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1. Introduction

Optical fibers are of a great importance in diverse areas of modern observational astronomy.

Particularly, in the field of exoplanet detection, they have become an essential part of most

current and future instruments because of their filtering and stabilizing capability.

In this chapter, we will discuss the use of optical fibers and some limitations in two exoplanet

detection methods: nulling interferometry (Section 2) and the radial velocity method

(Section 3). We will present simulations, experiments and observations that demonstrate

improvements of the instrument performances in the field of exoplanet detection due to the

use of optical fibers, as well as some of their limitations.

2. Single-mode fibers in nulling interferometry

Nulling interferometry is a direct exoplanet detection method, aimed at the detection

of an Earth-like planet around a Sun-like star (Bracewell, 1978; Colavita et al., 2010;

Mennesson et al., 2011). It consists in combining light from several telescopes in such a way

that a quasi-perfect destructive interference occurs for the star light. In such an instrument,

the light coming from a potential planet orbiting the star would experience a (partially)

constructive interference because of the optical path differences between the arms of the

interferometer for an off-axis point source (i.e. the planet).

Single-mode fibers are used in all state-of-the-art wide-band nulling interferometers because

they provide natural wavefront filters, essential for a quasi-perfect destructive interference

(Mennesson et al., 2002; Wallner et al., 2003).

In addition to canceling the light from the star and thus making possible direct detection

of planets, nulling interferometry should also offer the possibility to obtain spectral

information from the planet if destructive interference can be achieved simultaneously for

all wavelengths in a wide spectral band (typically from 5-18 µm would be the optimal

wavelength range because it is where the brightness ratio between the star and the planet is

minimal)(Angel et al., 1986; Angel & Woolf, 1997). To realize that, very stringent requirements

must be fulfilled in terms of amplitude, phase and polarization of the beams to be combined

for all wavelengths. Most nulling interferometers use achromatic phase shifters (Rabbia et al.,

2003) to create an on-axis destructive interference independent of the wavelength and must
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2 Will-be-set-by-IN-TECH

also use an achromatic amplitude-matching device. The use of single-mode fibers in a nulling

interferometer can affect this achromaticity condition because the coupling of light into a

waveguide is wavelength-dependent. This coupling can therefore chromatically affect both

the amplitude and the phase of the beam.

In particular, two beams with slightly different wavefronts will have different

wavelength-dependent coupling efficiencies. This results in different wavelength-dependent

amplitudes and phases, which will limit the performance of the interferometer. A measure

for this performance is called the rejection ratio: it is the ratio between the intensities

corresponding to constructive and destructive interferences.

In this section, we will calculate the wavelength-dependent coupling efficiencies of aberrated

beams into a single-mode fiber and analyze the influence of aberrations on the rejection

ratio and therefore on the performance of the nulling interferometer. From these results, we

will quantitatively derive the wavefront quality required to allow the detection of Earth-like

planets. We will then show that amplitude, optical path difference and dispersion corrections

can be used to reduce the effect of induced wavelength-dependent coupling efficiencies and

relax the tolerances on optical quality.

2.1 Definitions

Let us consider the case of a two-beam nulling interferometer. We will assume that a perfectly

achromatic π-phase shift has been introduced between the beams in order to get destructive

interference for all wavelengths.

Each of the beams i (i = 1 or 2) has a distorted wavefront Wi, which can be described in terms

of normalized Zernike polynomials (Noll, 1976),

Wi(x, y) = ∑
j

a
(i)
j Zj(x, y). (1)

In this representation, each polynomial represents an aberration and the coefficient a
(i)
j gives

the RMS contribution of the corresponding aberration to the total wavefront.

As explained in Section 2, the beams are then focused onto a single-mode fiber that acts as a

wavefront filter. Indeed, the field at the output of the fiber is given (all losses neglected) by the

fundamental mode of the fiber, multiplied by a complex factor ξ i called the complex coupling

efficiency that represents the part of the field that is coupled in the fiber (Mennesson et al.,

2002; Wallner & Leeb, 2002). This holds for any incoming field and therefore, all wavefront

distortions are taken care of by the optical fiber. However, different wavefronts will induce

different (wavelength-dependent) coupling efficiencies and this will limit the rejection ratio.

