
This document is published in:

“Computer Communications, July 2012, 35 (12), 1516-1526.

Doi: http://dx.doi.org/10.1016/j.comcom.2012.04.017"

© 2012 Elsevier B.V

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30046996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.comcom.2012.04.017

Off-line incentive mechanism for long-term P2P backup storage

Marco Gramaglia a,b,⇑, Manuel Urueña b, Isaias Martinez-Yelmo c

a Institute IMDEA Networks, Av. Mar Mediterraneo, 22, E-28912 Leganés, Madrid, Spain
b Universidad Carlos III de Madrid, Av. Universidad, 30, E-28911 Leganés, Madrid, Spain
c Universidad de Alcalá, Escuela Politécnica Superior, Campus Universitario, N-II Km 33, 6. E-28871 Alcalá de Henares, Madrid, Spain
Keywords:
Peer-to-peer (P2P)
Long-term storage
Incentive mechanism
P2P backup
Digital cheque
⇑ Corresponding author at: Institute IMDEA Networ
E-28912 Leganés, Madrid, Spain. Tel.: +34 91 481621

E-mail addresses: marco.gramaglia@imdea.org (
it.uc3m.es (M. Urueña), isaias.martinezy@uah.es (I. M

1 http://www.dropbox.com.
2 http://aws.amazon.com/s3/.
3 http://www.wuala.com.
4 http://www.fiabee.com.
a b s t r a c t

This paper presents a micro-payment-based incentive mechanism for long-term peer-to-peer storage
systems. The main novelty of the proposed incentive mechanism is to allow users to be off-line for
extended periods of time without updating or renewing their information by themselves. This feature
is enabled through a digital cheque, issued by the user, which is later employed by the peers to get a grat-
ification for storing the user’s information when the user is off-line. The proposed P2P backup system also
includes a secure and lightweight data verification mechanism. Moreover, the proposed incentive also
contributes to improve the availability of the stored information and the scalability of the whole system.
The paper details the verification and cheque-based incentive mechanisms in the context of a P2P backup
service and analyzes its scalability and security properties. The system is furthermore validated by means
of simulation, proving the effectiveness of the proposed incentive.
1. Introduction

The increasing number of consumer devices that can generate
all kinds of digital media (e.g. audio, video, photos) has worsened
the old problem of safely storing all these space-consuming data.
To relieve users from the laborious and eventually expensive task
of maintaining their own dedicated storage hardware, in the past
few years many on-line storage services made their appearance
on the market, ranging from the most basic ones like Dropbox1 to
more complex and professional-oriented ones like Amazon S3.2 The
growing success of new networking paradigms such as peer-to-peer
or, more recently, cloud computing, is offering more tools to tackle
this storage problem.

To use a peer-to-peer (P2P) paradigm radically changes the
nature of the solutions to this problem, offering some advantages
(i.e. utilization of unexploited space in users’ hard disks, tunable
level of reliability, low cost, etc.), but posing other challenges
regarding security, privacy and a fair use of the network. Some
P2P-based solutions are already present in the market: LaCie’s
Wuala3 or Fiabee4 exploit this paradigm to offer on-line storage
services at a reduced price.
ks, Av. Mar Mediterraneo, 22,
0; fax: +34 91 4816965.
M. Gramaglia), muruenya@
artinez-Yelmo).
One of the storage services that may benefit most from a dis-
tributed P2P architecture is backup, because data is replicated
and stored in the hard disks of many different users, distributed
worldwide. Thus, it can be hardly affected by a single failure or
even a set of failures that may otherwise wipe out a local backup
or even a whole data center. Of course, any existing P2P distributed
file system could be employed as the basis of a P2P backup service.
However, there are two specific characteristics that play a major
role in P2P backup: the presence of a local copy, and looser
access-time constraints. In a distributed file system, usually, the
information is just saved in remote hard disks in order to offload
the local one and to better balance their utilization. In a net-
work-based backup solution this assumption is no longer true:
the user always has a local copy of the data in order to continue
working and updating it. The network backup will only be used
in case that some failure happens to the local one. The second
key difference of a P2P backup system are the access-time require-
ments. P2P-based file systems impose hard time constraints (in or-
der to guarantee the performance of input/output operations),
while in a P2P backup system these timing constraints are much
less strict. A user could tolerate some extra time as long as the
backup is completely restored in a reasonable period of time.

In this paper we present an incentive mechanism based on
micro-payments and digital cheques for long-term P2P storage
systems, such as a P2P backup service. In our proposal, a user
pays other peers to store its backup data, whereas charges other
(possibly different) peers for using their local hard disk. This kind
of monetary incentive approach has already been proposed for
different P2P applications [1–6] and, even if it is a hidden market,
1

http://dx.doi.org/10.1016/j.comcom.2012.04.017
mailto:marco.gramaglia@imdea.org
mailto:muruenya@ it.uc3m.es
mailto:muruenya@ it.uc3m.es
mailto:isaias.martinezy@uah.es
http://www.fiabee.com
http://www.fiabee.com
http://www.fiabee.com
http://www.fiabee.com
http://dx.doi.org/10.1016/j.comcom.2012.04.017
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

for a P2P backup service [7]. We extend this micro-payment incen-
tive framework by means of digital cheques to motivate peers to
keep storing backup data even when the owner (user) is off-line
for an extended period of time. Albeit the presented schemes also
mentioned the problem of long-term availability, they were just fo-
cused on employing redundancy techniques to minimize the
impact of a lost chunk due to a failure of an, otherwise well-
behaved, peer. To the best of our knowledge, this is the first pro-
posal that tackles the problem of long-term availability in a P2P
backup system with selfish peers. These selfish peers can deliber-
ately erase a chunk when the owner (user) goes off-line to free
their local resources. Our proposal introduces the possibility to
keep on charging users even if they are off-line (e.g. due to a hard-
ware problem), providing an incentive to not erase their backup
when it is even more necessary. This last point is crucial for any
P2P backup service.

The paper is structured as follows: after studying the related
works in Section 2, Section 3 introduces an overview of the pro-
posed P2P backup system and defines the incentive mechanism
that governs it. Later, Section 4 presents a detailed discussion
about the design of our proposal, emphasizing on the behavior of
the system when a user is on-line or off-line. The different incen-
tive mechanism is evaluated by means of simulation in Section 5.
In Section 6, we analyze the possible threats that could affect our
proposal and some security mechanisms to prevent them. Finally,
we summarize the main conclusions of this paper in Section 7.
2. Related work

The idea of taking advantage of unused space in remote hard
disks that are part of a P2P network was first studied at the begin-
ning of the past decade. One of the earliest proposals was Ocean-
Store by Kubiatowicz et al. [8], which provided solutions to many
of the issues caused by relying on an untrusted infrastructure for
data storage. Also Farsite [9] by Adya et al. was focused on the
problems concerning the fault-tolerance and reliability of the
stored data. However, these initial proposals considered a distrib-
uted file system in a heterogeneous, yet cooperative and trusted
scenario. The first proposal of a backup-oriented solution was done
by Batten et al. in [10]. It features file encryption, version control,
and provides reliability in case of multiple nodes failures. In this
first stage, the research was more focused on how to achieve sca-
lability, reliability and fault-tolerance in such a system [11,12].

