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ABSTRACT

With the new age Internet of Things (IoT) revolution, there is a need to connect

a wide range of devices with varying throughput and performance requirements. In

this thesis, a wireless system is proposed which is targeted towards very low power,

delay insensitive IoT applications with low throughput requirements. The low cost

receivers for such devices will have very low complexity, consume very less power and

hence will run for several years.

Long Term Evolution (LTE) is a standard developed and administered by 3rd

Generation Partnership Project (3GPP) for high speed wireless communications for

mobile devices. As a part of Release 13, another standard called narrowband IoT

(NB-IoT) was introduced by 3GPP to serve the needs of IoT applications with low

throughput requirements. Working along similar lines, this thesis proposes yet an-

other LTE based solution called very narrowband IoT (VNB-IoT), which further

reduces the complexity and power consumption of the user equipment (UE) while

maintaining the base station (BS) architecture as defined in NB-IoT.

In the downlink operation, the transmitter of the proposed system uses the NB-

IoT resource block with each subcarrier modulated with data symbols intended for a

different user. On the receiver side, each UE locks to a particular subcarrier frequency

instead of the entire resource block and operates as a single carrier receiver. On the

uplink, the system uses a single-tone transmission as specified in the NB-IoT standard.

Performance of the proposed system is analyzed in an additive white Gaussian

noise (AWGN) channel followed by an analysis of the inter carrier interference (ICI).

Relationship between the overall filter bandwidth and ICI is established towards the

end.
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Chapter 1

INTRODUCTION

This chapter provides an introduction to the thesis by first developing the motiva-

tion behind the need to develop communication protocols for applications specific to

Internet of Things (IoT). The purpose of thesis is defined next, followed by a problem

formulation for a LTE based very low power wireless system for low throughput IoT

applications. The problem is studied with specific scenarios under consideration and

relies on a lot of underlying assumptions and hence the limitations of the study are

discussed next. Finally, an outline for the rest of the thesis is provided.

1.1 Motivation

Over the past decade, there has been a tremendous growth in the number of

wireless devices. As wireless technology matures, this number is expected to grow

at an even higher rate with the goal being able to connect every physical device to

the internet. This presents a huge opportunity for wireless system designers as 99.4

percent of the physical devices are still unconnected [2]. The idea behind IoT is to

have a network of computing devices, vehicles, embedded systems with sensors etc

which generate, exchange and process data intelligently and continuously. About 50

billion devices are estimated to be connected with IoT by 2020, up from about 200

million in the year 2000 and 10 billion in 2013 [2]. With such a massive number of

devices connected to each other, machine to machine (M2M) communication is needed

where devices would communicate with each other without any human interaction.

It is expected that the revenue from M2M devices will grow from $200 million in

2011 to $1.2 trillion in 2022 [3]. Some of the services which might need machine
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type communication (MTC) include consumer electronics, security and public safety,

automotive, utilities, remote maintenance, payments, health and smart cities.

Until now, most of the wireless technologies were focused on improving the qual-

ity and performance of consumer electronic devices intended for human communi-

cation. MTC, however, is different from human communication as the through-

put/delay/power requirement vary to a great extent based on the application and

thus, require different connectivity solutions. While services involving consumer

electronics, building security and maintenance can be served by a local area net-

work (LAN), services such as remote maintenance (sensors, vending machines etc),

utilities (power, gas, water, heating etc), smart cities etc need a wide area net-

work (WAN) [4].

Since the cellular technology is pretty mature and is already deployed in most

parts of the world, cellular based MTC systems can provide a solution for the IoT

applications which need a WAN. LTE is one of the latest and widely accepted,

high speed wireless communication standard by 3rd generation partnership project

(3GPP) [5, 6]. The standard is revised regularly, in order to accommodate additional

channel conditions and provide better connectivity with higher data rates and efficient

resource utilization. However, LTE was designed for high speed communication and

is not optimized for applications that need to support a potentially large number

of low-rate, low power and delay tolerant devices. These low cost devices, typically

used in applications such as sensors, remote maintenance and tracking, health-care,

utilities etc, are expected to have very low complexity, low mobility and low power

consumption with a very long battery life [4]. Hence, it is desirable to develop LTE

based wireless systems, suitable for low data-rate and low power IoT applications.

2



1.2 Background

Realizing the importance of IoT for low-power and low cost applications with

extended coverage and very long battery life, 3GPP introduced narrowband IoT

(NB-IoT), as a part of their LTE-Release-13 [7–9]. Although NB-IoT is based on

LTE, but it’s a new radio-access technology as it is not fully backward compatible

with the existing LTE devices. However, it can be easily integrated in the existing

LTE network by allocating some of the time and frequency resources to NB-IoT.

Figure 1.1: NB-IoT deployment modes [1]

With a bandwidth requirement of 180 kHz, three major deployment modes have

been identified [10] for NB-IoT:

1. Stand alone, utilizing a 200 kHz band used by global gystem for mobile com-

munication (GSM) frequencies

2. Guard band, occupying a 180 kHz wide physical resource block in the guard

band of existing LTE carrier band

3. In band, occupying one physical resource block within the LTE carrier band-

width.

Thus, NB-IoT reuses the existing LTE design with respect to physical layer pro-

cessing which reduces the time required to develop the NB-IoT devices to a great

extent.
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1.3 Purpose

As discussed in the previous section, NB-IoT provides a provision to allocate a

single resource block (RB) to each user, instead of at-least six resource blocks in ex-

isting LTE. A single RB corresponds to a bandwidth of 180kHz (and hence the name

narrow-band) as compared to the minimum bandwidth of 1.4 MHz in conventional

LTE systems. The resource block concept is discussed in later chapters.

The purpose of this thesis is to develop a new, low power, wireless communication

system targeted towards IoT applications, having very low throughput requirements

with relaxed transmission delay requirements. The overall system, similar to NB-IoT,

will be based on LTE and will have very low complexity, consume very less power

and have a long battery life. This system is able to allocate a very narrow bandwidth

of 15 kHz to each user while retaining the existing LTE physical layer structure . We

shall refer to this system as very narrowband IoT (VNB-IoT) system.

