
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Summer 2017

Performance optimization and energy efficiency of
big-data computing workflows
Tong Shu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Shu, Tong, "Performance optimization and energy efficiency of big-data computing workflows" (2017). Dissertations. 41.
https://digitalcommons.njit.edu/dissertations/41

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/41?utm_source=digitalcommons.njit.edu%2Fdissertations%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PERFORMANCE OPTIMIZATION AND ENERGY EFFICIENCY OF
BIG-DATA COMPUTING WORKFLOWS

by
Tong Shu

Next-generation e-science is producing colossal amounts of data, now frequently

termed as Big Data, on the order of terabyte at present and petabyte or even exabyte

in the predictable future. These scientific applications typically feature data-intensive

workflows comprised of moldable parallel computing jobs, such as MapReduce, with

intricate inter-job dependencies. The granularity of task partitioning in each moldable

job of such big data workflows has a significant impact on workflow completion

time, energy consumption, and financial cost if executed in clouds, which remains

largely unexplored. This dissertation conducts an in-depth investigation into the

properties of moldable jobs and provides an experiment-based validation of the

performance model where the total workload of a moldable job increases along with

the degree of parallelism. Furthermore, this dissertation conducts rigorous research

on workflow execution dynamics in resource sharing environments and explores the

interactions between workflow mapping and task scheduling on various computing

platforms. A workflow optimization architecture is developed to seamlessly integrate

three interrelated technical components, i.e., resource allocation, job mapping, and

task scheduling.

Cloud computing provides a cost-effective computing platform for big data

workflows where moldable parallel computing models are widely applied to meet

stringent performance requirements. Based on the moldable parallel computing

performance model, a big-data workflow mapping model is constructed and a workflow

mapping problem is formulated to minimize workflow makespan under a budget

constraint in public clouds. This dissertation shows this problem to be strongly

NP-complete and designs i) a fully polynomial-time approximation scheme for a

special case with a pipeline-structured workflow executed on virtual machines of a

single class, and ii) a heuristic for a generalized problem with an arbitrary directed

acyclic graph-structured workflow executed on virtual machines of multiple classes.

The performance superiority of the proposed solution is illustrated by extensive

simulation-based results in Hadoop/YARN in comparison with existing workflow

mapping models and algorithms.

Considering that large-scale workflows for big data analytics have become a

main consumer of energy in data centers, this dissertation also delves into the

problem of static workflow mapping to minimize the dynamic energy consumption

of a workflow request under a deadline constraint in Hadoop clusters, which is shown

to be strongly NP-hard. A fully polynomial-time approximation scheme is designed

for a special case with a pipeline-structured workflow on a homogeneous cluster

and a heuristic is designed for the generalized problem with an arbitrary directed

acyclic graph-structured workflow on a heterogeneous cluster. This problem is further

extended to a dynamic version with deadline-constrained MapReduce workflows to

minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes

a semi-dynamic online scheduling algorithm based on adaptive task partitioning to

reduce dynamic energy consumption while meeting performance requirements from a

global perspective, and also develops corresponding system modules for algorithm

implementation in the Hadoop ecosystem. The performance superiority of the

proposed solutions in terms of dynamic energy saving and deadline missing rate is

illustrated by extensive simulation results in comparison with existing algorithms, and

further validated through real-life workflow implementation and experiments using

the Oozie workflow engine in Hadoop/YARN systems.

PERFORMANCE OPTIMIZATION AND ENERGY EFFICIENCY OF
BIG-DATA COMPUTING WORKFLOWS

by
Tong Shu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2017

Copyright c© 2017 by Tong Shu

ALL RIGHTS RESERVED

APPROVAL PAGE

PERFORMANCE OPTIMIZATION AND ENERGY EFFICIENCY OF
BIG-DATA COMPUTING WORKFLOWS

Tong Shu

Dr. Chase Q. Wu, Dissertation Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Guiling Wang, Committee Member Date
Professor of Computer Science, NJIT

Dr. Roberto Rojas-Cessa, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Andrew Sohn, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Xiaoning Ding, Committee Member Date
Assistant Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Tong Shu

Degree: 	 Doctor of Philosophy

Date: 	 August 2017

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2017

• Master of Science in Computer Science,
University of Memphis, Memphis, TN, 2015

• Bachelor of Science in Information Management and System,
Peking University, Beijing, P.R. China, 2005

Major: 	 Computer Science

Presentations and Publications:

Tong Shu and Chase Q. Wu. “Energy-efficient Dynamic Scheduling of Deadline-
constrained MapReduce Workflows”. Submitted to the 13th IEEE International
Conference on eScience, 10 pages, Auckland, New Zealand, Oct 24th-27th
2017.

