
Wayne State University

Wayne State University Dissertations

1-1-2017

Improving Usability And Scalability Of Big Data
Workflows In The Cloud
Aravind Mohan
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Mohan, Aravind, "Improving Usability And Scalability Of Big Data Workflows In The Cloud" (2017). Wayne State University
Dissertations. 1848.
https://digitalcommons.wayne.edu/oa_dissertations/1848

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1848?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPROVING USABILITY AND SCALABILITY OF BIG DATA
WORKFLOWS IN THE CLOUD

by

ARAVIND MOHAN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2017

MAJOR: COMPUTER ENGINEERING

Approved By:

Advisor Date

Co-advisor

c©COPYRIGHT BY

ARAVIND MOHAN

2017

All Rights Reserved

DEDICATION

To God be the glory.

ii

ACKNOWLEDGEMENTS

I would first like to thank God for giving me an amazing opportunity to pursue a Ph.D.

degree in a fascinating field of Computer Engineering, for giving me a passion to research, for

bringing me to Wayne State University to work with my advisors Dr. Shiyong Lu and Dr. Song

Jiang, for guiding me through a number of important decisions, for protecting me, for answering

my prayers, and for giving me the strength to persevere. I would also like to express my deep and

sincere gratitude to my advisor Dr. Shiyong Lu, for his guidance, encouragement, and support

throughout my Ph.D. studies. Dr. Lu’s advice has enabled me to remain focused and to succeed

in my studies. I am deeply thankful for Dr. Lu’s kindness and for inspiring me to pursue an

academic career. I am also very grateful to my dissertation committee members: Dr. Shiyong Lu,

Dr. Jiang Song, Dr. Alexander Kotov, Dr. Caisheng Wang, and Dr. Fengwei Zhang, for being

on my dissertation committee and for providing their helpful feedback, insightful comments, and

constructive suggestions.

I would also like to thank Dr. Fotouhi for his encouragement and support during my

Ph.D. studies. I am deeply thankful for the University Graduate Research Assistant and Graduate

Teaching Assistant, and Part Time Faculty positions that has enabled me to have an early start

in my Ph.D. research and to have a very strong teaching experience. I would also like to thank

the Budget Office department at Wayne State University for providing me the Graduate Student

Assistant position that has helped me to fund my education in the first two years of my doctoral

studies and for providing me an opportunity to exercise my programming skills. I would also like

to thank my bright colleagues from the Big Data Research Laboratory: Mahdi Ebrahimi, Dong

Ruan, Fahima Bhuyan, Ishtiaq Ahmed, and Changxin Bai, as well as alumni Dr. Andrey Kashlev,

Dr. Cui Lin, and Dr. Xubo Fei. I would like to express my deep appreciation to Mahdi Ebrahimi

for the strong collaboration and friendship that has resulted in several research publications and in

implementing the DATAVIEW system.

I am especially thankful to my wife and my entire family, who has been incredibly supportive

throughout my studies.

iii

TABLE OF CONTENTS
Dedication ii

Acknowledgements iii

LIST OF TABLES vii

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: RELATED WORK 3

2.1 The Shimming Problem and Primitive Workflow Model 3

2.2 A Folksonomy Based Social Recommender System for Workflow and Data Reuse . . 4

2.3 A NoSQL Collectional Data Model . 5

2.4 Scheduling Big Data Workflows in the Cloud under Budget Constraints 7

CHAPTER 3: THE SHIMMING PROBLEM AND PRIMITIVE WORKFLOW
MODEL 10

3.1 Introduction . 10

3.2 Primitive Workflow Model . 11

3.3 Shim Generation Algorithm . 17

3.4 Integration of NoSQL Database . 22

3.5 Case Study . 23

3.6 Chapter Summary . 27

CHAPTER 4: A FOLKSONOMY BASED SOCIAL RECOMMENDATION
SYSTEM FOR WORKFLOW REUSE 28

4.1 Introduction . 28

4.2 An Overview of Workflow Recommendation Framework 29

4.3 A Folksonomy Based Workflow Model . 31

4.4 Workflow Recommendation Algorithms . 35

4.5 Implementation and Case Study . 40

iv

4.6 Chapter Summary . 43

CHAPTER 5: A NOSQL COLLECTIONAL DATAMODEL FOR RUNNING BIG
DATA WORKFLOWS 44

5.1 Introduction . 44

5.2 An Overview Of DATAVIEW . 45

5.3 NoSQL Collectional Data Model . 46

5.4 Algorithm For Workflow Executors . 50

5.5 Case Study and Experiments . 58

5.6 Chapter Summary . 60

CHAPTER 6: SCHEDULING BIG DATA WORKFLOWS IN THE CLOUD
UNDER BUDGET CONSTRAINTS 61

6.1 Introduction . 61

6.2 Workflow Scheduler Model . 62

6.3 The BARENTS Scheduler . 69

6.4 Experimental Discussion . 74

6.5 Chapter Summary . 77

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 79

APPENDIX A: SCIENTIFIC WORKFLOW LANGUAGE (SWL 3.0) 81

APPENDIX B: DATA PRODUCT LANGUAGE (DPL 3.0) 93

APPENDIX C: ENTITY RELATIONSHIP DIAGRAM (ERD 3.0) 100

APPENDIX D: KNN ALGORITHM PRIMITIVE WORKFLOW 101

APPENDIX E: APRIORI ALGORITHM PRIMITIVE WORKFLOW 103

APPENDIX F: KMEANS ALGORITHM PRIMITIVE WORKFLOW 105

REFERENCES 107

v

ABSTRACT 118

AUTOBIOGRAPHICAL STATEMENT 120

vi

LIST OF TABLES
Table 3.1 IP2I mapping table. 14

Table 3.2 O2OP mapping table. 15

Table 3.3 Data Types supported in DATAVIEW. 23

Table 4.4 A summary of tag assignment. 39

Table 6.5 Workflow budget allocation summary. 70

Table 6.6 Workload details for OpenXC workflows. 75

vii

LIST OF FIGURES
Figure 3.1 (a) our proposed primitive workflow model; and (b) a classification of p-workflows. 12

Figure 3.2 Command line based p-workflow. 15

Figure 3.3 Web service based p-workflow. 19

Figure 3.4 Workflow Specification (SWL) with shim inclusion. 20

Figure 3.5 GenShims Algorithm. 21

Figure 3.6 An Automotive Consumer Review Analysis Big Data Workflow. 25

Figure 3.7 An Automotive Consumer Review Data Collection/Integration Workflow. 26

Figure 3.8 An Automotive Consumer Review User Meta Data Extraction Workflow. 26

Figure 4.1 (a) DATAVIEW Architecture; (b) Workflow recommendation framework. 30

Figure 4.2 An overview of folksonomy in workflow model. 32

Figure 4.3 An example workflow. 36

Figure 4.4 Syntactic Recommender Algorithm. 38

Figure 4.5 Semantic Recommender Algorithm. 41

Figure 4.6 Analyzing metabolite pathway workflow. 42

Figure 4.7 (a) myExperiment dataset; (b) Workflow recommendation score. 43

Figure 5.1 Architecture of DATAVIEW . 47

Figure 5.2 OpenXC collectional data product. 50

Figure 5.3 Example of OpenXC data partitioner. 51

Figure 5.4 An example big data workflow. 52

Figure 5.5 Task clustering. 55

Figure 5.6 Type-A workflow executor. 56

Figure 5.7 Type-B workflow executor. 57

Figure 5.8 An automative OpenXC big data workflow. 59

Figure 5.9 Workflow makespans by varying the number of virtual machines and datasets. . 60

Figure 6.1 The BARENTS flowchart. 70

Figure 6.2 An example Workflow w. 71

Figure 6.3 The BARENTS Scheduler Algorithm. 73

Figure 6.4 Resource utilization and makespan minimization. 78

viii

Figure 7.1 ER Diagram of DATAVIEW. 100

ix

1

CHAPTER 1: INTRODUCTION

In recent years, the term “big data” has become a buzzword in both industry and academia.

It is frequently used to refer to the method of processing and analyzing large amount of heterogeneous

types of data to mine hidden patterns, correlations, trends, and other useful information to guide

enterprise decisions and strategies for cutting cost or increasing revenues [1, 2].

Scientific workflows, which were originally developed for automating the data analysis pro-

cess of scientific data (often large in volume and vary in types) to enable and accelerate scientific

discovery, are now increasingly used for the processing and analysis of business data as well. Big

data workflows have recently emerged as the next generation of data-centric workflow technologies

to address the five “V” challenges of big data: volume, variety, velocity, veracity, and value. More

formally, a big data workflow is the computerized modeling and automation of a process consisting

of a set of computational tasks and their data interdependencies to process and analyze data of ever

increasing in scale, complexity, and rate of acquisition. The convergence of big data and workflows

creates new challenges in workflow community.

First, the variety of big data results in a need for integrating large number of remote Web

services and other heterogeneous task components that can consume and produce data in various

formats and models into a uniform and interoperable workflow. The shimming problem has received

much attention in the workflow community [3, 4, 5, 6], in which special kinds of adaptors, called

shims, are inserted between workflow tasks to resolve the data type incompatibility issue. However,

to meet the challenges of big data, several issues in the existing approaches need to be examined.

First issue is to scale the registration and configuration procedure to large number of workflow tasks,

which is critical for large workflows. Second issue is to ease the integration of large number of remote

Web services and other heterogeneous task components such as command line executables that can

consume and produce data in various formats and data models into a uniform and interoperable

workflow. In particular, we examine automatic shim generation techniques for third-party Web

services, whose development were not workflow-aware. Existing approaches provide solutions to the

shimming problem only through adhoc mechanism and fall short in providing generic solution. We

address this limitation by automatically inserting a piece of code called shims or adaptors in order

to resolve the data type mismatches.

2

Second, the volume of big data results in a large number of datasets that needs to be

queried and analyzed in an effective and personalized manner. Further, there is also a strong

need for sharing, reusing, and repurposing existing tasks and workflows across different users and

institutes. However, existing workflow systems are mainly single-user oriented with limited sharing

and reusing functionalities. To overcome such limitations, we propose a folksonomy-based social

workflow recommendation system to improve workflow design productivity and efficient dataset

querying and analyzing.

Third, the volume of big data results in the need to process and analyze data of ever

increasing in scale, complexity, and rate of acquisition. But a scalable distributed data model is still

missing that abstracts and automates data distribution, parallelism, and scalable processing. In the

meanwhile, although NoSQL has emerged as a new category of data models, they are optimized for

storing and querying of large datasets, not for adhoc data analysis where data placement and data

movement are necessary for optimized workflow execution. We propose a NoSQL collectional data

model that addresses this limitation.

Finally, the volume of big data combined with the unbound resource leasing capability

foreseen in the cloud, facilitates data scientists to wring actionable insights from the data in a time

and cost efficient manner. We propose the BARENTS scheduler that supports high-performance

workflow scheduling in a heterogeneous cloud computing environment with a single objective to

minimize the workflow makespan under a provided budget constraint.

The dissertation is organized as follows: Chapter 2 reviews the research background that

covers the shimming problem and the primitive workflow model, the folksonomy based social recom-

mendation system for big data workflows, the NoSQL collectional data model, and the BARENTS

scheduler. Chapter 3 presents our work on the shimming problem and the primitive workflow

model. Chapter 4 presents our work on a folksonomy based social recommendation system for big

data workflows. Chapter 5 presents our work on our proposed NoSQL Collectional Data Model.

Chapter 6 presents our scheduling algorithm called BARENTS scheduler, which is used to sched-

ule Big Data Workflows in the Cloud under a user defined budget constraint. Finally, Chapter 7

concludes the dissertation by proposing future work and possible research directions.

3

CHAPTER 2: RELATED WORK

2.1 The Shimming Problem and Primitive Workflow Model
The notion of the shimming problem was first coined in [6]. Due to the heterogeneous nature

of the data involved in solving complex scientific problems, output of one program or application will

not be always compatible with another program or application and hence the interoperability of both

programs and applications to work together is a challenge. The challenge of interoperability between

the mixed data types is often termed as “shim” and there has been much work done in classifying and

solving the shimming problem. Shim is broadly classified into 1) semantic compatibility 2) syntactic

compatibility. In [6], the author introduced shims as a technique to align or mediate mismatching

third party Web services that has incompatible input and output. Other work has been done to

solve the shimming problem in literature such as [11] in which a mapping language is proposed to

use OWL ontologies in order to capture the semantics of a data source and the instances of these

ontology concepts are used to support conversion of data between different formats. Although this

technique introduces the ontology model that can be used to solve the shimming problem to some

extent from the semantic incompatibility perspective, it is very complex to implement and is not

usable. In [1], the author proposed an approach to solve the shimming problem by automatically

inserting the shims into scientific workflow but the approach only supports relational data and does

not have any contribution towards other data types.

In [12], the author proposed the task model in scientific workflow and classified the shim-

ming problem into TYPE-I and TYPE-II shimming problems. Further this approach uniquely

allows shims to be either invisible or visible at the workflow level, supporting both functional and

operational perspectives of scientific workflows Although the work was well cited and accepted in

the scientific workflow community, the proposed task registration model is much complicated as

the model contains more than one component within a single task and the shimming needs to be

done while registering a task into the system through complex mapping between the components

within a task, therefore complicates the system and is not usable. In [13], the author proposed

to reduce the shimming problem in scientific workflow to the runtime coercion problem and de-

fined the notion of well typed workflow. But this approach did not address the challenges incurred

during registration of a p-workflow and did not answer the question on how the mapping occurs

4

from the input/output port of the p-workflow to the input/output of the p-workflow component

and did not provide any solution to guarantee interoperability between the p-workflow and other

upstream/downstream workflows connected to it .

None of the above technique addresses the shimming problem that exist in registering third

party applications such as web services, command lines applications as a p-workflow , which is the

focus of this paper. In this paper, we provide two solutions:

1. For a command line based application, we have formulated the IP2I and O2OP mapping table

and proposed the solution in a case by case approach.

2. For a Web service based application, we have provided a solution to separate the registration

from the configuration, thereby easing the registration process of a Web service operation

as a p-workflow into our DATAVIEW system. Shimming is automatically done inside the p-

workflow using the user driven configuration mechanism. In addition, our approach also parses

the WSDL file automatically to get the input and output information and hence automates

the conversion of a workflow unaware Web service operation as a p-workflow from end to end

and manage to guarantee interoperability with both upstream and downstream workflows.

We also addressed challenges incurred due to the large datasets that needs to be stored

and managed in scientific workflow, by integrating MongoDB , a NOSQL database within our

DATAVIEW system as a preliminary step to do big data analyzing and processing. Our data

product manager provides a layer of abstraction on top of the MongoDB and thereby not making

major changes to our DATAVIEW architecture [7].

2.2 A Folksonomy Based Social Recommender System for Workflow

and Data Reuse
The notion of artifact reuse and recommendation is well studied in the software engineering

field. The folksonomy based approach, in which the system provides the users with the ability

to publish and categorize various resources such as (web pages, photos, videos, documents, etc.)

online with “social annotations” or “tags”. In [16], the author explore three properties of folksonomy,

namely the categorization, the keyword and the structure property and propose a personalized search

framework utilizing the folksonomy. In the information retrieval community, the author [17] propose

5

a formal model and a new search algorithm for folksonomies. In [18], the author explore the social

annotations to optimize web search. In the paper, the author propose two novel algorithms called

SocialSimRank and SocialPageRank to measure the similarity and popularity of web pages from

web users perspective.

In the scientific workflow community, building visualization and workflow pipelines is a

large hurdle from the users’ perspective. It is time consuming to identify a reusable workflow by

manually scanning through more than hundreds of workflows in the workflow repository. In [19],

the authro propose VisComplete, an autocomplete suggestion technique to help users construct

pipelines in the VisTrails system. In the paper, the authors propose a technique to find the syntactic

similarity between the incomplete workflow and the workflows in the workflow repository by sub

graph matching. In [20], the author propose a case-based reasoning approach to assist composition

of workflows using the Lesk algorithm to perform the keyword matching between the input and

output of the incomplete workflow and the workflows in the workflow repository. In [21], the author

propose an approach to recommend services in the workflow composition process. The author

models existing scientific artifacts, services and workflows as a PSW network and recommends

services based on the service usage history.

None of the above techniques address the workflow reuse problem using the syntactic and

semantic information available in the workflow specification file. Further the above techniques do

not address the scientific workflow reuse in the granularity of recommending the producer and

consumer workflows based on the input and output port type matching. Our technique validates

the port types to recommend syntactically compatible workflows. Next, we leverage the user profile

and the tags associated with the incomplete workflow and the workflows residing in the workflow

repository to recommend a suitable workflow that is both relevant and preferred by the user to be

a producer or consumer of the incomplete workflow.

2.3 A NoSQL Collectional Data Model
Existing workflow management systems such as [33–35] does not support a scalable data

model that is suitable for processing big data in the cloud. Kepler proposes a collection oriented

model in which the data is nested in different levels as collections and sub collections with arbitrary

data type. The data model is represented using XML and is semi structured in nature, whereas our

6

collectional data model is structured and is much simple to process big data workflows. VisTrails

provide a good visualization framework and support a semi structured representation of the data, it

strongly lacks in storing hierarchical information such as collections and the workflow engine does

not support scalable workflow execution in the cloud. Taverna supports singleton values such as

strings, byte arrays and list of singletons. Lists are defined to a specific level and are not capable

to handle nested data to arbitrary levels.

In [30,32], the author propose a collectional data model to process scientific workflows in one

machine and a set of well-defined operators and constructs. The proposed model and the operators

are not scalable and do not consider the data partitioning and the workflow execution in the cloud.

In [31], the author propose an approach to improve the programmability and scaling flexibility

of big data application through different parallelization techniques. They propose a list of DDP

patterns that are used to process key value pairs and parallelize the execution of the user-defined

functions. Although their approach is similar to the workflow constructs proposed by us, our Map

and Reduce workflow constructs can be applied to any given workflow by leveraging our proposed

NoSQL collectional data model.

Existing big data NOSQL databases are classified into the following four category of databases:

1) key-value databases [36], such as Memcached and Redis, 2) document-oriented databases [37],

such as RavenDB, MongoDB and CouchDB, 3) column-family databases [38, 40], such as Apache

Cassandra and HBase, 4) graph databases [39], for example: Neo4J, FlockDB and GraphDB. The

existing NOSQL databases are not suitable for big data workflows because they do not support ad

hoc sophisticated analysis and is not extendible to workflow optimization.

None of the above techniques provides a scalable data model for data centric big data

workflows. In this paper, we propose a NoSQL collectional data model that is both scalable and at

the same time is well structured for performing ad hoc analysis on large datasets. Further, we also

propose two new cloud workflow executors that take advantage of the proposed NoSQL data model

to improve the performance of workflow execution.

7

2.4 Scheduling Big Data Workflows in the Cloud under Budget

Constraints
While the cloud computing paradigm [67–69] provides a promising platform for running big

data workflows, performance tuning of workflow execution in the cloud remains an important and

challenging problem. One challenge is the selection of cloud resources. Given a workflow w, how

many virtual machines are needed to run w in the cloud? What types of virtual machines are

needed? As a cloud typically provides a set of heterogeneous virtual machine types that come with

different configurations and prices, the selection of such cloud resources often need to consider the

characteristics of input datasets and workflows, and the QoS parameters provided by a user such as

budget and deadline.

Over the past decade, there have been several workflow scheduling algorithms [74, 75],

proposed that play a crucial role in running workflows efficiently on the cloud. The scheduling

algorithms are widely categorized into static and dynamic algorithms. The existing static algo-

rithms [51–54] do not consider the runtime estimation and hence are not very efficient in a het-

erogeneous cloud computing environment, where there is a cost and time for the computation

performed in different resource types and a cost and time for the data movement from one resource

to another. On the other hand, many existing dynamic algorithms [61, 62] are capable of adapting

to the unexpected delays that occur while executing the workflow in the cloud.

The existing scheduling algorithms are either user driven with the QoS constraints set by

the user or system driven with no constraints. There are two types of QoS constraints primarily

proposed so far in the existing algorithms: 1) budget constraint [74, 75], 2) deadline constraint

[72, 75]. Budget-constrained workflow scheduling algorithms aim to minimize the total execution

time of a workflow while meeting a user specified budget constraint. Deadline-constrained workflow

scheduling algorithms aim to minimize the total monetary cost of running a workflow while meeting

a user specified deadline. There are some algorithms that belong to both categories [72,75] as they

aim to satisfy both the budget and deadline constraints, and hence are used for each category by

relaxing one of the constraints. There are some algorithms that are solely based on system driven

8

optimization such as [57], which does not consider any constraints. The goal of those algorithms is

to generate the schedule with a single objective, which is to minimize the makespan.

