data and cache

privacy, and blocking malicious network traffics belonging to attackers or at least limit their ef-

fectiveness. Computational Intelligent (CI) techniques seem promising to enhance NDN security

measures, and have been increasingly applied in the area of information security and information

assurance. CI is a well-established paradigm, where new theories and concepts with a sound bi-
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ological understanding have been evolving. The most current computer systems and algorithms

have many characteristics of biological computations that are difficult or impossible to do with

conventional computations.

Computational Intelligence (CI) techniques and methodologies [51] known for their ability to adopt

and to exhibit fault tolerance, high computational speed and error resilient against noisy informa-

tion, compensate for the limitations of security challenges in NDN. Thus, the methods of Compu-

tational Intelligence (CI) provide a practical alternative for solving mathematically intractable and

complex problems [52].

1.3 Contribution

As we observed, the demand for secure NDN to defense against new forms of -potentially unknown-

attacks, achieve high availability, protect privacy, and block adversaries’ traffics becomes an impor-

tant issue that must be carefully considered. In this dissertation, we propose novel solutions for

security in NDN that are based on the application of Computational Intelligence (CI) methodologies

and approaches in order to face with large-scale, unknown DoS/DDoS and (user and cache) privacy

attacks, and network congestion without becoming a single point of failure or initiating latency to

the network flows to enable network entities to behave in an adaptive and intelligent manner in a

dynamic environment. This approach can also be an innovative solution because NDN can adopt

itself to unpredictable complex evolution of network environments and security problems.

The aim of this dissertation is to propose some solutions to explore how the core methods of

Computational Intelligence (CI), which encompass artificial neural networks, fuzzy sets, evolution-

ary computation methods, swarm intelligence, soft computing, and other similar computational

models can be employed in the NDN context to solve some of the security-related challenges -from

DoS attacks to privacy attacks- with the current systems.

The contributions of this dissertation can be summarized as follows:

1. We proposed a novel fuzzy anomaly detection system based on the hybridization of PSO and

K-means clustering algorithms. This system consists of two phases: the training phase with

two simultaneous cost functions as well-separated clusters by DBI and local optimization by

MSE, and the detection phase with two combination-based distance approaches as classifica-

tion and outlier. Experimental results and analysis show the proposed method in the training

phase is very effective in determining the optimal number of clusters, and has a very high
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detection rate and a very low false positive rate at the same time. In the detection phase, the

proposed method clearly outperforms other applied method in terms of AUC (area under the

ROC curve), accuracy, sensitivity and specificity. In addition, the times of increment on com-

putational time of proposed method is relative smaller than the other considered methods.

Please refer to Chapter 3 for our detailed contribution.

2. We proposed a novel ANFIS-based cache replacement method to mitigate two generic cache

pollution attacks namely false-locality and locality-disruption in NDN. Simulation results

showed that the proposed method provides very accurate results as compared to LRU and

LFU algorithms independently and in conjunction with CacheShield scheme. Experimental

results and analysis show the proposed ANFIS-based cache replacement method is very ef-

fective in determining and mitigating the fake content, and has a very high detection rate of

locality-disruption attacks to replace them when new content is added to a full cache in a

timely manner. The extensive analysis satisfies the objectives of the experiment and ensure

that the proposed ANFIS-based caching for mitigating cache pollution attacks can yield high

accuracy as compared to other methods without very much computational cost. Please refer

to Chapter 4 for our proposed countermeasure.

3. NDN is a newly proposed future Internet architecture which it is important to address its re-

silience in face of DoS/DDoS attacks. We examined the most current instances of DoS/DDoS

attacks to show that an adversary with limited resources can serve service degradation for

legitimate users. We then introduced our intelligent hybrid algorithm for proactive detection

of DoS attacks and adaptive reaction for mitigating. In the detection phase, a combination

of multiobjective evolutionary optimization and RBF neural network has been applied. This

approach consists of two phases: training/optimization and prediction/classification. In the

training phase, we investigate the implementation of a multiobjective approach and PSO in

the design of RBF neural network in order to improve the accuracy of classification problems.

We apply NSGA II to determine the Pareto solutions of RBF units’ centers in terms of the

well-separated centers through DBI and their local optimization through MSE. Then, the op-

timization and tuning of the units’ widths and output weights are accomplished by using the

PSO, where the each particle encodes a set of widths and weights. Moreover, the structure

of this step is simple and easy to implement, yet very effective in terms of several perfor-

mance criteria. In the prediction phase, we employ a simple algorithm to classify efficiency
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the new input patterns with the minimum misclassification error. This hybrid algorithm was

applied on four benchmarking data sets to verify the algorithm accuracy and robustness in

classification problems. Subsequently, after constructing a more accurate classifier (detector),

we performed a simple adaptive reaction algorithm by enforcing explicit limitations against

adversaries which was very effective and efficient for shutting down the attackers with the

robust recovery from network failures and accuracy more than 90% in terms of the average

of Interest satisfaction ratio for legitimate users, the PIT usage, the number of received con-

tents (throughput), and a very low false positive rate over 10 simulation runs. Please refer to

Chapter 5 for our proposed countermeasure against DoS/DDoS attacks in NDN.

4. We developed an Adaptive Congestion Control Protocol in Named Data Networking (AC-

CPndn) by learning capacities that works in two phases. The first phase -adaptive training-

forecasts the source of congestion together with the amount of congestion in NDN routers with

a Timed-Lagged Feedforward Network (TLFN) optimized by hybridization of PSO and GA.

The second phase -fuzzy avoidance- employs a non-linear fuzzy logic-based control system

based on the outcomes of first phase, which it makes a proactive decision in each router per

interface to control and/or prevent packet drop well enough in advance. Extensive simulations

and experimental results show that ACCPndn sufficiently satisfies the performance metrics

and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal

packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate

congestion traffics. In addition, it is found to be scalable with respect to varying bandwidths,

delays, packet generation, and replacement policies in cache and PIT table. Please refer to

Chapter 6 for our proposed countermeasure against congestion in NDN.

5. Uncertainty is widely spread in real-world data. Uncertain data -in computer science- is

typically found in the area of sensor networks where the sensors sense the environment with

certain error. Traffic uncertainty refers to traffic volumes belong to more than one pattern (i.e.

both normal and attack), and associated with each pattern by a set of membership levels. We

investigate the implementation of fuzzy set theory through the application of Fuzzy C-means

clustering algorithm in the context of SOM neural network in order to improve the accuracy

of visualizing uncertain data bases. The experimental results over the uncertain traffics in

Named Data Networking show that the proposed method is effective and precise in terms of

the applied performance criteria. We suggest this research work to help to foster discussions
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and new research ideas among our readers. We plan to improve the proposed method for

various uncertain models and big uncertain network traffic data in the future. Please refer to

Chapter 7 for our proposed method.

1.4 Thesis Plan

As can been seen from the above-mentioned sections, NDN has a very clear and a promising network

architecture being considered as a possible replacement for the current IP-based (host-centric)

Internet infrastructure in order to overcome the fundamental limitations of the current Internet.

However, strong security has been one of the main design requirements for this architecture. Fig.

1-5 depicts how our work in this dissertation fits into the global picture.

Chapter 3 looks at the anomaly detection through a fuzzy anomaly detection system based on

hybrid PSO-Kmeans algorithm. Experimental results in this chapter demonstrate that the proposed

algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase

the high detection rate and decrease the false positive rate at the same time when compared to

some other well-known clustering algorithms.

Chapter 4 then looks into the cache pollution attacks and its countermeasures. In this research

work, a new cache replacement method based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

is presented to mitigate the cache pollution attacks in NDN. The ANFIS structure is built using the

input data related to the inherent characteristics of the cached content and the output related to

the content type (i.e., healthy, locality-disruption, and false-locality). The proposed method detects

both false-locality and locality-disruption attacks as well as a combination of the two on different

topologies with high accuracy, and mitigates them efficiently without very much computational

cost as compared to the most common policies.

Chapter 5 looks into the countermeasures against DoS/DDoS attacks in NDN. We present a new

intelligent hybrid algorithm for proactive detection of DoS attacks and adaptive mitigation reaction

in NDN. The evaluation through simulations in this chapter shows that the proposed intelligent

hybrid algorithm (proactive detection and adaptive reaction) can quickly and effectively respond

and mitigate DoS attacks in adverse conditions in terms of the applied performance criteria.

Chapter 6 tackles the congestion problem. NDN is subject to congestion when the number

of data packets that reach one or various routers in a certain period of time is so high than its

queue gets overflowed. To address this problem many congestion control protocols have been
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proposed in literature which, however, they are too high sensitive to their control parameters as

well as unable to predict congestion traffic well enough in advance. This research work develops

an Adaptive Congestion Control Protocol in NDN (ACCPndn) by learning capacities to control

congestion traffics before they start impacting the network performance. Extensive simulations

and experimental results show that ACCPndn sufficiently satisfies the applied performance metrics

and outperforms some previous proposals in terms of the minimal packet drop and high-utilization

(retrying alternative paths) in bottleneck links to mitigate congestion traffics.

Figure 1-5: Architectural overview: how our work fits into the global picture

Finally, Chapter 7 provides a new research direction for our readers towards the visualization of

uncertain network traffic data in NDN. Uncertainty is widely spread in real-world data. Uncertain

data -in computer science- is typically found in the area of sensor networks where the sensors

sense the environment with certain error. Mining and visualizing uncertain data is one of the

new challenges that face uncertain databases. We present a new intelligent hybrid algorithm that

applies fuzzy set theory into the context of the Self-Organizing Map to mine and visualize uncertain

objects. The algorithm is tested in some benchmark problems and the uncertain traffics in NDN.
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Experimental results indicate that the proposed algorithm is precise and effective in terms of the

applied performance criteria. This is our initial idea as a future work to help to foster discussions

and new research ideas among our readers by some improvements such as visualizing big uncertain

network traffic data in NDN.

Obviously, there can be still other missing pieces in this picture that are not addressed in this

dissertation. However, we believe that the five topics we picked are central to take NDN toward a

practically working system.

A final note on the terminologies used in this dissertation: we may use NDN and CCN terms

interchangeably. Interests are sometimes also referred to as requests while data packets may be

called content or responses.

1.4.1 Dissertation Roadmap

The rest of the dissertation is organized as follows.

Chapter 2 presents an overview of Information-Centric Networking (ICN) architecture. Among the

several ICN architectures, we picked NDN as the basis of our architecture due to its popularity

and existence of open source prototype and a ns-3 based simulator as ndnSIM [53]. We propose

the NDN naming and security in Section 2.2. We also describe the core methods of Computational

Intelligence (CI) in Section 2.3.

We then move on to discuss papers related to the four picked specific topics we studied in this

dissertation, namely anomaly detection (Chapter 3), mitigating cache pollution attacks (Chapter

4), mitigating DoS/DDoS attacks (Chapter 5), and congestion control (Chapter 6). Chapter 7

provides a new research direction into the visualization of uncertain network traffic data in NDN.

Finally, Chapter 8 summarizes the entire dissertation’s contributions and pointed out a few

possible directions for further research.
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Chapter 2

Background

This section describes common ICN architectures and follows by naming and security issues in ICN.

At last, the Computational Intelligence (CI) methodologies and approaches are described.

2.1 ICN Architectures

People exploit the Internet to get contents such as web pages, music or video files. These users

only value what they download and are not interested about where content is actually stored. The

IP layer is the opposite and only cares about the where, not about the what. The gap between the

actual usage of the Internet and the services offered by IP becomes the source of several problems,

i.e., usability, performance, security, and mobility. Therefore, new approach is necessary to directly

provide users with contents at the network layer, instead of providing communication channels

between hosts. This paradigm is shifting from IP to chunks of named content.

ICN is a promising network architecture being considered as a possible replacement for the

current IP-based Internet infrastructure. In ICN with a top-down approach, content -rather than

hosts, like in IP-based design- plays the central role in the communications. In this section, we

provide a survey of the most prominent ICN architectures in the literature. Please refer to [21, 30,

54] for more complete surveys of ICN.

2.1.1 CCN/NDN

Jacobson et al. [6] proposed the Content-Centric Networking (CCN) architecture in PARC which

puts named contents at the thin waist of the protocol stack. The main idea in the CCN is that, an

Interest request for a content object is routed towards the location of the content’s origin where it
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has been published. Any router or intermediate node on the way checks its cache for matching copies

of the requested content. If a cached copy of any piece of Interest request is found, it is returned

to the requester along the path the request came from. On the way back, all the intermediate

nodes store a copy of content in their caches to answer to probable same Interest requests from

subsequent requester (see Fig. 2-1).

Figure 2-1: CCN/NDN architecture overview

CCN is widely recently applied in the research community and become one of the Future Internet

Architecture (FIA) projects funded by National Science Foundation (NSF) under the new name of

Named Data Networking (NDN) [8]. In NDN, a strategy layer mediates between the named data

layer and the underlying network technologies to optimize resource usage, e.g., to select a link in

a multi-homed node, while a security layer applies security functionality directly on named data.

We have already employed this architecture in detail in Chapter 1 since it is the basis of our ICN

architecture.

2.1.2 PSIRP/PURSUIT

Publish-Subscriber Internet Routing Paradigm (PSIRP), later continued by the Publish-Subscribe

Internet Technology (PURSUIT) is a ICN project supported by European Union FP7 (The Sev-

enth Framework Program) [55]. The PURSUIT architecture consists of three separate functions:

rendezvous, topology management and forwarding. When the rendezvous function matches a sub-

scription to a publication, it directs the topology management function to create a route between

the publisher and the subscriber. This route is finally used by the forwarding function to perform

the actual transfer of data (see Fig. 2-2).
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Figure 2-2: PSIRP/PURSUIT architecture overview

2.1.3 4WARD/SAIL

The Architecture and design for the future Internet (4WARD) 1 project and its continuation Scal-

able and Adaptive Internet Solutions (SAIL) 2, both funded by the EU Framework 7 Programme,

are investigating designs for the Future Internet. In 4WARD/SAIL Information Objects (IOs) are

published into the network, registered with a Name Resolution Service (NRS). The NRS also is used

to register network locators that can be used to retrieve data objects that represents the published

IOs. When a receiver want to retrieve an IO, the request for the IO is resolved by the NRS into

a set of locators. These locators are then used to retrieve a copy of the data object from the best

available source(s) (see Fig. 2-3).

Figure 2-3: 4WARD/SAIL architecture overview

2.1.4 DONA

the Data Oriented Network Architecture (DONA) [7] from UC Berkeley is one of the first complete

ICN architectures, as it radically changes naming by replacing the hierarchical URLs with flat

names. In DONA, each data is given a self-certifying flat name and name resolution and data

caching by Data handlers (DHs). DHs are responsible for routing clients’ requests to nearby copies

1Available: http://www.4ward-project.eu/
2Available: http://www.sail-project.eu/
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of the data. DONA allows a client to request a piece of data by its name, rather than the producer’s

address. The architecture contains two fundamental operational primitives, namely: FIND -allows

a client to request a particular piece of data by its name not its location; and REGISTER -allows

content providers to indicate their intent to serve a particular data object.

2.2 Naming and Security

Naming plays an important role in the ICN architectures. In today’s Internet architecture, the

storage locations of information are mainly named, e.g., Uniform Resource Locators (URLs) relating

to a network node and file structure to name files, and Internet Protocol (IP) addresses to name

the interfaces of the storage nodes. In contrast in ICN we name the information itself, i.e., naming

Information Objects (IOs) via location-independent object identifier. Naming is closely related to

security in several ICN architectures. In current Internet, security is mainly based on trusting the

source of information via authentication and securing the data channel via encryption. In the ICN,

security cannot be applied to the storage location as the network and users should benefit from

any available copy of the desired content. Consequently, new information-centric security concepts

are required that base security on the information itself. A popular approach followed by several

ICN architectures is to integrate security aspects with the naming concept (the object IDs). The

five general technical security goals are defined in the ICN context as follows:

• Confidentiality: only valid/legal entities (users or systems) can read secured information (IOs

and corresponding metadata).

• Data integrity: it applies by self-certification techniques to identify accidental or intentional

changes to IOs and the corresponding metadata.

• Accountability: the owner of information can be authenticated and identified by:

– Owner authentication: Binds the information securely to a virtual entity, e.g., by a

pseudonym or a public/private key pair.

– Owner identification: Binds the information securely to a real-world entity, e.g., a per-

son’s unique identity or an institution.

• Availability: The IOs and corresponding metadata published in the network must be available

and accessible for (authorized) entities. The in-network caching widely plays an important

role in availability.
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• Access Control: Access (i.e., read, write, execute) to IOs and/or corresponding metadata can

be restricted to the authorized entities.

2.3 Computational Intelligence (CI) methods

Computational Intelligence (CI) is a fairly new research field with competing definitions [51]. How is

it related to others branches of computer science such as artificial intelligence (AI), data mining, in-

telligent agents (systems), knowledge discovery in data (KDD), machine learning (intelligence), nat-

ural computing, parallel distributed processing, pattern recognition, probabilistic methods, graph-

ical methods, soft computing, multivariate statistics, optimization and operation research? This is

very confusing issue that means different definition with different people. For example, a definition

of CI is [56]: CI is the study of the design of Intelligent Agents (IA) and IA is a system that

acts intelligently based on its circumstances and its goal. It learns from experience, and it makes

appropriate choices given perceptual limitations and finite computation.

Another definition is from Prof. Bezdek, the father of fuzzy pattern recognition theory which defined

a computationally intelligent system as follows [57]: A system is called computationally intelli-

gent if it deals only with numerical (low-level) data, has a pattern recognition component, and does

not use knowledge in the AI sense; and additionally, when it (begins to) exhibit (i) computational

adaptivity; (ii) computational fault tolerance; (iii) speed approaching human-like turnaround, and

(iv) error rates that approximate human performance.

It states that a computationally intelligence system should be characterized with the capability of

computational adaption, fault tolerance, high computational speed and less error-prone to noisy

information sources. Computational adaption refers to the system should be capable of changing

its parameters following some guidelines (e.g., optimizing criteria) and depending on the temporal

changes in its input and output instances. Most of the ANN models and Evolutionary Algorithm

(EA) satisfy this characteristic. Computational fault tolerance is a general characteristic of a

parallel and distributed system. In a parallel or distributed system, computational resources like

variables, procedures and software tools are usually replicated at the distributed units of the com-

puting system. Hence, a damage of a few units usually does not cause malfunctioning of the entire

system, parameters the same resources are available at other units. ANN and fuzzy logic have

their inherent characteristics of fault tolerance, GA and belief networks too can be configured in

a parallel fashion to provide users the benefit of fault tolerance. Moreover, based on the Bezdek’s
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definition a computationally intelligent system should deal with low level (numerical) information

and should not use knowledge in the AI sense. Since fuzzy logic, ANN, GA, and belief networks

satisfy these characteristics [58, 59].

CI is different from the well-known field of Artificial Intelligence (AI). Artificial Intelligence (AI)

aims to emulate human intelligence in forms of machines so that enable act and think like the

human beings. This intelligence is the computational part of the ability to achieve goals in the

world. The AI Depot3 in 2001 uses the following definition: ”Artificial Intelligence is a branch of

science which deals with helping machines find solutions to complex problems in a more human-

like fashion. This usually involves borrowing characteristics from human intelligence, and applying

them as algorithms in a computer friendly way.”

AI (a high-level cognitive function) handles symbolic knowledge representation, while CI (a low-

level cognitive function) handles numeric representation of information [60]. Although there is not

yet full agreement on what computational intelligence exactly is, there is a widely accepted view

on the areas belonging to CI [51]: artificial neural networks, fuzzy sets, evolutionary computation,

swarm intelligence, and soft computing. In continue, we briefly review some core methods of CI

that have been applied to solve current security-related challenges in NDN.

2.3.1 K-means algorithm

The K-means algorithm [61] groups the set of data points into a predefined number of the clusters

in terms of a distance function. The most widely used method is Euclidean distance in which a

small distance implies a strong similarity whereas a large distance implies a low similarity. The Eq.

(2.1) shows the Euclidean distance calculation between two data points (x and y) with N objects

in a n-dimensional space.

Distance(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (2.1)

The standard K-means algorithm is summarized as follows:

1 Randomly initialize the K cluster centroids.

2 Assign each object to the group with the closest centroid. Euclidean distance measures the

minimum distance between data objects and each cluster centroid.

3http://ai-depot.com
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3 Recalculate the cluster centroid vector, using

mj =
1

nj

∑
∀datap∈Cj

datap (2.2)

where, mj denotes the centroid vector of the cluster j, nj is the number of the data vectors in

cluster j, Cj is the subset of the data vectors from cluster j, and datap denotes the pth data

vector.

4 Repeat step 2 until the centroids do not change any more in the predefined number of iteration

or a maximum number of iterations has been reached.

2.3.2 Genetic Algorithm (GA)

Genetic Algorithm (GA) is a search heuristic and stochastic optimization technique based on bio-

logical evolution theory and genetic principles developed by Holland on 1975. GA adopts a group of

simulated encoded chromosomes and calculates the fitness function of these chromosomes. GA ap-

plies three kinds of genetic operators: selection, crossover and mutation to produce next generation.

This evolution process continues until the stopping criteria are met. The selection operator chooses

chromosomes from a population for later breeding (recombination or crossover). The crossover

operator combines (mates) two chromosomes (parents) to produce a new chromosome (offspring).

The idea behind crossover is that the new chromosomes might be better than both of the parents

if it takes the best characteristics from each of the parents. The mutation operator alters one or

more gene values in a chromosome from its initial state. This can result in entirely new gene values

being added to the gene pool. With these new gene values, the genetic algorithm might be able

to arrive at better solution than was previously possible. Mutation helps the genetic algorithm

to avoid being trapped in a local optimal. GA is appropriate for large-sized and nonlinear space

problems which solution is unpredictable [62]. One of the main advantages of the use of GA is that

it is less likely to fall into a certain local minimum or maximum [63, 64].

2.3.3 Particle Swarm Optimization (PSO)

The PSO was firstly introduced by Kennedy and Eberhart in 1995 [65]. It was inspired by the

social behavior of a bird flock or fish school. It is a population based meta-heuristic method that

optimizes a problem by initializing a flock of birds randomly over the search space where each
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bird is referred as a ”particle” and the population of particles is called ”swarm”. The particles

move iteratively around in the search space according to a simple mathematical formula over the

particle’s position and velocity to find the global best position. In the n-dimensional search space,

the position and the velocity of i th particle at t th iteration of algorithm is denoted by vector

Xi(t) = (xi1(t), xi2(t), ..., xin(t)) and vector Vi(t) = (vi1(t), vi2(t), ..., vin(t)), respectively. This

solution is evaluated by a cost function for each particle at each stage of algorithm to provides

a quantitative value of the solution’s utility. Afterwards, a record of the best position of each

particle based on the cost value is saved. The best previously visited position of the particle i at

current stage is denoted by vector Pi = (pi1, pi2, ..., pin) as the personal bests. During this process,

the position of all the particles that gives the best cost until the current stage is also recorded

as the global best position denoted by G = (g1, g2, ..., gn). The structure of the velocity and the

position updates is depicted in Fig. 2-4. Each iteration is composed of three movements: in the

first movement, particle moves slightly toward the front in the previous direction with the same

speed. In the second movement, it moves slightly toward the previous itself best position. Finally,

in the third movement, moves slightly toward the global position.

Figure 2-4: Description of velocity and position updates in PSO for a 2-dimensional parameter
space

At each iteration, the velocity and the position of each particle are defined according to Eqs.

(2.3) and (2.4), respectively:

Vi(t) = ω ∗ Vi(t− 1) + c1ϕ1(Pi −Xi(t− 1))

+c2ϕ2(G−Xi(t− 1))
(2.3)

Xi(t) = Xi(t− 1) + Vi(t) (2.4)

Where, ω denotes the nonzero inertia weight factor that introduces a preference for the particle to
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continue moving in the same direction. Decreasing the inertia over time introduces a shift from the

exploratory (global search) to the exploitative (local search) mode [66, 67]. Generally, the inertia

weight ω is reduced linearly. There are several selection strategies of inertia weight ω which have

been described in [68, 69]. c1 and c2 are positive constant (social) parameters called acceleration

coefficients which control the maximum step size between successive iterations. ϕ1 and ϕ2 are two

independently positive random number drawn form a uniform distribution between 0.0 and 1.0.

According to [67], a good starting point is to set ωstart to 0.9, ωend to 0.4, and c1 = c2 = 2.

The velocity and position of a particle might end up positioning the particle beyond the boundary

[V armin, V armax] of the search space. Therefore, the need of having a scheme which can bring

such particles back into the search space. In our proposal, we apply Set On Boundary strategy.

According to this strategy the particle is reset on the bound of the variable which it exceeds [70].

Let XC denote a current velocity or position of a solution, then XC is set to Xnew
C as follows:

XC → Xnew
C =



−0.1 ∗ (V armax − V armin)

ifXC < lowerbound

0.1 ∗ (V armax − V armin)

ifXC > upperbound


(2.5)

An additional strategy called velocity reflection is also applied. Velocity reflection allows those

particles that move toward the outside the boundary to move back into the search space according

to Eq. (2.6).

Vi(t+ 1)→ −Vi(t+ 1) (2.6)

2.3.4 Fuzzy Set

In classical set theory, an element either belongs or not to a set of elements. Therefore, the

membership evaluation is boolean. A more flexible approach would be fuzzy set theory, where

elements belong to sets with certain degree of membership that takes its value in the interval [0 1].

This makes fuzzy set theory suitable for complex models where some things are not either entirely

true nor entirely false and where the problems are somehow ambiguous or it is needed to manage

subjective judgments or opinions. In our scenario, it could be used to decide things like ”Is the PIT

entry rate average or very high?”. Therefore, fuzzy set theory can be successfully employed when

39



most of the decision making attributes are qualitative in nature, with the possibility of subjective

assessment [71]. In fuzzy set theory, a linguistic variable is a variable whose values are words or

sentences in natural or artificial language [72]. A fuzzy rule is defined as a conditional statement

in the form:

IF x is A THEN y is B (2.7)

Where x and y are linguistic variables; A and B are linguistic values determined by fuzzy sets on

the universe of discourse X and Y , respectively. These rules are then mathematically represented

by a membership function. The membership provides a measure of the degree of presence for

every element in the set [73]. A fuzzy system often consists of four main parts: fuzzification,

rules, inference engine, and defuzzification [19]. In the fuzzification step, a crisp set of input data

is converted to a fuzzy set using fuzzy linguistic terms and membership functions. In step 2, a

list of fuzzy statements are constructed to create what is called ”rule base”. That rule base will

be used to process the fuzzy data by a computational unit, which will output again fuzzy sets.

In the defuzzification step, that fuzzy output is mapped to a crisp (non-fuzzy) output using the

membership functions.

Fuzzy set in anomaly detection

Fuzzy set theory is a method of representing the vagueness and imprecision which is appropriate

for anomaly detection for two major reasons [51, 74]:

1. The anomaly detection problem involves many numeric attributes in collected audit data and

various derived statistical measurements. Building models directly on numeric data causes

high detection errors, and

2. The security itself involves fuzziness, because the boundary between the normal and abnormal

is not well defined.

Fuzzy logic also can work with other popular data mining technique as outlier detection. Since

malicious behavior is naturally different from normal behavior, abnormal behavior should be con-

sidered as outliers [75, 76]. Fuzzy logic can help to construct more abstract and flexible patterns

for intrusion detection and thus greatly increase the robustness and adaption ability of detection

systems [51]. Hence, fuzzy approach can reduce the false positive rate with higher reliability in de-

termining intrusive activities, due to any data (normal or attack) may be similar (closest distance)

to some clusters.
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2.3.5 Multilayer Perceptron (MLP) neural networks

In the last years, various neural network models have been developed for different applications

including signal processing, pattern recognition, system modeling and so on [77]. The multi-layer

perceptron (MLP) with back-propagation learning is the most popular and commonly used neural

network structure due to its simplicity, effectiveness and excellent performance in many applications

that require to learn complex patterns [78, 79]. Multi Layer perceptron (MLP) is a feed-forward

neural network with one or more hidden layers between input and output layer. Feed-forward

means that data flows are in the forward direction, from input to output layer. MLP can solve

problems which are not linearly separable [80]. A graphical representation of a MLP is shown in

Fig. 2-5. In the training phase of the MLP, the training set is presented at the input layer and the

Figure 2-5: Structure of a three-layer MLP

parameters of the network (weights and biases) are dynamically adjusted using gradient-descent

based delta-learning rule (back-propagation learning) to achieve the desired output [81, 82]. The

training process of MLP neural network is defined as follows:

Step 1: Network initialization. The connection weights and bias of the network are initialized

randomly, setting up the network learning rate η, the error threshold ε, and the maximum itera-

tions T .

Step 2: Data preprocessing. Data samples are usually partitioned into three sets: training, valida-

tion and test. The training sets are used for training (to adjust the weights and biases) the network;

the validation sets are the part that assesses or validates the predictive ability of the model during

the training to minimize overfitting; the test sets are used for independent assessment of the model’s

predictive ability (generalization performance) after training.

Step 3: Training network. input the training sets into MLP, compute network predicted output

values, and calculate the error E between output and the target value. The error function is defined

41



as follows:

E =
1

2

m∑
k

(ŷ(k)− y(k))2 (2.8)

Where,

ŷ(k) = φk(
m∑
i=1

Wikh(i)) k = 1, 2, ..., l. (2.9)

Where, φk is an activation function for neuron k in hidden layer, h(i) is the output value for

neuron (node) i in the hidden layer, Wik is weight connection between neuron i in hidden layer and

neuron k in output layer, l and m are the number of neurons for output layer and the hidden layer,

respectively. h(i) is calculated by:

h(i) = φi(
n∑
j=1

WijXj + bi) i = 1, 2, ...,m (2.10)

Where, φi is an activation function for neuron i in hidden layer, Wji is the weight connection be-

tween neuron i and input j, X is input value, and bi is the bias connection of neuron i in hidden

layer.

Step 4: Updating the weights and biases. update network weights and biases according to the

prediction error E, making the predictive value of the network as close to actual values through a

Back-propagation algorithm.

Step 5: Judgment of whether the end condition is met. If E <= ε, network training is stopped

and go to step 7.

Step 6: Judgment of whether an overfitting has occurred. If accuracy of the validation error has

not been satisfied network training is stopped and go to step 7; otherwise, return to step 3 to

continue training.

Step 7: Judgment of generalization performance. Run test data set by trained network for gener-

alization performance measurement.

Step 8: Further usage. if the prediction error of the network is acceptable, use the network for

further usage; otherwise, go to the Step 1 and train the network again until an ideal network with

desire accuracy is found.

2.3.6 RBF Neural Networks

Radial Basis Function (RBF) is a kind of feed-forward neural networks, which were developed

by Broomhead and Lowe in 1998 [83]. This type of neural networks use a supervised algorithm
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and have been broadly employed for classification and interpolation regression [84]. As compared

to other neural networks, RBF neural networks have better approximation characteristics, faster

training procedures and simple network architecture. For these reasons, researchers have continued

working on improving the performance of RBF learning algorithms [85, 86]. The RBF neural

networks have three layers architecture including a single hidden layer of units. The first layer has

n input units which connects the input space to the hidden layer. The hidden layer has m RBF

units, which transforms the input units to the output layer. The output layer, consisting of l linear

units. The output layer implements a weighted sum of hidden unit outputs. The input layer is

non-linear while the output is linear. Due to non-linear approximation properties in RBF, this type

of networks are able to model the complex mappings [87]. The real output in output layer is given

by:

ys(X) =
k∑
j=1

wjsφ(
‖P − Cj‖

σj
) for 1 ≤ s ≤ l (2.11)

Where ys is s-th network output, P is an input pattern, wjs is the weight of the link between j -th

hidden neuron and s-th output neuron, Cj is the center of the j -th RBF unit in the hidden layer,

and σj is the width of the j -th unit in the hidden layer. The φ denotes to an basis (activation)

function. The Gaussian activation function is used in this dissertation, which is given by [88]:

φj(r) = exp(−‖P − Cj‖
2

2σ2
j

) j = 1, 2, 3, ..., p (2.12)

Where r is the variable of radial basis function (φ).

2.3.7 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a class of adaptive networks whose functionality is equivalent to a fuzzy inference system

which generates a fuzzy rule base and membership functions automatically [89]. ANFIS is an

integration of neural network architectures with fuzzy inference system (FIS) to map a couple

of inputs-output data patterns. An ANFIS constructs a FIS (if-then rules) whose membership

function parameters are adjusted using either backpropagation algorithm or in combination with

a least squares type of method [90, 91]. An ANFIS architecture consists of a fuzzy layer, product

layer, normalized layer, defuzzy layer, and summation layer. A typical architecture of ANFIS with

two inputs (x and y), nine rules and one output (f) is depicted in Fig. 2-6. Among many FIS

models, the 1st order Sugeno fuzzy model is the most widely applied adaptive technique with high

43



interpretability and computational efficiency for different problems [90, 92]. For a 1st order of

Figure 2-6: ANFIS architecture with two inputs and nine rules [1]

Sugeno fuzzy model, a typical rule set with two fuzzy if-then rules can be expressed as:

ifx is A1 and y is B1 then f1 = p1x+ q1y + r1 (2.13)

ifx is A2 and y is B2 then f2 = p2x+ q2y + r2 (2.14)

where Ai and Bi are the fuzzy sets in the antecedent and pi, qi, and ri are the linear output

parameters that are determined during the training process. As in Fig. 2-6, an ANFIS consists of

five layers and nine if-then rules as follows:

Layer-1: all the square nodes in this layer are adaptive nodes. The outputs of layer 1 are the fuzzy

membership grade of the inputs, which are given by:

O1,i = µAi(x), for i = 1, 2, 3 O1,i = µBi−3(y), for i = 4, 5, 6 (2.15)

where x and y are inputs to node i, and Ai and Bi are linguistic labels for inputs. O1,i is the

membership function of Ai and Bi. µAi(x) and µBi−3(y) can adopt any fuzzy membership function.

For instance, if a Gaussian membership function is employed:

µAi(x) , µBi−3(y) = exp

[
−(
x− ci
ai

)2
]

(2.16)
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where ci and ai are the parameter set of the membership function. These parameters in this layer

are referred to a premise parameters.

Layer-2: Every node in this layer is a fixed node with a circle node label
∏

which multiplies the

incoming signals and sends the product out. The output of this layer can be represented as:

O2,i = wi = µAi(x)× µBi−3(y), i = 1, 2, 3, ..., 9 (2.17)

Each node output represents the firing strength of a rule.

