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Abstract 

Information about damaged buildings is crucial in 
disaster response owing to the risk they pose, including 
property damage and loss of human lives. However, it is 
difficult to capture this information rapidly during 
disaster. This study developed an automatic model to 
detect buildings damaged by earthquakes from aerial 
videos. It is composed of multiple object tracking model 
of buildings, classification model of damage, and 
decision tree model to output final estimation by each 
track. This system considers; (1) detection of damaged 
and collapsed buildings such as pancake collapse of 
wooden buildings and significant roof damage, (2) input 
of time-series information to determine the extent of 
building damage, (3) less annotation labor to train 
datasets, and (4) effective usage of decision tree nodes 
for disaster response. The obtained results indicated 
that the average recall of three classes was 47.9%, 
average precision was 48.4%, and average F-measure 
was 45.7%.  

 
Keywords: Aerial video, Damaged building, Deep 
learning, Earthquake, Disaster Response 

1. Introduction  

In past disasters, such as earthquakes and typhoons, 
several buildings were damaged, which caused 
excessive property damage and loss of human lives. In 
Japan, several wooden buildings have collapsed or been 
partially damaged by earthquakes. For example, the 
2016 Kumamoto earthquake damaged approximately 
200,000 buildings (Disaster response headquarters of 
Kumamoto prefecture, 2022). Accurate and timely 
information about damaged buildings is crucial for 
locating and rescuing individuals affected by disasters; 
estimate the volume of resources for disaster response 
in cities, prefectures, and nations; estimate the number 
of people who will live in refugee camps or temporary 
housing; and distribute support money corresponding to 
the damage level of each building. Therefore, 
understanding the extent and nature of damage to 

buildings is crucial for effective disaster response in 
affected areas. However, it is difficult to obtain this 
information. During the 2016 Kumamoto earthquake, 
because fire brigades could not obtain accurate 
information about the location of damaged buildings 
and victims, they investigated all buildings in the area. 
However, this operation required abundant manpower, 
support staff from other local governments, and various 
equipment (Kumamoto city fire department, 2018). In 
anticipation of future large-scale earthquake disasters 
that will overwhelm disaster response headquarters and 
fire brigades, we propose the use of advanced 
technology to augment these efforts. This study 
developed an automatic model to detect damaged and 
collapsed buildings during earthquakes using aerial 
videos, primarily drone videos, to provide information 
that is effective for disaster response.  

Drone videos can collect extensive information 
from a bird’s eye view at low cost in places that cannot 
be accessed by people. Currently, 52.9% (383/724) of 
fire departments in Japan have drones that can capture 
damage caused by earthquakes, landslides, fires, or 
toxic gas accidents (Fire and Disaster Management 
Agency in Japan, 2022). Moreover, disaster response 
organizations, such as local governments and fire 
brigades, use helicopters to capture disasters in aerial 
videos (Nazarov, 2011).  

2. Related studies 

Our previous study detected roof damage from 
aerial images using deep learning to ensure a more rapid 
and efficient investigation of building damage in Japan 
(Fujita and Hatayama, 2021, 2022). Miura et al. (2020) 
estimated damaged buildings by detecting damaged 
roofs and roofs covered with blue sheets from aerial 
images using deep learning. Calantropio et al. (2021) 
extracted building regions through deep-learning 
segmentation and detected damaged buildings. The 
obtained ortho-aerial images can detect roof damage, 
which can help assess the extent of building damage in 
large areas. 

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 2086
URI: https://hdl.handle.net/10125/106638
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



However, these images cannot detect collapsed 
buildings without roof damage, where rescuers or 
injured people are likely located, because they cannot 
distinguish between the vertical displacements of 
collapsed buildings. This study used aerial videos, 
particularly drone videos, to automatically detect 
collapsed and damaged buildings through deep learning. 
Aerial videos can be used to detect individual collapsed 
buildings with vertical displacement and without roof 
damage from an oblique angle. Moreover, aerial videos 
are effective during the emergency phase because of 
their minimal calculation volume and filming labor.  