The field in the focal plane is given by the Fourier transform of the field in the entrance pupil,

Ei(X, Y, λ) =
∫∫

exp

[

j
2π

λ
Wi(x, y)

]

exp

[

−j
2π

λ f
(xX + yY)

]

dxdy, (2)

where λ is the wavelength, f the focal length of the focusing optics, (X, Y) and (x, y) are

respectively the coordinates in the focal plane and in the entrance pupil plane.

354 Recent Progress in Optical Fiber Research

www.intechopen.com



Use and Limitations of Single- and Multi-Mode Optical Fibers for Exoplanet Detection 3

The complex coupling efficiency ξi of beam i is then given by the overlap integral between the

incident field Ei and the fundamental mode of the fiber F0,

ξi(λ) =

∫∫

Ei(X, Y, λ)F∗
0 (X, Y, λ)dXdY

∫∫

|F0(X, Y, λ)|2 dXdY
, (3)

where ∗ denotes the complex conjugate.

The rejection ratio R is the ratio between intensities corresponding to constructive and

destructive interferences. Therefore, we have

R =

∫

|ξ1(λ) + ξ2(λ)|
2 dλ

∫

|ξ1(λ)− ξ2(λ)|
2 dλ

. (4)

2.2 Influence of each aberration on the rejection ratio

We consider a spectral band going from 500 to 650 nm. This spectral band was chosen to match

an existing experimental set-up. We will first assume that one of the beams has a perfect

plane wavefront (a
(1)
j = 0 for all j), while the second wavefront is distorted. In this first

simulation, we will study the influence of each aberration separately by setting the coefficient

a
(2)
j = 30 nm (wavefront at roughly λ/20 RMS) and calculate the rejection ratio as a function

of the Zernike index j (each index represents a different type of aberration). The results are

depicted in Figure 1 (black squares).

We see a “wave” pattern in the rejection ratio as a function of Zernike index. Each of these

waves corresponds to a different radial order of the Zernike polynomials. For each radial

order, the rejection ratio is minimal for zeroth azimuthal order (radially symmetric) and

increases with azimuthal order (towards higher spatial frequencies). The rejection ratio also

increases with radial order, since the fiber is less sensitive to high spatial frequencies.

The aberrated wavefront introduced amplitude and phase mismatches between the two

beams. There are therefore a few corrections that we can apply to improve the rejection

ratio. We can first use an achromatic intensity-matching device, e.g. a knife-edge (which

is achromatic at first order) to match the global intensities of the two beams (see Figure 1,

blue diamonds). Then, we can use an optical delay line to match the optical path differences

(OPD) between the beams (see Figure 1, red stars). Finally, we can compensate for dispersion

differences by adding glass plates with variable thicknesses (see Figure 1, magenta crosses)

(Spronck et al., 2008; Spronck et al., 2009).

We see that OPD and dispersion compensation only improves the rejection ratio for the

fourth (defocus), the twelfth (spherical aberration) and the twenty-fourth (6th order spherical

aberration) Zernike polynomials. Indeed these polynomials have a zero azimuthal frequency

(radial symmetry) and we can show that the coupling efficiencies corresponding to non-zero

azimuthal frequencies are real. Therefore, for these aberrations, no phase corrections can

increase the rejection ratio, only the amplitude correction can. Note that the limitation of

the rejection ratio is due to a wavelength-dependent amplitude mismatching, for which we

cannot easily compensate. Therefore, these results will strongly depend on the width of the

spectral band.
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4 Will-be-set-by-IN-TECH

Fig. 1. Rejection ratio as a function of Zernike index when a
(1)
j = 0 for all j and a

(2)
j = 30 nm

(black squares). The blue diamonds correspond to the rejection ratio after an achromatic
intensity matching. For the red stars, the OPD have been matched (additionally to the
intensity matching). The magenta crosses corresponds to rejection ratio with intensity, OPD
and dispersion correction.

2.3 Rejection ratio with randomly chosen wavefronts

In this other simulation, we randomly chose the coefficients a
(1)
j and a

(2)
j for both wavefronts

in such a way that these wavefronts have a standard deviation of 30 nm RMS (λ/20) (see

Figure 2). We found the average rejection ratio with such wavefronts after 35 simulations is of

the order of 103 without corrections and 106 with amplitude, OPD and dispersion corrections.