Layer-3: Every node in this layer is also a fixed circle node labeled N , indicating that they play

a normalization role to the firing strengths from the previous layer. The outputs of this layer can

be represented as:

O3,i = w̄i =
wi

(w1 + w2 + ...+ w9)
, i = 1, 2, 3, ..., 9 (2.18)

Layer-4: In this layer, the square nodes are adaptive nodes. The output of each node in this layer

is the product of the normalized firing strength and a 1st order polynomial (for a 1st order Sugeno

model):

O4,i = w̄i . fi = wi . (pix+ qiy + ri), i = 1, 2, 3, ..., 9 (2.19)

where wi is the output of layer 3 and three parameters {pi, qi, ri} are the parameter set which will

be referred to as consequent parameters.

Layer-5: The single node in this layer is a circle node labeled
∑

(overall output) that performs

the summation of all incoming signals:

O5,i = f =
∑
i

w̄ifi =

∑
iwifi∑
iwi

(2.20)

ANFIS has a hybrid learning rule algorithm which integrates the gradient descent and the least

squares methods to train and adjust the premise and consequent parameters [93]. The hybrid

learning algorithm is composed of a forward pass and a backward pass. The least squares method

(forward pass) is used to optimize the consequent parameters with the premise parameters fixed to

minimize the measured error in layer 4. In the backward pass, the premise parameters are updated

by the gradient descent method [89, 93].
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2.3.8 Non-dominated Sorting Genetic Algorithm (NSGA II)

NSGA II is one of the most widely and popular multi-objective optimization algorithms with

three considerable properties including fast non-dominated sorting approach, fast crowded distance

estimation procedure and simple crowded comparison operator [94]. Fig. 2-7 shows the NSGA II

procedure. Generally, NSGA II can be roughly detailed as following steps [94, 95, 96]:

Step 1: Population initialization

A set of random solutions (chromosomes) with a uniform distribution based on the problem range

and constraint are generated. The first generation is a N ×D matrix. N and D are identified as

the number of chromosomes and decision variables (genes), respectively.

Step 2: Non-dominated sort

Sorting process based on non domination criteria of the initialized population.

Step 3: Crowding distance

Chromosomes are classified to the Pareto fronts using:

dIj =
M∑
m=1

f
Imj+1
m − f

Imj−1
m

fMax
m − fMin

m

(2.21)

Where, dIj is crowded distance of jth solution, M is number of objectives, f
Imj+1
m and f

Imj−1
m are val-

ues of mth objective for (j − 1)th and (j + 1)th solution, fMax
m is maximum value of mth objective

function among solutions of the current population, fMin
m is minimum value of mth objective func-

tion among solutions of the current population, Ij is the jth solution in the sorted list and (j − 1)

and (j + 1) are two nearest neighboring solutions on both sides of Ij . Afterwards, the algorithm

searches the nearest points (solutions) with more value of dIj . Solutions in the best-known Pareto

set should be uniformly distributed and diverse over of the Pareto front in order to provide the

decision maker a true picture of trade-offs. Then, Pareto fronts are ranked from the best to the

worst.

Step 4: Selection

The selection of chromosomes is carried out to select appropriate chromosomes (parents) using

the crowded tournament operator. The crowded tournament operator compares different solutions

with two criteria, (1) a non-dominated rank and (2) a crowding distance in the population. In this

process, if a solution dominates the others, it will be selected as the parent. Otherwise, the solution

with the higher value of crowding distance (highest diversity) will be selected.
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Step 5: Genetic algorithm operators

There are a variety of recombination (crossover) and mutation operators.

Step 6: Recombination and selection

The offspring population is combined with the current generation population and the total popu-

lation is sorted based on non-domination. The new generation is filled by chromosomes from each

front subsequently until the population size exceeds the current population size N.

Figure 2-7: Schematic of the NSGA II procedure

2.3.9 Self-Organizing Map (SOM)

SOM (also known as Kohonen SOM) is a very popular algorithm based on competitive and un-

supervised learning [97]. The SOM projects and represents higher dimensional data in a lower

dimension, typically 2-D, while preserving the relationships among the input data. A diagram of

the SOM is shown in Fig. 2-8. The main process of SOM is generally introduced in three phases:

Figure 2-8: The SOM structure. The dark color of neuron in the competition phase indicates the
wining neuron.
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competition, cooperation and adaptation.

1. Competition: the output of the neuron in SOM computes the distance (generally Euclidean

distance) between the weight vector and input vector:

arg mini ‖x− wj‖ , j = 1, 2, ..., l (2.22)

Where, x is the input vector, wj is the jth neuron’s weight vector. The neuron j which

satisfies the above condition is called the Best Matching Unit (BMU) and is the ”winner” of

the competition.

2. Cooperation: the winning neuron determines the spatial location of a topological neigh-

borhood of excited neurons, thereby providing the basis for cooperation among neighboring

neurons. The closest neighbors tend to get excited more than those further away while the

neurons near-by the winner on the lattice get more chance to adapt. A distance function

h(n, i) which satisfies the above requirements can be the Gaussian function:

h(j, i) = exp(
−dj,i2

2σ2
) (2.23)

Where, h(j, i) is the topological area centered around the wining neuron i, dj,i is the lateral

distance between winning neuron i and cooperating neuron j, and σ is the radius influence.

The Gaussian function is symmetrical and decreases monotonically to zero as the distance

goes to infinity.

3. Adaption: since SOM is self-adaptive, the winner and its neighbors increase their discriminant

function value relative to the current input. All neurons in the neighborhood of the winner

are updated in order to make sure that adjacent neurons have similar weight vectors [98]. In

practice, the appropriate weight update equation is as follows:

wj = wj + ηh(j, i) ∗ (x− wj) (2.24)

Where, η is a learning rate, i is the index of winning neuron, wj is the weight of the neuron

j and h(j, i) function has formulated in Equation 2.23.

These three phases are repeated during the training, until the changes become smaller than a

predefined threshold or the maximum number of iterations is met.
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Chapter 3

A Fuzzy Anomaly Detection System

based on Hybrid PSO-Kmeans

Algorithm

Attacks and anomalies are deliberate actions against data, contents, software or hardware that can

destroy, degrade, disrupt or deny access to a computer network [22]. Hence, the contents should be

resilient against both DoS and new forms of (unknown) attacks or at least limit their effectiveness

[23]. In order to disarm new kinds of attacks, anomalous traffics, and any deviation, not only

the detection of the malevolent behavior must be achieved, but the network traffic belonging to

the attackers should be also blocked [24, 25, 26]. In an attempt to tackle with the new kinds

of anomalies and the threat of future unknown attacks, many researchers have been developing

Intrusion Detection Systems (IDS) to help filter out known malware, exploits and vulnerabilities

[22, 99]. Anomaly detection systems are becoming increasingly vital and valuable tools of any

network security infrastructure in order to mitigate disruptions in normal delivery of network

services due to malicious activities, Denial of Service (DOS) attacks and network intrusions [100,

101]. An IDS dynamically monitors logs and network traffics, applying detection algorithms to

identify potential intrusions and anomalies within a network [102].

In recent years, data mining techniques specially unsupervised anomaly detection have been em-

ployed with much success in the area of intrusion detection [103, 104, 105]. Generally, unsupervised

learning or cluster analysis algorithms have been utilized to discover natural groupings of objects

and find features inherent and their deviations with similar characteristics to solve the detection
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problems of the abnormal traffics and unknown forms of new attacks [106, 107]. Data clustering

algorithms can be either hierarchical or partitioning [108, 109]. In this dissertation, we focus on the

partitioning clustering and in particular, a popular method called K-means clustering algorithm.

The K-means algorithm is one of the most efficient clustering algorithms [61, 110, 111]. This algo-

rithm is simple, easy to implement, straightforward, suitable for large data sets, and very efficient

with linear time complexity [112]. However, it suffers from two main drawbacks: (1) the random

selection of centroid points and determining the number of clusters may lead to different clustering

results, (2) The cost function is not convex and the K-means algorithm may contain many local

optimum [113]. In the previous work [19], we employed K-means clustering in our anomaly detec-

tion system over CCN. But, the results were not appropriate due to the large number of clusters,

trapping in the local optimum solution, and changing results by running the algorithm with the

constant parameters in several times. However, if good initial clustering centroids can be assigned

by any of other global optimal searching techniques, the K-means would work well in refining the

cluster centroids to find the optimal centroids [114, 115]. To overcome these drawbacks, we present

a fuzzy anomaly detection system in two phases: training and detection. In the training phase,

we apply a meta-heuristic algorithm called PSO (Particle Swarm Optimization) which can find the

optimal or near optimal solution by the least iterations [116, 117, 118]. We employ the combination

of the ability of global search of the PSO with a novel boundary handling approach and the fast

convergence of the K-means to avoid being trapped in a local optimal solution.

On the other hand, the most clustering methods usually try to minimize the Mean Square Error

(MSE) between data points and their cluster centroids [119, 120]. The MSE is not suitable for

determining the optimal number of clusters. Since it decreases, the number of the clusters increase.

We develop our method for globally optimal placement of data points as well-separated clusters by

low intra-cluster cohesion and high inter-cluster separation. But the optimal placement can increase

MSE [121]. Thus, we apply MSE for local optimization, i.e., in the case of each cluster separately

to decrease the error caused by corresponding data points and their cluster centroids. This simulta-

neous approach -application of two cost functions (well-separated clusters and local optimization)-

in PSO can lead to the optimal number of clusters and well-separated clusters. When the optimal

placement of clusters centroids and objects are defined, they are sent to the second phase. In the

detection phase, we apply a novel fuzzy decision approach to give a fuzzy detection of normal or

abnormal results in the new monitoring data that do not appear in the training data set. Because

fuzzy approach can reduce the false positive rate with higher reliability in determining intrusive
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activities, due to any data (normal or attack) may be similar to some clusters.

Table 3.1: Comparison of hybrid PSO + K-means approaches in clustering problems

ApproachRaw data Parameters value Cost function Contribution

Junyan
Chen
(2012)
[122]

a commercial website log
file with 726 clients and
52 pages which clustered
separately to 15, 25 and
35 classes

iteration: 50
∑m

j=1

∑
∀xn

d(xn, zi,j), xn

is the data point, and zij
refers to the jth cluster cen-
troid of the ith particle, and
d is the position of the parti-
cles.

an hybrid PSO for initial seeds
in K-means by incorporating
the multidimensional asynchro-
nism and stochastic disturbance
model to the velocity, called
MSPSO-K.

Zhenkui
et al.
(2008)
[123]

city coordinates of
Hopfield-10 TSP (10
records) and Iris (150
records)

c1 = c2 = 1.3, w lin-
early reduces from 1.0
to 0.3, iteration: 10,
population size: 10
(first data), 130 (sec-
ond data)

(1)max(
∑

∀xi∈yj

d(xi,yj)

|yj |
)

(2)min(d(yi,yj)),∀i,j,i 6=j ,

(1) is the maximum value of
the mean of distances within
same classes, and (2) is the
minimum value of distances
between classes.

a combination of the core idea
of K-means with PSO, which it
leads to the clustering algorithm
with low error rate as compared
to K-means.

Cui &
Potok
(2005)
[124]

artificial data sets: ds1
(414, 6429, 9), ds2 (313,
5804, 8), ds3 (204, 5832,
6), ds4 (878, 7454, 10)
(1st : number of docu-
ments, 2nd : number of
terms, 3rd : number of
classes)

c1 = c2 = 1.49, w =
0.72 (in the PSO, w
reduces 1% at each it-
eration but for hybrid
it is constant), itera-
tion: 50, population
size: 50

ADVDC =∑Nc

i=1
[

∑Pi

j=1
d(Oi,mi,j)

Pi
]

Nc
,

mi,j denotes the jth docu-
ment vector belongs to the
cluster i, Oi is the centroid
vector of ith cluster, Pi
stands for the document
number belongs to the clus-
ter Ci, and Nc stand for the
cluster number.

an hybrid PSO-Kmeans doc-
ument clustering algorithm
presents to performs fast doc-
ument clustering. The cluster
quality measured with ADVDC
(average distance between docu-
ments and the cluster centroid)
which the smaller ADVDC
value results the more compact
clusters.

Merwe
& En-
gel-
brecht
(2003)
[125]

two 2-dimensional ar-
tificial data set (n=400
with c=2 and n=600
with c=4), Iris (n=150,
c=3, d=4), Wine
(n=178, c=3, d=13),
Breast-cancer (d=9,
c=2), Automotive
(n=500, d=11), n: num-
ber of data, c: number
of class, d : number of
attribute

c1 = c2 = 1.49, w =
0.72, iteration: 1000,
population size 10

∑Nc

j=1
[
∑

∀Zp∈Cij

d(Zp,mj)

|Cij |
]

Nc
,

|Cij | is the number of data
vectors belonging to cluster
Cij , mj refers to the jth
cluster centroid, Zp denotes
the centroid vector of cluster
j, and Nc is the number of
the cluster centroid vectors.

the result of the K-means algo-
rithm utilized as one particle,
while the rest of the swarm is
initialized randomly. The qual-
ity is measured by the low intra-
cluster (distance between data
within a cluster), and high inter-
cluster distance (distance be-
tween the centroids of the clus-
ters).

Xiao
et al.
(2006)
[126]

1st data set for train-
ing and developing nor-
mal clusters (97,278 nor-
mal samples) and the
2nd data set for evalua-
tion (60,593 normal and
250,436 attack samples)
from KDDCup 1999

w decreases linearly
by (w1 − w2) ∗
Max iter−iter
Max iter

+ w2,
limit the velocity to
sign(vid)vdmax if it
exceeds a positive
constant value vdmax

f = 1
1+Jc

, Jc =∑k

j=1

∑
Xi∈Cj

d(Xi, Zj),

d(Xi, Zj) is Euclidean dis-
tance between a data point
Xi and the cluster center Zj .

it is an anomaly intrusion detec-
tion system based on combina-
tion of PSO (for initializing K
cluster centroids) and K-means
(for local search ability to stable
the centroids). The results show
a false positive rate of 2.8% and
the detection rate of 86%.

Our
ap-
proach

1st data set for training
(5,240 normal and 530
attack instances), 2nd
and 3rd data sets for
evaluation (2,110 nor-
mal and 866 attack, and
1,545 normal and 486
attack instances) from
three CCN scenarios

c1=c2=2, w lin-
early decreases by
w ∗ Wdamp (Inertia
Weight Damping
Ratio), position and
velocity limit by Eqs.
(2.5) and (2.6), iter-
ation: 1000, number
of particles: 25

well-separated clusters
through DBI (Eq. (3.5)) and
local optimization through
MSE (Eq. (3.1)).

a fuzzy anomaly detection
method in two phases, training
and detection (section 3.3). This
method leads to well-separated
clusters, high detection rate,
and low false positive rate at the
same time as compared to some
other well-known methods.
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3.1 Related Work

So far, there has been no attempt to further evaluate and compare hybrid intelligent algorithms

for anomaly detection in NDN/CCN. In this dissertation, we are concerned with a first attempt

to investigate and compare the performance of some hybrid intelligent algorithms for anomaly

detection over CCN’s traffics, then introduce a novel method to outperform preexisting algorithms.

Using hybrid algorithms for improving the clustering performance is not a novel idea. The novelty

of our proposed method is using a swarm intelligence algorithm, specifically PSO algorithm, with K-

means in order to optimize clustering results based on two simultaneous metrics: (1) well-separated

clusters by low intra-cluster and high inter-cluster distances and (2) local optimization by MSE

(Mean Square Error). We apply a new boundary handling approach for PSO algorithm to not

only select linearly the best set of parameters but fulfill also exploration and exploitation issues.

Then, we propose a fuzzy detection method by the combination of two distance-based methods as

classification and outlier. We design this hybrid system over CCNs to find the optimal number

of clusters with high separation from neighbor clusters and low compactness of local data points,

increase detection rate, and decrease false positive rate at the same time. Table 3.1 summarizes

the comparison of applied PSO with K-means in different domains and with various parameters.

3.2 Clustering Problem

Mean Square Error (MSE) is the average pairwise distance between data points and the corre-

sponding cluster centroids. Usually distance is Euclidean distance, but other metrics are also used.

Given the set of cluster centroids (c), the set of corresponding data points (x ), cx denotes the clus-

ter centroid corresponding to the x, and N is the number of data points, MSE can be calculated

as:

MSE =
1

N

N∑
i=1

d(xi, cx)2 (3.1)

In order to determine the correct and the optimal number of clusters, we must choose the validation

criteria. There are several methods (such as K-means) which try to minimize the MSE between

data vectors and their cluster centroid to verify the clustering goodness [119, 127]. But, MSE is

not enough and suitable metric for determining the number of the clusters, since it decreases as

the number of cluster increases. In fact, the optimal MSE would be number of the cluster equals

to data set points, and the MSE=0. Therefore, we apply Davies Bouldin Index (DBI) [128] as the
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criterion since, in our experiments, we have found it quite reliable among the variety of alternative

internal clustering validation metrics; with regard to pointing out the correct number of clusters.

DBI takes into account both compactness (intra-cluster diversity) and separation (inter-cluster

diversity) criteria that makes similar data points within the same clusters and places other data

points in distinct clusters. The intra-cluster diversity of a cluster j is calculated as:

MSEj =
1

N

N∑
i=1

d(xi, cx)2 (3.2)

The inter-cluster distance of the cluster i and j is measured as the distance between their centroids

ci and cj . According to Eq. (3.3), the closeness of the two clusters can be calculated by the sum of

their MSE divided by the distance of their centroids.

Closenessi,j =
MSEi +MSEj

d(ci, cj)
(3.3)

Small value of Closenessi,j denotes that the clusters are separated and a large value denotes that

the clusters are close to each other. To calculate DBI value, the highest value from Eq. (3.3) is

assigned to cluster as its cluster similarity:

Closenessi = max(Closenessi,j), i 6= j (3.4)

Finally, the overall DBI validity is defined according to Eq. (3.5), which the lower DBI value means

better clustering result.

DBI =
1

M

M∑
i=1

Closenessi (3.5)

3.3 Proposed Fuzzy Anomaly Detection System

This section presents the details of our proposed method. Proposed fuzzy anomaly detection system

consists of two phases: training and detection. Fig. 3-1 shows the proposed fuzzy anomaly detection

system steps. Each phase is also described as follows.

3.3.1 Training Phase

The training phase is based on the hybridization of PSO and K-means clustering algorithm with

two simultaneous cost functions: well-separated clusters (low intra-cluster distance and high inter-
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Figure 3-1: Two steps of the proposed fuzzy anomaly detection system

cluster distance) by DBI and local optimization by MSE to find the optimal number of clusters.

Before training process, data samples should be normalized into [0 1], when dealing with parameters

of different units and scales [129, 130]. The steps of the training phase is presented as follows:

Step 1: Define problem and PSO parameters

1.nV ar: number of the cluster centroids, nPop: size of the population;

2. Define constriction coefficients parameters, c1 = c2 = 2 and initially w = 1;

3. Define inertia weight damping ratio (Wdamp = 0.99) to linearly decrease w;

4. Define position and velocity limits as V armax = 1 and V armin = 0;

5. An initial population is generated based on the nPop with following parameters:

particle.Position = a m×nV ar matrix of random numbers generated from the continuous uniform

distributions with lower (V armin) and upper (V armax) endpoints. m denotes size of the data set

features;

particle.Cost = calculate the DBI for each particle based on the generated particle.position;

particle.V elocity = a zero matrix in m× nV ar size;

particle.Sol = [], (Sol is a structure of two objective functions: Cost1 (DBI) and Cost2 (MSE));

particle.Best.Position = [] (keep the personal best of the position);
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particle.Best.Cost = [] (keep the personal best of the cost);

particle.Best.Sol = [] (keep the personal best of the Sol);

6. Globalbest = [] (keep the global best of swarm);

7. Repeat the following loop until the target or maximum iteration is completed:

8. Select Particle(i), i = 1, 2, ..., nPop and run the following PSO algorithm for Particle(i):

8.1. Update velocity by Eq. (2.3);

8.2. Apply velocity limits by Eq. (2.5);

8.3. Update position by Eq. (2.4);

8.4. Velocity mirror effect by Eq. (2.6);

8.5. Apply position limits by Eq. (2.5);

8.6. Evaluation of two objective functions, DBI by Eq. (3.5) and MSE by Eq. (3.1);

8.7. Update personal best:

if (particle(i).Cost == particle(i).Best.Cost) AND

(particle(i).Sol.MSE < particle(i).Best.Sol.MSE)

particle(i).Best.Position = particle(i).Position;

particle(i).Best.Sol = particle(i).Sol;

else if (particle(i).Cost < particle(i).Best.Cost)

particle(i).Best.Position = particle(i).Position;

particle(i).Best.Cost = particle(i).Cost;

particle(i).Best.Sol = particle(i).Sol;

end

end;

8.8. Update global best:

if((particle(i).Best.Cost == GlobalBest.Cost) AND

(particle(i).Best.Sol.MSE < GlobalBest.Sol.MSE))

OR (particle(i).Best.Cost < GlobalBest.Cost)

GlobalBest = particle(i).Best;

end;

9. if i > nPop go to the step 10; otherwise, set i = i+ 1 and go to the step 8;

10. Update w by w = w ∗Wdamp;

11. If the maximum iteration or predefined target is not reached, set i = 1 and go to the step 7;

Otherwise, run K-means clustering algorithm by the obtained positions of cluster centroids from
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PSO algorithm.

After the main procedure of training phase, each formed cluster is labeled based on the target

(original) classes in training data set. It is highly probable that the clusters containing normal

data (correct classification) will have a number of abnormal data (incorrect classification) and vice

versa. Therefore, we assigned a goodness value in range of [0 1] for each formed cluster by purity

metric. The purity metric determines the frequency of the most common category/class into each

cluster:

Purity =
1

n

k∑
q=1

max
1≤j≤l

njq (3.6)

Where, n is the total number of samples; l is the number of categories, njq is the number of samples

in cluster q that belongs to the original class j(1 ≤ j ≤ l). A large purity (close to 1) is desired for

a good clustering. If the all samples (data) in a cluster have the same class, the purity value set to

1 as a pure cluster. This purity metric (goodness value) is used in the detection phase.

3.3.2 Detection Phase

The defined optimal placement of cluster centroids and data objects from training phase are sent

to the second phase for outlier and anomaly detection when new monitoring data enter. In the

detection phase, a fuzzy decision approach applied to detect attacks and anomalies. We deploy a

combination of two distance-based methods, i.e., classification and outlier:

1 Classification: The distances between a data object and each clusters are calculated using

the goodness value of the cluster × average linkage. Average linkage approach considers small

variances, because it considers all members in the cluster rather than just a single point.

However, it tends to be less influenced by extreme values than other distance methods [131].

A data object is classified as normal if it is closer to the one of the normal clusters than to

the anomalous ones, and vice versa. This distance-based classification allows detecting known

kind of abnormal or normal traffics with similar characteristics as in the training data set.

2 Outlier: An outlier (noise) is a data object that differs considerably from most other objects,

which can be considered as an anomaly. For outlier detection, only the distance to the

normal clusters (obtained from classification phase) is calculated by goodness value of the

closer normal cluster × Chebyshev distance. In the Chebyshev distance (Eq. (3.7)), distance

between two vectors is the greatest of their differences along any coordinate dimension. It
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allows to detect better new anomalies that do not appear in the training data set. Because it

takes into account the maximum value distance approach between any coordinate dimension

that would lead to become more strict against data objects measurement.

Dchebyshev(p, c) = max(|pi − ci|) (3.7)

Where, p is the data object and c is the centroids of the normal cluster with standard coordinates

pi and ci.

The proposed fuzzy detection method consists of two inputs (classification and outlier), one output,

and four main parts: fuzzification, rules, inference engine, and defuzzification. In fuzzification step,

a crisp set of input data are converted to a fuzzy set using fuzzy linguistic terms and membership

functions. In step 2, we construct rule base. Afterwards, an inference is made and combined based

on a set of rules. In the defuzzification step, the results of fuzzy output are mapped to a crisp

(non-fuzzy) output using the membership functions. Finally, if the crisp output is bigger than a

predefined threshold, an object is considered as an abnormal instance; otherwise, an object is a

normal instance. This fuzzy approach can improve our performance criteria (high detection rate

and low false positive rate at the same time) as compared to a non-fuzzy approach.

3.4 Experimental Results and Discussion

3.4.1 Performance Measurement

We compared and evaluated the training phase of our proposed method with standalone PSO and

K-means algorithms as well as preexisting methods from the literature as [122], [123], [124], [125],

and [126] which used different parameters and cost functions. We also employed both MSE and

DBI criteria on all evaluations. In order to evaluate the performance of each method, we use the

Detection Rate (DR), False Positive Rate (FPR) and F-measure criteria. The detection rate is the

number of intrusions detected by the system from Eq. (3.8), the false positive rate is the number

of normal traffics that was incorrectly classified as intrusion from Eq. (3.9) and F-measure is the

weighted harmonic mean of precision (positive predictive value) and recall (detection rate) from

Eq. (3.11).

DR (Recall) =
TruePositive

TruePositive+ FalseNegative
(3.8)

FPR =
FalsePositive

FalsePositive+ TrueNegative
(3.9)
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Precision =
TruePositive

TruePositive+ FalsePositive
(3.10)

F −measure = 2× Precision × Recall

Precision+Recall
(3.11)

True negative and true positive correspond to a correct operating of the system when traffics are

successfully predicted as normal and attacks, respectively. False positive refers to normal traffics

when are predicted as attack, and false negative is attack traffic when incorrectly predicted as

normal traffic.

Table 3.2: The five applied benchmark data sets

Data set No. of features No. of classes No. of patterns

Iris 4 3 150
Glass 9 6 214
Wine 13 3 178
Ionosphere 34 2 351
Zoo 17 7 101

3.4.2 Benchmarking the proposed method

To assess the robustness and accuracy of our proposed method, we applied the five classic benchmark

problems from the UCI machine learning repository [132]. Table 3.2 shows the main characteristics

of these data sets. Our proposed method and the other methods mentioned in section 3.4.1 have

been employed to these problems. All experiments were run 20 times, and the average classification

error (Ave.) and its standard deviation (S.D.) were computed. In the experiments, 70% of data

set is used as training data set in the training phase and the rest is considered as testing data set

in the detection phase in order to validate the functionality of the proposed method. We assume

that the normal clusters denote the correct classification and abnormal (attack) clusters denote

the incorrect classification. For instance, given a data object d in a test data set belongings to

class A. If it gets assigned to class B by the proposed classification method in the second phase,

class B is an incorrect class/category for data object d. Hereby, the formed cluster belongings to

class B is assumed to be an abnormal cluster for the data object d. In contrast, if data object d

is closer to a cluster labeled class A (we called it normal cluster), the outlier distance should be

calculated. Then, according to the detection/classification phase of the proposed method, both

classification and outlier values are sent to the fuzzy module. If the crisp output is smaller than

the predefined threshold, data object d seems normal instance (correct classification); otherwise,

it seems anomalous instance (incorrect classification). The results have been summarized in Table
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3.3. It can be seen in the table that our proposed fuzzy method tends to obtain a more accurate

classification rate (Ave.) and lower standard deviation (S.D.) as compared to other methods.

Table 3.3: Classification error (%) for our proposed method and applied methods

Method Type Criteria Data set
Iris Glass Wine Ionosphere Zoo

K-means
Training

Ave. 6.86 19.54 18.2 11.64 10.83
S.D. 2.34 3.61 3.66 3.28 2.73

Test
Ave. 5.53 17.59 18.26 11.12 9.42
S.D. 2.32 3.12 3.76 3.1 2.6

PSO (MSE)
Training

Ave. 5.42 17.41 17.8 10.66 10.35
S.D. 2.14 3.08 3.01 2.86 2.73

Test
Ave. 4.84 16.41 16.81 9.59 9.64
S.D. 2.24 3.3 2.98 2.78 2.2

PSO (DBI, MSE)
Training

Ave. 4.9 16.85 17.46 10.75 9.98
S.D. 1.73 3.01 2.56 3.14 2.48

Test
Ave. 4.59 16.08 16.41 9.17 8.64
S.D. 1.62 2.85 2.41 2.72 2.6

PSO-Kmeans (MSE)
Training

Ave. 5.1 16.89 17.54 11.94 11.4
S.D. 1.23 3.08 3.56 2.91 2.55

Test
Ave. 4.77 16.81 17.48 9.96 9.35
S.D. 1.26 3.1 3.26 2.78 2.6

Chen [122]
Training

Ave. 4.87 16.32 15.24 11.16 8.58
S.D. 1.28 3.32 3.4 2.48 2.4

Test
Ave. 5.4 16.07 15.08 9.92 8.06
S.D. 1.4 3.63 2.92 2.39 2.02

Zhenkui [123]
Training

Ave. 5.92 16.54 16.34 10.42 10.03
S.D. 1.35 3.47 3.4 3.36 3.3

Test
Ave. 5.76 16.43 15.6 9.88 10.05
S.D. 1.5 3.51 3.04 2.68 2.75

Cui [124]
Training

Ave. 5.84 18.72 16.98 12.24 11.52
S.D. 1.34 3.78 3.3 3.79 3.17

Test
Ave. 5.48 17.18 15.82 11.86 9.56
S.D. 1.32 3.61 2.98 3.61 3.25

Merwe [125]
Training

Ave. 6.01 18.59 17.65 10.45 9.31
S.D. 1.97 4.54 4.76 4.87 5.01

Test
Ave. 5.98 17.64 16.16 11.06 9.11
S.D. 1.75 4.85 5.02 4.85 3.97

Xiao [126]
Training

Ave. 4.91 16.29 15.62 11.18 9.49
S.D. 1.23 3.33 3.9 2.98 2.35

Test
Ave. 4.52 16.18 15.14 10.22 8.09
S.D. 1.38 3.11 3.01 2.84 2.23

Our Method
PSO-Kmeans (DBI, MSE)

Training
Ave. 4.01 14.44 14.88 10.04 7.98
S.D. 1.03 2.29 2.16 2.31 2.11

Test
Ave. 3.58 13.14 13.04 9.03 7.47
S.D. 0.98 2.12 2.01 2.26 1.88

3.4.3 Feature Construction

We employed simple features that can be extracted by inspecting the headers of the network packets.

These intrinsic features are the duration of the connection, source host, destination host, source

interface, and destination interface [133]. We also used the following features in each 2 seconds
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time interval:

1 Total number of packets sent from and to the given interface in the considered time interval,

2 Total number of bytes sent from and to the given interface in the considered time interval,

3 Number of different source-destination pairs matching the given content name that being

observed in the considered time interval.

The motivation of the first two features is that the number of packets and bytes allow to detect

anomalies in traffic volume, and the third feature allows to detect network and interface scans as

well as distributed attacks, which both result in increased number of source-destination pairs [134].

Table 3.4: CCNx Traffic Generation

Type of traffic Applied tools

Normal
(5240 records)

(1) ccnsendchunks with ccncatchunks2
(2) ccnputfile with ccngetfile
(3) ccnchat

Attack
(530 records)

(1) ccndsmoketest for (distributed) Interest flooding attack
(2) make abnormal traffics to saturate channels by sending very small contents (decreasing
buffer size) from owner of origin, called Abnormal Source Behavior
(3) do not forward contents deliberately to requester(s), called Abnormal Unreachable
Content Behavior

3.4.4 Training Phase

Since there is no reference data for content-centric networks as well as real Internet traffic, we used

the CCNx software of PARC (www.ccnx.org) to run a scenario for generating of CCN traffics in

a local testbed. This local testbed includes 13 Linux (Ubuntu) machines, three of them acting as

servers (content origins) and the other ones as clients. Then, we ran wireshark tool to capture CCNx

packets. We performed the following experiments with the main tools in CCNx: ccnsendchunks

(to upload objects/files into the CCN repository), ccncatchunks2 (to receive desired contents and

to write them to stdout), ccnputfile (to publish a local file in the CCNx repository), ccngetfile (to

retrieve published content and writes it to the local file), ccndsmoketest (to send the large number of

Interests -Interest flooding attacks- toward a host/network), and ccnchat (to run a chat channel).

We conducted three attack instances for both training and detection phases including Interest

flooding attacks, flooding a victim router by sending too many small contents from owner of origin

content (we called it Abnormal Source Behavior) and making content unreachable for requesters
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(we called it Abnormal Unreachable Content Behavior). We also carried out an anomaly instance in

the detection phase as serving fake response (we called it Abnormal Forwarder Capacity Behavior)

which does not appear in the training data set. The structure of the generated traffics are shown

in Table 3.4 for training and Tables 3.5 and 3.6 for testing data sets. For the PSO algorithm,

Table 3.5: First scenario of CCNx traffic

Type of traffic Applied tools

Normal
(2110 records)

(1) HttpProxy application to run a HTTP proxy that converts HTTP
Gets to CCN data.
(2) ccnputfile with ccngetfile
(3) ccnchat

Attack
(866 records)

(1) ccndsmoketest for Interest flooding attack
(2) Abnormal Source Behavior
(3) make capacity limitation in count of content objects by for-
warder/router to discard cached content objects deliberately as Abnor-
mal Forwarder Capacity Behavior

Table 3.6: Second scenario of CCNx traffic

Type of traffic Applied tools

Normal
(1545 records)

(1) ccnsendchunks with ccncatchunks2
(2) ccnputfile with ccngetfile
(3) HttpProxy application

Attack
(492 records)

(1) Abnormal Source Behavior
(2) Abnormal Unreachable Content Behavior
(3) Abnormal Forwarder Capacity Behavior

we used swarm size of 25 particles, the number of iterations set to 1000, and other parameters set

according to subsection 3.3.1. The proposed hybrid method was implemented by the MATLAB

software on an Intel Pentium 2.13 GHz CPU, 4 GB RAM running Windows 7 Ultimate.

3.4.5 Detection Phase

We use MATLAB fuzzy logic toolbox for fuzzy rule based intrusion detection. The detection phase

is structured with the following components:

1 Two fuzzy set of input variables: Classification and Outlier;

classification membership: Very Close, Close, Average, Far, Very Far ; outlier membership:

Close, Average, Far.

2 A fuzzy set of output variable: Alarm; alarm membership: Normal, Less Prone, High Prone,

Abnormal.

3 Fuzzy membership functions: see section 3.4.7.
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4 Fuzzy rules: 15 rules (Tables 3.7 and 3.8).

Table 3.7: Rules Matrix

Outlier Classification (Cls.)
Very close Close Average Far Very far

Close Normal Normal Normal Low prone Low prone

Average Low prone Low prone High prone High prone High prone

Far High prone High prone Abnormal Abnormal Abnormal

Table 3.8: Some fuzzy rules in proposed fuzzy system

IF Cls.=Average and Outlier=Close THEN Alarm=Normal
IF Cls.=Close and Outlier=Average THEN Alarm=LowProne
IF Cls.=High and Outlier=Average THEN Alarm=HighProne
IF Cls.=Very far and Outlier=Far THEN Alarm=Abnormal

5 Inference: Mamdani fuzzy inference by fuzzy set operations as max and min for OR and

AND, respectively.