Tong Shu and Chase Q. Wu. “Energy-efficient Mapping of Large-scale Workflows
under Deadline Constraints in Big Data Computing Systems”. Elsevier Future
Generation Computing Systems, 16 pages. (Impact factor: 3.997)

Tong Shu and Chase Q. Wu. “Bandwidth Scheduling for Energy Efficiency in High-
performance Networks”. IEEE Transactions on Communications, 15 pages.
(Impact factor: 4.058)

Tong Shu and Chase Q. Wu. “Performance Optimization of Hadoop Workflows in
Public Clouds through Adaptive Task Partitioning”. Proceedings of the 36th
IEEE International Conference on Computer Communications (INFOCOM),
pp. 2349-2357, Atlanta, GA, USA, May 1st-4th 2017. (Acceptance rate: 20.9%)

iv

Tong Shu and Chase Q. Wu. “Energy-efficient Mapping of Big Data Workflows under
Deadline Constraints”. Proceedings of the 11th Workshop on Workflows in
Support of Large-Scale Science (WORKS) in conjunction with ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 34-43, Salt Lake City, UT, USA, Nov 14th
2016. (Acceptance rate: 29.4%)

Tong Shu, Chase Q. Wu, and Daqing Yun. “Advance Bandwidth Reservation for
Energy Efficiency in High-performance Networks”. Proceedings of the 38th
IEEE Conference on Local Computer Networks (LCN), pp. 541-548, Sydney,
Australia, Oct 21st-24th 2013. (Acceptance rate: 26.4%)

Tong Shu, Min Liu, Zhongcheng Li, and Chase Q. Wu. “Interference Pair-Based
Distributed Spectrum Allocation in Wireless Mesh Networks with Frequency-
Agile Radios”. Proceedings of the 8th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), pp. 82-90, Salt Lake City, UT, USA, Jun 27th-30th 2011.
(Acceptance rate: 22%)

Tong Shu, Min Liu, and Zhongcheng Li. “Spectrum Allocation for Distributed
Throughput Maximization under Secondary Interference Constraints in
Wireless Mesh Networks”. Proceedings of the 20th IEEE International
Conference on Computer Communications and Networks (ICCCN), 6 pages,
Maui, HI, USA, Jul 31st-Aug 4th 2011. (Acceptance rate: 29.6%)

Anfu Zhou, Min Liu, Tong Shu, Yilin Song, and Zhongcheng Li. “Exploiting the Full
Potential of Multi-AP Diversity in Centralized WLANs through Back-pressure
Scheduling”. Proceedings of the 36th IEEE Conference on Local Computer
Networks (LCN), pp. 505-513, Bonn, Germany, Oct 4th-7th 2011. (Acceptance
rate: 29.3%)

Tong Shu, Min Liu, Zhongcheng Li, and Anfu Zhou. “A Diagnosis-Based Soft
Vertical Handoff Mechanism for TCP Performance Improvement”. Proceedings
of the 19th IEEE International Conference on Computer Communications
and Networks (ICCCN), 6 pages, Zurich, Switzerland, Aug 2nd-5th 2010.
(Acceptance rate: 33.9%)

Tong Shu, Min Liu, Zhongcheng Li, and Anfu Zhou. “Joint Variable Width Spectrum
Allocation and Link Scheduling for Wireless Mesh Networks”. Proceedings
of IEEE International Conference on Communications (ICC), 5 pages, Cape
Town, South Africa, May 23rd-27th 2010. (Acceptance rate: 39.5%)

Tong Shu, Min Liu, and Zhongcheng Li. “A Performance Evaluation Model for RSS-
based Vertical Handoff Algorithms”. Proceedings of the 14th IEEE Symposium
on Computers and Communications (ISCC), pp. 271-276, Sousse, Tunisia, Jul
5th-8th 2009. (Acceptance rate: 35.9%)

v

Tong Shu, Min Liu, Zhongcheng Li, and K. Zheng. “Network-layer Soft Vertical
Handoff Schemes without Packet Reordering (short paper)”. Proceedings of
the 34th IEEE Conference on Local Computer Networks (LCN), pp. 285-288,
Zurich, Switzerland, Oct 20th-23rd 2009.

vi

Dedicated to my beloved parents:
Licheng Shu and Baozhu Liu

vii

ACKNOWLEDGMENT

I would like to express my deepest appreciation to my research advisor, Dr. Chase Wu,

who provided me with valuable technical and writing guidance during my Ph.D.

study. In the past five years, he has guided me through my application to the

Ph.D. program, settle-down in the United States, and preparation for job hunting.