There have been several existing works in dynamic workflow scheduling algorithms. In [55],

the author propose Dynamic Provisioning Dynamic Scheduling (DPDS) algorithm. The authors

propose to schedule the workflow ensembles on the cloud by maximizing the execution of the total

number of user prioritized workflows under a user provided QoS constraints such as budget and

deadline. In [56], the author developed a probabilistic scheduling framework called Dyna that

minimizes the execution cost under deadline constraint by considering the dynamic nature of the

cloud computing such as performance and amazon spot instances pricing. In [57], the author

propose the SCPOR scheduling algorithm to dynamically schedule a workflow in heterogeneous

cloud environment.

The SCPOR algorithm prepares the workflow schedule with the goal of minimizing the

makespan by dynamically provisioning and deprovisioning resources of several types with no con-

straints. In [58], the author propose an adaptive, resource provisioning and scheduling algorithm

called WRPS to generate the workflow schedule in a heterogeneous cloud environment. The algo-

rithm has a single objective to minimize the execution cost of the workflow under a user provided

deadline constraint by modeling the problem as an unbounded knapsack minimization problem and

is based on dynamic programming. The major limitation of this approach is that each partition is

considered as an independent bag of tasks and hence only local optimization is performed in each

partition of the workflow.

Furthermore, the WRPS algorithm fails to consider the dependencies that exist between the

partitions in a workflow, which is a salient feature of the data centric workflows [63, 64]. Another

limitation of the WRPS algorithm is that the approach only works for a homogeneous set of tasks

in a bag of tasks. However, in reality the data centric workflows consists of heterogeneous tasks and

the scheduling optimization is required to consider it [59]. Our BARENTS scheduler is different

from the WRPS scheduling algorithm, because we consider the dependencies that exist between

the partitions in a workflow through a system generated threshold, credit and debit values. Besides

creating initial budget allocation, our approach also dynamically creates the sub-budget adjustment

through the runtime estimation. Other dynamic scheduling algorithms [60–62] have also been

9

proposed. However, these algorithms have only been validated in a simulated environment and not

in a real big data workflow system.

10

CHAPTER 3: THE SHIMMING PROBLEM AND
PRIMITIVE WORKFLOW MODEL

3.1 Introduction
In recent years, the term “big data” has become a buzzword in both industry and academia.

It is frequently used to refer to the method of processing and analyzing large amounts of heteroge-

neous types of data to mine hidden patterns, correlations, trends, and other useful information to

guide enterprise decisions and strategies for cutting cost or increasing revenues [14, 15]. Scientific

workflows, which were originally developed for automating the data analysis process of scientific

data (often large in volume and vary in types) to enable and accelerate scientific discovery, are now

increasingly used for the processing and analysis of business data as well. However, the challenges

of big data, including volume, velocity, and variety pose additional challenges to scientific workflow

research.

Scientific workflows consist of one or more computational components connected to each

other and possibly to some input data products. Each of these components can be viewed as a

black box with well defined input and output ports. Each component is also a workflow, either

primitive or composite. Primitive workflows are bound to executable components, such as Web

services, scripts, or high performance computing (HPC) services and are viewed as atomic blocks.

Composite workflows consist of multiple building blocks connected via data channels. Each of the

building blocks can be either a workflow or a data product.

The shimming problem has received much attention in the scientific workflow community

[6, 11–13], in which special kinds of adaptors, called shims, are inserted between workflow tasks to

resolve the data type incompatibility issue. However, to meet the challenges of big data, several

issues in the existing approaches need to be examined. The first issue is to scale the registration

and configuration procedure to a large number of workflow tasks, which is critical for big data

workflows. The second issue is to ease the integration of a large number of remote Web services and

other heterogeneous task components, such as command line executables, that can consume and

produce data in various formats and data models into a uniform and interoperable workflow. In

particular, we examine automatic shim generation techniques for third-party Web services, whose

11

development were not workflow-aware. Existing approaches fall short in usability and scalability in

addressing these issues.

In this chapter we 1) propose a new simplified single-component based task model based on

extensive experiences and lessons learned from our original multiple-component based task model.

The new model separates registration from configuration and eases the process of registering exter-

nal functional components (such as Web services) into p-workflows; 2) propose a shim generation

algorithm that elegantly solves the shimming problem raised by Web service based scientific work-

flows; and 3) we integrate MongoDB , a NoSQL document-oriented database system for storing and

managing large-scale unstructured documents. A new version of the DATAVIEW system has been

developed to support the proposed techniques and a case study has been conducted to show the

feasibility and usability of our proposed techniques.

3.2 Primitive Workflow Model
Primitive workflows (a.k.a tasks or p-workflows) are the basic building blocks of a scientific

workflow. Composite workflows were used to represent workflows that consist of multiple workflows.

Our previously proposed task model [12], contains multiple components inside a single task and

hence complicates the registration process as complex shimming needs to be done between the

components at design time in order to register any task as a p-workflow. In our new model, we

elegantly solve this problem by having only one component inside a task and ease the registration

process. At design time, we also provide a configuration mechanism through which we get the input

and output port information from the user, when necessary.

One appealing feature of our primitive workflow model is that it provides an abstraction

technique, in which different heterogeneous task components can be abstracted into uniform p-

workflows so that they can interoperate with one another. While a task manager needs to be aware

of the implementation details of each p-workflow so that she can know how to register it as a p-

workflow; once registered, such implementation details are hidden from the workflow engineer, who

can drag and drop any p-workflow into the design panel, regardless of how it is implemented and

connect them with one another into a composite workflow. In our system, we provide a user friendly

GUI for design and modification of p-workflows. As shown in Figure 3.1(b), using our model, we

classify p-workflows into the following:

12

1. System Defined operations: They are also called built-in p-workflows. These p-workflows

come with a DATAVIEW installation. Examples of such p-workflows include the logical oper-

ations (such as AND, OR, and NOT) and relational algebra operators (such as SELECTION,

PROJECTION, and UNION).

2. User Defined Operations: These are the p-workflows that are provided by task engineers

through registration and configuration. The task engineer provides the task interface and

its implementation detail during the registration process. Examples of such p-workflows

include command line based application, web service based applications and hadoop based

applications.

In order to simplify the workflow design process and to emphasize the usability of our system,

we maintain a workflow repository through which our users can easily access existing workflows and

use them to compose more complex workflows in the workflow design panel Furthermore, in our

model, we separate workflows into two categories: reusable workflows and executable workflows.

Reusable workflows are designed without connecting any input and output data products to the

workflow, thereby they are mainly used by the workflow engineer to build reusable templates. On

the other hand, executable workflows contain input and output data products connected to the

input ports of workflows, and they are mainly used by data scientists to perform data analysis and

processing. Workflow design is supported through our workflow specification language known as

SWL that defines a scientific workflow according to the DATAVIEW Workflow Model [7], through

(a) (b)

Figure 3.1: (a) our proposed primitive workflow model; and (b) a classification of p-
workflows.

13

which one can create scientific workflows with different layers of granularity in a nested manner.

SWL, which is automatically created on the server side while designing any workflow, is formulated

by translating the workflow diagram that is represented in our workflow visualization language

(mxGraph). mxGraph is mainly used at the client side to render and visualize a workflow as a

diagram. While a workflow is saved into our system, both the mxGraph and the SWL are serialized

and stored into our database. As shown in Figure 3.1(a), our proposed new primitive workflow

model consists of the following three layers:

1. Logical Layer: The Logical layer contains the p-workflow interface that models the port details

of the workflow such as input port ID, input port type, output port ID, and output port type.

At run time, the data flow occurs through the data channel connecting the source workflow

constituent to destination workflow constituent.

2. Mapping Layer: The Mapping layer contains a list of mapping information such as mapping

of input port of the p-workflow interface to input of the p-workflow component (IP2P) and

mapping of output of the p-workflow component to output port of the p-workflow interface

(O2OP).

3. Physical Layer: The Physical layer contains only one p-workflow component at a time, that

model the services and or application that are used to implement the task. Hence registration

of p-workflow is made simple. Heterogeneous characteristics of the p-workflow are captured

and modeled in this layer including the inputs, outputs, location of workflow component (such

as Web service WSDL file, command line executable file, hadoop jar file).

Using our primitive workflow model, task engineers can easily register a command line based

application as a p-workflow by uploading their executable into our DATAVIEW server and providing

configuration details, such as input type, input mode, output type, and output mode. As shown in

Figures 3.1 and 3.2, we have formulated a mapping table based on different cases that a command

line application can fall under in respect to the input and output types. We have identified the

following 6 input modes: 1) ByValue - IP2I mapper pass the value from the input port as an input

argument during component invocation; 2) ByFile - IP2I mapper generate unique file name, create

the file and write content from the input port into the file, pass file name as an argument during

14

component invocation; 3) ByFixedFile - IP2I mapper create a file with the fixed file name and write

content from the input port into the file, pass file name as an argument during component invocation;

4) ByStdin - IP2I mapper get the value from the input port and pipe it to the input stream during

component invocation; 5) ByEnv - IP2I mapper will create environment variable with a user driven

name and take the value from the input port and write into it during the component invocation;

6) ByConst - IP2I mapper simply add a constant value as one of the argument during component

invocation. On the other hand, we have identified the following 3 output modes: 1) ByValue - O2OP

mapper simply takes the output that is returned during the component execution which could be

either stdout or exit code and bind it to the output port; 2) ByEnv - O2OP mapper will fetch the

value from the environment variable using the name provided by user during registration and bind

the value to the output port during component execution; 3) ByFile - O2OP mapper will simply

fetch the value from the file name which is provided through one of the arguments and bind the

value to the output port during component execution.

Table 3.1: IP2I mapping table.

In order to demonstrate the strength of our model, we have implemented and tested the

following six cases in which a command line executable can be registered and configured into a

p-workflow in our DATAVIEW system:

Case 1: suppose we have a command line java application addition1.class which takes two

command line arguments, both of Integer type, and produces the sum of the two integers as the

stdout. After converting addition1.class into a p-workflow pw_addition1, the IP2I mapper will take

15

Table 3.2: O2OP mapping table.

the two integers from input ports i1, i2 and then use them as two command line arguments (inputs)

for pw_addition1, after the execution of pw_addition1, the O2OP mapper will route the output in

the stdout to output port o1 for pw_addition1. Figure 3.2 shows a simple example of a scientific

workflow of case1 implemented in our system.

Figure 3.2: Command line based p-workflow.

16

Case 2: suppose we have a command line java application addition2.class which takes three

command line arguments: arg1, arg2, and arg3 where arg1 and arg2 being the input file names that

contain an integer, respectively, and arg3 being the output filename that will contain the output

sum. After converting addition2.class into a p-workflow pwaddition2, the IP2I mapper will generate

three distinct unique file names (strings), arg1, arg2, and arg3. and will take the two integers from

input ports i1 and i2 and then create two files with names arg1 and arg2 and write the two numbers

into these two files, respectively, after the execution of addition2.class with arguments arg1, arge2

and arg3, a file with name arg3 will be created which contains the output sum, then the O2OP

mapper will read the number in file arg3 and route the output to output port o1 for pw_addition2.

Case 3: suppose we have a command line java application addition3.class which takes two

command line arguments: arg1, arg2, where arg1 is the first integer and arg2 is the input file name

that contains the second integer, and produces the sum of the two integers as the stdout. After

converting addition3.class into a p-workflow pw_addition3, the IP2I mapper will take the integer

from input port i1 and pass to addition3.class as the first argument arg1, and creates a file called arg2

and writes the second integer from input port i2 to file arg2. After the execution of pw_addition3,

the O2OP mapper will route the output in stdout to the output port o1 for pw_addition3.

Case 4: suppose we have a command line java application addition4.class which takes

one command line argument: arg1 where arg1 is the first integer and get the environment variable

with name env1 that contains the second integer and produces the sum of the two integers as the

stdout. After converting addition4.class into a p-workflow pw_addition4, the IP2I mapper will take

the integer from input port i1 and pass to addition4.class as the first argument arg1, and creates

an environment variable with name env1(that is user driven) and will take the integer from input

port i2 and write it into the environment variable. After the execution of pw-addition4, the O2OP

mapper will route the output in stdout to the output port o1 for pw_addition4.

Case 5: suppose we have a command line java application addition5.class which takes two

command line arguments, both of integer type, and produces the sum of the two integers as the

stdout. After converting addition5.class into a p-workflow pw_addition5, the IP2I mapper will take

the first integer from input port i1 and use it as the first command line argument (input) and use

a fixed value (constant) as the second command line argument (input) for pw_addition5, after the

17

execution of pw_addition5, the O2OP mapper will route the output in the stdout to output port

o1 for pw_addition5.

Case 6: suppose we have a command line java application addition6.class which takes two

stdin (standard command line inputs) and convert it into integer type, and produces the sum of

the two integers as the stdout. After converting addition6.class into a p-workflow pw_addition6,

the IP2I mapper will take the first integer from input port i1 and pipe it into the input stream as

the first stdin (input) and take the second integer from input port i2 and pipes it into the input

stream as the second stdin (input) for pw_addition6, after the execution of pw_addition6, the

O2OP mapper will route the output in the stdout to output port o1 for pw_addition6.

We identify the following advantages of our primitive workflow model:

1. Domain Proficiency: Since the developers of these third party applications are experts in the

domain and the software components are well studied and implemented, using it within a

scientific workflow is a big advantage and simplifies the workflow design process through the

anatomy of reusability and sharing.

2. Reliability: These third party applications are highly reliable because they are used by many

scientists all over the world and hence most of the problems/bugs in the software will be fixed

promptly.

3. Infrastructure: Most of third party applications such as Web services are hosted in a remote

server and hence high computation cost is not an issue as the infrastructure is available free

through invoking the Web service.

4. Support: Many third party applications are free to download, install and also have a forum

where people discuss various issues and fixes about these software components.

3.3 Shim Generation Algorithm
In this section, we first propose an approach to solve the shimming problem in our DATAVIEW

system, that occurs during registration of any Web service based p-workflow through a user-driven

configuration mechanism and then provide a shim generation algorithm to translate a p-workflow

into a composite workflow by wrapping two special adaptors known as pCombiner and pSplitter

18

shims around the p-workflow. Next, we demonstrate an example of how our GenShims algorithm

works. Because of the heterogeneous nature of scientific workflows, our system provides a platform

to register primitive-workflows from different sources such as Web services, command line applica-

tions. However, this then becomes an issue because of the incompatibility of data types between

the input/output port of a p-workflow and input/output of component connected to it. Due to

the shimming problem that exists during the workflow composition, at run time the p-workflow is

not interoperable with other types of workflow constituents. Through a user driven configuration

mechanism, we separate the shimming problem from registration and thereby making p-workflow

registration simple and usable. After registering the p-workflow, the shimming problem is solved

by configuring the input and output port of any arbitrary p-workflow and the system automatically

creates instances of two special kinds of shims known as pCombiner and pSplitter. Finally a new

wrapper workflow is created on the fly during the p-workflow configuration with the instances of

pCombiner and pSplitter inserted into the new wrapper workflow. In this way we hide the shim

at the workflow level and abstract the existence of shim from the data scientist perspective, but

during workflow execution, a shim automatically does the conversion based on the configuration

details provided by the workflow designer. Data scientists would simply need to drag and drop the

wrapper workflow, connect data products and execute the workflow to view the results.

In our DATAVIEW system, a task engineer can easily register any arbitrary Web service

operation by providing the system with the WSDL file of any arbitrary Web service. We have

implemented WSDL parser functionality within our system that can automatically get the input

and output of an operation from the WSDL and convert it into the input and output port of

the workflow. Additionally we have generated automatically two special shims: pCombiner and

pSplitter. pCombiner shim, is a special kind of shim adaptor that takes in any number of arbitrary

data from the input ports of arbitrary types and create a new data product of type XML and bind

the XML data to the output port. The pSplitter shim, is another special kind of shim adaptor that

takes in data from the input port of type XML and extract the elements inside it in a unique manner

and split the result into multiple outputs, which are then bound to multiple output ports. Input

port details of the pCombiner such as (no of input ports, input port types) and output port details

of the pSplitter such as (no of output ports, output port types) are identified during the p-workflow

19

configuration. As shown in Figure 3.5, the proposed GenShims algorithm takes an input p-workflow

ws1 and converts it into a composite workflow c-ws1. In order to create the composite workflow

c-ws1, our algorithm creates both workflow specification (SWL) and visualization (mxGraph) for

the workflow automatically. Our pCombiner is IP2I mapper for Web service based p-workflow and

each time GenShims algorithm is executed, it creates a new instance of pCombiner. On the other

hand, the pSplitter shim is an O2OP mapper for Web service based p-workflow and each time the

GenShims algorithm is executed, it creates a new instance of pSplitter. Figure 3.4 shows the SWL

of the workflow with shim inclusion in our DATAVIEW system.

Our approach currently works for Web services with primitive types of int and string for the

following cases of web service operation: one input and one output, one input and multiple outputs,

multiple inputs and one output, multiple inputs and multiple outputs, no input and one output, no

input and multiple outputs, no input and no output, one input and no output, multiple inputs and

no output. In the future, we will explore the above cases with complex data types as inputs and

outputs.

In Figure 3.3, we show an example of shim generation for Web service based workflows. To

simply the explanation, we have developed a Web service ws_addsubtract in Java, which takes a pair

Figure 3.3: Web service based p-workflow.

20

Figure 3.4: Workflow Specification (SWL) with shim inclusion.

21

Figure 3.5: GenShims Algorithm.

22

of integers a and b, and returns their sum and difference, respectively as two integers c and d. After

registering theWSDL URL of this Web service. (http://dmsg2.cs.wayne.edu/axis2/services/pWorkflow1?wsdl)

in DATAVIEW, the system automatically extracts all the operations of the Web service. In our

case, the user selects the only operation available, pWorkflowOp1, and the system will automati-

cally convert it into p-workflow pWorkflowOp1. This workflow has one single input port of XML

type and one single output port of XML type. The user can then click the configure link in this

workflow, which allows the user to choose the number of input ports (which is 2) and the number of

output ports (which is also 2). After the completion of the configuration, two shims, pCombiner19

and pSplitter19, will be generated automatically, and a new complex workflow cw_pWorkflowOp1

is constructed. Workflow cw_pWorkflowOp1 will have two input ports a and b, and two output

ports c and d.

3.4 Integration of NoSQL Database
NoSQL databases are distributed and schemaless databases that have recently emerged as

a technology developed to address the need to store and process huge volumes of data. Existing

NoSQL databases such as Riak, MongoDB , Cassandra, HBase, Neo4j enable horizontal scalability

across a large number of commodity servers. In DATAVIEW, we have integrated MongoDB within

our data product manager to store and manage different data products. MongoDB is a scalable, open

source document-oriented database that is commonly classified as a NoSQL database. MongoDB

uses JSON-like documents with no schema to store data inside different collections. In DATAVIEW,

execution of a scientific workflow consumes and produces huge amount of distributed data objects.

These data objects are heterogeneous of various data types. A scientific workflow might use mixed

data types as the data could be any form and aligns well with the schemaless and scalable nature

of MongoDB . In DATAVIEW, we provide an abstraction of data objects stored in MongoDB as a

data product.

Three challenges of Big Data namely the volume, velocity and variety is a key issue focused

today in both academia and industry. Data can be from different sources and the system should have

the capability to some how register and import the data and perform analysis and process the data.

One of the main advantage of integrating MongoDB in our system is that, it is horizontabally scalable

across the commodity servers and hence the data from the scientists can be shipped through our

23

Table 3.3: Data Types supported in DATAVIEW.

data product manager with high performance. Another advantage is MongoDB offers MapReduce

support at the database level to process huge amount of data into meaningful aggregated results.

MongoDB applies the map phase to each document process the data.

One of the main advantage of integrating MongoDB in our system is that, it is horizonta-

bally scalable across the commodity servers and hence the data from the scientists can be shipped

through our data product manager with high performance. Another advantage is MongoDB offers

MapReduce support at the database level to process huge amount of data into meaningful aggre-

gated results. MongoDB applies the map phase to each document inside the collection that match

the query condition and emits a (key, value) pairs. And then the reduce phase is run for those keys

that contain multiple values and data is collected and aggregated to form a new collection in the

database. Our solution to address the challenge occurred by such a large variety of types in big data

is to classify the different data types into a custom defined approach and then perform shimming

to transform data into one of the DATAVIEW data types. As shown in Table 3.3, we defined the

notion of DATAVIEW data type in our system and broadly classify data products into the following

categories: 1) scalar 2) relational 3) collectional 4) XML and 5) file.