Traditional Japanese buildings often suffer from 
damaged roofs, particularly tile roofs, during 
earthquakes and typhoons. Prior to the amendment of 
the building standards in 1981, the tile roofs of buildings 
did not have to be fixed to the base of the roof. 
Currently, the number of tile roofs that sustain damage 
during disasters is reducing because of revised strict 
building standards, the use of light raw materials, and a 
decrease in the number of people using tile roofs. 
However, several old buildings, or buildings without 
sufficient countermeasures, may still be affected in the 
future. Various previous studies (Pi et al., 2020, Qi et 
al., 2016, Zhu et al., 2020) detected collapsed buildings 
using the debris and damaged parts as captured in 
videos. In Japan, even if buildings do not collapse, 
detection systems that focus on debris react overly to 
roof damage (Fujita and Hatayama, 2023). Additionally, 
Japanese buildings, particularly wooden ones, may 
cause pancake collapse, indicating that the collapsed 
building is crushed flat during earthquakes (Scawthorn 
and Yanev, 1995, Okada and Takai, 1999, Scawthorn, 
2006). In this collapse pattern, the appearance of the 
building body, such as the walls and roof, may be intact, 
except for the crushed story. Because several of the 
crushed stories cannot be clearly seen, these buildings 
cannot be detected based solely on debris or damaged 
parts. Considering the above features of Japanese 
buildings, this study classified collapsed and damaged 
buildings using deep learning, regardless of the 
appearance of debris.  

Our previous study (Fujita and Hatayama, 2023) 
detected collapsed buildings using a multiple-object 
tracking model of deep learning from aerial videos. The 
study indicated that the model required the enhancement 
of accuracy, and it was difficult to distinguish collapsed 
buildings from roof-damaged buildings. This study 
developed a model to detect three types of buildings: no 
damage, damage, and collapse, because mistaking 
between collapse and no damage classes may cause 
significant problems in making decisions during disaster 
response. The inclusion of a damage class can reduce 
this problem even if a mistake occurs. Moreover, some 
types of disaster responses require the estimation of 
damaged buildings. Finally, the model outputs several 
types of estimations based on these three classes. 

Naito et al. (2021) detected damaged and collapsed 
buildings in oblique aerial images using object detection 
through deep learning. The study was based on images 
rather than videos. Although previous studies (Qi et al., 
2016, Zhu et al., 2021) detected videos, they did not 
consider buildings as a single track, which refers to a 
series of objects in consecutive video frames. The 
consideration of buildings as one track is necessary to 
identify the number of damaged buildings in aerial 
videos. This study considers the buildings on one track 
in a video using time series information. 

Table 1 shows the summarized information of the 
above. In comparison to previous research, this study 
takes into consideration the damage characteristics 
specific to Japan, classifies buildings into three 
categories: 'no damage,' 'damaged,' and 'collapsed' and 
outputs estimation results as a single track utilizing 
time-series information. 

 Collapse  
detection 

Considering  
Japanese feature 

Distinction among "no damage,” 
 "damage," and "collapsed." 

Using time-series information  
to estimate as a single track 

Ours (2021, 2022) 
Miura et al. (2020) 
Calantropio et al.  
(2021) 

× ✓ and × × × 

Pi et al. (2020) 
Qi et al. (2016) 
Zhu et al. (2020) 

✓ × ✓ and × × 

Ours (2023) ✓ ✓ × × 
Naito et al. (2021) ✓ ✓ ✓ × 
This study ✓ ✓ ✓ ✓ 

Table 1. Comparison table with related studies. 
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3. Proposed system 