6 Defuzzifier: Center of Gravity algorithm:

Center of Gravity =

∫max
min u µ(u) d(u)∫max
min µ(u) d(u)

(3.12)

Where, u denotes the output variable, µ is the membership function after accumulation, and

min and max are lower and upper limit for defuzzification, respectively.

A sample solution area (fuzzy inference) of proposed fuzzy detection phase is given in Fig. 3-2.

3.4.6 Results of Training Phase

In this section, the performance of proposed method and preexisting methods from the literature are

compared. Since null clusters might appear in the results, these clusters are removed and we count

the correct number of K. The experiments on each method were repeated 10 times independently

with several K values.

The trends of minimum and maximum ratio of the DR and the FPR at the same time for

applied methods are shown in Fig. 3-3. Detailed results are also given in Table 3.9. The proposed

method outperforms other preexisting methods in terms of the DR, the FPR and the F-measure

at the same time. The PSO (DBI and MSE) could satisfy DR by 99% when initial K is between

300 and 500. However, it could not satisfy a suitable FPR. By the hybridization of K-means
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Figure 3-2: The sample solution area (fuzzy inference) of proposed fuzzy detection system

Figure 3-3: The trends of minimum and maximum combination of DR and FPR at the same time

algorithm and PSO (DBI and MSE), we could gain suitable results by very low FPR and very

high DR at the same time. In contrast, none of other methods meet very high DR and very low

FPR at the same time. According to the Table 3.9, by increasing of initial parameter K, results

are more efficient with the optimal number of clusters, high detection rate, low false positive rate

and greater F-measure at the same time. The results clearly show that our proposed method offers

the best optimized solution in comparison with the other methods when K=400 by DR=100%,
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Table 3.9: Comparison of our proposed method with some other methods

K Criteria Kmeans PSO
(MSE)

PSO
(DBI,
MSE)

PSO-
Kmeans
(MSE)

Chen
[122]

Zhenkui
[123]

Cui
[124]

Merwe
[125]

Xiao
[126]

Our
Method
PSO-
Kmeans
(DBI,
MSE)

50

Correct K 12 10 10 14 15 15 17 18 18 10
DR (%) 56.18 68.18 77.11 69.12 71.12 73.92 76.55 74.65 73.12 80.22

FPR (%) 9.19 5.22 7.33 13.157 12.05 12.15 9.43 9.96 8.12 3.489
F-measure (%) 67.81 78.62 83.58 75.77 77.6 79.4 82.7 83.11 80.65 87.32

75

Correct K 15 12 10 15 15 14 18 18 16 14
DR (%) 47.24 68.18 77.11 61.05 63.5 72.14 66.55 65.78 74.12 80.22

FPR (%) 9.338 4.28 3.704 3.122 9.287 13.165 4.32 5.03 9.12 3.489
F-measure (%) 60.31 79.05 85.28 74.36 76.15 77.81 77.87 76.84 80.85 87.32

100

Correct K 15 15 14 15 16 17 20 19 16 14
DR (%) 47.24 68.18 77.11 67.145 64.5 72.14 76.55 75.83 76.12 80.22

FPR (%) 8.558 6.431 7.839 7.819 7.182 12.314 8.12 9.12 12.8 3.489
F-measure (%) 60.61 78.06 83.35 76.72 75.11 78.17 82.85 80.68 80.52 87.32

125

Correct K 17 10 15 18 18 15 21 21 17 11
DR (%) 56.18 68.18 77.11 65.123 66.5 72.14 66.55 67.89 77.12 80.22

FPR (%) 4.738 4.102 3.505 3.935 8.134 9.637 2.98 3.78 10.023 3.489
F-measure (%) 69.81 79.31 85.37 77.02 76.12 79.33 78.5 78.95 82.38 87.32

150

Correct K 11 14 16 13 14 14 15 16 17 16
DR (%) 42.93 68.18 77.11 71.147 71.119 72.14 76.55 77.93 77.14 80.22

FPR (%) 3.738 1.345 1.345 2.101 5.98 12.508 8.88 7.64 12.209 1.314
F-measure (%) 58.53 80.43 86.41 82.12 80.28 78.09 82.51 85.89 81.43 88.38

175

Correct K 22 22 20 21 25 31 30 32 17 20
DR (%) 71.903 68.18 77.11 70.548 72.119 83.34 78.95 76.89 77.06 80.22

FPR (%) 4.489 3.13 3.002 2.44 3.98 15.98 14.14 13.54 3.096 2.738
F-measure (%) 81.51 79.58 85.61 81.55 81.88 83.55 81.71 82.48 85.53 87.68

200

Correct K 16 18 18 19 22 21 20 19 20 18
DR (%) 64.24 71.11 77.11 74.343 72.119 73.34 72.95 74.35 81.66 80.22

FPR (%) 2.738 3.002 1.376 2.739 9.98 12.436 12.15 13.14 14.096 1.314
F-measure (%) 76.81 81.67 88.71 83.95 79.16 78.9 78.76 80.32 83.37 88.38

250

Correct K 16 17 15 19 19 16 21 18 18 15
DR (%) 64.24 70.34 77.11 71.01 82.119 72.245 75.95 79.45 72.66 80.22

FPR (%) 2.738 2.013 3.91 4.11 15.95 5.86 1.16 3.12 3.101 2.738
F-measure (%) 76.81 81.61 85.18 81.08 82.85 81.1 85.74 86.83 82.66 87.7

300

Correct K 21 20 14 20 21 18 18 19 17 14
DR (%) 74.82 88.27 99 88.132 81.44 89.911 90.106 88.34 94.109 100

FPR (%) 10.314 9.12 17.352 9.19 11.209 17.33 24.51 26.93 16.91 9.117
F-measure (%) 80.74 89.36 91.44 89.28 84.5 86.59 83.86 81.14 88.71 95.64

350

Correct K 21 25 26 22 23 23 26 25 20 26
DR (%) 77.22 90.122 99 88.668 88.44 95.22 92.20 93.67 97.109 100

FPR (%) 12.38 16.981 9.676 10.254 9.209 9.164 12.12 11.39 7.454 6.809
F-measure (%) 81.4 86.96 94.84 89.1 89.45 93.13 90.19 90.83 94.91 96.71

400

Correct K 16 21 25 19 21 28 28 26 27 27
DR (%) 77.22 90.122 99 92.55 95.29 94.005 96.20 94.23 97.077 100

FPR (%) 12.38 16.981 17.998 10.45 6.45 15.45 13.12 14.67 14.968 1.847
F-measure (%) 81.37 86.95 90.89 91.21 94.64 89.82 91.92 88.45 91.76 98.99

500

Correct K 23 24 21 22 25 31 33 33 27 21
DR (%) 77.22 90.122 99 96.68 94.29 96.005 96.78 96.15 96.807 100

FPR (%) 12.738 7.672 19.368 8.018 16.45 17.45 17.94 17.63 12.216 12.379
F-measure (%) 81.25 91.09 90.59 94.43 89.42 89.88 90.01 90.03 92.54 94.17

FPR=1.847%, F-measure=98.99% and the correct number of K=27. We show the fluctuation of

variations of two cost functions during the training phase in Figs. 3-4 and 3-5. The results clearly

show that by changing of clustering values based on DBI, MSE changes in a irregular manner

through the different iterations. For instance, in the last iteration, the minimum MSE is 8.391, but
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the lowest MSE is in iteration 915 by 8.3458. When DBI is decreasing to find optimal clustering

results in the iterations between 100 and 800, there are many fluctuations for MSE value. We

Figure 3-4: 1st cost function (DBI) in 1000 iterations

Figure 3-5: 2nd cost function (MSE) in 1000 iterations

also show the trend of changes of DBI and MSE values during the training phase when the DR

was 100% and K is between 300 and 500 (Figs. 3-6 and 3-7). According to Fig. 3-6, the best and

the worst procedure of reducing the DBI value are for K=300 and 400, respectively. In contrast,

the best and the worst procedure of reducing the MSE value are for K=500 and 300 as shown in

Fig. 3-7. The best DBI value for K=300 led to the worst value in MSE. Moreover, the highest

changes for minimizing the two applied cost functions during the training phase are for K=400 and

500. These results verify that the MSE parameter cannot be singly used as a good performance
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criterion for finding the optimal placement of clusters centroids and data objects. We send the

optimal outcomes from our proposed method (DR = 100%, FPR = 1.847%, F-measure = 89.99%

and K = 27) and the best combination of the DR, the FPR and the F-measure from other methods

to the second phase for fuzzy anomaly detection.

Figure 3-6: The best cost (DBI) of four clustering results

Figure 3-7: The MSE value of four clustering results

3.4.7 Results of Detection Phase

In order to obtain results on how the proposed fuzzy anomaly detection system can perform in

real scenarios, we applied it to packet traces recorded at two scenarios with 17 Linux machines (10

clients, 4 servers, and 3 routers). These traces are from CCNx data repository of the University of
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(a) Classification (trapmf) (b) Outlier (trapmf) (c) Alarm (trapmf)

(d) Classification (dsigmf) (e) Outlier (dsigmf) (f) Alarm (dsigmf)

(g) Classification (trimf) (h) Outlier (trimf) (i) Alarm (trimf)

(j) Classification (psigmf) (k) Outlier (psigmf) (l) Alarm (psigmf)

(m) Classification (gauss2mf) (n) Outlier (gauss2mf) (o) Alarm (gauss2mf)

(p) Classification (gbellmf) (q) Outlier (gbellmf) (r) Alarm (gbellmf)

(s) Classification (gaussmf) (t) Outlier (gaussmf) (u) Alarm (gaussmf)

Figure 3-8: Seven applied membership functions in detection phase (two inputs and one output)
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Politecnica Catalunya (UPC) which are shown in Tables 3.5 and 3.6. Each trace file contains about

20 minutes of monitored traffic. According to Tables 3.5 and 3.6, there is a new type of normal

traffic (HttpProxy) and a new type of anomaly traffic (Abnormal Forwarder Capacity Behavior)

which have not appeared in the training data set. We also define a threshold as dthreshold=0.5.

Each new monitored CCN packet is sent as input to the fuzzy detection phase in order to detect

attacks and anomalies. According to the proposed fuzzy anomaly detection system (section 3.3.2),

we calculate the classification distance to find the nearest cluster. If the distance is closer to one

of the normal clusters, we calculate the outlier. If the outlier outcome is bigger than a predefined

threshold, the packet is treated as an anomaly. In contrast, if the classification distance is closer

to one of the attack clusters, it gets treated as an attack packet.

Based on the different fuzzy membership functions, the fuzzy detection method produces dif-

ferent results. To find the most ideal system, we apply seven membership functions for each

applied methods including trapmf (Trapezoidal-shaped), dsigmf (Difference between two sigmoidal

functions), trimf (Triangular-shaped), psigmf (Product of two sigmoidal), gauss2mf (Gaussian com-

bination), gbellmf (Generalized bell-shaped), and gaussmf (Gaussian curve). Fig. 3-8 illustrates

the applied membership functions. We integrated each method by optimal results gained from the

training phase (Table 3.9) with our proposed fuzzy detection method in the second phase. After-

wards, we compare the performance of each method based on the RMSE, minimum and maximum

error between target output and predicted output. The comparison results between methods in

two applied data sets (Tables 3.5 and 3.6) are summarized in Table 3.10. We found out that the

RMSE between target and predicted output is absolutely different. We marked the three best

results for each membership function. The most appropriate results based on the RMSE, minimum

and maximum error include our proposed method (PSO-Kmeans (DBI, MSE)), PSO (DBI, MSE),

methods [122] and [126], respectively. By the integration of DBI (well-separated cost) and MSE

(local optimization cost), PSO could considerably improve the results in detection phase. As shown,

our proposed method is very well suited for most of the membership functions based on the less

RMSE, minimum and maximum error values. Performance of trapmf and gauss2mf MF in our pro-

posed method are better than other MF and applied methods. For anomaly detection performance

measurement, we continue our experiment by applying well-performing and preexisting methods

from Table 3.10 on the aforementioned data sets. The performance of fuzzy detection approach is

also compared with the non-fuzzy approach. In order to validate the CCNx traffic classification

performance of our fuzzy detector, we use the Receiver Operating Characteristic (ROC) curve anal-
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Table 3.10: Comparison of membership functions for fuzzy anomaly detection purposes

Methods Data set Criteria trapmf dsigmf trimf psigmf gauss2mf gbellmf gaussmf

K-means

Table 3.5
RMSE 0.1037 0.2397 0.2713 0.2268 0.3039 0.1943 0.1949

Min error -0.253 -0.2992 -0.2216 -0.9755 -1.5892 -1.058 -0.4240
Max error 0.8934 0.8635 0.995 0.9334 1.0023 0.9683 0.9875

Table 3.6
RMSE 0.0663 0.1596 0.1211 0.1238 0.2202 0.2703 0.2009

Min error -0.8817 -0.2088 -0.432 -0.3606 -1.1779 -0.4503 -0.6663
Max error 0.9994 0.935 0.6265 0.3563 0.9966 0.9880 1.008

PSO (MSE)

Table 3.5
RMSE 0.0759 0.092 0.103 0.1162 0.0953 0.1046 0.0865

Min error -0.2625 -0.7765 -0.3011 -0.727 -0.6035 -0.6303 -0.6541
Max error 0.4862 0.7926 0.4364 0.9918 0.3987 0.8653 0.8337

Table 3.6
RMSE 0.1295 0.1592 0.2129 0.2604 0.1665 0.1785 0.1728

Min error -0.9444 -0.2385 -0.2004 -1.0268 -0.3541 -1.2154 -0.4445
Max error 0.8943 0.8267 1.0337 0.9501 0.8683 0.4131 0.9616

PSO (DBI, MSE)

Table 3.5
RMSE 0.6525 0.1817 0.1541 0.1432 0.2024 0.0723 0.1587

Min error -0.7457 -0.276 -0.6548 -0.4627 -0.2643 -0.584 -0.9233
Max error 0.937 0.8859 0.4301 0.9398 0.9489 0.5771 0.8303

Table 3.6
RMSE 0.0524 0.0892 0.1251 0.1225 0.0669 0.25 0.0925

Min error -0.5833 -0.5382 -0.7248 -0.2865 -0.6324 -0.9254 -0.4052
Max error 0.6592 0.8299 0.9487 0.7618 0.5671 0.9618 0.8465

PSO-Kmeans (MSE)

Table 3.5
RMSE 0.1096 0.1381 0.2582 0.2608 0.3255 0.1737 0.1931

Min error -0.5418 -0.2839 -0.3055 -1.173 -1.0158 -0.1510 0.8461
Max error 0.854 0.9903 1.1168 0.915 0.9992 0.9425 0.8425

Table 3.6
RMSE 0.2002 0.1597 0.0979 0.1466 0.2331 0.2647 0.168

Min error -1.1255 -1.1157 -0.5717 -1.3077 -1.005 -0.198 -0.4575
Max error 0.9525 0.6084 0.5921 0.1089 0.998 1.043 0.9459

Chen [122]

Table 3.5
RMSE 0.0927 0.1093 0.0722 0.1135 0.0935 0.0763 0.0581

Min error -0.3177 -0.5658 -0.3461 -0.5126 -0.092 -0.6623 -0.6063
Max error 0.4688 0.8788 0.8808 0.8765 1.003 0.5867 0.6139

Table 3.6
RMSE 0.1156 0.3435 0.1826 0.2317 0.2817 0.23 0.2393

Min error -0.5278 -0.6531 -0.8078 -0.982 -0.9648 -0.1718 -0.565
Max error 0.8821 0.9217 0.7279 0.825 1.0119 0.9886 1.032

Zhenkui [123]

Table 3.5
RMSE 0.1507 0.2584 0.1868 0.2916 0.2523 0.1115 0.2968

Min error -0.4221 -0.6492 -0.8722 -0.3394 -1.074 -0.4625 -1.038
Max error 0.9439 0.7947 0.78 0.836 1.008 0.3892 0.9654

Table 3.6
RMSE 0.1919 0.2442 0.0971 0.1749 0.1374 0.1288 0.1163

Min error -0.2277 -0.6492 -0.3084 -0.5541 -0.6253 -0.7965 -0.3109
Max error 1.0243 0.8691 0.8129 0.8973 0.9699 0.9148 0.8623

Cui [124]

Table 3.5
RMSE 0.0917 0.1971 0.2805 0.2059 0.2891 0.1737 0.1568

Min error -0.5883 -0.494 -0.9252 -0.7737 -0.8936 -0.9185 -0.6149
Max error 0.7866 0.9858 0.9913 1.4086 1.479 1.007 0.6044

Table 3.6
RMSE 0.1749 0.13 0.2525 0.1282 0.2481 0.209 0.1788

Min error -0.5433 -0.5966 -0.6027 -0.3625 -0.9461 -1.139 -0.902
Max error 0.9719 0.4311 0.7168 1.0516 1.085 1.005 0.391

Merwe [125]

Table 3.5
RMSE 0.0921 0.201 0.2612 0.2112 0.2761 0.1872 0.1691

Min error -0.593 -0.5143 -0.8982 -0.8754 -0.9012 -0.9218 -0.6241
Max error 0.7957 0.9936 0.9984 1.4148 1.502 1.019 0.6502

Table 3.6
RMSE 0.1791 0.1256 0.2485 0.1432 0.2516 0.215 0.1889

Min error -0.5553 -0.6041 -0.6081 -0.3702 -0.9333 -1.114 -0.924
Max error 0.9784 0.4394 0.7221 1.0464 1.094 1.055 0.403

Xiao [126]

Table 3.5
RMSE 0.1442 0.0948 0.1206 0.0811 0.0961 0.0848 0.1106

Min error -0.3528 -0.5687 -0.6512 -0.5823 -0.209 -0.5186 -0.3415
Max error 1.0159 0.872 0.556 0.7106 0.8354 0.8223 0.8651

Table 3.6
RMSE 0.2885 0.1871 0.2245 0.2043 0.1849 0.1968 0.3799

Min error -1.391 -1.005 -0.8121 -1.1521 -0.803 -0.2025 -1.3634
Max error 1.0382 0.805 1.0565 0.4807 0.9676 0.9299 0.8228

Our Method

Table 3.5
RMSE 0.0617 0.2525 0.1191 0.0653 0.0664 0.1176 0.3219

Min error -0.4157 -1.0143 -1.0819 -0.5434 -0.581 -0.3657 -1.0182
Max error 0.6002 0.9994 0.6676 0.5124 0.4562 0.8798 1.003

Table 3.6
RMSE 0.0531 0.0738 0.0691 0.2165 0.0657 0.1491 0.0519

Min error -0.5215 -0.5281 -0.671 -0.5261 -0.5759 -0.7349 -0.5331
Max error 0.5208 0.5365 0.488 0.8954 0.6468 0.8061 0.5982
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Table 3.11: The 2 × 2 contingency table (confusion matrix)

True label Predicted label
Negative Positive

Negative a b
Positive c d

ysis, Area Under the Curve (AUC), accuracy, specificity and sensitivity (recall). The ROC curve

provides a way to visually represent how the trade-off between false positive and detection rate

varies for different values of the detection threshold [135]. The AUC summarizes the classification

performance of the classifier in the range [0 1] in which the higher the AUC, the easier to distinguish

attacks from normal traffic [136]. The other applied performance measures can be summarized as

a 2 × 2 table (confusion matrix in Table 3.11):

1. Accuracy: (a+ d)/(a+ b+ c+ d)

2. Specificity (true negative rate): a/(a+ b)

3. Sensitivity (recall): d/(c+ d)

Figs. 3-9 and 3-10 present the fuzzy and non-fuzzy ROC curves of our proposed method and the

other applied methods for 1st scenario. Figs. 3-11 and 3-12 present the ROC curve for both fuzzy

and non-fuzzy approaches in 2nd scenario. As it can be seen in these figures, the detection rate and

the false positive rate of our proposed method (PSO-Kmeans (DBI, MSE)) are better than in the

other methods. This implies a higher number of the correct detection and a lower number of the

false positives. Table 3.12 shows the results of fuzzy and non-fuzzy (crisp) anomaly detection for

two applied testing data sets. As shown in this table, our proposed method classifies data objects

better than the other approaches based on AUC, accuracy, sensitivity and specificity. In addition,

the non-fuzzy anomaly detection approach is often not sufficient in detecting many types of attacks

as compared to a fuzzy detection method.

3.4.8 Computational Order

The computational order of standard PSO algorithm is O(I · S · Cost), where I is the required

generation number, S is the population size, and Cost is the cost function. The computational

complexity of evaluating the cost function depends on the particular cost function under consider-

ation. The applied cost functions in preexisting methods ([122, 123, 124, 125, 126]) are O(N ·K),

where N is the number of data samples and K is the number of clusters. The computational order
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Figure 3-9: ROC curves corresponding to the proposed method and other applied methods for 1st
scenario (fuzzy approach)

Figure 3-10: ROC curves corresponding to the proposed method and other applied methods for 1st
scenario (non-fuzzy approach)

Figure 3-11: ROC curves corresponding to the proposed method and other applied methods for
2nd scenario (fuzzy approach)

of K-means algorithm is O(T · N · K), where T is the number of iterations. The computational

order of proposed training method and preexisting methods from the literature are shown in Table

3.13.
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Figure 3-12: ROC curves corresponding to the proposed method and other applied methods for
2nd scenario (non-fuzzy approach)

Table 3.12: Fuzzy (non-fuzzy) anomaly detection for two applied testing data sets

Method AUC Accuracy Sensitivity (recall) Specificity
mean S.D. mean S.D. mean S.D.

Data set 1: Table 3.5
Our Method 97.44 94.48 0.97 96.88 1.54 95.52 0.79

(93.26) (89.07) (2.35) (90.15) (1.41) (93.51) (1.02)

PSO (DBI, MSE) 95.36 91.38 1.34 91.02 2.45 94.18 1.51
(91.41) (87.3) (2.48) (89.15) (2.03) (91.12) (1.29)

Xiao [126] 92.39 89.61 2.73 89.2 2.83 91.4 1.28
(89.87) (81.74) (3.9) (82.76) (2.97) (88.4) (1.37)

Chen [122] 91.92 88.18 2.84 88.21 2.89 90.98 1.94
(87.37) (81.64) (3.71) (83.33) (3.7) (87.73) (1.17)

Zhenkui [123] 91.37 89.29 2.98 87.07 3.04 90.11 2.08
(87.14) (81.18) (3.88) (82.13) (3.57) (87.61) (2.21)

Cui [124] 90.87 88.63 3.02 87.1 3.12 90.01 2.18
(86.78) (80.51) (3.76) (82.21) (3.85) (87.15) (2.4)

Merwe [125] 89.4 87.74 3.01 86.63 3.31 89.41 2.15
(86.12) (80.2) (3.58) (81.68) (3.72) (87.05) (2.31)

Data set 2: Table 3.6
Our Method 97.41 94.45 0.99 97.65 0.67 96.7 0.99

(92.29) (88.14) (2.84) (89.15) (2.03) (91.57) (1.36)

PSO (DBI, MSE) 95.91 92.01 1.01 93.81 1.43 94.93 1.8
(90.98) (86.8) (2.68) (88.18) (3.96) (90.3) (1.39)

Xiao [126] 92.92 89.84 2.83 88.49 2.19 91.58 1.74
(88.64) (81.06) (3.49) (82.3) (3.19) (86.32) (1.83)

Chen [122] 92.18 89.14 2.78 87.3 0.75 90.43 1.14
(86.67) (80.19) (3.9) (81.82) (3.09) (85.55) (1.98)

Zhenkui [123] 91.71 87.11 2.74 87.21 0.8 90.1 1.22
(86.11) (80.1) (3.99) (81.9) (3.18) (85.33) (2.05)

Cui [124] 91.47 86.98 2.86 87.17 0.91 90.02 1.34
(85.61) (80.06) (3.92) (81.76) (3.41) (85.3) (2.03)

Merwe [125] 90.08 85.49 3.03 86.66 1.03 89.43 1.53
(85.86) (80.01) (3.99) (80.54) (3.68) (85.11) (2.61)

Time Complexity

We compare the computational time of algorithms on the training data set. Table 3.14 shows

the computational time and the times of increment on computational time of the six methods.
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Table 3.13: The computational order of the six methods

Methods Cost function Algorithm

Our Method O(MSE) +O(DBI) = O(N ·K) +O(K2) O(PSO) +O(K −means)
Xiao [126] O(MSE) = O(N ·K) O(PSO)×O(K −means)
Chen [122] O(MSE) = O(N ·K) O(PSO)×O(K −means)
Zhenkui [123] O(MSE) = O(N ·K) O(PSO)×O(K −means)
Cui [124] O(MSE) = O(N ·K) O(PSO) +O(K −means)
Merwe [125] O(MSE) = O(N ·K) O(PSO) +O(K −means)

Table 3.14: The computational time of the six methods

Methods
Computational time
(sec)

Increment time
(sec)

Our Method 791.412 92.381
Xiao [126] 1348.297 478.146
Chen [122] 1203.459 401.678
Zhenkui [123] 1301.763 424.829
Cui [124] 711.359 207.412
Merwe [125] 723.286 289.764

Table 3.14 demonstrates that the proposed method (PSO+Kmeans (DBI, MSE)) seems to be less

time consuming than the other methods except methods [124] and [125] due to the application of

a single cost function. But the proposed method can find the better solution with less times of

increment on computational time than the other five methods due to its fast convergence speed.

The results show that the proposed method with the new strategy of cost function -application of

two simultaneous cost functions- can yield high accuracy as compared to other methods without

very much computational cost.

3.4.9 Discussion

In this dissertation, a fuzzy anomaly detection system has been proposed for content-centric net-

works. This system applies a new hybrid approach with PSO and K-means in two phases: training

and detection. In the training phase, we propose an hybridization of Particle Swarm Optimization

(PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters by

DBI and local optimization by MSE. The algorithm utilizes the iteratively global search ability of

PSO to find optimal or near optimal cluster centroids and local search ability of K-means to avoid

being trapped in a local optimal solution. A new boundary handling approach is also utilized in the

PSO to not only select linearly the best set of parameters but fulfill also exploration and exploita-

tion issues. When the optimal placement of clusters centroids and objects are defined, they are

sent to the second phase. In the detection phase, we employ a fuzzy approach by the combination

of two distance-based methods as classification and outlier to detect anomalies in new monitoring
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data.

Convergence of the proposed fuzzy anomaly detection system is studied for finding the global and

optimal results and measuring the suitable performance over different CCN traffic flows (Table 3.9

from training phase and Tables 3.10 and 3.12 from detection phase). Experimental results show

that the applied CCN traffic flows could be used well for both training and detection phase as well

as preexisting methods from the literature.

Convergence of the proposed method is also studied for finding global classification of different

benchmarking data sets as Iris, Glass, Wine, Ionosphere and Zoo. Experimental results (Table

3.3) show the accuracy and the robustness of our proposed method based on the average of correct

classification and lower standard deviation as compared to other methods.

The feasibility and efficiency of proposed system in training phase compared to nine different ap-

proaches. Table 3.9 depicts the final results using K-means, PSO (MSE), PSO (DBI, MSE), PSO-

Kmeans (MSE), methods [122], [123], [124], [125], [126], and our proposed method as PSO-Kmeans

(DBI, MSE). The proposed training phase outperforms other methods based on the optimal results

as DR = 100%, FPR = 1.847% and F-measure = 98.99 %. In the training phase, future work is

needed in the application of multi-objective optimization techniques. Moreover, detection phase

results are very capable for anomaly detection purposes. The various membership functions are

employed to demonstrate the effectiveness of our proposed method among applied well-performing

methods in Table 3.10. In the most cases, the proposed anomaly detection method performed

better than other methods based on the RMSE, minimum and maximum error between target and

predicted output at the same time. Specifically, optimal results gained by trapmf and gauss2mf

MF. In the detection phase, future work is needed in the application of non-linear membership

functions.

Our proposed method and the other methods use different parameter settings and were repeated 10

times independently to find the global results in the training phase; therefore, the effect of tuning

parameters on performance of the methods are studied.

We continue our anomaly detection performance measurements by applying well-performing and

preexisting methods (from Table 3.10) and our proposed method over two applied data sets (Ta-

bles 3.5 and 3.6). As shown in Figs. 3-9-3-12 and Table 3.12, the proposed fuzzy and non-fuzzy

anomaly detection phase can outperform other methods. In addition, the times of increment on

computational time of proposed method is relative smaller than the other considered methods

(Table 3.14).
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3.5 Conclusion

In this dissertation, we proposed a novel fuzzy anomaly detection system based on the hybridization

of PSO and K-means clustering algorithms over Content-Centric Networks (CCNs). This system

consists of two phases: the training phase with two simultaneous cost functions as well-separated

clusters by DBI and local optimization by MSE, and the detection phase with two combination-

based distance approaches as classification and outlier. Experimental results and analysis show

the proposed method in the training phase is very effective in determining the optimal number of

clusters, and has a very high detection rate and a very low false positive rate at the same time. In

the detection phase, the proposed method clearly outperforms other applied method in terms of

AUC (area under the ROC curve), accuracy, sensitivity and specificity. In addition, the times of

increment on computational time of proposed method is relative smaller than the other considered

methods.

We are currently working on several improvements of the presented approach with the application

of computational intelligence methodologies (such as multi-objective optimization techniques) to

propose a robust method to improve the accuracy of detection rate and reduce false positive rate

over different CCNs traffics.
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Chapter 4

An ANFIS-based Cache Replacement

Method for Mitigating Cache

Pollution Attacks

The ubiquitous in-network caching is a key NDN feature as it reduces overall latency and improves

bandwidth utilization for popular content [9, 28, 29, 30]. However, pervasive caching strengthens

the security problem of cache pollution attacks in two generic classes: locality-disruption and

false-locality [31, 32, 33, 34]. Locality-disruption attacks continuously generate requests for new

unpopular files to force routers (i.e., the victims of the attack) to cache unpopular content, thus

degrading cache efficiency by ruining the cache file locality. False-locality attacks repeatedly request

the same set of unpopular (i.e., fake popular) files, thus degrading the hit ratio by creating a false

file locality at cache.

Cache replacement algorithms play an important role in the analysis of cache pollution attacks

[2, 137, 138]. Cache replacement refers to the process that a cache capacity becomes full and

old content must be removed to make a space for new content. However, the most replacement

algorithms and policies are susceptible to a subclass of pollution attacks [137, 138]. These algorithms

and policies consider just one criterion and ignore other criteria that may influence on the caching

efficiency and suffer from cache pollution attacks [139, 140, 141]. In this dissertation, a new cache

replacement method in NDN is developed to detect and mitigate these two types of cache pollution

attacks. The proposed method is based on the relationship between inherent characteristics of the

cached content and the content type (i.e., attack or non-attack). Many researchers have proposed
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meaningful relationship between a series of nonlinear input-output data patterns using Adaptive

Neuro-Fuzzy Inference System (ANFIS) [92, 142, 143, 144]. ANFIS is a beneficial method to

handle linguistic concepts and find nonlinear relationships between inputs and outputs, which is a

combination of the strength of Artificial Neural Network (ANN) and fuzzy systems [145, 146]. In

ANFIS, neural networks extract automatically fuzzy rules from numerical data through the learning

process, and the membership functions are adaptively adjusted. The whole proposed ANFIS-based

cache replacement method contains three steps: the input-output data patterns are extracted from

the NDN scenarios at first. The input features are the inherent characteristics and statistical data

of the cached content, and the output is the numerical value which refer to the type of the content,

i.e., locality-disruption, false-locality or healthy. After that, the accuracy of constructed ANFIS

is verified under different cache pollution circumstances. And finally, the constructed model is

established in a simulation environment to be integrated with NDN topologies as a novel cache

replacement method to mitigate cache pollution attacks in a timely manner.

The main objective of the proposed method is to enable the caching efficiency through a novel

nonlinear cache replacement method in the presence of the cache pollution attacks and satisfy

some applied performance metrics. The evaluation through simulations shows that the proposed

nonlinear cache replacement method based on ANFIS provides benefits in cache robustness and

mitigating cache pollution attacks with high accuracy in a timely manner. We then illustrate that

the proposed method provides a suitable compromise between overhead and applied performance

metrics as compared to some common existing countermeasures.

4.1 Related Work

As a new Internet architecture proposal, there is very limited work recently regarding to mitigation

of cache pollution attacks in NDN. Park et al. [33] propose a detection approach against locality

disruption attacks using randomness checks of a matrix in CCN. They apply a filtering approach

and a statistical sequential analysis (i.e., cumulative sum (CUSUM) algorithm) to detect low-rate

attacks. Since the analysis is based on a very simple CCN scenario, the results cannot be extended

to a larger CCN topology. Conti et al. [2] introduce a lightweight detection technique for detecting

locality-disruption attacks. However, authors do not apply any reaction method for mitigating

attacks. Xie et al. [32] introduce a technique, called CacheShield with the goal of improving NDN

cache robustness against locality disruption attacks. In CacheShield, when a router receives a
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content object, the CS evaluates a shielding function based on a logistic function that determines

whether the content object should be cached. The CacheShield must run continuously even when

no attack is in progress and store a large amount of statistics at each router that may reduce

the space available to cache content. Paper [2] shows that CacheShield is ineffective against some

pollution attacks and introduces new attacks specific to CacheShield. Ghali et al. [34] propose

a ranking algorithm for cached content that allows routers to probabilistically distinguish good

and bad content. This ranking is based on statistics collected from consumers’ actions following

delivery of content objects. Authors evaluate the performance of their ranking algorithm with

inactive adversaries. They also assume that any fake content has a valid version till the proposed

algorithm detects fake versions. The ranking algorithm must store several versions of the same

content to detect a valid version, and therefore consume routers’ storage and computing resources

such as FIB for returning back the different possible versions of a same content.

4.2 An ANFIS-based cache replacement method for mitigating

cache pollution attacks

In this section, we design and construct the material of proposed ANFIS-based cache replacement

method for mitigating cache pollution attacks in NDN. Afterwards, we use simulation to evaluate

the effectiveness of the proposed method in two considered NDN topologies. The proposed ANFIS-

based cache replacement architecture is depicted in Fig. 4-1. The detail of the method is proposed

as follows.

Figure 4-1: Schematic of the proposed ANFIS-based cache replacement method in NDN
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4.2.1 Data preparation

The detection of cache pollution attacks is hard because all requested content are uncorrupted.