3.5 Case Study
In our DATAVIEW system, we have created several automotive consumer review big data

primitive workflows in order to collect, merge, extract, and analyze the raw data from automotive

review websites, including KBB, Edmunds, and MSN Autos. As part of our case study, we deployed

24

a MongoDB sharded cluster in FutureGrid that provides a schemaless, horizontabally scalable, and

MapReduce enabled data storage and processing in a cluster enivronment. In order to deploy the

MongoDB cluster, we created one VM instance with 4 GB memory and 40 GB disk space and

have setup the master node where the mongos is running. In addition, we created 3 VM instances

with each 2 GB memory and 40 GB disk space and have setup the config servers which contains

the metadata information such as shard and block level information. In MongoDB, the config

servers are single point of failure and hence we created 3 instances for replication purpose on node

failure. Finally we created 3 more VM instances with each 4 GB memory and 60 GB disk space and

have setup the mongod shards that contains the actual data sharded (split inside chunk and new

chunks). In addition to deploying the sharded cluster, we have also integrated the MongoDB Java

driver within our DATAVIEW system, in order to make a connection with the MongoDB cluster

and perform several operations on the data.

As shown in Figure 3.6, we created an automotive consumer review analysis workflow.

Firstly, we created a non map reduce p-workflow known as SearchNonMR that takes in three inputs

(AutoReview, FieldName1, SearchTerm1) and query the FieldName on the master node of the

MogoDB cluster with an or condition to find the match for the list of search terms provided by the

user such as “MPG, Fuel Economy, Excessive comsumption”. During our experiments we found that

the execution of the workflow is time consuming and takes around 629 seconds for inserting 8425

(11.25 MB) records into a new collection in the MongoDB cluster. Secondly, we created two map

reduce p-workflows known as SearchLevel1MR and SearchLevel2MR to process the consumer review

dataset in a map reduce manner and break down the data into State and City level. SearchLevel1MR

takes in 3 inputs (AutoReview, FieldName2, SearchTerm2) and execute the map reduce program

written with a mapper that emits (Search Term, Review) based on a REGEX match condition

and a reducer that aggregates all the review for distinct search terms. Output of the map reduce

function is automatically binded to a new collection inside the MongoDB cluster. Output from the

SearchLevel1MR is passed as input to SearchLevel2MR which would execute a map reduce program

with a mapper that loops through each item in the aggregated review and for each review item

it emits for example (State Name, Review) based on a REGEX match condition and a reducer

aggregates all the reviews for distinct states. During our experiments we found that the execution

25

Figure 3.6: An Automotive Consumer Review Analysis Big Data Workflow.

26

Figure 3.7: An Automotive Consumer Review Data Collection/Integration Workflow.

Figure 3.8: An Automotive Consumer Review User Meta Data Extraction Workflow.

27

of the workflow takes around 17 seconds for creating a output collection of size 6 MB. Thirdly, we

created a workflow to get the list of users who posted reviews in a list of states. During workflow

execution a map reduce program is executed to get the list of reviews that contain the match for one

or more of the items in the list of states and the aggregated review are stored into a new collection

in MongoDB. Fourthly, we created a workflow to break down the review into Year, Month and Date

and hence the data scientist can easily visualize how many reviews were posted for a particular year,

month, date etc.

In order to perform data collection, as shown in Figure 3.7 we created a series of command

line based p-workflows known as KBB, Edmunds and MSN where data crawling procedures are

executed internally and passed into a customized HTML parser, to extract consumer review infor-

mation. Output from the three data collection workflows are passed as input to the data integration

workflow where the data is integrated together as one collection by executing the union operation

on the input dataset. As shown in Figure 3.8, we created data extraction p-workflows such as Gen-

der, Location, Age and Race to extract the users me-ta data information automatically from the

consumer reviews. Due to space limitation, we have not included the details of the implementation

for data extraction p-workflows.

3.6 Chapter Summary
In this chapter, we have proposed a new simplified single-component based task model

based on extensive experiences and lessons learned from our original multiple-component based

task model. Further, we have proposed our shim generation algorithm that elegantly solves the

shimming problem raised by Web service based scientific workflows. Furthermore, we discussed the

experiences from integrating MongoDB , a NoSQL document-oriented database system for storing

and managing large-scale unstructured documents.

28

CHAPTER 4: A FOLKSONOMY BASED SOCIAL
RECOMMENDATION SYSTEM FOR WORKFLOW REUSE

4.1 Introduction
In the past decade, scientific workflow systems have significantly improved scientists ability

to structure scientific processes, use computational resources, and analyze their data more efficiently.

Such productivity can be further enhanced by sharing, reusing, and repurposing existing tasks and

workflows across different users and institutes. However, existing scientific workflow systems are

mainly single-user oriented with limited sharing and reusing functionalities. To overcome such

limitations, we propose a folksonomy-based social workflow recommendation system to improve

workflow design productivity.

The past decade has witnessed the growing benefits of using scientific workflow systems to

improve the productivity of designing scientific processes and data-driven scientific discoveries in

various domains, such as bioinformatics [22], neuroinformatics [23], ecology [24], oceanography [25],

astronomy [26], and high-energy physics [27]. However, the productivity of workflow design is still

hampered in existing scientific workflow systems in two ways. Most existing scientific workflow man-

agement systems are single-user oriented and thus across user sharing and reuse cannot be achieved

within the system per se. Meanwhile, workflow design is largely still a tedious and error-prone

process with little or no automation support. While social scientific workflow sharing environments,

such as MyExperiment [28], greatly facilitate workflow sharing and reuse across tools, users, and

institutes, such sharing is external to a workflow design environment and thus provides little help

to the design of an in-progress workflow.

In the meanwhile, folksonomy, the practice and method of collaboratively creating and

reusing tags to annotate and categorize digital contents, has become a key characteristic of Web

2.0 [18]. In contrast to a taxonomy, which has a fixed vocabulary, a folksonomy allows each author or

user to create his or her own terms contributing to an evolving folksonomy. Such flexibility greatly

improves the productivity of tagging and annotation and engagement of users. As a result, more

digital contents are annotated and searchability is improved. Moreover, a folksonomy keeps track

of emerging trends in tag usage and user interests. Therefore, it is natural to adopt folksonomies to

annotate and categorize scientific workflows.

29

To overcome the above limitations of existing workflow design and sharing systems, in this

chapter we propose a folksonomy-based social workflow recommendation system to improve work-

flow design productivity. In this chapter, we i) developed a web-based workflow design environment

(called Web-bench) to allow users to create workflows and collaboratively annotate and categorize

them using social tags. The resulted folksonomy improves workflow searchability and shareability.

ii) proposed several workflow recommendation strategies to automatically or semi-automatically

augment an in-progress workflow, leveraging both structural and semantic similarities between

workflows and guiding information extracted from previously created workflows in the database.

iii) implemented the proposed environment and strategies in a prototype based on the DATAVIEW

scientific workflow management system and validated our approach with numerous use cases.

4.2 An Overview of Workflow Recommendation Framework
Our proposed workflow recommendation framework is used to improve workflow design

productivity by recommending a suitable workflow that is both syntactically and semantically com-

patible to any incomplete in-progress workflow. In accordance with the reference architecture for

scientific workflows [7,63], we propose a workflow design inspector, a syntactic recommender and a

semantic recommender as the core components of the workflow recommendation framework, which

are positioned in the Webbench and the Workflow Engine, two subsystems in the reference archi-

tecture. In Figure 4.1(a), we show the system architecture for DATAVIEW [63], which is composed

of seven loosely coupled subsystems, including the Webbench, the workflow engine, the workflow

monitor, the cloud resource manager, the data product manager, the provenance manager, and the

task manager. In Figure 4.1(b), we show an overview of the workflow recommendation framework,

in which two recommenders, the syntactic recommender and the semantic recommender, are located

in the workflow engine and the workflow design inspector in the Webbench, respectively.

The Webbench in Figure 4.1(a) features an online scientific workflow system that allows

data scientists to create, edit and run a visual scientific workflow online. In our DATAVIEW sys-

tem, we use mxGraph, a visualization language program, for representing the workflow design.

During workflow design, every time a new workflow is added to the workflow design panel, the

workflow design inspector extracts the list of complete and incomplete workflows that exist in

the workflow design panel. The workflow design inspector is the key compo-nent that drives the

30

workflow recommendation framework. During the workflow design process, the workflow design

inspector provides a clickable button called “Recommend Workflow” within the incomplete workflow

and sends the specification of the incomplete workflow to the workflow engine.

The workflow engine in Figure 4.1(b), on the other hand, invokes the SWL Parser to ex-

tract the specification of the incomplete workflow that is provided by the workflow design inspector.

Specification of the workflow contains logical details, mapping details, and physical details of the

workflow. Logical details include the workflow name, the input, and the output ports of the work-

flow. Mapping details include the mapping information that illustrates how the data product is

mapped to the input and the output port of the workflow. Physical details include information such

as the location of the code that is embedded inside the workflow. The syntactic recommender com-

ponent accepts the specification of the incomplete workflow and validates the connectivity on the

ports to check whether incompleteness is on either the input side or the output side of the workflow.

Incompleteness on an input requires a producer workflow whose output port shall be connected to

the input port of the incomplete workflow. Incompleteness on an output port requires a consumer

workflow whose input port shall be connected to the output port of the incomplete workflow. The

syntactic recommender then performs a look up in the workflow repository to find the list of work-

flows that contains an input port that matches the output port of the incomplete workflow. A list

of workflows that match with the port information of the incomplete workflow is then added to the

Figure 4.1: (a) DATAVIEW Architecture; (b) Workflow recommendation framework.

31

suggested workflow candidate list S that contains both the recom-mended producer and consumer

workflows.

Although the list of workflows in the suggested workflow candidate S is syntactically com-

patible with the incomplete workflow, those workflows might not be semantically relevant to the

incomplete workflow nor preferred by the user. Hence, the semantic recommender is used to fil-

ter and identify a sublist of workflow candidates from S that are also semantically compatible

by leveraging the tag annotations. The semantic recommender component com-putes a workflow

recommendation score based on both workflow similarity score and user interest matching score

between the incomplete workflow and each of the workflows in the suggested workflow candidates

S. with that of the tags associated with the incomplete workflow. After computing the workflow

recommendation score, we rank the workflows based on the recommendation score and a new list of

producer and consumer workflows is added to the suggested workflow candidate list T and finally

recommended to the data scientist.

4.3 A Folksonomy Based Workflow Model
Folksonomy [16] is a classification system derived from the practice and method of collabo-

ratively creating and managing tags to annotate and categorize content. As shown in Figure 4.2(c),

in folksonomy, a user tags a resource (e.g. workflow) and the ternary relationship between the user,

the tag and the resource is collectively known as tag assignment (TAS).

As shown in Figure 4.2(d), TAS can be represented as a graph consisting of a set of users, a

bag of tags and a set of workflows, thereby forming a folksonomy relationship. TAS emphasizes both

user preference and workflow tag relevance factors. In Figure 4.2(b), we show the user preference,

which is used to compute how much a particular user prefers the tag based on the users previous

tagging activities. In Figure 4.2(a), we show the workflow relevance, which is used to compute how

much a par-ticular tag is relevant to the workflow based on the tagging activities on the workflow.

Our previously proposed workflow model [59] contains the syntactic information of the work-

flow such as name, input port details, output port details and data mapping details. However, it

does not include any semantic information about the workflow except the workflow name. In our

new model, we support tagging the workflow during the workflow design process. Tags represent

lightweight textual information that provides more insights about the workflow and more impor-

32

tantly it is user driven. Hence the semantic information driven by the tags is leveraged to provide

support to the user by increasing the users workflow design productivity.

Definition 4.1: A Folksonomy is a tuple F = (U, T, W, Y) where U, T, and W are finite

sets, whose elements are called users, tags and workflows, respectively. Y is a ternary relation

between them, i. e.,

Y ⊂ U × T ×W

whose elements are called tag assignments. For workflow wfi, we use tags(wfi) to denote the bag

of tags (duplicates are included) annotated by all users for workflow wfi. For a user um, we use

profile(um) to represent the bag of tags that a user um used to annotate all workflows in the workflow

repository.

ASSUMPTION 1: Given an incomplete workflow wfi that is being created by a user um,

the rank of a workflow wfj in the recommended list of workflows is decided by two scores, WS(wfi,

wfj), the similarity matching between wfi and wfj, and IM(um, wfj), a user profile interest matching

between user um and workflow wfj.

A scientific workflow represents a multiple-step data analysis pipeline that chains several

data analysis workflows (e.g. Web Services, Command line applications) together via data links,

which connect the output of one workflow to the input of another workflow. We have two types of

workflow namely, a primitive workflow, that has no subworkflows inside it, a composite workflow,

Figure 4.2: An overview of folksonomy in workflow model.

33

that has at least one or more subworkflows inside it. More formally a scientific workflow is defined

as:

Definition 4.2: A scientific workflow W is a tuple (u, T, TS, IP, OP) where u is the unique

identifier of the user who created W, T is a bag of tags that are assigned to W, TS is the set of

constituent subworkflows inside W, IP is the set of input ports of W, and OP is the set of output

ports of W. W is primitive if

|TS| = ∅

and composite otherwise.

The tf-idf score is widely used in the information retrieval community to identify how impor-

tant a particular word is to a document in the collection. In our workflow model, we refer documents

as workflows and terms as tags, and hence, the tf-idf score is used to compute how important a

particular tag is in the context of a workflow. The tf-idf score is computed by multiplying term

frequency (tf) with inverse document frequency (idf). The term frequency (tf) is used to compute

the frequency of the particular tag tkin a workflow wfiand is computed by the equation below:

tf(tk, wf i) = 0.5 +
0.5× f(tk, wf i)

max{f(t, wf i) : t ∈ wf i.T}

where f(tk,wfi) is the raw frequerncy of tag tk in wfi.T. The inverse document frequency

(idf) is used to measure how much common a particular tag tk is in the N number of workflows in

the workflow repository W and is computed by the equation below:

idf(tk,W) = log
|W |

|{wf i ∈W : tk ∈ wf i.T}|

tf − idf(tk, wf i,W) = tf(tk, wf i)× idf(tk,W)

Given a user um and all the users U in the system, let um.T be the bag of tags used by user

um to annoate all the workflows in W, then the tf-idf of a tag tk with respect to user um and U,

td-idf(tk, um, U), can be defined similarly.

34

Definition 4.3: Workflow Similarity WS is used to compute the similarity between any

two arbitrary workflows. Given two workflows wfi and wfj, we represent them as two vectors:

v(wfi) = (wi1,wi2,wi3,...,win) v(wfj) = (wj1,wj2,wj3,...,wjn)

where wik = tf-idf(tk, wfi, W), wjk = tf-idf(tk, wfi, W) and n is the number of tags in T.

The workflow similarity between wfi and wfj is computed by the equation below:

WS(wf i, wf j) =

∑n
k=1wik × wjk√∑n

k=1(wik)2 ×
√∑n

k=1(wjk)2

Based on assumption 1, a recommended workflow should be not only similar to the incom-

plete workflow, but also matching to the interest of the user um, which is characterized by her

profile to achive personalized recommendation. To this end, we introduce the notion of user interest

matching score.

Definition 4.4: The User Interest Matching Score IM is used to compute the interest

matching degree between a user um and a workflow wfj, and is defined as follows:

IM(um, wf j) =

∑n
k=1wjk × umk√∑n

k=1(wjk)2 ×
√∑n

k=1(umk)2

where wjk= tf-idf(tk, wfj, W), umk = tf-idf(tk, um, U) and n is the number of tags in T.

Definition 4.5: Workflow Recommendation Score WR is used to rank the workflows that

are part of the suggested workflow candidates S provided by the syntactic recommender component

by computing the workflow similarity and user profile similarity with respect to the incomplete

workflow. (See section 4.2). Based on the workflow recommendation score computed by the equa-

tion provided below, the list of workflows are added to the suggested workflow candidates T and

recommended to the user.

WR(um, wf i, wf j) = γ.WS(wf i, wf j) + (1− γ).IM(um, wf j)

where, γ is the recommendation weight factor (RWF) that is used to balance workflow similarity

35

score and user interest matching score that satisfies

0 ≥ γ ≤ 1

4.4 Workflow Recommendation Algorithms
Our workflow recommendation framework considers both syntactic and semantic information

that are part of the workflow in order to recommend a suitable workflow to the incomplete workflow.

As part of the workflow design process, we provide the user with the option to annotate the workflow

by clicking on the tagging button in the workflow design panel. As shown in Figure 4.2(d), the

following tag assignments are created in our user profile table during the user annotation process.

(u1,t1,w1), (u1,t2,w1), (u1,t2,w2), (u2,t2,w3), (u3,t2,w3), (u4,t3,w1), (u4,t3,w3), (u4,t2,w4), (u4,t3,w4)

As evident from the above tag assignments, in our system different users can use the same

tags to annotate the same workflow. Also different users can use different tags to annotate the same

workflow. Because of these constraints, we allow duplicates to be included and hence represent the

tags as bag of words.

The syntactic workflow recommender component is mainly used to compare the input/output

ports of the incomplete workflow with the workflows residing in our workflow repository. The in-

completeness in the workflow occurs mainly due to the missing connection link from the input ports

of the workflow to another producer workflow or output ports of the workflow to another consumer

workflow. Producer workflows are those workflows in which one or more of the output ports of the

workflow are connected to one or more input ports of the incomplete workflow. Consumer workflows

are those workflows in which one or more of the input ports of the workflow are connected to one

or more output ports of the incomplete workflow. As shown in Algorithm1, Syntactic workflow

recommender component accepts two inputs as, incomplete workflow and the list of workflows in

the repository.

In our DATAVIEW system, we use an XML based workflow specification language called

SWL to represent the meta data information of the workflow. Each workflow in our repository

contains a SWL associated with it. We implemented SWL Parser as part of the workflow engine to

parse the specification file of the workflow and get all the input and output ports associated with the

36

workflow. Output of the Algorithm1 generates two sets of recommended workflow lists for producer

workflows and consumer workflows. For each logical port in the incomplete workflow, we compare

the input ports of the incomplete workflow to find a suitable workflow in the workflow repository

that contains at least one matching output port that is type compatible with that of the input

port of the incomplete workflow. The workflow is then added to the list of recommended producer

workflows. We compare the output ports of the incomplete workflow to find a suitable workflow

in the workflow repository that contains at least one matching input port that is type compatible

with that of the output port of the incomplete workflow. The identified workflow is then added to

the list of recommended consumer workflows.

For example, in Figure 4.3 we show an in-progress workflow that contains an incomplete

composite workflow w3, with the input port connected to another producer workflow w2. But the

output port of the workflow is not connected to any workflow and hence we provide the user with a

workflow recommendation link. The output port of the incomplete workflow w3 is integer type and

hence we look at the workflows in the workflow repository and identify those workflows that contain

at least one matching port. As shown in Figure 4.3(b) and Figure 4.3(c), the sample recommended

workflows wf1 and wf2 contains at least one port of type integer. Hence both wf1 and wf2 are added

to the list of consumer workflows as part of the recommendation list generated by the syntactic

workflow recommender.

Figure 4.3: An example workflow.

37

Although the workflows wf1 and wf2 are syntactically compatible with w3, the workflows

might not be relevant or preferred by the user based on the users profile. So, we identify the workflow

similarity by using Algorithm2 to compute the similarity between the vector representation of the

incomplete workflow and the vector representation of the recommended workflows generated as

output of the syntactic workflow recommender component. In addition to the workflow similarity,

we also compute the user interest matching score and the workflow recommendation score. Based on

the recommendation score and a system defined threshold value, the workflow ranking is computed

and the list of suggested workflow candidates for both the producer and consumer workflows is

generated and provided to the user. We set a system defined threshold value, so that only those

workflows that contain the recommendation score greater than the threshold value are added to the

recommendation list.

By setting a threshold value, we avoid recommending any workflow that has a low recom-

mendation score to the user. One challenge incurred during our workflow recommendation technique

is for folksonomy, both the tags and the workflows repository are growing at a constant rate. To

address this issue, we periodically (the first day of each monthïĳĽuse the snapshot of the workflow

repository to calculate a new tag vocabulary T and workflow collection D in n dimensions with

n = |T |

. As shown in Figure 4.3(a), the workflow w3 is a composite workflow that contains a subworkflow

inside it with the workflows w4, w5 and w6. Further the workflow w5 is a composite workflow

that contains another subworkflow inside it with the workflows w7, w8 and w9. So, when finding

a semantically similar workflow, we consider not only the tags associated with the incomplete

workflow, but also all the subworkflows inside the incomplete workflow (recursively). Let us suppose

the following tag assignments are done to the workflows (w3, w5, w7, w9, wf1, wf2) as shown in

Figure 4.3(a) 4.3(b) 4.3(c).