We then repeated this simulation with different wavefront standard deviations and plotted

the average rejection ratio as a function of RMS wavefront quality (see Figure 3). From this,

we derive that the necessary RMS wavefront quality to obtain a 106-rejection ratio is 40 nm

RMS (λ/15). This means that the surface figure of the optics (we only considered here the

case of reflective optics) should be better than λ/30/
√

Nopt where Nopt is the total number of

surfaces encountered by the beams.

It is important to realize that these results highly depend on the desired spectral band and

cannot directly be translated in a general requirement. However, this is meant to indicate the

limitations of single-mode fibers in nulling interferometry. Note also that it will be easier to

meet the requirements in the IR where nulling interferometers mainly perform.
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Fig. 2. Rejection ratio for two beams with randomly chosen wavefronts that have a standard
deviation of 30 nm RMS.

Fig. 3. Rejection ratio as a function of RMS wavefront quality.

357Use and Limitations of Single- and Multi-Mode Optical Fibers for Exoplanet Detection

www.intechopen.com
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3. Multi-mode fibers for high-precision radial velocities

Since the discovery of the first exoplanet by Mayor & Queloz (1995), more than 500

planets have been found using the radial velocity method. Currently, the state-of-the-art

spectrometers, such as HARPS (Mayor et al., 2003) on the 3.6-m telescope in La Silla and

HIRES on Keck I (Vogt et al., 1994), typically achieve precisions of 1-3 m s−1 (Howard et al.,

2010; Mayor & Udry, 2008). This only permits the detection of planets with amplitudes larger

than the measurement errors, typically Super Earth or Neptune-mass planets in relatively

short period orbits, or more massive Jupiter-like planets out to several AU. The detection of

true Earth analogs requires Doppler precisions on the order of 10 cm s−1, corresponding to

spectral line shifts across one ten-thousandth of a pixel. Further complicating the analysis, the

periodicity of this shift occurs over time scales of months or years for the most interesting

planets in the so-called habitable zone. This top level requirement for a measurement

precision of 10 cm s-1 leads to the demand for an instrument that exceeds the stability of

current instruments.

In order to reach the desired precision, we must reduce errors in the model of the instrumental

profile, which cross-talk with our measurement of the Doppler shift. In older spectrographs,

the starlight is coupled from the telescope to the instrument using a narrow slit. However,

the slit illumination is rapidly varying because of changes in seeing, focus and guiding errors.

Changes in slit illumination affect the spectrum in two ways. Since the spectral lines are

direct images of the slit, changes in slit illumination yield changes in the shape of the spectral

lines. Additionally, variations in slit illumination can result in changes in the illumination of

the spectrograph optics. This will in turn introduce different aberrations, which will change

the instrumental response. Mathematically, these two effects are modeled simultaneously by

convolving the spectrum with the instrumental profile (IP), in such a way that any variability

impedes our ability to recover Doppler shifts with the desired precision. If the instrumental

profile were unchanging, variations in the final extracted spectrum would be dramatically

reduced. Thus, instrumental profile stability has become a focus of current instrumentation

work.

Optical fibers provide an excellent way to reduce variability in the illumination of the

spectrograph. Fibers have been used since the 1980’s to couple telescopes to high-precision

spectrographs (Heacox & Connes, 1992). The throughput of fibers was initially low, however,

they offered unprecedented convenience in mechanical design. The attribute of fibers that is

particularly important today for high-precision Doppler measurements is the natural ability

of optical fibers to scramble light (Barden et al., 1981; Heacox, 1980; 1986; 1988) and produce a

more uniform and constant output beam. Because light from the telescope must be efficiently

coupled into the fiber, the fiber diameters must match the typical image size (generally 100

microns or more), so multi-mode fibers are required.

Other sources of errors come from environmental changes within the spectrograph.

Temperature, pressure or mechanical variations cause the spectrum to shift and to change.

These errors will not be solved by replacing the slit by a fiber.