Figure 1 shows the flow of the proposed system. 
This model does not operate in real-time; instead, a 
series of processes is executed after the video is filmed, 
and then the estimation results are outputted. A multiple 
object tracking model is used to track the same object 
using a bounding rectangle (bbox) in the video. Our 
previous study (Fujita and Hatayama, 2023) revealed 
that depicting the bounding rectangle of a building in 
annotating the training data of a video was time-
consuming. Annotation means giving correct answers to 
each set of training data. It is important to decrease the 
labor and time required to create a dataset when creating 
machine learning systems during both normal times and 
disasters. If the machine learning model is trained after 
a disaster to adapt to new data of a disaster whose 
quality is different from that of the former disaster, the 
training dataset must be annotated rapidly. Therefore, 
the proposed system categorizes the data into three 
classes after extracting building images from videos 
because the labor required for annotation in the 
classification task is less than that in the tracking task. 
In this experiment, the average annotation time for the 
classification task was 0.798 s and that for the tracking 
task was 3.84 s. The proposed system uses fewer data 
for multiple object tracking and more data for 
classification tasks. After classifying the buildings in 
each frame, the system calculates the average and 
maximum damage levels in each track. We classified the 
damage level into four categories as follows: “Not 
building” (0), “No damage” (1), “Damage” (2), and 
“Collapse” (3). This study uses the average damage 
level to consider the time-series information for one 
track.  

Finally, a decision tree was created to output 
several types of estimations. As the estimated 
information of damaged buildings is used in several 
cases, the required accuracy, recall, and precision vary 

for each case. These values were determined using 
Equations (1)–(3) and Table 2. For example,  
l For rescue operations, it is desirable to increase the 

recall of collapsed buildings. Their aim is to locate 
and assist individuals in as many collapsed buildings 
as possible， even if many no collapsed buildings are 
also detected by mistake.  

l It is desirable for cities, prefectures, and nations to 
estimate the volume of necessary resources to 
increase the accuracy of determining collapsed and 
damaged buildings and understand the scale and 
severity of the damage. They need an approximate 
figure of damaged and collapsed buildings without 
excessive overlook and mistaken detection. 

l In Japan, a system determines the content of each 
type of support, such as a summary of the support 
money for victims corresponding to the building 
damage level (Disaster Management, Cabinet Office 
in Japan, 2020). Because investigating the damage 
level on-site is time-consuming, local governments 
currently investigate some buildings based on aerial 
images or photos taken by the victims at first and then 
other buildings on-site. Moreover, automatic 
judgement by artificial intelligence such as our 
system without human judgement would further 
accelerate the first photo judgement. In this case, they 
can grasp damage in later on-site investigations, even 
if judging from photos and artificial intelligence 
overlooks damage. Therefore, it is desirable to 
increase the precision of collapsed and damaged 
buildings because it is necessary to decrease 
mistaken detection (FP). If there are many mistaken 
detections, it will lead to excessive support for many 
no damage buildings. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3) 

 

Aerial video Multiple object tracking Extracting building image Classification

Not building (Damage level 0)

No damage (Damage level 1)

Damage (Damage level 2)

Collapse (Damage level 3)

Average damage level

Max damage level

Decision tree Node 1 (Collapse)

Node 2 (Collapse)

Node 3 (Damage)

…

(by frame) (by track)

(by track)

Figure 1. Flow of the proposed model. 
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Considering the diverse applications in disaster 
response, this study uses a decision tree to output several 
types of results, including accuracy, recall, and 
precision, which are essential for addressing various 
requirements for effective disaster response. A decision 
tree is a model used to classify or predict values using 
conditional branches in multiple layers. Because this 
model outputs some nodes with different estimation 
probabilities, these outputs are expected to be effective 
for various types of disaster responses. Moreover, 
decision trees make it easier to interpret internal 
processes than other machine learning methods, such as 
neural networks. Therefore, this model can be effective 
in providing explanations for its answers and building 
trust among people during a disaster response. It is also 
this study's unique point to select a decision tree from 
some types of machine learning algorithm considering 
the utilization in disaster response aspect such as several 
outputs and interpretability.  