As shown in TABLE 4.4, we compute the tf, the idf and the tf-idf value for all the tag assign-

ments. Then, we translate the incomplete workflow and the workflows in the suggested workflow

candidates S into the corresponding vector representation. For example, the vector representation

38

Figure 4.4: Syntactic Recommender Algorithm.

39

Table 4.4: A summary of tag assignment.

TAS TF IDF TF-IDF

(u1,w3,t1) 1 0.54 0.54

(u1,w3,t5) 1 0.84 0.84

(u2,w5,t2) 0.75 0.28 0.21

(u2,w5,t1) 1 0.54 0.54

(u3,w7,t3) 0.75 0.84 0.63

(u4,w9,t5) 1 0.84 0.84

(u2,w1,t1) 1 0.54 0.54

(u3,w1,t2) 1 0.28 0.28

(u4,w1,t6) 1 1.14 1.14

(u2,w1,t6) 1 1.14 1.14

(u1,w2,t1) 1 0.54 0.54

(u1,w2,t2) 1 0.28 0.28

(u3,w2,t3) 1 0.84 0.84

(u1,w2,t4) 1 1.14 1.14

of the incomplete workflow w3 and the recommended workflow candidates wf1 and wf2 are:

Vector (wf1) = (0.54, 0.28,1.14,1.14)

Vector (wf2) = (0.54,0.28,0.84,1.14)

We collect all the user profiles that contain all the tags annotated by the user and translate

the user profiles into the corresponding vector representations. For example, the vector representa-

tion of the user profile generated for the user u1 (w3, wf2), u2 (w5, wf1), u3 (w7, wf2), u4 (w9) are:

Vector (u1) = (0.54,0.84,0.21,0.54,0.63,0.84,0.54, 0.28,0.84,1.14)

Vector (u2) = (0.21,0.54,0.63,0.84,0.54,0.28,1.14,1.14)

Vector (u3) = (0.63,0.54,0.28,0.84,1.14)

Vector (u4) = (0.84)

The workflow similarity between the incomplete workflow w3 and the workflow candidates

wf1 and wf2 is computed by using the corresponding vector as:

WS (w3, wf1) = 0.514 WS (w3, wf2) = 0.548

40

The user interest matching score between the user designing the workflow (u1) and the

workflow candidates is computed by using the corresponding vector as:

IM (u1, wf1) = 0.366 IM (u1, wf2) = 0.390

Intuitively, it is evident that, the workflow wf2 is relevant to the incomplete workflow w3

and preferred by the user u1 than the workflow wf1. The final recommendation score validates that

the consumer workflow candidate wf2 (0.47) is higher than the workflow candidate wf1 (0.44) and

the threshold value is (0.45). So, we recommend the user, wf2 as the consumer workflow to be

connected to the output port of the incomplete workflow w3.

4.5 Implementation and Case Study
We implemented the proposed folksonomy based social recommendation framework as a

Web-based application called DATAVIEW, written in Java. As part of our implementation, we

deployed our DATAVIEW in Futuregrids Openstack platform. We validated our proposed Syntactic

Recommender and Semantic Recommender algorithms by designing a workflow downloaded from

the myExperiment website.

The study focuses on workflows designed in Taverna, an open source popular workflow

system. We downloaded the workflows, the input and output port details, the number of workflow

instances, the user profile information and the tag assignments available in myExperiment workflow

repository. The myExperiment website allows its users to share the workflows from several domains.

Based on our analysis on the myExperiment dataset, as shown in Figure 4.6(a), we found that there

are 9886 users, 3542 workflows, 2664 publicly available workflows and 9624 tag as-signments in the

myExperiment website.

We developed a scientific workflow analyzing metabolite pathway. As shown in Figure 4.6(b),

we designed the workflow based on the taverna workflow downloaded from the myExperiment web-

site (see Figure 4.6(a)) using our data collection technique. Our workflow takes as input, the search

keyword and then searches for metabolomic pathways that match the entered keywords and returns

information about the chosen pathway. Although there are different ways of parallelizing scientific

workflow [29], in our system, we parallelized the execution of the scientific workflow based on the

number of workflow fragments in the workflow specification. A workflow fragment is a sequence of

workflows that contains a source, a destination and a data channel representing the connectivity

41

Figure 4.5: Semantic Recommender Algorithm.

42

(data flow) between the workflows. We identified all the independent workflow fragments in the

workflow specification and captured the workflows that are part of those workflow fragments. Then,

we executed each workflow fragment separately by running them in different virtual machines.

As shown in Figure 4.6(b), our workflow contains eight primitive workflows and is deployed

using four virtual machines. The input data set, keyword of data type String is sent to the vir-

tual machine VM1, data is processed using the Search_for_pathway, Extract_pathway_data and

Choose_id workflows and the output data set generated is sent to VM2, VM3 and VM4 respec-

tively. In virtual machine VM2, the input data is processed by Fetch_pathway_image workflow

and generates an image output of type file. In virtual machine VM3, the input data is processed by

an incomplete Fetch_pathway_description workflow, whose output port is of type string and is not

connected to any consumer workflow or output data stub. In virtual machine VM4, the input data

is processed by Fetch_compounds, Extract_compound_data and Fetch_compound_description

workflows and generates two outputs, compound_ids of type list<Integer>, compound_infos of

type list<String>. The in-progress workflow contains one incomplete workflow and we provided

our users with a recommendation link. When our users, request for recommendation by clicking on

the link, we recommended a list of suitable consumer workflows that shall be connected to the out-

put port of the Fetch_pathway_description workflow. First, we identified the list of syntactically

compatible workflows by executing our syntactic workflow recommender to get a list of workflows

that contains at least one input port of type string and formulate the list of syntactically compatible

workflows. Second, we identified the list of semantically compatible workflows by filtering the list

Figure 4.6: Analyzing metabolite pathway workflow.

43

generated in the previous step and executed our semantic workflow recommender to formulate the

list of workflows that are both relevant to the incomplete workflow and also preferred by the user

who designed the in-progress workflow. In Figure 4.7(b), we show the recommendation scores of

the top 10 recommended workflows that are suitable to be connected to the output port of the

incomplete Fetch_pathway_description workflow. In our experiment setting, we set the threshold

value to be 0.5 and the recommendation weight factor

γ = 0.5

4.6 Chapter Summary
In this chapter we proposed a folksonomy-based social workflow recommendation system

to improve workflow design productivity. We discussed the details about our web-based work-

flow design environment (called Web-bench) to allow users to create workflows and collaboratively

annotate and categorize them using social tags. The resulted folksonomy improves workflow search-

ability and shareability. We proposed several workflow recommendation strategies to automatically

or semi-automatically augment an in-progress workflow, leveraging both structural and semantic

similarities between workflows and guiding information extracted from previously created work-

flows in the database. We discussed the details on how we implemented the proposed environment

and strategies in a prototype based on the DATAVIEW scientific workflow management system and

validated our approach with numerous use cases.

Figure 4.7: (a) myExperiment dataset; (b) Workflow recommendation score.

44

CHAPTER 5: A NOSQL COLLECTIONAL DATA MODEL
FOR RUNNING BIG DATA WORKFLOWS

5.1 Introduction
Big data workflows have recently emerged as the next generation of data-centric workflow

technologies to address the five “V” challenges of big data [?]: volume, variety, velocity, veracity,

and value [?,46,47,49]. While its precedent, scientific workflows, focus on dataflow and automation

management [?], big data workflows focus on large-scale data processing and analytics with a “scale-

out” architecture and a “moving-computation-to-data” processing paradigm. More formally, a big

data workflow is the computerized modeling and automation of a process consisting of a set of

computational tasks and their data interdependencies to process and analyze data of ever increasing

in scale, complexity, and rate of acquisition. The coining of the term “big data workflows” is timely

and important to recognize the continuing relevance and importance of workflow technologies in

data processing and management, as well as the challenges and opportunities of big data research

in the workflow community [63]. While more and more big data tools have been developed in recent

years to address the big data deluge in both science [46] and business [47], the gap between the

capability of data collecting and the power of data processing and analysis continues to increase. One

category of such tools are NoSQL databases [48], which deliver high read and write performance by

automating the data distribution and retrieval over a cluster of tens of thousands of machines [50].

In contrast to their SQL counterpart, NoSQL databases often relax the traditional ACID properties

of transactions and introduce restrictions on its query language, such as no-support-for-join, in

favor of high performance of read and write. The wide adoption of NoSQL techniques in big data

applications is attributed to, among other things, their large scalability, high fault-tolerance, flexible

data models, and high performance query capability [50].

However, the power of big data not only lies in storing and querying large datasets, but also

in performing efficient ad hoc sophisticated analysis over such datasets to shorten the cycle of “from

data to insight and to value”. One major research question is: Is it possible to leverage the power

of NoSQL techniques in big data workflow systems to improve the performance of workflow execu-

tion? If yes, how? One approach is to integrate an existing NoSQL database system into a big data

workflow system. This approach, however, will not unleash the full power of neither as data move-

45

ment between the NoSQL database and the workflow engine will become the bottleneck. Moreover,

many of the workflow optimization opportunities will not become available under the constraints of

a NoSQL database, which decides the placement of data according to partitioning strategies that

are optimized for querying, not for ad hoc analysis, in which data placement, replication, and data

movement need to be decided on the fly according to the structure and data access patterns of a

workflow [65,66]. Therefore, we take another approach in this research, in which we develop our own

NoSQL collectional data model, which leverages some of the capabilities of existing NoSQL data

models, while enriching in capabilities, such as flexible MapReduce workflows, workflow executors,

and optimization of workflow execution.

In this chapter, we propose a NoSQL data model that: 1) supports high-performance

MapReduce-style workflows that automate data partitioning and data-parallelism in workflow ex-

ecution; in contrast to the traditional MapReduce framework, our MapReduce-style workflows are

fully composable with other workflows, and thus enable dataflow applications with a richer struc-

ture; 2) automates virtual machine provisioning and deprovisioning on demand according to the

sizes of input datasets; 3) enables a flexible framework for workflow executors that take advantage

of the proposed NoSQL data model to improve the performance of workflow execution. Our case

studies and experiments show the competitive advantages of our proposed data model. The pro-

posed NoSQL data model is implemented in a new release of DATAVIEW, one of the most usable

big data workflow systems in the community.

5.2 An Overview Of DATAVIEW
In Figure 5.1, we present the overall architecture of DATAVIEW, which enriches the original

architecture described in [63] with a refined design for the Workflow Engine. DATAVIEW consists

of seven subsystems: the Webench is a Web-based interface that supports user interaction, workflow

visualization, data presentation, and system configuration. The Data Product Manager features the

proposed NoSQL collectional data model and a rich set of other data types, including relational, files,

and scalar types. The Task Manager supports a single-component based task model that separates

registration from configuration and eases the process of registering external functional components

(such as Web services) into primitive workflows [59]. The Task Manager is also responsible for

the runtime execution of primitive workflows. The Cloud Resource Manager (CRM) provides the

46

provisioning and deprovisioning capabilities of cloud resources, including both virtual machines and

storage resources. The Provenance Manager manages the data lineage and derivation history of data

products for the reproducibility and validation of workflow execution results [44]. The Workflow

Monitor supports the monitoring of workflow execution status and progress and exception handling

[45]. Finally, the Workflow Engine is at the heart of the DATAVIEW system, responsible for overall

workflow orchestration, scheduling, and the coordination and collaboration of all subsystems. The

Workflow Engine is enriched with the notion of “executors”, which abstracts the execution platform

that a workflow will be executed at runtime. Two categories of workflow executors are supported:

on-premises workflow executor, which supports the execution of a workflow on a single DATAVIEW

server, and cloud workflow executor, which supports the execution of a workflow in the cloud (e.g.,

Amazon EC2). Moreover, two types of cloud workflow executors have been implemented: type-A

cloud workflow executor supports a clustering algorithm that partitions a workflow into a number of

workflow clusters, with each workflow cluster executed in one virtual machine; type-B cloud workflow

executor supports MapReduce-style workflows, which automates data partitioning, virtual machine

provisioning and deprovisioning, and scalable execution of workflows. Both type-A and type-B

workflow executors exploit the proposed NoSQL collectional model for improved performance of

workflow execution.

5.3 NoSQL Collectional Data Model
A big data workflow represents a multiple-step data analysis pipeline by chaining several

data analysis modules together via data links that connect the output of one analysis module to the

input of another analysis module. A big data focuses on large-scale data processing and analytics

with a “scale-out” architecture and a “moving-computation-to-data” processing paradigm. Big data

imposes challenges in the workflow development at both the primitive and composite workflow

level. A primitive workflow is the workflow that contains no sub-workflows in it. On the other

hand, a composite workflow has one or more sub-workflows inside it. Our original collectional

data model [30] is a counterpart of relational data model that supports creation of hierarchically

organized data in a nested manner. In our new NoSQL collectional data model, we extend our

original collectional data model to improve the performance of big data workflow execution.

47

Figure 5.1: Architecture of DATAVIEW

Big data workflow is executed in the Cloud. A cloud consists of a set of virtual machines

that are used to store the partitioned input data, execute the workflow and store the output data

generated by the workflow. A big data workflow is defined as follows:

Definition 5.1: A big data workflow w is a 8-tuple (IP, OP, D, T, S, Consumer, Producer,

DataType), where

• IP is the set of input ports for workflow w. Each individual input port is denoted by ipm,

IP={ip1,ip2,...,ipM}. ˆIP is the set of intermediate input ports for workflow w and ˆIP ⊂ IP.

• OP is the set of output ports for workflow w. Each individual output port is denoted by opq,

OP={op1,op2,...,opQ}.

• D is the set of workflow datasets. Each individual dataset is denoted by dj,

D={d1,d2,d3,...,dJ}. dj can be either connected to ipm ∈ IP or opq ∈ OP.

• T is the set of workflow tasks. Each individual task is denoted by ti, T={t1,t2,t3,...,tI }. Each

task can have one or more input and output ports. ti. ipm shows the mth input port of task

ti. subsequently ti. opq shows the qth output port of task ti.

48

• S:D → R+ is the dataset size function. S(dj), dj ∈ D returns the size of the dataset dj.

The size of a dataset is defined in some pre-determined unit such as MegaBytes, GigaBytes,

TeraBytes, etc. R+ is the set of positive real number.

• Consumer:T → 2̂ T is the task-task function. Consumer(ti), ti ∈ T returns the set of tasks

that ti is directly connected to and require the output of ti for their inputs.

• Producer:T→ 2̂ T is the task-task function. Producer(ti), ti ∈ T returns the set of tasks that

are connected to ti directly and ti require their output as its inputs.

• DataType:D → {“Scalar”, “File”, “Relational”, “Collectional”} is the data-type function.

DataType(dj) returns the type of data, dj

Our NoSQL collectional data model supports registering hierarchically organized and collec-

tion oriented datasets. We formally define a NoSQL Collectional Data Model as follows:

Definition 5.2: A NoSQL Collectional Data Model A NCDM of level K can be formalized

by C = ([C1, C2,..., CK], V, R, I, K), where:

• I and K are two positive integers and 1 ≤ I ≤ K.

• The list [C1, C2,..., CK] is called as the primary key of the collection; therefore functional

dependency (C1, C2,..., CK) → V holds.

• A prefix [C1, C2,..., CI] of [C1, C2,..., CK] is called a partition key of G, all tuples that

correspond to the same value of [C1, C2,..., CI] will be mapped to the same virtual machine

in physical organization.

• V is an attribute for the value, it can take the type of a scalar value (INTEGER, STRING,

FLOAT, DOUBLE, RELATIONNAME) or a relational name of schema specified by R. R is

a relational schema.

In Figure 5.2 we show an example of OpenXC collectional data set from the automotive

domain. It consists of three key attributes, drivers, vehicles and traces, and value is a relational

name with three attributes <Name, Timestamp, Value>. In Figure 5.3 we show the OpenXC

collectional data set that is partitioned and stored in three virtual machines, vm1-vm3.

49

Definition 5.3: A Data Partitioner γ is used to partition a collectional instance c of schema

C = ([C1, C2,..., CK], V, R, I, K) into c1, c2,..., cM such that c1 ∪ c2 ∪ ... ∪ cM = c, where cm is

the partition for virtual machine m. Let α: C1 × C2 × ... × CI → [-263, 263-1] be a function that

computes the token for a given collectional tuple t of c using only the value of the partition key

(possibly composite). Let β: [-263, 263-1] → [1, M], then we have γ(t) = β(α(π(t,I))) where π(t,I)

is the projection of t over the first I attributes.

Our proposed Map construct extends our previous notion of the Map workflow construct

in [32] in two directions: 1) our Map constructs abstracts a data partitioner γ implicitly where the

primary key of c is used as the partition key; 2) our Map constructs supports fully the NoSQL

collectional data model, and thus fully exploits the data parallelism and the dynamic resource

provisioning capability of our cloud resource manager.

Definition 5.4: The Map construct abstracts the partitioning and distribution of a large

collectional data product over a set of M virtual machines for high-performance parallel processing.

Given a workflow w([i1, i2, ... , in], o) with n input ports and one output port, where i1 takes a

collectional data product as its input, we have Map(w)(c, i2, ... , in) =
M⋃

m=1

w(cm, i2, ... , in). That

is, the output of Map(w) on collectional data product c is equal to the union of the application of

w on each partition cm. In order to apply Map on w, w must satisfy the following constraints:

1. i1 takes a collectional data product of schema C = ([C1, C2,..., CK], V, R, I, K) as input.

2. w is a primitive workflow or a composite workflow with no nesting Map/Reduce constructs.

3. w(c, i2, ... , in) =
⋃
tec

w(t, i2, ... , in). That is, the output of w on input collection c is equal

to the union of the application of w on each tuple in c.

Our proposed Reduce construct extends our previous notion of the Reduce workflow con-

struct in [32] in two directions: 1) automatic shuffling and redistribution of the input collectional

dataset into multiple virtual machines; 2) executing the workflow that performs aggregation on the

input collectional dataset based on the user provided key attribute in multiple virtual machines in

parallel.

Definition 5.5: The Reduce construct abstracts the automatic shuffling, redistribution,

aggregation of a large collectional data product based on a given key attribute CI over a set of

50

Figure 5.2: OpenXC collectional data product.

M virtual machines for high-performance parallel processing. Given a workflow w([i1, i2,..., in], o)

with n input ports and one output port, where i1 takes a collectional data product as its input, we

have Reduce(w, CI)(c, i2,..., in) =
M⋃

m=1

w(cm, i2,..., in). That is, the output of Reduce(w, CI) on

collectional data product c is equal to the union of the application of w on each group cm. In each

group cm, for t1, t2 ∈ cm we have π(t1,CI) = π(t2,CI). That is, all tuples in cm have the same value

for CI.

Note that in the Map construct, a Map workflow run is applied to each tuple in c, while in

the Reduce construct, a Reduce workflow run is applied to a group of tuples in c, with each group

shares the same value for the given attribute CI. Therefore, the Reduce construct is to be applied

to a workflow that implements an aggregation function that is applicable to each group of the given

input collectional data product as reshuffled according to the given key attribute.

A workflow executor takes a big data workflow, provisions virtual machines in the cloud,

partitions the input collectional data product, executes the tasks of the workflow on different virtual

machines, and finally deprovisions the assigned virtual machines and presents the output of the

workflow to the user. While type-A workflow executor is used to execute a graph-based workflow,

individual Map/Reduce workflow tasks are executed by the type-B workflow executor. We present

the algorithms for type-A and type-B workflow execution in the next section.

5.4 Algorithm For Workflow Executors
In this section, we propose three new algorithms that are implemented in our cloud work-

flow executor. We automatically provision and deprovision virtual machines based on both the size

of input datasets connected to the workflow and the structure of the workflow.

51

Figure 5.3: Example of OpenXC data partitioner.

We provide two types of parallelism. First, we provide a workflow level parallelism, type-A,

by leveraging the structure of the workflow, we cluster the given workflow into multiple workflow

clusters. Each workflow cluster consists of a set of tasks that are executed in the same virtual

machine. Different workflow clusters are executed in different virtual machines in parallel.