1.4 Problem Formulation

NB-IoT standard allocates one resource block per user irrespective of the through-

put requirements of the application. A single resource block comprises of twelve sub-

carriers, each separated by 15kHz in frequency, giving a bandwidth of 180kHz. This

might not be an efficient way of using the available spectrum when the throughput

requirement is extremely low. In extreme cases, when the data-rate requirement is

very low, we might as well allocate each subcarrier to a different user. This would

enable a very efficient use of the available spectrum with a multiplexing gain of twelve.

The transmitter in this case will be a NB-IoT transmitter with each subcarrier

carrying data for a separate user. A NB-IoT receiver, however, would not be a good

solution as there is no need to process the entire 180MHz band when information per
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user is contained only in the 15kHz band. Also, since a Fast Fourier Transform (FFT)

block consumes a good amount of power, throwing away an FFT block from the

receiver would save a lot of power and result in a much longer battery life.

Keeping the above things in mind, we propose a simple single carrier based receiver

architecture, where each receiver is locked only to a particular subcarrier frequency

and not to the entire 180 kHz band. This can be achieved by putting a narrowband

filter around the desired subcarrier. However, since the subcarriers are tightly packed

in frequency, a very narrowband filter with a sharp transition band is needed to avoid

any interference from the adjacent subcarriers which is expensive and draws a lot

of power. We propose a multi-stage filtering approach with each stage separated

by a down-sampling process. The proposed approach, however, introduces inter-

(sub)carrier-interference (ICI) and hence degrades the receiver performance.

Next, we design the complete receiver and study it’s performance in an additive

white Gaussian noise (AWGN) channel. We shall study the extent of degradation for

a particular set of filters along with the nature of the interference noise. In the end,

we study how the interference changes with filter bandwidth.

1.5 Limitations

In this thesis, we study the physical layer properties of the receiver architecture,

with a focus on the downlink path of the system. Problems related to resource

allocation and higher layer management are not discussed as a part of the thesis.

Further, since the target data-rate and power requirements are low, a single antenna

based solution is considered. Only lower order modulation schemes, for instance,

binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK), pro-

vide a satisfactory performance because of the non-negligible ICI, resulting from a

performance-complexity trade-off.
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1.6 Outline

The remainder of this work is outlined as follows.

Chapter 2 provides a brief overview of OFDM, which is the underlying technol-

ogy behind LTE based systems. Apart from basic principles, various factors that

contribute to the design of an OFDM waveform are discussed. Next, typical OFDM

transmitter and receiver processing blocks are discussed, including some of the chan-

nel estimation and equalization techniques that are employed. Finally, a discussion

on two of the main challenges encountered in OFDM is provided.

In Chapter 3, a discussion on various transmitter blocks used in the LTE physical

layer is provided. These include modulation and coding schemes, scrambling, resource

block allocation and physical layer signals. By making slight changes to these blocks,

the proposed transmitter model for VNB-IoT is discussed. The model is derived from

NB-IoT, which is the latest LTE standard for IoT. Wherever possible, the major

differences between the three standards are highlighted .

In Chapter 4, a simple receiver design is provided for the VNB-IoT system pro-

posed in the thesis. All the major blocks in the receiver processing, including the

RF front end, synchronization, channel estimation and equalization, descrambling,

demapping and viterbi decoding, are discussed.

Chapter 5 provides a MATLAB based simulation model for VNB-IoT transmitter

and receiver. Performance in AWGN channel is dicussed along with an estimation

process for the interference noise. The dependence of ICI on filter bandwidth is

described towards the end of the chapter.

Finally, Chapter 6 gives a summary of the work done as a part of the thesis,

followed by a discussion on some of the future work that can be done in this direction.
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Chapter 2

ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

Most of the wireless communication systems are multi-user systems. Given the limited

radio resources, the available frequency spectrum needs to be shared among multiple

users. There are various multiple access schemes such as

1. Time division multiple access (TDMA)

2. Code division multiple access (CDMA)

3. Frequency division multiple access (FDMA)

4. Space division multiple access (SDMA)

5. Carrier sense multiple access (CSMA)

Orthogonal frequency division multiple access (OFDMA) is a special kind of

FDMA scheme in which the carriers are structured in such a way that they don’t

interfere with each other, i.e. they are orthogonal to each other. The underlying tech-

nology behind OFDMA is that of OFDM. This chapter discusses the basic principles

of OFDM and various factors that contribute to the design of an OFDM waveform.

2.1 Basic principles of OFDM

OFDM works on the principle of dividing a wideband signal into multiple nar-

rowband ‘orthogonal’ signals all transmitted at the same time and using the same

antennas. This is similar to a frequency division multiplexing (FDM) except for the

fact that the carriers are spaced much closer in frequency with no guard band in
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between, thus increasing the spectral efficiency. The placement of these multiple car-

riers, also known as subcarriers, is done in a way that they do not interfere with

each other during the sampling time instant and hence can be separated at the re-

ceiver despite their overlapping spectrum. (Figure 2.1) shows how the subcarriers are

placed. The orthogonality of the subcarriers is maintained by keeping the frequency

separation(∆f = fk+1 − fk) as inverse of the OFDM symbol duration (T ). i.e.

∆f = 1/T (2.1)

Figure 2.1: The orthogonality of the OFDM subcarriers is maintained by keeping a
frequency separation, ∆f = fk+1−fk = 1/T , where T is the OFDM symbol duration

An OFDM signal is generated by summing up multiple orthogonal sub-carriers

which are modulated by the data symbols drawn from a particular constellation. The

time domain OFDM symbol, x[n], of length N can be written as

x[n] =
N−1∑
k=0

sk exp(j2πnk/N) n = [0, 1, ..., N − 1] (2.2)

8



where sk denotes the modulation symbols, k denotes the subcarrier index and N is the

total number of subcarriers. This operation can be performed efficiently by making

use of an N -point inverse fast-fourier-transform (IFFT). Although an OFDM signal

uses N subcarriers, not all of them are loaded with information. Subcarriers around

±fs
2

are usually set to zero to avoid adjacent channel interference (ACI). Also, the DC

subcarrier is also set to zero in order to simplify the analog-to-digital converter (ADC)

and digital-to-analog converter (DAC) operations.