Once damaged buildings have been identified from 
aerial videos, it is necessary for the effective disaster 
response to associate these buildings with accurate 
location information. Some previous studies (Qi et al., 
2016) located a building in a video by determining 
parameters such as the height and location of the drone 
and camera angle. If these parameters cannot be 
obtained, location information can be obtained from 
three-dimensional (3D) point data and points with 
location information inputted by humans. 3D point data 
can be obtained from aerial images or aerial videos 
using structure from motion, as reported in previous 
studies (Yamazaki et al., 2017, Arko et al., 2014). The 
former can automatically estimate the position from 
various parameters, while the latter requires manual 

input of position information with four or more points 
by human. Therefore, this study did not include 
associated location information. 

4. Experiment 

4.1. Dataset 

This study used aerial videos recorded by drones in 
Mashiki city, Kumamoto prefecture, following the 2016 
Kumamoto earthquake. The 2016 Kumamoto 
earthquake occurred on April 14 and 16, 2016, with a 
maximum seismic intensity of 7 and moment magnitude 
scale of 7.0. The number of deaths reported was 273 and 
198,258 buildings were damaged (Disaster response 
headquarters of Kumamoto prefecture in Japan, 2022), 
particularly wooden buildings. The frame rate of these 
videos is 30 fps, and the average altitude of the drone 
was about 60 ~ 75 m. 

Figure 2 illustrates a breakdown of the dataset. We 
separated the frames of the aerial videos into three 
regions to create training, validation, and test datasets. 
The training data is used to update the parameters of the 
model, the validation data is used to determine the 
number of trainings, and the test data is used to evaluate 
the model. In the multiple object tracking model (4.2), 
the system uses part of the data of the three regions, 
considering the large labor required for tracking 
annotation. In creating the classification model (4.3), the 
system uses building images that have been cropped by 
the tracking model from all the data of the three regions. 
Then, average and maximum damage levels are 
calculated using output of the classification, and used to 
create the decision tree (4.4) in the proposed system. 
The decision tree uses all the data obtained from regions 
B and C. 
  

 Estimation 
Positive Negative 

Actual Positive TP FN 
Negative FP TN 

Region A
video

Region B
video

Region C
video

4.2
Multiple object

tracking of buildings

Train 
dataset

Multiple object
tracking model

Test
dataset

Validation
dataset

train validate test

a part a part a part

Region A
video

Region B
video

Region C
video

Train 
dataset

Multiple object
tracking model

Test
dataset

Validation
dataset

all all all

Train 
dataset

Test
dataset

Validation
dataset

Classification model

Crop 
building image

train validate test

Test
dataset

Validation
dataset

Classification model

Damage class
by frame

Damage class
by frame

Average damage level 
and max damage level

by track

Average damage level 
and max damage level

by track

Decision tree
train test

Classify 
damage class

4.3
Classification of 
the damage level

4.4
Decision tree of

damage level by track

Table 2. Confusion matrix. 

Figure 2. Breakdown of the dataset. 
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4.2. Multiple object tracking of buildings 

Table 3. Number of dataset in tracking. 

 
Table 4. Result under different conditions 

This study trained Bytetrack (Zhang et al., 2021) as 
a multiple object tracking model using the 
aforementioned dataset. Table 3 summarizes the 
number of images, bbox (bounding rectangle in each 
frame), and tracks of the dataset, and Figure 3 shows a 
captured image illustrating the annotation tool in use 
alongside the accompanying video. We annotated one 
image out of every ten frames and compensated for the 
remaining nine frames using linear interpolation. This 
annotation took approximately 3.84 s per bbox. The 
backbone for object detection was YOLOX-m (Ge et al., 
2021), and fine-tuning was executed using a pre-trained 
backbone model with the COCO dataset, which is large 
scale dataset for image recognition. The input image 
size was 800 × 1440. In the test, we used a trained model 
of 43 epochs, because the accuracy for the validation 
data was highest.  