Second, we provide a task level parallelism, type-B, by leveraging our newly proposed NoSQL

collectional data model. We automatically partition the input datasets into multiple virtual ma-

chines and the task is mapped to those machines and executed in parallel. We demonstrate Algo-

rithm 1, 2 and 3 by using the example shown in Figure 5.4.

5.4.1 Task Clustering

The goal of the Task Clustering Algorithm (T-Cluster) is to generate a cluster map for

a given workflow and automatically provision and deprovision virtual machines. The cluster map

consists of a list of pairs <ti, VMID>, such that ti is the name of the task and VMID is the identifier

of a virtual machine. Each task in a workflow consists of a set of producers and a set of consumers

that are connected to it, except for the entry and exit tasks. The entry tasks in the workflow do not

contain any producer and instead a set of input datasets are connected to it. In the same manner,

the exit tasks do not contain any consumer and instead a set of output stubs are connected to it,

in order to visualize the final results of the workflow.

52

Figure 5.4: An example big data workflow.

53

In Figure 5.4, we show an example big data workflow w from the automotive domain that is

used to query the OpenXC dataset and compute the speeding and braking behavior of the driver.

In Algorithm1, in line 4, we get all the tasks in w in some topological order and assign it to list

ts. We validate the correctness of our algorithm for different topological order of ts. Let ts = <T1,

T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, Tend>. In line 5, we iterate through each

task ti in ts and add ti to the cluster map d. All the entry tasks in w are added to list en = <T1,

T2, T3>. Between lines 8 and 30, we iterate through each task ti in ts and add the consumer of ti

to list cs. For example consumers of T1 are <T4, T7>. If task ti is an element of list en, then we

assign VMID to task ti and increment VMID.

For example, <T1,1> is added to the map since the default value of VMID = 1. If task ti is

not an element of list en, then we iterate through each consumer c in cs. For the first consumer, we

assign the same VMID as that of the task and for the other consumers, we assign a different VMID.

For example, for the consumers of T1, the following pairs are added, <T4,1>, <T7,2>. VMID is

incremented every time a new pair is added to the map. The final map d = <(T1, 1), (T2,3), (T3,5),

(T4,2), (T5,4), (T6,5), (T7,1), (T8,2), (T9,3), (T10,4), (T11,1), (T12,2), (T13,3), (T14,4), (Tend,1)>

is returned as an output for workflow w. The output map d of w consists of five clusters assigned

to five virtual machines.

5.4.2 Type-A Cloud Workflow Executor

The goal of the type-A workflow executor is to reduce the workflow makespan for a given

workflow by running each cluster of the workflow in parallel in multiple virtual machines in the

cloud. In Algorithm 2, in line 4, we get the cluster map d from Algorithm1(T-Cluster) for the

workflow w. In line 5, we get all the tasks in workflow w in some topological order and store it in

list ts. Between lines 6 and 24, we iterate through all task ti in ts in parallel. We use inputready

to determine whether all the datasets are available in order to execute a task. In line 7, we set

inputready[ti] to the total number of non-intermediate input ports of ti. In Figure 5.4, for example

inputready[T1] = 1, inputready[T4] = 0.

At each iteration, every task except the entry tasks will wait until all the input datasets

for the task becomes ready. For example, Tend will continue to wait until the tasks T11, T12, T13,

T14, T6 are executed and the data movement from T11, T12, T13, T14, T6 to Tend is completed.

54

Between lines 13 and 23, we iterate through each consumer ci of task ti in parallel. If the consumer

ci and task ti are assigned to different virtual machines, then we move the data from d[ti] to

d[ci]. We increment inputready[ci] through a locking mechanism so that at a particular time only

one consumer of one task can increment it. For each consumer ci, the number of input ports is

calculated. If inputready[ci] is equal to the total number of input ports of ci, then we send a signal

to the consumer ci as a wake up call. At that point inputready[ci] is validated to check whether all

the datasets needed to execute ci is ready. If the datasets are ready, then ci is executed and the

consumers of ci are processed. For example only after execution of the tasks T11, T12, T13, T14, T6,

the signal to wake up Tend is sent from T14.

5.4.3 Type-B Cloud Workflow Executor

The goal of the type-B workflow executor is to reduce the task makespan for any task that

has the Map or the Reduce construct applied on it. A construct is a high order function that is

used to transform any given function into another sophisticated function. In our case, a construct

is applied on a task to transform the task into a Map or a Reduce task. The Map construct is

applied to a task that performs extracting, filtering and transformation. The Reduce construct is

applied to a task that performs aggregation, summarization, filtering and transformation. Besides,

the Map and Reduce constructs also differ in the way the input dataset is partitioned. Our data

partitioner inspired from Cassandra uses our custom hash function, to distribute any given NoSQL

collectional dataset into multiple virtual machines. Our cloud infrastructure manages a ring with a

range for each virtual machine. We assign multiple tokens for each range. The advantage foreseen

in our approach is that we support the dynamic addition and delete of virtual machines and still

manage to keep our key to token mapping information intact. We plan to discuss our partitioner

as a separate research article.

We apply the Map construct on the tasks T1, T2, T3 and the Reduce construct on tasks

T4, T5, T6 on the big data workflow w shown in Figure 5.4. In Algorithm 3, in line 4, we initialize

out, z, n and vms. In line 5, we get all the input datasets connected to task ti and store them in in.

Between lines 6 and 21, we iterate through all the datasets d in in. In line 8, we validate whether the

type of the dataset d is collectional. On validation success, we compute the total number of virtual

machines dynamically based on the size of the dataset and the user configured value for partition

55

Figure 5.5: Task clustering.

56

Figure 5.6: Type-A workflow executor.

57

Figure 5.7: Type-B workflow executor.

58

size (ps) and total number of task runs per virtual machine (RunsPerVM). In line 11, we provision

the virtual machines. In line 12, we validate the type of construct applied to task ti. If the type

of the construct is a Map, then we partition the data with all the key attributes in dataset d. If

the type of the construct is Reduce, then we partition the data by a user provided key attribute rk.

For all other datasets connected to task ti that are not of type collectional, we move the original

dataset to all the virtual machines. Between lines 22 and 25, we run task runs of ti in parallel in

all the virtual machines vms. The results from all task runs are combined together and returned as

the final output out.

5.5 Case Study and Experiments
In our DATAVIEW system, we implemented a big data workflow called the Autoanalytics

workflow to show the strength of our proposed NoSQL collectional data model and the scalability

features. The Autoanalytics workflow is used to analyze the data collected from vehicles and provide

insights on the risk level based on the drivers driving behavior. OpenXC is an open source platform

that is used as a source to generate a wealth of data from the vehicle through a hardware device

that is installed in the car. As the average adult driver in the US may generate up to 75 Gb of such

driving data annually, the total amount of data generated in the US may exceed 14 Eb (1018 bytes)

per year [43,63]. We collected data from X drivers for one hour with X= 5, 10, 15, 20, 25 resulting

datasets of size in the range of 1GB-5GB. Because of the dynamic nature of the growth of size of

the dataset and the 5V big data challenges incurred in the domain, we consider our Autoanalytics

workflow as a big data workflow.

In Figure 5.5, we show the Autoanalytics big data workflow. The first step is Extract-

DriverDetails that accepts the collectional OpenXC dataset as input and filter by their VehicleId.

The second step is ComputeSpeedDistribution that is used to find the topK vehicle speed and the

distance driven without pressing the brake. The third step is AddressFinder that is used to find

the geographic location of the vehicle during the time at which the signal was captured. We use

Google Places API to determine the address from the latitude and longitude signal values. The

fourth step is ComputeRoadType that is used to find the type of the road (highway or local) for

each geographic location computed in the third step. The fifth step is SpeedLimitFinder that is

used to find the speed limit posted on those geographic locations based on the road type. The sixth

59

Figure 5.8: An automative OpenXC big data workflow.

step is ValidateVehicleSpeed that is used to compare the vehicle speed generated in step-2 with the

actual speed limit in the closest latitude longitude. The output of the task indicates if the driver

was below or over the speed limit. The 7th step is ComputeSimilarityScore that is used to compare

several drivers with different traces to identify the similarity between them. The final output of the

ComputeSimilarityScore generates a report to show the list of good drivers and bad drivers along

with their driving score.

We apply the type-B Map construct on step-1, step-2 and executed them in the range

of 1-25 virtual machines simultaneously. We apply the type-B Reduce construct on step-7 by

(key=DriverName) to partition/group all the signal values associated with each driver into the

same machine. We apply the type-A cloud workflow executor for 25 drivers and executed the

workflow in the range of 1-25 virtual machines in the EC2 cloud. We performed our experiments

in the OpenXC dataset with the range of 1-5GB on 1 to 25 machines. Our experimental results

show that our type-A executor performed well by reducing the workflow makespan. And we applied

the Map and the Reduce construct on the individual tasks in the workflow. Our type-B executor

performed well by reducing the individual task makespan and as a whole also reducing the workflow

60

Figure 5.9: Workflow makespans by varying the number of virtual machines and datasets.

makespan even more. In Figure 5.6, we show the experimental results that was performed using the

OpenXC dataset in Amazon EC2 cloud environment.

5.6 Chapter Summary
In this chapter, we proposed a NoSQL data model that: 1) supports high-performance

MapReduce-style workflows that automate data partitioning and data-parallelism in workflow ex-

ecution; in contrast to the traditional MapReduce framework, our MapReduce-style workflows are

fully composable with other workflows, and thus enable dataflow applications with a richer struc-

ture; 2) automates virtual machine provisioning and deprovisioning on demand according to the

sizes of input datasets; 3) enables a flexible framework for workflow executors that take advantage

of the proposed NoSQL data model to improve the performance of workflow execution. Our case

studies and experiments show the competitive advantages of our proposed data model. The pro-

posed NoSQL data model is implemented in a new release of DATAVIEW, one of the most usable

big data workflow systems in the community.

61

CHAPTER 6: SCHEDULING BIG DATA WORKFLOWS IN
THE CLOUD UNDER BUDGET CONSTRAINTS

6.1 Introduction
Big data workflows [63] have recently emerged as a data-centric workflow approach to analyze

the data that is ever increasing in scale, complexity, and rate of acquisition. Data scientists develop

workflows by modeling their complex scientific applications as a set of data processing tasks with

a set of data dependencies between the tasks. Although this approach facilitates the execution of

tasks in a distributed cloud computing environment [67–69], it also adds a research challenge of how

and where to schedule the tasks in a distributed and heterogeneous cloud environment in a usable

manner [64]. The decision of how and where to schedule the tasks in a workflow is driven by the

Quality of Service (QoS) requirements defined by data scientists such as the budget or the deadline

for the workflow execution. The goal of the scheduling problem is to minimize the total cost for

executing the workflow or makespan (i.e. total execution time of the workflow), while still meeting

the QoS requirement defined by data scientists.

Cloud service providers such as Amazon EC2 offer a scalable infrastructure that allows an

unlimited number of virtual machines that can be provisioned for an amount of time proportional

to the cost for usage. There are different types of instances that range from less powerful to more

powerful in terms of their CPU, memory, storage and networking capacity. The cost per machine

usage is billed on an hourly rate with the cheapest resource offering the least performance to the

most expensive resource offering the highest performance. The Amazon EC2 cloud service provider

provides an easily accessible application programming interface through which the cloud resource

manager of the big data workflow system can provision and deprovision resources. The primary

responsibility of the workflow engine in a big data workflow system is to orchestrate the execution

of the workflow by 1) identifying a type of cloud resource that is appropriate for each set of tasks in

the workflow based on the QoS requirement; 2) provisioning and deprovisioning a set of resources

that are of the identified resource types; 3) scheduling the tasks to the appropriate cloud resources

and initiate the distributed execution process. The scheduling problem is non-trivial. In fact, it is

a well known NP-complete problem [51].

62

In this chapter, we propose a new Big dAta woRkflow schEduler uNder budgeT conStraint

known as BARENTS that supports high-performance workflow scheduling in a heterogeneous cloud

computing environment with a single objective to minimize the workflow makespan under a provided

budget constraint. Our case study and experiments show the competitive advantages of our proposed

scheduler. The proposed BARENTS scheduler is implemented in a new release of DATAVIEW, one

of the most usable big data workflow systems in the community.

6.2 Workflow Scheduler Model
A cloud computing environment provides a framework for enabling ubiquitous, on-demand

access to a shared pool of resources of heterogeneous types which can be provisioned and deprovi-

sioned with a minimal management effort. The computation tasks and their data counterpart are

moved to the resources in the cloud, in order to perform the actual execution of the tasks. Every

individual resource is associated with a predetermined cost, computing speed function and data

communication rate function. More formally a cloud computing environment is defined as:

Definition 6.1: A cloud computing environment is a 6-tuple C(R, RT, RC, FB, FR, RS),

where

• R is a set of resources. Each individual resource is denoted by Ri in the cloud computing

environment.

• RT is a set of resource types such as {“t2.nano”, “t2.micro”, “t2.small”, “t2.medium”, “t2.large”,

...}.

• RC: R→ Q+ is the resource usage cost function. RC(Ri), Ri ∈ R gives the cost in some

dollar amount for the resource usage Ri in the cloud computing environment. The resource

with the minimum RC is called Rcheapest and the resource with the maximum RC is called

Rexpensive.

• FB: R×R→ Q+0 is the data communication rate function. FB(Ri1, Ri2), Ri1, Ri2 ∈ R gives

the data communication rate between Ri1 and Ri2. Q+0 is some pre-determined unit like

bytes per second.

63

• FR: R→ Q+ is the resource computing speed function. FR(Ri), Ri ∈ R gives the speed for

the computing resource Ri, measured in some pre-determined unit like million instructions

per machine cycles or million instructions per nanoseconds.

• FS: RT → R is the resource provisioning function. FS(Rt), Rt ∈ RT returns a resource

instance of the resource type of Rt.

A big data workflow is the computerized modeling and automation of a process consisting of

a set of computational tasks and their data interdependencies to process and analyze a large amount

of data. The big data workflow consists of a set of interconnected tasks and their data counterparts.

Because one or more of the input datasets connected to the tasks fall under the umbrella of big

data, there is a need for a distributed computing environment such as the cloud to process the tasks

in an efficient manner. More formally, a big data workflow is defined as: Definition 6.2: A big

data workflow can be formally defined as a 4-tuple W = (T, D, FT, FD), where

• T is a set of tasks in the workflow W. Each individual task is denoted by Tk.

• D = {<Tk1, Tk2> | Tk1, Tk2 ∈ T, k1 6= k2; k1,k2 ≤ |T |, Tk2 consumes data Dk1, k2 produced

by Tk1} is a set of data dependencies. Dk1,k2 represents an amount of data required to be

transferred after Tk1 completes and before Tk2 starts. Dk represents all the output datasets

from task Tk.

• FT: T → Q+0 is the execution cost function. FT (Tk); Tk ∈ T gives the execution cost of a

task Tk, measured in some pre-determined unit like million instructions per machine cycles

or million instructions per nanoseconds.

• FD: D → Q+0 is the data size function. FD (Dk1,k2), Dk1,k2 ∈ D gives the size of a dataset

Dk1,k2, measured in some predetermined unit like bits or bytes.

A big data workflow graph is a weighted directed acyclic graph that includes a set of vertices

a.k.a. tasks and a set of edges a.k.a. data dependencies, which represent the output datasets that

originate from one task and passed as an input to another task in the workflow. We divide the

workflow graph into several partitions a.k.a. levels. Each partition in the workflow graph has a set

of vertices and a set of outgoing edges that represent the data passed as input to the next partition.

64

The weight of the vertices is calculated by the average task computation cost function and the

weight of the edges is calculated by the average data communication cost function. More formally,

a big data workflow graph is defined as:

Definition 6.3: Given a workflow W in a cloud environment C, a big data workflow graph

G, represents a weighted directed acyclic graph with 14-tuple G(T, D, R, Fc, Fc̄, Fp, Fp̄, Fm, Fm̄,

Fn, Fn̄, P, TP, RT), where

• the vertices of the graph represent a set of tasks T.

• the edges of the graph represent a set of data dependencies D.

• R is a set of resources in the cloud environment.

• Fc: D ×R×R→ Q+0 is the data communication cost function. Fc (Dk1,k2, Ri1, Ri2), Dk1,k2

∈ D, Ri1, Ri2 ∈ R gives the data communication cost of Dk1,k2 from resource Ri1 to resource

Ri2.

• Fc̄ : D → Q+0 is the average data communication cost function. Fc̄ (Dk1,k2), Dk1,k2 ∈ D

gives the average data communication cost of Dk1,k2 for all the resources R, which is taken as

the weight of edge in the graph G. The weight of the edge is 0 for the same resource.

• Fp: T ×R→ Q+ is the task computation cost function. Fp(Tk, Ri), Tk ∈ T, Ri ∈ R gives

the computation cost of Tk on resource Ri.

• Fp̄: T → Q+ is the average task computation cost function, Fp̄(Tk) gives the average compu-

tation cost of task Tk, which is taken as the weight of vertex in the graph G.

• Fm: D ×R×R → Q+0 is the data communication time function. Fm(Dk1,k2, Ri1, Ri2),

Dk1,k2 ∈ D; Ri1, Ri2 ∈ R gives the data communication time of Dk1,k2 from resource Ri1 to

resource Ri2.

• Fm̄: D → Q+0 is the average data communication time function. Fm: (k1, k2), Dk1,k2 ∈ D

gives the average data communication time of Dk1,k2 for all the resources R.

• Fn: T ×R→ Q+ is the task computation time function. Fn(Tk, Ri), Tk ∈ T, Ri ∈ R gives

the computation time of Tk on resource Ri.

65

• Fn̄: T → Q+ is the average task computation time function, Fn̄(Tk) gives the average com-

putation time of task Tk.

• P: N → T is the partition task function, P[j] or Pj gives all the tasks of partition j. RPj

represents the set of resources assigned to the tasks in partition Pj.

• TP: T → N is the task partition function, TP[Tk] or TPTk gives the partition number of task

Tk.

• RT: P → RT is the partition resource type function. RT[Pj] gives the resource type that is

assigned to partition Pj.

While executing a workflow on a set of resources in the cloud, there is a cost and time

incurred during the execution process. Makespan is the total time taken to complete the workflow

execution. Each resource in the cloud has a type associated with it. In addition, there is also

a cost associated with each type of resource per unit time. The execution of the workflow on a

cheapest resource take more time than executing the workflow on an expensive resource. Because

there is a tradeoff between performance of the workflow execution and the cost associated with the

workflow execution, we compute the cost associated with the workflow execution at different level of

granularity such as the minimum, the average and the maximum completion cost. In order to achieve

our objective of minimizing the makespan, we calculate the time taken to complete the execution

of each partition in the workflow. More formally, we define the workflow execution environment as:

Definition 6.4: Given a workflow W in a cloud environment C, a workflow execution

environment, represents the cost and time incurred during the execution of the workflow with 5-

tuple WE (CC, C̄C, CT, minCC, maxCC), where

• CC: Partition ×R→ Q+0 is the workflow partition completion cost function. CC(Pj , Ri),

Pj ∈ Partition gives the sum of task computation cost of all the tasks Tk ∈ Pj assigned to Ri

as well as the data communication cost for all the outgoing edges from all the tasks Tk ∈ Pj.