The sampling time, Ts is given by

Ts = T/N =
1

N∆f
, (2.3)

and hence the sampling rate, fs = 1
Ts

= N∆f .

2.2 Subcarrier Spacing

The number of subcarriers in a typical OFDM symbol can vary over a range

between less than a few hundreds to a few thousands. The sub-carrier spacing ranges

from a few kHz to hundreds of kHz. As mentioned in the previous section, sub-carrier

spacing is related to the length of the OFDM symbol as seen in Equation (2.1), and

hence is an important parameter in OFDM system design. Subcarrier spacing is

decided by considering various aspects of the environment such as the maximum

delay spread and maximum Doppler spread.

Delay spread of the channel determines the coherence bandwidth, i.e. the range

of frequencies over which the channel de-correlates [11]. A channel can be assumed to

be almost flat during the coherence bandwidth. This puts a limit on the maximum

subcarrier spacing the system can have without a major degradation of the signal.

Doppler spread determines the coherence time of the channel [11]. This is the

time over which the channel can be assumed to be highly correlated. It’s desirable to

9



keep the OFDM symbol duration within the coherence time. This puts a lower limit

on the subcarrier spacing.

It is desired to have the subcarrier spacing as small as possible to minimize the

cyclic prefix overhead. A very small subcarrier spacing, however, increases the sen-

sitivity of the OFDM symbol transmission to any kind of frequency synchronization

issues resulting from Doppler spread or oscillator frequency mismatch. Once the sub-

carrier spacing has been selected, the number of subcarriers can be determined based

on the available channel bandwidth. However, as mentioned previously, not all of

these subcarriers may be used to carry information symbols. Few subcarriers near

the edge of the spectrum and around DC are kept unused.

2.3 Cyclic Prefix

Due to multipath propagation, the wireless channel is, almost always, time-dispersive

in nature. This leads to delayed replicas of past OFDM symbols interfering with the

current symbol, a phenomenon called inter symbol interference (ISI). In order to

combat ISI and make the OFDM symbols insensitive to time-dispersion, a guard in-

terval is provided in between the OFDM symbols. The length of the guard interval

is selected to be more than the maximum delay spread of the channel. As a possible

solution, the last few samples of the OFDM symbol are copied and added to the

beginning of the symbol to serve as guard interval [11]. This type of guard insertion

is known as cyclic prefixing, which is shown in Figure 2.2. Using the cyclic prefix as

a guard interval has few other advantages in terms of changing the linear convolution

with the channel to circular convolution which enables a single tap frequency domain

equalization as discussed in next section.

Since the samples corresponding to the cyclic prefix gets corrupted because of ISI,

they are usually dropped at the receiver. There is no loss of information in doing so
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Figure 2.2: The last few samples of the OFDM symbol are copied and added to
the beginning of the symbol to serve as guard interval. This type of guard interval is
called as cyclic prefix.

as the cyclic prefix carries redundant information. Adding a cyclic prefix, however,

comes at a cost in terms of increased signal overhead and, as a result, reduction in

data-rate. Furthermore, the transmit power used for sending cyclic prefix samples

is wasted as the samples are dropped at the receiver. Hence, there is a trade-off in

selecting the duration of cyclic prefix.

2.4 OFDM transmission system

Figure 2.3 shows a typical OFDM transceiver system. The payload bits are mod-

ulated by a PSK/QAM modulator based on some modulation scheme, for instance,

BPSK, QPSK, QAM16, QAM 64 etc, resulting in a sequence of complex symbols. A

serial-to-parallel convertor, then, takes N of these symbols and gives out a set of N

parallel symbols, to be transmitted on a set of N subcarriers. An IFFT block converts

these frequency domain signals into the time domain, as mentioned in Equation (2.2),

followed by the addition of a cyclic prefix after serializing the IFFT output through

a parallel-to-serial converter.

The generated baseband sequence is then converted to an analog signal, filtered,
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Figure 2.3: OFDM with IFFT/FFT implementation

up-converted, amplified and transmitted via single or multiple antennae. The trans-

mitted signal after passing through a wireless channel is received by single/multiple

antenna as a filtered signal, corrupted with additive noise. The signal is then down-

converted to baseband and filtered to remove any higher frequency components. An

ADC then converts the analog signal to discrete samples to be processed by a digital

receiver. All this processing can be represented by a discrete channel, h[n] which

takes a discrete sequence, x[n], as input and gives out a discrete sequence, y[n], as

output along with AWGN, ν[n], as shown by

y[n] = x[n] ∗ h[n] + ν[n] − µ ≤ n ≤ N − 1 , (2.4)

where µ is the number of samples per symbol used for the cylic prefix.

The cyclic prefix is then removed to obtain N samples in time, for each OFDM

symbol. A serial to parallel converter parallelizes the stream of cyclic-prefix removed

samples into blocks of FFT length, N . These blocks of samples are then converted to

frequency domain by emplyoing a FFT. The resulting frequency domain symbols are

then passed to a demodulator which extracts the payload bits out of the symbols.
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2.5 Channel Estimation and Equalization

As discussed in the previous section, the transmitted signal undergoes a wireless

channel before being captured by a receive antenna. Wireless channel has adverse

effects of introducing distortions to the signal, a phenomenon known as fading [11, 12].

