1,612 research outputs found

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Portable Waveform Development for Software Defined Radios

    Get PDF
    This work focuses on the question: "How can we build waveforms that can be moved from one platform to another?\u27\u27 Therefore an approach based on the Model Driven Architecture was evaluated. Furthermore, a proof of concept is given with the port of a TETRA waveform from a USRP platform to an SFF SDR platform

    Dynamic length equaliser and its application to the DS-CDMA systems

    Get PDF

    Low-power Physical-layer Design for LTE Based Very NarrowBand IoT (VNB - IoT) Communication

    Get PDF
    abstract: With the new age Internet of Things (IoT) revolution, there is a need to connect a wide range of devices with varying throughput and performance requirements. In this thesis, a wireless system is proposed which is targeted towards very low power, delay insensitive IoT applications with low throughput requirements. The low cost receivers for such devices will have very low complexity, consume very less power and hence will run for several years. Long Term Evolution (LTE) is a standard developed and administered by 3rd Generation Partnership Project (3GPP) for high speed wireless communications for mobile devices. As a part of Release 13, another standard called narrowband IoT (NB-IoT) was introduced by 3GPP to serve the needs of IoT applications with low throughput requirements. Working along similar lines, this thesis proposes yet another LTE based solution called very narrowband IoT (VNB-IoT), which further reduces the complexity and power consumption of the user equipment (UE) while maintaining the base station (BS) architecture as defined in NB-IoT. In the downlink operation, the transmitter of the proposed system uses the NB-IoT resource block with each subcarrier modulated with data symbols intended for a different user. On the receiver side, each UE locks to a particular subcarrier frequency instead of the entire resource block and operates as a single carrier receiver. On the uplink, the system uses a single-tone transmission as specified in the NB-IoT standard. Performance of the proposed system is analyzed in an additive white Gaussian noise (AWGN) channel followed by an analysis of the inter carrier interference (ICI). Relationship between the overall filter bandwidth and ICI is established towards the end.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003

    DVB-H link layer

    Get PDF
    • …
    corecore