708 research outputs found

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    A trading model and security regime for mobile e-commerce via ad hoc wireless networking

    Get PDF
    Ad hoc wireless networking offers mobile computer users the prospect of trading with others in their vicinity anywhere anytime. This thesis explores the potential for developing such trading applications. A notable difficulty in designing their security services is being unable to use trusted parties. No one can be guaranteed present in each ad hoc wireless network session. A side benefit is that their costs don't have to be paid for. A reference model is defined for ad hoc m-commerce and a threat model is for- mulated of its security vulnerabilities. They are used to elicit security objectives and requirements for such trading systems. Possible countermeasures to address the threats are critically analysed and used to design security services to mitigate them. They include a self-organised P2P identity support scheme using PGP cer- tificates; a distributed reputation system backed by sanctions; a group membership service based on membership vouchers, quorate decisions by some group members and partial membership lists; and a security warning scheme. Security analysis of the schemes shows that they can mitigate the threats to an adequate degree to meet the trading system's security objectives and requirements if users take due care when trading within it. Formal verification of the system shows that it satisfies certain safety properties

    Assessing Security Risks with the Internet of Things

    Get PDF
    For my honors thesis I have decided to study the security risks associated with the Internet of Things (IoT) and possible ways to secure them. I will focus on how corporate, and individuals use IoT devices and the security risks that come with their implementation. In my research, I found out that IoT gadgets tend to go unnoticed as a checkpoint for vulnerability. For example, often personal IoT devices tend to have the default username and password issued from the factory that a hacker could easily find through Google. IoT devices need security just as much as computers or servers to keep the security, confidentiality, and availability of data in the right hands

    Off-line incentive mechanism for long-term P2P backup storage

    Get PDF
    This paper presents a micro-payment-based incentive mechanism for long-term peer-to-peer storage systems. The main novelty of the proposed incentive mechanism is to allow users to be off-line for extended periods of time without updating or renewing their information by themselves. This feature is enabled through a digital cheque, issued by the user, which is later employed by the peers to get a gratification for storing the user's information when the user is off-line. The proposed P2P backup system also includes a secure and lightweight data verification mechanism. Moreover, the proposed incentive also contributes to improve the availability of the stored information and the scalability of the whole system. The paper details the verification and cheque-based incentive mechanisms in the context of a P2P backup service and analyzes its scalability and security properties. The system is furthermore validated by means of simulation, proving the effectiveness of the proposed incentive.This work has been funded by the Regional Government of Madrid under the MEDIANET project (S2009/TIC-1468) and has also received funding from the Ministry of Science and Innovation of Spain, under the QUARTET project (TIN2009-13992-C02-01).Publicad

    Security in peer-to-peer communication systems

    Get PDF
    P2PSIP (Peer-to-Peer Session Initiation Protocol) is a protocol developed by the IETF (Internet Engineering Task Force) for the establishment, completion and modi¿cation of communication sessions that emerges as a complement to SIP (Session Initiation Protocol) in environments where the original SIP protocol may fail for technical, ¿nancial, security, or social reasons. In order to do so, P2PSIP systems replace all the architecture of servers of the original SIP systems used for the registration and location of users, by a structured P2P network that distributes these functions among all the user agents that are part of the system. This new architecture, as with any emerging system, presents a completely new security problematic which analysis, subject of this thesis, is of crucial importance for its secure development and future standardization. Starting with a study of the state of the art in network security and continuing with more speci¿c systems such as SIP and P2P, we identify the most important security services within the architecture of a P2PSIP communication system: access control, bootstrap, routing, storage and communication. Once the security services have been identi¿ed, we conduct an analysis of the attacks that can a¿ect each of them, as well as a study of the existing countermeasures that can be used to prevent or mitigate these attacks. Based on the presented attacks and the weaknesses found in the existing measures to prevent them, we design speci¿c solutions to improve the security of P2PSIP communication systems. To this end, we focus on the service that stands as the cornerstone of P2PSIP communication systems¿ security: access control. Among the new designed solutions stand out: a certi¿cation model based on the segregation of the identity of users and nodes, a model for secure access control for on-the-¿y P2PSIP systems and an authorization framework for P2PSIP systems built on the recently published Internet Attribute Certi¿cate Pro¿le for Authorization. Finally, based on the existing measures and the new solutions designed, we de¿ne a set of security recommendations that should be considered for the design, implementation and maintenance of P2PSIP communication systems.Postprint (published version

    Ensuring Data Security in the Peer-to-Peer Economic System of the DAO

    Get PDF
    The article raises the problem of using in DAO, has a high level of interaction with participants and participants, makes decisions, including using it with the help of autonomous economic agents. The article also provides a general description of the risks and issues that need to be addressed for the trusted use of peer-to-peer data in a DAO. In addition to this presented DAO decision making model, which can be used for investment, commercial and administrative models for DAO

    Using Distributed Ledger Technologies in VANETs to Achieve Trusted Intelligent Transportation Systems

    Get PDF
    With the recent advancements in the networking realm of computers as well as achieving real-time communication between devices over the Internet, IoT (Internet of Things) devices have been on the rise; collecting, sharing, and exchanging data with other connected devices or databases online, enabling all sorts of communications and operations without the need for human intervention, oversight, or control. This has caused more computer-based systems to get integrated into the physical world, inching us closer towards developing smart cities. The automotive industry, alongside other software developers and technology companies have been at the forefront of this advancement towards achieving smart cities. Currently, transportation networks need to be revamped to utilize the massive amounts of data being generated by the public’s vehicle’s on-board devices, as well as other integrated sensors on public transit systems, local roads, and highways. This will create an interconnected ecosystem that can be leveraged to improve traffic efficiency and reliability. Currently, Vehicular Ad-hoc Networks (VANETs) such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) communications, all play a major role in supporting road safety, traffic efficiency, and energy savings. To protect these devices and the networks they form from being targets of cyber-related attacks, this paper presents ideas on how to leverage distributed ledger technologies (DLT) to establish secure communication between vehicles that is decentralized, trustless, and immutable. Incorporating IOTA’s protocols, as well as utilizing Ethereum’s smart contracts functionality and application concepts with VANETs, all interoperating with Hyperledger’s Fabric framework, several novel ideas can be implemented to improve traffic safety and efficiency. Such a modular design also opens up the possibility to further investigate use cases of the blockchain and distributed ledger technologies in creating a decentralized intelligent transportation system (ITS)
    corecore