The amount of fading varies across the bandwidth of the signal and hence, all the

frequencies gets attenuated by different levels of magnitude and phase. However, in

OFDM, entire bandwidth is divided into multiple narrow bands such that the channel

response is almost flat within each narrow band [11–14]. This can be represented as

Y [k] = H[k]X[k] + V [k] 0 ≤ k ≤ N − 1 , (2.5)

where Y [k] represents the received constellation symbol on kth subcarrier when X[k]

was the transmitted. H[k] and V [k] represents the flat fading complex gain and

AWGN, respectively, for kth subcarrier. If the channel gains H[k] are known for each

subcarrier, the original transmitted symbol can be estimated as:

X̂[k] = Y [k]/H[k] + V [k]/H[k] 0 ≤ k ≤ N − 1 (2.6)

This process, known as frequency equalization, removes the effects of flat fading

channel on each subcarrier, independently. Frequency domain equalization reduces

the complexity of the receiver by a huge amount as it requires only a single multiplier

per subcarrier (1-tap equalization) as compared to a long filter which is needed for

time domain equalization.

The channel estimation process is typically carried out by sending a reference

signal also referred to as pilot signal at regular intervals within the OFDM signal.

These reference signals, which are known to the receiver are then used to estimate

the channel.
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2.6 Challenges in OFDM

With the advantages of high spectral efficiency, tolerance to frequency selective

fading, simple equalization process, etc, OFDM do offer few challenges to tackle. The

two main challenges are - high peak-to-average power ratio (PAPR) and sensitivity

to frequency and timing offsets.

2.6.1 Peak-to-Average Power Ratio

The PAPR of transitted signal in a wideband signal is defined as the ratio of

maximum power of a sample to the average power of the signal [11], i.e.

PAPRdB , 10log10
maxn|x[n]|2

En[|x[n]|2]
(dB) , (2.7)

where E[.] denotes the expectation operator. It is desired to have a low PAPR for

an efficient use of the transmit power amplifier as a higher PAPR forces the power

amplifier to have a large backoff in order to operate in the linear region. However,

in OFDM based systems, PAPR grows linearly with the number of subcarriers, N ,

resulting from the coherent addition of all the subcarriers [11].

There are a number of efficient methods of reducing PAPR for OFDM signals.

Some of these include clipping, peak cancellation, tone reservation, special coding

techniques etc [15–19].

2.6.2 Frequency and Timing Offset

The efficiency of an OFDM system lies in maintaining the orthogonality of the

subcarriers. As shown in Figure 2.1, the subcarriers are placed with a frequency

separation as inverse of the OFDM symbol duration (Equation (2.3)). Any kind of

offset in frequency and timing, causes deviation from this norm, resulting in a loss

of orthogonality and severe degradation in performance because of ICI. In order to
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tackle the ICI, both, the frequency and timing offsets are estimated and corrected at

the receiver [20–24].

2.7 Summary

This chapter provided a brief overview of the OFDM systems which forms the

backbone of any modern day wireless communication systems including LTE, WLAN,

DSL etc. The underlying principle of OFDM was discussed, along with a typical trans-

mitter and receiver processing blocks including channel estimation and equalization.

Two main challenges in OFDM, high PAPR and sensitivity to timing and frequency

offsets were discussed towards the end of the chapter.
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Chapter 3

TRANSMITTER

As discussed in Chapter 1, the VNB-IoT system proposed in this thesis is based

on LTE and NB-IoT standards. This chapter provides an overview of the LTE based,

basic transmitter architecture used in the proposed VNB-IoT system. Since VNB-IoT

does not use all the data/signal processing blocks specified in LTE standard, we shall

restrict our discussion only to the blocks which are used in the proposed system. For a

complete understanding of the LTE or NB-IoT standard, reader can refer to any stan-

dard book on LTE [5, 6, 25–27] or recent papers on NB-IoT [4, 7–10, 28]. The chapter

begins with a discussion on basic transport and physical layer blocks of VNB-IoT,

including modulation and coding, scrambling, resource grid and two important phys-

ical layer signals - synchronization signals (primary synchronization sequence (PSS)

and secondary synchronization sequence (SSS)) and reference signals (CSR). The

major differences/changes between LTE, NB-IoT and the proposed VNB-IoT system

are presented along the context. The chapter ends with a description of a simple

transmitter block diagram and a discussion on how the system works.

3.1 Modulation Schemes

The modulation schemes used in LTE include QPSK, 16-QAM (Quadrature Am-

plitude Modulation) and 64 QAM. NB-IoT uses QPSK as the only modulation scheme.

For our VNB-IoT system, we shall use BPSK and QPSK and hence we’ll limit our

discussion about modulation schemes only to BPSK and QPSK.

BPSK is the most simple phase-shift-keying (PSK) modulation scheme. It takes

a single bit at a time and maps it to one of the two constellation points which are
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Figure 3.1: Two modulation schemes are proposed for VNB-IoT system, BPSK and
QPSK. BPSK takes bit b0 and maps it to ±1 depending on whether it takes value 0
or 1. QPSK takes two bits b0b1 and maps it to one of the four values ±1±j depending
on the bit combination

180◦ apart. QPSK on the other hand takes two bits at a time and maps to one of

the four constellation points spaced equally apart on a circle. Thus, QPSK achieves

twice the data rate as compared to BPSK. Figure 3.1 shows the bit mapping for

both of these modulation schemes. When the channel is good, i.e. signal-to-noise

ratio (SNR) is relatively high, QPSK is used to achieve a higher throughput while in

low SNR scenarios, BPSK is preferred because of its higher tolerance to noise.

3.2 Channel Coding

A wireless communication system uses channel coding to provide immunity against

the channel errors at the cost of a reduced data rate. Redundant bits are added along

with the data bits which helps in detection and/or correction of bit errors occurred

during the transmission process. There are two main categories of channel codes -

convolutional codes and block codes.

Convolutional codes takes into account the previous information bits along with

the present information bits while generating the parity bits. Block encoder, on the
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Figure 3.2: Rate 1/3 tail biting convolutional encoder

other hand, takes a block of information bits and appends parity bits to it. The

parity bits are generated by using a generator matrix along with the input block of

information bits.

LTE uses a different class of code, known as ‘turbo code’, which combine two

convolutional codes separated by an interleaver. Since, the decoding process for a

turbo code is highly complex, it may not be the best choice for IoT applications where

complexity and power consumption are a big concern. For our VNB-IoT system we

shall use a tail biting convolutional code with rate 1/3, which is also used by NB-IoT

standard.