3.1 Laboratory characterization

We have carried out laboratory measurements to better understand scrambling properties of

fibers with different geometries (circular, square, octagonal), different lengths, and different

fiber diameters. While testing these fibers, we have noticed that the optical properties vary
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widely from fiber to fiber. This is even true for supposedly identical commercial fibers from

the same manufacturer and same production batch.

At an observatory, the illumination of the fiber will vary due to guiding, focusing errors

and seeing changes. To characterize the scrambling properties of the fiber under similar

conditions, we scan the incoming beam across the fiber and examine the output beam.

As described by Hunter & Ramsey (1992), two characteristics are of importance when it comes

to the output beam: the far-field and the near-field patterns. The far-field is the cross-sectional

intensity distribution of the diverging beam. The far-field will be projected onto the collimator,

the grating and the rest of the spectrograph optics. Variations in the far-field will therefore

cause different parts of the grating and the optics to be illuminated. This will in turn introduce

different aberrations, which will change the instrumental profile. The near-field pattern is the

intensity distribution across the output face of the fiber. The spectral lines are direct images of

the fiber output face, so variations in the near-field pattern are also important in the stability

of the final spectrum. Commonly (but erroneously), the term near-field is used to describe

the image of the output face of the fiber by an optical system. We will adopt this definition

throughout this chapter.

3.1.1 Experimental set-up

The set-up used for the fiber characterization measurements is depicted in Figure 4.

We focus the light from either a green He-Ne laser or a LED onto a single-mode fiber that

is used to create a star-like point source. Light coming from the single-mode fiber is then

collimated (by lens L2) and re-focused (by lens L3) onto the test multi-mode fiber. Light

reflected from the fiber front surface is re-directed using a beam-splitter and re-imaged onto

a CCD (CCD1) to check the alignment of the beam with respect to the fiber front surface. A

translation stage allows us to move the fiber with respect to the incoming beam and therefore

simulate guiding errors. Light coming out of the test fiber is then collimated (by lens L7) and

re-focused (by lens L5) onto a CCD (CCD2). Lens L6 moves in and out of the light path to

enable measurements of the near-field (out) and the far-field (in) patterns.

Light Source:

Laser or LED Single-Mode

Fiber

L 1 L 2
L 3

L 4

L 7L 6L 5

Test

Fiber

CCD

CCD

Beam

Splitter

Translation stage

for the fiber

1

2

Fig. 4. Schematic drawing of our set-up.
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3.1.2 Scrambling versus fiber length

We first measured the amount of scrambling as a function of fiber length. All fibers used in

this test were 50-micron fibers from Polymicro (FBP050070085) with lengths of 5, 20 or 40 m.

We used a similar set-up as described in Section 3.1.1. A green He-Ne laser was coupled into

the single-mode fiber. A couple of lenses were used to re-image the single-mode fiber onto the

test fiber. The used imaging system was not of very high quality, so that the spot size was a

significant fraction of the fiber core.

For this experiment, we inserted a mirror on a kinematic mount between the two lenses and

tilted it to scan the image across the fiber face and simulate guiding errors. The far-field

pattern was recorded as a function of mirror tilt (or equivalently of beam position on the

fiber). To eliminate the speckle pattern caused by modal interference, we agitated the test

fiber.

Figure 5 depicts the far-field patterns as a function of beam position on the fiber for three

different fiber lengths (5, 20 and 40m). The left columns corresponds to input that was well

centered on the fiber. In the right columns, the beam is increasingly displaced from the fiber

center. For the 5-m fiber, we clearly see rings when moving away from the center, which

become dominant rather quickly. The 5-m fiber quickly develops a ring pattern. Rings are

also seen for the 20-m fiber, but not until the image is much further displaced from the center.

No ring pattern appears for the 40-m fiber; the far-field distribution seems almost independent

of the spot position.

Any type of variation in the far-field pattern is undesirable since it will induce variations in

the illumination of the grating and spectrograph optics that will cause varying instrumental

profile.

The rings occur because light is propagating through the cladding: they only appear when

the spot was large enough to overlap with the cladding (i.e., when the spot was slightly

off-center). Because light does not propagate very well in the cladding, there is a dependence

on fiber length and the 40-m fiber is long enough that this pattern is not seen in the output

beam.