More recently, researchers have started considering additional
aspects of P2P storage and backup systems. In such a distributed
environments, peers are service users and providers at the same
time: they want to store their data in the system, but to do so, they
should also share part of their unused capacity with other peers.
This peculiarity raises obvious fairness issues, especially when
peers can behave selfishly. The so-called free-riding problem of
P2P systems is well-known since Adar and Huberman showed in
[13] that the 70% of peers were not sharing any files in the Gnutella
network. Since then, a plethora of works [14–17] have been pro-
posed to try and mitigate this problem in P2P networks. They usu-
ally exploit some physical constraint of the system or they are
based on fundamental principles taken from economics or game
theory, modeling the problem as the ‘‘Tragedy of the commons’’
dilemma. In fact, most of the P2P systems currently deployed
implement some kind of incentive mechanism like BitTorrent’s
‘‘Tit-For-Tat’’ [18].

However, the free-riding problem in a P2P backup (or file stor-
age) system is quite different from the one that can be found in a
file-sharing system. A first difference is the potential ‘‘audience’’
of the resources being stored by the peers. For example, let us con-
sider one file being uploaded with some file-sharing software. This
file is ‘‘public’’ and could be potentially downloaded by any user of
the network. In fact, in most P2P file-sharing systems, peers store a
file because they are actually interested in it. On the other hand, in
long-term storage services and especially in P2P backup services,
each piece of information is usually encrypted and, thus, belongs
to a single user (or to a restricted group of users). This consider-
ation makes the problem even more complicated since there is
not any implicit incentive for peers to store (useless) file chunks
from other peers. Thus, how to reward a peer that is sharing an
amount of disk space much greater than the one it is asking for
its data? Or the opposite case, how to incentive a peer to be more
generous with the system, if it is using more space than the one is
sharing? Furthermore, how can such storage quotas be enforced in
a fully distributed system? A possible solution was proposed by
Cox et al. in [19,20], using a framework for limiting the amount
of data that a user is allowed to store into the network. This leads
to a symmetrical behavior that, although keeps the system in a sta-
ble state, limits its flexibility. More recently, other studies have
tried to tackle this problem without forcing the users to share a
fixed amount of disk space. In Seuken et al. [7] have proposed to
solve the problem by introducing a virtual market where a central
system computes the exact amount of resources that users have to
share (including uplink and downlink bandwidth) by following a
trade mechanism that, under certain conditions, leads the system
towards an equilibrium. However, this proposal still implies that
peers follow a fair share, and it does not define any verification
or penalty mechanism for selfish peers. Using monetary incentives
in P2P systems was also studied in [1–6], but these works are
mostly focused on the security aspects about coining digital
currency.

Furthermore, the incentive mechanisms for P2P file systems
cannot be directly applied to P2P backup systems due to their spe-
cific characteristics. Whereas in a standard file system the saved
data is frequently read and written, this is usually not true in a
backup system. Instead, the data are commonly stored only once.
Read operations are not frequent at all and, hopefully, null unless
the user’s data is lost from the local storage. Moreover, whereas
in a distributed file-system the most important feature is access
performance, the long-term durability of stored data is paramount
in a backup service. The terms data durability and availability are
often used in the literature regarding P2P storage systems [21].
The durability is the property that guarantees the fact that data
stored in a peer will last for a time ideally infinite. This property
is valid even when the peer is off-line. The availability property
is more restrictive: it is valid when the data stored in a peer is cor-
rectly saved and available for downloading. Therefore, if we con-
sider that the users of a P2P network behave selfishly, we cannot
just rely on replication mechanisms and consider that the data
stored in a working peer is ‘‘safe’’ without a secure control mech-
anism that continuously verifies this. If both peers are on-line,
the problem could easily be solved by performing periodical checks
of the data availability as proposed by Toka et al. in [22,23]. Mich-
iardi and Toka in [24] presented an analytical model based on
game theory for the detection of selfish peer and a similar solution
was provided previously by Pamies-Juarez et al. in [25]. They pro-
pose a proactive monitoring system that checks the availability of
the peers and assigns different quotas of the system to the users
according to their obtained score. This architecture is further re-
searched by the same authors in [26] where they found a relation
between the system health (in terms of data availability) and the
peer selection algorithm. Selecting the best peers increases the effi-
ciency of the P2P system and provides better results when trying to
retrieve the stored chunks. The solution proposed by Oualha and
Roudier in [27] also identifies the data reliability as one of the big-
gest issues in the field of P2P storage. They propose a distributed
system to find out malicious peers, either passive (which do not
2

allow other peers to use their resources) or active ones (which
deliberately free their resources after having stored a chunk). How-
ever, their proposal is focused on how to recognize whether a peer
misbehaves and not on how to reward peers for guaranteeing the
maximum durability of the information.

However, even by periodically checking the presence of stored
data, the system will not be in a truly safe state without a proper
incentive mechanism. Peers are still storing data that is not of their
interest. Hence, even non-malicious peers can potentially decide to
remove it at any moment in order to free their local storage re-
sources. This problem is even worse when users go off-line (e.g.
vacation time periods or due to hardware failures) and cannot per-
form the verification or payment procedures associated to their re-
mote stored data since there is no guarantee that they will come
back on-line again to pay for their consumed resources. Therefore,
peers may decide to remove the data of users that have been off-
line for a while, which is exactly when backup data may be more
important, since the user may desperately need it when coming
back on-line (e.g. the laptop was stolen during the vacations or
the hard disk crashed the night before).

Therefore the main objectives of our P2P backup proposal are
twofold: (1) to design a secure verification mechanism that en-
sures that the backup information is safely stored, and (2) to devise
an incentive mechanism based on micro-payments that motivates
peers to store backup information even when the user remains off-
line for an extended period of time (e.g. 2 months or more).
3. Overview of the proposed P2P backup system

This section briefly summarizes the proposed P2P backup sys-
tem, including the secure data verification mechanism and the
incentive system based on micro-payments. It also explains the de-
sired behaviors that are encouraged by such incentive mechanism.
All the technical details of the proposed mechanisms are defined in
the following section. But first, let us provide a general overview of
the proposed P2P backup system (see Fig. 1).

Let us consider a user that wants to back up the information that
she is working with. However, instead of employing the local hard
disk, which has some free space but may suffer some hardware
problem that wipes out both, the original information and its back-
up, this user prefers to store the backup in a P2P system where the
Fig. 1. Overview of the propo
information is replicated into multiple peers distributed all over
the world. In exchange, other users are allowed to store their infor-
mation in the user’s hard disk, although the quota dedicated to the
P2P backup application can be reduced if additional space for per-
sonal files is needed.

Thus, the user’s P2P application makes a complete backup of the
local information and keeps updating it with incremental changes
whenever the user modifies local files. Since handling such large
backup file is quite inconvenient, and it may not fit in the space
shared by a remote peer, backup files are split in smaller pieces
(e.g. 1 MB long), called chunks, which also simplifies updating the
backup when only part of the data changes. These chunks are en-
crypted to guarantee the confidentiality and privacy of the backup
data, and then uploaded to multiple peers of the P2P backup sys-
tem. For resiliency reasons, each chunk is replicated and stored
in different peers, and the (small) index file that specifies in which
peers the chunks have been stored is placed at a known and safe
place. How these peers are found or how many replicas are neces-
sary to guarantee a given resilience level is out of the scope of this
paper, since these topics have been already investigated in previ-
ous P2P storage works [28]. Another implementation issue is
whether the P2P application stores a complete copy of the backup
locally or it may just depend on the remote copies stored in the P2P
network. The only requirement is that any given chunk can be
regenerated locally, either from a local backup copy or from the
user’s working file set.