The traditional detection methods usually observe and learn the legitimate users’ traffic patterns

and detect attacks and anomalies when such patterns change. To address this challenge, we ana-

lyze the inherent characteristics of cache pollution attacks and design a nonlinear approximation

function through ANFIS to detect locality-disruption and false-locality attacks separately. In order

to formulate the problem and construct an ideal method regarding the relationship between inputs

(i.e., inherent characteristics of cached content) and output (i.e., content type) data, we define a

set of parameters that govern the proposed ANFIS-based cache replacement method. We extract

the input parameters based on published research articles such as [34, 147, 148], our observation

during the design, and experts’ opinion. The considered input parameters are defined as follows:

1. The cached content’s longevity (Longevity). This corresponds to the time that content has

remained in the cache between the time of content being cached and the current time.

2. The cached content’s frequency access (Frequency). This corresponds to the estimation of

content’s access frequency. An Exponentially Weighted Moving Average (EWMA) method

is employed as a filter to obtain a recent estimate of the access frequency rate. It can

also identify the possible aberrant behavior of content’s access frequency. EWMA applies

weighting factors which decrease exponentially. The weighting for each older data decreases

exponentially, giving much more importance to recent observations while still not discarding

older observations entirely [149]. The degree of weighting decrease is expressed as a constant

smoothing factor β, a number between 0 and 1. EWMA formula is defined as:

µn = βµn−1 + (1− β)xn (4.1)

where µn is the exponentially weighted moving average of the past measurements and xn is

the number of content’s access frequency in the n-th time interval. We apply the six recent

time intervals (i.e., each 0.25 second) to calculate EWMA efficiently.

3. The Standard Deviation of content’s access frequency in recent six time intervals (Std.). This

parameter allows to distinguish the type of content request distribution. The Std. of an

uniform distribution is (close to) zero, while other types of distribution such as normal and

skewed are not (close to) zero.
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4. The last access to the content (Last Retrieval). It corresponds to the time interval between

the last time of content being used and the current time.

5. The percentage of cache hit (Hit Ratio). It corresponds to the content cache hit vs. the total

content cache hit in the recent time interval.

6. The variance of an entire population of repeated requests for a same content from the local

interfaces (Interface turnout). The variance allows to detect distributed cache pollution at-

tacks, when all local interfaces return the same content continuously. If all local interfaces

return the similar rate of content, the variance is close to zero.

The output of each data pattern is a goodness value which determines the type of content

ranging [0..1]. The boundary of assigned goodness value is defined as: 0 (false-locality or fake

content), 0.5 (locality-disruption or new unpopular content), and 1 (healthy). We apply EWMA

criterion in the last three time intervals to calculate the average goodness value for each content

over a period of time.

According to Fig. 4-1, the applied ANFIS model is automatically executed after every time interval

(we set it to 1 second) over cached content with longevity more than a threshold (we set 0.25 second)

in order to rank all content based on the goodness value. The initial goodness value for new incoming

content with the longevity less than the threshold is set to one (healthy content). After running

ANFIS, each content gets a goodness value from the healthy (good) to fake (bad). Those content

with the goodness value less than a predefined threshold (we set θ < 0.2) are removed from the

cache due to their fake type. This allows to possible valid (healthy) content be replaced with the

fake version. Then, the remaining content is sorted in ascending order based on the goodness value

for cache replacement when a new content enters and the cache has not enough space for storing.

Thus, the proposed method can efficiently and accurately mitigate the false-locality (by removing

the fake content) and the locality-disruption (by removing those content with the lower goodness

value for cache replacement) attacks in a timely manner.

4.2.2 Materials of ANFIS

During the training process, ANFIS tries to minimize the training error between the target output

(i.e., the type of cached content) and the actual output of the ANFIS. The input-output data

samples are collected based on the section 4.2.1. In particular, we set cache size to infinite to not

to apply any cache replacement algorithm during the training process (see section 4.3).

81



Figure 4-2: The structure of the proposed ANFIS

In this work, ANFIS is established in MATLAB environment. The ANFIS has 6 inputs and one

output. Before the training process, data samples should be normalized into [0..1], when dealing

with parameters of different units and scales [129, 130]. All variables of ANFIS have ”gaussmf”

membership function. The gaussmf is a kind of smooth membership functions, so the resulting

model has a high accuracy [150]. The ”and”, ”or” and ”defuzzification” methods in ANFIS are

selected as ”product”, ”max” and ”center of gravity”, respectively. Fig. 4-2 shows the structure of

the constructed ANFIS model as well as the number of fuzzy if-then rules. Before training process,

the ANFIS structure is initialized by the fuzzy c-mean method through the input-output data, and

its parameters are optimized by least squares and gradient descent algorithms.

4.3 Experimental setup

This section describes the considered network topologies, simulation environment, followed by the

modeling of cache pollution attack strategies.

4.3.1 Simulation environment

We evaluate cache pollution attacks and countermeasures discussed in this section via simulations.

We rely on open-source ndnSIM [53] package, a module for ns-3 developed at UCLA as part of

the NDN project. The ANFIS-based cache replacement method was firstly implemented with

MATLAB on an Intel Pentium 4 3.0 GHz CPU, 4 GB RAM running Windows 7 Ultimate. Then,
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it was compiled as a C++ shared library using the MATLAB compiler in order to integrated it

with the ndnSIM environment.

(a) XC topology

(b) DFN topology

Figure 4-3: Considered network topologies [2]

The Experiments are performed over two topologies, as illustrated in Fig. 4-3: Xie-complex

(XC) and the German Research Network (DFN). The XC and DFN topologies have been identified

in previous works as meaningful topologies for simulation [2, 151]. There are several commonly

used symbols to identify the type of nodes in NDN networks (such as Fig. 4-3), including Cx,

Px, Rx, and Ax to represent x-th consumer, producer, router and adversary nodes, respectively

[2, 40]. In our configurations, we set nodes’ PIT size to [500..800] entries randomly. The Interest

expiration time was also set to the default timeout of 4000 ms. We set the link delay and queue

length parameters to fixed values for every node. In particular, we set delay and queue length to

10 ms and 500, respectively. The requests of regular consumers (we call them honest consumers)

follow a three types of pattern: Zipf-like, exponentially and batch (i.e., generating a specified

number of Interests at specified points of simulation) distributions [53]. We also configure the

pattern frequency of Interest packets ranging [100..800], where each honest consumer changes five

times the frequency randomly. We apply randomly two different replacement policies in PIT table

(i.e., perform different actions when limit on number of PIT entries is reached) including LRU and

persistent policies. The nodes’ cache capacity was randomly set to [100..400] content. We set the

low and medium size for cache capacity to evaluate the accuracy and robustness of the proposed

ANFIS-based method sufficiently.

The simulation runs over two and a half hours. The collected input-output data pattern during the
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simulation is divided into three blocks as training (70%) to fit (train) the ANFIS model, the first

testing (15%) and the second testing (remaining last 15%) to confirm the ANFIS accuracy after

training. During the simulation, honest consumers request content based on the above-mentioned

configurations. False-locality (see section 4.3.2) and locality-disruption (see section 4.3.3) attacks

are issued by adversaries between 0s-30s and 50s-80s, respectively. Finally, the last thirty seconds

between 100s-130s, adversaries launch both attacks at the same time to measure the effect of the

proposed ANFIS-based cache replacement method in the simultaneous presence of the both attacks.

4.3.2 False-locality

We consider two types of content poisoning implementation: proactive and active attacks. Firstly,

we consider a proactive content poisoning attack whereby adversaries anticipated a set of Interest

packets for a set of valid content. Adversaries inject fake content into router caches. Assuming a

consumer sends an Interest packet which is received by an intermediate router (Ri) and an entry

is added to its PIT table. When a router or producer satisfies the Interest packet with a fake

content and returns back to the Ri, all the intermediate nodes in the way back as well as Ri are

polluted with a fake content. A range of honest consumers are not satisfied if an Interest returns

a fake content. After receiving a fake content, they always send the same Interest packet until

receive valid content. A range of adversaries behave in the opposite manner. They always ask for

bogus content. The adversaries request content according to the uniform distribution. Secondly,

we consider an active content poisoning attack whereby adversaries ask some fake content during

the simulation run.

We use simulation to measure how many honest consumers can retrieve healthy (valid) content

and how fast they can do so when the router caches are poisoned. For proactive scenarios, all

routers are pre-populated with different rate of fake content objects, 50%, 80%, and 95% of all the

content when the simulation runs. In active scenarios, adversaries request a series of fake content

in which intermediate routers are populated with fake content ranging 30%, 50%, and 70% of all

the content. We demonstrate that the proposed scheme outperforms the most common policies

as Least Frequently Used (LFU) and Least Recently Used (LRU) algorithms in terms of applied

performance criteria.
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4.3.3 Locality-disruption

We assume that the adversaries can predict Interest packets from a set of honest consumers to

issue Interests for attack purposes. The adversaries can issue Interest packets with 5%, 50%, and

90% of the total number of Interest packets issued by honest consumers according to the uniform

distribution. This allows to explore the effects of low, moderate and high attacks, and whether the

proposed ANFIS-based countermeasure is able to identify and mitigate them.

To summarize multiple statistics in the absence and presence of attacks, we define the metric similar

to Deng et al. [138] as the key measure of the effectiveness of the attack as:

Hit damage ratio = 1− HR(non− attack)−HR(attack)

HR(non− attack)
(4.2)

Where, HR(non − attack) and HR(attack) denote the hit ratio of honest consumers in the ab-

sence/presence of an attack, respectively. When the Hit damage ratio is (close to) zero, the attack is

completely ineffective, while it is (close to) one, the caching feature is completely under attack. We

then demonstrate that the proposed scheme outperforms the most common policies as LFU, LRU

independently and in conjunction with CacheShield [32] in terms of applied performance criteria.

Xie et al. in [32] introduce CacheShield, a method to shield NDN routers from locality disruption

attacks.

4.4 Experimental results

In this section, we demonstrate through simulations that the proposed ANFIS-based cache replace-

ment method satisfies in a much better way the applied performance criteria as compared to the

preexisting methods. Our countermeasure is tested over the two considered topologies in Fig. 4-3.

Each router implements the proposed ANFIS-based technique discussed in Section 4.2.

4.4.1 Results of ANFIS design

The training data used for constructing ANFIS model is the obtained statistical data (see section

4.3) from DFN topology. The constructed ANFIS model is used as a cache replacement method

over both XC and DFN topologies in order to test its performance and robustness against cache

pollution attacks.

Based on the hybrid training process in ANFIS through the number of constructed cluster
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(a) Longevity (b) Frequency (c) Std.

(d) Last retrieval (e) Hit ratio (f) Interface Turnout

Figure 4-4: Final membership functions of the input data

centers by fuzzy c-mean clustering, there are seven fuzzy rules. The number of training epochs is

500 and the error tolerance was set to the default value, which is zero. The initial step-size and the

increase and decrease rates were set to 0.01, 0.8, and 1.2, respectively. These configuration settings

in our application are set up to cover a wide range of learning tasks, which lead to optimization

of the training process. Fig. 4-4 illustrates the final membership functions of input data. To show

the efficiency of the model, different performance metrics are applied including Mean Square Error

(MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Standard Deviation of

the error (Std.), and Quantile-Quantile plot (Q-Q plot) followed by Pearson and Kendall tau b

correlation coefficient divided to training and testing data sets. Numerical results are shown in

Figs. 4-5-4-8. The plots demonstrate the correspondence between the real values (content type)

and corresponding output values predicted by the ANFIS model, indicating that the ANFIS model

we have developed is accurate.

Figure 4-5: The statistical results on training data set
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Figure 4-6: The statistical results on 1st testing data set

Figure 4-7: The statistical results on 2nd testing data set

(a) Numerical results on training
set

(b) Numerical results on 1st test-
ing set

(c) Numerical results on 2nd test-
ing set

Figure 4-8: Q-Q plot and statistical results
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4.4.2 Mitigating false-locality

We first evaluate the effectiveness of proposed ANFIS-based cache replacement method in a simple

network topology using the XC network. Fig. 4-9 illustrates the average behavior of three methods

with different pre-populated fake content rate within 10 runs. The proposed ANFIS-based cache

replacement method is more accurate and outperforms other methods in terms of the faster full

convergence.

After verifying the correct behavior of ANFIS-based cache replacement method in the XC topology,

we consider a more complex network topology using DFN network in Fig. 4-10.

(a) 50% pre-populated (b) 80% pre-populated (c) 95% pre-populated

Figure 4-9: Results of different pre-populated fake content in XC topology (mean of 10 runs)

(a) 50% pre-populated (b) 80% pre-populated (c) 95% pre-populated

Figure 4-10: Results of different pre-populated fake content in DFN topology (mean of 10 runs)

Fig. 4-10 shows the average of experimental results by ANFIS-based, LRU, and LFU cache

replacement methods within 10 runs. As shown in this figure, there is a considerable benefits

of the proposed countermeasure implemented by ANFIS model in faster full convergence of the

honest consumers. With increased rate of pre-populated fake content, the LRU and LFU methods

perform an insignificant behavior in removing the fake content from the caches. Whereas, the

proposed ANFIS-based method performs more accurate and efficient in removing the fake content
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from the caches and satisfies all the honest consumers in a timely manner.

4.4.3 Mitigating locality-disruption

Simulation results in Figs. 4-11 and 4-12 show that our cache replacement technique can quickly

detect the content placed with the goal of performing locality-disruption attacks and replace them

when a new content is added to a full cache. These figures show that routers using ANFIS-based

cache replacement method successfully outperforms four applied cache replacement algorithms in

a timely manner. The most stunning result is the extreme vulnerability of the LRU and the LFU

to pollution attacks.

(a) 5% locality-disruption (b) 50% locality-disruption (c) 90% locality-disruption

Figure 4-11: Results of Hit damage ratio for locality-disruption attack in XC topology (mean of 10
runs)

(a) 5% locality-disruption (b) 50% locality-disruption (c) 90% locality-disruption

Figure 4-12: Results of Hit damage ratio for locality-disruption attack in DFN topology (mean of
10 runs)

The experimental results in Figs. 4-11a-4-11c and 4-12a-4-12c indicate that the ANFIS-based

cache replacement technique is more resilient than the preexisting methods against locality-disruption

attacks. Despite the fact that the hit damage ratio is still quite high by ANFIS-based technique in

the early times of the simulation, the application of the ANFIS-based technique is quite effective
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and more reliable against low, middle, and high rate pollution attacks.

(a) Receiving valid content by 30% false-
locality

(b) The hit damage ratio by 70% locality-
disruption

Figure 4-13: The results for 30% false-locality and 70% locality-disruption in XC topology (mean
of 10 runs)

(a) Receiving valid content by 50% false-
locality

(b) The hit damage ratio by 50% locality-
disruption

Figure 4-14: The results for 50% false-locality and 50% locality-disruption in XC topology (mean
of 10 runs)

4.4.4 Mitigating combination of both attacks at the same time

Adversaries can launch both false-locality and locality-disruption attacks at the same time. For

instance, the same set of attackers can launch false-locality attacks by pre-populating 50% of

the total honest consumers’ Interest requests, and at the same time they start locality-disruption

attacks to interfere the content locality by requesting the rest 50% of the honest consumers’ Interest

requests in the caches.

According to the proposed ANFIS-based cache replacement method discussed in section 4.2, the
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(a) Receiving valid content by 70% false-
locality

(b) The hit damage ratio by 30% locality-
disruption

Figure 4-15: The results for 70% false-locality and 30% locality-disruption in XC topology (mean
of 10 runs)

(a) Receiving valid content by 30% false-
locality

(b) The hit damage ratio by 70% locality-
disruption

Figure 4-16: The results for 30% false-locality and 70% locality-disruption in DFN topology (mean
of 10 runs)

existence of locality-disruption attacks will not affect the detection of false-locality attacks and vise

versa. First, the proposed method tries to detect false-locality attacks by assigning goodness value

close to zero, and once detected, they are removed from the caches. Then those content with the

goodness value close to 0.5, detected as locality-disruption attacks, would be replaced separately

when a new content enters and cache space is full.

We vary the behavior of attackers for executing false-locality and locality-disruption attacks between

100 and 130 seconds of the simulation run. Figs. 4-13-4-15 and 4-16-4-18 are shown the results

of mitigating both cache pollution attacks at the same time with different strategies in XC and

DFN topologies, respectively. Experimental results demonstrate that our proposed method is more

resilient and more accurate than preexisting methods to the mixture of attacks. The most stunning
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(a) Receiving valid content by 50% false-
locality

(b) The hit damage ratio by 50% locality-
disruption

Figure 4-17: The results for 50% false-locality and 50% locality-disruption in DFN topology (mean
of 10 runs)

(a) Receiving valid content by 70% false-
locality

(b) The hit damage ratio by 30% locality-
disruption

Figure 4-18: The results for 70% false-locality and 30% locality-disruption in DFN topology (mean
of 10 runs)

result is the extreme vulnerability of the LRU and LFU algorithms to the active false-locality

attacks as compared to the proactive false-locality attacks. Thus, the proposed ANFIS-based

cache replacement mechanism in the considered simulation environments offers visibly promising

performance in presence of cache pollution attacks.

4.4.5 The overhead cost

In this section, we assess the overhead cost of our proposed method and preexisting schemes in

presence of adversaries. In particular, we are interested in determining the overhead of the average

number of arrival data packets for legitimate users in routers and the operation overhead of the

methods.
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Figure 4-19: The average of arrival data packets in XC topology

Figure 4-20: The average of arrival data packets in DFN topology

1. The overhead of the average of arrival data packets: It guarantees that this amount of data

packet was actually transferred over the channel during the cache pollution attacks. Figs. 4-19

and 4-20 show the average of overhead of transmitted data packets in routers in the XC and DFN

networks, respectively. We can observe that the our proposed method outperforms other methods

based on the lower overhead of data transmission. Our results confirm that the most data packets

were able to cache to the closest edge routers (i.e., close routers to the legitimate consumers) by

mitigating effectively both attacks. Our results also show that the overhead of transmitting data
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packets by LRU and LFU algorithms are greater than our proposed method and the CacheShield,

making the attack more effective.

2. The operation overhead: This is the amount of processing time to execute the caching algorithms

within operating system. Table 4.1 shows that the proposed method seems to be less time consuming

than the other methods except LRU and LFU algorithms when attacks do not run simultaneously.

The results in Table 4.1 indicate that the proposed approach can improve the performance as

compared to LRU and LFU algorithms in terms of the operation overhead up to 6.93% and 7.15 %,

and 5.15% and 5.78% in XC and DFN topologies respectively, when both cache pollution attacks

are simultaneously implemented. According to the obtained results, by increasing rate of attacks,

the overhead of our proposed method is considerably decreased as compared to LRU and LFU.

The results from Table 4.1 also confirm that the our proposed method outperforms sufficiently the

CacheShield-LRU and CacheShield-LFU methods in terms of the operation overhead up to 14.56%

and 16.79%, and 21.67% and 23.14% in XC and DFN, respectively.

Table 4.1: Comparing operation overhead achieved by the proposed scheme over other methods
(mean of 10 runs)

Time (sec) Attack Percent of worsening (↓) and improving (↑) (%)
LRU LFU CacheShield-LRU CacheShield-LFU

XC topology:

0-50 (false-locality attacks)
50% ↓ 8.83 ↓ 7.98 - -
80% ↓ 7.11 ↓ 4.36 - -
95% ↓ 5.32 ↓ 2.81 - -

50-100 (locality-disruption attacks)
5% ↓ 8.62 ↓ 7.37 ↑ 14.41 ↑ 14.51
50% ↓ 8.47 ↓ 6.29 ↑ 13.11 ↑ 14.24
90% ↓ 6.83 ↓ 3.98 ↑ 14.28 ↑ 15.76

100-150 (combination of both attacks)
30-70% ↑ 2.74 ↑ 3.31 ↑ 13.18 ↑ 16.07
50-50% ↑ 3.59 ↑ 4.64 ↑ 14.56 ↑ 15.34
70-30% ↑ 6.93 ↑ 7.15 ↑ 14.01 ↑ 16.79

DFN topology:

0-50 (false-locality attacks)
50% ↓ 9.52 ↓ 7.45 - -
80% ↓ 8.17 ↓ 6.43 - -
95% ↓ 8.03 ↓ 5.14 - -

50-100 (locality-disruption attacks)
5% ↓ 9.21 ↓ 9.33 ↑ 19.73 ↑ 18.33
50% ↓ 9.01 ↓ 7.75 ↑ 20.11 ↑ 19.03
90% ↓ 6.83 ↓ 7.24 ↑ 18.91 ↑ 20.76

100-150 (combination of both attacks)
30-70% ↑ 2.42 ↑ 3.66 ↑ 20.34 ↑ 23.02
50-50% ↑ 3.84 ↑ 4.03 ↑ 20.13 ↑ 22.38
70-30% ↑ 5.15 ↑ 5.78 ↑ 21.67 ↑ 23.14

To evaluate the effectiveness and efficiency of the proposed method, we illustrate that the

proposed ANFIS-based method provides a suitable compromise between overhead (i.e., the overhead

of the arrival data packets in Figs. 4-19 and 4-20, and the operation overhead of the algorithms

in Table 4.1) and applied performance metrics including the percentage of legitimate consumers
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receiving valid content (Figs. 4-9-4-10 and 4-13a-4-18a) and the hit damage ratio (Figs. 4-11-4-

12 and 4-13b-4-18b) as compared to common existing countermeasures. Therefore, the extensive

analysis satisfies the objectives of the experiment in terms of the applied performance metric and

ensure that the proposed ANFIS-based caching for mitigating cache pollution attacks in NDN can

yield high accuracy as compared to other methods without very much computational cost.

4.5 Conclusion

In this dissertation, we proposed a novel ANFIS-based cache replacement method to mitigate two

generic cache pollution attacks namely false-locality and locality-disruption in NDN. Simulation

results showed that the proposed method provides very accurate results as compared to LRU

and LFU algorithms independently and in conjunction with CacheShield scheme. Experimental

results and analysis show the proposed ANFIS-based cache replacement method is very effective

in determining and mitigating the fake content, and has a very high detection rate of locality-

disruption attacks to replace them when new content is added to a full cache in a timely manner.

The extensive analysis satisfies the objectives of the experiment and ensure that the proposed

ANFIS-based caching for mitigating cache pollution attacks can yield high accuracy as compared

to other methods without very much computational cost.
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Chapter 5

A Hybrid Multiobjective RBF-PSO

Method for Mitigating DoS Attacks

In contrast to today’s Internet, a key goal of the NDN project is ”security by design” [17, 32, 36].

Unlike the current Internet (host-based) approach in which security, integrity and trust should be

provided in the communication channel, CCN secures content (information) itself and puts integrity

and trust as the content properties [19, 37]. However, with this new paradigm, new kinds of attacks

and anomalies -from Denial of Service (DoS) to privacy attacks- will arise [38, 39]. The big question

is how resilient will this new NDN architecture be against DoS/DDoS attacks [17, 23]. An adver-

sary can take advantage of two features unique to NDN namely Content Store (CS) and Pending

Interest Table (PIT) to mount DoS/DDoS attacks specific to NDN such as Interest flooding attacks

and content poisoning [23, 40].

The first goal of any protection scheme against DoS attack is the early detection (ideally long before

the destructive traffic build-up) of its existence [40, 152]. In order to disarm DoS/DDoS attacks

and any deviation, not only the detection of the malevolent behavior must be achieved, but the

network traffic belonging to the attackers should be also blocked [24, 25, 104]. Thus, a predictor

(detector) should take an appropriate action to thwart the attacks and should be able to adjust itself

to the changing dynamics of the anomalies/attacks [23, 153]. In an attempt to tackle with the new

kinds of DoS attacks and the threat of future unknown attacks and anomalies, many researchers

have been developing intelligent learning techniques as a significant part of the current research on

DoS attacks detection [19, 154]. The most popular approach for DOS/DDoS attacks prediction is

using Artificial Neural Networks (ANNs) classification [91, 155, 156]. ANNs have become one of
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the most vital and valuable tools in solving many complex practical problems [107, 157], among

which the Radial basis function (RBF) neural networks have been successfully applied for solving

dynamic system problems, because they can predict the behavior directly from input/output data

[158, 159]. RBF networks have many remarkable characteristics, such as simple network structure,

strong learning capacity, better approximation capacities and fast learning speed. The difficulty of

applying the RBF networks is in network training which should select and estimate properly the

input parameters including centers and widths of the basis functions and the neuron connection

weights [87, 157, 160]. In order to find the most appropriate parameters, an optimization algorithm

can be used [161, 162]. An optimization algorithm will attempt to find an optimal choice that sat-

isfies defined constraints and make an optimization criterion (performance or cost index) maximize

or minimize [161]. Hence, to improve the prediction accuracy and robustness of the RBF network,

network parameters (centers, widths and weights) should be simultaneously tuned [157]. Some of

the existing algorithms to achieve that are given in [157, 160, 163, 164, 165]. Almost all algorithms

compute the optimal estimation of the basis function centers by mean of error minimization, i.e.,

accuracy based on Mean-Square Error (MSE) [160, 165, 166, 167]. However, MSE is not suitable for

determining the optimal position of basis function centers. Since the MSE decreases, the number

of centers increases [12]. To accomplish this task, we develop our proactive detection algorithm for

globally well-separating units’ centers and their local optimization by MSE (decreasing the error

caused by corresponding data points and their centers, separately). But the optimal placement

and well-separated centers can increase MSE [121]. It is generally accepted that well-separated

(external separation of) centers and their local optimization (internal homogeneity) are conflicting

objectives [12, 168]. This trade-off is a well-known problem as the Multiobjective Optimization

Problem (MOP) [150, 169, 170, 171]. This dissertation applies NSGA II (Non-dominated Sorting

Genetic Algorithm) proposed by Deb et al. (2002) to solve this problem, as it has recently been

frequently applied to various scenarios [172, 173, 174, 175]. On the other hand, for (near) optimal

estimation and adjustment of two others RBF parameters (units’ widths and output weights), we

implement Particle Swarm Optimization (PSO) that favors global and local search of its interacting

particles which has proved to be effective in finding the optimum in a search space [117, 118, 176].

When the DoS attacks by the proposed intelligent predictor are identified, the second phase (i.e.,

adaptive mitigation reaction) is triggered by enforcing explicit limitations against adversaries. The

contribution of this work is summarized in three objectives. The first objective of this work is to

develop an algorithm to resolve the hybrid learning problem of a RBF network using multiobjective
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optimization and particle swarm optimization to obtain a simple and more accurate RBF network-

based classifier (predictor). The second objective is utilization of this optimized RBF network-based

predictor in proactive detection of the DoS/DDoS attacks in NDN. The third objective is introduc-

ing a new algorithm to enable NDN routers to perform quickly and effectively adaptive reaction

(recovery) from network problems, in order to keep track of legitimate data delivery performance

and effectively shutting down malicious users’ traffic.

There are three main advantages of the proposed prediction (classification) method; first, the pro-

posed method can be applied to classification of any real-world problem; second, it gives better

results in terms of the low misclassification, accuracy and robustness for some benchmark problems.

And third, it provides a promising performance in prediction of DoS attacks in NDN. Moreover,

the evaluation through simulations shows that the proposed intelligent hybrid algorithm (proactive

detection and adaptive reaction) can quickly and effectively respond and mitigate DoS attacks in

adverse conditions in terms of the applied performance criteria.

5.1 DoS attacks in NDN

The new variations of DoS attacks might be quite effective against NDN. An adversary can take

advantage of two features unique in NDN routers as CS and PIT to mount DoS/DDoS attacks into

NDN. There are two major categories of DoS attacks in NDN infrastructure [23, 31]:

1. Interest Flooding Attack (IFA): It is partly due to the lack of authentication of Interest packets

(source). Anyone can generate Interests packets and any middle router (node) only knows

that a particular Interest packet entered on a specific interface.

2. Content/Cache Poisoning : The adversary tries to make routers forward and cache corrupted

or fake data packets in order to prevent consumers from retrieving the original (legitimate)

content.

5.1.1 Interest Flooding Attack

In this type of attack, the adversary (controlling a set of possibly geographically distributed zom-

bies) generates a large number of Interest packets aiming to (1) overwhelm PIT table in routers

in order to prevent legitimate users to satisfied their Interest packets and (2) swamp the target

content producers [23]. There are three types of Interest flooding attacks, based on the type of

content requested:
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1. existing or static: it is quiet limited since in-network content caching provides a built-in

countermeasure. If several zombies from different paths generate large number of Interest

packets for an existing content which settles in all intervening routes’ caches, these Interest

packets for the same content can not propagate to the producer(s) since they are satisfied by

cached copies.

2. dynamically-generated : There is no benefits via caching copies. Since requested content is dy-

namic, all Interest packets are routed to content producer(s), thus consuming bandwidth and

router PIT table. Also, content producer might waste considerable computational resources

due to the signing the content (per-packet operation) which is itself expensive.

3. non-existent (unsatisfied Interests): Such Interest packets cannot be collapsed by routers, and

are routed toward the content producer(s). This type of Interest packets take up space in

router PIT table until they expire. A large number of non-existent Interest packets in PIT

table lead to legitimate Interest packets being dropped in the network.

5.2 Related Work

As a new Internet architecture proposal, there is very limited work recently regarding to mit-

igation of DoS/DDoS attacks in Named Data Networking. Gasti et al. [23] performed initial

analysis of NDN’s resilience to DoS attacks. This work identifies two new types of attacks spe-

cific to NDN (Interest flooding and content/cache poisoning) and discusses effects and potential

countermeasures. However, the paper does not analyze DoS attacks and their countermeasures.

Afanasyev et al. [17] presented three mitigation algorithms (token bucket with per interface fair-

ness, satisfaction-based Interest acceptance and satisfaction-based pushback) that allow routers to

exploit their state information to thwart Interest flooding attacks. Among these three mitigation al-

gorithms, satisfaction-based pushback mechanism could effectively shut down malicious users while

preventing legitimate users from service degradation. This work uses a simple and static attackers

model (sending junk Interests as fast as possible), and it does not consider intermediate router’s

cache and always forwards all the way to the producer. Compagno et al. [40] introduced a frame-

work for local and distributed Interest flooding attack mitigation, in particular, rapid generation of

large numbers of Interest for non-existent contents that saturate the victim router’s PIT. Authors

simulated a simple attackers model, and their countermeasure has been able to use around 80-90%

of the available bandwidth in the most cases during the attacks. Dai et al. [177] proposed Interest
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traceback as a counter measure against NDN DDoS attacks, which traces back to the originator of

the attacking Interest packets. In this paper, when PIT exceeds its threshold, Interest traceback is

triggered. This method responds to the attack by generating spoofed Data packets to satisfy the

long-unsatisfied Interest packets in the PIT by tracing back to the Interest originators. This method

is not proactive, makes overhead in the network by increasing of made spoofed contents. It leads

to middle routers cache bogus contents. This paper also assumes that the long-unsatisfied Interests

in the PIT is adversary and others unsatisfied Interest are normal usages. Another shortcoming

of this method is that the router drops the incoming packet rate of the interface which has too

many long-unsatisfied Interest packets. As a result of this independent decision, the probability of

legitimate Interests being forwarded decreases rapidly as the number of hops between the content

requester and producer. Choi et al. [38] provided an overview of threats of Interest flooding attacks

for non-existent contents on NDN. Authors simulated and explained the effect of Interest flooding

DoS attacks by a simple scenario over the quality of services for legitimate Interest packets from

normal users due to PIT full. However, they do not analyze DoS attacks and their countermeasures.

Figure 5-1: The overview of the proposed DoS mitigation method in NDN

5.3 The proposed hybrid intelligent method

In this section, we introduce our method, a two-phase framework for mitigating DoS attacks in

NDN. The first phase being proactive detection (see section 5.3.1) and the second one adaptive

reaction (see section 5.6.2). The proposed predictor in the first phase is a global framework so

that we can use the predictor in other networks. In this dissertation, we apply the proposed

predictor successfully on some benchmark problems and NDN and leave further investigations in

other networks to future work. A diagram of the two phases of the proposed method is shown in

Fig. 5-1.
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5.3.1 The proposed intelligent classifier (predictor)

This section presents the details of proposed intelligent algorithm for classification problems. Our

approach composes of two main phases. It is depicted in Fig. 5-2. Each phase is given in the next

subsections.

Figure 5-2: Proposed intelligent algorithm for more accurate classification

Phase 1: Improvement of RBF parameters

In the first phase -training (optimization)- we introduce a new hybrid optimization approach for

designing RBF neural networks which can be implemented for real-world problems. Firstly, a new
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multiobjective optimization algorithm as NSGA II for adjusting centers of the RBF units is in-

troduced. This algorithm obtains various non-dominated sets that provide an appropriate balance

between two conflicting objectives: well-separated and local optimization of RBF centers. Sec-

ondly, PSO algorithm has been applied to simultaneously tune widths of the RBF units and output

weights through well-placed centers. The algorithm is presented below:

A. First part (adjusting RBF units’ centers based on NSGA II):

1. Problem definition:

1-1- population size (N), maximum iteration (IterMax), crossover percentage (pCrossover),

number of parents (offspring) after crossover operator (nCrossover = 2×round(pCrossover×
N
2 )), mutation percentage (pMutation), number of mutants after mutation (nMutation =

round(pMutation×N)), mutation rate (mu), mutation step size (sigma = 0.1).

2. Initialize population:

2-1- Generate the initial populations (individuals) P , including P1, P2, ..., PN .

2-2- Calculate the two conflicting cost functions as DBI and MSE (presented in section 5.3.1)

for each population.

2-3- Rank all populations according to their non-dominance.

2-4- Calculate the crowding distances for all populations to keep the population diversity (Eq.

2.21).

2-5- Sort the non-dominated solutions in descending crowding distance and rank values.

3. NSGA II main loop:

3-1- Execute the evolution process including crossover and mutation operators:

a. Execute crossover operator, PopCrossover (we adopt the two-point crossover).

b. Execute mutation operator, PopMutation (A Gaussian distributed random number with

mean zero and variance 1 is used [178, 179]).

c. Merge populations:

P = [P PopCrossover PopMutation].

3-2- Run steps 2-3 (rank), 2-4 (crowding distance) and 2-5 (sort) over the merged P .

3-3- Truncate/Select the generated population P to the range of population size: P = P (1 :

N).

3-4- Run steps 2-3 (rank), 2-4 (crowding distance) and 2-5 (sort) over the truncated P .
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3-5- Store Pareto-optimal front (non-dominated set) in the archive as PF1.

3-6- Repeat Step 3 until termination condition (IterMax) is reached.

3-7- Keep the final PF1 including the (near) optimal placement of RBF units’ centers.