We formally define as:

CC(P j, Ri1) =
K∑
k=1

F p(T k, Ri1) +
I∑

i1,i2=1
i16=i2

K∑
k=1,k1=1

k 6=k1

F c((k, k1), Ri1, Ri2)

66

• C̄C: Partition → Q+0 is the average workflow partition completion cost function. C̄C(Pj),

Pj ∈ Partition gives the sum of average task computation cost of all the tasks Tk ∈ Pj and

the average data communication for all the outgoing edges from all the tasks Tk ∈ Pj. We

formally define as:

C̄C(P j) =

K∑
k=1

F p̄(T k) +

K∑
k=1,k1=1

k 6=k1

F c̄((k, k1))

• CT: Partition → Q+0 is the workflow partition completion time function. CT(Pj), Pj ∈

Partition gives the maximum of average task computation time of all the tasks Tk ∈ Pj and

the maximum of average data communication time of all the outgoing edges from all the tasks

Tk ∈ Pj. We formally define as:

CT (P j) = max
Tk∈P j

F n̄(T k) + max
Tk∈P j

F m̄(Dk,k1)

• minCC: Partition → Q+0 is the minimum workflow partition completion cost function.

minCC(Pj), Pj ∈ Partition gives the sum of minimum task computation cost of all the tasks

Tk ∈ Pj and the minimum data communication for all the outgoing edges from all the tasks

Tk ∈ Pj. We formally define minCC as:

minCC(P j) =
∑

Tk∈P j

CC(T k, Rcheapest)

• maxCC: Partition → Q+0 is the maximum workflow partition completion cost function.

maxCC(Pj), Pj ∈ Partition gives the sum of maximum task computation cost of all the

tasks Tk ∈ Pj and the maximum data communication for all the outgoing edges from all the

tasks Tk ∈ Pj. We formally define maxCC as:

maxCC(P j) =
∑

Tk∈P j

CC(T k, Rexpensive)

At workflow run time, a user driven budget is allocated as a dollar amount for the entire

workflow. We compute the sub-budget as a dollar amount for each partition in the workflow based

67

on the user provided budget. The sub-budget is computed based on the average completion cost

for each partition. The partition with the high computation intensive tasks and high data intensive

outgoing edges has more sub-budget than the partition with the low computation intensive tasks

and the low data intensive outgoing edges. In addition to the sub-budget, there is also a threshold

provided to each partition as a dollar amount. The threshold for a partition is computed based

on the sub-budget allocated to the next subsequent partition and the completion cost incurred for

executing the partition by using the most expensive resource provided by the maximum completion

cost. The threshold is set to be always greater than or equal to zero. The partition resource type

(PRT) function identifies the most expensive resource type for each partition in a workflow while

still meeting the budget constraint. The goal of PRT function is to minimize the completion time

of the tasks in each partition. We minimize the workflow makespan by applying PRT for each

partition in the workflow.

Definition 6.5: Given a workflow W in a cloud computing environment C and a budget

B, a workflow partition cost represents the budget allocated to each partition of the workflow and

the actual cost incurred at each partition of the workflow with 6-tuple PC(SB, Threshold, PRT,

ACC, Credit, Debit), where

• SB: Partition→ Q+ is the sub-budget function. SB(Pj), Pj ∈ Partition gives the sub-budget

assigned to the partition Pj and can be calculated formally as follows:

SB(P j) =
C̄C(P j)∑J

j1=1 C̄C(P j1)
×B

• Threshold: Partition→ Q+ is the threshold function. Threshold(Pj), Pj ∈ Partition gives

the threshold assigned to the partition Pj. It can be calculated as follows:

Threshold(P j) = Max{0, SB(P j+1)} −maxCC(P j+1)

• PRT: Partition×R× SB × Threshold→ RT is the partition resource type function that is

used to identify the most expensive resource type for each partition. PRT is based on the

68

criteria that the total completion cost for all the tasks in the partition is less than equal to

the sum of the sub-budget and the threshold assigned to the partition.

• ACC: Partition→ Q+ is the actual completion cost that is used to compute the total cost

for completing all the tasks in a partition, that are assigned to the resources of a particular

resource type. Supposedly, all the tasks in partition j are assigned to RT[j] then ACC can be

formally calculated as:

ACC[P j] =
∑

CC(P j, F S(RT[P j]))

• Credit: Partition→ Q+ is the credit function. Credit[Pj], Pj âĹĹ Partition gives the credit

assigned to the partition Pj. It can be calculated as follows:

Credit[P j] = Max{0, SB(P j)−ACC[P j]}

• Debit: Partition→ Q+ is the debit function. Debit[Pj], Pj âĹĹ Partition gives the debit

assigned to the partition Pj. It can be calculated as follows:

Debit[P j] = Max{0, ACC[P j]− SB(P j)}

Our objective is to minimize workflow makespan while still satisfying the budget constraint.

We formally define our objective function and constraints as follows:

Definition 6.6: Given a workflow W in a cloud environment C, and budget B, a workflow

makespan minimization represents the objective function to minimize makespan under the given

budget constraint.

WM =

J∑
j=1

I∑
i=1

CT (P j, Ri)×X ji

where,

X ji =

1, if partition Pj is assigned to resource Ri

0, otherwise

such that the following constraints are satisfied:

69

1.
J∑

j=1

I∑
i=1

CC(P j, Ri)×X ji ≤ B

2.
J∑

j=1

I∑
i=1

X ji = 1 for all the tasks in partition j assigned to a resource Ri ∈ R.

There can be cases as follows:

1. if B <

J∑
j=1

minCC(P j), then we cannot satisfy the budget constraint and hence we assign all

the partitions to the cheapest resource.

2. if B >
J∑

j=1

maxCC(P j), then we can satisfy the budget constraint and hence we assign all the

partitions to the most expensive resource.

3. if
J∑

j=1

minCC(P j) ≤ B ≤
J∑

j=1

maxCC(P j) then we use our strategy to find the optimal

solution.

6.3 The BARENTS Scheduler
Our BARENTS scheduler parses the specification of the workflow and generates a weighted

directed acyclic graph with each node representing the tasks and each edge representing the data

dependency between the tasks in the workflow. We estimate the number of instructions that exists

in each task and the size of the data dependencies that exists between each task for all the workflows

in our repository. In addition, we also estimate the number of instructions that can be executed per

unit time and the size of the data that can be transferred per unit time for different cloud resource

types. The estimates are adjusted automatically during every workflow run to achieve accuracy. The

weight of the nodes and the edges in the graph are calculated by using the average computation cost

and average data movement cost, respectively based on our estimation. We partition the workflow

into different partitions in a topological manner. We validate that the tasks in each partition do

not have any data dependency between them and at the same time there is at least one or more

data dependency between the tasks in different partitions. After creating the partitions, we assign

an initial sub-budget to each partition based on the user defined budget dollar amount provided for

the workflow. Our Cloud Resource Manager (CRM) [63, 64] is used to manage the cloud resources

by maintaining a catalogue that provides a list of resource types and their associated cost incurred

for an hourly rate. We compute the minimum completion cost for each partition, which is the cost

70

Figure 6.1: The BARENTS flowchart.

incurred for executing all the tasks in a partition. This cost includes both the computation and

movement of all the data dependencies using the cheapest resource provided in the catalogue. We

compute the maximum completion cost for each partition, which is the cost incurred for executing

all the tasks in a partition. This cost includes both the computation and movement of all the data

dependencies using the most expensive resource provided in the catalogue.

Table 6.5: Workflow budget allocation summary.

In addition, we compute a threshold value for each partition that is used as a triggering

factor by exploiting the dependency between the partitions. The threshold value for each partition

provides more processing power for executing the tasks in each partition by borrowing some budget

from the next subsequent partition. By doing so, we are able to schedule the tasks in each partition

71

Figure 6.2: An example Workflow w.

to the most expensive resource listed in the catalogue within the range of the combined sub-budget

and threshold value assigned to the partition and thereby minimizing the makespan of the partition.

After identifying the appropriate resource type, each task in the partition is scheduled to execute in

a different set of resources that are of the same resource type. The actual completion cost for each

partition is calculated and we compute the credit or debit value based on the actual completion cost

and the initial sub-budget provided to the partition. We adjust the sub-budget of the next partition

by using the credit or debit value that was calculated for the current partition. The recalculation

and adjustment of the sub-budget is done for every partition in the workflow except for the last

partition. Because the last partition does not have any subsequent partition to borrow the budget

from, the threshold value, the credit value and the debit value is set to be 0 for the last partition.

We present the flowchart of our BARENTS scheduler in Figure 6.1.

In Table 6.5(a), we show the resource catalogue maintained by the CRM. For example, we

show the 5 resource types with the corresponding number of instructions (in million lines of code)

executed per minute, the data movement size (in mega bytes) per minute and the cost in dollar

72

amount associated with the provisioning of the resource per hour. In Figure 6.2, we show an example

workflow that consists of seven tasks and ten data dependencies. First, the BARENTS scheduler

parses the specification of the workflow and generates the weighted DAG shown in Table 6.5(b, c).

Second, the workflow is partitioned in a topological manner with: P1={T1, D1,2, D1,3, D1,4, D1,5,

D1,6}, P2={T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and P3={T7}. Next, as presented in Table 6.5(d), we

calculate the initial sub-budget, the minimum completion cost, the maximum completion cost and

the threshold value for each partition of the workflow. We compute the resource type for partition

1 by finding the most expensive resource, that is “t2.large”, with a debit of $0.3628 and credit of

$0.0. We update the sub-budget of partition 2. We compute the resource type for partition 2 by

finding the most expensive resource, that is “t2.small”, with a debit of 0.0$ and credit of $0.9615.

We update the sub-budget of partition 3. We compute the resource type for partition 3 by finding

the most expensive resource, which is “t2.nano”, with a debit of $0.0 and credit of $0.8257. Thereby,

we minimized the workflow makespan to 9099 minutes.

We present the pseudo code of our BARENTS scheduler in Algorithm 1. The inputs of the

algorithm are the specification of the workflow and a user defined budget dollar amount. The output

of the algorithm is the map that consists of all the tasks and the corresponding resources where the

tasks are scheduled to execute. In line 4, we parse the specification of the input workflow w and

generate a weighted DAG. In line 5, we partition the workflow topologically and generate different

partitions. In line 6, we calculate the total completion cost by adding the average completion cost

of all the tasks in the workflow w. In lines 7-27, we loop through each partition in the workflow w

to identify the appropriate resource for each task in the partition. In line 8, we calculate the sub-

budget for the current partition. In lines 9-11, we calculate the sub-budget for the second partition.

In lines 12-21, we validate if the current partition is not the last one in the workflow. In line 13, we

calculate the maximum completion cost for the next subsequent partition. In line 14, we calculate

the threshold for the current partition. In line 15, we calculate the most expensive resource type

by calling the partition resource type (PRT) function. In line 16, we assign all the tasks in the

partition to different resources of the resource type computed in line 15. The schedule is then added

to the output schedule map. In line 17, we compute the actual completion cost for executing all

the tasks using the resources assigned to them. In line 18, we calculate the debit value and in line

73

Figure 6.3: The BARENTS Scheduler Algorithm.

74

20 we calculate the credit value. In lines 19 and 21, we recalculate the sub-budget and make the

necessary adjustment based on the credit or debit value. In lines 22-25, we validate whether the

current partition is the last partition of the workflow. In line 23, we calculate the sub-budget of the

last partition by subtracting the sum of the actual costs of all the previous partitions from the given

budget B. In line 24, we calculate the most expensive resource type by calling the partition resource

type (PRT) function. In line 25, we assign all the tasks in the last partition to different resources

of the resource type computed in line 24. The schedule is then added to the output schedule map.

Finally, in line 28, we output the final schedule that consists of all the tasks and the corresponding

resources where the tasks are scheduled to execute and exit the code.

6.4 Experimental Discussion
In our DATAVIEW system, we implemented a big data workflow that is from automotive

domain. We evaluated the BARENTS scheduler using the OpenXC Autoanalytics workflow [59].

OpenXC is an open source platform that produces 19 signal oriented data trace files from the vehicle

automatically at periodic intervals. As mentioned in [63, 64], there is an exponential growth in the

data size as the number of miles a vehicle is driven increases with the time for each driver. On

average, every year the growth of the data exceeds 14 Eb. OpenXC data analysis is extremely

useful for the automotive insurance companies to analyze the driving behavior of their customers

by analyzing the large datasets generated from their registered vehicles. Since the analytics is

performed using the cloud resources, there is a cost associated based on the computation and data

intensity of the tasks in the analytics workflow. There is often a need to minimize the execution time

that is taken to perform the analytics based on the budget provided for the analytics by the user.

The BARENTS scheduler automatically learns the complexity of the tasks computation and the

data transfer between the tasks from an initial estimate. During every workflow run, the accuracy

of the complexity level estimates is improved by automatic adjustment of the actual execution

measurements.

We performed our experiments in the Amazon EC2 cloud computing environment, which

provides a framework to provision and deprovision virtual machines (instances) that are of hetero-

geneous instance types. The Amazon EC2 cloud environment offers a total of 39 different instance

types that are of varied CPU, memory, storage and networking capacity. Each type of instances

75

consists of an hourly cost for resource utilization and the execution time is based on the complex-

ity level of the analytics workload. For example, the instance types in the general purpose T2

category are listed as: “t2.nano”, “t2.micro”, “t2.small”, “t2.medium”, “t2.large”. The performance

of the analytics using the resources of type “t2.nano” for a given workload is the slowest and the

cheapest option in terms of cost. On the other hand, for the same workload the performance using

the resources of type “t2.large” is the fastest and the most expensive option in terms of cost.

Table 6.6: Workload details for OpenXC workflows.

We used two approaches to evaluate the strength of our BARENTS algorithm. The first

one is the Workflow Responsive Resource Provisioning and Scheduling (WRPS) [58] algorithm that

assigns sub deadline to each bag of tasks and schedules them on to a heterogeneous type of cloud

resources. In WRPS, the authors model the problem as an unbounded knapsack minimization

problem. The WRPS algorithm is the most noted recent work in the field of workflow scheduling.

One limitation of WRPS is that the workflow schedule is generated under a simulated workflow

execution environment. In addition, the workflow tasks are assumed to be homogeneous, whereas

in reality tasks in a workflow are heterogeneous [63] with different types of tasks that consist of

the component code such as the command line application, the web service based application,

etc. Hence, WRPS does not consider any optimization strategies for heterogeneous tasks in a

workflow. In contrast, using our approach, we model the execution time and execution cost of each

heterogeneous task in a workflow by considering both the complexity of the computation in the task,

as well as the outgoing data dependencies for each task which are combined for each partition in the

76

workflow. However, we are still interested in comparing BARENTS to WRPS, when both are using

homogeneous workflow tasks in each partition as a bag of tasks. In order to make our comparison

realistic, we implemented a slight variation to the original WRPS algorithm by implementing the

algorithm with an objective to minimize the makespan under a user driven budget constraint.

The second approach is a slight variation of our BARENTS algorithm called BARENTS*,

in which we relaxed the dependencies between the partitions by setting the threshold, the credit and

the debit to be 0. The WRPS algorithm provides an optimization to the bag of tasks by scheduling

the tasks in a bag to different types of machines. In contrast to WRPS, BARENTS assigns all the

tasks inside a given partition to the same type of machine. By performing this comparison, we are

able to validate how the partition dependencies and run time sub-budget adjustment proposed in

BARENTS is used as a distinguishing feature to outperform WRPS.

BARENTS was evaluated using 10 distinctive workflows developed in the OpenXC domain

with different levels of complexity and with different dollar amounts provided as budget. In Ta-

ble 6.6, we presented all the 10 workflows with their complexity levels such as the computation and

data intensity of all the tasks in each of the workflow and the user defined budget. We did the

experiments by varying the types of machines (the K value) and presented the measurements from

both the cost and makespan perspectives. In Figure 6.4, we show that BARENTS outperforms

WRPS by roughly 6-10% margin as the complexity of the workflow increases from w3 to w10. For

workflows between w1 and w3, which is of least complexity, WRPS outperforms BARENTS. The

reason for this behavior is that WRPS schedules tasks in each bag to the resources of different

machine types. The local optimization done at each partition outperforms the global optimization

performed by BARENTS when the complexity level is low. We evaluated the behavior of all three

approaches and have demonstrated the makespan minimization by varying the number of instance

types for K = 5, 10, 15, 20, 25.

In order to vary the K values for same set of workflows with the same set of budgets, we

created a bigger range with a larger difference between the instance types and then added new

instance types within that range. In Figure 6.4, we illustrate the resource utilization in the cloud

for different settings of K. The BARENTS algorithm outperforms WRPS because resources are

utilized to the maximum extent for the tasks in each partition. Optimal resource utilization is

77

achieved because BARENTS sets up partition dependency based on a system driven threshold and

automatically adjusts the sub-budget at run time with a system driven credit or debit value, that

is calculated from the actual completion cost of the previous partition. As K increases, there is a

consistent improvement in makespan minimization and resource utilization.

6.5 Chapter Summary
In this chapter, we proposed a new Big dAta woRkflow schEduler uNder budgeT conStraint

known as BARENTS that supports high-performance workflow scheduling in a heterogeneous cloud

computing environment with a single objective to minimize the workflow makespan under a provided

budget constraint. Our case study and experiments show the competitive advantages of our proposed

scheduler. The proposed BARENTS scheduler is implemented in a new release of DATAVIEW, one

of the most usable big data workflow systems in the community.

78

Figure 6.4: Resource utilization and makespan minimization.

79

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

We proposed a new primitive workflow model, to overcome the limitations of the previous

multiple-component based task model, in which we separate the registration from the configuration

of p-workflow, thereby making the registration process simple and usable. Our new model eases the

registration process and hence there is no need to do mapping between multiple task components

inside the p-workflow. Second, we proposed a shim generation algorithm to solve the shimming

problem raised in Web services by automatically inserting invisible shims and wrapping it around

the p-workflow. Third, we integrated MongoDB , an open source document oriented database,

into our DATAVIEW system in order to support big data management and processing. Finally,

we implemented the proposed models and algorithm in our DATAVIEW system and presented a

case study to validate them. Ongoing work includes extension of the primitive workflow model to

support registration and execution of a p-workflow in cloud and grid computing environments.

We first developed a workflow recommendation framework to recommend the list of syntac-

tically and semantically compatible workflow candidates and thereby improve the scientific workflow

design productivity of the user. Second, we presented a folksonomy based workflow model to extend

our previously proposed primitive workflow model that emphasizes on the semantic information in

a workflow. Third, we proposed two workflow recommendation algorithms, to capture the social

annotations capability on syntactic and semantic workflow recommendation respectively. Finally,

we implemented the proposed environment and strategies in our DATAVIEW system and validated

our approach with a case study and experimental results. Ongoing work includes extending our

recommendation framework to support a proactive, system driven recommendation approach to

provide recommendations for all the incomplete workflows in an in-progress workflow.

We proposed a NoSQL data model that: 1) supports high-performance MapReduce-style

workflows that automate data partitioning and data-parallelism execution. In contrast to the tra-

ditional MapReduce framework, our MapReduce-style workflows are fully composable with other

workflows enabling dataflow applications with a richer structure; 2) automates virtual machine pro-

visioning and deprovisioning on demand according to the sizes of input datasets; 3) enables a flexible

framework for workflow executors that take advantage of the proposed NoSQL data model to im-

prove the performance of workflow execution. We presented a case study and experiments that show

80

the competitive advantages of our proposed NoSQL collectional data model and the cloud workflow

executors. Ongoing work includes implementing a new set of workflow constructs that can be used

for efficient parallel processing.