Based on the test data, the recall by track was 
62.0%, whereas its precision was 77.8% as shown in 
table 4. If one or more bboxes were detected correctly 
in each track, we considered the track as a correct 

estimation (TP). The threshold of Intersection over 
Union (IoU) between the correct and estimated bboxes, 
which measure the overlapping ratio, was 0.5. From the 
visualized estimation results, we observed that some of 
the estimated bboxes surrounded several correct 
buildings, as shown in Figure 4 left. We classified the 
data surrounding several correct buildings as correct 
data if the IoU exceeded 0.5 as shown in Figure 4 right, 
which is defined as condition A. Consequently, the 
recall by track increased to 80.6%, while precision by 
track remained at 77.8%. Under this condition A, the 
recall of no damage by track was 78.8%, the recall of 
damage by track was 86.5%, and the recall of collapse 
by track was 80.0%. This paper uses these values as 
recall of building tracking from now on. In addition to 
condition A, when restricted to data with a bbox size of 
10,000 pixels or more and a bbox aspect ratio 
(height/width) of 2 or more, recall by track increased to 
95.0% and precision increased to 85.1%, which is 
defined as condition B. The obtained results indicated 
that employing an effective filming method can 
significantly increase the accuracy of building detection. 
However, the number of ID switch, which changes the 
target object to other object in the middle of the track, 
was 414. This ID switch may have occurred especially 
in small buildings when the estimation bbox became 
large, included buildings next to the target building, and 
moved to the buildings. This number of ID switch was 
large comparing with 237, the number of tracks. 
Because this ID switch may cause an incorrect 
estimation of each track, the number must be reduced in 
the future. 

4.3. Classification of the damage level 

After tracking the buildings from the aerial video, 
we extracted the building part using a bbox in the frame 
out of every ten frames and classified them into four 
classes, as shown in Figure 5. In this study, the term 
“collapse” refers to buildings that have experienced 
severe structural damage resulting in the collapse of one 
or more stories. These buildings are of particular interest 
because they are potential locations where rescuers or 
injured people may be located. If several buildings 
appeared in a single image, a more serious damage state 
was assigned for the data. This annotation took 0.798 s 
per image using the Finder application of the Mac PC. 
Table 5 summarizes the number of images in the dataset 
used for classification. This study used ResNet50 (He et 
al., 2015) as the classification model, with an input size 
of 512 × 512. During training, we set the inverse of the 
composition of each class of data as the class weight of 
the loss function to address the imbalanced dataset. In 
the test, we used a trained model of 14 epochs, because 
the accuracy for the validation data was highest. The test 

 Train Validation Test 
Image 1,762 481 2,101 
Bbox 118,948 93,268 131,886 
Track 293 347 237 

  Condition A Condition B 
recall 0.620 0.806 0.950 

precision 0.778 0.778 0.851 

Figure 3. Captured image of the tracking 
annotation. 

 

Figure 4. Example of tracking (blue: 
correct, red: estimation, green: estimation 

under condition A) 
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data exhibited an accuracy of 64.4%, average recall of 
53.0%, and average F-measure of 50.4%. Table 6 
summarizes the confusion matrix used in this 
experiment. The F-measure is the harmonic mean of 
accuracy and recall. These low values and training result 
of Figure 6 indicated that richer and more various 
training dataset is necessary to increase accuracy. 

 
Table 5. Number of images in the dataset used 

for classification. 

 
Table 6. Confusion matrix of classification. 

Figure 5. Example of four classes. 

Figure 6. Accuracy of train and validation data 

4.4. Decision tree of damage level by track 

After classifying the building damage in each 
frame, the damage levels were categorized into four: 
“Not building” (0), “No damage” (1), “Damage” (2), 
and “Collapse” (3). In this study, the maximum damage 
level for each track was considered as the correct 
damage level for the track. This is because more severe 
damage can sometimes appear from different angles, 
even if these buildings are the same. In this section, we 
describe the development of a decision tree to estimate 
the damage level of each track. The input of the decision 
tree uses the maximum damage level for the same 

reason as the above correct damage level for each track 
and the average damage level to use time-series 
information between different frames like majority rule. 
Figure 7 illustrates an example of this calculation 
method being applied, while table 7 lists the number of 
data points. In this training, we set the inverse of the 
composition of each class of data as the class weight of 
the loss function to address the imbalanced dataset. 
Moreover, we set 4 as the maximum depth of the 
decision tree and 16 as the maximum number of leaf 
nodes.  

