24 research outputs found

    Introduction to the Use of Robotic Tools for Search and Rescue

    Get PDF
    Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system

    Chapter Introduction to the Use of Robotic Tools for Search and Rescue

    Get PDF
    Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system

    Development of control system for quadrotor unmanned aerial vehicle using LoRa wireless and GPS tracking

    Get PDF
    In the past decades, there has been a growing interest in unmanned aerial vehicles (UAVs) for educational, research, business, and military purposes. The most critical data for a flight system is the telemetry data from the GPS and wireless transmitter and also from the gyroscope and accelerometer.  The objective of this paper is to develop a control system for UAV using long-range wireless communication and GPS. First, Matlab simulation was conducted to obtain an optimum PID gains controller. Then LoRa wireless was evaluated during clear and rainy days. Static and dynamic points measurement was conducted to validate and optimize GPS accuracy. GeoMapping in Matlab and Google GPS GeoPlanner were then used to analyze the traveled UAV flight path

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    An Information-Motivated Exploration Agent to Locate Stationary Persons with Wireless Transmitters in Unknown Environments

    Get PDF
    Unmanned Aerial Vehicles (UAVs) show promise in a variety of applications and recently were explored in the area of Search and Rescue (SAR) for finding victims. In this paper we consider the problem of finding multiple unknown stationary transmitters in a discrete simulated unknown environment, where the goal is to locate all transmitters in as short a time as possible. Existing solutions in the UAV search space typically search for a single target, assume a simple environment, assume target properties are known or have other unrealistic assumptions. We simulate large, complex environments with limited a priori information about the environment and transmitter properties. We propose a Bayesian search algorithm, Information Exploration Behaviour (IEB), that maximizes predicted information gain at each search step, incorporating information from multiple sensors whilst making minimal assumptions about the scenario. This search method is inspired by the information theory concept of empowerment. Our algorithm shows significant speed-up compared to baseline algorithms, being orders of magnitude faster than a random agent and 10 times faster than a lawnmower strategy, even in complex scenarios. The IEB agent is able to make use of received transmitter signals from unknown sources and incorporate both an exploration and search strategy
    corecore