To schedule big data workflows in the cloud computing environment, we formalize a model

of the cloud computing environment and a workflow graph model for the environment. Based on

the models, we propose a new Big dAta woRkflow schEduler uNder budgeT conStraint known as

BARENTS that supports high-performance workflow scheduling in a heterogeneous cloud computing

environment with a single objective to minimize the workflow makespan under a provided budget

constraint. Our case study and experiments not only show the competitive advantages of our

proposed scheduler, but also enables resources to scale elastically during workflow execution. The

proposed BARENTS scheduler is implemented in a new release of DATAVIEW, one of the most

usable big data workflow systems in the community

81

APPENDIX A: SCIENTIFIC WORKFLOW LANGUAGE
(SWL 3.0)

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http:

www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:element name="workflowSpec">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="workflow" type="WorkflowXMLElementType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="WorkflowXMLElementType">

<xsd:sequence>

<xsd:element name="workflowInterface">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="workflowDescription" type="xsd:string" minOccurs="0"/>

<xsd:element name="inputPorts">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="inputPort" type="PortXMLElementType" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="inputParameter" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:simpleContent>

82

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="outputPorts">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="outputPort" type="PortXMLElementType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="number" type="xsd:int"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="workflowBody">

<xsd:complexType>

<xsd:choice>

<xsd:sequence>

<xsd:element name="baseWorkflow" type="xsd:string"/>

<xsd:element name="unary-construct">

<xsd:complexType>

<xsd:sequence>

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="map" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="mapPort" type="xsd:string"/>

</xsd:complexType>

83

</xsd:element>

<xsd:element name="reduce" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="basePort" type="xsd:string"/>

<xsd:attribute name="reducePort" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="tree" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="leftPort" type="xsd:string"/>

<xsd:attribute name="rightPort" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="loop" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="loopPort" type="xsd:string"/>

<xsd:attribute name="predicate" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="conditional" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="conditionalPort" type="xsd:string"/>

<xsd:attribute name="predicate" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="curry" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="inputMapping" type="WorkflowPortMappingXMLElementType" minOccurs="0"

84

maxOccurs="unbounded"/>

<xsd:element name="assign" type="WorkflowPortMappingXMLElementType" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="outputMapping" type="WorkflowPortMappingXMLElementType" minOc-

curs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="curryPort" type="xsd:string"/>

<xsd:attribute name="parameter" type="xsd:string"/>

<xsd:attribute name="parameterType" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="taskComponent">

<xsd:complexType>

<xsd:sequence>

<xsd:choice>

<xsd:sequence>

<xsd:element name="wsdlURI" type="xsd:string"/>

<xsd:element name="serviceName" type="xsd:string"/>

<xsd:element name="operationName" type="xsd:string"/>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="directory" type="xsd:string"/>

<xsd:element name="appName" type="xsd:string"/>

</xsd:sequence>

85

<xsd:sequence>

<xsd:element name="executable" type="xsd:string"/>

<xsd:element name="appName" type="xsd:string"/>

</xsd:sequence>

</xsd:choice>

<xsd:element name="taskInvocation">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="operatingSystem">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Windows"/>

<xsd:enumeration value="Unix"/>

<xsd:enumeration value="Linux"/>

<xsd:enumeration value="Mac"/>

<xsd:enumeration value="Unknown"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="invocationMode">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Local"/>

<xsd:enumeration value="Remote"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="interactionMode">

<xsd:simpleType>

86

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Yes"/>

<xsd:enumeration value="No"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="invocationAuthentication" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="hostName" type="xsd:string"/>

<xsd:element name="userName" type="xsd:string"/>

<xsd:element name="password" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="inputParams" type="xsd:string"/>

<xsd:element name="outputParams" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="taskType" use="required">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="WindowsApplication"/>

<xsd:enumeration value="LinuxApplication"/>

<xsd:enumeration value="CommandLine"/>

<xsd:enumeration value="WebService"/>

<xsd:enumeration value="GridJob"/>

87

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name="T2W">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="inputs">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="input" type="TaskPortMappingXMLElementType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="outputs">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="output" type="TaskPortMappingXMLElementType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="workflowGraph">

<xsd:complexType>

88

<xsd:sequence>

<xsd:element name="workflowInstances">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="workflowInstance" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="workflow" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="dataChannels">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="dataChannel" type="DataChannelXMLElementType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="G2W">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="inputMapping" type="WorkflowPortMappingXMLElementType" minOccurs="0"

89

maxOccurs="unbounded"/>

<xsd:element name="outputMapping" type="WorkflowPortMappingXMLElementType" minOc-

curs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="builtin" type="xsd:string"/>

</xsd:sequence>

</xsd:choice>

<xsd:attribute name="mode" use="required">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="unary-construct-based"/>

<xsd:enumeration value="primitive"/>

<xsd:enumeration value="graph-based"/>

<xsd:enumeration value="builtin"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="root" type="xsd:boolean" use="required"/>

</xsd:complexType>

<xsd:complexType name="PortXMLElementType">

<xsd:sequence>

90

<xsd:element name="portID" type="xsd:string"/>

<xsd:element name="portName" type="xsd:string"/>

<xsd:element name="portType">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="String"/>

<xsd:enumeration value="Decimal"/>

<xsd:enumeration value="Integer"/>

<xsd:enumeration value="NonPositiveInteger"/>

<xsd:enumeration value="NegativeInteger"/>

<xsd:enumeration value="NonNegativeInteger"/>

<xsd:enumeration value="UnsignedLong"/>

<xsd:enumeration value="UnsignedInt"/>

<xsd:enumeration value="UnsignedShort"/>

<xsd:enumeration value="UnsignedByte"/>

<xsd:enumeration value="PositiveInteger"/>

<xsd:enumeration value="Double"/>

<xsd:enumeration value="Float"/>

<xsd:enumeration value="Long"/>

<xsd:enumeration value="Int"/>

<xsd:enumeration value="Short"/>

<xsd:enumeration value="Byte"/>

<xsd:enumeration value="Boolean"/>

<xsd:enumeration value="Uri"/>

<xsd:enumeration value="Blob"/>

<xsd:enumeration value="Date"/>

<xsd:enumeration value="List"/>

<xsd:enumeration value="Mongo"/>

<xsd:enumeration value="Uri"/>

91

<xsd:enumeration value="File"/>

<xsd:enumeration value="RelationBase"/>

<xsd:enumeration value="CollectionBase"/>

<xsd:enumeration value="Object"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="portParameter" type="xsd:string" minOccurs="0"/>

<xsd:element name="portDescription" type="DescriptionXMLElementType" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="TaskPortMappingXMLElementType">

<xsd:attribute name="id" type="xsd:string" use="required"/>

<xsd:attribute name="mode" type="xsd:string" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="type" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="DataChannelXMLElementType">

<xsd:attribute name="type">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="OneToOneDataChannel"/>

<xsd:enumeration value="OneToManyDataChannel"/>

<xsd:enumeration value="ManyToOneDataChannel"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name="from" type="xsd:string" use="required"/>

<xsd:attribute name="to" type="xsd:string" use="required"/>

92

</xsd:complexType>

<xsd:complexType name="WorkflowPortMappingXMLElementType">

<xsd:attribute name="from" type="xsd:string" use="required"/>

<xsd:attribute name="to" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:simpleType name="DescriptionXMLElementType">

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:schema>

93

APPENDIX B: DATA PRODUCT LANGUAGE (DPL 3.0)
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified" version="1.0.0">

<xsd:element name="dataProduct" type="DataProductXMLElementType"/>

<xsd:complexType name="DataProductXMLElementType">

<xsd:sequence>

<xsd:element name="description" type="xsd:string"/>

<xsd:element name="type">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="ScalarValue"/>

<xsd:enumeration value="XmlElement"/>

<xsd:enumeration value="File"/>

<xsd:enumeration value="ColVal"/>

<xsd:enumeration value="List"/>

<xsd:enumeration value="Mongo"/>

<xsd:enumeration value="Relation"/>

<xsd:enumeration value="Collection"/>

<xsd:enumeration value="Dropbox"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="data" type="DataXMLElementType"/>

</xsd:sequence>

<xsd:attribute name="name"/>

</xsd:complexType>

<xsd:complexType name="DataXMLElementType">

<xsd:choice>

94

<xsd:element name="scalarValue" type="ScalarValueXMLElementType"/>

<xsd:element name="xmlElement" type="XmlElementXMLElementType"/>

<xsd:element name="blob" type="xsd:base64Binary"/>

<xsd:element name="file" type="FileXMLElementType"/>

<xsd:element name="list" type="ListXMLElementType"/>

<xsd:element name="mongo" type="MongoXMLElementType"/>

<xsd:element name="collectionvalue" type="ColValXMLElementType"/>

<xsd:element name="relation" type="RelationXMLElementType"/>

<xsd:element name="collection" type="CollectionXMLElementType"/>

<xsd:element name="dropboxItem" type="DropboxXMLElementType"/>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="ScalarValueXMLElementType">

<xsd:sequence>

<xsd:element name="scalarType" type="ScalarDataTypeEnumeration"/>

<xsd:element name="value" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ScalarDataTypeEnumeration">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="String"/>

<xsd:enumeration value="Decimal"/>

<xsd:enumeration value="Integer"/>

<xsd:enumeration value="NonPositiveInteger"/>

<xsd:enumeration value="NegativeInteger"/>

<xsd:enumeration value="NonNegativeInteger"/>

<xsd:enumeration value="UnsignedLong"/>

<xsd:enumeration value="UnsignedInt"/>

<xsd:enumeration value="UnsignedShort"/>

95

<xsd:enumeration value="UnsignedByte"/>

<xsd:enumeration value="PositiveInteger"/>

<xsd:enumeration value="Double"/>

<xsd:enumeration value="Float"/>

<xsd:enumeration value="Long"/>

<xsd:enumeration value="Int"/>

<xsd:enumeration value="Short"/>

<xsd:enumeration value="Byte"/>

<xsd:enumeration value="Boolean"/>

<xsd:enumeration value="Uri"/>

<xsd:enumeration value="Blob"/>

<xsd:enumeration value="Date"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ListXMLElementType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="listName" type="xsd:string"/>

<xsd:element name="listType" type="xsd:string"/>

<xsd:element name="listValue" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DropboxXMLElementType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="dropboxAppKey" type="xsd:string"/>

<xsd:element name="dropboxAppSecret" type="xsd:string"/>

<xsd:element name="dropboxAppToken" type="xsd:string"/>

<xsd:element name="dropboxPath" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

96

<xsd:complexType name="FileXMLElementType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="FileName" type="xsd:string"/>

<xsd:element name="FilePath" type="xsd:string"/>

<xsd:element name="FileType" type="xsd:string"/>

<xsd:element name="FileStorage" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="MongoXMLElementType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="colName" type="xsd:string"/>

<xsd:element name="dbName" type="xsd:string"/>

<xsd:element name="hostName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ColValXMLElementType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="ValueType" type="xsd:string"/>

<xsd:element name="Value" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="XmlElementXMLElementType">

<xsd:sequence>

<xsd:element name="value" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RelationXMLElementType">

<xsd:sequence>

<xsd:element name="schema">

97

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="column" type="DataColumnXMLElementType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:choice>

<xsd:element name="instance">

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="row" type="DataRowXMLElementType"/>

</xsd:sequence>

<xsd:attribute name="count" type="xsd:integer"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="DBEntry">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="dbName" type="xsd:string"/>

<xsd:element name="tableName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DataColumnXMLElementType">

<xsd:sequence>

<xsd:element name="columnName" type="xsd:string"/>

98

<xsd:element name="columnType" type="ScalarDataTypeEnumeration"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DataRowXMLElementType">

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="dataElement" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CollectionXMLElementType">

<xsd:sequence>

<xsd:element name="schema">

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="key" maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="value">

<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="DBEntry">

99

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="Entry" type="DBEntryXMLElementType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DBEntryXMLElementType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="dbName" type="xsd:string"/>

<xsd:element name="tableName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PairXMLElementType">

<xsd:sequence>

<xsd:element name="key" type="xsd:string"/>

<xsd:choice>

<xsd:element name="relation" type="RelationXMLElementType"/>

<xsd:element name="collection" type="CollectionXMLElementType"/>

<xsd:element name="scalarValue" type="ScalarValueXMLElementType"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

100

APPENDIX C: ENTITY RELATIONSHIP DIAGRAM
(ERD 3.0)

Figure 7.1: ER Diagram of DATAVIEW.

101

APPENDIX D: KNN ALGORITHM PRIMITIVE
WORKFLOW

Workflow Specification

<workflowSpec>

<workflow name="KNN" root="true">

<workflowInterface>

<workflowDescription>

simple KNN workflow</workflowDescription>

<inputPorts>

<inputPort>

<portID>i1</portID>

<portName>a</portName>

<portType>File</portType>

<portDescription>port i1 description</portDescription>

</inputPort>

<inputPort>

<portID>i2</portID>

<portName>b</portName>

<portType>File</portType>

<portDescription>port i2 description</portDescription>

</inputPort>

<inputPort>

<portID>i3</portID>

<portName>c</portName>

<portType>Integer</portType>

<portDescription>port i3 description</portDescription>

</inputPort>

</inputPorts>

<outputPorts>

102

<outputPort>

<portID>o1</portID>

<portName>c</portName>

<portType>File</portType>

<portDescription>port o1 description</portDescription>

</outputPort>

</outputPorts>

</workflowInterface>

<workflowBody mode="builtin">

<builtin>KNN</builtin>

</workflowBody>

</workflow>

</workflowSpec>

103

APPENDIX E: APRIORI ALGORITHM PRIMITIVE
WORKFLOW

Workflow Specification

<workflowSpec>

<workflow name="APRIORI" root="true">

<workflowInterface>

<workflowDescription>

simple APRIORI workflow</workflowDescription>

<inputPorts>

<inputPort>

<portID>i1</portID>

<portName>a</portName>

<portType>File</portType>

<portDescription>port i1 description</portDescription>

</inputPort>

<inputPort>

<portID>i2</portID>

<portName>b</portName>

<portType>Integer</portType>

<portDescription>port i2 description</portDescription>

</inputPort>

<inputPort>

<portID>i3</portID>

<portName>c</portName>

<portType>Double</portType>

<portDescription>port i3 description</portDescription>

</inputPort>

</inputPorts>

<outputPorts>

104

<outputPort>

<portID>o1</portID>

<portName>c</portName>

<portType>File</portType>

<portDescription>port o1 description</portDescription>

</outputPort>

</outputPorts>

</workflowInterface>

<workflowBody mode="builtin">

<builtin>APRIORI</builtin>

</workflowBody>

</workflow>

</workflowSpec>

105

APPENDIX F: KMEANS ALGORITHM PRIMITIVE
WORKFLOW

Workflow Specification

<workflowSpec>

<workflow name="KMEANS" root="true">

<workflowInterface>

<workflowDescription>

simple KMEANS workflow</workflowDescription>

<inputPorts>

<inputPort>

<portID>i1</portID>

<portName>a</portName>

<portType>File</portType>

<portDescription>port i1 description</portDescription>

</inputPort>

<inputPort>

<portID>i2</portID>

<portName>b</portName>

<portType>Integer</portType>

<portDescription>port i2 description</portDescription>

</inputPort>

<inputPort>

<portID>i3</portID>

<portName>c</portName>

<portType>Integer</portType>

<portDescription>port i3 description</portDescription>

</inputPort>

</inputPorts>

<outputPorts>

106

<outputPort>

<portID>o1</portID>

<portName>c</portName>

<portType>File</portType>

<portDescription>port o1 description</portDescription>

</outputPort>

</outputPorts>

</workflowInterface>

<workflowBody mode="builtin">

<builtin>KMEANS</builtin>

</workflowBody>

</workflow>

</workflowSpec>

107

REFERENCES

[1] J. Ambite, D. Kapoor. Automatically composing data workflows with relational descriptions

and shim services. In Proc. of the ISWC/ASWC Conference, pages 15âĂŞ29, 2007.

[2] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. VisTrails: visualization

meets data management. In Proc. of the SIGMOD Conference, pages 745âĂŞ747, 2006.

[3] S. Davidson, J. Freire. Provenance and scientific workflows: challenges and opportunities. In

Proc. of the SIGMOD Conference, pages 1345âĂŞ1350, 2008.

[4] E. Deelman, A. Chervenak. Data management challenges of data-intensive scientific workflows.

In Proc. of the CCGRID Conference, pages 687âĂŞ692, 2008.

[5] D. Hull, R. Stevens, and P. Lord. Describing web services for user-oriented retrieval. In Proc.

of the W3C Workshop on Frameworks for Semantics in Web Services, pages 9âĂŞ10, 2005.

[6] D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shimantic web syndrome with

ontologies. In Proc. of the AKT- SWS04 Workshop, 2004.

[7] C. Lin, S. Lu, X. Fei, A. Chebotko, Z. Lai, D. Pai, F. Fotouhi, and J. Hua. A reference

architecture for scientific workflow management systems and the VIEW SOA solution. IEEE

Transactions on Services Computing, 2(1):79âĂŞ92, 2009.

[8] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi. Service-oriented architec-

ture for VIEW: A visual scientific workflow management system. In Proc. of the IEEE SCC

Conference, pages 335âĂŞ342, 2008.

[9] B. Ludascher, S. Bowers, T. McPhillips, and N. Podhorszki. Scientific workflows: More e-

science mileage from cyberinfrastructure. In Proc. of the e-Science and Grid Computing Con-

ference, pages 145âĂŞ152, 2006.

[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. Greenwood, T. Carver, K. Glover,

M. Pocock, A. Wipat, and P. Li. Taverna: A tool for the composition and enactment of

bioinformatics workflows. Bioinformatics, 20(17):3045âĂŞ 3054, 2004.

[11] M.Szomszor, T. Payne, and L. Moreau. Automated syntactic medation for web service inte-

gration. In Proc. of the ICWS Conference, pages 127âĂŞ136, 2006.

108

[12] C. Lin, S. Lu, X. Fei, D. Pai and J. Hua, A Task Abstraction and Mapping Approach to the

Shimming Problem in Scientific Workflows, In Proc. of the IEEE International Conference on

Services Computing (SCC), pages 284-291, Bangalore, India, 2009.

[13] A. Kashlev, S. Lu, and A. Chebotko, Coercion Approach to the Shimming Problem in Scientific

Workflows, In Proc. of the IEEE International Conference on Services Computing (SCC),

pages 416-423, 2014, Santa Clara, CA.

[14] S. Singh, N. Singh, Big Data Analytics, In Proc. of the IEEE International Conference on

Communication, Information and Computing Technology (ICCICT), Mumbai, India, 2012.

[15] http://www.01.ibm.com/software/data/infosphere/hadoop/what-is-big-data-analytics.html

[16] S. Xu, S. Bao, B. Fei, Z. Su, and Y. Yu, Exploring folksonomy for personalized search, In

Proc. of the 31st annual international ACM SIGIR conference on Research and development

in information retrieval (SIGIR 2008), pages 155-162, 2008.

[17] A. Hotho, R. JÃďschke, C. Schmitz, and G. Stumme, Information retrieval in folksonomies:

search and ranking, In Proc. of the 3rd European conference on The Semantic Web: research

and applications (ESWC 2006), Springer-Verla. pages 411-426, 2006.

[18] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su, Optimizing web search using social anno-

tations, In Proc. of WWW 2007, pages 501âĂŞ510, 2007.

[19] D. Koop, C. E. Scheidegger, and S. P. Callahan, VisComplete: Automating Suggestions for

Visualization Pipelines, IEEE Transactions on Visualization and Computer Graphics, vol.14,

no. 6, pages 1691, 2008.

[20] E. Chinthaka, J. Ekanayake, and D, Leake CBR Based Workflow Composition Assistant, In

Proc. of 2009 World Congress on Services (SERVICES-I), IEEE Computer Society. pages

352-355.

[21] J. Zhang, W. Tan, and J. Alexander, Recommend-As-You-Go: A Novel Approach Support-

ing Services-Oriented Scientific Workflow Reuse, In Proc. of the 2011 IEEE International

Conference on Services Computing (SCC 2011), pages 48-55.

[22] J. Li, Z. Su, Z. Q. Ma, R. J. Slebos, P. Halvey, D. L. Tabb, D. C. Liebler, W. Pao, and

B. Zhang, A bioinformatics workflow for variant peptide detection in shotgun proteomics,

Molecular & Cellular Proteomics 10.5 (2011): M110-006536.

109

[23] Crasto, C. Joaqium, S. H. Koslow, and K. Fissell, Workflow-based approaches to neuroimaging

analysis, Neuroinformatics, Humana Press, pages 235-266, 2007.

[24] W. Michener, J. Beach, S. Bowers, L. Downey, M. Jones, B. LudÃďscher, D. Pennington, A.

Rajasekar, S. Romanello, M. Schildhauer, D. Vieglais, and J. Zhang, Data integration and

workflow solutions for ecology, Data integration in the life sciences, Springer Berlin Heidelberg,

pages 321-324, 2005.

[25] R.S. Barga, J. Jackson, and N. Araujoe, Trident: Scientific Workflow Workbench for Oceanog-

raphy, In Proc.of SERVICES I, pages 465-466, 2008.

[26] G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S. Katz, and G. Mehta,

Workflow task clustering for best effort systems with Pegasus, In Proc.of the 15th ACM Mardi

Gras conferences (MG 2008), pages 235-266.

[27] A. Dolgert, L. Gibbons, and C. D. Jones, Provenance in high-energy physics workflows, Com-

puting in Science & Engineering, vol.10, no. 3, pages 22-29, 2008.

[28] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman, M.

Borkum, S. Bechhofer, M. Roos, P. Li, and D. D. Roure, myExperiment: a repository and

social network for the sharing of bioinformatics workflows, Nucleic acids research, 38(suppl

2), W667-W682.

[29] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.

Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, Pegasus: A framework for mapping

complex scientific workflows onto distributed systems, Scientific Programming Journal, vol.13,

no. 3, pages 219-237, 2005.

[30] X. Fei, S. Lu, A Collectional Data Model for Scientific Workflow Composition, In Proc. of the

2010 IEEE International Conference on Web Services (ICWS 2010), pages 567-574.

[31] J. Wang, D. Crawl, and I. Altintas, Big data applications using workflows for data parallel

computing, Computing in Science & Engineering, vol.16, no. 4, pages 11-21, 2014.

[32] X. Fei, S. Lu, and C. Lin, A MapReduce-Enabled Scientific Workflow Composition Framework,

In Proc. of the 2009 IEEE International Conference on Web Services (ICWS 2009), pages

663-670.

110

[33] T. McPhillips, S.Bowers, and B. LudÃďscher, Collection-oriented scientific workflows for in-

tegrating and analyzing biological data, In Proc. of DILS, vol. 4075, 2006, pages 248âĂŞ263.