These measurements were confirmed by measuring three fibers of each length. They all

exhibited the same behavior.

There are two important consequences of these measurements. First, longer fiber will be better

for scrambling. On the other hand, longer fiber will have a lower throughput. For example,

the Polymicro FBP fibers have 15 dB/km losses due to absorption at 500 nm. For a 5-m fiber,

that gives a throughput of 99 % for a 5-m fiber and 90 % for a 40-m fiber. A trade-off between

scrambling and throughput is needed given a specific application.

The second consequence is that if good scrambling is desired, the cladding should never be

illuminated. Cladding illumination can be avoided by appropriate masking (in the fiber input

plane or more easily, in an intermediate focal plane). The mask alignment can be critical.

3.1.3 Scrambling with circular fibers

In this test, we used the set-up depicted in Figure 4. A green LED (50-nm FWHM) was used as

light source. In terms of coherence length, a standard He-Ne laser would be more appropriate

than the LED for very high-resolution spectrographs. However, because of its low coherence,

the LED makes it possible to measure reproducible and precise fiber outputs without agitating

the fiber.
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Fig. 5. Scrambling of 50-micron fibers of various lengths

The single-mode fiber was re-imaged onto the test multi-mode fiber using a pair of

diffraction-limited aspheric lenses. This time, the resulting spot onto the test fiber was much

smaller than the fiber. Using a commercial camera, we imaged the input face of the test fiber

and the spot. This way we could carefully position the spot with respect to the fiber and we

could also make sure that the test fiber was exactly in the image plane (and thus the spot was

well in focus when entering the fiber).

We scanned the spot with respect to the fiber by moving the fiber (which was on a differential

screw stage with a precision of 1 µm). For every fiber position, we checked the spot position

with the camera. We then recorded both far-field and near-field patterns for every fiber

position.

Figure 6 shows the far-field (top row) and near-field (bottom row) as a function of

fiber position (from cladding to cladding) for a 15-m long 100-micron Polymicro fiber

(FBP100120140). The far-field pattern shows strange non-radially symmetric structures but

both far-field and near-field distributions are nearly independent of fiber position. However,

looking closer at the near-field (see Figure 7), systematic variations can be seen for different

fiber positions. This position memory is evidence of non-perfect scrambling by the fiber and

will limit the instrumental profile stability of a high-resolution spectrograph, since guiding

errors will directly translate into variations in near-field patterns.

3.1.4 Scrambling with octagonal fibers

It has been suggested that fibers with different geometries (square, hexagonal, octagonal)

were better scramblers and were therefore more suitable for high-precision radial velocities

(Avila et al., 2010; Chazelas et al., 2010). We purchased 20-m octagonal fibers from

CeramOptec with a 200-micron octagonal core and a 672-micron round cladding.

We repeated the measurements presented in Section 3.1.3. Figure 8 summarizes the results.

The top row is the far-field, the middle row is the near-field and the bottom row shows the

spot position across the input fiber face.

The far-field is better behaved in terms of symmetry than it was for the circular fiber but is

not as position independent for the octagonal fiber. On the other hand, the near-field (see
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Fig. 7. Scrambling of a circular fiber.

Figure 9) shows no systematic variations and seem independent of fiber position (within the

measurement precision).

The fact that the near-field is so independent on beam position is very encouraging for use

in high-resolution spectrographs, as it probably yields a very stable instrumental profile. In

contrast, the far-field is not as good and depending on the local quality of the spectrograph

optical components, can contribute to some variations in instrumental profile.

3.2 Results at Lick observatory

In 2009, we have installed a fiber feed for the Hamilton spectrograph on the 3-m telescope at

Lick Observatory (Spronck et al., 2010). The key results are presented in this section.

3.2.1 Comparison between slit and fiber using the Hamilton spectrograph

In August 2010, extensive tests were carried out to quantify the improvement in instrumental

profile stability brought by the fiber scrambler and to identify the remaining sources of error.
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Fig. 9. Scrambling of an octagonal fiber.

Observations of stars with known constant radial velocity were made on two consecutive

nights. The weather and seeing conditions were nearly identical for both nights. The fiber

scrambler was installed for the first night, and the regular observing slit (640 µm wide) was

used on the second night.