Table 8 lists the confusion matrix, while Figure 8 
illustrates the decision tree constructed using the 
training data. Considering the recall of multiple object 
tracking of buildings reported in Section 4.2, the final 
average recall was 47.9% and the final average precision 
was 48.4%. The final average F-measure was 45.7%. 
Figure 9 illustrates an example of visualizing this 
estimation in a video.  

Figure 7. Rule of input and output from the damage 
level. 

 
Table 7. Number of dataset tracks in the decision 

tree. 

4.5. Discussion 

4.5.1. Comparison between models with two and 
three and classes. In our previous study (Fujita and 
Hatayama, 2023), which detected only collapsed 
buildings, the recall of collapse by track was 36.5%, 
precision was 35.5%, and the F-measure was 36.0%. 
Considering the 80.0% recall of the collapse of tracking 
buildings obtained in Section 4.2, the final recall of 
collapse by track of the proposed model was 46.0%, 
precision was 24.2%, and the F-measure was 31.7%. 
This reduction of F-measure indicates that adding 
“damage” class to “no damage” and “collapse” does not 
necessarily increase accuracy. 

 Train Validation Test 
Not building 724 289 1,837 
No damage 40,815 17,070 12,459 

Damage 17,329 13,938 6,208 
Collapse 4,242 1,817 1,126 

 Estimated 
Not  

building 
No  

damage 
damage collapse 

A
ctual 

Not  
building 587 1,014 188 48 

No  
damage 1,189 8,901 1815 554 

Damage 171 1,255 3,943 839 
Collapse 20 296 303 507 

 train test 
Not building 49 168 
No damage 999 791 

Damage 1,153 482 
Collapse 125 80 

Not building No damage Damage Collapse

t=T0 t=T1 t=T2 t=T3
Correct 
damage level
by frame

1 1 2 3
Correct damage 
level by track
(Max damage level)

3

Estimated 
damage level
by frame

0 1 1 3

Average damage level
Max damage level

1.25
3

Decision tree

Input

Output
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Table 8. Confusion matrix of the decision tree. 

Figure 8. Constructed decision tree. 

Figure 9. Example of visualizing estimation (red bbox: collapse, yellow bbox: damage). 

Estimated
Recall + Recall 

of 
building 
Tracking

RecallTotal / 
Average

collapsedamageNo 
damag

e

Not 
buildin

g

0.4700.4701683414579Not 
building

A
ctual

0.4250.53979143191426131No 
damage

0.5610.649482983136110Damage
0.4600.57580462563Collapse
0.4790.5581521190570538223Total / Average

0.4840.2420.5490.7920.354Precision
0.4950.3410.5950.6410.404F-measure
0.4570.3170.5550.5530.404F-measure + 

Recall of 
building Tracking
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However, 25 of the 34 overlooked data points listed in 
Table 8 were estimated as the damage class. This 
indicates that the proposed model is effective in 
reducing false negatives, particularly where collapse 
data is incorrectly classified as no damage. 
 
4.5.2. Evaluation of time-series information. If this 
system uses only the maximum damage level without 
the average damage level and decision tree, the recall of 
collapse by track was 56.0% (0.800 × 0.700) and 
precision was 18.4%. In this calculation method, all 
mistaken estimations of collapse cause an 
overestimation of the damage level, an increase in the 
recall of collapse, and a decrease in the precision of 
collapse. The F-measure of the four classes in the 
proposed system using the average damage level, 
maximum damage level, and decision tree was 45.7%, 
and the F-measure of the four classes in the calculation 
method above, using only the maximum damage level, 
was 43.8%. These results indicate that the time-series 
information of different frames using the average 
damage level is slightly more effective for estimating 
the building damage. 
 