As shown in Figure 3.2, a rate 1/3 convolutional encoder takes a single information

bit, ck, and gives out three parity bits, d
(0)
k , d

(1)
k and d

(2)
k , according to generator

polynomials G0 = 1338, G1 = 1718 and G2 = 1658 respectively. The initial 6 values

of the shift register are set to the values corresponding to the last 6 information bits

in the input bit stream. This makes the initial and final states of the shift register to

be the same.

3.3 Resource Mapping

In LTE, data is arranged on a time-frequency plane, also known as resource grid.

The x-axis of the grid represents time (OFDM symbol index) while the y-axis repre-
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sents frequency (subcarrier index). For a complete understanding of LTE and hence,

NB-IoT and VNB-IoT, it is very important to understand the structure of the resource

grid, various signals/channels that map to resource grid and how it is transformed

into stream of time domain OFDM symbols. We discuss all these concepts in the

following subsections.

3.3.1 Resrource Grid Design

The resource grid represents time on the x-axis and frequency on the y-axis.

In it’s time domain structure, each LTE frame is 10ms long and comprises of 10

subframes, each of 1ms duration. The subframes are further divided into two time-

slots of 0.5ms, each comprising 7 OFDM symbols in normal cyclic prefix operation and

6 OFDM symbols in extended cyclic prefix mode. For the sake of simplicity, we shall

restrict our discussion only to normal cyclic prefix mode. A fixed subcarrier spacing

of 15kHz gives an OFDM symbol duration of 66.67µs. A cyclic prefix of duration

5.2µs is used for the first OFDM symbol and 4.68µs for the rest of the symbols in

each time-slot. This gives a total symbol duration of 71.87µs for the first symbol and

71.35µs for the rest of the symbols in a time-slot.

In frequency domain, each OFDM symbol is made up of a number of subcar-

riers depending upon the bandwidth allocated to the system. Irrespective of the

bandwidth, the subcarrier spacing is maintained to be 15kHz for normal cyclic prefix

operation. A single time-slot (i.e. 7 OFDM symbols) having 12 subcarriers forms

a RB and is the basic building block of the resource grid for LTE. Thus, a single

resource block has a bandwidth of 180kHz and a duration of 0.5ms. Depending on the

available bandwidth, multiple RBs can be allocated for a single user for a given time-

slot. Table 3.1 lists the number of RBs allocated for each of the possible bandwidths

specified in LTE.
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Table 3.1: Channel bandwidths and number of RBs specified in LTE

Channel Bandwidth (MHz) Number of RBs

1.4 6

3 15

5 25

10 50

15 75

20 100

As seen in Table 3.1, LTE specifies a minimum bandwidth of 1.4 MHz per user.

However, certain IoT applications do not demand a high throughput, but need to

support a comparatively large number of user equipment (UE)s. Allocating such

high bandwidth would not not only lead to spectral wastage, but also puts a limit on

the number of users a base-station can support. This issue was addressed by 3GPP

in LTE Release-13 with the introduction of NB-IoT which allows an allocation of a

single RB to each user. Thus, NB-IoT symbol has a narrow bandwidth of 180kHz

and hence allows a higher order of multiple-access. Our proposed system, VNB-IoT,

takes this idea of resource allocation to the limiting case of allocating a single resource

element (a single subcarrier within an OFDM symbol) to each user. Thus, VNB-IoT

system allows a very narrow bandwidth of 15 kHz and can support about ten times

more users simultaneously as compared to NB-IoT. Figure 3.3 describes the overall

frame structure of the system along with the resource block allocation.
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Figure 3.3: Resource block allocation in NB-IoT and VNB-IoT

3.3.2 Resource Grid Content

In the previous section, we discussed a basic structure of the resource grid on both

time and frequency axes. Next, we discuss the types of data symbols that occupy

the resource elements in the grid. In the downlink operation, there are mainly four

different types of information contained in the resource grid - the modulation symbols

corresponding to data bits, control information related symbols, reference symbols

and synchronization symbols. In LTE, these signals can be attributed to either, one

of the physical channels, i.e. Physical Downlink Shared Channel (PDSCH), Physical

Downlink Control Channel (PDCCH) and Physical Broadcast Channel (PBCH), or

physical signals, namely, cell-specific reference signal (CRS), PSS or SSS(Table 3.2).

In the following sub-section, we discuss, in brief, the structure and placement of the
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physical signals.

Table 3.2: NB-IoT physical channels and physical signals

Physical Channel Purpose

PBCH System information and frame number

PDCCH Scheduling, ACKs etc

PDSCH Payload data

Physical Signal Purpose

Reference signals Channel Estimation

PSS Frame boundary detection

SSS Frame number and cell ID

Reference Signals

In LTE, CRS are sent in every downlink subframe and in every resource block in the

frequency domain. CRS are used by the UE to estimate the channel response for

coherent demodulation of the physical channels. The generation of reference signals

is not discussed in this thesis. Readers may refer to any standard book on LTE,

[5, 6, 25–27, 29–32], to understand the process of reference signal generation. For a

single antenna case, there are four CRS symbols per resource block - two in each of

the 1st and 5th OFDM symbols. On frequency axis, the CRS symbols are separated

by 6 subcarriers. Further, there is an offset of 3 subcarriers in the CRS corresponding

to 1st and 5th OFDM symbols, Figure 3.4. A similar design can be employed for

reference signal generation for VNB-IoT as well. Since, VNB-IoT occupies only one

subcarrier, a reference symbol has to be sent in every time-slot.
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Figure 3.4: Reference signals in LTE/NB-IoT and VNB-IoT

Synchronization Signals

LTE defines synchronization signals to be used for various purpose such as cell search,

frame boundary detection and time and frequency offset estimation. Two types of

sychronization signals are defined - PSS and SSS. In LTE, the PSS and SSS are

transmitted in the 7th and 6th OFDM symbols, respectively occupying the center 72

subcarriers in the resource grid during subframe 0 and 5. This means that the syn-

chronization sequence is spread across 6 resource blocks. However, NB-IoT allocates

a single resource block per user, hence, the design was updated to allocate an en-

tire subframe for narrowband PSS (NPSS) or narrowband SSS (NSSS) transmission

(Figure 3.4) to maintain a good quality of frame detection.