On both nights, an iodine cell was used. As starlight passes through the cell, the molecular

iodine imposes thousands of absorption lines in the stellar spectrum. We use an extremely

high resolution (R ≈ 1,000,000), high SNR Fourier Transform Spectrum (FTS) of the iodine

cell to model the instrumental profile, which when convolved with the product of the stellar

spectrum and the iodine FTS spectrum reproduces the observed spectrum. The instrumental

363Use and Limitations of Single- and Multi-Mode Optical Fibers for Exoplanet Detection
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12 Will-be-set-by-IN-TECH

profile must be modeled for small wavelength segments of the echelle spectrum to account for

2-D spatial variations. Although there are some asymmetries in the wings of the IP, a single

Gaussian gives, for our purpose, a reasonable fit to the composite IP. We fitted a Gaussian to

the instrumental profile for each of the spatial regions on the CCD and calculated the average

full-width half maximum (FWHM) of the Gaussian across the entire detector (iodine region).

Figure 10 depicts the evolution of the average FWHM for the slit observations (blue squares)

and for the fiber observations (red filled circles) through time. The abscissa in this plot is the

sequential observation number through the night. The time-dependence variation of the IP

for the slit observations (blue squares) is quite dramatic. For both nights, the same sequence

of observations were taken: a set of B stars, 50 observations of the velocity standard star

HD 161797, a second set of B stars, 50 observations of the velocity standard star HD 188512

and a third set of B stars.

The smooth functional dependence on time for slit observations strongly suggests that the

dominant factor in the instrumental profile variation is the changing illumination of the slit

due to monotonic changes in seeing or tracking through different hour angles (which might

result in different input angles into the fiber). The peak-to-valley (PTV) amplitude of the

variation is about 8% throughout the night.

Figure 10 also shows significant improvement in instrumental profile stability due to the fiber

scrambler (red solid dots). However, there is still a slight linear (upward) trend in the fiber

data (1%-2% PTV), indicative of incomplete scrambling with the fiber. After removing the

linear trend, the residual fluctuation is of the order of 1% PTV.
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Fig. 10. Average FWHM of a Gaussian fit to the instrumental profile for all observations
during Night 1 using the fiber (red filled circles) and Night 2 using the slit (blue squares).

3.2.2 Results with a double scrambler using the Hamilton spectrograph

In August 2010, a double scrambler (Avila, 1998; Hunter & Ramsey, 1992) was designed and

built. In this double scrambler, a ball-lens transforms the image of the fiber end in a pupil

that is then injected into a second fiber. The light from the second fiber is then sent to the
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spectrograph. Because of time constraints, the double scrambler was not optimized and as a

consequence, the throughput when used in the Hamilton spectrograph was rather low (15%

as opposed to 55-60% with one fiber only).

The double scrambler test consisted in taking alternative sets of five B-star observations with

the regular fiber scrambler (one fiber only) and with the double scrambler throughout the

same night. For each observation, we calculated the instrumental profile for each region of

the CCD and fitted it with a Gaussian. We then calculated the average FWHM of the fit across

the entire detector.

Figure 11 depicts the evolution of the average FWHM for the single fiber observations

(blue) and for the double scrambler observations (red) through the night. Different symbols

correspond to different sets of B stars. Even though the scale is different from Figure 10 (with

the slit observations), we can still see a linear trend in the fiber data in Figure 11, indicating

imperfect fiber scrambling. In this case, the amplitude of the variation is about 3%.

The IP obtained with the double scrambler is significantly more stable throughout the night,

with no significant (above errors) systematic trend.

Instrumental noise can be broken down into two main components: errors due to coupling

of the light to the instrument (varying fiber illumination due to guiding, tracking, seeing and

focusing) and environmental instability (mechanical, temperature or pressure). The double

scrambler results prove that coupling errors are the dominant source of instrumental noise.

