2,642 research outputs found

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Improving Usability And Scalability Of Big Data Workflows In The Cloud

    Get PDF
    Big data workflows have recently emerged as the next generation of data-centric workflow technologies to address the five “V” challenges of big data: volume, variety, velocity, veracity, and value. More formally, a big data workflow is the computerized modeling and automation of a process consisting of a set of computational tasks and their data interdependencies to process and analyze data of ever increasing in scale, complexity, and rate of acquisition. The convergence of big data and workflows creates new challenges in workflow community. First, the variety of big data results in a need for integrating large number of remote Web services and other heterogeneous task components that can consume and produce data in various formats and models into a uniform and interoperable workflow. Existing approaches fall short in addressing the so-called shimming problem only in an adhoc manner and unable to provide a generic solution. We automatically insert a piece of code called shims or adaptors in order to resolve the data type mismatches. Second, the volume of big data results in a large number of datasets that needs to be queried and analyzed in an effective and personalized manner. Further, there is also a strong need for sharing, reusing, and repurposing existing tasks and workflows across different users and institutes. To overcome such limitations, we propose a folksonomy- based social workflow recommendation system to improve workflow design productivity and efficient dataset querying and analyzing. Third, the volume of big data results in the need to process and analyze data of ever increasing in scale, complexity, and rate of acquisition. But a scalable distributed data model is still missing that abstracts and automates data distribution, parallelism, and scalable processing. We propose a NoSQL collectional data model that addresses this limitation. Finally, the volume of big data combined with the unbound resource leasing capability foreseen in the cloud, facilitates data scientists to wring actionable insights from the data in a time and cost efficient manner. We propose BARENTS scheduler that supports high-performance workflow scheduling in a heterogeneous cloud-computing environment with a single objective to minimize the workflow makespan under a user provided budget constraint

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers

    Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud

    Get PDF
    Data-centric workflows naturally process and analyze a huge volume of datasets. In this new era of Big Data there is a growing need to enable data-centric workflows to perform computations at a scale far exceeding a single workstation\u27s capabilities. Therefore, this type of applications can benefit from distributed high performance computing (HPC) infrastructures like cluster, grid or cloud computing. Although data-centric workflows have been applied extensively to structure complex scientific data analysis processes, they fail to address the big data challenges as well as leverage the capability of dynamic resource provisioning in the Cloud. The concept of “big data workflows” is proposed by our research group as the next generation of data-centric workflow technologies to address the limitations of exist-ing workflows technologies in addressing big data challenges. Executing big data workflows in the Cloud is a challenging problem as work-flow tasks and data are required to be partitioned, distributed and assigned to the cloud execution sites (multiple virtual machines). In running such big data work-flows in the cloud distributed across several physical locations, the workflow execution time and the cloud resource utilization efficiency highly depends on the initial placement and distribution of the workflow tasks and datasets across the multiple virtual machines in the Cloud. Several workflow management systems have been developed for scientists to facilitate the use of workflows; however, data and work-flow task placement issue has not been sufficiently addressed yet. In this dissertation, I propose BDAP strategy (Big Data Placement strategy) for data placement and TPS (Task Placement Strategy) for task placement, which improve workflow performance by minimizing data movement across multiple virtual machines in the Cloud during the workflow execution. In addition, I propose CATS (Cultural Algorithm Task Scheduling) for workflow scheduling, which improve workflow performance by minimizing workflow execution cost. In this dissertation, I 1) formalize data and task placement problems in workflows, 2) propose a data placement algorithm that considers both initial input dataset and intermediate datasets obtained during workflow run, 3) propose a task placement algorithm that considers placement of workflow tasks before workflow run, 4) propose a workflow scheduling strategy to minimize the workflow execution cost once the deadline is provided by user and 5)perform extensive experiments in the distributed environment to validate that our proposed strategies provide an effective data and task placement solution to distribute and place big datasets and tasks into the appropriate virtual machines in the Cloud within reasonable time

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications
    • …
    corecore