B. Second part (calculating widths of the RBF units and output weights based on

PSO algorithm):

1. Problem definition:

1-1- population size (N), maximum iteration (IterMax) and number of RBF Kernel obtained

from PF1 in phase A (nKernel).

1-2- Upper and lower bound of width (σ) and weight (w) variables.

1-3- Adjust the PSO parameters: inertia weight (ω) which is linearly decrease by Eq. 5.1,

acceleration coefficients (c1 = c2 = 2), and two random numbers (r1 and r2) which distributed

uniformly in [0 1].

ω = ωmax − t ·
(ωmax − ωmin)

T
(5.1)

Where ωmax, ωmin, T and t denote the maximum inertia weight, the minimum inertia weight,

the total and the current number of iterations, respectively.

2. Initialize population for each particle:

2-1- Generate the initial populations (particle positions) including:

Particle(i).Position.σ and Particle(i).Position.w. i = 1, 2, ..., N .

particle(i).Position.σ = Continuous uniform random numbers between σ.Lower and σ.Upper

in size of nKernel.

particle(i).Position.w = Continuous uniform random numbers between w.Lower and w.Upper

in size of nKernel.

2-2- Initialize velocity vectors in a feasible space for each particle:

particle(i).Velocity.σ = a nKernal size zero matrix.

particle(i).Velocity.w = a nKernal size zero matrix.

2-3- Evaluate each particle by Gaussian basis function in each RBF units (Eq. 2.11). Calcu-

late Gaussian basis function with two tuned parameters (σ -centers’ widths- and w -output

weights- from PSO) and optimal placement of RBF units’ centers from archive PF1.

2-4- Initially, personal best (lbest) is the current calculated cost.

3. Set the global best (gbest) to a particle with the lowest cost.
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4. PSO main loop:

4-1- Update velocity for each particle by Eq. 2.3.

4-2- Control the lower (Vmin) and upper (Vmax) bounds of velocity:

Vmin ≤ Vit ≤ Vmax. Where, i (particle id)=1, 2, ..., N and t (iteration number)=1, 2, ...,

IterMax.

4-3- Update position by Eq. 2.4.

4-4- If the current velocity and position are outside of the boundaries, they take the upper

bound or lower bound. They are multiplied by -1 so that they search in the opposite direction

(mirroring to feasible search space).

4-5- Update personal best (lbest): if the current particle cost is better than the previous

(recorded in lbest) particle cost, then set the current particle cost as the personal best.

4-6- Update global best (gbest): if the current personal best is better than the global best,

then set the current personal best as the global best in the swarm.

5. Repeat Step 4 until termination condition (MaxIter) is reached. Otherwise, gbest is the

optimized RBF units’ widths and output weights.

Phase 2: classification of new input patterns

In the second phase -prediction (classification)- we classify (predict) the class type of new input

patterns, which we do not know about their target classes in prior. The classification is calculated

by defining bins. Data samples should be normalized into [0 1], when dealing with parameters of

different units and scales [130]. Since data set is normalized in range of [0 1], bin values should be

defined in this range. The number of bin ranges are equal to the number of target classes in training

phase. Then, we can determine which data object falls into a specified bin range. For instance,

if the number of target class in a particular data set is five classes, then the range of bin values

can be organized in the range of [0 0.25 0.5 0.75 1]. Hereafter, constructed RBF neural network

from first phase is executed over the input patterns. The RBF output is always a decimal number

between [0 1]. This output assigns to the closest and most ideal index of specified bin range, e.g.,

if output=0.65, then the input pattern falls into fourth bin. It means that the predicted class is

four. The pseudo-code of classification computation is given below:

1- Define some input parameters:

LowEdge = lower bound of target class.
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UpEdge = upper bound of target class.

NumBins= number of target classes in training data set.

BinEdges= Generate linearly spaced vectors between LowEdge and UpEdge in the size ofNumBins,

where the bin range is equal to the number of target class.

2- Assign input patterns into the closest index of specified bin range. The index of bin range is the

predicted classes of input patterns.

Objective functions in NSGA II

Two objective functions are used to evaluate the RBF network units’ centers performance. The

two objective functions for minimization problems are:

1. Local optimization based on Mean Square Error (MSE):

Given the set of centers (c), the set of corresponding data objects (x ), cx denotes the center

corresponding to the x, and N is the number of data points, MSE can be calculated as:

MSE =
1

N

N∑
i=1

d(xi, cx)2 (5.2)

2. Well-separated (well-placed) RBF units’ centers based on Davies-Boulding Index (DBI).

Based on our experiments [12], we have found it quite reliable. DBI [128] takes into account both

compactness and separation criteria that makes similar data points within the same centers and

places other data points in distinct centers. The compactness of a group of data objects with

corresponding center is calculated based on the MSE. The separation is measured by the distance

between centers ci and cj . In general, the DBI is given by:

1

NC

∑
i

maxj,j 6=i
[ 1
ni

∑
xεCi d(x, ci) + 1

nj

∑
xεCj d(x, cj)]

d(ci, cj)
(5.3)

Where, NC is the number of centers, x is the corresponding data objects, ni is the number of data

objects belonging to the center ci.

5.4 Benchmarking the proposed intelligent classifier (predictor)

For assurance of robustness and accuracy of our proposed intelligent hybrid classifier (predictor),

we applied the four classic benchmark problems from the UCI machine learning repository [132].

Table 5.1 shows the main characteristics of these data sets. In the experiments, 70% of data set
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Table 5.1: The four applied benchmark data sets

Data set No. of features No. of classes No. of patterns
Wine 13 3 178
Iris 4 3 150
Ionosphere 34 2 351
Zoo 17 7 101

is used as training data set and the rest is considered as testing data set in order to validate

the functionality of the proposed method. We evaluated different performance criteria including

Mean Square Error (MSE), Standard Deviation (Std.), Standard Error of Mean (SEM), Confidence

Interval (CI) by 95% and the number of incorrect classification (Err.). Firstly, we adjust RBF units’

centers based on MSE as a frequently used cost function (minimization objective) in the literature.

We employ four optimization algorithms which are widely used and adopted successfully in different

applications including PSO [180, 181, 182, 183], Genetic Algorithm (GA) [184, 185, 186], Imperialist

Competitive Algorithm (ICA) [187, 188, 189] and Differential Evolution (DE) [190, 191, 192].

The experiments on each algorithm were repeated 20 times independently to find the optimal

considered performance criteria. Tables 5.2-5.5 show the comparison of (best) results over applied

benchmarking problems. As seen in these Tables, PSO performs better results in estimation of

RBF units’ centers as compared to others based on the applied performance measures. The second

optimal results have also performed by GA. However, we have evaluated all results as the (near)

optimal adjustment of units’ centers for adjusting two others RBF network parameters.

Table 5.2: adjusting RBF units’ centers in Wine

n Pop. Iter. MSE Std. SEM CI (95%)
PSO:
20 20 1500 0.19224 0.1235 0.0101 [0.182 0.671]
40 30 2000 0.16474 0.1207 0.0104 [0.176 0.649]
70 35 2500 0.14989 0.1013 0.0088 [0.165 0.572]
GA:
20 20 1500 0.19423 0.1242 0.0104 [0.188 0.68]
40 30 2000 0.16532 0.1222 0.0105 [0.196 0.671]
70 35 2500 0.3729 0.1072 0.0093 [0.171 0.583]
ICA:
20 20 1500 0.41448 0.1421 0.0123 [0.349 0.907]
40 30 2000 0.3396 0.1235 0.0107 [0.327 0.812]
70 35 2500 0.30012 0.124 0.0107 [0.291 0.777]
DE:
20 20 1500 0.38732 0.1484 0.0128 [0.314 0.895]
40 30 2000 0.41173 0.1555 0.0134 [0.318 0.928]
70 35 2500 0.41586 0.1442 0.0125 [0.346 0.911]

Secondly, for adjusting the RBF units’ widths and output weights, we integrate the optimal

placement of centers from four applied optimization algorithm (from Tables 5.2-5.5) with PSO. The

obtained results are shown in Tables 5.6-5.9. The classification error (Err.) is calculated based on
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Table 5.3: adjusting RBF units’ centers in Iris

n Pop. Iter. MSE Std. SEM CI (95%)
PSO:
25 35 2000 0.00957 0.0309 0.0036 [0.009 0.169]
35 50 2500 0.00661 0.0346 0.0033 [0.006 0.142]
40 70 3000 0.00541 0.0362 0.0032 [0.007 0.135]
GA:
25 35 2000 0.01078 0.0394 0.0037 [0.019 0.173]
35 50 2500 0.00975 0.0439 0.0041 [0.0072 0.175]
40 70 3000 0.00598 0.0365 0.0033 [-0.001 0.138]
ICA:
25 35 2000 0.02359 0.0666 0.0063 [0.011 0.269]
35 50 2500 0.01497 0.0438 0.0041 [-0.209 0.239]
40 70 3000 0.01332 0.0368 0.0035 [0.037 0.182]
DE:
25 35 2000 0.02396 0.0595 0.0056 [0.026 0.26]
35 50 2500 0.02376 0.049 0.0046 [0.05 0.242]
40 70 3000 0.02352 0.0584 0.0055 [0.131 0.153]

Table 5.4: adjusting RBF units’ centers in Ionosphere

n Pop. Iter. MSE Std. SEM CI (95%)
PSO:
40 60 3000 0.90357 0.4709 0.0297 [-0.104 1.763]
50 80 4000 0.81119 0.457 0.0282 [-0.079 1.673]
60 90 4000 0.74164 0.4496 0.0284 [-0.085 1.631]
GA:
40 60 3000 1.043 0.4953 0.0299 [-0.111 1.836]
50 80 4000 0.9489 0.4615 0.0285 [-0.086 1.763]
60 90 4000 0.9394 0.4501 0.0278 [-0.093 1.741]
ICA:
40 60 3000 2.113 0.5575 0.0344 [0.25 2.436]
50 80 4000 1.9462 0.4792 0.0295 [0.37 2.25]
60 90 4000 1.8535 0.4743 0.0292 [0.347 2.206]
DE:
40 60 3000 2.6211 0.5671 0.035 [0.405 2.629]
50 80 4000 2.6249 0.5878 0.0362 [0.358 2.663]
60 90 4000 2.5915 0.5493 0.0339 [0.437 2.59]

Table 5.5: adjusting RBF units’ centers in Zoo

n Pop. Iter. MSE Std. SEM CI (95%)
PSO:
40 50 2000 0.75405 0.23 0.0264 [-0.288 1.289]
50 70 2500 0.67409 0.2622 0.0301 [0.198 1.318]
60 90 3000 0.68884 0.2563 0.0274 [0.249 1.253]
GA:
40 50 2000 0.75469 0.2793 0.032 [0.296 1.371]
50 70 2500 0.68008 0.3057 0.0351 [0.201 1.366]
60 90 3000 0.69329 0.2654 0.0281 [0.315 1.277]
ICA:
40 50 2000 1.1539 0.303 0.0348 [0.315 1.377]
50 70 2500 0.9867 0.3112 0.0357 [0.334 1.554]
60 90 3000 1.0088 0.2826 0.0324 [0.41 1.518]
DE:
40 50 2000 1.96 0.3213 0.0369 [0.733 1.933]
50 70 2500 1.9406 0.2829 0.0325 [0.81 1.919]
60 90 3000 1.8115 0.2736 0.0314 [0.782 1.855]

our proposed algorithm in the second phase.

As seen in these tables, PSO is almost able to achieve better results than the other methods in
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Table 5.6: Classification of Wine data set based on RBF-PSO optimization algorithm

n Pop. Iter. Training data set Test data set
MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.

Units’ centers by PSO:
20 25 2000 0.00838 0.0912 [-0.157 0.158] 0.00692 2 0.01078 0.109 [-0.208 0.2] 0.01567 2
40 30 2500 0.00586 0.08024 [-0.158 0.157] 0.00676 0 0.01389 0.11475 [-0.25 0.199] 0.01814 3
70 40 3000 0.00519 0.07145 [-0.135 0.146] 0.00617 1 0.01316 0.11656 [-0.22 0.237] 0.0174 3
Units’ centers by GA:
20 25 2000 0.0084 0.093 [-0.164 0.166] 0.00725 1 0.01082 0.10907 [-0.216 0.192] 0.01568 3
40 30 2500 0.00598 0.08227 [-0.171 0.173] 0.00624 1 0.01479 0.11874 [-0.265 0.201] 0.0179 4
70 40 3000 0.00525 0.07254 [-0.137 0.148] 0.00626 2 0.01501 0.12183 [-0.261 0.216] 0.01836 3
Units’ centers by ICA:
20 25 2000 0.00917 0.09615 [-0.188 0.189] 0.0083 1 0.01688 0.13139 [-0.262 0.254] 0.0198 4
40 30 2500 0.00716 0.08496 [-0.166 0.167] 0.00734 1 0.01483 0.11884 [-0.234 0.216] 0.01742 3
70 40 3000 0.00677 0.08255 [-0.159 0.165] 0.00713 1 0.01576 0.12683 [-0.038 0.024] 0.01912 3
Units’ centers by DE:
20 25 2000 0.01159 0.10808 [-0.212 0.212] 0.00933 2 0.02135 0.14608 [-0.309 0.264] 0.02202 3
40 30 2500 0.00906 0.09555 [-0.187 0.188] 0.00825 1 0.01401 0.11895 [-0.252 0.211] 0.01778 3
70 40 3000 0.00648 0.08082 [-0.159 0.158] 0.00698 2 0.01327 0.11926 [-0.256 0.211] 0.01787 3

Table 5.7: Classification of Iris data set based on RBF-PSO optimization algorithm

n Pop. Iter. Training data set Test data set
MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.

Units’ centers by PSO:
25 35 2000 0.007 0.07407 [-0.175 0.125] 0.0079 2 0.01347 0.10954 [0.211 0.219] 0.01844 3
35 50 2500 0.00435 0.06626 [-0.13 0.13] 0.00623 2 0.01419 0.09469 [-0.189 0.182] 0.01692 2
40 70 3000 0.00429 0.07007 [-0.132 0.131] 0.00682 3 0.05785 0.08827 [-0.189 0.157] 0.01551 2
Units’ centers by GA:
25 35 2000 0.00781 0.08877 [-0.174 0.174] 0.00835 2 0.01406 0.11579 [-0.223 0.231] 0.01903 5
35 50 2500 0.00454 0.06768 [-0.132 0.133] 0.00636 1 0.01416 0.10704 [-0.206 0.213] 0.01759 3
40 70 3000 0.00432 0.07391 [-0.145 0.145] 0.00544 2 0.05557 0.0734 [-0.162 0.126] 0.01206 2
Units’ centers by ICA:
25 35 2000 0.0079 0.08717 [-0.153 0.149] 0.00725 2 0.01517 0.12285 [-0.238 0.243] 0.01897 3
35 50 2500 0.00543 0.07405 [-0.146 0.145] 0.00696 3 0.01542 0.12586 [-0.244 0.249] 0.02069 2
40 70 3000 0.00455 0.07008 [-0.137 0.137] 0.00563 2 0.05092 0.10541 [-0.217 0.196] 0.01732 3
Units’ centers by DE:
25 35 2000 0.00782 0.08188 [-0.149 0.149] 0.00721 2 0.01378 0.11638 [-0.15 0.15] 0.01913 3
35 50 2500 0.00493 0.07666 [-0.123 0.124] 0.00592 2 0.01822 0.09973 [-0.202 0.189] 0.01608 2
40 70 3000 0.00625 0.07941 [-0.153 0.158] 0.00747 3 0.05956 0.09912 [-0.192 0.197] 0.01629 3

Table 5.8: Classification of Ionosphere data set based on RBF-PSO optimization algorithm

n Pop. Iter. Training data set Test data set
MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.

Units’ centers by PSO:
30 60 2000 0.05403 0.22663 [-0.444 0.444] 0.01395 17 0.05838 0.2387 [-0.423 0.513] 0.02544 5
40 80 2500 0.05172 0.22785 [-0.448 0.445] 0.01405 16 0.05553 0.23233 [-0.409 0.502] 0.024767 3
50 90 3000 0.0466 0.20488 [-0.401 0.403] 0.01244 14 0.04855 0.21235 [-0.373 0.459] 0.02289 4
Units’ centers by GA:
30 60 2000 0.05464 0.23407 [-0.451 0.467] 0.01443 19 0.05436 0.22923 [-0.395 0.504] 0.02443 5
40 80 2500 0.06114 0.24773 [-0.485 0.487] 0.01527 20 0.07284 0.27006 [-0.502 0.557] 0.02878 7
50 90 3000 0.05673 0.23859 [-0.473 0.462] 0.01471 17 0.05943 0.24339 [-0.448 0.507] 0.02594 4
Units’ centers by ICA:
30 60 2000 0.07042 0.2658 [-0.528 0.514] 0.01639 19 0.06913 0.26367 [-0.497 0.537] 0.0281 7
40 80 2500 0.06699 0.25932 [-0.508 0.509] 0.01599 20 0.06238 0.24981 [-0.427 0.552] 0.02662 5
50 90 3000 0.06389 0.25318 [-0.491 0.502] 0.01561 21 0.06058 0.24449 [-0.441 0.518] 0.026 5
Units’ centers by DE:
30 60 2000 0.05847 0.24228 [-0.474 0.476] 0.01492 18 0.06325 0.24815 [-0.438 0.535] 0.02645 4
40 80 2500 0.05798 0.24125 [-0.474 0.472] 0.01487 15 0.05386 0.22932 [-0.406 0.493] 0.02444 3
50 90 3000 0.06175 0.24898 [-0.489 0.487] 0.01535 16 0.06379 0.2508 [-0.452 0.532] 0.02673 6

terms of the classification error and other applied metrics. Experimental results demonstrate that

even though the ICA and the DE with not so proper results in obtaining RBF units’ centers could

successfully provide low classification error. Unlike the suitable number of correct classification

by ICA and DE, they do not usually perform well in terms of MSE, Std., CI (95%) and SEM

as compared to PSO and GA. Since the number of correct classification is the major criterion

in the classification problems, it can be concluded that the MSE (as minimization objective) is

not a suitable performance metric for finding the (near) optimal placement of units’ centers. To
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Table 5.9: Classification of Zoo data set based on RBF-PSO optimization algorithm

n Pop. Iter. Training data set Test data set
MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.

Units’ centers by PSO:
30 50 2000 0.00156 0.03974 [-0.077 0.079] 0.00455 3 0.00394 0.0552 [-0.113 0.104] 0.01104 3
40 70 2500 0.00093 0.03024 [-0.059 0.059] 0.00366 1 0.00471 0.07 [-0.14 0.135] 0.01401 5
50 90 3000 0.00095 0.03114 [-0.061 0.061] 0.00335 3 0.00607 0.07197 [-0.157 0.131] 0.01439 4
Units’ centers by GA:
30 50 2000 0.00222 0.47477 [-0.093 0.094] 0.00544 4 0.00904 0.08952 [-0.212 0.139] 0.0179 7
40 70 2500 0.00141 0.03783 [-0.074 0.074] 0.00433 5 0.00595 0.07695 [-0.167 0.134] 0.01539 4
50 90 3000 0.00115 0.03422 [-0.067 0.067] 0.00392 4 0.00628 0.06858 [-0.147 0.122] 0.01383 4
Units’ centers by ICA:
30 50 2000 0.00211 0.04628 [-0.089 0.093] 0.0053 5 0.00706 0.08286 [-0.155 0.17] 0.01657 4
40 70 2500 0.0011 0.0334 [-0.065 0.066] 0.00383 2 0.00487 0.06209 [-0.155 0.17] 0.01241 6
50 90 3000 0.00102 0.03228 [-0.063 0.064] 0.0037 2 0.00826 0.08935 [-0.2 0.151] 0.01787 4
Units’ centers by DE:
30 50 2000 0.00159 0.04024 [-0.079 0.078] 0.00461 3 0.00514 0.07046 [-0.158 0.119] 0.01409 5
40 70 2500 0.00136 0.03712 [-0.073 0.073] 0.00425 4 0.00848 0.08664 [-0.206 0.134] 0.01733 6
50 90 3000 00113 0.03385 [-0.066 0.066] 0.00388 2 0.00635 0.074 [-0.155 0.135] 0.0148 4

confirm convincingly this claim, we present a multiobjective approach to find the (near) optimal

placement of centers. According to the first part of the proposed method (see Fig. 5-2), NSGA

II was applied over benchmarking problems by two conflicting objectives (DBI and MSE) in order

to find the well-separated centers and their local optimization, respectively. The experiment on

proposed algorithm was repeated 5 times independently to find the optimal performance metrics.

Figs. 5-3-5-6 are depicted the optimal Pareto front solutions of (near) well-placed of RBF units’

centers through DBI (x-axis) and MSE (y-axis). We are going to show that for constructing final

RBF neural networks, MSE is not solely the ideal accurate criterion.

(a) Multi objective (n=20) (b) Multi objective (n=40) (c) Multi objective (n=70)

Figure 5-3: Optimal Pareto fronts of Wine data set

Afterward, we integrate the optimal placement of units’ centers (obtained by our two-objective

approach in Figs. 5-3-5-6) with the PSO (see second step of the first phase in Fig. 5-2) in order

to optimize and tune units’ widths and output weights. We run the PSO algorithm with all the

optimal Pareto front solutions of units’ centers. The first five optimal results are demonstrated

based on the minimum classification error in both training and testing data sets in Tables 5.10-

5.13. As seen in these tables, the first five optimal Pareto solutions outperform significantly the

other methods by single-objective approach in Tables 5.6-5.9 based on the MSE, Std. and the num-
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(a) Multi objective (n=20) (b) Multi objective (n=50) (c) Multi objective (n=70)

Figure 5-4: Optimal Pareto fronts of Iris data set

(a) Multi objective (n=60) (b) Multi objective (n=80) (c) Multi objective (n=90)

Figure 5-5: Optimal Pareto fronts of Ionosphere data set

(a) Multi objective (n=50) (b) Multi objective (n=70) (c) Multi objective (n=90)

Figure 5-6: Optimal Pareto fronts of Zoo data set

ber of misclassification error. Other applied performance metrics outperforms the single-objective

approach over 90% of results.

The results show that the proposed method can provide several well-placed RBF units’ centers

as compared to the traditional (single-objective) approaches through MSE criterion. To sum up,

MSE is not an unique criterion to evaluate the performance of the units’ centers in RBF networks.

A new hybrid optimization approach for well-separated centers (such as by DBI) and their local
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Table 5.10: Classification of Wine data set based on proposed method

n Pop. Iter. NSGA II Training data set Test data set
MSE DBI MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.
0.2252 0.566 0.0063 0.0801 [-0.157 0.158] 0.0069 0 0.0104 0.1033 [-0.222 0.191] 0.017 1
0.2249 0.6022 0.007 0.0811 [-0.164 0.166] 0.0072 0 0.0105 0.1015 [-0.227 0.2] 0.0183 1

20 25 2500 0.2303 0.5362 0.0073 0.0813 [-0.169 0.17] 0.0074 0 0.0105 0.1043 [-0.232 0.201] 0.0187 1
0.2376 0.4196 0.0076 0.0819 [-0.162 0.171] 0.0075 1 0.0106 0.1087 [-0.23 0.21] 0.018 1
0.2452 0.3941 0.0081 0.0835 [-0.167 0.174] 0.0078 1 0.0103 0.1076 [-0.217 0.202] 0.0162 2
0.2004 0.3799 0.0049 0.0702 [-0.138 0.138] 0.006 0 0.0107 0.1032 [-0.221 0.184] 0.0155 1
0.1973 0.4032 0.0049 0.0703 [-0.137 0.139] 0.006 0 0.0131 0.1135 [-0.246 0.2] 0.0163 1

40 30 2500 0.1993 0.3803 0.0051 0.0765 [-0.149 0.151] 0.0066 0 0.0138 0.1143 [-0.247 0.201] 0.0166 1
0.2095 0.3532 0.0052 0.0795 [-0.155 0.157] 0.0068 0 0.0131 0.1143 [-0.251 0.198] 0.0166 1
0.2074 0.3646 0.0055 0.0798 [-0.156 0.157] 0.007 0 0.0138 0.1131 [-0.259 0.185] 0.0162 2
0.1638 0.2661 0.0039 0.0632 [-0.125 0.123] 0.0054 0 0.0126 0.1106 [-0.243 0.191] 0.0166 1
0.1657 0.2547 0.0044 0.0667 [-0.131 0.131] 0.0057 0 0.0126 0.11 [-0.244 0.188] 0.0165 1

70 40 3500 0.1636 0.2767 0.0044 0.0669 [-0.128 0.135] 0.0057 0 0.0129 0.1138 [-0.241 0.205] 0.0171 1
0.1630 0.3011 0.0045 0.0678 [-0.133 0.132] 0.0058 0 0.0127 0.1138 [-0.233 0.213] 0.0171 2
0.1674 0.2454 0.0051 0.0696 [-0.142 0.131] 0.0061 0 0.0131 0.1156 [-0.243 0.21] 0.0174 2

Table 5.11: Classification of Iris data set based on proposed method

n Pop. Iter. NSGA II Training data set Test data set
MSE DBI MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.
0.0136 0.2759 0.0046 0.0685 [-0.134 0.134] 0.0064 1 0.0118 0.109 [-0.198 0.23] 0.0179 2
0.0129 0.0403 0.0052 0.0729 [-0.142 0.144] 0.0068 2 0.0128 0.1027 [-0.168 0.235] 0.0217 2

25 35 2500 0.0183 0.184 0.0055 0.0745 [-0.145 0.147] 0.007 1 0.0126 0.1002 [-0.173 0.22] 0.021 2
0.0142 0.2386 0.0058 0.0748 [-0.15 0.151] 0.0072 1 0.0099 0.1012 [-0.197 0.2] 0.0166 2
0.0169 0.1924 0.0063 0.0748 [-0.156 0.157] 0.0075 2 0.0124 0.1091 [-0.191 0.237] 0.0214 2
0.0111 0.1911 0.0031 0.0565 [-0.111 0.111] 0.0053 1 0.0139 0.0929 [-0.153 0.191] 0.02 1
0.0121 0.1752 0.0034 0.0589 [-0.115 0.116] 0.0055 1 0.0139 0.0913 [-0.146 0.212] 0.02 1

35 50 3000 0.0106 0.2048 0.0034 0.059 [-0.115 0.116] 0.0055 1 0.0136 0.0918 [-0.162 0.191] 0.0206 1
0.0116 0.1910 0.0037 0.0616 [-0.121 0.121] 0.005 2 0.0129 0.0924 [-0.164 0.198] 0.02 1
0.0105 0.2122 0.0038 0.062 [-0.123 0.121] 0.0058 1 0.0124 0.0906 [-0.16 0.196] 0.0207 1
0.0095 0.1650 0.0041 0.0663 [-0.129 0.131] 0.0062 1 0.0399 0.052 [-0.058 0.046] 0.026 1
0.0088 0.1932 0.0041 0.0679 [-0.133 0.134] 0.0063 1 0.039 0.0566 [-0.053 0.169] 0.0256 1

40 70 3500 0.0091 0.1744 0.0042 0.0681 [-0.133 0.135] 0.0064 1 0.0347 0.0598 [-0.074 0.161] 0.024 1
0.0087 0.2108 0.0042 0.0682 [-0.132 0.135] 0.0064 1 0.0323 0.0528 [-0.056 0.152] 0.0233 1
0.0097 0.1636 0.0042 0.069 [-0.134 0.136] 0.0064 2 0.0346 0.0483 [-0.045 0.144] 0.0242 1

Table 5.12: Classification of Ionosphere data set based on proposed method

n Pop. Iter. NSGA II Training data set Test data set
MSE DBI MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.
1.2472 0.2147 0.0528 0.2246 [-0.442 0.439] 0.0134 12 0.0512 0.2064 [-0.371 0.438] 0.0213 2
1.2266 0.2210 0.0532 0.2254 [-0.442 0.442] 0.0135 11 0.0538 0.2091 [-0.372 0.448] 0.0216 2

30 60 2000 1.2539 0.2147 0.0533 0.2257 [-0.443 0.442] 0.0135 12 0.0539 0.2022 [-0.366 0.472] 0.02095 2
1.2297 0.2151 0.0533 0.2217 [-0.431 0.438] 0.0139 12 0.053 0.2113 [-0.389 0.439] 0.0207 2
1.262 0.2121 0.0533 0.2218 [-0.437 0.433] 0.0139 11 0.0536 0.211 [-0.377 0.451] 0.0207 2
1.1434 0.2593 0.043 0.2079 [-0.403 0.413] 0.0128 9 0.0375 0.1902 [-0.331 0.415] 0.0202 2
1.1651 0.2282 0.0437 0.2094 [-0.409 0.412] 0.0129 10 0.042 0.2011 [-0.349 0.44] 0.0214 1

40 80 2500 1.1481 0.2521 0.0439 0.2099 [-0.41 0.413] 0.0129 9 0.0437 0.2048 [-0.354 0.45] 0.0218 1
1.1574 0.5508 0.0445 0.2113 [-0.407 0.422] 0.013 11 0.0446 0.2067 [-0.357 0.454] 0.022 2
1.1465 0.2556 0.0453 0.213 [-0.404 0.431] 0.0131 11 0.043 0.2045 [-0.36 0.442] 0.021 2
1.3209 0.2531 0.0373 0.2039 [-0.395 0.405] 0.0147 11 0.044 0.2104 [-0.384 0.442] 0.0245 2
1.2998 0.2591 0.0399 0.2024 [-0.399 0.305] 0.0138 11 0.0425 0.211 [-0.38 0.447] 0.0231 1

50 90 3000 1.3313 0.2496 0.0412 0.2026 [-0.401 0.39] 0.0139 11 0.0427 0.2088 [-0.399 0.44] 0.0243 2
1.2945 0.2596 0.0435 0.2031 [-0.403 0.394] 0.0143 10 0.0426 0.2117 [-0.381 0.449] 0.0336 1
1.2939 0.2612 0.0452 0.2034 [-0.396 0.401] 0.0144 10 0.0478 0.211 [-0.395 0.433] 0.0256 2

Table 5.13: Classification of Zoo data set based on proposed method

n Pop. Iter. NSGA II Training data set Test data set
MSE DBI MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.
0.7917 0.3458 0.0005 0.0227 [-0.044 0.045] 0.0026 0 0.0038 0.0522 [-0.132 0.073] 0.012 1
0.7954 0.3307 0.0005 0.024 [-0.047 0.047] 0.0027 1 0.0035 0.0512 [-0.126 0.075] 0.0112 1

50 40 3000 0.826 0.3252 0.0005 0.0244 [-0.048 0.049] 0.0028 1 0.0033 0.0522 [-0.113 0.092] 0.0102 1
0.793 0.3429 0.0006 0.026 [-0.051 0.051] 0.0029 0 0.003 0.0521 [-0.11 0.094] 0.0118 1
0.8924 0.3111 0.0008 0.0298 [-0.059 0.058] 0.0031 1 0.0031 0.0527 [-0.092 0.115] 0.01 2
0.7185 0.3212 0.0004 0.0218 [-0.042 0.044] 0.0025 0 0.0045 0.0602 [-0.104 0.132] 0.0116 1
0.747 0.2903 0.0007 0.0278 [-0.054 0.055] 0.0031 0 0.0041 0.0598 [-0.121 0.114] 0.0109 2

70 50 3000 0.7383 0.2911 0.0008 0.0289 [-0.057 0.057] 0.0033 1 0.003 0.0563 [-0.112 0.108] 0.0112 2
0.7081 0.239 0.0008 0.0291 [-0.056 0.058] 0.0033 0 0.0043 0.0605 [-0.123 0.115] 0.0115 1
0.7482 0.2816 0.0008 0.0294 [-0.058 0.058] 0.0033 1 0.0029 0.055 [-0.108 0.107] 0.011 2
0.6831 0.2927 0.0004 0.0223 [-0.044 0.044] 0.0025 0 0.0055 0.0621 [-0.142 0.102] 0.0161 2
0.6834 0.2508 0.0004 0.021 [-0.041 0.041] 0.0024 0 0.0059 0.0601 [-0.135 0.101] 0.0112 2

90 60 3000 0.6969 0.1378 0.0006 0.0258 [-0.05 0.051] 0.0029 0 0.006 0.0665 [-0.142 0.119] 0.0112 2
0.7113 0.1317 0.0007 0.0282 [-0.055 0.056] 0.0032 1 0.0058 0.0665 [-0.146 0.115] 0.0113 2
0.7246 0.1221 0.0002 0.0171 [-0.033 0.034] 0.0019 0 0.0026 0.0516 [-0.109 0.094] 0.0103 1
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optimization (such as by MSE) in estimation of RBF units’ centers would fit considerably the

performance requirements.

5.5 Evaluation environment

We use simulations to quantify effects of DoS attacks and their countermeasures. In this work,

we used the open-source ndnSIM [53] package, which implements NDN protocol stack for NS-3

network simulator (http://www.nsnam.org/), to run simulations for evaluating the performance

of considered mitigation method. ndnSIM simulation environment reproduces the basic structures

of a NDN node (i.e., CS, PIT, FIB, strategy layer, and so on). The proposed detection method

(first phase) was implemented by the MATLAB software on the Intel Pentium 2.13 GHz CPU,

4 GB RAM running Windows 7 Ultimate. This algorithm deployed to C++ project integrating

as a C++ shared library using the MATLAB compiler. Then, this C++ program was integrated

with ndnSIM environment to be able to adjust in the simulation environment. The proposed

adaptive reaction was also implemented with C++ in ndnSIM environment. We demonstrate

through simulations that our countermeasure satisfies considerably applied performance metrics

as compared to two recently applied DoS attack mitigation methods namely satisfaction-based

pushback and satisfaction-based Interest acceptance [17]. We perform 10 times simulation runs to

calculate the average performance metrics. Our experiments are performed over two topologies

Figure 5-7: DFN-like topology

shown in Figs. 5-7 and 5-8. Fig. 5-7 corresponds to DFN-like (Deutsche Forschungsnetz as the
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Figure 5-8: AT&T topology

German Research Network) [193], and Fig. 5-8 corresponds to the AT&T network [194]. We use the

symbols Cx, Px, Rx, and Ax to represent x -th consumer, producer, router and adversary nodes,

respectively. In spite of various arguments and experiments, there is no typically and properly

justification for NDN parameters and they have specified based on authors’ experiences and designs

[10]. The experimental setup (i.e., attack and non-attack traffics modeling) is performed over two

applied topologies as follows. For attack effectiveness, we examine the performance of the network’s

data packet delivery and satisfied Interest rate under the different scenarios (see DoS attacks issues

in section 5.1):

1. Interest flooding attack (dynamically-generated Interest packets) for the existent Data.

2. Interest flooding (dynamically-generated Interest packets) for the non-existent Data. It can

be in the form of brute-force attack (very high distribution of Interest) or normal distribution

of Interest.