In countless occasions, I have witnessed his great passion for excellence in research,

his extreme diligence at work, and his immense patience with students. His extensive

knowledge of life and strong expertise in research have had a profound influence on

me, which will be of true value in my future career.

I also want to express my sincere gratitude to the members of my dissertation

committee, including Dr. Xiaoning Ding, Dr. Andrew Sohn, Dr. Roberto Rojas-Cessa,

and Dr. Guiling Wang, each of whom provided me with useful guidance, timely

feedback, and constructive comments on my dissertation, which have greatly helped

me improve my research in many technical aspects.

I am deeply thankful to all the faulty and staff members in the Department

of Computer Science at New Jersey Institute of Technology and the University of

Memphis. I would particularly like to thank Dr. Usman W. Roshan, Dr. James

M. Calvin, Dr. Jason T. Wang, etc., for allowing me to audit their classes. The

knowledge I learned from their classes is very important to the successful completion

of my dissertation.

I would like to thank my parents for their constant love, support, and

encouragement, and my English tutors, Dr. Jerome Paris, Dr. Janet M. Bodner,

Ms. Vickey Smith, Mr. Kent Smith, and Mr. Wesley Bailey, for their help with the

improvement of my English.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 RELATED WORK . 5

2.1 Performance Optimization . 5

2.1.1 Workflow Scheduling Algorithms 5

2.1.2 Workflow Mapping with Malleable Jobs 9

2.2 Energy Efficiency . 9

2.2.1 Energy Efficiency in Hadoop Systems 9

2.2.2 Energy-efficient Workflow Scheduling 13

2.2.3 Malleable Job Scheduling . 15

3 PERFORMANCE MODELING AND OPTIMIZATION FRAMEWORK . 16

3.1 Workflow Optimization Architecture 16

3.2 Performance Model of Moldable Jobs 18

3.2.1 Experimental Settings . 20

3.2.2 Experiment-based Model Validation 21

4 PERFORMANCE OPTIMIZATION OF MAPREDUCE WORKFLOW
MAPPING IN CLOUDS . 26

4.1 Introduction . 26

4.2 Problem Formulation . 27

4.2.1 Cost Models . 27

4.2.2 Problem Definition . 30

4.2.3 Computational Complexity Analysis 32

4.3 A Pipeline-structured Workflow on VMs in a Single Class 32

4.3.1 Computational Complexity Analysis 32

4.3.2 Approximation Algorithm . 34

4.4 Algorithm for Arbitrary Workflows on VMs in Different Classes . . . 36

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.1 An Overview of BAWM . 36

4.4.2 Critical-subgraph Greedy . 42

4.4.3 BSMCEM . 42

4.5 Performance Evaluation . 48

4.5.1 Simulation Settings . 48

4.5.2 Mapping Success Rate for Mapping Models 50

4.5.3 Makespan for Mapping Algorithms 51

4.6 Conclusion . 55

5 ENERGY-EFFICIENT STATICMAPPING OFMAPREDUCEWORKFLOWS
IN SHARED CLUSTERS . 56

5.1 Introduction . 56

5.2 Problem Formulation . 58

5.2.1 Cost Models . 58

5.2.2 Problem Definition . 61

5.2.3 Complexity Analysis . 62

5.3 Special Case: Pipeline-structured Workflow 62

5.3.1 Complexity Analysis . 63

5.3.2 Approximation Algorithm . 64

5.4 Algorithm for an Arbitrary Workflow on a Heterogeneous Cluster . . 66

5.4.1 An Overview of BAWMEE . 66

5.4.2 Algorithm Description . 67

5.4.3 Numerical Examples . 71

5.5 Performance Evaluation . 76

5.5.1 Experiments . 76

5.5.2 Simulation . 80

5.6 Conclusion . 89

x

TABLE OF CONTENTS
(Continued)