In order to minimize the bandwidth employed by the P2P appli-
cation, once the backup chunks are stored, they are never changed
unless the user’s information is updated. Thus, only the affected
chunks have to be uploaded again. Furthermore, if some of the
peers are not reliable enough (i.e. spend too much time off-line,
have corrupted or lost chunks), the chunks that they store are
moved to other, more reliable, peers. Additionally, in order to guar-
antee that the backup information is safely stored, the user’s appli-
cation periodically checks the chunks by means of a secure
verification mechanism that does not require downloading the
chunk itself. Instead, the user just sends a hash-based challenge
to the peer, so it can only reply if it has really stored the chunk
and has not modified it, either intentionally or due to some
hardware or software glitch. Therefore, this mechanism is able to
identify unreliable peers, and usual offenders may be placed in a
local black list in order to avoid trusting them in the future. More
sed P2P backup system.

3

5 This architecture supports any number of banks that trust each other, as in the
real world. However for simplicity reasons we constrain our description to a single
bank.
complex data verification architectures can also be applied. A com-
prehensive work about ‘‘data possession’’ was presented by Ateni-
ese et al. in [29].

However, we consider that this verification mechanism alone is
not enough to ensure the correct behavior of the system in a real
world scenario, with selfish peers that may delete chunks at any
time, or somehow waste the resources of the system (e.g. storing
too many copies of the backup or trying to verify their chunks
too often). For this purpose some incentive mechanism should be
employed to reward well-behaved peers. In this case, we propose
an incentive mechanism based on micro-payments, where peers
must pay for the resources of the system (i.e. bandwidth and stor-
age space) that they are consuming. That means that users must
not only pay the peers for storing their chunks, but also for any
operation that might be requested, for instance the verification of
data. Therefore, peers will get more or less revenue depending on
the space they are willing to share. Moreover, since this revenue
can be employed to pay for storing your own chunks, this mecha-
nism naturally couples the resources consumed by a user with the
resources shared with other peers (which may be completely dif-
ferent to the ones where the user’s chunks are stored), without try-
ing to impose artificial altruism or symmetric behaviors.
Furthermore, paying for every requested operation will lead to
more efficient applications that avoid superfluous operations. In
addition, peers are encouraged to stay on-line in order to be seen
as reliable ones by other users, and thus to get the fees related with
the different operations that are necessary to store chunks (i.e. up-
load chunks, verify and update them, etc.).

There are many micro-payment proposals in the literature that
could be employed to perform the payments required by this
incentive mechanism. These systems are characterized by the
trade-off between its security and the overhead required to gener-
ate and verify the virtual currency that is used in the transactions.
For simplicity and performance reasons we have chosen a central-
ized micro-payment mechanism based on a trusted third party,
simply called bank in this paper, since it resembles a real-world
bank. Actually, there could be multiple banks that perform virtual
money transactions among each other, but for the sake of simplic-
ity, we will describe the system considering a single bank. All
users/peers will have an account in the bank that records the vir-
tual money owned by each peer. Peers may start with a predefined
amount of virtual money, and the bank may also accept real money
in exchange of virtual one. This allows users to participate in the
P2P system, saving their backup without sharing their own re-
sources. The payment of some amount of virtual money from one
peer to another is then performed by asking the bank to transfer
money between the two peers’ accounts. Since too many payments
could stress the bank’s infrastructure, payments are delayed and
performed as a batch. Our proposed incentive mechanism also en-
forces this behavior, since users must pay the bank for each trans-
fer operation that they request. Moreover, the bank could employ
the collected fees to fund its infrastructure, either directly, if the
virtual money can be exchanged for real one, or indirectly, if the
bank employs its virtual money to gain storage space that can be
later rented to other parties.

However, both the verification and incentive mechanisms have
a common problem: the user must be on-line to perform the ver-
ification and payment procedures. This requirement could be seen
just as slightly inconvenient, but in the case of a P2P backup sys-
tem it could be fatal. If users suffer a hardware failure (e.g. hard
disk crash) and the recovery takes some time, when they come
back on-line their, now vital, backup may have been gone, deleted
by unpaid peers. Therefore, the basic incentive and verification
mechanisms have been extended to support users staying off-line
for extended periods of time. Off-line payments are enabled by
means of a digital cheque, issued by the user, which allows the
entitled peer to request to the bank the payment for the user’s
chunks being stored. But how is the bank able to verify that the
peer is really storing those chunks if it does not have a copy of
the user’s data? The proposed solution is that the user provides
to the bank a list of challenges and their valid responses, called
nonce list, which could be later employed to verify the chunks per-
taining to the digital cheque being cashed by a peer. To avoid over-
loading the bank with the nonce lists of all users, the nonce list is
stored alongside the chunk in the peer itself, but encrypted so only
the bank can read it. Therefore, the bank only has to retrieve and
cache the nonce lists of the users being off-line too much time
due to the peers are able by themselves to cash their cheques.
The fact that the off-line verification mechanism is much more
expensive for the user than the on-line one, it incentives users to
remain on-line if possible.

The following sections fully specify the P2P backup system
operations, including the proposed verification and incentive
mechanisms, in both cases, when the user is on-line or off-line.

4. P2P backup system design

Before going into the technical details of our proposal, it is nec-
essary to define the different roles that are necessary in this
architecture:

User: We employ the term ‘‘user’’ to refer to a peer that is stor-
ing its backup information in other peers. Because of perfor-
mance and resiliency issues, user’s information is split into
several chunks that are later encrypted, replicated and stored
in different peers. There should be redundant copies of the
same data to cope with peers leaving the system or remaining
too much time off-line. In that case, the owner of the informa-
tion has to create another chunk replica and store it in a differ-
ent peer to replace the lost one.
Peer: It is a node that cooperates sharing some of its resources
to compose the proposed P2P backup system. An incentive
mechanism based on micro-payments is employed to ensure
that bandwidth and storage resources are not wasted, and to
make sure that well-behaved peers are properly rewarded. In
particular, users must pay peers for storing their chunks and
performing the requested operations. The earned money may
be then employed by peers to store their own chunks, or even
to exchange virtual credits for real money.
Bank: The proposed micro-payment mechanism requires a
trusted entity, which performs the role of a real-world bank,
but handling virtual currency, called credits in this paper,
instead of real-world money. The bank5 accounts the virtual
money owned by all users/peers of the system, thus payments
between peers are performed just by asking the bank to transfer
virtual money from the payer’s account to the payee’s.

4.1. P2P backup system operations

All transactions related to the P2P backup service are charged
with a fixed amount of virtual money. Therefore, it is necessary
to pay at least 1 credit for each transaction, charged to the initiator
of the operation. Our long-term storage service employs five basic
operations:

PUT: It uploads and stores a chunk of data in a remote peer. The
cost of this operation must be much higher (e.g. 10 times) than
the cost of renewing a chunk, which does not require uploading
4

Fig. 2. Example scenario of long-term P2P backup with one on-line user and two
peers.
it, as in this case.
VERIFY: It checks that a remote peer is truly storing the desired
chunk of information, for instance before being renewed. The
cost of this operation is 1 credit, so users are encouraged to
not check continuously their chunks.
UPDATE: It renews a previously uploaded chunk for a certain
period of time (i.e. 1 day) without uploading it again. The cost
of this operation is 1 credit plus D credits per day (or any other
arbitrary time unit) elapsed since the last UPDATE operation.
GET: It downloads a chunk of data from a peer. The cost of this
operation should be similar to the PUT one since it also requires
moving data between peers.
DELETE: It removes a chunk from a peer. Its cost is 1 credit and
it is necessary to avoid being blacklisted by a peer storing an old
chunk. That is, when a user moves one or more chunks from one
peer to another (e.g. because the new one is more reliable), it
should delete the chunks from the old one.

The nominal value of the fee associated to each operation could
be calculated using the relative costs of performing these opera-
tions, however, for simplicity in this paper we will assume that
there is a common, fixed price to store (e.g. 100 credits) and update
(e.g. D = 10 credits/day) one chunk.