3. Hijacking, in which a producer silently drops all incoming Interest traffic in downstream

interfaces.

4. Content poisoning (bogus data packets), in which a producer deliberately signs data packets

with a wrong key. We assume that the routers firstly check the signature filed of data packet,

then cache and route the packet toward its destination if the signature is valid. Hence, the

bogus data packets cannot be cached in the intermediate routers.
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In our configurations, we set nodes’ PIT size to 120 KB, while the Interest expiration time was set

to the default timeout of 4 sec. We set the link delay and queue length parameters to fixed values for

every node in the simulated topologies. In particular, we set delay and queue length to 10 ms and

400 for both considered topologies, respectively. The PIT entries replacement policy was adopted to

the least-recently-used (the oldest entry with minimum number of incoming faces will be removed

if PIT size reached its limit) as a widely used strategy. The nodes’ cache capacity was set to 1000

contents and cache replacement policy was set to least-recently-used method. The other system

settings of investigated network topologies are summarized in Table 5.14. As shown in this table, we

ran various traffic patterns in which each configuration changes in every 10 simulation runs in order

to perform different network characteristics. We first analyze the topologies without any adversarial

Table 5.14: Network parameters considered

Node Distribution Pattern Frequency Run time (min.) Producer Goal
DFN-like topology (Fig. 5-7)
C1 randomize uniform [100 500] 0-40 P1 normal
C2 randomize exponential [100 500] 2-40 P2 normal
C3 Zipf-Mandelbort (α = [0.5 0.9]) exponential [100 500] 3-40 P3 normal
C4 randomize uniform [100 500] 4-40 P6 normal
C5 Zipf-Mandelbort (α = [0.5 0.9]) exponential [100 500] 3-40 P2, P3 normal
C6 randomize uniform [100 500] 5-40 P3 normal
C7 randomize uniform [100 500] 7-16, 22-31 P6, P4 sign data with the wrong key
C8 randomize exponential [100 500] 8-18, 25-40 P1 normal
A1 randomize uniform [1500 3000] 7-16 P1 Interest flooding for existence data
A2 Zipf-Mandelbort (α = [0.5 0.9]) uniform [1500 3000] 22-31 no producer Interest flooding for non-existence data
A3 randomize uniform [400 800] 7-16 P5 (hijacker) hijacking incoming Interest packets
A4 randomize exponential [1500 3000] 22-31 P6 Interest flooding for existence data
AT&T topology (Fig. 5-8)
C0, C7 randomize uniform [200 600] 0-50 P0, P1 normal
C1, C8 randomize exponential [200 600] 2-50 P0 normal
C2, C9 randomize exponential [200 600] 3-50 P1 normal
C3, C10 randomize uniform [200 600] 4-50 P1 normal
C4, C11 Zipf-Mandelbort (α = [0.5 0.9]) exponential [200 600] 5-50 P0, P1 normal
C5, C12, C13 randomize uniform [200 600] 6-50 P0, P1 normal
C6, C14, C15 randomize uniform [200 600] 8-50 P1 normal
A0 randomize uniform [1000 3000] 7-25 P1 Interest flooding for existence data
A0 randomize exponential [1000 3000] 30-45 P1 Interest flooding for existence data
A1 Zipf-Mandelbort (α = [0.5 0.9]) exponential [500 1000] 7-25 P0 sign data with the wrong key
A1 Zipf-Mandelbort (α = [0.5 0.9]) uniform [1000 3000] 30-45 no producer Interest flooding for non-existence data
A2 randomize exponential [1000 3000] 7-25 no producer Interest flooding for non-existence data
A2 randomize uniform [1000 3000] 30-45 P1 Interest flooding for existence data

traffic, then with adversarial traffic, finally consideration of the proposed mitigation method over

the illegitimate traffics. Our assumption is that, the behavior of legitimate (honest) consumers is

unchanged in duration of the simulation, and the adversary is not allowed to control routers. To

study the performance of our proposed countermeasure algorithm under range of conditions, we

varied the percentage of attackers and their run times in the considered topologies in Table 5.14.
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5.6 The proposed countermeasure: proactive detection and adap-

tive reaction

In this section, we introduce our method, a two phases -detection and reaction- framework for

mitigating DoS attacks in NDN.

5.6.1 Detection Phase

This step adopts our proposed intelligent classifier from section 5.3.1. We choose the DFN-like

topology (Fig. 5-7) in the training phase with the recommended parameter settings in Table 5.14.

We then apply this trained network for the detection purposes in both DFN-like and AT&T topolo-

gies.

NDN routers can easily keep track of unsatisfied (expired) Interests and use this information for

DoS attack countermeasures such as, pending Interests per outgoing and incoming interfaces, and

pending Interests per namespace. The proper combining/choosing of statistic parameters in NDN

routers for maximum effectiveness against attacks and anomalies, minimum disordering of legiti-

mate traffics, and distinguishing between ’good’ and ’bad’ Interest packets are research challenges

[17, 23]. Hence, we employed simple intrinsic features from the network which is shown in Table

5.15 (i.e., the input features in the RBF neural network).

Table 5.15: Feature construction

Feature Description
InInterests a number of arrival Interest in an interface
InData a number of arrival data in an interface

InSatisfiedInterests
a number of satisfied Interests where
interface was part of the incoming set

InTimedOutInterests
a number of timed out Interests where
interface was part of the incoming set

OutInterests a number of sent Interest from an interface
OutData a number of sent data from an interface

OutSatisfiedInterests
a number of satisfied Interests where
interface was part of the outgoing set

OutTimedOutInterests
a number of timed out Interests where
interface was part of the outgoing set

DropInterests a number of dropped Interest in an interface
DropData a number of dropped data in an interface
SatisfiedInterests a total number of satisfied Interests
TimedOutInterests a total number of timed out Interests

In the training process, all the features beginning with ’In’ are suitable for prediction of the

misbehaving consumers and the features by ’Out’ are suitable for prediction of the misbehaving

producers. Taking into account only a specific or a group (e.g., ’In’ or ’Out’) of features may

cause the detection algorithm to report a wrong prediction. For example, if there are two PIT
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entries that share the same prefix and one Data packet arrives, there will be two entries of In/Out

satisfied Interest but only one In/Out Data, since both Interests can be satisfied with the same

Data. Hence, if a number of In/Out Data be more than the In/Out satisfied Interest for a given

interface or vice versa, it would not be a misbehaving. Another instance is that, Interest packets

from a consumer are possible to arrive to several routers and perhaps several producers that can

satisfy the Interests. Corresponding data packet will send back from producer(s). A router in the

middle way, receives the first packet from any producer and will forward it to the consumer and

remove the PIT entry. When the second Data object arrives to the router, it will be discarded by

the routers as unsolicited. Hence, it is more likely that a rate of In/Out Data or DropData be more

than In/Out Interest rate and vice versa in a corresponding interface. Obviously, it is not an attack

or anomaly behavior. Also, in a given interface, the rate of the InInterest may be less that the

SatisfiedInterest rate which in due to the portion of the satisfaction rate comes from the previous

time interval. On the other hand, the rate of the OutData may be more than the InInterest rate,

which is for routing the cached data for satisfying incoming Interest packets. To sum up, different

parameters mentioned by our detection module act as weights and counterweights for misbehaving

consumer and producer detection purposes.

For constructing a predictor module based on the RBF neural network, at first the centers, widths

and weights are computed and adjusted using training set 75% of data set, and then the remaining

part of the data set as the test set, is used to validate the trained network functionality. We trained

and evaluated the network with various number of RBF units, where the three optimal results are

summarized in Table 5.16. The optimal Pareto front solutions by NSGA II are also depicted in

Fig. 5-9. We computed the MSE, Std., CI (95%), SEM and classification error for both training

and testing parts. The histogram analysis of the classification error distribution and the regression

analysis of the misclassification are shown in Figs. 5-10 and 5-11, respectively. As seen in these

Figures and Table 5.16, third parameter settings could provide the better results as compared to

the two others in terms of the applied performance metrics. Hence, these (near) optimal parameter

settings are used to construct our RBF classifier (predictor).

Table 5.16: Classification of NDN data set based on proposed method

n Pop. Iter. NSGA II Training data set Test data set
MSE DBI MSE Std. CI (95%) SEM Err. MSE Std. CI (95%) SEM Err.
0.0314 0.0979 0.0099 0.0998 [-0.192 0.197] 0.0055 2 0.0235 0.1541 [-0.301 0.3] 0.0147 3

80 40 2500 0.0643 0.0979 0.0099 0.0998 [-0.186 0.206] 0.0055 2 0.0248 0.1584 [-0.32 0.29] 0.0151 3
0.0315 0.0914 0.0095 0.095 [-0.187 0.186] 0.0054 1 0.0231 0.1527 [-0.299 0.3] 0.0142 1

As we expected (based on our proof in section 5.4), This phase constructs an optimized and

117



Figure 5-9: Optimal Pareto fronts of DFN-like training phase

(a) 1st histogram (b) 2nd histogram (c) 3rd histogram

Figure 5-10: The histogram analysis of the classification error distribution in DFN-like topology

(a) 1st Regression (94.97%) (b) 2nd Regression (94.96%) (c) 3rd Regression (95.18%)

Figure 5-11: Regression of the classification error between target and predicted output in DFN

more accurate RBF classifier (predictor) for our DoS attack mitigation purposes in NDN. According

to the traffic flows type in the training data set (see Table 5.14), this predictor learned three

types of traffic patterns including normal, malicious behavior from consumers and producers. This

predictor module runs on routers, in order to continuously monitor per-interface required statistical
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information. This module is executed at fixed time intervals -typically every 0.5 sec - to provide

a proactive detection behavior. Finally, based on three types of prediction (normal, misbehaving

consumer and misbehaving producer), we should respond an appropriate action as detailed in the

next subsection.

5.6.2 Reaction Phase

Once a DoS attack from interface j of router i has been identified with the proposed proactive

detector (see section 5.6.1), our reaction mechanism enables and enforces explicit limitation based

on the prediction type (adversary consumer or adversary producer) for each interface. The proposed

intelligent proactive detector reports misbehaving in the early stages of beginning DoS attacks.

Our adaptive reaction criterion for misbehaving consumer directly depends on the local interface’s

Interest unsatisfied ratio and for misbehaving producer directly depends on the forwarding strategy.

The original settings and Interest rate are restored once the detector module reports the normal

traffic in the next time interval.

reaction regarding to misbehaving consumer

When the proposed intelligent detector module in router detects adversarial traffics from a set of

interfaces, it sends an alert message on each of them. An alert message is an unsolicited content

packet which belongs to a reserved namespace (”/pushbackmessage/alert/”) in our implemen-

tation. There are two reasons for using content packet rather than Interest packet for carrying

pushback message [20]:

1. during an attack, the PIT of next hop connected to the offending interface may be full, and

therefore the alert message may be discarded, and

2. content packets are signed, while Interests are not. This allows routers to receive the content

packets as a legitimate packet for processing.

The payload of an alert message contains the timestamp corresponding to the generation time of the

alert message, the new reduced (unsatisfied) rate and the wait time of reduction period. The formal

definition of our unsatisfied-based pushback mechanism presents in Fig. 5-12. Assuming in a time

interval in router C the predictor reports a misbehaving traffic from a consumer (neighbor node).
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Figure 5-12: unsatisfied-based pushback example

Also, an unsatisfied rate is 50% for eth0 and 70% for eth1. Our proposed reaction mechanism is

as follows:

1. Router C will send a pushback alert message to the neighbors from eth0 and eth1.

2. Routers A and B, after receiving alert message from C will readjust their local interfaces limit to

’announced reduced rate’ × ’local unsatisfied rate’ in each local interface. If the

new limit in the corresponding interface exceeds the predefined threshold φ, the corresponding

interface gets new reduction of Interest rate in downstream. For instance, we assume φ = 5%

so that router B decreases the Interest rate of eth0 to 50% and eth1 to 15%. Router A

decreases the Interest rate in its three interfaces to 63%, 0 (the new limit rate (=3.5%) is

under predefined threshold (=5%) and will not be changed) and 28% in eth0, eth1 and eth2,

respectively. This threshold allows bandwidth usage be consumed for legitimate traffics in

the nearest next time interval and intensifies Interest rate reduction for adversaries in each

next time intervals.

3. Our wait time strategy for the reduction period in neighbor nodes is an ascending penalty. If

in a time interval t in interface j the misbehaving traffic be reported, a counter sets to 1 sec. If

in the next time interval t+1 the misbehaving again be reported, a counter sets to 2 sec. Our

ascending penalty method is in 2counter. Initially, counter = 0 and increase linearly in each

time interval. The counter is set to the initial value when there is no misbehaving prediction

in the next time interval. This ascending penalty intensifies the penalty for adversaries and

alleviates the bandwidth usage for legitimate (honest) users.

4. Any neighbor node may obey (ignore) the announced limit rate and send Interest packets
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without any restriction from the upstream interface. Our algorithm after twice refusing the

alert message will band the incoming Interest packets from the corresponding interface for a

long time period.

Input: AlertMsg, timestamp of alert generation, reduced rate and wait time from interface j in router i
(rji )

Result: (1) adaptive pushback reaction and (2) pushback alert message generation

1 counterj = 0 // initial counter for generating wait time in interface j
2 φ = 5% // reduction threshold of Interest rate

/* section: adaptive pushback reaction */

3 if AlertMsg is Pushback alert message then
4 if Verify(AlertMsg.signature ) and IsFresh(AlertMsg.timestamp ) then

/* Pushback reaction */

5 foreach local interface j do
6 new rate = unsatisfied rate of j × announced reduced rate ;
7 if φ < new rate then

/* intensify the penalty */

8 Decrease(interface j, new rate, announced wait time );

9 else
/* reset to original setting */

10 Increase(interface j, original rate ) ;

11 else
12 Drop(AlertMsg ) ;
13 return ;

/* section: Pushback alert message generation */

14 if (predictor module reports the adversary consumer (neighbor) in local interface j) then

15 if (time from last sent AlertMsg to local interface rji < current local time) then
/* Pushback alert message generation */

16 new time interval = 2counterj ;
17 AlertMsg = (current timestamp of alert generation, current unsatisfied rate in local interface j,

new time interval);

18 Send(AlertMsg to rji );
19 counterj = counterj + 1;

20 else
/* reset to original setting */

21 counterj = 0 ;
22 Increase(interface j, original rate ) ;

Algorithm 1: Unsatisfied-based pushback algorithm

At the next iteration of the unsatisfied-based pushback mechanism, legitimate user(s) will be able

to gradually improve their satisfaction rate and sending Interest packets on both router A and B.

After applying the alert message in router A, the Interest rate of the adversary will be decreased to

around 63% in the next iteration. It allows bandwidth usage be consumed for 2nd legitimate user,

that it will considerably led to the increasing of legitimate Interests rate. If the adversary continues

its misbehaving in the next times, the ascending wait time strategy will increase the penalty rate
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of the illegal Interest packets. Hence, eth1 and eth2 interfaces in router A will get through and

return Data, eventually resulting in a full allowance in the link between the routers A and C.

The Pseudo-code of the unsatisfied-based pushback mechanism is shown in Algorithm 1. In this

algorithm, the Decrease function decreases the Interest rate from corresponding interface with

announced parameters. After normal traffic prediction, the Increase function sets the default

Interest rate on the corresponding interface in the next time interval. The IsFresh function checks

the freshness of the alert message when there is no previously alert message.

reaction regarding to misbehaving producer

If the predictor module predicts a misbehaving producer from an interface j, we build an adaptive

and simple forwarding strategy. The main goal is to retrieve data via the best performance path(s),

and to quickly recover packet delivery problem by the other (possible) legitimate producers. When

a predictor module in a router i reports a misbehaving producer in an interface j, the interface

status changes to the unavailable (can not bring data back) and will be deactivated for a predefined

time interval. This type of forwarding strategy can increase the data retrieving chance for awaiting

Interest packets in the PIT table by changing the forwarding path. We apply the wait time strategy

from the misbehaving consumer section (see section 5.6.2). After normal prediction in the next time

intervals, the interface status changes to available (can bring data back). It means, it is ready for

forwarding Interest packets via this interface. It is expected that in the next time intervals, when

there is no any legitimate producer to satisfy the corresponding Interest packets in an interface j,

the predictor module reports misbehaving consumer (neighbor) from upstream interface j, where

Interest packets are susceptible to be illegal traffics. Then, the rate of incoming Interest packets

should gradually decrease in upstream interface j based on our ascending penalty mechanism in

previous subsection.

5.7 Experimental results and evaluation

In this section we report the experimental evaluation of countermeasures presented in Section

5.6. Our countermeasures are tested over two considered topologies in Figs. 5-7 and 5-8. Each

router implements the proposed detection technique discussed in Section 5.6.1 and adaptive reaction

technique discussed in 5.6.2.

We report the results based on the five conditions: baseline, attack (no countermeasure), our
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Figure 5-13: Interest satisfaction ratio for legitimate users in DFN

Figure 5-14: Interest satisfaction ratio for legitimate users in AT&T

proposed method, and two DoS mitigation methods applied in this work including satisfaction-

based pushback and satisfaction-based Interest acceptance from [17]. Figs. 5-13 and 5-14 show

the average Interest satisfaction ratio for legitimate users within 10 runs in DFN-like and AT&T

topologies, respectively. Our results show that the proposed intelligent hybrid algorithm (proactive

detection and adaptive reaction) is very effective for shutting down the adversary traffics and

preventing legitimate users from service degradation by the accuracy more than 90% during the
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attack.

Figure 5-15: PIT usage with countermeasures in DFN

Figure 5-16: PIT usage with countermeasures in AT&T

Figs. 5-15 and 5-16 demonstrate the average PIT usage within 10 runs in five considered con-

ditions in DFN-like and AT&T topologies, respectively. Our results show that there is a significant

benefit of the proposed countermeasure in reduction of PIT usage in presence of an adversary. In

Figs. 5-17 and 5-18 we show the average number of content received (throughput) in DFN-like and
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AT&T topologies, respectively. The results show that the proposed countermeasure is effective and

efficient in presence of adversary. For clarity, we just report measurements for those routers that are

affected by the attacks for AT&T topology. The most routers in both considered topologies exhibit

an interesting behavior. The proposed mechanism in both steps (detection by an intelligent hybrid

method and reaction by enforcing explicit limitations against adversaries) offers visibly promising

performance in presence of adversary.

Figure 5-17: Effects of countermeasures in DFN (Throughput)

Figure 5-18: Effects of countermeasures in AT&T (Throughput)
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5.7.1 Two facts of DoS/DDoS mitigation in NDN

Experimental results and analysis show that the two conditions can cause a DoS mitigation method

degrades service to legitimate consumers:

1. Producers can misbehave by dropping incoming Interest packets or signing data packets

with the wrong keys as they are unwilling to forward data packets to legitimate consumers.

We conducted this experiment in AT&T topology by producer P0 between 7-25 seconds of

simulation run (see Table 5.14), in which consumers C0, C1, C4, C5, C7, C8, C11, C12, and

C13 request their desirable data packets from that producer. When our proposed predictor

in an interface reports a misbehaving producer, the corresponding interface status changes

to unavailable and will be deactivated. Consequently, the data retrieving chance for awaiting

Interest packets increases by changing the forwarding path towards the producer P1 except

C1 and C8, because other consumers can be satisfied with more than one producer. It is an

expected behavior from a predictor until there is either no misbehaved producer or an extra

well-behaved producer. As a result of this condition, it seems reasonable to decrease the rate

of Interest packets for legitimate consumers.

2. A DoS mitigation technique should be able to detect malevolent behaviors and any deviation

ideally long before the destructive traffics build-up and block the network traffics belonging

to the attackers without denying services to legitimate consumers in a timely manner. If a

mitigation technique cannot detect DoS attacks in a timely manner, the generated overload by

DoS attacks prevents the resource from responding to legitimate traffic, or slows its response

so significantly a (high) percentage of the legitimate Interest packets are completely disrupted.

In this way, DoS mitigation techniques often create false positives (false alarms) by dropping

legitimate Interest packets or enforcing limitations incorrectly against legitimate consumers.

False positive refers to normal traffics when are incorrectly decreased by enforcing explicit

limitations from our proposed unsatisfied-based pushback mechanism and other considered

countermeasures during DoS/DDoS attacks (see section 5.6.2). Table 5.17 demonstrates the

average rate of false positives obtained by our method and other applied countermeasures

within 10 runs. This table shows that the proposed mitigation method is characterized by an

extremely low false positive rate as compared to other countermeasures which is important

when dealing with DoS/DDoS attacks. It can be concluded that the proposed intelligent

hybrid predictor is able to detect DoS/DDoS attacks in a timely manner to prevent service
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degradation for legitimate users.

Table 5.17: Comparison of false positive rate (mean of 10 runs)

Topology No countermeasure Satisfaction-based Interest acceptance Satisfaction-based pushback Our method

DFN 59.78% 21.05% 14.47% 6.44%
AT&T 66.43% 24.29% 19.13% 9.26%

A future work is needed in the classification of legitimate users’ traffics as either good (non-

malicious), bad (malicious) or low and high prone to attack traffics (non-malicious, but with

the same properties as malicious traffics).

5.7.2 Discussion

A new intelligent hybrid algorithm (proactive detection and adaptive reaction) for mitigating

DoS attacks in Named Data Networking has been proposed. The first part (detection) of this new

algorithm (Fig. 5-2) consists of two phases: training/optimization and prediction/classification.

In the training phase, an hybrid optimization algorithm has been developed to resolve the hybrid

learning problem of RBF neural networks using multiobjective evolutionary algorithm and PSO.

The first step of this phase adjusts RBF units’ centers based on NSGA II through two conflict-

ing objectives: well-separated centers (by Davies Boulding Index (DBI)) and local optimization

of centers (by Mean-Squared Error (MSE)). Second step of this phase trains units’ widths and

output weights using PSO. This step tunes and adjusts widths and weights simultaneously by the

well-separated centers from the previous step. In the prediction phase, a simple and an effective

prediction algorithm has been designed to classify the new input patterns in their actual classes.

This part of our hybrid algorithm has been successfully applied to define a more accurate RBF

classifier over the NDN traffic flows as well as distinguish intelligently DoS attack traffics.

Convergence of the proposed RBF classifier (predictor) is studied for finding global and optimal

classification of different benchmarking data sets as Wine, Iris, Ionosphere and Zoo. We applied

the single-objective approach in Tables 5.2-5.5 (training units’ centers) and Tables 5.6-5.9 (train-

ing units’ widths, output weights and calculating the misclassification error), and our conflicting

two-objective approach in Figs. 5-3-5-6 (Pareto front of the units’ centers solutions) and Tables

5.10-5.13 (training units’ widths, output weights and calculating the misclassification error). Ex-

perimental results confirm the accuracy and the robustness of the proposed approach based on the

several performance metrics: MSE, Standard Deviation (Std.), Standard Error of Mean (SEM),

Confidence Interval (CI 95%) and the number of incorrect classification.
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The feasibility and efficiency of the proposed RBF classifier (predictor) method was compared to

four well-known and frequently used optimization algorithms. Tables 5.6-5.9 demonstrate the fi-

nal results, using PSO, Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and

Differential Evolution (DE). The proposed algorithm in this dissertation outperforms all applied

methods based on the (near) optimal results in the number of correct classification, MSE and Std.

criteria. It can be concluded that the proposed intelligent hybrid algorithm is able to construct

more accurate and well-tuned RBF classifier for (near) optimal classification of input patterns.

Although, the proposed method and other methods use different parameter settings. Our method

was repeated 5 times and others were repeated 20 times independently to find the global results

in the training/optimization phase; therefore, the effect of tuning parameters on performance of

the methods are studied. We repeated the proposed training phase less than other methods to

show that our two-objective approach is able to tune and adjust RBF parameters faster and more

accurate than other methods.

The proposed intelligent classifier was successfully adopted in the detection phase of our counter-

measure (see section 5.6.1). After constructing the intelligent hybrid classifier (predictor) module,

an adaptive reaction mechanism by enforcing explicit limitations against adversaries was pro-

posed to mitigate potential DoS/DDoS attacks in NDN (see section 5.6.2). Finally, convergence,

feasibility and efficiency of the proposed algorithm (proactive detection and adaptive reaction) is

studied for finding the optimal placement of RBF units’ centers, units’ widths and output weights

and measuring the suitable performance over two network topologies including DFN-like (Fig. 5-7)

and AT&T (Fig. 5-8). The results were promising as compared to two recently proposed DoS mit-

igation methods from [17] based on the average of Interest satisfaction ratio for legitimate users,

the PIT usage, the number of received contents (throughput), and a very low false positive rate

over 10 simulation runs.

5.8 Conclusion

NDN is a newly proposed future Internet architecture which it is important to address its resilience

in face of DoS/DDoS attacks. We examined the most current instances of DoS/DDoS attacks to

show that an adversary with limited resources can serve service degradation for legitimate users.

We then introduced our intelligent hybrid algorithm for proactive detection of DoS attacks and

adaptive reaction for mitigating. In the detection phase, a combination of multiobjective evolu-
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tionary optimization and RBF neural network has been applied. This approach consists of two

phases: training/optimization and prediction/classification. In the training phase, we investigate

the implementation of a multiobjective approach and PSO in the design of RBF neural network

in order to improve the accuracy of classification problems. We apply NSGA II to determine the

Pareto solutions of RBF units’ centers in terms of the well-separated centers through DBI and

their local optimization through MSE. Then, the optimization and tuning of the units’ widths and

output weights are accomplished by using the PSO, where the each particle encodes a set of widths

and weights. Moreover, the structure of this step is simple and easy to implement, yet very effective

in terms of several performance criteria. In the prediction phase, we employ a simple algorithm to

classify efficiency the new input patterns with the minimum misclassification error. This hybrid

algorithm was applied on four benchmarking data sets to verify the algorithm accuracy and robust-

ness in classification problems.

Subsequently, after constructing a more accurate classifier (detector), we performed a simple adap-

tive reaction algorithm by enforcing explicit limitations against adversaries which was very effective

and efficient for shutting down the attackers with the robust recovery from network failures and

accuracy more than 90% in terms of the average of Interest satisfaction ratio for legitimate users,

the PIT usage, the number of received contents (throughput), and a very low false positive rate

over 10 simulation runs.
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Chapter 6

ACCPndn: Adaptive Congestion

Control Protocol in NDN by learning

capacities

Congestion takes place in NDN routers when the number of arrival data packets is higher than the

queue’s capacity which causes an overflow in the routers’ buffer [43, 44, 50]. When this happens

a high data packet loss and increase in the end-to-end delay occur affecting negatively on the

performance, stability and robustness of the network [45, 46]. This leads to under-utilization of the

available resources and degradation of throughput and quality of service [47, 48].

This difficulty has recently motivated researchers to explore ways of congestion control in NDN.

Some of the relevant contributions are [43, 44, 195, 196, 197, 198, 199]. The main weak points of the

proposed methods are: a too high sensitivity to their control parameters as well as the inability to

predict congestion traffic well enough in advance. This will often bring unfair bandwidth sharing,

network instability, packet loss, additional delay and so on [200, 201]. The first goal of any method

against congestion can be the early detection (ideally long before the problematic traffic builds up) of

its existence. If the congestion problem can be recognized in advance, changing network parameters

can possibly prevent such costly network breakdowns. Network traffic prediction plays an important

role in guaranteeing quality of service in computer networks [202]. The prediction of network traffic

parameters is feasible due to a strong correlation between chronologically ordered values [200].

Their predictability is mainly determined by their statistical characteristics including self-similarity,

multi-scalarity, long-range dependence (LRD) and a highly non-linear nature [203]. Prediction
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algorithms can be embedded into network communications to improve the global performance of

the network by anomaly detection, proactive congestion detection (or avoidance), and allow a better

quality of service by a balanced utilization of the resources [202, 204, 205]. Contributions from the

areas of operational research, statistics and computer science have lead to forecasting methods. In

particular, the field of Time Series Forecasting (TSF) deals with the prediction of a chronologically

ordered values [206, 207]. The goal of TSF is to model a complex system as a black-box in order

to predict the systems behavior based on the historical data [200, 208].

In this dissertation, we develop ACCPndn (Adaptive Congestion Control Protocol in Named Data

Networking) which is a new congestion control protocol with learning capacities. The ACCPndn

focuses on two phases for congestion control before building up in NDN. The first phase -

adaptive training- learns from the past breakdowns to how to detect the problem beforehand.

This phase allows to identify the source of the congestion together with the amount of congestion.

This phase uses Timed-Lagged Feedforward Neural Network (TLFN) approach. The TLFN adopts

a multilayer perceptron ANN (Artificial Neural Network) and time series forecasting (TSF) [209,

210]. The major advantages of neural networks in time series forecasting are their flexible nonlinear

modeling capability that there is no need to specify a particular model form and high data error

tolerance [211, 212]. A Back-Propagation is a most popular NN algorithm (BPNN) to determine

and adjust network parameters, weights and biases. Despite the advantages of BPNN, it has some

drawbacks that the most important one being their poor trainability. It might fall to local minima

and cause overfitting and failure of the network training [213, 214]. There is a recent trend to train

BPNN with bio-inspired optimization algorithms for different applications [215, 216, 217]. In this

work, in order to improve the performance of BPNN, a new combined algorithm namely Particle

Swarm Optimization (PSO) and Genetic Algorithm (GA) is presented to optimize the weights and

the biases of network, and to prevent trapping in local minima. The results show that our proposed

combination of PSO/GA with TLFN (TLFN + PSO-GA) performs better than the GA/PSO, PSO

and GA in terms of the applied performance criteria.

When the source(s) and the amount of congestion are identified, they are sent to the second phase

for congestion control before building up. The second phase -fuzzy avoidance- performs a

fuzzy decision-making approach to proactively respond to network congestion rather than simply

wait for a congested queue to overflow and the tail drop all subsequently arriving data packets.

The application of fuzzy decision-making techniques to the problem of congestion control is suitable

due to the difficulties in obtaining a precise mathematical (or a formal analytical) model, while
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some intuitive understanding of congestion control is available [218, 219]. Its use allows to regulate

effectively the incoming Interest packets in each routers’ interface.

The main objective of the proposed protocol is to enable a stable equilibrium and satisfy some

basic requirements which are characterized by the utilization of multiple paths and few packet

drops. The second objective is to present a scalable and fast convergence properties with respect

to varying delays, bandwidths, traffic patterns, and number of users at different times utilizing

the network. The evaluation through simulations shows that ACCPndn can quickly and effectively

respond against congestion problems in a timely manner and performs successfully even in the

large networks as compared to two recent congestion control mechanisms namely NACK [199] and

HoBHIS [43] in terms of the applied performance metrics.

6.1 Related Work

The congestion difficulty has recently motivated researchers to explore ways of congestion control

in NDN. Some of the relevant contributions are [43, 44, 195, 196, 197, 198, 199]. The main weak

points of the proposed methods are: a too high sensitivity to their control parameters as well

as the inability to predict congestion traffic well enough in advance. This will often bring unfair

bandwidth sharing, network instability, packet loss and additional delay [200, 201]. Among all the

proposals, HobHIS (Hop-by-hop Interest Shaping mechanism) [43] and NACK [199] are recently

applied in NDN scenarios, which they slow down Interest packets on the hop after congestion rely

on backpressure to alleviate congestion.

HobHIS is a rate-based congestion control mechanism for CCN. This method computes the available

capacity of each CCN router in a distributed way in order to shape their conversations Interest

rate and therefore, adjust dynamically their Data rate and transmission buffer occupancy. NACK

mechanism also works as follows. When a NDN node can neither satisfy nor forward an Interest

(e.g., the upstream node has no available interface to forward the Interest or its downstream link

to forward the Data packet is congested), it sends an Interest NACK back to the downstream

node. When a neighbor node receives NACK message, it sets a limit on Interest packets over its

downstream interface. The problem of Interest NACK is that it consumes the PIT entries on the

way, and if a neighbor is under congestion, this packet is discarded.
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6.2 Time series analysis

A time series is a sequence of data points or time ordered observations (y1, y2, ..., yt) in which each

period recorded at a specific time t. A time series forecasting is the use of a model to predict future

values based on previously observed values [208, 220]. For time series feature extraction, a trace

(set of events) should be converted into time series with the regular time intervals. This will be

used as an input for the purpose of prediction. The time series would be described by the following

formula [221]:

x(t+ τ) = f(x(t), x(t− τ), ..., x(t− nτ)) (6.1)

Where, f is a Time Series Forecasting (TSF) method, τ is specified time delay and n is some

integer values. The TSF methods have found applications in very wide area including finance,

business, computer science, medicine, physics, chemistry and many interdisciplinary fields. Most

time series modeling methods provide only a reasonable, but limited accuracy and suffer from the

assumptions of stationarity and linearity [222]. To improve TSF with nonlinear characteristics,

several researchers have successfully employed artificial neural networks [223, 224].

Figure 6-1: Two steps of the ACCPndn

134



6.3 The proposed method: ACCPndn

In this section, we introduce our proposal, ACCPndn: a two phase framework for congestion control.

The first phase being adaptive training and the second one fuzzy avoidance. This proposal aims to

avoid congestion before it builds up. A diagram of the ACCPndn is shown in Fig. 6-1.

6.3.1 Phase 1: Adaptive Training

For TLFN modeling, we try to forecast the rate at which entries are added to the PIT table in

NDN routers (In the rest of the work we use the term PIT entries rate interchangeably). Since all

exchange in NDN is Interest/Data (one Interest packet will be replied back with one data packet),

the rate of new PIT entries (the expected amount of returned data) could be a good indicator of

a future congestion in the router’s buffer. With the prediction of new PIT entries rate in the next

time interval, the arrival rate of data packets at that are susceptible to create congestion can be

forecast in a timely manner. In this phase, routers learn what are the kind of many low and high

frequent traffic patterns which cause an overflow in the routers’ buffers and create congestion.

(a) example of data com-
munication network

(b) neural network representing the network connectivity

Figure 6-2: Reflection of the connectivity of data communication network in a neural network
considered

We adopt the nodes connectivity of the NDN routers for defining the number of neural network

layers, the connectivity of layers and the number of neurons in TLFN. Fig. 6-2 shows the logic

of the proposed neural network connectivity. The neural network used consists of m × n input

nodes, two hidden layers and one output layer containing n node. The m denotes the number

of features in the input layer and n denotes the number of the contributing routers. The input

135



features correspond to the PIT entries rates for a set of consecutive time intervals.