Chapter Page

6 ENERGY-EFFICIENT DYNAMIC SCHEDULING OF MAPREDUCE
WORKFLOWS IN SHARED CLUSTERS 90

6.1 Introduction . 90

6.2 Problem Formulation . 92

6.2.1 Cost Models . 92

6.2.2 Problem Definition . 95

6.3 The Design Principles of the Scheduler 96

6.3.1 Dynamic Task Scheduling . 97

6.3.2 Decoupling Dependencies and Shared Resources 97

6.3.3 Avoiding Deadline Violation Caused by Heavyweight Tasks . . 97

6.4 Algorithm and System Design . 98

6.4.1 DAWSEE Overview . 98

6.4.2 Adaptive Task Partitioning . 100

6.4.3 Virtual Deadline Setting . 104

6.5 Performance Evaluation . 105

6.5.1 Experiments . 105

6.5.2 Simulation . 107

6.6 Conclusion . 112

7 CONCLUSION AND FUTURE WORK 113

7.1 Conclusion . 113

7.1.1 Achievements . 113

7.1.2 Discussion . 115

7.2 Future Work . 116

BIBLIOGRAPHY . 118

xi

LIST OF TABLES

Table Page

3.1 The Execution Time and DEC of Mapping vs. the Number of Splits . . 22

3.2 The Execution Time and DEC of Reducing vs. the Number of Reducers 24

4.1 Notations Used in the Cost Models . 31

4.2 Variables and Functions Used in Algorithm Design 37

4.3 Time-Expense Table tetk of Job vk . 37

4.4 Specifications for Virtual Machine Types 49

4.5 Problem Sizes . 50

5.1 Notations Used in the Cost Models . 59

5.2 Time-Energy Table Tblj of Job vj . 67

5.3 Time-Energy Table in Example 1 . 73

5.4 Time and Energy per Job in Example 2 75

5.5 Specifications for Four Types of Machines 82

5.6 Problem Sizes . 83

6.1 Notations Used in the Cost Models . 94

6.2 Scheduling in a Heterogeneous Cluster 96

xii

LIST OF FIGURES

Figure Page

3.1 The architecture for MapReduce workflow optimization in a data center. 17

3.2 A moldable job. 19

3.3 The experimental testbed for measuring energy consumption. 20

3.4 Benchmarks: (a) the DEC vs. the number of map tasks; (b) the execution
time vs. the number of map tasks. 23

3.5 The mapping phase of our statistical application: (a) the DEC vs. the
number of map tasks; (b) the execution time vs. the number of map
tasks. 23

3.6 The execution time of a MapReduce job vs. the number of tasks. 24

4.1 A constructed network corresponding to a workflow with a pipeline
structure, where L′(1) = L′

1 and L′(K) = L′
K 33

4.2 Mapping success rate: (a) in 2,000,000 instances (20 different problem
sizes × 100,000 random workflow instances) for each budget factor; (b)
in 2,100,000 instances (21 different budget factors × 100,000 random
workflow instances) for each problem size. 51

4.3 The average performance improvement of BAWM over GGB in 400
instances for each budget factor and each problem size. 52

4.4 The average financial improvement of BAWM over GGB in 400 instances
for each budget factor and each problem size. 52

4.5 The average performance improvement of BAWM over GR in 400
instances for each budget factor and each problem size. 52

4.6 The average financial improvement of BAWM over GR in 400 instances
for each budget factor and each problem size. 52

4.7 The average performance improvement of BAWM over CPG in 400
instances for each budget factor and each problem size. 53

4.8 The average financial improvement of BAWM over CPG in 400 instances
for each budget factor and each problem size. 53

4.9 The performance improvement of BAWM in 1000 instances for each
workflow size. 54

4.10 The performance improvement of BAWM in 1000 instances for each
number of VM types. 54

xiii

LIST OF FIGURES
(Continued)

Figure Page

4.11 The performance improvement of BAWM in 1000 instances for each
workflow structure. 54

5.1 A constructed network corresponding to a workflow with a pipeline
structure. 65

5.2 An example of a workflow structure G. 73

5.3 Workflow mapping in example 1: (a) BAWMEE; (b) Optimal. 73

5.4 Example 2: (a) workflow structure; (b) workflow mapping. 74

5.5 Pipeline-structured MapReduce workflows. 77

5.6 The DEC of Pipeline 1 under different deadline constraints. 79

5.7 The completion time of Pipeline 1 under different deadline constraints. . 79

5.8 The DEC of Pipeline 2 under different deadline constraints. 79

5.9 The completion time of Pipeline 2 under different deadline constraints. . 79

5.10 The DECR vs. problem sizes. 84

5.11 The DMR vs. problem sizes. 84

5.12 The URT vs. problem sizes. 84

5.13 The adaptive task partitioning of BAWMEE vs. problem sizes. 84

5.14 The DEC vs. deadlines. 85

5.15 The DMR vs. deadlines. 85

5.16 The URT vs. deadlines. 85

5.17 The adaptive task partitioning of BAWMEE vs. deadlines. 85

5.18 The DECR vs. workflow sizes. 86

5.19 The DMR vs. workflow sizes. 86

5.20 The URT vs. workflow sizes. 86

5.21 The adaptive task partitioning of BAWMEE vs. workflow sizes. 86

5.22 DEC vs. cluster sizes. 87

5.23 The DMR vs. cluster sizes. 87

5.24 The URT vs. cluster sizes. 87

xiv

LIST OF FIGURES
(Continued)