4.5.3. Evaluation of annotation labor. Naito et al. 
(2021) detected no damage, damaged, or collapsed 
buildings using object detection by deep learning from 
aerial images. Because the definitions of collapse in 
their study and this study are different, we compared the 
average recall of two classes: no damage and damaged 
buildings, including collapsed buildings. Because their 
study did not describe the precision of each class, we 
used the recall for comparison. At first, with respect to 
building tracking, their recall of buildings was 82.0%, 
that of this study was 82.7%. In calculating this, we used 
0.1 as threshold of IoU which their study adopted. Next, 
with respect to classification of buildings, their recall of 
no damaged buildings was 70.3%, their recall of 

damaged buildings, including collapsed buildings, was 
62.4%, and the average recall was 66.4%. In this study, 
the recall of buildings no damage was 53.9%, the recall 
of damaged buildings including collapsed buildings was 
77.8% ((313 + 98 + 25 + 46)/(482 + 80)), and the 
average recall was 66.5%. The annotation time was 
expected to be approximately 184 h, as determined from 
the number of training data points and the average time 
of tracking annotation (172,668 × 3.84s). This study’s 
annotation time was expected to be approximately 49.0 
h as determined from the number of training data and 
average time of tracking and classification annotation 
((21,221 × 3.84 s) + (96,224 × 0.987 s)). These results 
indicate that the proposed model has almost the same 
accuracy as that of a previous study (Naito et al., 2021), 
although the annotation labor of the proposed model 
was approximately one-quarter that reported in the 
previous study. If damaged and collapsed buildings 
were directly detected from aerial videos without the 
two processes of building tracking and classification, as 
in our previous study (Fujita and Hatayama, 2023), the 
annotation time was expected to be approximately 103 
h (96,224 × 3.84 s). This demonstrates that the proposed 
model, which combines the two processes of building 
tracking and classification, achieved high accuracy with 
less annotation labor. This training took 49.0 h; 
however, when developers train the model with 
historical data before a disaster and then retrain it with a 
small amount of new data after the disaster, they can 
complete the annotation in less time to adapt to new 
disaster data. 
 
4.5.4. Evaluation of a decision tree node.  

Table 9 lists the estimated class, amount of data, 
and precision by each node. The average absolute value 
of difference of precision between train and test data 
was 0.151, indicating that the precision values for both 

Node No. Estimated class Train  Test Difference of precision 
The amount of data Precision The amount of data Precision  

1 Not building 78 0.218 123 0.407 0.189 
2 Not building 34 0.147 92 0.304 0.157 
3 No damage 16 1.00 56 0.786 -0.214 
4 No damage 594 0.828 482 0.793 -0.036 
5 Not building 7 0.143 8 0.125 -0.018 
6 Damage 540 0.517 316 0.421 -0.096 
7 Damage 747 0.821 247 0.713 -0.108 
8 Collapse 32 0.094 28 0.250 0.156 
9 Collapse 20 0.150 15 0.067 -0.083 

10 Collapse 8 0.500 6 0.00 -0.500 
11 Damage 12 0.750 7 0.571 -0.179 
12 Collapse 22 0.091 13 0.077 -0.100 
13 Collapse 30 0.400 20 0.300 -0.075 
14 Collapse 51 0.275 25 0.200 -0.074 
15 Collapse 17 0.235 5 0.600 0.365 
16 Collapse 118 0.415 78 0.295 -0.120 

Average absolute value  0.411  0.369 0.151 

Table 9. Amount of data and precision of each decision tree node. 
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the training and test data were comparatively close. 
When the amount of data in one node was less, the 
precision difference tended to be significant. For 
instance, to determine the approximate figure of 
damaged and collapsed buildings, it is effective to use 
all nodes. To capture as many collapsed buildings as 
possible in case of rescue operation with abundant 
manpower, it is effective to use nodes 6–16, whose 
recall was 71.0% and precision was 9.34%. To decrease 
mistaken detection of collapsed buildings in case of 
rescue operation with limited manpower, it is effective 
to use node 15–16, whose recall was 26.0% and 
precision was 31.3%. By providing information on 
recall and precision of training data, users can make 
informed decisions depending on their specific 
requirements. To decrease mistaken detection of 
collapsed and damaged buildings, appropriate nodes can 
be decided in the same way. To utilize the estimation 
results of this model without human judgement, it is 
necessary to devise selection of output nodes to increase 
accuracy, recall or precision of damaged or collapsed 
buildings. 