It is important to define how the transactions of virtual money
are performed after each operation. There are several ways to per-
form micro-payments. In our system, we use delayed bank trans-
fers, where a user delays all payments to perform them together
in a specific moment of time (e.g. once per day after updating all
the chunks). We think that this solution is a good trade-off be-
tween computational load and complexity with respect to other
solutions (e.g. instant bank transfers or direct micro-payment ex-
changes between peers [1–4]). The proposed solution of delayed
bank transfers reduces the consumption of bandwidth and compu-
tational resources to process the transactions of all peers, although
the bank could still become a bottleneck. However, this architec-
ture can support multiple bank entities, and there are secure
mechanisms [2] that even allow each bank to define bank assis-
tants to help them in their duties if necessary. Furthermore, the
bank also charges each money transfer batch with a small fee
(e.g. 5 credits) in order to fund its operations, as well as to reduce
its load, because the peers will try to contact the bank as less as
possible.

However, delayed bank transfers introduce a time gap between
the peer performing an operation and when it receives the pay-
ment from the user. Therefore, a peer should allow some debt from
its users until the payment comes. For this purpose, each peer also
maintains local debt accounts per user, where the debt accumu-
lated by each user is annotated. That is, when a peer performs
some operation for a user, like updating a chunk, the peer adds
its cost to the user’s debt account. Conversely, the user employs
its own peer’s debt account to known how much money it owes
to each peer. Then, when the peer receives some payment from
the user, the peer subtracts it from its own local debt account,
which ideally should go back to zero. Otherwise, if the debt of a
user grows above certain threshold, the user is blacklisted and all
its chunks are erased. This debt threshold should be relatively
low in order to prevent free riders, and thus this mechanism alone
should only tolerate peers being off-line during short periods, let
say a weekend.

4.2. On-line system behavior

In this subsection, we define how our proposal of long-term
peer-to-peer backup works when both the user and its peers are
on-line. This subsection presents the basic design of our proposal
to later understand how it supports off-line users, which is the
main objective of this work. The system is governed by the incen-
tive of obtaining a certain amount of virtual money per transaction.
The exchange of chunks and the transfer of virtual money among
users, peers and banks is based on a simple client–server protocol.
Each user operation is acknowledged or responded by the remote
peer. Fig. 2 presents an example of the signaling among peers,
when all of them are on-line, to explain precisely the proposed de-
sign. This example includes the initial storage, verification and up-
date of user’s information at two remote peers, and exemplifies the
mechanism of virtual money transfers associated with each
operation.

Let us assume that the user wants to store one chunk of en-
crypted information but, for resiliency purposes, places it in two
peers: peer A and peer B. To do so, the user performs one PUT oper-
ation per peer (messages 1 and 3), which includes the full chunk
data (ChunkData), as well as a timestamped Cheque issued by the
5

user to each particular peer, and a list of nonces (NonceList) em-
ployed for off-line verification purposes (this mechanism will be
fully detailed in Subsection 4.3). Each PUT operation is confirmed
with a PUT ACK acknowledgment (messages 2 and 4). Each chunk
in the system is uniquely identified by the globally-unique user
identifier (UserID) plus an individual chunk identifier (ChunkID),
which can be independently assigned by each user. A PUT transac-
tion is only employed once per chunk and peer, unless the informa-
tion inside the chunk is modified; thus, it has to be uploaded again.

When the user is on-line, chunks should be updated periodi-
cally, and thus pay peers for storing them. However, before per-
forming any payment to a peer, the user should check whether
the peer is actually storing those chunks by means of a VERIFY
REQUEST operation (messages 5 and 9). To avoid downloading
the chunks for local verification, the user sends a nonce (i.e. a ran-
dom number) as a challenge to the peer. The remote peer should
then apply a predefined hash operation over the chunk data con-
catenated with the nonce provided by the user. The result of this
operation is sent back to the user in a VERIFY RESPONSE operation
(messages 6 and 10). The user could then check the challenge re-
sponse using its own copy of the chunk and the nonce. Therefore,
the peer can obtain the proper solution to the user’s challenge only
if it is actually storing the chunk. Users should include peers with
several unsuccessful VERIFY RESPONSE operations in their local
black lists, since they are not reliable peers to store information.

If the verification of a chunk of data succeeds, an UPDATE oper-
ation is performed afterwards. The UPDATE operation renews the
cheque of the peer and optionally the chunk’s nonce list (messages
7 and 11), although in most cases the latter is not necessary be-
cause the nonce list can be reused until it is exhausted because
of off-line verifications. The peer confirms the UPDATE operation
with an UPDATE ACK response (messages 8 and 12).6

Therefore, the total cost of updating the chunks stored at a peer
for an on-line user is: 1 credit for the (optional) VERIFY operation,
plus 1 credit for the UPDATE operation plus D, the cost of storing a
chunk per day, multiplied by C the number of chunks and t, the
number of elapsed days since the last update time. That is:

UonðC; tÞ ¼ 2þ D � C � t ð1Þ

However, until this moment, no payment has been performed yet
because, thanks to the long-term relationship between a user and
the peers, the system could employ delayed bank transfers to re-
duce the load. Meanwhile, all peers locally maintain the accumu-
lated debt with other peers. That is, in the above example the
user will subtract Uon credits from the local peer’s debt account,
whereas the peer will add Uon credits to the user’s debt account. Fi-
nally, after the user has performed all the daily update operations, a
single payment transaction is performed for all the accumulated
debt with its peers. This is only necessary for positive debt balances,
thus if two peers store the same number of chunks into each other
and update them daily, the mutual debts cancel each other out and
no payment is necessary. Otherwise, these peer payments are re-
quested to the Bank through a BANK TRANSFER operation (message
13), which specifies the accumulated amount of virtual money that
should be transferred from the user’s bank account to each peer.
The user also employs this operation to revoke all the cheques cre-
ated before the specified date. The bank only needs to remember
the last revocation date of each user. This way peers with old, not
renewed, cheques cannot get cash from them. The bank also charges
a small fee (e.g. 5 credits) to the user to cover the cost of this trans-
action. After processing the money transfers (operations 14 and 15),
6 For simplicity purposes, the VERIFY and UPDATE operations shown in Fig. 2 are
independent and refer to a single chunk. However, a real implementation could
optimize this and perform both operations with a single message exchange for all the
chunks of the user stored in the peer.

7 Some of the cheque’s fields have fixed, well-known values, and thus it is actually
not necessary to include them in the cheque exchanged by the P2P backup protocol
However for completeness, and in order to better resemble a real-world cheque, we
explicitly list them all.
the bank sends back a BANK TRANSFER ACK response (message 16)
confirming the payments and detailing the balance of the bank ac-
count to the user.

Peers are not instantly notified of these bank transfers, instead
peers should periodically request, via GET TRANSFERS requests
(messages 17 and 19), the balance of their own accounts and the
last received transfers. The bank replies with a LAST TRANSFERS re-
sponse (messages 18 and 20) containing the accumulated virtual
money obtained from each user, identified by the UserID, since
the specified time. This money is then subtracted from the local
user’s debt account, thus ideally it should be zero after all opera-
tions and payments have been performed. Therefore, the peer
could check whether the users are actually paying for the stored
chunks, either with on-line or off-line paying mechanisms. If this
is not the case, and the accumulated debt of a user exceeds a pre-
defined threshold, all the user’s chunks are removed, and the Use-
rID is added to a local black list to avoid trusting that user in the
future.

This mechanism enables the management of remote informa-
tion if both peers and users are on-line. However, the big challenge
is how to incentive peers to store the information from users when
they are off-line, and thus they do not update/pay their chunks.
This fundamental issue is addressed in the next section.