Residual fluctuations from observation to observation have an amplitude of 1%, which is large

for precise radial velocities. The source for these fluctuations has not yet been identified but

possible culprits include modal noise in the fiber, photon noise and modeling errors. We do

not expect the environmental instability to be responsible for residual fluctuations because of

the short time scale of the variability.
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Fig. 11. Average FWHM of a Gaussian fit to the instrumental profile for B-star observations
taken with the fiber (blue) and with the double scrambler (red). All observations were taken
during the same night alternating with the fiber and with the double scrambler.
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(a)

(b)

Fig. 12. Instrumental profile parameters for all HIRES observations of (a) HD 26965 and (b)
HD 32147. Red dots correspond to slit observations and blue dots correspond to fiber
observations.
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3.3 Results at Keck observatory

During the last week of September 2010, we repeated the tests performed at Lick Observatory

at the Keck telescope using the HIRES spectrograph. The larger aperture telescope at Keck

helped to keep the exposure times short so that a large data set could be acquired and so that

barycentric errors were minimized. We designed and built a prototype fiber scrambler with a

200-micron 20-m Polymicro fiber

We collected data on two nights; on 30 September 2010, we used the fiber scrambler and on

1 October 2010, we obtained a similar set of data with the usual slit. We observed sets of 25

observations for the standard stars HD 26965 and HD 32147. Figure 12(a) and (b) depict one

of the parameters used to model the instrumental profile for all existing observations of (a)

HD 26965 and (b) HD 32147. The red filled circles correspond to slit observations and exhibit

an RMS scatter of 0.066 for HD 32147, while the fiber observations for the same star (blue

filled circles) exhibit a dramatically reduced RMS scatter of 0.0044, demonstrating a factor of

15 improvement in the IP stability.

4. Conclusion

In the fist part of this chapter, we have studied the performances of a two-beam

nulling interferometer with distorted wavefronts. We have studied the influence of each

individual aberration and we have seen that aberrations will induce phase and amplitude

mismatches between the beams that can partially be compensated. Unfortunately the

wavelength-dependence of these mismatches will limit the rejection ratio. We have seen

that the interferometer will be more sensitive to lower order aberrations (both radial and

azimuthal orders). In particular, aberrations that will mostly limit the rejection ratio are

radially symmetric aberrations (such as defocus, spherical aberration and sixth order spherical

aberration). For the considered spectral band (500-650 nm), we quantified the wavefront and

surface quality needed to have a rejection ratio of 106. The quality of the wavefront should be

better than λ/15 RMS. This result depends on the width of the spectral band. Even though

single-mode fibers are essential parts of nulling interferometers, they are not perfect modal

filters and will eventually limit the performances of the instrument if care is not taken in the

optical design.

In the second part of this chapter, we have characterized the scrambling properties of

multi-mode fibers as a function of length and cross-sectional geometry. We conclude that

longer fibers perform better in terms of scrambling (but have lower throughput) because light

in the cladding will not propagate efficiently. We also conclude that the best scrambling is

achieved when the cladding is not illuminated. We see evidence of non-perfect scrambling in

the near-field of the circular fiber, while the octagonal fiber has a very well-behaved near-field.

This implies that the octagonal fiber should therefore yield a very stable instrumental profile.

However, we find that the far-field of the octagonal fiber is not as good and therefore octagonal

fibers will only be helpful if the grating and other spectrograph optics have excellent optical

quality.

To summarize, in order to measure spectral line shifts smaller than one ten-thousandth of a

pixel and stable for many months, we must reduce errors in our instrumental profile, which

cross-talks with our measurement of the Doppler shift. The instrumental noise can be broken

down in coupling errors (slit or fiber illumination) and environmental instability. These results

show that coupling errors are the dominant source of instrumental noise. We show that double
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scrambler observations have a more stable IP than fiber observations, which have a more

stable IP than slit observations. The double scrambler data still has residual RMS scatter. The

source of this has not yet been identified but is likely to be modal noise, photon noise or

modeling errors. We do not expect that the residual scatter can be caused by environmental

effects due to the random nature of the variability.

While some fibers are clearly better than others at scrambling light, modal noise will always

limit the ability of multi-mode fibers to perfectly scramble light and therefore multi-mode

fibers will produce some variability in the instrumental profile. Whether this is important or

not depends on the level of precision needed in terms of radial velocities. When looking for

Earth analogs, a Doppler precision of 10 cm s−1 or better will be required. At this level of

precision, everything becomes relevant.
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