Figure 10 shows damaged buildings estimated in 
node 16. We observed that the buildings classified under 
node 16 exhibit a higher damage level because this node 
has the highest damage average level in decision tree. 
This is effective for emergency operation such as rescue 
even if these buildings have not collapsed. This result 
can be attributed to: input of damage average level, 
which incorporates time-series information, and 
decision tree, which can output several types of nodes. 

 
Figure 10. Damage data estimated as collapse in 

Node. 16. 

5. Conclusion 

In this study, an automatic model was developed to 
detect damaged buildings during earthquakes using 
aerial videos. The proposed model was composed of a 
multiple object tracking model of buildings, a 
classification of damage model, and a decision-tree 
model to output the final estimation for each track. To 
focus on collapsed and damaged buildings such as roof 
damage and pancake collapse in Japan, this study used 
a deep learning classification model instead of debris 
feature detection. Our previous study (Fujita and 
Hatayama, 2023) did not classify the “damage” class 
and did not use time-series information in each track. 
Therefore, this study categorized three classes as: “no 

damage”, “damage”, and “collapse” using time-series 
information without significant labor of annotation. 
Moreover, this study used a decision tree model to 
output various types of estimations. From the results of 
the multiple object tracking of buildings, the recall by 
each track of buildings was 62.0%, and the precision 
was 77.8%. Moreover, the recall was 80.6% if the 
estimation surrounding multiple buildings was also 
considered correct and 95.0% if the filming method was 
appropriate. Finally, the decision tree estimated the 
damage class for each track. The average recall was 
47.9%, the average precision was 48.4%, and the 
average F-measure was 45.7%, considering the recall of 
multiple object tracking of buildings.  

In the Discussion section, we drew the following 
conclusions; 
• Adding “damage” class to “no damage” and 

“collapse” classes prevents misinterpretation of some 
collapse data estimated as no damage. 

• The average damage level as time-series information 
in each track was slightly more effective in 
estimating the building damage. 

• Separating multiple object tracking and classification 
tasks, as in the proposed model, decreases annotation 
labor while maintaining accuracy. 

• Decision tree nodes are effective for various types of 
disaster response. 

In the future, multiple object tracking models will 
need to develop recall and ID switches. An ID switch 
may cause an incorrect estimation of each track in the 
decision tree. Based on the results of ID switch, tracking 
buildings in urban areas with higher building densities 
may prove to be more challenging compared to 
Kumamoto Prefecture. Evaluating our systems under 
various conditions, including different locations, 
weather conditions, and time frames, will be necessary. 
To increase the recall, an analysis of drone flying and 
filming methods suitable for tracking with the 
appropriate size and aspect ratio of the detected bbox is 
necessary. Through this study, we have been able to 
analyze damage detection models and efficient 
annotation methods. Therefore, it is crucial for the 
future to collect additional available video data to 
enhance accuracy. Furthermore, setting acceptable 
accuracy levels based on feedback from disaster 
response stakeholders is necessary. To emphasize the 
effect of decreasing annotation labor, we need to 
evaluate a machine-learning model trained after a 
disaster using the disaster data to adapt to new data 
quality using fine-tuning, domain adaptation, or human-
in-the-loop. Thereafter, the proposed model can be 
combined with geospatial information to produce maps 
that facilitate a disaster response. Finally, organizing the 
workflow of disaster response, using case of damaged 
building estimation, and outputting the proposed model, 
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which is appropriate for each case, is necessary to 
consider social implementation during a disaster. Then, 
we need to conduct an implementation test with a 
disaster response organization and gather feedback on 
our system.  
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