4.3. Off-line system behavior

Off-line system behavior is crucial for long-term storage ser-
vices like P2P backup, since it must guarantee the storage of infor-
mation even when users go off-line for extended periods of time.
Thus, the aim of this design is to provide a mechanism that assures
peers storing information from off-line users to keep earning vir-
tual money for their service. Our proposal defines a secure digital
cheque that enables these off-line transactions with the help of a
trusted third party, in this case the user’s bank.

By using the cheque issued by the user, a peer can keep earning
virtual money for storing chunks of off-line users. In this section,
we detail the off-line behavior of our proposal. Later, in Section
6, we detail how this cheque is secured to avoid selfish and misbe-
having nodes.

A cheque is composed by the following fields7:

Bank-ID: This field identifies the bank of the user that issues
this cheque. A peer should reject the cheques from a bank that
it does not trust.
User-ID: It is the identifier of the user that generated this
cheque.
Peer-ID: It is the identifier of the peer receiving the cheque for
storing one or more chunks from the user.
Chunk-IDs List: This array field contains the identifiers of all
the chunks from the user stored by the peer.
Nonce lists hashes: Each chunk has an associated nonce list for
verification purposes. This array contains the hashes of the
nonce list of each chunk that appears in the above Chunk-IDs
list field.
Nonce lists key: This field contains the symmetric key used to
encrypt the chunks’ nonce lists. The key itself is encrypted in
such a way that only the bank has access to it. Further details
can be found in Section 6.
Creation date: It specifies the date when the cheque was cre-
ated. The bank compares the last revocation date provided by
the user with this creation date to check whether the cheque
6

.

Fig. 3. Example scenario of long-term P2P backup with an off-line user.
is still valid, or it has already been revoked.
Validity date: This field defines the first day (i.e. 7 days after the
creation date) when the cheque can be employed to withdraw
money from the user’s bank account, although it is off-line.
Face value: It defines the quantity of virtual money from the
user that the peer can obtain per chunk and day. This amount
should include the cost of storing one chunk during one day,
plus the extra cost of cashing the cheque at the bank. This is
an incentive to not overload the bank with cheques since peers
can obtain higher net incomes (they can keep the fees for them-
selves) if they choose to reduce the frequency with which they
cash the cheques.
User’s signature: The cheque must be digitally signed by the
user in order to ensure its legitimacy, as well as to protect its
contents. Notice that users independently issue cheques, with-
out involving the bank.

With the previous definitions, we can now explain an example
of an off-line scenario that allows peers that are storing chunks
from off-line users to keep earning virtual money. This example
scenario is shown in Fig. 3.

When a user goes off-line, it is necessary to keep updating the
chunks of information that are already stored in remote peers.
We make use of the digital cheques to perform this process. When
the Validity date specified in a cheque arrives and the chunks have
not been updated yet, peers can request a CASH CHEQUE operation
to the user’s bank for the amount specified by the cheque’s face va-
lue (messages 1 and 10). As in the on-line case, no payment is per-
formed until it has been verified that the peer is actually storing
the claimed chunks. However, the bank does not have access to
the user’s chunks to generate and validate a challenge, as it is done
in the on-line case. Instead of this, the bank employs the nonce list
previously stored at the peers by the user. The nonce list associated
with a chunk is generated by the user and contains a number of
challenges (e.g. 60 nonces) and their associated responses. This list
is encrypted so only the bank can access to the different challenge
responses.

The bank asks for this list to the peer trying to cash a cheque
with a NONCE LIST REQUEST and its corresponding NONCE LIST
RESPONSE (messages 2 and 3 respectively) and then uses one of
the nonces8 to challenge the peer on behalf of the user with a VERIFY
REQUEST (messages 4 and 11), which should trigger a VERIFY
RESPONSE (messages 5 and 12). If the operation is successful, an
UPDATE operation is issued to the peer, and the bank transfers the
required virtual money from the user’s account to the peer’s one.
This quantity is C (the number of chunks that have been verified),
t (the time elapsed since last update operation) times the cheque’s
face value. The fee charged by the bank is also added to this quantity.

Since a chunk could be replicated in several peers, the bank
could store the nonce lists in a cache so it does not need to down-
load it again from the replica peers. This fact explains why after the
CASH CHEQUE operation in message 10 the nonce list is not re-
quested again to peer B, since it was previously obtained from peer
A (message 2).

When the user comes back on-line, it will ask the bank for the
payment operations performed during its off-line period (messages
17 and 18). With this information the user knows the last update
time of its peers, and keep updating the chunks in on-line mode
(after paying for the days since the last update operation per-
formed by the bank). The user should also renew the cheques,
8 The bank could just choose the nonce whose index equals to the number of days
elapsed since the cheque’s validity date. This ensures that the nonce has not been
employed yet with that peer, without requiring the bank to remember which nonces
have been consumed already.
revoke the old ones and create new nonce lists to avoid repeating
the same challenges to the peers.

Since the peer’s CASH CHEQUE operation requires the bank to
perform additional operations, this transaction must have an extra
cost X to cover the expenses of the (optional) NONCE LIST REQUEST,
VERIFY and UPDATE operations issued by the bank in name of the
user. This extra cost is later compensated by the cheque’s face va-
lue (Y). Therefore the final benefit for the peer is:

Uoff ðtÞ ¼ 3þ Y � C � t � ð1þ XÞ ¼ Y � C � t � X þ 2 ð2Þ

It is important to carefully set the cheque’s face value for the off-
line incentive mechanism to work. In particular two conditions
should hold:

1. Peers should get more virtual money per day and chunk than in
the on-line case.

2. Peers should cash their cheques as less as possible in order to
not overload the bank. Therefore they should obtain more
money performing a single CASH CHEQUE operation after n days
than doing it every day.

Translating these restrictions into equations:

Uoff ðC;1Þ > UonðC;1Þ) Y � X þ 2 > 2þ D) Y > Dþ X ð3Þ
7

Table 1
Simulation parameters The values ðaÞ; ðbÞ and ðcÞ are D, Y and X respectively, as defined
in Eqs. (2)–(4).

Simulation time 365 cycles
Total number of peers 10,000 peers
Backup size 10 GB
Chunk size 1 MB
Number of replicas 3 replicas
Chunks stored per peer 1000 chunks
Initial free storage space 75 GB
Initial bank balance 200,000 credits
Cheque validity date 7 days
Cost of PUT operation 100 credits=chunk
Cost of VERIFY operation 1 credit=chunk
Cost of UPDATE operation 1 + 10ðaÞ credits=chunk � day
Cost of DELETE operation 1 credit=chunk
Cheque face value 15ðbÞ credits=chunk � day
Bank fee of CASH CHEQUE operation 5ðcÞ credits

 400
Uoff ðC;nÞ > n � Uoff ðC;1Þ 8n > 0) Y � C � n� X þ 2
> n � ðY � C � X þ 2Þ) X � ðn� 1Þ
> 2 � ðn� 1Þ) X > 2 ð4Þ

And thus, the cost of CASH CHEQUE operation should be X > 2 (i.e. 3)
and the Cheque face value must be Y > Dþ X (i.e. 15). Thus, this
mechanism gives the appropriate incentives to peers to keep storing
information from off-line users. The maximum duration of the off-
line period for a user is only limited by two elements: the virtual
money left at the user’s bank account and the length of the nonce
list. Moreover, due to the bank fees, it is more costly for the users
to update their chunks in off-line mode than in on-line mode, thus
users are also encouraged to be on-line. Furthermore, peers have
also to pay an upfront fee to the bank for cashing cheques. There-
fore, by increasing the interval between consecutive cashes of the
same cheque, they can obtain higher revenues, meaning that peers
will only contact the bank sporadically to cash their cheques. This
also helps to improve the scalability of the off-line incentive
mechanism.
 0

 50

 100

 150

 200

 250

 300

 350

 30 60 90 120 150 180 210 240 270 300 330 360

Av
er

ag
e

Ba
nk

 b
al

an
ce

[T
ho

us
an

ds
 o

f c
re

di
ts

]

Time [Days]

Peers with Ponline=1.00
Peers with Ponline=0.75
Peers with Ponline=0.50
Peers with Ponline=0.25

(a) Average bank balance of peers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 30 60 90 120 150 180 210 240 270 300 330 360

U
se

d
di

sk
 s

pa
ce

 [G
B]

Time [Days]

Peers with Ponline=1.00
Peers with Ponline=0.75
Peers with Ponline=0.50
Peers with Ponline=0.25

(b) Peers used disk space (75 GB Max.)