Figure Page

5.25 The adaptive task partitioning of BAWMEE vs. cluster sizes. 87

5.26 The DEC vs. workflow structures. 88

5.27 The DMR vs. workflow structures. 88

5.28 The URT vs. workflow structures. 88

5.29 The adaptive task partitioning of BAWMEE vs. workflow structures. . . 88

6.1 Decoupling and semi-dynamic scheduling. 99

6.2 The architecture of the MapReduce workflow scheduling system. 100

6.3 Pipeline-structured MapReduce workflows. 105

6.4 The DEC of a pair of pipelines with different approximate ratios under
different deadline constraints. 106

6.5 The completion time of a pair of pipelines with different approximate
ratios under different deadline constraints. 106

6.6 The DMR vs. deadlines. 109

6.7 The DMR vs. arrival intervals. 109

6.8 The DMR vs. workflow sizes. 109

6.9 The DMR vs. cluster sizes. 109

6.10 The DEC vs. deadlines. 110

6.11 The DEC vs. arrival intervals. 110

6.12 The DECR vs. workflow sizes. 111

6.13 The DEC vs. cluster sizes. 111

xv

CHAPTER 1

INTRODUCTION

Computation-based analyses and simulations have become an essential research

and discovery tool in next-generation scientific applications and are producing

colossal amounts of data, now frequently termed as “Big Data”, on the order of

terabyte at present and petabyte or even exabyte in the predictable future. Other

scientific data of similar scales generated in broad science communities include

environmental observation data (satellite climate data [4, 5], multimodal sensor data,

etc.), experimental measurement data (Spallation Neutron Source [6], Large Hadron

Collider [7], etc.), and astronomical image data (Dark Energy Camera [29], Large

Synoptic Sky Survey [59], etc.). Such datasets are increasingly managed and processed

by scientific workflows of different structures as simple as a pipeline or as complex

as a directed acyclic graph (DAG), which are typically executed in public clouds or

local cluster computing environments.

Cloud computing refers to both the applications delivered as services over the

Internet and the hardware and systems software in data centers providing those

services [14]. Public cloud platforms, such as Amazon EC2, Microsoft Azure, and

Google Cloud, provide a virtual computing service as utility to meet time-varying

computing demands. Within cloud platforms, scientific computing no longer requires

large capital outlays in hardware purchases to deploy services or human expenses

for operations. Moreover, public clouds provide various combinations of computing

resources at different scales to meet disparate computing demands in different

application domains. This elasticity of resources is attractive to many domain

experts who intend to maximize their research outcome under limited budget. While

reaping the benefits of cloud computing, scientific users are also facing two emerging

1

challenges, i.e., the feasibility and performance of computing services in clouds. The

former is to minimize the financial expense of the entire workflow while the latter is

to minimize the makespan of the entire workflow under a given budget constraint. In

this dissertation, we consider two approaches, i.e., i) reduce the required budget by

applying cost-aware job mapping models and ii) reduce the workflow makespan under

a given budget constraint by designing cost-effective workflow mapping algorithms.

However, security and privacy are still a pressing issue of using public clouds

as the data and operations must be sent to a third-party cloud service provider.

Many efforts have been made in this regard. For example, homomorphic encryption

is a form of encryption that allows computations to be carried out on ciphertext,

thus generating an encrypted result, which, when decrypted, matches the result of

operations performed on the plaintext. However, homomorphic encryption can only

be applied to a limited set of computing operations. So far, physical separation

still provides the highest-level security and datasets of certain confidentiality are

oftentimes stored and processed in private clusters, which consume a significant

amount of energy on a daily basis. Hence, in this dissertation, we also consider

the reduction of energy consumption of big-data computing workflows in a shared

cluster composed of physical machines (PMs) under deadline constraints.