Both NPSS and NSSS are constructed as a concatenation of short Zadoff-Chu

sequences. A length-11 base sequence along with a code cover comprising of a binary

sequence of length 11 is used to generate the NPSS sequence while NSSS is generated

by using the same base sequence with different root-indices and cyclic shift [33–35].
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Taking a step further, VNB-IoT allocates a single subcarrier to each user and

hence the synchronization sequence has to be extended to multiple sub-frames (a

possible extension could be up-to 10 subframes (one frame)). This can be achieved

by extending the length of code cover from 11 to 110 (=11x10). Optimizations can

be done to obtain a code cover with good autocorrelation properties.

Figure 3.5: Basic transmitter block diagram

3.4 Transmitter

Figure 3.5 provides a block diagram of a simplified transmitter for the proposed

VNB-IoT system. In the first step of the physical layer processing, a 24-bit cyclic-

redundancy-check (CRC) is calculated and appended to the block of data provided

by the multiple access channel (MAC). The data bits are then encoded with a rate-

1/3 convolutional encoder as described in Figure 3.2 followed by scrambling with

a bit-level scrambling sequence. The scrambled bits are then mapped to complex

symbols based on one of the modulation schemes - BPSK or QPSK, as described

in Section 3.1. Next, the resource grid is generated by allocating the data symbols,

reference symbols and the synchronization symbols to their respective subcarriers.

The resource grid is then transformed into time samples using an IFFT followed by
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cyclic prefix insertion. The resulting stream of complex samples is then converted

to the analog domain where it passes through filters, mixer and power amplifier and

finally transmitted via an antenna.

3.5 Summary

In this chapter, we provided a brief description of various blocks in an LTE and

NB-IoT transmitter. We described the frame format and resource grid structure and

discussed how NB-IoT is derived from LTE and VNB-IoT from NB-IoT. Finally, a

block diagram of a basic transmitter for VNB-IoT was provided with a description of

the actual transmitting process.
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Chapter 4

RECEIVER

In this chapter we provide a simple receiver design for the VNB-IoT system. The

proposed receiver architecture is based on traditional single carrier receivers and is

different from LTE and NB-IoT as it doesn’t use a FFT for the demodulation process.

This decreases the receiver complexity and power requirements as FFT consumes a lot

of power and hardware. Figure 4.1 provides the block diagram, of a basic VNB-IoT

receiver. The rest of the chapter provides a brief discussion on each of these blocks.

Figure 4.1: Basic receiver block diagram

4.1 RF Front End

The RF front end typically consists of all the signal processing blocks between

the antenna and the digital baseband system. Since, the signal processing done in

these blocks happen in the analog domain, RF front end is sometimes also referred
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to as analog front end. Bandpass filter, low noise amplifier (LNA), mixer, baseband

filters are some of the basic blocks in the RF front end. There are numerous receiver

RF front end architectures such as: Super-Heterodyne receiver, Zero-IF (homodyne)

receiver, Low-IF receiver, Band-pass sampling receiver etc [36]. Going into details of

these architectures is beyond the scope of the thesis and we’ll limit our discussion to

the signal processing to be done by any of the chosen architecture.

An RF band-pass filter locks to a frequency band around the carrier frequency and

captures the frequencies which lie inside the band while rejecting any signal outside

the band. The captured signal is then down-converted from the carrier frequency to

the baseband frequency with the help of a mixer. To prevent aliasing, a low pass

analog filter further filters out the out-of-band energy from the signal before it is

converted to digital samples by an ADC.

Since, the desired signal in the proposed system occupies a very narrow bandwidth

of 15 kHz, it is desired to have a very narrow bandpass filter around the sub-carrier

frequency. However, very narrow-band filters with sharp cutoff are highly complex

and expensive, so we choose to allow some leakage from the adjacent sub-carriers. A

mixer then down-converts the signal to baseband by mixing the filtered signal with

the subcarrier frequency. The baseband signal thus obtained is then converted to

digital samples by passing it through an ADC. The sampling rate of the ADC is kept

a little higher (about eight times oversampled) to prevent aliasing because of the

energy leakage from the adjacent subcarriers.

4.2 Synchronization

When a UE is powered on, the first task is to perform a cell search and detect

a suitable cell to camp on and obtain the timing and frequency synchronization pa-

rameters, such as frame boundary, subframe boundary, carrier frequency etc. It also
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needs to detect and correct frequency and timing offsets, if any, to prevent ISI and

ICI which degrades the system performance.

Synchronization in LTE is carried out by making use of the synchronization signals

- PSS and SSS which are known to the receiver. NB-IoT uses NPSS and NSSS

sequences for synchronization. A number of methods have been proposed in the

literature for a low cost implementation of the synchronization process for LTE [37–

41] and NB-IoT [42–45].

The proposed VNB-IoT uses the same base sequence as in NB-IoT but with an

extended code cover sequence. Since, the receiver has a very narrow bandwidth of

15kHz comprising of a single sub-carrier, only a single symbol from the base sequence,

multiplied by the code cover sequence is received at the receiver. The constant-

amplitude zero-autocorrelation (CAZAC) property of the code cover sequence allows

to implement a matched filter based detector. Various optimizations can be done to

reduce the complexity and power consumption of the synchronizer.

4.3 Channel Estimation and Equalization

Like LTE and NB-IoT, VNB-IoT also uses the CRS to estimate channel frequency

response at given locations in each subframe. The estimation process is carried out as

described in Section 2.5 using one of the standard zero forcing (ZF) or minimum mean-

squared error (MMSE) based estimation techniques. However, there are numerous

other methods of channel estimation researched in the past [46–48].