Fig. 4. Evaluation of the incentive to stay on-line and share storage resources.
5. Evaluation of the incentive mechanism

In order to evaluate the different aspects of the incentive mech-
anism and how they complement each other, we have imple-
mented the proposed P2P backup system in a custom-made
simulator developed in Java. The simulator is based in cycles, on
each cycle (i.e. one day) all the on-line users/peers put/update their
chunks in other on-line peers and, in order to improve the avail-
ability and durability of their backups, move all the chunks from
the peer with the lowest measured availability9 to a new, randomly
selected peer. For simplicity, all peers/users share the same storage
space (75 GB) and have exactly the same backup size: a 10 GB back-
up split in 10,000 � 1 MB chunks, which are then replicated 3 times,
leading to 30,000 chunks per user. Moreover, the number of chunks
stored in a peer is set to 1000, in order to prevent the failure of a sin-
gle peer wiping out a significant portion of the backup, as well as to
reduce the number of peers that have to be contacted each day (i.e.
30 peers). The full list of simulation parameters is shown in Table 1.

In order to study the effects of the different aspects of the incen-
tive mechanisms, we have implemented different peer behavior
classes (i.e. on-line/off-line periods, rate of update operations,
etc.), instantiate an equal share of peers (from a total of 10,000
peers) featuring the desired behavior class, and simulate the P2P
backup system with those mixed peer behaviors for 365 cycles
(i.e. one year).

Let us start with the main objective of the P2P backup system:
peers should stay on-line and offer their free storage space to other
users. In order to verify this, the first simulation has four peer clas-
ses (with 2500 peers each), all of them offering the same space, but
on each cycle they randomly choose to stay on-line or off-line with
a different probability (Ponline). In the first class, the peers are al-
ways on-line (Ponline ¼ 1:00), the peers of the second class are on-
line the 75% percent of time (Ponline ¼ 0:75), a 50% in the third class
(Ponline ¼ 0:50), and finally the peers of the last class are only on-
line during the 25% of the simulation cycles (Ponline ¼ 0:25).

Fig. 4(a) shows the average bank balance of each class of peers.
Since all peers have exactly the same backup size (10 GB), and thus
roughly the same cost per day, the differences among classes come
from the different revenues that peers obtain by being on-line and
offering their free storage space. Clearly, the peers staying more
time on-line outperform the ones that are off-line more often, since
9 Peer availability is measured locally by each user by trying to contact each day
with the peers storing the chunks, and checking whether are on-line or off-line. The
availability ratio of new peers is only computed after 5 measurements (i.e. five
cycles).
a longer time on-line means greater revenue. In fact the last two
classes have deficit and may be expelled from the system (i.e. their
backups will be deleted) shortly after one year, unless they change
their behavior or pay the bank real money to get additional credits.
On the other hand, the first two classes have surplus, meaning that
they must not pay any additional money to support the operation
costs of the bank, and actually they could store a larger backup,
replicate it more times, share less space or even earn some real-
world money.
8

This aggregated behavior naturally evolves from the fact that
users prefer on-line peers to off-line ones, thus each day on-line
users try to move the chunks from their peer with the worst avail-
ability ratio to a new, randomly chosen peer that is both on-line
and has free space left (on steady state this requires, on average,
5500 DELETE + PUT operations per day). Thus, once a chunk is
stored in an always on-line peer, it is never removed from it,
whereas the chunks stored in a peer with an on-line ratio of 25%
will be moved before the ones stored in the other classes of peers.
This leads to the distribution of stored data shown in Fig. 4(b).
Class 1 peers (100%) have their disk completely full, whereas the
remaining classes still have free space, due to the time they stay
off-line. The small surplus of the 75% class comes from the fact
that, on average, those peers store more than 30 GB, which is the
size of the replicated backup for all peers, while the last two classes
are below this break-even point and thus run on deficit.

Fig. 5 shows the effect of the two additional incentives intro-
duced into the system to lower the load. In particular Fig. 5(a)
shows the average bank balance of a simulation with two peer
classes (5000 peers each), which also have the same backup size
and storage space, but they now both stay on-line 50% of time.
However in this case on-line/off-line periods are not random, but
deterministic. The peers of the first class are one day on-line and
off-line the next one, while, in the latter class, peers are 8 days
on-line, followed by other 8 off-line days. Therefore in this case
the differences between them do not come from preferring peers
with a greater availability as explained before, but from the fact
that the users of the second class remain off-line longer than the
 0

 50

 100

 150

 200

 250

 300

 350

 400

 30 60 90 120 150 180 210 240 270 300 330 360

Av
er

ag
e

Ba
nk

 b
al

an
ce

 [T

ho
us

an
ds

 o
f c

re
di

ts
]

Time [Days]

Peers 1-day on/1-day off
Peers 8-days on/8-days off

(a) Minimizing cheques: Average bank balance of peers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 30 60 90 120 150 180 210 240 270 300 330 360

Av
er

ag
e

Ba
nk

 b
al

an
ce

 [T

ho
us

an
ds

 o
f c

re
di

ts
]

Time [Days]

Batch operations (msg. cost 1)
Daily operations (msg. cost 1)

Batch operations (msg. cost 10)
Daily operations (msg. cost 10)

(b) Minimizing operations: Average bank balance of peers

Fig. 5. Evaluation of the incentive to minimize operations and cheques.
cheque validity date (7 days) and thus their peers will cash their
cheques. Therefore, the extra cost of cheques make class 2 peers
to spend more money than class 1 ones, and thus providing them
with an incentive to stay off-line less than 7 days to prevent other
peers cashing their costly cheques. Notice that the balances of both
classes do not compensate (i.e. do not sum up to 400,000), because
the bank gets a small fee (5 credits) for each cheque transaction in
order to pay its operational costs.

Similarly, in order to lower the total load of the system, users
are also incentivized to minimize the number of operations they
request to their peers. The strength of this incentive can be tuned
by changing the fixed cost per message. Fig. 5(b) shows the average
bank balance of two peer classes that are both 100% on-line, but
take long vacations (30 days) with a small probability (3%). The
only difference between these two classes is that, in the first one
all operations (i.e. requesting verify and update operations, making
money transfers and cashing cheques) are performed daily, while
in the second one operations are delayed and executed as a batch
after 5 days, effectively reducing almost five times the total num-
ber of operations (e.g. 61,753 vs. 11,972 UPDATE messages on aver-
age per day). This simulation is run twice, first with a fixed cost of 1
credit per message, and then with a message cost of 10 credits. It
can be clearly seen that the best peer strategy is to reduce the
number of operations as much as possible. The differences be-
tween both peer classes broadens by increasing the cost per mes-
sage, thus allowing the system designer to explicitly set the reward
to users for reducing their load in the system.