For the connectivity between input layer and first hidden layer, the neural network reflects the

connectivity of the data network by only allowing links between neurons representing adjacent

nodes. For instance in Fig. 6-2a, n would be six because only six nodes are actually contributing

traffic. Hence, the connection between node 1 in the input layer and node 4 in the first hidden layer

derived from their connectivity in the data communication network. We only allow connectivity

between nodes neighbors from input neurons (nodes) to represented neurons (nodes) in the hidden

layer. On the other hand, according to the definition of the NDN data communication, when a

node’s cache cannot satisfy Interest packets, the node forwards Interest packets toward the origin’s

content through intermediate nodes. Thus, there are data communications by routing Interest and

returning back data packets through intermediate routers. To address this issue, we provide an

extra layer in the hidden layer by a fully-connection communication. The output of the neural

network is a representation of PIT entries rate forecasting in each considered routers which are

suspected causing the problem in the next time interval. For instance, an output of [50 0 0 30 90

0] would mean the first, fourth and fifth routers will be faced with the new PIT entries with the

probability of 50%, 30% and 90% in the next time interval, respectively.

The constructed TLFN is trained offline in order to create a pattern by learning the PIT entries rate

in contributing routers in the next time interval. Afterward, we create a control agent containing

this trained neural network to being placed in the simulation environment. A higher level view of

our architecture is a network with a control agent existing somewhere on a node in the network.

This controller should easily gather required input information (historical PIT entries rate) from

contributing routers in a predefined time interval. When the controller predicts the rate of PIT

entries in contributing routers, it sends the prediction rate to the corresponding routers. Then,

each router per interface performs a fuzzy decision making to control or prevent the probable packet

drop in a timely manner (see section 6.3.2).

For TLFN modeling, we propose a new technique, an hybrid of particle swarm optimization and

genetic algorithm during the TLFN training. The TLFN + PSO-GA integrates PSO and GA to

tune (optimize) weights and biases of TLFN. The computational procedures for the proposed TLFN

+ PSO-GA are as follows:

Step 1: Normalize data samples into [0 1]:

X =
Xi −min(Xi)

max(Xi)−min(Xi)
(6.2)
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Where min(Xi) and max(Xi) are the minimum and maximum value of data samples and Xi de-

notes the real value of each vector.

Step 2: Define some initial parameters: c1 = c2 = 2, ωmin = 0.3, ωmax = 0.9, SwarmSize = 25

(number of the particles), MaxIter = 500 (maximum number of the main iteration), MaxIterPSO =

4 (maximum number of the PSO iteration), MaxIterGA = 2 (maximum number of the GA itera-

tion), V armin = 0 (lower bound of variables -particles’ position-) and V armax = 1 (upper bound

of variables).

Step 3: Randomly initialize a group of particles in size of SwarmSize. Each particle includes

position (the weights and the biases of TLFN) and velocity.

Step 4: Calculate the particles’ fitness value. The performance (fitness) function is Mean Square

Error (MSE) between the actual target and output of the neural network. Afterwards, update the

pbest (personal best of each particle) and the gbest (global best of the swarm).

Step 5: Repeat the following loop until the target or maximum sub-iteration of PSO (MaxIterPSO)

is reached:

Step 6: Apply PSO main loop:

1. Update velocity by Eq. 2.3.

2. Apply velocity limits: If the velocity of a particle exceeds the minimum or maximum allowed

speed limit, it should bring such particle back into the search space:

V elocity = max(V elocity, V elMin)

V elocity = min(V elocity, V elMax)
(6.3)

Where V elMin = 0.1 × (V arMax − V arMin) and V elMin = −V elMax are the minimum and

maximum values of the particles’ velocity.

3. Update position by Eq. 2.4.

4. Apply velocity reflection: it allows those particles’ position that move toward the outside the

boundary [V arMin V arMax] to move back into the search space multiplying particles’ velocity

by −1.

5. Apply position limits: If the position of the particle exceeds the boundary of search space,
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this such particle should bring back into the feasible search space:

Position = max(Position, V arMin)

Position = min(Position, V arMax)
(6.4)

6. Evaluate fitness function.

7. Update the personal best (pbest) and the global best (gbest).

Step 7: If MaxIterPSO is not reached to its predefined value go to the step 6; otherwise, if all

particles updated and MaxIterPSO is reached to its predefined value go to the next step.

Step 8: Apply real-coded GA operators: reproduction, crossover, mutation, selection:

1. Reproduction: reproduce a number of individuals (chromosomes) for crossover and mutation:

nCrossover =

⌊
(pCrossover × nSwarm

2
)× 2

⌋
(6.5)

Where, pCrossover(=0.7) is crossover percentage, nCrossover is the number of parents (Off-

springs).

nMutation = bpMutation× nSwarmc (6.6)

Where, pMutation(=0.2) is mutation percentage, nMutation is the number of mutants.

2. Crossover: apply two-point crossover over two random selected particles for the number of

nCrossover particles (individuals). It creates new population set as popCrossover. Calculate

fitness function for popCrossover.

3. Mutation: apply mutation over random selected particle for the number of nMutation par-

ticles:

Xnew = X × rand×N(0, 1) (6.7)

It creates new population set as popMutation. Calculate fitness function for popMutation.

4. Selection: merge populations ([nSwarm popCrossover popMutation]), sort merged populations

based on their fitness values, and select the first nSwarm particles.

Step 9: Update pbest and gbest.

Step 10: If the sub-iteration of GA algorithm (MaxIterGA) is not reached to its predefined value
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go to the step 8; otherwise, go to the next step.

Step 11: Update ω by Eq. 5.1.

Step 12: If the maximum iteration (MaxIter) or predefined target is not reached, go to the step

5; otherwise, the gbest includes the optimized parameters (weights and biases) of TLFN + PSO-GA

and the network can be used for forecasting.

6.3.2 Phase 2: Fuzzy Avoidance

As we explained earlier, a controller based on the trained TLFN + PSO-GA is placed in the network

to gather required information for PIT entries rate forecasting in the contributing routers. In this

phase, a Fuzzy Inference System (FIS) is applied to prevent probable packet drop in susceptible

routers to congestion problem before building up. We deploy a combination of three criteria where

each interface in contributing routers gathers them in each time interval:

1. PIT entries rate forecasting in each router through the first phase (training module).

2. Interest satisfaction rate in PIT per interface.

We take into consideration the unique feature of NDN, i.e., one Interest packet will only

return back one data packet in reverse path of the Interest packet. In a NDN router, if the

number (rate) of incoming Interest packets in PIT be varied widely with the number (rate)

of incoming data packets for Interest satisfaction, there might be some abnormal Interests or

congestion. If the number of incoming Interest packets be more than the PIT size, PIT will

apply its replacement policy for new incoming Interest packets. If the PIT removes old PIT

entries to accommodate new Interest packets, returned data packets for removed PIT entries

become unsolicited. It might be led to congestion due to the crowding of unsolicited data

packets. On the other hand, current unsatisfied Interest packets in PIT table may also reach

their timeout (lifetime expiration) and become dangling state [199]. Such dangling state can

potentially block other Interest packets. When a router is congested, it can potentially lead

to dangling state for unsatisfied Interest packets. We maintain the Relative Strength Index

(RSI) for every interface of a router to reflect the Interest satisfaction ratio in PIT:

RSI =
În

În + D̂n

(6.8)

Where În and D̂n are the average number of the placed Interests in the PIT table and the
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incoming data packets of an interface at the nth time, respectively. We apply the standard

Exponentially Weighted Moving Average (EWMA) with α coefficient (a lower α counts widely

earlier observations) [225] to calculate the placed Interest packets in PIT and the incoming

data packets periodically, e.g., once a second:

În = α.In + (1− α) ˆIn−1

D̂n = α.Dn + (1− α) ˆDn−1

(6.9)

Where In and Dn are the total number of incoming Interest in PIT and incoming data packets

of an interface in the nth period. Generally, the reasonable RSI of every interface should be

around 50%.

3. Cache hits rate per interface.

If an interface satisfies the most arrival Interest packets by cache, it should be significantly

considered in the decision making. Otherwise, if an interface of a suspected router to conges-

tion just fills up PIT table, it should be negatively considered in decision making. We apply

Exponential Moving Average (EMA) to calculate the new average of the cache hits ratio in

the recent nth time interval. It applies weighting factors which decrease exponentially (the

weighting for each older datum decreases exponentially):

Cache hits =
C1 + (1− α)C2 + ...+ (1− α)n−1Cn

1 + (1− α) + ...+ (1− α)n−1
(6.10)

Where, C1 denotes to the number of current cache hit and Cn is the number of the cache hits

in the recent nth time.

These three criteria themselves involve fuzziness because of bringing vague, imprecise or uncertain

information along in problem solving. For instance, the exact value 0.7 (or 70%) cannot show that

it is very high percentage or partially high percentage of occurrence an event (e.g., one of the three

applied criteria). With the uncertainty modeling, fuzziness subjective, incomplete and imprecise

data can be described. Thus, a fuzzy control system can construct a control system in terms of

many-values logic dealing with reasoning, i.e., approximate rather than fixed or exact.

The output of proposed FIS is the amount of interface load in a router. Interface load means the

portion of the corresponding interface in filling PIT table entries up in that router. The structure
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Figure 6-3: Proposed FIS for fuzzy congestion control

of the proposed fuzzy inference system is depicted in Fig. 6-3. When the controller forecasts

PIT entries rate and sends them to the corresponding routers, the proposed fuzzy control system

is called in each contributing router to apply three types of control per interface including (1)

readjust Interest packets rate, (2) effect on forwarding strategy in the downstream and (3) set

default configuration. We set two thresholds (thresholdmin and thresholdmax) to make decision

regarding to the crisp output of the proposed FIS. We set thresholdmin and thresholdmax to 20%

and 80%, respectively. The procedure of the fuzzy decision making approach is depicted in Fig.

6-4.

Figure 6-4: ACCPndn: the first phase by a controller and the second phase by routers per interface

According to Fig. 6-4, if the output of FIS from Rij is bigger than thresholdmax, there is

more likely that interface j in router i will face to a malignant congestion (very high packet drop

in router’s buffer) and the best decision can be changing the interface j status to the unavailable

(cannot bring data back) and will be deactivated for a predefined time interval t in order to the

downstream (neighbor router) does not send Interest packets. It allows to downstream to forward

its Interest packets via other available links. If the output of the FIS is between [thresholdmin

thresholdmax] in an interface j, there is more likely by controlling the rate of Interest packets in

the downstream in a predefined time interval t, the probability of packet drop reduces considerably.

Finally, if the output of FIS in an interface j in router i is lower than thresholdmin, there is more
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likely that there is no congestion (packet drop) in the next time interval and the configuration of an

interface j can be set to its default values: set original Interest packet rate and/or make available

(can bring data back) the downstream interface j.

We apply an ascending penalty for definition of time interval t during two restrictions (Interest

packets rate and interface unavailability). If in an interface j in a time T , a restriction is needed,

counter sets to 1 sec. If in the next time interval T +1 a same restriction again be reported, counter

sets to 2 sec. Our ascending penalty method is in 2counter. Initially, counter sets to 0 and increase

linearly in each time interval. The counter will set to the initial value when the output of FIS be

lower than thresholdmin in the next time interval. This ascending penalty intensifies the restriction

to avoid packet drop in the long-term.

6.4 Experimental Setup

We use simulations to quantify effect of congestion and its countermeasure. In this work, we used

the open-source ndnSIM [53] package, which implements NDN protocol stack for NS-3 network sim-

ulator (http://www.nsnam.org/), to run simulations for evaluating the performance of proposed

method. ndnSIM simulation environment reproduces the basic structures of a NDN node (i.e., CS,

PIT, FIB, strategy layer, and so on). The proposed adaptive training method (first phase) was

implemented by the MATLAB software on an Intel Pentium 2.13 GHz CPU, 4 GB RAM running

Windows 7 Ultimate. This algorithm deployed to C++ project integrating as a C++ shared library

using the MATLAB compiler. Then, this C++ program was integrated with ndnSIM environment

to be able to adjust in the simulation environment. The proposed fuzzy avoidance phase was also

implemented with C++ in ndnSIM environment. We choose two metrics to quantify the effective-

ness of our countermeasure. First criterion is the average of utilization of multiple paths (retry

alternative paths) to mitigate congestion in bottleneck links. The indicator for evaluating the uti-

lization of bottleneck links and alternative links is the rate of InData. InData denotes a number

of arrival data in an interface. InData guarantees that this amount of data packet was actually

transferred over the channel during the congestion. Second criterion is the average of packet drop

rate. If the proposed ACCPndn considerably decreases or totally removes packet drops, it can be

concluded our proposed method is highly effective at mitigating/removing packet drops.

Our experiments are performed over two topologies shown in Fig. 6-5. Fig. 6-5a corresponds

to DFN-like (Deutsche Forschungsnetz as the German Research Network) [193], and Fig. 6-5b
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(a) DFN-like topology (b) Switch-like topology

Figure 6-5: Considered network topologies

corresponds to the Switch-like (Swiss Education and Research Network) [194]. We use the symbols

Cx, Px, and Rx to represent x-th consumer, producer and router, respectively. In spite of various

arguments and experiments, there is no typically and properly justification for NDN parameters

and they have specified based on authors’ experiences and designs [10]. Therefore, the applied

control parameters of the ACCPndn are iteratively learned under various network environments to

make a real data communication in considered topologies. For scalability reasons, it is important

for a congestion control protocol to be able to maintain their properties as network characteristics

change. We thus set nodes’ PIT size to a range of [700 1000] randomly, while the Interest expiration

time was set to the default timeout of 4000 ms. We set the link delay and queue length parameters

to different values for every node in the simulated topologies. In particular, we set delay and

queue length to the range of 1ms-3ms and 200-500 for both considered topologies, respectively.

A various PIT entries replacement policies (i.e., perform different actions when limit on number

of PIT entries is reached) were adopted randomly over the nodes in both considered topologies

including persistent (new entries will be rejected if PIT size reached its limit), random (when PIT

reaches its limit, random entry will be removed from PIT) and least-recently-used (the oldest entry

with minimum number of incoming faces will be removed). Moreover, The nodes’ cache capacity

was set to 1000 contents, while the caching replacement policies were set to randomly over the nodes

including least-recently-used, FIFO (first-input first-output) and random policies. We ran various

traffic patterns within the randomize and Zip-Mandelbort (α is in range of [0.4 0.9]) distribution.

For both distribution methods, we applied uniform and exponential patterns of distribution. The
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expected frequency of Interest packets generation sets to a range of 100-1000 packets per second.

Each consumer changes five times the frequency randomly during simulation run. We assign some

bottleneck links with yellow dash lines in both considered network topologies in Fig. 6-5. We set

bandwidth in the range 1 Mb/s to 3 Mb/s randomly.

Table 6.1: Interest-Data communications

DFN-like Switch-like
Consumer Producer Consumer Producer

C1 P1 C1 P1
C2 P2 C2 P2
C3 P5 C3 P3
C4 P4 C4 P1, P4
C5 P2, P3 C5 P3
C6 P3 C6 P2, P6
C7 P4, P6 C7 P5
C8 P1, P5 C8 P5, P6
C9 P4, P6 C9 P7

Table 6.1 is also shown the Interest-Data communications. Finally, we investigate the transient

behavior of the utilization and the packet drop rate at the bottleneck links and alternative paths

for congestion control and/or avoidance during simulation run.

6.5 Experimental Results

In this section we report the experimental evaluation of ACCPndn presented in Section 6.3.

6.5.1 Phase 1: adaptive training

Training phase consists of a collection of time ordered observations of PIT entries in contributing

routers from two considered NDN network topologies in Fig. 6-5. Depending on the time scale,

there are four main forecasting types including real-time, short-term, middle-term and long-term

[226]. The real-time forecasting is the most appropriate type of PIT entries forecasting where

samples not exceed a few seconds and requires an on-line forecasting and reaction in a timely

manner.

The choice of the input time intervals has a crucial effect in the PIT entries forecasting performance.

A small number of time intervals will provide insufficient information, while a high number of

intervals will increase the probability of irrelevant input features [208]. Several configurations

based on our observations of PIT entries fluctuation in considered network topologies were set.

Five different sliding windows were adopted based on the predefined time interval (we set 1 sec):
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• DFN-like:

1. {1 2 3 6 7 8 11 12 13 24 25 26 38 39 40}

2. {1 2 3 6 7 8 11 12 13 24 25 26}

3. {1 2 3 4 5 8 9 10 11 12}

4. {1 2 3 7 8 9 12 13 14 26 27}

5. {1 2 3 6 7 8 10 11 12 23 24 25}

• Switch-like:

1. {1 2 3 4 8 9 10 11}

2. {1 2 3 4 5 10 11 12 13 14}

3. {1 2 3 6 7 8 10 11 12}

4. {1 2 3 10 11 12 20 21 22}

5. {1 2 3 7 8 9 16 17 18}

Due to the application of different configuration settings on considered network topologies, we

run the experiments 20 times independently to evaluate the proposed training method (see section

6.3.1) in terms of applied performance metrics. The performance of the forecasting model in training

phase is evaluated by the Mean Square Error (MSE) and Symmetric Mean Absolute Percent Error

(SMAPE):

MSE =
1

n

n∑
i=1

(Ti −Oi)2 (6.11)

SMAPE =

∑n
i=1 |Oi − Ti|∑n
i=1(Oi + Ti)

(6.12)

where T is the actual value and O is the forecast value. The MSE quantifies the difference between

values implied by an estimator and the true values of the quantity being estimated. The SMAPE is

an alternative to Mean Absolute Percent Error (MAPE) when there are zero or near-zero demand for

items. It is a measure of accuracy of a method for constructing fitted time series values in statistics.

In case of the 20 simulation runs, forecasting methods likely yield different results. Therefore,

the forecasting results are investigated by statistical tests if these differences are significant [129,

130]. We have used Pearson correlation coefficient and Kendall’s tau’b with 99% of confidence

level implemented by MATLAB software. Moreover, the time series data from considered NDN

topologies were divided into three contiguous blocks as training (70% of the series) to fit (train) the
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forecasting models, validation (next 15% of the series) to evaluate the forecasting accuracy during

the training and test (remaining 15% of series) to confirm the forecasting accuracy after training.

In order to confirm the quality and performance of the TLFN + PSO-GA from ACCPndn, four

algorithms for updating network parameters (weights and biases) are integrated with TLFN, i.e., BP

learning (TLFN + BP), Genetic Algorithm (TLFN + GA), Particle Swarm Optimization (TLFN

+ PSO), and TLFN + GA-PSO.

DFN-like topology

Fig. 6-6 shows the optimal accuracy derived from the Table 6.2. The box plot of TLFN + PSO-GA

in Figs. 6-6a and 6-6b is comparatively short as compared to other methods. This suggests that

overall MSE and SMAPE values are relatively small and have a high level of agreement within 20

runs.

(a) MSE (b) SMAPE

(c) Pearson correlation (d) Kendall tau’b

Figure 6-6: The forecasting results in DFN (1st sliding window)

TLFN + PSO-GA provides better results than TLFN + GA-PSO which it confirms that GA

performs a good local search for better particles movement in the swarm to minimize significantly

both applied cost functions. Indeed, TLFN + PSO and TLFN + GA obtain quite good forecasting

errors as compared to TLFN + BP by MSE and SMAPE in the almost all 20 runs, respectively. As

expected, the hybridization of the optimization algorithms reveal a better performance as compared
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Table 6.2: Accuracy measurement in DFN-like topology (mean of 20 runs)

Sliding window Blocks Criteria TLFN + BP TLFN + GA TLFN + PSO TLFN + GA-PSO TLFN + PSO-GA

1

train
MSE 0.001133 0.0010422 0.00077854 0.00057117 0.0004177
Std. 0.032429 0.032183 0.026545 0.021826 0.019204

SMAPE 0.032611 0.031494 0.027822 0.023684 0.020903

validation
MSE 0.0014095 0.001341 0.00096241 0.00072668 0.00058018
Std. 0.036732 0.036689 0.029929 0.024589 0.022442

SMAPE 0.031568 0.031744 0.024147 0.02386 0.020229

test
MSE 0.0016052 0.0016073 0.00099027 0.00080267 0.00061721
Std. 0.039529 0.039888 0.029454 0.025269 0.023385

SMAPE 0.033571 0.031391 0.026276 0.023686 0.019503

2

train
MSE 0.0011237 0.0010276 0.00088078 0.00059297 0.00043985
Std. 0.032953 0.031852 0.028764 0.022689 0.020326

SMAPE 0.032451 0.031818 0.02971 0.024655 0.021336

validation
MSE 0.0014157 0.0012751 0.00095915 0.00075775 0.00061771
Std. 0.03706 0.035498 0.030155 0.024475 0.024081

SMAPE 0.034949 0.034798 0.027445 0.025248 0.023069

test
MSE 0.0015441 0.0015185 0.0011129 0.00090368 0.00068794
Std. 0.038555 0.038259 0.032808 0.028117 0.025138

SMAPE 0.03431 0.033378 0.028012 0.023322 0.022331

3

train
MSE 0.0011498 0.00092411 0.00092566 0.00067046 0.00047723
Std. 0.033333 0.029759 0.030318 0.024637 0.021558

SMAPE 0.033361 0.029302 0.029659 0.025782 0.02164

validation
MSE 0.0013421 0.00093305 0.0010567 0.00076505 0.00045326
Std. 0.036546 0.02955 0.032554 0.026471 0.020936

SMAPE 0.034284 0.030544 0.031482 0.025328 0.02064

test
MSE 0.0017045 0.001354 0.0014934 0.00095665 0.00084002
Std. 0.041123 0.036713 0.038663 0.030416 0.028713

SMAPE 0.032024 0.032466 0.032112 0.023657 0.023157

4

train
MSE 0.0010178 0.0010685 0.00071116 0.00057548 0.00042858
Std. 0.03085 0.032591 0.024529 0.021784 0.018987

SMAPE 0.031173 0.033236 0.026122 0.023645 0.020206

validation
MSE 0.00123 0.0014125 0.0010411 0.00077095 0.00047968
Std. 0.033612 0.037608 0.030615 0.025082 0.020201

SMAPE 0.029963 0.032922 0.025833 0.023803 0.019677

test
MSE 0.0015572 0.0016926 0.0011888 0.00085998 0.00070696
Std. 0.037736 0.041193 0.03181 0.025839 0.024333

SMAPE 0.031421 0.034397 0.025582 0.024964 0.021255

5

train
MSE 0.0012795 0.00090687 0.00093529 0.00067955 0.00051242
Std. 0.035636 0.029365 0.030485 0.024934 0.022296

SMAPE 0.034494 0.029723 0.030536 0.025032 0.022044

validation
MSE 0.0013881 0.0010467 0.0012313 0.00079344 0.00059672
Std. 0.037219 0.031785 0.035001 0.026413 0.023688

SMAPE 0.034018 0.030513 0.031386 0.025968 0.021899

test
MSE 0.0017149 0.0012372 0.0017008 0.00095329 0.0006225
Std. 0.040976 0.034652 0.04131 0.029686 0.024188

SMAPE 0.033203 0.031446 0.035687 0.026168 0.021309

to standalone TLFN trained by BP.

The short lower and upper whisker in the Figs. 6-6c and 6-6d mean that the results of several

runs are not varied. As shown, the correlation between different applied algorithms with 99% of

confidence level is strong and positive which is statistically significant. The significant statistical

correlation between 20 runs is the proposed forecasting method in ACCPndn about 98.5% as

compared to other algorithms ranging 96%-98.3%. Moreover, the values for concordance coefficient

from Kendall’s tau’b results are close to +1, which means that there is a large agreement between the

forecasting results. The concordance coefficient of the proposed forecasting method in ACCPndn
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is better than other algorithms ranging 86%-88%. Table 6.2 shows the accuracy analysis of all

considered methods based on the three contiguous data blocks. This table confirms the accuracy

and effectiveness of the proposed training method in ACCPndn as compared to other applied

methods.

Table 6.3: Accuracy measurement in 1st domain of Switch-like (mean of 20 runs)

Sliding window Blocks Criteria TLFN + BP TLFN + GA TLFN + PSO TLFN + GA-PSO TLFN + PSO-GA

1

train
MSE 0.0027635 0.0014026 0.0012365 0.00099692 0.00028537
Std. 0.049521 0.03613 0.034767 0.029797 0.016897

SMAPE 0.031476 0.022688 0.019648 0.018956 0.011175

validation
MSE 0.0026484 0.0016247 0.0012282 0.00091903 0.00028195
Std. 0.048312 0.039191 0.034395 0.028507 0.016824

SMAPE 0.031969 0.023566 0.020324 0.018404 0.010395

test
MSE 0.0025021 0.0014297 0.0011872 0.00093219 0.00029754
Std. 0.047201 0.036734 0.034185 0.029122 0.017286

SMAPE 0.029759 0.023319 0.019317 0.018784 0.011254

2

train
MSE 0.0031308 0.0016835 0.0015935 0.0011783 0.00064175
Std. 0.051214 0.03928 0.037889 0.032353 0.024311

SMAPE 0.032532 0.02476 0.022795 0.019996 0.015406

validation
MSE 0.0029838 0.0018509 0.0022157 0.0013488 0.00071595
Std. 0.050279 0.040629 0.043639 0.034572 0.026029

SMAPE 0.031354 0.024493 0.025082 0.021603 0.015029

test
MSE 0.0033835 0.0021883 0.0013979 0.0011571 0.00074926
Std. 0.053024 0.044826 0.035782 0.030614 0.026482

SMAPE 0.034141 0.027284 0.02147 0.021821 0.01703

3

train
MSE 0.0022935 0.0012346 0.0007924 0.0018308 0.00041769
Std. 0.045562 0.034322 0.028163 0.037931 0.020247

SMAPE 0.028708 0.021044 0.016288 0.026208 0.012339

validation
MSE 0.0023131 0.0011145 0.00083097 0.0018396 0.00038474
Std. 0.045365 0.033147 0.028872 0.039097 0.019515

SMAPE 0.029805 0.019819 0.017029 0.023286 0.011485

test
MSE 0.002415 0.0012499 0.00065984 0.0019827 0.00038495
Std. 0.045935 0.033962 0.025743 0.037461 0.019302

SMAPE 0.031351 0.023851 0.016036 0.025895 0.013148

4

train
MSE 0.0035232 0.0018208 0.0016862 0.0011025 0.00076384
Std. 0.054189 0.040489 0.038967 0.030843 0.026023

SMAPE 0.034915 0.025932 0.024281 0.01998 0.01652

validation
MSE 0.0037375 0.0017994 0.001795 0.0010079 0.00074195
Std. 0.056213 0.040786 0.039344 0.030075 0.026289

SMAPE 0.034785 0.025561 0.025697 0.019636 0.016758

test
MSE 0.0033995 0.0016328 0.0018524 0.0010152 0.00078523
Std. 0.052888 0.038536 0.038898 0.030189 0.025749

SMAPE 0.033843 0.024882 0.026077 0.019854 0.018404

5

train
MSE 0.0029474 0.0016809 0.0012904 0.0013499 0.00063743
Std. 0.050302 0.039142 0.034625 0.034303 0.024057

SMAPE 0.032465 0.024169 0.021003 0.021954 0.015227

validation
MSE 0.0027138 0.0018163 0.0013819 0.0016331 0.00073568
Std. 0.050049 0.041239 0.035878 0.036638 0.026195

SMAPE 0.033539 0.025638 0.02258 0.02246 0.016764

test
MSE 0.0033697 0.0022373 0.0013286 0.0010361 0.00069929
Std. 0.053659 0.043984 0.035236 0.030421 0.025063

SMAPE 0.033257 0.025781 0.021625 0.019432 0.015651

Switch-like topology

To assess the robustness and accuracy of our proposed adaptive learning method in ACCPndn,

we apply a large network such as Switch-like (Fig. 6-5b) which consists of two different domains.

148



This large network can be formed and decomposed to two smaller domains. We have divided the

Switch-like topology to two different domains where the learning control agent would be somewhere

within each domain defined in the network. This decomposition of domains is depicted in Fig. 6-5b

by vertical dot points. First domain consists of eight routers (R1, R2, R3, R5, R6, R7, R9 and R10)

and the rest (ten routers) appears in the second domain. Tables 6.3 and 6.4 show the accuracy

Table 6.4: Accuracy measurement in 2nd domain of Switch-like (mean of 20 runs)

Sliding window Blocks Criteria TLFN + BP TLFN + GA TLFN + PSO TLFN + GA-PSO TLFN + PSO-GA

1

train
MSE 0.00078039 0.00044251 0.00021409 0.00017433 0.00011026
Std. 0.025422 0.020284 0.014198 0.01305 0.0096268

SMAPE 0.018849 0.017016 0.010987 0.011487 0.0076496

validation
MSE 0.00072864 0.00047302 0.00022576 0.00017944 8.9705e-05
Std. 0.024926 0.020619 0.014449 0.013109 0.0088663

SMAPE 0.014813 0.012406 0.0087261 0.0083463 0.005614

test
MSE 0.00069999 0.00050847 0.00021194 0.00017898 0.00011247
Std. 0.024613 0.021609 0.014142 0.012926 0.009727

SMAPE 0.011392 0.010343 0.0073818 0.0061609 0.0044295

2

train
MSE 0.00076631 0.00044568 0.00022041 0.00017571 0.00010996
Std. 0.025261 0.020386 0.01436 0.012979 0.0096048

SMAPE 0.019583 0.018088 0.012323 0.01154 0.0076941

validation
MSE 0.00079727 0.00053439 0.00019751 0.00014825 0.00011068
Std. 0.026169 0.022109 0.013594 0.011986 0.0095327

SMAPE 0.014879 0.011658 0.0085069 0.0075746 0.0058163

test
MSE 0.00063682 0.00057829 0.00016224 0.00014329 0.00011101
Std. 0.023495 0.023281 0.012444 0.011503 0.0097995

SMAPE 0.010801 0.011493 0.0067112 0.006306 0.0044249

3

train
MSE 0.00072844 0.00047774 0.00023336 0.00017478 0.00011944
Std. 0.024666 0.021061 0.014714 0.013013 0.010026

SMAPE 0.019106 0.017303 0.012139 0.010906 0.0084846

validation
MSE 0.00078986 0.00048046 0.00022541 0.00019941 8.9746e-05
Std. 0.026048 0.02059 0.01467 0.013837 0.0087935

SMAPE 0.014024 0.013093 0.0085223 0.0083947 0.0054335

test
MSE 0.00062868 0.00037375 0.00023874 0.0001957 0.00011615
Std. 0.023194 0.018667 0.014835 0.013796 0.0098775

SMAPE 0.011816 0.009308 0.0065265 0.0066622 0.0046408

4

train
MSE 0.00074778 0.00045258 0.00023706 0.00016688 0.00011633
Std. 0.025178 0.020635 0.014863 0.012552 0.0098328

SMAPE 0.018742 0.017888 0.011695 0.011892 0.0082162

validation
MSE 0.00068194 0.00044909 0.00024731 0.00019363 0.00011298
Std. 0.024043 0.020479 0.015402 0.013691 0.0097654

SMAPE 0.013292 0.011891 0.0089466 0.0089644 0.0055512

test
MSE 0.00084249 0.00046449 0.00019938 0.00016508 9.4057e-05
Std. 0.026658 0.020962 0.013698 0.012447 0.0089862

SMAPE 0.013349 0.0102 0.0061604 0.006017 0.0042135

5

train
MSE 0.00074874 0.00046469 0.00023834 0.00018502 0.00011359
Std. 0.024946 0.020733 0.014892 0.013297 0.009748

SMAPE 0.019537 0.018489 0.01269 0.011497 0.0078074

validation
MSE 0.00082051 0.00046043 0.00023944 0.00019519 0.00011848
Std. 0.026099 0.020665 0.015184 0.013656 0.0101

SMAPE 0.01426 0.010704 0.0089525 0.008051 0.0057206

test
MSE 0.00064585 0.00049763 0.00020805 0.00016224 0.00011711
Std. 0.023395 0.021497 0.013989 0.012436 0.010086

SMAPE 0.010787 0.01028 0.0068957 0.0059625 0.0043928

analysis of all considered methods based on the three contiguous data blocks. These table confirm

the accuracy and effectiveness of the proposed training method in ACCPndn as compared to other

applied methods.
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(a) MSE (b) SMAPE

(c) Pearson correlation (d) Kendall tau’b

Figure 6-7: The forecasting results in 1st domain of Switch-like (1st sliding window)

(a) MSE (b) SMAPE

(c) Pearson correlation (d) Kendall tau’b

Figure 6-8: The forecasting results in 2nd domain of Switch-like (2nd sliding window)

The optimal forecasting performance of the first and the second domain is depicted in Figs. 6-7

and 6-8, respectively. The box plots clearly illustrate that the proposed TLFN + PSO-GA is able
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to provide roughly appropriate performance in terms of the MSE and SMAPE.

The extensive analysis in Figs. 6-7c-6-7d and Figs. 6-8c-6-8d demonstrate that the correlation and

the concordance coefficient between results by the proposed training algorithm is more significant

than other applied hybridization during 20 runs. Similar to the results of DFN-like topology (see

section 6.5.1), TLFN by PSO-GA training satisfies performance criteria more appropriate than by

GA-PSO in Switch-like topology. Moreover, as we expected, the application of the optimization

algorithms can perform a better performance as compared to standalone training by BP.

6.5.2 Phase 2: fuzzy avoidance

In this study, MATLAB fuzzy logic toolbox is used for fuzzy rule based decision-making regarding

to congestion control. The second phase is structured with following components:

1. Three fuzzy set of input variables: (1) RSI rate in Rij , (2) Predicted PIT entries rate in Ri

and (3) Cache hits rate in Rij ; membership functions: Low, Medium, High.

2. A fuzzy set of output variable: Interface load; membership functions: Negligible, Small load,

Moderate load, Overloaded.

3. Fuzzy membership functions: Since the sigmoid membership function [227, 228] is inherently

open to the right or to the left; thus, it is appropriate for representing concepts such as

”Low”, ”High” or ”Negligible”, ”Overloaded”. The guass2mf is also employed for middle

linguistic values (”Medium”, ”Small load”, ”Moderate load”). The gauss2mf is a kind of

smooth membership functions, so the resulting model has a high accuracy. It also covers the

universe sufficiently which leads to the completeness of a fuzzy system [150]. The membership

functions of input and output variables are shown in Figs. 6-9-6-12.