Interpolation techniques are then used to estimate the channel over rest of the

symbols in the subframe . The channel response coefficients thus obtained are used

to equalize the received symbols by employing a single tap frequency domain equalizer.
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4.4 Demodulation and decoding

The equalized symbols are mapped to one of the constellation points, depending

on the modulation scheme used. The output of the demodulator is then passed to

a descrambler, which undoes the scrambling process performed at the transmitter.

Demapping and descrambling can either be soft or hard. In hard decision demapping,

the bits corresponding to the chosen constellation point are passed to the descram-

bler while in soft decision based demapping likelihood ratios are calculated. The

scrambler’s output is passed to a viterbi decoder which corrects the channel errors

occurred during the transmission and extract the payload bits. Similar to demapper

and descrambler, viterbi decoder can also be based on either hard or soft decisions.
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Chapter 5

SIMULATIONS AND RESULTS

All the previous chapters described the problem statement, underlying principles,

transmitter and receiver architecture of the proposed VNB-IoT system. This chapter

presents a MATLAB® based, basic simulation model to analyze the performance of

the proposed wireless system along with the simulation methods used and the results

obtained during the study. We first discuss the filter selection process for both analog

and digital filters for our simulations. Next, the bit-error-rate (BER) performance of

our system under AWGN channel conditions is studied followed by an experimental

analysis of interference noise power. Finally, we consider the system under a Rayleigh

fading channel with equalization.

5.1 Filter Selection

Our system involves three main filters - an analog band pass filter and two digital

downsampling filters. For the sake of convenience, we model the analog bandpass

filter by using a digital low pass filter after down-converting the signal to baseband.

All the filers chosen for our study are implemented as constrained equiripple finite

impulse response (FIR) filters having a passband ripple of 0.01 and stopband rejection

of 50 dB. We discuss below, the characteristics of all the three filters chosen for the

study.

5.1.1 Analog Bandpass Filter

As discussed before, we design our bandpass filter around the sub-carrier of interest

such that it allows a maximum of three subcarriers on either side to leak energy in
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band, i.e. we want the fourth adjacent subcarrier to be completely rejected. This

would enable the ADC to run at critical sampling rate of 90kHz, but in order to avoid

a sharp digital filter, we shall use an ADC running at a sampling rate of 120 kHz.

For a subcarrier spacing of 15 kHz, in order to completely suppress the fourth

adjacent subcarrier, the analog filter should have a stopband edge of 60kHz. Since,

there are twelve subcarriers in a resource block of NB-IoT, with 6 subcarriers on

positive and negative side each will give a maximum frequency of 90kHz. This means

that a sampling rate of 240 kHz is good enough to make sure there is no aliasing.

A typical down-conversion process involves a bandpass filter followed by a mixer.

But for simulation purpose, we shall use a mixer first, followed by an analog low

pass filter. The mixer will be tuned to the frequency corresponding to the desired

subcarrier, and hence brings the desired subcarrier to the DC. The analog bandpass

filter is implemented as a digital low pass filter, after moving the desired subcarrier

to DC. We believe that reversing the order of mixer and filter would not have any

impact on the system performance in terms of BER.

Figure Figure 5.1 shows the magnitude response of the filter. The length 12 filter,

having a stopband edge at 60 kHz, suppresses the 4th adjacent subcarrier on either

side of the DC by about 50 dB. The filter output is downsampled by a factor of 2 so

that the ADC operates at a sampling rate of 120 kHz.

5.1.2 Digital Lowpass Filters

Figure Figure 5.2 represents the magnitude responses of the two digital filters used

for the simulation. The first filter has a stopband edge around 30 kHz and hence leaves

only one adjacent subcarrier interfering with our subcarrier at DC. The samples are

downsampled by a factor of 2 to obtain a sampling rate of 60kHz. The second digital

filter suppresses the adjacent subcarrier at 15 kHz by around 40 dB. The filter output
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Figure 5.1: Magnitude response of the analog filter

is downsampled by 5 to obtain a single sample per symbol. Choosing the sample with

an offset of 3 will ensure a significant reduction in ISI caused due to filter delay.

The filter designs discussed above may not be the best designs possible. These

filters are selected just to study the performance of the system. Optimizations can

be done in design and process to further reduce the complexity of the system.

5.2 Performance in AWGN

We begin with analyzing the BER performance of the system in an AWGN channel

for two modulation schemes - BPSK and QPSK. To study the fundamental behavior

of the system, we shall not use any coding or scrambling blocks. As a first experiment,

we transmit data only on the desired subcarrier and send no information on rest of

the subcarriers. This is similar to transmitting data over a single frequency.
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(a)

(b)

Figure 5.2: Magnitude response (a) Digital Filter 1 (b) Digital Filter 2
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Figure 5.3: Probability of bit error,Pb vs Eb/N0 for BPSK and QPSK modulation
with adjacent subcarriers transmitted as nulls

As shown in Figure 5.3, the performance for both, BPSK and QPSK, match the

theoretical performance for a conventional single carrier transmission given by [11]:

Pb = Q(
√

2γb) (5.1)

where Pb is the probability of bit-error, SNR per bit, γb = Eb

N0
, Eb and N0 being the

energy per bit and noise power spectral density (PSD), and the Q-function is defined

as

Q(x) =
1√
2π

∫ ∞
x

e−
x2

2 dx (5.2)

Next, we transmit the OFDM symbols with adjacent subcarriers loaded with data.

Figure 5.4 shows degradation in the BER performance for both BPSK and QPSK as

compared to the theoretical performance. This degradation can be attributed to the

interference from the adjacent subcarriers, leaking because of the filter roll-off.
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Figure 5.4: Probability of bit error,Pb vs Eb/N0 for BPSK and QPSK modulation

To verify this fact, we analyze the constellation diagrams for both, BPSK (Fig-

ure 5.5) and QPSK (Figure 5.6) modulated symbols. We see that the received con-

stellations are scattered even without adding any gaussian noise.