Parallel jobs are generally categorized into three classes with flexibility from

low to high: i) rigid jobs exemplified by multi-threaded programs running on a

fixed number of processors, ii) moldable jobs exemplified by MapReduce programs

running on any number of processors decided prior to execution, and iii) malleable

jobs running on a variable number of processors at runtime [24]. Most existing

efforts on workflow optimization in terms of makespan and energy efficiency consider

serial or rigid jobs with execution dependencies, and a few efforts have been made to

minimize the completion time of a workflow comprised of malleable jobs. However,

there exist relatively limited efforts on moldable job mapping/scheduling for workflow

2

performance optimization and energy efficiency. In big data systems such as

Hadoop/Spark, there arises a new challenge to optimize the mapping/scheduling

of moldable parallel jobs, each of which has a variable number of independent

homogenous tasks. In this dissertation, we focus on the performance optimization

and energy efficiency of scientific workflows composed of moldable parallel jobs.

Furthermore, the end-to-end performance and energy efficiency of such scientific

workflows depend on both the mapping scheme, which determines task assignment,

and the scheduling policy, which determines resource allocation if multiple tasks are

mapped to the same node. These two aspects of a workflow-based research process are

traditionally treated as two separate topics, and the interactions between them have

not been fully explored by any existing efforts. As the scale and complexity of scientific

workflows environments rapidly increase, each individual aspect of performance

optimization alone can only meet with limited success.

The main goal of this dissertation is to analyze and optimize the performance

and energy consumption of large-scale scientific workflows by conducting an in-depth

investigation into the property of moldable parallel jobs and exploring the interactions

between workflow mapping and task scheduling. Towards this goal, we propose to

build a layered workflow architecture that seamlessly integrates three interrelated

technical components, i.e., resource allocation, job mapping, and task scheduling,

based on rigorous algorithmic design, theoretical dynamics analysis, and real system

implementation and evaluation. Within this architecture, we (i) construct rigorous

cost models to describe the characteristics of real Hadoop/YARN systems in data

centers, (ii) formulate a class of optimization problems for scientific workflows

comprised of moldable jobs to minimize the end-to-end delay and feasible budget

in public clouds, and minimize the energy consumption and deadline missing rate in

shared clusters; (iii) design a set of cooperative workflow mapping and scheduling

algorithms with mathematically proved optimality or correctness to cope with both

3

resource and user dynamics and achieve optimal workflow performances, (iv) develop

a formal simulation program to validate cost models and theoretical results, and

(v) implement, deploy, and execute real-life scientific workflows to demonstrate the

performance superiority of the proposed algorithms in practice.

The rest of the dissertation is organized as follows. Chapter 2 provides a survey

of related work, and Chapter 3 proposes the framework and motivation. Chapter 4

tackles the budget-constrained MapReduce workflow optimization problem in a cloud

environment. Chapters 5 and 6 propose solutions to energy-efficient static mapping

and dynamic scheduling of MapReduce workflows in a shared cluster, respectively.

Chapter 7 concludes this dissertation and discuss future work. or local cluster

computing

4

CHAPTER 2

RELATED WORK

This chapter is organized as follows. Section 2.1 provides a survey of related work

on performance optimization of workflow mapping. Section 2.2 provides a survey of

related work on energy-efficient workflow scheduling and job scheduling in Hadoop.

2.1 Performance Optimization

2.1.1 Workflow Scheduling Algorithms

We conduct a survey of related work on workflow performance optimization.

Classic Workflow Scheduling Algorithms Task scheduling or job mapping for

workflows has been investigated extensively in the literature in the past decade [32, 33,

58, 15, 74]. Many heuristics have been proposed to minimize the workflow makespan

(i.e., execution time) in grids, such as heterogeneous earliest finish time (HEFT) [68],

and hybrid balanced minimum completion time (HBMCT) [62]. HBMCT first assigns

weights to the nodes and edges of a workflow graph, and then partitions the nodes into

ordered groups and schedules independent tasks within each group. These scheduling

algorithms have been demonstrated to be very effective in makespan minimization in

their targeted simulation or experimental settings.