Therefore, with the proposed incentive mechanism, the P2P
backup system benefits well-behaved users and penalizes free-rid-
ers or malicious users, effectively enabling peers to store the back-
up of off-line users. However, the incentive mechanisms alone do
not prevent the possibility of lost backup chunks due to some kind
of physical failure in the peers storing them, and in this case an off-
line user is not able to regenerate the lost chunks. Therefore users
must rely on the chunk replication mechanisms to keep their back-
ups alive while they are off-line during extended periods of time. If
we assume that p is the probability of a peer failure, then the prob-
ability Pokðt;R;MÞ that at least one of the R chunk replicas survives
during t days, for all M ¼ B=C peers storing the backup file (being B
the total number of backup chunks and C the number of chunks
stored per peer), is:

Pokðt;R;MÞ ¼ ð1� ð1� ð1� pÞtÞRÞM ð5Þ

This means that with 3 replicas, a peer reliability of a 99.9% (i.e. that
means a probability of failure p equal to 0.001), and with

M ¼ 10 GB=1 MBchunks
1000chunks=peer

¼ 10peers; ð6Þ

the probability that the full backup survives during 60 days with no
user intervention is Pok ¼ 0:99802, or Pok ¼ 0:99974 for 30 off-line
days, and, even in the improbable case of some backup replication
loss, only a subset of the user’s chunks will be affected.

6. Security of the incentive and verification mechanisms

Any incentive mechanism, and specially the ones based on virtual
money, should be secure, otherwise they become useless, or even
worst, benefit mischievous users instead of well-behaving ones.

Probably the most obvious attack to the proposed mechanism is
impersonation, where an attacker tries to convince the bank or
other peers that it is a different user to request payments from
the targeted bank account or to be able to store chunks with a
different UserID. Therefore, first of all, it is necessary to avoid all
kinds of impersonation or man-in-the-middle attacks in the
system. Each entity participating in the system (i.e. banks and
9

Fig. 6. Security relationships between the different elements of the P2P backup system.
users/peers) should have a X.509 digital certificate [30] that links
its BankID/UserID with a RSA public key [31], as it is shown in
Fig. 6. Therefore a user could easily assess its identity by means
of a digital signature or by using a secure protocol that exchanges
certificates like TLS [32]. The bank of the user or other trusted third
party could issue these user certificates. The banks acting as Certi-
fication Authorities (CA) has the additional benefit that there is a
strong relation between users and their banks, and the peers could
just reject transactions with users from unknown banks that are
not in the peer’s trusted CA repository.

Even if certificates do not allow an attacker to impersonate an-
other user, an attacker can still generate multiple personalities
(also known as Sybil attack) to thwart the black list mechanism.
That is, when a UserID is blacklisted because of misbehavior or
too much debt with other peers, the attacker could just ask for an-
other UserID to the bank. This problem can be mitigated by harden-
ing the process to create a new user, either requesting a real world
identity, charging some real-world money (e.g. 10$ that are ex-
changed for virtual money), or a combination of both.

To guarantee the integrity and the privacy of the users’ informa-
tion, backup data should be encrypted before being stored at the
peers, and it should also include a HMAC [33] digest code to avoid
tampering. For performance reasons, chunks should be encrypted
employing a symmetric cipher, albeit each user can choose its pre-
ferred encryption mechanism for its own chunks. Therefore, since
the user is the only one who knows the encryption key, neither
the peers storing the chunks nor the user’s bank are able to access
the backup information. The only additional precaution is that at
least one copy of this secret key as well as the user’s private RSA
key must be securely stored (i.e. protected by a passphrase) in
some well-known and safe location in order to recover the backup
in case of any fatal local hardware or software failure.

Of course, the digital cheque for off-line transactions requires
additional security measures. The cheque must be digitally signed
with the private key of the user that issues it, in order to allow that
the peer and the bank could assess its authenticity using the user’s
public key. An agile revocation mechanism for cheques is proposed
to minimize the state required at the bank: new cheques are issued
to peers whenever chunks are updated, and then the user just noti-
fies to the bank which is the creation date of the last set of cheques
in each delayed transfer. Therefore, the bank only needs to check
the creation date of a cheque to decide whether it has already been
revoked or it is still valid.
The security of the remote chunk verification mechanism
should also be analyzed. The usage of a cryptographic hash func-
tion prevents a malicious peer to solve the challenge without hav-
ing the chunk. The malicious user could however still try to
generate all the possible challenge nonces and then store their re-
sponses instead of the chunk itself. Therefore, in order to thwart
this attack, the dictionary with all challenges’ responses must be
larger than the chunk itself. An arbitrary large number could be
chosen, but this would lead to larger nonce lists, which should
be retrieved and cached by the bank. Therefore, it seems better
to choose an appropriate nonce length (N bits), based on the chunk
size (S bits) and digest’s length of the hash function (H bits). Then:

S 6 2N � H) N P log2ðS=HÞ ð7Þ

Which means that with S ¼ 1 MB ¼ 223 bit-long chunks and MD5
hashes (H ¼ 128 ¼ 27 bits), a nonce of just N = 23–7 = 16 bits is nec-
essary. If chunks of S ¼ 1 MB are considered, we need N = 26 bits to
prevent a complete dictionary attack. Thus, a 32-bit nonce seems to
be a good value to avoid partial dictionary attacks with high prob-
ability. This value leads to a nonce list with 20 bytes per entry, and
thus two months worth of challenges (i.e. 60 nonces) could be
stored in as little as 1200 bytes.

Finally, since nonce lists are initially stored by the peers them-
selves, it is necessary to protect the nonces and challenges’ re-
sponses from them. To do so, the whole nonce list should be
encrypted so only the bank can decrypt it. We could use the public
key of the bank for this purpose, however public key cryptography
is much more CPU intensive than symmetric ciphers. Therefore it is
much better to first encrypt the nonce lists with a secret key (e.g.
AES key of 128 bits), randomly generated by the user. The problem
now is how to convey this secret key to the bank. In this case, it is
now feasible to employ the public RSA key of the bank to encrypt
this short key. The encrypted key can be then added to the cheque,
because all the nonce lists of a peer can be encrypted with the
same key. Furthermore, the cheque also contains the hash of the
different nonce lists to prevent a malicious peer to send an old
nonce list, with known challenges, to the bank for validation.

Therefore, when the bank receives a cheque, first, it has to verify
that it features a valid signature from its user (thus it is both legit
and has not been tampered). Secondly, it needs to verify the valid-
ity and creation dates of the cheque by comparing them, respec-
tively, with the current date and the last revocation date
specified by user, and finally decrypt the nonce list key in order
10

to obtain the challenges stored in the nonce list, whose validity is
checked using the hash carried by the cheque itself.

7. Conclusions

The incentive and verification mechanisms proposed in this pa-
per present certain characteristics that make them interesting for
long-term peer-to-peer storage services such as P2P backup. On
one hand, the secure and lightweight verification mechanism en-
sures that the user’s chunks are safely stored in the peers as
claimed. On the other hand, the usage of monetary incentives
encourages peers to share their own resources proportionally to
the ones they consume from the P2P system to backup their infor-
mation. Furthermore, paying each successful operation performed
by a peer, prevents users from wasting bandwidth and storage
resources.

Although there are many micro-payment mechanisms that
could be employed to implement the proposed incentive mecha-
nism, for simplicity we have chosen delayed payments through a
central bank (or multiple banks that trust each other). The bank
also charges an additional fee for each monetary transaction it per-
forms, which first provides funding for maintaining its infrastruc-
ture, but also helps to reduce its load since this is also is an
incentive for peers to minimize the number of bank transactions.