Figure 6-9: RSI membership functions (input)

4. Fuzzy rules: 27 rules. The nonlinear control-decision surface is shaped by the constructed

rule base and the linguistic values of the inputs and output variables in Fig. 6-13. According

to Fig. 6-13, the cache hit ratio plays an important role for decision making next to the
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Figure 6-10: PIT entries membership functions (input)

Figure 6-11: Cache hits membership functions (input)

Figure 6-12: Interface load membership functions (output)

(a) RSI vs. Cache hits (b) RSI vs. Total PIT entries
(c) Total PIT entries vs. Cache
hits

Figure 6-13: The surface of the proposed fuzzy control system

RSI and PIT entries forecasting, while, the high cache hit ratio might bring the not highly

interface load and the low cache hit ratio might bring the highly interface load. Moreover,

the RSI criterion plays a main role as far as the increasing the RSI will lead to high interface

load. A sample of constructed rule base is as follows:

Ê if CacheHits is low and PITentry is high and RSI is high Ô InterfaceLoad is Overloaded

Ë if CacheHits is medium and PITentry is high and RSI is medium Ô InterfaceLoad is

ModerateLoad

Ì if CacheHits is high and PITentry is high and RSI is medium Ô InterfaceLoad is Smal-
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lLoad

Í if CacheHits is high and PITentry is medium and RSI is low Ô InterfaceLoad is Negligible

5. Inference: Mamdani fuzzy inference by fuzzy set operations as max and min for OR and

AND, respectively.

6. Defuzzifier: Center of Gravity algorithm:

Center of Gravity =

∫max
min u µ(u) d(u)∫max
min µ(u) d(u)

(6.13)

Where, u denotes the output variable, µ is the membership function after accumulation, min

and max are lower and upper limit for defuzzification, respectively. A sample solution area

(fuzzy inference) of proposed fuzzy detection phase is given in Fig. 6-14.

Figure 6-14: The sample solution area (fuzzy inference) of proposed fuzzy decision-making system
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6.5.3 Results and Observations

In this section, we demonstrate through simulations that ACCPndn satisfies applied performance

criteria as compared to NACK [199] and HoBHIS [43] methods. The Interest NACK mechanism

enables NDN routers to perform quick recovery per interface rate limit to avoid congestion on a

local outbound interface. The Hop-by-hop Interest Shaping (HoBHIS) is also a congestion control

mechanism by shaping the rate of the Interest which is currently sending towards content providers

with routers. NACK, HoBHIS and ACCPndn also have a fundamental difference in the implemen-

tation of the algorithm. ACCPndn controls or avoids congestion traffic through an hybridization of

TLFN, metahuristics and non-linear fuzzy logic-based control system to predict future PIT entries

and perform an adaptive recovery whereas NACK and HoBHIS apply a rate limiting after arriv-

ing congestion traffic which prevents the link between the two nodes from being congested. The

experimental results demonstrate that ACCPndn outperforms NACK and HoBHIS mechanisms

sufficiently. In the training phase of ACCPndn we select the fourth, the first and the fifth time

intervals configurations for DFN-like, the first domain and the second domain of Switch-like topolo-

gies, respectively. These time intervals perform better than others in (near) optimal configuration

of TLFN + PSO-GA predictor based on the applied performance metrics within 20 runs.

(a) R2 (b) R3 (c) R4

(d) R5 (e) R6 (f) R7

Figure 6-15: Average of Data drop in contributing routers’ buffer in DFN-like topology
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(a) R7 (b) R8 (c) R10

(d) R11 (e) R12 (f) R13

Figure 6-16: Average of Data drop in contributing routers’ buffer in Switch-like topology

Table 6.5: statistics of packet drop in DFN-like topology (mean of 10 runs)

Routers Methods No. drop Drop boundary Mean Std. SEM (95%) µ (95%) σ (95%)

R2

Baseline 108 [1 971] 173.2488 237.2683 32.8018 [140.2479 206.2497] [216.1195 263.0411]
NACK 145 [1 600] 95.8657 151.1534 20.8966 [74.8422 116.8891] [137.6805 167.5722]
HoBHIS 69 [59 247] 52.5373 78.0588 10.7914 [41.6804 63.3943] [71.101 86.5377]
ACCPndn 37 [1 84] 5.1045 14.77 2.0419 [3.0502 7.1588] [13.4535 16.3744]

R3

Baseline 179 [5 2063] 719.3085 536.6871 74.1958 [644.6624 793.9546] [488.8498 594.9836]
NACK 111 [1 565] 81.9303 116.5032 16.1063 [65.7263 98.1344] [106.1188 129.1582]
HoBHIS 83 [50 193] 46.7761 60.3131 8.3381 [38.3874 55.1649] [54.9371 66.8644]
ACCPndn 29 [1 39] 2.2289 7.2545 1.0029 [1.2199 3.2379] [6.6078 8.0425]

R4

Baseline 89 [1 1065] 122.0796 193.2822 26.7208 [95.1966 148.9626] [176.0541 214.2771]
NACK 42 [15 109] 12.398 27.8455 3.8496 [8.5251 16.2709] [25.3635 30.8701]
HoBHIS 92 [1 528] 100.3881 146.412 20.2411 [80.0241 120.752] [133.3616 162.3157]
ACCPndn 23 [1 29] 1.8657 6.0495 0.83633 [1.0243 2.7071] [5.5103 6.7067]

R5

Baseline 40 [1 487] 20.7413 67.6333 9.3502 [11.3344 30.1482] [61.6048 74.9798]
NACK 28 [13 68] 5.9801 16.0652 2.221 [3.7456 8.2146] [14.6332 17.8102]
HoBHIS 62 [3 125] 14.0348 26.4268 3.6534 [10.3592 17.7104] [24.0712 29.2973]
ACCPndn 0 - - - - - -

R6

Baseline 194 [17 2066] 494.1692 404.1683 55.8754 [437.9547 550.3836] [368.143 448.0703]
NACK 52 [1 232] 20.6368 43.2485 5.979 [14.6215 26.6521] [39.3936 47.9463]
HoBHIS 57 [1 395] 71.1791 128.9646 17.8291 [53.2418 89.1164] [117.4694 142.9731]
ACCPndn 27 [12 98] 7.9652 22.1243 3.0586 [4.888 11.0424] [20.1522 24.5275]

R7

Baseline 115 [1 376] 72.209 109.1693 15.0924 [57.0249 87.393] [99.4386 121.0276]
NACK 46 [1 68] 6.194 14.4975 2.0042 [4.1776 8.2104] [13.2053 16.0722]
HoBHIS 47 [21 79] 11.5522 22.5388 3.1159 [8.4174 14.6871] [20.5298 24.9871]
ACCPndn 0 - - - - - -

This TLFN + PSO-GA runs iteratively (we set 1 sec) to gather historical information of PIT

entries in contributing routers in defined sliding windows in order to predict the PIT entries in

the next time interval (see sections 6.3.1 and 6.5.1). These amount of predictions are sent to the
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Table 6.6: statistics of packet drop in Switch-like topology (mean of 10 runs)

Routers Methods No. drop Drop boundary Mean Std. SEM (95%) µ (95%) σ (95%)

R7

Baseline 182 [1 1943] 418.0249 294.9422 40.7751 [377.0023 459.0475] [268.6527 326.9797]
NACK 113 [3 521] 118.0498 120.7619 16.6951 [101.2534 134.8461] [109.9979 133.8794]
HoBHIS 123 [5 1120] 163.1791 184.8821 25.5595 [137.4644 188.8938] [168.4028 204.9646]
ACCPndn 0 - - - - - -

R8

Baseline 21 [1 1177] 43.2786 185.2503 25.6104 [17.5127 69.0445] [168.7382 205.3728]
NACK 18 [2 564] 19.5224 85.344 11.7986 [7.6522 31.3926] [77.7369 94.6143]
HoBHIS 15 [1 848] 23.7861 116.7227 16.1366 [7.5515 40.0207] [106.3187 129.4014]
ACCPndn 10 [5 414] 7.6915 46.6156 6.4445 [1.2079 14.1752] [42.4606 51.6791]

R10

Baseline 27 [1 227] 11.0896 38.4164 5.311 [5.7463 16.4328] [34.9922 42.5893]
NACK 0 - - - - - -
HoBHIS 6 [4 158] 2.1045 15.5169 2.1452 [-0.053718 4.2627] [14.1338 17.2024]
ACCPndn 0 - - - - - -

R11

Baseline 78 [2 1068] 178.796 282.9273 39.1141 [139.4446 218.1475] [257.7088 313.6597]
NACK 79 [1 542] 98.2687 159.9374 22.111 [76.0235 120.5138] [145.6815 177.3103]
HoBHIS 74 [2 559] 94.7811 157.2892 21.7449 [72.9042 116.658] [143.2693 174.3744]
ACCPndn 48 [11 49] 6.7413 13.1428 1.817 [4.9133 8.5693] [11.9713 14.5704]

R12

Baseline 172 [4 647] 316.8458 184.8103 25.5496 [291.1411 342.5505] [168.3374 204.885]
NACK 97 [62 250] 74.9851 85.8511 11.8687 [63.0443 86.9258] [78.1988 95.1765]
HoBHIS 155 [1 260] 126.3781 80.6666 11.152 [115.1585 137.5978] [73.4764 89.4288]
ACCPndn 0 - - - - - -

R13

Baseline 198 [15 683] 350.1343 117.5996 16.2579 [333.7778 366.4909] [107.1175 130.3737]
NACK 197 [5 259] 160.6468 50.5236 6.9848 [153.6196 167.6739] [46.0202 56.0116]
HoBHIS 198 [9 413] 189.7811 64.9344 8.977 [180.7496 198.8126] [59.1465 71.9877]
ACCPndn 47 [22 70] 10.1642 19.6443 2.7158 [7.4319 12.8964] [17.8933 21.7781]

corresponding routers to run second phase of ACCPndn, i.e., a nonlinear fuzzy control system per

interface to control/avoid packet losses to mitigate congestion (see sections 6.3.2 and 6.5.2). When

the controller runs initially, some time intervals are not available, that we set zero to those time

intervals until their time reaches.

We show the experimental results in four conditions (Baseline, NACK, HoBHIS and ACCPndn) in

the bottleneck links to confirm the effectiveness and efficiency of ACCPndn in terms of the applied

performance metrics. Figs. 6-15 and 6-16 demonstrate the average Data packet drop within 10

runs in DFN-like and Switch-like topologies, respectively. As shown in these figures, there is a

considerable benefits of the proposed countermeasure implemented by ACCPndn in reduction of

the packet drop. Tables 6.5 and 6.6 illustrate the statistics of packet drop rate in DFN-like and

Switch-like topologies, respectively. According to these tables, the average number of packet drop

and its boundary have considerably decreased by ACCPndn as compared to the baseline, NACK

and HoBHIS within 10 runs. We also show the benefit of the ACCPndn by Mean, Standard

Deviation (Std.), Standard Error of the Mean (SEM) and lower and upper boundaries of the 95%

confidence interval in probability distribution of the amount of packet drop in contributing routers.
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Figure 6-17: The total average packet drop rate in both considered topologies

The total average packet drop rate in both considered topologies is illustrated in Fig. 6-17. In

Figs. 6-18 and 6-19 we show the average utilization of the bottleneck links and retrying alternative

links in four conditions. According to the statistics of the average of packet drop in Tables 6.5 and

6.6, we observe that ACCPndn achieves the highest and the better average utilization and retrying

alternative links as compared to NACK and HoBHIS.

These highlights confirm that the ACCPndn is effective and efficient in presence of bottleneck links

and congestion problems, and outperforms the NACK and the HoBHIS sufficiently.
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(a) R2-R4 (b) R3-R2 (c) R3-R5

(d) R3-R6 (e) R4-R6 (f) R4-R9

(g) R6-R9 (h) R6-R10 (i) R7-R8

(j) R8-R1 (k) R8-R4 (l) R8-R11

Figure 6-18: Average of InData in contributing routers in DFN-like topology
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(a) R2-R7 (b) R2-R9 (c) R7-R5

(d) R7-R10 (e) R10-R8 (f) R10-R11

(g) R11-R13 (h) R11-R17 (i) R13-R4

(j) R13-R12 (k) R13-R16 (l) R13-R17

Figure 6-19: Average of InData in contributing routers in Switch-like topology
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6.6 Conclusion

Our main contribution is to develop an Adaptive Congestion Control Protocol in Named Data

Networking (ACCPndn) that works in two phases. The first phase -adaptive training- forecasts the

source of congestion together with the amount of congestion in NDN routers with a Timed-Lagged

Feedforward Network (TLFN) optimized by hybridization of PSO and GA. The second phase -fuzzy

avoidance- employs a non-linear fuzzy logic-based control system based on the outcomes of first

phase, which it makes a proactive decision in each router per interface to control and/or prevent

packet drop well enough in advance. Extensive simulations and experimental results show that

ACCPndn sufficiently satisfies the performance metrics and outperforms two previous proposals

such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying

alternative paths) in bottleneck links to mitigate congestion traffics. In addition, it is found to be

scalable with respect to varying bandwidths, delays, packet generation, and replacement policies

in cache and PIT table.
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Chapter 7

Mining and Visualizing Uncertain

Data Objects and NDN Traffics by

Fuzzy Self-Organizing Map

Uncertainty is a frequent issue in data analysis. The various factors that lead to data uncertainty

include: approximate measurement, data sampling fault, transmission error or latency, data inte-

gration with noise, data acquisition by device error, and so on [229] [230]. These factors produce

vague and imprecise data. Visualizing uncertain data is one of the new challenges in the uncertain

databases [231].

Among the many visualization techniques, the Self-Organizing Map (SOM) [97] is widely and suc-

cessfully applied due to its good result. SOM is a very popular unsupervised learning algorithm

based on the classical set theory (see section 2.3.9). An important application of SOM is discov-

ering the topological relationship among multidimensional input vectors and mapping them to a

low dimensional output which is easy for further analysis by experts [232] [233]. The process of

SOM training requires a certain and an unambiguous input data either belongs or not belong to

a weight vector (cluster), where the membership evaluation is boolean. In contrast, uncertain and

vague input vectors are not either entirely belong or not belong to a weight vector. A data may

be considered vague and imprecise where some things are not either entirely true nor entirely false

and where the some things are somehow ambiguous. For instance, fuzzy location in the right side

of Fig. 7-1 is a way to represent the item of vague information: the object is approximately at

position (4, 3), in which the grey levels indicate membership values with white representing 0 and
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black representing 1. In contrast, the left side of Fig. 7-1 shows the exact position of a certain

data where the membership evaluation of centers (weights) is boolean. There has been a lot of

Figure 7-1: An example of exact (non-fuzzy) and approximate (fuzzy) distances in a 2-D space for
a certain and vague data.

research in the application of Fuzzy sets theory to model vague and uncertain information [234].

The Fuzzy set (FS) theory introduced by Zadeh [72] is a more flexible approach than classical set

theory, where objects belong to sets (clusters) with certain degree of membership ranging [0..1].

This makes FS theory suitable for representing and visualizing uncertain data [235]. Therefore, a

combination of SOM and FS is able to illustrate dependencies in the uncertain data sets in a very

intuitive manner.

SOM is indeed originally intended as a classification method, not a visualization method so there

are a few additions to apply SOM for visualization. Li et al. [231] proposed a mining and visualizing

algorithm for uncertain data, called USOM which combines fuzzy distance function and SOM to

mine and visualize the uncertain data. In this research work, we employ the FS theory through the

application of Fuzzy C-mean (FCM) clustering algorithm in the context of SOM algorithm to mine

and visualize the uncertain objects in the uncertain databases. Experimental results over four clas-

sic benchmark problems and a new network architecture as Named Data Networking (NDN) show

that the proposed method outperforms standalone SOM and USOM [231] in terms of the applied

performance metrics. The proposed method and its findings are at an early stages of uncertainty

management in NDN and there are some improvements needed. We initially plan to help to foster

discussions and new research ideas among our readers as a future work.
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7.1 The Proposed Method

The procedure of the proposed method, application of fuzzy set theory in the context of SOM for

mining and visualizing uncertainties is as follows. A diagram of the proposed method is shown in

Fig. 7-2.

Figure 7-2: The proposed method for mining and visualizing uncertainties. The color of neurons in
the competition phase indicates the membership value in which the darker color represents highest
value, while the lighter color represents smallest value.

1. Fuzzy competition: in hard competition, the input vector is divided into distinct weights

(clusters), where each input element belongs to exactly one weight. In fuzzy competition,

input vector can belong to more than one weight, and associated with each element by a set

of membership levels. Fuzzy c-means (FCM) [236] method allows one piece of input data to

belong to two or more clusters (weights). The standard function is:

Ux =
1∑

j(
d(weightk,x)
d(weightj ,x) )

2
m−1

(7.1)

Where, Ux is the membership value of each input vector x to all weights, j = 1, 2, ..., w, and

m is the level of cluster fuzziness which is commonly set to 2. By the fuzzy competition all

the neurons are wining neurons (called Best-Matching Units (BMU)) with the membership

degree ranging [0..1].

2. Fuzzy cooperation: in fuzzy cooperation, all wining neurons cooperate with their neighboring

neurons in terms of the membership degree by Eq. 7.2. For the size of the neighborhood, we
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employed the Gaussian function that shrinks on each iteration until eventually the neighbor-

hood is just the BMU itself.

h(j, i) = Uxi × exp(
−dj,i2

2σ2
) i, j = 1, 2, .., n; i 6= j (7.2)

Where, i is the number of the wining neurons including all the neurons with different mem-

bership degrees, j is the number of the cooperating neighbor neurons. Uxi is the membership

value of input vector x from ith wining neuron. h(j, i) is the topological area centered around

the wining neuron i and the cooperating neuron j. The size σ of the neighborhood needs to

decrease with time. A popular time dependence is an exponential decay by:

σ(t) = σ0exp(
−t
λ

) (7.3)

Where, σ(t) is the width of the lattice at time t, σ0 is the width of the lattice at time t0, and

λ is the time constant.

3. Fuzzy adaption: the adaption phase is the weight update by:

wj = wj + Uj × (ηh(j, i)× (x− wj)) i, j = 1, 2, .., n; i 6= j (7.4)

Where, Uj is the membership value of input x from neuron j.

These three phases are repeated, until the maximum number of iterations is reached or the changes

become smaller than a predefined threshold.

7.2 Experimental Results

The proposed method, USOM and SOM were implemented by the MATLAB on an Intel Pentium

2.13 GHz CPU, 4 GB RAM running Windows 7 Ultimate.

7.2.1 Uncertain data modeling

To assess the accuracy and performance of the proposed method, four classic benchmark problems

with different dimensions from the UCI machine learning repository [132] are applied. The selected

data sets are Iris (4-D), Glass (9-D), Wine (13-D), and Zoo (17-D) in Table 7.1. In practice,
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uncertainties are usually modeled in the form of Gaussian distributions [230]. For some attributes

in data sets, we add a Gaussian noise with a zero mean and the standard deviation with the normal

distribution [0, 2 ∗ f ], where, f is an integer parameter from the set of {1, 2, 3} to define different

uncertain levels.

Table 7.1: The four applied benchmark data sets

Data set No. of features No. of classes No. of patterns
Iris 4 3 150
Glass 9 6 214
Wine 13 3 178
Zoo 17 7 101

7.2.2 Assessing the quality of visualizations

To assess the quality of the proposed method, several measures have been applied. The applied

performance metrics are Quantization Error (QE), Topographic Error (TE), Trustworthiness of a

Visualization, and Continuity of the Neighborhoods [237].

7.2.3 Visualization results

The experiments on each method were repeated 10 times independently. We evaluate the several

SOM network structures on applied uncertain data sets which the optimal ones are Iris with 16x16

nodes, Glass with 16x16 nodes, Wine with 17x17 nodes, and Zoo with 15x15 nodes.

Table 7.2: Performance improvements achieved by the proposed scheme

Data SOM USOM Proposed Method

Time Time Time
QE TE Exe. Inc. QE TE Exe. Inc. QE TE Exe. Inc.

Iris (16x16) 0.024 0.0404 9.6 5.45 0.023 0.034 11.34 4.16 0.02 0.0267 16.43 2.17

Glass (16x16) 0.066 0.0312 21.17 15.45 0.042 0.02 23.11 14.23 0.028 0.0174 26.82 10.1

Wine (17x17) 0.072 0.0381 18.87 12.05 0.06 0.022 19.12 10.16 0.049 0.0102 22.07 7.74

Zoo (15x15) 0.067 0.0215 15.54 11.23 0.046 0.016 18.51 10.36 0.039 0.0103 21.34 8.52

Table 7.2 shows that our proposed method outperforms SOM and USOM methods in terms

of the Quantization Error (QE) and Topographic Error (TE). The proposed method seems to be

more time consuming (with Exec.) than the other methods due to the application of fuzzy set

theories in the context of the SOM, in which all the neurons are winner with different membership

grading. However, the proposed method can find a better solution with less times of increment

on computational time (with Inc.) than the other methods due to its fast convergence speed.

The trustworthiness and continuity values for K={1, 10, 20} are shown in Tables 7.3 and 7.4,
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respectively. The trustworthiness and continuity measures show that the proposed method obtains

the better results as compared to SOM and USOM. The results show that the proposed method

with the application of fuzzy set theory in the context of the SOM yields high accuracy as compared

to other methods without very much computational cost.

Table 7.3: The quality measurement by Trustworthiness

Data SOM USOM Proposed Method

K=1 K=10 K=20 K=1 K=10 K=20 K=1 K=10 K=20

Iris (16x16) 0.97 0.94 0.93 0.95 0.962 0.968 0.962 0.968 0.974

Glass (16x16) 0.923 0.903 0.898 0.914 0.921 0.933 0.915 0.93 0.939

Wine (17x17) 0.931 0.921 0.904 0.924 0.941 0.953 0.925 0.951 0.962

Zoo (15x15) 0.961 0.96 0.96 0.962 0.963 0.968 0.963 0.97 0.978

Table 7.4: The quality measurement by Continuity

Data SOM USOM Proposed Method

K=1 K=10 K=20 K=1 K=10 K=20 K=1 K=10 K=20

Iris (16x16) 0.945 0.901 0.892 0.961 0.964 0.966 0.97 0.974 0.982

Glass (16x16) 0.911 0.898 0.873 0.914 0.916 0.92 0.92 0.931 0.937

Wine (17x17) 0.921 0.892 0.883 0.93 0.931 0.935 0.935 0.939 0.941

Zoo (15x15) 0.86 0.841 0.812 0.89 0.898 0.902 0.91 0.918 0.927

Since our proposed method performs well as compared to SOM and USOM, we visualize un-

certainties in the applied uncertain data sets. To facilitate the interpretation of results, we use the

U-Matrix (unified distance matrix) where visualize the high-dimensional uncertain data into a 2-D

space in Fig. 7-3. In this figure, the blue hexagons represent the neurons (weights).

(a) Iris 16x16 SOM (b) Glass 16x16 SOM (c) Wine 17x17 SOM (d) Zoo 15x15 SOM

Figure 7-3: U-Matrix of the applied benchmark problems.

The darker colors in the regions between neurons represent larger distance, while the lighter

colors represent smaller distances. Fig. 7-3a shows that the constructed 4-D uncertain Iris SOM

network has been clearly clustered into three distinct groups. The Glass SOM network (Fig. 7-3b)

has been apparently classified 9-D uncertain data objects into six distinct types of glass. Figs. 7-3c

and 7-3d show the three and the seven distinct groups of 13-D and 17-D uncertain data from Wine

166



and Zoo data sets, respectively. The results confirm that the proposed method performs well in

mining and visualizing uncertain data into somewhat expected distinct groups.

7.2.4 Visualizing uncertain traffics in Named Data Networking

After evaluating the robustness and the accuracy of our proposed method with some benchmark

problems, we apply the proposed method for visualizing uncertain traffics in Named Data Network-

ing (NDN). NDN [6] is a promising network architecture being considered as a possible replacement

to overcome the fundamental limitations of the current IP-based Internet. Traffic uncertainty refers

to traffic volumes belong to more than one pattern (i.e., normal and attack), and associated with

each pattern by a set of membership levels. Fuzzy approach can increase the detection rate and

reduce the false positive rate with higher reliability in identifying the pattern of traffic volumes, due

to any uncertain attack (or normal) data may be similar to some normal (or attack) patterns [12].

Whereas certain attack (or normal) data is exactly similar to a specific attack (or normal) pattern.

Therefore, our aim is to visualize uncertain traffic volumes in NDN in a low dimensional output

to be much easier for further analysis by network security experts. We conduct the same testbed

configuration from papers [12] [19]. The employed features for traffic generation come from paper

[12] as well as the ratio of (1) cache hit, (2) dropped Interest packet, (3) dropped data packets,

(4) satisfied Interest packet, and (5) timed-out Interest packets in each 1 sec time interval. The

structure of the traffic generated is shown in Table 7.5.

Table 7.5: NDN traffic generation

Type of traffic Frequency Pattern
Normal
(526 records)

[100..500] Exponential

Attack
(211 records)

Cache pollution [200..800] Locality-disruption attacks uniformly

DoS attacks [400..1500]
Interest flooding attacks for non-existent and
existent content uniformly and exponentially

We modeled uncertainties for some attributes in NDN traffic samples in the form of Gaussian

distributions similar to Section 7.2.1. Fig. 7-4 maps the 11-D uncertain traffic samples to the 2-D

space through our proposed method. This figure shows that the our proposed method performs

somewhat well in mining and visualizing uncertainties into predefined distinct groups. Fig. 7-

4 illustrates that there are some small groups of clustered data points with the lighter regions.

These small clusters may contain some normal or attack data that try to be incorrectly placed

in the neighboring regions, due to their uncertain nature. The experiments on each method were

repeated 10 times independently with SOM 18 × 18 neurons. The results in Table 7.6 show that
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Figure 7-4: U-Matrix of the NDN traffic. 1: normal, 2: DoS attack, 3: cache pollution attack

our proposed method offers the best performance and outperforms sufficiently other preexisting

methods.

Table 7.6: Comparing results of visualizing NDN traffic samples

Criteria Methods
SOM USOM Proposed Method

Quantization Error 0.042 0.029 0.0125

Topographic Error 0.074 0.053 0.031

Trustworthiness
K=1 0.91 0.95 0.968
K=15 0.905 0.943 0.954
K=30 0.877 0.925 0.942

Continuity
K=1 0.914 0.922 0.954
K=15 0.893 0.931 0.941
K=30 0.867 0.917 0.936

7.3 Conclusion

In this work, we propose a new hybrid algorithm for mining and visualizing the uncertain data

objects. We investigate the implementation of fuzzy set theory through the application of Fuzzy

C-means clustering algorithm in the design of SOM neural network in order to improve the accuracy

of visualizing uncertain data bases. The experimental results over the uncertain benchmarking data

sets and the uncertain traffics in Named Data Networking (NDN) show that the proposed method

is effective and precise in terms of the applied performance criteria.
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The proposed method and its findings are at an early stages and there are some improvements

needed. For instance, we plan to improve the proposed method for various uncertain models

and big uncertain network traffic data in NDN. We suggest this research work to help to foster

discussions and new research ideas among our readers. We leave further investigation of this initial

idea to future work.
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Chapter 8

Conclusion

8.1 Summary

Information-Centric Networking (ICN), in particular, Named Data Networking (NDN) has been

proposed as a solution for a vital replacement for the current IP-based Internet due to the funda-

mental limitations of the Internet in supporting today’s content-oriented services. Strong security

has been one of the main design requirements for these architectures. However, there are still many

missing pieces to be filled in to make NDN a fully working system at Internet scale. In this disser-

tation, we study the most important security issues in NDN in order to defense against new forms

of (unknown) attacks, ensure privacy, achieve high availability and block network traffics belong to

the attackers or at least limit their effectiveness. We fill in the four most important missing pieces

for security in NDN, i.e., anomaly detection, mitigating DoS/DDoS attacks, congestion control,

and mitigatin cache pollution attacks. In this context, the characteristics of Computational Intel-

ligence (CI) methods make them suitable to be applied to the problems of NDN security. Hence,

we suggest new hybrid CI-based methods to make NDN a more reliable and viable architecture for

the future Internet.

In CCN/NDN as a possible future Internet, new kinds of attacks and anomalies will arise. Hence,

the contents should be resilient against both anomalies and new forms of (unknown) attacks or at

least limit their effectiveness. In this dissertation, we proposed a novel fuzzy anomaly detection

system based on the hybridization of PSO and K-means clustering algorithms. Experimental results

and analysis show that the proposed method in the training phase is very effective in determining

the optimal number of clusters, and has a very high detection rate and a very low false positive rate

at the same time. In the detection phase, the proposed method clearly outperforms other applied
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method in terms of AUC (area under the ROC curve), accuracy, sensitivity and specificity. In

addition, the times of increment on computational time of proposed method are relatively smaller

than the other considered methods.

The ubiquitous in-network caching is a key NDN feature. However, pervasive caching strength-

ens security problems namely cache pollution attacks including cache poisoning and cache pollution.

In this dissertation, we proposed a novel ANFIS-based cache replacement method to mitigate two

generic cache pollution attacks namely false-locality and locality-disruption. Simulation results

showed that the proposed method provides very accurate results as compared to LRU and LFU

algorithms independently and in conjunction with CacheShield scheme without very much compu-

tational cost. Experimental results and analysis show the proposed ANFIS-based cache replacement

method is very effective in determining and mitigating the fake content, and has a very high detec-

tion rate of locality-disruption attacks to replace them when new content is added to a full cache

in a timely manner.

NDN can overcome the fundamental limitations of the current Internet, in particular, Denial-

of-Service (DoS) attacks. However, NDN can be subject to new type of DoS attacks namely

Interest flooding attacks and content poisoning. These types of attacks exploit key architectural

features of NDN. We examined the most current instances of DoS/DDoS attacks to show that

an adversary with limited resources can serve service degradation for legitimate users. We then

introduced our intelligent hybrid algorithm for proactive detection (i.e., a hybrid multiobjective

RBF-PSO method) and adaptive reaction (i.e. enforcing explicit limitations against adversaries)

against DoS/DDoS attacks. Our extensive analysis shows that the proposed countermeasure against

DoS/DDoS attacks performed well with the robust recovery from network failures and accuracy

more than 90% in terms of the average of Interest satisfaction ratio for legitimate users, the PIT

usage, the number of received contents (throughput), and a very low false positive rate over 10

simulation runs.

NDN is subject to congestion when the number of data packets that reach one or various routers

in a certain period of time is so high than its queue gets overflowed. When this happens a high

data packet loss and increase in the end-to-end delay occur affecting negatively on the performance,

stability and robustness of the network. To address this problem many congestion control proto-

cols have been proposed in literature which, however, they are too high sensitive to their control

parameters as well as unable to predict congestion traffic well enough in advance. Hence, we devel-

oped an Adaptive Congestion Control Protocol in Named Data Networking (ACCPndn). It first
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forecasts the source of congestion together with the amount of congestion in NDN routers with a

Timed-Lagged Feedforward Network (TLFN) optimized by hybridization of PSO and GA. Then, we

employ a non-linear fuzzy logic-based control system to make a proactive decision in each router per

interface to control and/or prevent packet drop well enough in advance. Extensive simulations and

experimental results show that ACCPndn sufficiently satisfies the performance metrics and outper-

forms some preexisting proposals in terms of the minimal packet drop and high-utilization (retrying

alternative paths) in bottleneck links to mitigate congestion traffics. In addition, it is found to be

scalable with respect to varying bandwidths, delays, packet generation, and replacement policies

in cache and PIT table.

Finally, we provided a new research direction into the visualization of uncertain traffics in

NDN. We motivated our work by pointing out the problems of uncertain traffics. The uncertain

traffics belong to more than one pattern (normal or attack) which are associated by a set of

membership levels. We proposed a new hybrid algorithm, called fuzzy self-organizing map for

mining and visualizing uncertain objects. We investigate the implementation of fuzzy set theories

in the design of SOM neural network in order to improve the accuracy of visualization in uncertain

data sets. The experimental results over four uncertain benchmarking data sets and uncertain

network traffics in NDN show that the proposed method is effective and precise in terms of the

applied performance criteria. The proposed method and its findings are at an early stages and

there are some improvements needed. We leave further investigation of this idea to future work.

8.2 Future Work

We hereby point out a few possible directions to further extend the current dissertation:

For anomaly detection purposes, we are currently working on several improvements of the pre-

sented approach (see Chapter 3) with the application of computational intelligence methodologies

(such as multi-objective optimization techniques) to propose a robust method to improve the ac-

curacy of detection rate and reduce the false positive rate over different NDN traffics.

For mitigating cache pollution attacks, future work includes devising several improvements to

the approach presented in Chapter 4 and its use in larger and more complex network topologies.

According to the extensive analysis and the experimental results concerning DoS/DDoS attacks

in NDN (see Chapter 5), two future works are suggested. The first work is the classification of

legitimate users’ traffics as either good (non-malicious), bad (malicious) or low and high prone to
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attack traffics (non-malicious, but with the same properties as malicious traffics). The second work

is investigating inter-domain DoS attacks.

Our next objective for congestion control/avoidance in the future work is to verify the properties

of ACCPndn (see Chapter 6) analytically in many arbitrary NDN topologies.

Finally, we proposed a visualization method for uncertain traffic data in NDN (see Chapter 7) to

help to foster discussions and new research ideas among our readers as a future work. Hence, there

are some improvements needed, such as improving the proposed approach for various uncertain

models and big uncertain network traffic data in the future.
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Chapter 9

Acronyms

AI Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Networks
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BMU Best Matching Unit

BPNN Back-Propagation Neural Network

CCN Content-Centric Networking

CI Computational Intelligence

CS Content Store

DBI Davies Bouldin Index

DCN Data-Centric Networking

DDoS Distributed Denial of Service

DE Differential Evolution

DH Data Handler

DONA Data Oriented Network Architecture

DoS Denial of Service

DR Detection Rate
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EA Evolutionary Algorithm

EMA Exponential Moving Average

EWMA Exponentially Weighted Moving Average

FCM Fuzzy C-mean

FIA Future Internet Architecture

FIB Forwarding Information Base

FIS Fuzzy Inference System

FPR False Positive Rate

FS Fuzzy Set

GA Genetic Algorithm

IA Intelligent Agents

ICA Imperialist Competitive Algorithm

ICN Information-Centric Networking

IDS Intrusion Detection Systems

IFA Interest Flooding Attack

IO Information Object

IP Internet Protocol

KDD Knowledge Discovery in Data

LFU Least Frequently Used

LRD Long-Range Dependence

LRU Least Recently Used
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MAPE Mean Absolute Percent Error

MLP Multilayer Perceptron
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NRS Name Resolution Service

NSF National Science Foundation

NSGA Non-dominated Sorting Genetic Algorithm

PIT Pending Interest Table

PSIRP Publish-Subscriber Internet Routing Paradigm

PSO Particle Swarm Optimization

QE Quantization Error
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RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

RSI Relative Strength Index

SAIL Scalable & Adaptive Internet soLutions

SEM Standard Error of Mean

SMAPE Symmetric Mean Absolute Percent Error

SOM Self-Organizing Map
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