Traditional Workflow Scheduling Algorithms in Clouds In [9], Abrishami et al.

designed a QoS-based workflow scheduling algorithm based on partial critical paths

(PCP) in SaaS clouds to minimize the cost of workflow execution within a user-defined

deadline. As many existing critical-path heuristics, they schedule jobs on the critical

path first to minimize the cost without exceeding their deadline. PCP are then formed

ending at those scheduled jobs, and each PCP takes the start time of the scheduled

5

critical job as its deadline. This scheduling process continues recursively until all jobs

are scheduled. In [53, 52], Mao et al. investigated the automatic scaling of clouds

with budget and deadline constraints and proposed scaling-consolidation-scheduling

(SCS) with virtual machines (VMs) as basic computing elements. In [34], Hacker

proposed a combination of four scheduling policies based on an on-line estimation

of physical resource usage. For the general area of workflow optimization in clouds,

there are efforts towards several aspects. An important optimization issue on the

user side is to achieve accurate estimation for cloud resources that would be needed,

and make cost-effective provisioning. The work in [36] provide an automatic way to

generate resource specification to help user make optimal cloud resource provisioning

request. To store the large amount of data, the data placement problem is investigated

through clustering [78]. The initial clustering sets the placement of initial data that

the workflow requires and the intermediate data generated during the execution are

clustered on line according to previous data clusters. The performance of distributed

workflows execution in heterogenous network environments has been investigated

in [74] with an analytical cost model aimed at minimizing end-to-end delay through

optimal mapping scheme.

Budget-constrained Workflow in Grids There exist a relatively limited number

of workflow scheduling efforts with a budget constraint in utility grids such as [76,

63, 62, 58]. In [63], Sakellariou et al. proposed two approaches, namely, LOSS and

GAIN, to schedule DAG-structured workflow applications in grid environments. They

start from a standard DAG schedule (such as HEFT or HBMCT) and a least-cost

schedule, respectively, and reschedule the workflow to meet the budget constraint.

In [77], Yu et al. performed a cost-based scheduling process through workflow task

partitioning and deadline assignment to meet a user-defined deadline with the minimal

cost. The workflow tasks are first categorized into synchronization tasks and simple

6

tasks according to the number of their parent and child tasks. Interdependent simple

tasks that are executed sequentially are then grouped into branches connected by

synchronization tasks. The overall deadline specified by the user is divided into

sub-deadlines over the task partitions in proportion to their minimal processing time.

However, the above work does not consider the virtualization characteristics of cloud

environments.

Budget-constrained Workflow in Clouds Several recent efforts address workflow

scheduling that takes both cost and delay into consideration in cloud environments [81,

13, 40]. BHEFT [81] by Zheng et al. extended HEFT to include budget constraint,

and Arabnejad et al. proposed HBCS [13] to minimize workflow makespan under

a cost constraint. Both BHEFT and HBCS adjust their VM/processor selection

parameter based on the current budget usage at each step. Rodriguez et al. proposed

a combined resource provisioning and scheduling strategy for executing scientific

workflows in IaaS clouds to minimize the overall execution cost while meeting

a user-defined deadline [60]. They designed a particle swam optimization-based

approach that incorporates basic IaaS cloud principles such as a pay-as-you-go

model, without considering the data transfer cost between data centers. Wu et al.

formulated a job scheduling problem to minimize the end-to-end delay of a workflow

under a user-specified financial constraint in a single cloud and designed a heuristic

solution [73]. Also, Wu et al. further consider the performance optimization of

a big-data workflow in multi-cloud environments under a budget constraint [72].

Jiang et al. addressed two main challenges in executing large-scale workflow

ensembles in public clouds, i.e., execution coordination and resource provisioning.

They developed DEWE v2, a pulling-based workflow management system with a

profiling-based resource provisioning strategy, and demonstrated the effectiveness of

their provisioning method in terms of both cost and deadline compliance [40]. The

7

above work is focused on performance optimization in clouds, without considering big

data workflows in Hadoop.

Budget-constrained Workflows in Hadoop Systems Research efforts on

scheduling a batch of MapReduce jobs under a budget constraint in Hadoop systems

are still quite limited. Sandholm et al. proposed the dynamic priority parallel task

scheduling algorithm, referred to as DPSS, for heterogeneous Hadoop clusters [65].

Our work differs from DPSS in two aspects: i) We consider sufficient capacities in

clouds with different VM types to minimize the makespan within a given budget, while

DPSS allows dynamic capacity distribution across concurrent users based on user

preferences. ii) We aim to optimize the mapping of a workflow with MapReduce jobs

from a global perspective, while DPSS attempts to optimize the budget on a per-job

basis by allowing users to adjust their spending over time. Wang et al. modeled a

batch of MapReduce jobs as a multi-stage fork-and-join workflow with no precedence

in each stage and proposed one pseudo-polynomial optimal solution and two heuristics

for task-level scheduling to minimize the maximum completion time under a budget

constraint on heterogeneous VMs [70, 71]. In their mapping model, each task in a job

is mapped onto a different VM instance; while in our mapping model, each job with

adaptive task partitioning is mapped onto a set of shared VM instances with identical

processing speed. In their algorithms, the number of stages has a significant impact

on the optimality and time complexity; while in our algorithm, we do not divide a

workflow into stages for performance improvement. Huang et al. designed a system,

Cumulon, to help users rapidly develop and strategically deploy matrix-based big-data

analysis programs in clouds according to time/budget constraints [35]. Different from

Cumulon, our work is focused on the design of big-data workflow mapping algorithms

in Hadoop/YARN.