Further, we observe that the interference looks like a zero-mean Gaussian noise

around the transmitted constellation. Next, we estimate the SNR obtained because

of the interference noise for the given set of filters as, [49]

SNR =
|RSZ |2

< |Zn|2 >< |Sn|2 > −|RSZ |2
(5.3)

where Sn and Zn are the transmitted and received modulation symbols, respectively,

in the nth OFDM symbol and RSZ is the cross-correlation of Sn and Zn, defined as

RSZ =< SnZ
∗
n > (5.4)

where < . > denotes the expectation operator and (.)∗ represents complex conjugate.

35



(a) (b)

Figure 5.5: Constellation of transmitted and received symbols for BPSK modulation

(a) (b)

Figure 5.6: Constellation of transmitted and received symbols for QPSK modulation

36



For transmitted symbol power, < |Sn|2 >= 1, and with no AWGN noise added,

interference noise variance can be calculated as, NI = 1
SNR

. The effective SNR in an

AWGN channel with interference, also known as SINR is then given by

SINR =
Eb

N0 +NI

(5.5)

With the above relationship, we compare the BER performance with theoretical

BER with the SNR being replaced by signal-to-interference-plus-noise ratio (SINR)

(Figure 5.7). We observe that, the simulation performance curve is close to the

theoretical curve justifying the fact that the degradation in performance is indeed

because of the energy leaking from adjacent subcarriers and the interference can be

assumed to be zero mean gaussian distributed. In the next section, we study how the

interference changes with filter bandwidth.

5.3 Interference analysis

In the previous section, we found that energy from the adjacent subcarriers cause

interference which has a zero-mean gaussian distribution and hence adds to the overall

thermal noise floor. This interference depends on filter bandwidth as a wider filter

will allow more interference from the adjacent subcarriers.

We define filter bandwidth as the range of frequencies over which the filter response

lies within the 3dB range of its maximum value. The point on the frequency axis where

the frequency response drops to half the maximum value is referred as the 3dB point.

As the next experiment, we vary the filter bandwidth from 3 kHz to 13 kHz and then

measure the SNR through simulations. In the absence of thermal noise, this SNR will

be indicative of the interference noise added from the adjacent subcarriers.

As shown by the blue curve in Figure 5.8, we observe that the SNR increases as

we reduce the filter bandwidth from 13 kHz, hits a maximum around 7.5 kHz, which
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(a)

(b)

Figure 5.7: Probability of bit error,Pb vs SINR per bit, γb for (a) BPSK and (b)
QPSK modulation
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Figure 5.8: SNR vs overall filter cutoff frequency, Fc

is half the subcarrier spacing and then drops again as we further reduce the filter

bandwidth. This drop in SNR for very narrowband filters is because of signal energy

being filtered out by amount greater than noise. Thus, a filter with a bandwidth

around 7.5kHz will be an optimum one to achieve the maximum SNR. The impulse

response increase as the filter bandwidth decreases, resulting in a higher order filter.

This leads to an increased smearing of the symbols in time domain leading to ISI. To

see the effect of only ICI, we filter each symbol independently, so that there is no ISI.

This would provide an estimate of the maximum SNR, that the system can achieve.

In Figure 5.8, the red curve shows how the SNR varies with filter bandwidth,

when each symbol is filtered independently resulting in only ICI. A maximum SNR

of about 20dB can be achieved by employing a filter with a bandwidth of half the

sub-carrier spacing. This SNR cap is good for lower modulation schemes - BPSK and

QPSK, as proposed in this thesis.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this work, we discussed the need to develop low cost wireless communication system

for delay insensitive IoT applications demanding very low throughput. The wireless

devices shall consume very less power and last for many years. We motivated the co-

existence of such systems with the cellular network such as LTE. A single carrier based

receiver architecture for downlink was developed by taking the resource allocation

to one resource element per user and hence reaching the limit to multiple access.

Performance of the proposed system was studied in AWGN and Rayleigh fading

channel.

The work done in this thesis lays down the foundation in the development of

wireless systems for IoT applications and can be further extended to develop a full-

fledged communication system. Some of the future work that could be carried out as

an extension to this thesis include:

� Extension of receiver design to process various data channels as mentioned in

LTE.

� Development of better filters which consumes less power and allows less inter-

ference from the adjacent subcarriers

� Optimum synchronization signal design for robust initial acquisition and fre-

quency and timing offset correction

� Reference signal design for channel estimation and tracking
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APPENDIX A

LIST OF ACRONYMS
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ACI adjacent channel interference

ADC analog-to-digital converter

AWGN additive white Gaussian noise

BPSK binary phase-shift keying

BER bit-error-rate

CAZAC constant-amplitude zero-autocorrelation

CDMA Code division multiple access

CRC cyclic-redundancy-check

CRS cell-specific reference signal

CSMA Carrier sense multiple access

DAC digital-to-analog converter

FDM frequency division multiplexing

FDMA Frequency division multiple access

GSM Global System for Mobile Communications

IFFT inverse fast-fourier-transform

ISI inter symbol interference

LTE Long-Term Evolution

MAC multiple access channel

MMSE minimum mean-squared error

OFDM orthogonal frequency division multiplexing

OFDMA Orthogonal frequency division multiple access

PAPR peak-to-average power ratio

PBCH Physical Broadcast Channel

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PSK phase-shift-keying

QPSK quadrature phase-shift keying
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SDMA Space division multiple access

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

TDMA Time division multiple access

UE user equipment

ZF zero forcing

IoT Internet of Things

M2M machine to machine

MTC machine type communication

LTE Long Term Evolution

3GPP 3rd generation partnership project

NB-IoT narrowband Internet of Things (IoT)

VNB-IoT very narrowband IoT

GSM global gystem for mobile communication

RB resource block

FFT Fast Fourier Transform

PSS primary synchronization sequence

NPSS narrowband primary synchronization sequence (PSS)

SSS secondary synchronization sequence

NSSS narrowband secondary synchronization sequence (SSS)

ICI inter-(sub)carrier-interference

LAN local area network

WAN wide area network
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