Finally, the main contribution of this paper is the adoption of
secure digital cheques to enable the long-term storage of informa-
tion when an user goes off-line for extended periods of time. Dur-
ing the user’s absence, the bank keeps verifying and updating the
chunks on behalf of the user. These actions are performed by
means of a compact set of verification challenges created by the
user, and only when the peers try to cash their cheques. The pro-
posed cost model for updating chunks in the off-line case also en-
sures that peers will try to cash their cheques as less as possible
and, due to the higher cost of this operation compared to the on-
line case, users will remain on-line as much as possible. Therefore,
a higher number of peers will be available, which leads to a posi-
tive increment on the system resources and availability.

We validated our cheque-based mechanism and its associated
incentive aspects using an ad hoc, cycle based simulator. The ob-
tained results show how the incentive mechanism allows the ex-
pected long-term storage capability as well as how well-behaved
peers obtain a better performance with respect to worse-behaved
peers.

Acknowledgments

This work has been funded by the Regional Government of Ma-
drid under the MEDIANET project (S2009/TIC-1468) and has also
received funding from the Ministry of Science and Innovation of
Spain, under the QUARTET project (TIN2009-13992-C02-01).

References

[1] B. Yang, H. Garcia-Molina, Ppay: micropayments for peer-to-peer systems, in:
10th ACM Conference on Computer and Communications Security (CCS’03),
2003, pp. 300–310.

[2] Z. Jia, S. Tiange, H. Liansheng, D. Yiqi, A new micro-payment protocol based on
p2p networks, IEEE International Conference on E-Business Engineering (2005)
449–455.

[3] K. Wei, A.J. Smith, Y.-F.R. Chen, B. Vo, Whopay: a scalable and anonymous
payment system for peer-to-peer environments, in: International Conference
on Distributed Computing Systems, 2006.

[4] K. Chaudhary, X. Dai, P2p-netpay: an off-line micro-payment system for
content sharing in p2p-networks, Journal of Emerging Technologies in Web
Intelligence 1 (1) (2009).

[5] N. Liebau, O. Heckmann, A. Kovacevic, A. Mauthe, R. Steinmetz, Charging in
peer-to-peer systems based on a token accounting system, in: Lecture Notes in
Computer Science, 2006, vol. 4033, pp. 49–60.
[6] X. Dai, K. Chaudhary, J. Grundy, Comparing and contrasting micro-payment
models for content sharing in p2p networks, in: International IEEE Conference
on Signal-Image Technologies and Internet-Based System, 2007, pp. 347–354.

[7] S. Seuken, D. Charles, M. Chickering, S. Puri, Market design & analysis for a p2p
backup system, in: 11th ACM Conference on Electronic Commerce, Ser. EC ’10,
2010, pp. 97–108.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao,
Oceanstore: an architecture for global-scale persistent storage, SIGPLAN Not.
35, November 2000, pp. 190–201.

[9] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell,
J.R. Lorch, M. Theimer, R.P. Wattenhofer, Farsite: federated, available, and
reliable storage for an incompletely trusted environment, in: 5th Symposium
on Operating Systems Design and Implementation OSDI, 2002, pp. 1–14.

[10] C. Batten, K. Barr, A. Saraf, S. Trepetin, pStore: a secure peer-to-peer backup
system, Massachusetts Institute of Technology Laboratory for Computer
Science, Technical Memo MIT-LCS-TM-632, October 2002.

[11] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: R. Guerraoui (Ed.),
Middleware 2001, LNCS 2218, Springer, 2001, pp. 329–350.

[12] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, M. Isard, A cooperative
internet backup scheme, in: USENIX Annual Technical Conference, 2003.

[13] E. Adar, B.A. Huberman, Free riding on gnutella, First Monday 5 (2000).
[14] M. Feldman, K. Lai, I. Stoica, J. Chuang, Robust incentive techniques for peer-to-

peer networks, in: 5th ACM Conference on Electronic commerce, 2004, pp.
102–111.

[15] P. Golle, K. Leyton-Brown, I. Mironov, M. Lillibridge, Incentives for sharing in
peer-to-peer networks, in: Second International Workshop on Electronic
Commerce, 2001, pp. 75–87.

[16] K. Ranganathan, M. Ripeanu, A. Sarin, I. Foster, To share or not to share: an
analysis of incentives to contribute in collaborative file sharing environments,
in: Workshop on Economics of Peer-to-Peer Systems, 2003.

[17] C. Buragohain, D. Agrawal, S. Suri, A game theoretic framework for incentives
in p2p systems, in: 3rd International Conference on Peer-to-Peer Computing,
2003.

[18] B. Cohen, Incentives build robustness in bittorrent, in: Workshop on
Economics of Peer-to-Peer Systems, P2PECON, 2003.

[19] L.P. Cox, C.D. Murray, B.D. Noble, Pastiche: making backup cheap and easy, in:
Symposium on Operating Systems Design and Implementation (OSDI), 2002,
pp. 285–298.

[20] L.P. Cox, B.D. Noble, Samsara: Honor among thieves in peer-to-peer storage, in:
Nineteenth ACM Symposium on Operating Systems Principles, 2003, pp. 120–
132.

[21] G. Utard, A. Vernois, Data durability in peer to peer storage systems, in: IEEE
International Symposium on Cluster Computing and the Grid CCGrid 2004,
April 2004, pp. 90–97.

[22] L. Toka, M. Dell’Amico, P. Michiardi, Online data backup: a peer-assisted
approach, in: Peer-to-Peer Computing, 2010, pp. 1–10.

[23] P. Maille, L. Toka, Managing a peer-to-peer data storage system in a selfish
society, IEEE Journal on Selected Areas in Communications 26 (7) (2008)
1295–1301.

[24] P. Michiardi, L. Toka, Selfish neighbor selection in peer-to-peer backup and
storage applications, in: Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, Springer-Verlag, 2009, pp. 548–560.

[25] L. Pamies-Juarez, P. García-López, M. Sánchez-Artigas, Rewarding stability in
peer-to-peer backup systems, in: 16th International Conference on Networks,
ICON 2008, IEEE, 2008, pp. 1–6.

[26] L. Pamies-Juarez, P. García-López, M. Sánchez-Artigas, Enforcing fairness in
p2p storage systems using asymmetric reciprocal exchanges, in: IEEE
International Conference on Peer-to-Peer Computing (p2p), September 2011,
pp. 122 –131.

[27] N. Oualha, Y. Roudier, Securing p2p storage with a self-organizing payment
scheme, in: 5th International Workshop on Data Privacy Management, and 3rd
International Conference on Autonomous Spontaneous Security, Springer-
Verlag, 2011, pp. 155–169.

[28] W.K. Lin, D.M. Chiu,Y.B. Lee, Erasure code replication revisited, in: Fourth
International Conference on Peer-to-Peer Computing, Series P2P ’04, 2004, pp.
90–97.

[29] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, D.
Song, Remote data checking using provable data possession, in: ACM
Transactions on Information and System Security, vol. 14, June 2011, pp. 12–
34.

[30] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk, Internet X.509
public key infrastructure certificate and certificate revocation list (CRL) profile,
RFC 5280 (Proposed Standard), Internet Engineering Task Force, May 2008.

[31] J. Jonsson, B. Kaliski, Public-key cryptography standards (PKCS) #1: RSA
cryptography specifications Version 2.1, RFC 3447 (Informational), Internet
Engineering Task Force, February 2003.

[32] T. Dierks, E. Rescorla, The transport layer security (TLS) protocol Version 1.2,
RFC 5246 (Proposed Standard), Internet engineering task force, August 2008.

[33] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-hashing for message
authentication, RFC 2104 (Informational), Internet Engineering Task Force,
February 1997.
11