[34] D. Turi, P. Missier, C. Goble, D. D. Roure, and T. Oinn, Taverna workflows: Syntax and

semantics, In Proc. of eScience, 2007, pages 441âĂŞ448.

[35] S. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, VisTrails:

visualization meets data management, In Proc. of SIGMOD, 2006, pages 745âĂŞ747.

[36] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny,

D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani, Scaling Memcache at Face-

book, In Proc. of the 10th USENIX conference on Networked Systems Design and Implemen-

tation (NSDI 2013), pages 385-398.

[37] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber, Bigtable: A distributed storage system for structured data, In Proc.

of the ACM Transactions on Computer Systems (TOCS 2008), vol. 26, no. 2 (2008).

[38] M.N. Vora, Hadoop-HBase for large-scale data, In proc. of the 2011 International Conference

on Computer Science and Network Technology (ICCSNT 2011), pages 601-605.

[39] R. Angels, C. Gutierrez, Survey of graph database models, In proc of the ACM Computing

Surveys (CSUR’08), vol. 40, no. 1 (2008), 1.

[40] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters, In Proc. of

OSDI, 2004, pages 137-150.

[41] C. Olston, B. Reed, and U. Srivastava Pig Latin: a not-so-foreign language for data processing,

In Proc. of SIGMOD, 2008, pages 1099-1110.

[42] Y. Yu, M. Isard, D. Fetterly, M. Budiu, ÃŽ. Erlingsson, P. K. Gunda, and J. Currey,

DryadLINQ: A system for generalpurpose distributed data-parallel computing using a high-

level language, In Proc. of OSDI, 2008, pages 1-14.

[43] D. Williams, The Arbitron national in-car study, Arbitron Inc., 2009.

[44] Chunhyeok Lim, S. Lu, A. Chebotko, F. Fotouhi, and A. Kashlev, OPQL: Querying Scientific

Workflow Provenance at the Graph Level, Data & Knowledge Engineering (DKE), 88(2013),

pages 37-59, 2013.

111

[45] D. Ruan, S. Lu, A. Mohan, X. Fei, and J. Zhang, A User-Defined Exception Handling Frame-

work in the VIEW Scientific Workflow Management System, In Proc. of the IEEE Interna-

tional Conference on Services Computing (SCC), pages 274-281, Honolulu, Hawaii, 2012.

[46] G. Bell, T. Hey, and A. Szalay, Beyond the data deluge, Science 323.5919 (2009), pages

1297-1298.

[47] H. Chen, R. H. L. Chiang, and V. C. Storey, Business Intelligence and Analytics: From Big

Data to Big Impact, MIS quarterly, 36.4 (2012), pages 1165-1188.

[48] J. Han, Haihong. E, Survey on NoSQL database, In Proc. of the 2011 6th international

conference on Pervasive computing and applications (ICPCA), 2011, pages 363-366.

[49] J. Pokorny, NoSQL databases: a step to database scalability in web environment, International

Journal of Web Information Systems, 9.1 (2013), pages 69-82.

[50] A. Chebotko, A. Kashlev, and S. Lu, A Big Data Modeling Methodology for Apache Cassan-

dra. In Proc. of the 2015 IEEE International Congress on Big Data(BigData Congress), 2015,

pages 238-245

[51] S. Abrishami, M.Naghibzadeh, and D. H. J. Epema, Deadline-constrained workflow schedul-

ing algorithms for Infrastructure as a Service Clouds. Future Generation Computer Systems

(FGCS), vol. 29, no. 1, pages 158-169, 2013.

[52] Z. Wu, Z. Ni, A revised discrete particle swarm optimization for cloud workflow scheduling. In

Proc. Of the International Conference Computational Intelligence and Security (CIS), pages

184-188, 2010.

[53] S. Yassa, R.Chelouah, H.Kadima, and B.Granado, Multi objective approach for energy-aware

workflow scheduling in cloud computing environments. The Scientific World Journal, Volume

2013(2013), Article ID 350934.

[54] R. N. Calheiros, R. Buyya, Meeting deadlines of scientific workflows in public clouds with

tasks replication. IEEE Transaction Parallel and Distributed Systems, vol. 25, no. 7, pages

1787âĂŞ1796, 2014.

[55] M. Malawski, G. Juve, Cost and deadline-constrained provisioning for scientific workflow

ensembles in IaaS clouds. In Proc. of the International Conference on High Performance

Computing, Networking, Storage and Analysis, Article No. 22, 2012.

112

[56] A. C. Zhou, B. He, Monetary cost optimizations for hosting workflow-as-a-service in IaaS

clouds. IEEE Transactions on Cloud Computing, vol. 4, no. 1, pages 34-48, 2015.

[57] C. Lin, S. Lu, SCPOR: An elastic workflow scheduling algorithm for services computing.

In Proc. of the International Conference on Service Oriented Computing and Applications

(SOCA 2011), pages 1-8, 2011.

[58] M.A. Rodriguez, R. Buyya, A responsive Knapsack-based algorithm for resource provi-sioning

and scheduling of scientific workflows in clouds. In Proc. of the 44th International Conference

on Parallel Processing (ICPP 2015), pages 839-848, 2015.

[59] A. Mohan, S. Lu, and A. Kotov, Addressing the Shimming Problem in Big Data Scientific

Workflows. In Proc. of the 2014 IEEE International Conference on Services Computing (SCC

2014), pages 347-354, 2014.

[60] M. Xu, L. Cui, A multiple QoS constrained scheduling strategy of multiple workflows for cloud

computing. In Proc. of the International Symposium on Parallel and Distributed Processing

with Applications (ISPA), pages 629-634, 2009.

[61] T. T. Huu, J.Montagnat, Virtual resources allocation for workflow-based applications distri-

bution on a cloud infrastructure. In Proc. of the International Conference Cluster, Cloud Grid

Computing (CCGrid), pages 612-617, 2010.

[62] D. de Oliveira, K.A. OcaÃśa, F.BaiÃčo, and M.Mattoso, A provenance-based adaptive

scheduling heuristic for parallel scientific workflows in clouds. Journal of Grid Computing,

vol.10, no. 3, pages 521âĂŞ552, 2012.

[63] A. Kashlev, S. Lu, A System Architecture for Running Big Data Workflows in the Cloud. In

Proc. of the 2014 IEEE International Conference on Services Computing (SCC 2014), pages

51-58, 2014.

[64] A. Mohan, M. Ebrahimi, S.Lu, and A.Kotov, A NoSQL Data Model for Scalable Big Data

Workflow Execution. In Proc. of the International IEEE Congress on Big Data (BigData

2016), pages 52-59, 2016.

[65] M. Ebrahimi, A.Mohan, S.Lu, and R.Reynolds, TPS: A task placement strategy for big data

workflows. In Proc. of the 2015 IEEE International Conference on Big Data (Big Data), pages

523-530, 2015.

113

[66] M. Ebrahimi, A. Mohan, A. Kashlev, and S. Lu, BDAP: A Big Data Placement Strategy for

Cloud-Based Scientific Workflows. In Proc. of the 2015 IEEE First International Conference

on Big Data Computing Service and Applications (BigDataService), pages 105-114, 2015.

[67] P. Mell, T. Grance, The NIST definition of cloud computing. Communications of the ACM,

vol. 53, no. 6, pages 50, 2010.

[68] A.Lenk, M.Menzel, J.Lipsky, S.Tai, and P.Offermann, What are you paying for? performance

benchmarking for infrastructure-as-a-service offerings. In Proc. of the 2011 IEEE International

Conference on Cloud Computing (CLOUD), pages 484-491, 2011.

[69] A. Lenk, M.Klems, J.Nimis, S.Tai, and T.Sandholm, Whatś inside the Cloud? An architec-

tural map of the Cloud landscape. In Proc. of the 2009 ICSE Workshop on Software Engi-

neering Challenges of Cloud Computing, pages 23-31, 2009.

[70] H. Arabnejad, J.G. Barbosa, A budget constrained scheduling algorithm for workflow appli-

cations. Journal of Grid Computing, vol. 12, no. 4, pages 665-679, 2014.

[71] R. Sakellariou, H.Zhao, Scheduling workflows with budget constraints. in Integrated research

in GRID computing, pages 189-202. Springer US, 2007.

[72] W. Zheng, R.Sakellariou, Budget-deadline constrained workflow planning for admission con-

trol. Journal of Grid Computing, vol. 11, no. 4, pages 633-651, 2013.

[73] H.Arabnejad, J.G. Barbosa, and R. Prodan, Low-time complexity budget-deadline con-

strained workflow scheduling on heterogeneous resources. Future Generation Computer Sys-

tems (FGCS), vol. 55, pages 29-40, 2016.

[74] R. Prodan, M.Wieczorek, Bi-criteria scheduling of scientific grid workflows. IEEE Transactions

on Automation Science and Engineering, vol. 7, no. 2, pages 364-376, 2010.

[75] J. Yu, R.Buyya, Scheduling scientific workflow applications with deadline and budget con-

straints using genetic algorithms. Scientific Programming, vol. 14, no. 3-4, pages 217-230,

2006.

[76] Vouk, M.A. and M.P. Singh, Quality of service and scientific workflows. Quality of Numerical

Software, 1996. 76: pages 77-89.

[77] Ogasawara, E., et al., An algebraic approach for data-centric scientific workflows. Proc. of

VLDB Endowment, 2011. 4(12): pages 1328-1339.

114

[78] Juve, G. and E. Deelman, Scientific workflows and clouds. Crossroads, 2010. 16(3): pages

14-18.

[79] Bharathi, S., et al. Characterization of scientific workflows. in Workflows in Support of Large-

Scale Science, 2008. WORKS 2008. Third Workshop on. 2008.

[80] Weiss, A., Computing in the clouds. networker, 2007. 11(4).

[81] Foster, I., et al. Cloud computing and grid computing 360-degree compared. in Grid Comput-

ing Environments Workshop, 2008. GCE 2008. 2008.

[82] Lohr, S., Google and IBM join in cloud computing research. New York Times, 2007. 8.

[83] Ricadela, A., Computing heads for the clouds. Business Week, 2007.

[84] Juve, G., et al., Characterizing and profiling scientific workflows. Future Generation Computer

Systems, 2013. 29(3): pages 682-692.

[85] Brantner, M., et al. Building a database on S3. in Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. 2008. ACM. 13.

[86] Buyya, R., C.S. Yeo, and S. Venugopal. Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. in High Performance Computing and

Communications, 2008. HPCC’08. 10th IEEE International Conference on. 2008.

[87] Moretti, C., et al. All-pairs: An abstraction for data-intensive cloud computing. in Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. 2008.

[88] Zhao, Y., et al. Opportunities and challenges in running scientific workflows on the cloud. in

Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2011 In

[89] ternational Conference on. 2011.

[90] Hoffa, C., et al. On the use of cloud computing for scientific workflows. in eScience, 2008.

eScience’08. IEEE Fourth International Conference on. 2008.

[91] Ji Liu, E.P., Patrick Valduriez, Marta Mattoso, Parallelization of Scientific Workflows in the

Cloud. 2014.

[92] Hey, A.J., S. Tansley, and K.M. Tolle, The fourth paradigm: data-intensive scientific discovery.

Vol. 1. 2009: Microsoft Research Redmond, WA.

[93] Gilbert, S. and N. Lynch, Brewers conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News, 2002. 33(2): pages 51-59.

115

[94] Birman, K., Q. Huang, and D. Freedman, Overcoming the ‘D’in CAP: Using Isis2 to Build

Locally Responsive Cloud Services. Computer, 2011: pages 50- 58.

[95] Agrawal, D., et al., Data management challenges in cloud computing infrastructures, in

Databases in Networked Information Systems. 2010, Springer. pages 1-10.

[96] Stewart, R.J., P.W. Trinder, and H. W. Loidl, Comparing high level mapreduce query lan-

guages, in Advanced Parallel Processing Technologies. 2011, Springer. pages 58-72.

[97] Grossman, R. and Y. Gu. Data mining using high performance data clouds: experimental

studies using sector and sphere. in Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining. 2008. ACM.

[98] NIST Big Data Working Group. Available from: http://bigdatawg.nist.gov/.

[99] Brown, D.A., et al., A case study on the use of workflow technologies for scientific analysis:

Gravitational wave data analysis. 2006: Springer.

[100] Demchenko, Y., et al. Addressing big data issues in scientific data infrastructure. in Collabo-

ration Technologies and Systems (CTS), 2013 International Conference on. 2013.

[101] Eaton, C., et al., Understanding big data: Analytics for enterprise class hadoop and streaming

data. FREE ebook, 2012.

[102] Lotfy, A.E., et al., A middle layer solution to support ACID properties for NoSQL databases.

Journal of King Saud University-Computer and Information Sciences, 2016. 28(1): pages

133-145.

[103] Lakshman, A. and P. Malik, Cassandra decentralized structured storage system. 2009. Cited

on, 2015: pages 17.

[104] Chodorow, K., MongoDB: the definitive guide. 2013: " O’Reilly Media, Inc.".

[105] Abouelhoda, M., S.A. Issa, and M. Ghanem, Tavaxy: Integrating Taverna and Galaxy work-

flows with cloud computing support. BMC bioinformatics, 2012. 13(1): pages 77.

[106] Emeakaroha, V.C., et al., Managing and optimizing bioinformatics workflows for data analysis

in clouds. Journal of grid computing, 2013. 11(3): pages 407-428.

[107] Vockler, J.S., et al. Experiences using cloud computing for a scientific workflow application.

in Proceedings of the 2nd international workshop on Scientific cloud computing. 2011. ACM.

116

[108] Wu, Z., et al., A market-oriented hierarchical scheduling strategy in cloud workflow systems.

The Journal of Supercomputing, 2013. 63(1): pages 256-293.

[109] De Oliveira, D., et al. Scicumulus: A lightweight cloud middleware to explore many task

computing paradigm in scientific workflows. in Cloud Computing (CLOUD), 2010 IEEE 3rd

International Conference on. 2010.

[110] Durillo, J.J., V. Nae, and R. Prodan. Multi-objective workflow scheduling: An analysis of the

energy efficiency and makespan tradeoff. in Cluster, Cloud and Grid Computing (CCGrid),

2013 13th IEEE/ACM International Symposium on. 2013.

[111] Tangudu, V. and M. Mishra. Estimating makespan using double trust thresholds for workflow

applications. in Proceedings of the CUBE International Information Technology Conference.

2012. ACM.

[112] Weise, T., Global optimization algorithms-theory and application. Self- Published, 2009.

[113] Venugopal, S. and R. Buyya, An SCP-based heuristic approach for scheduling distributed

data-intensive applications on global grids. Journal of Parallel and Distributed Computing,

2008. 68(4): pages 471-487.

[114] Deelman, E., et al., Pegasus: Mapping large-scale workflows to distributed resources. 2006:

Springer.

[115] Google App Engine: Platform as a Service. Available from:

https://cloud.google.com/appengine/docs.

[116] Microsoft Azure: Cloud Computing Platform & Services. Available from:

http://azure.microsoft.com/en-us/.

[117] OpenStack. Available from:

https://www.openstack.org/.

[118] Amazon Elastic Compute Cloud (EC2). Available from:

http://aws.amazon.com/ec2/.

[119] FutureSystems: Digital Science Center, School of Informatics and Computing, Indiana Uni-

versity | FutureSystems Portal. Available from:

https://portal.futuresystems.org/.

117

[120] Pegasus | Workflow Management System. Available from:

http://pegasus.isi.edu/index.php.

118

ABSTRACT

IMPROVING USABILITY AND SCALABILITY OF BIG DATA WORKFLOWS IN
THE CLOUD.

by

Aravind Mohan

August 2017

Advisors: Dr. Shiyong Lu, Dr. Song Jiang

Major: Computer Engineering

Degree: Doctor of Philosophy

Big data workflows have recently emerged as the next generation of data-centric workflow

technologies to address the five “V” challenges of big data: volume, variety, velocity, veracity, and

value. More formally, a big data workflow is the computerized modeling and automation of a process

consisting of a set of computational tasks and their data interdependencies to process and analyze

data of ever increasing in scale, complexity, and rate of acquisition. The convergence of big data

and workflows creates new challenges in workflow community.

First, the variety of big data results in a need for integrating large number of remote Web

services and other heterogeneous task components that can consume and produce data in various

formats and models into a uniform and interoperable workflow. Existing approaches fall short in

addressing the so-called shimming problem only in an adhoc manner and unable to provide a generic

solution. We automatically insert a piece of code called shims or adaptors in order to resolve the

data type mismatches.

Second, the volume of big data results in a large number of datasets that needs to be queried

and analyzed in an effective and personalized manner. Further, there is also a strong need for

sharing, reusing, and repurposing existing tasks and workflows across different users and institutes.

To overcome such limitations, we propose a folksonomy- based social workflow recommendation

system to improve workflow design productivity and efficient dataset querying and analyzing.

Third, the volume of big data results in the need to process and analyze data of ever

increasing in scale, complexity, and rate of acquisition. But a scalable distributed data model is

119

still missing that abstracts and automates data distribution, parallelism, and scalable processing.

We propose a NoSQL collectional data model that addresses this limitation.

Finally, the volume of big data combined with the unbound resource leasing capability

foreseen in the cloud, facilitates data scientists to wring actionable insights from the data in a

time and cost efficient manner. We propose BARENTS scheduler that supports high-performance

workflow scheduling in a heterogeneous cloud-computing environment with a single objective to

minimize the workflow makespan under a user provided budget constraint.

120

AUTOBIOGRAPHICAL STATEMENT

Aravind Mohan is currently a PhD candidate in the Big Data Research Lab at Wayne State uni-

versity under the supervision of Dr. Shiyong Lu. Before that, he worked in the industry as a

software engineer. His research focuses on big data management and cloud computing. His broader

areas of interests are services computing, online education services and information retrieval. He

has published several research articles in peer-reviewed international conferences, including IEEE

conference on services computing, big data congress, big data, big data computing services and

applications and the ACM SIGIR conference. He is a member of IEEE and ACM. He has joined as

a tenure track assistant professor at the department of comuter science in Allegheny College.

	Wayne State University
	1-1-2017
	Improving Usability And Scalability Of Big Data Workflows In The Cloud
	Aravind Mohan
	Recommended Citation

	Dedication
	Acknowledgements
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: RELATED WORK
	The Shimming Problem and Primitive Workflow Model
	A Folksonomy Based Social Recommender System for Workflow and Data Reuse
	A NoSQL Collectional Data Model
	Scheduling Big Data Workflows in the Cloud under Budget Constraints

	 -9ptCHAPTER 3: THE SHIMMING PROBLEM AND PRIMITIVE WORKFLOW MODEL
	Introduction
	Primitive Workflow Model
	Shim Generation Algorithm
	Integration of NoSQL Database
	Case Study
	Chapter Summary

	 -9pt CHAPTER 4: A FOLKSONOMY BASED SOCIAL RECOMMENDATION SYSTEM FOR WORKFLOW REUSE
	Introduction
	An Overview of Workflow Recommendation Framework
	A Folksonomy Based Workflow Model
	Workflow Recommendation Algorithms
	Implementation and Case Study
	Chapter Summary

	 -9ptCHAPTER 5: A NOSQL COLLECTIONAL DATA MODEL FOR RUNNING BIG DATA WORKFLOWS
	Introduction
	An Overview Of DATAVIEW
	NoSQL Collectional Data Model
	Algorithm For Workflow Executors
	Case Study and Experiments
	Chapter Summary

	 -9ptCHAPTER 6: SCHEDULING BIG DATA WORKFLOWS IN THE CLOUD UNDER BUDGET CONSTRAINTS
	Introduction
	Workflow Scheduler Model
	The BARENTS Scheduler
	Experimental Discussion
	Chapter Summary

	CHAPTER 7: CONCLUSIONS AND FUTURE WORK
	APPENDIX A: SCIENTIFIC WORKFLOW LANGUAGE (SWL 3.0)
	APPENDIX B: DATA PRODUCT LANGUAGE (DPL 3.0)
	APPENDIX C: ENTITY RELATIONSHIP DIAGRAM (ERD 3.0)
	APPENDIX D: KNN ALGORITHM PRIMITIVE WORKFLOW
	APPENDIX E: APRIORI ALGORITHM PRIMITIVE WORKFLOW
	APPENDIX F: KMEANS ALGORITHM PRIMITIVE WORKFLOW
	REFERENCES
	ABSTRACT
	AUTOBIOGRAPHICAL STATEMENT