8

2.1.2 Workflow Mapping with Malleable Jobs

We conduct a survey of related work on workflow mapping with malleable jobs.

Several efforts have been made to minimize the maximum or total completion time

of malleable jobs with execution precedences [56, 51, 39, 18]. Jansen et al. proposed

a two-phase approximation algorithm with an approximation ratio of 3.291919 for

scheduling workflows with malleable jobs [38, 39]. Chen et al. considered the

scheduling of malleable jobs under general precedence constraints to find a minimum

makespan, assuming that i) the processing time and the workload of a malleable

job are non-increasing and non-decreasing, respectively, as the number of assigned

processors increases, and ii) the workload function is convex with respect to the

processing time. They proposed a polynomial-time approximation algorithm with

an approximation ratio of 3.4142, which leads to an approximation ratio of 2.9549

when the processing time is strictly decreasing as the number of assigned processors

increases [18]. The above work is focused on the theoretical analysis of malleable

computing models. Our work attempts to minimize the makespan of a workflow with

moldable jobs.

2.2 Energy Efficiency

2.2.1 Energy Efficiency in Hadoop Systems

Energy-efficient Data Placement A large number of research efforts have been

made to optimize the data replication scheme in Hadoop distributed file system

(HDFS) so that data nodes can be turned off without affecting data availability.

To allow scale-down of an operational Hadoop cluster, Leverich et al. introduced the

notion of a covering subset (CovSet) for HDFS, a small subset of machines, within

which one replica of every block is stored [11]. This subset remains fully powered

to preserve data availability while the rest can be turned off during low utilization

periods. Lang et al. proposed the all-in strategy (AIS) that turns off all servers for

9

energy saving and turns on all servers to accommodate all tasks as fast as possible

when the task queue is large enough. They demonstrated the superiority of AIS

compared to CovSet in terms of response time and energy cost when the transition

time of nodes to and from a low power state is relatively small compared with the total

workload execution time [44]. Amur et al. proposed to maintain the primary replica of

each data block on the primary nodes that are always active and store B/n secondary

replicas on the n-th node on the expansion-chain (B is the total number of replicas),

which denotes the order in which nodes must be turned on/off to scale performance

up/down to support the equal-work layout for power-proportionality [12]. Chen et al.

developed BEEMR, an energy-efficient MapReduce workload manager motivated by

an empirical analysis of real-life traces of MapReduce workloads from Facebook [20].

The key insight is that interactive jobs often operate on a small fraction of data, and

thus can be served by a small pool of dedicated machines, while jobs that are less time

sensitive can run in a batch manner on the rest of the cluster. Energy savings come

from aggregating the execution of less time-sensitive jobs in the batch zone to achieve

high utilization, and transitioning idle machines in the batch zone to a low-power

state. These techniques showed dramatic improvements in energy saving at the file

system level. Our research on job scheduling is orthogonal to these efforts, and hence

adds an additional level of energy efficiency to Hadoop systems.

Energy-efficient MapReduce Job Scheduling Dynamic Voltage Frequency

Scaling (DVFS): The DVFS technology has been widely adopted for energy saving in

computing systems. Bampis et al. focused on the minimization of the total weighted

completion time for a set of MapReduce jobs under a given energy constraint, and used

a linear programming relaxation method to derive a polynomial-time constant-factor

approximation algorithm [16]. Li et al. proposed an SLA-aware energy-efficient

scheduling scheme that dynamically changes the CPU frequency for upcoming tasks

10

given the slack time between the actual execution time of completed tasks and the

expected completion time of the MapReduce application in YARN [50].

Heterogeneous Computing Environments : Since servers in large-scale clusters

are typically upgraded or replaced in an incremental manner, many techniques

consider hardware heterogeneity of Hadoop clusters for energy saving. Cardosa et al.

proposed static VM placement algorithms to minimize the cumulative machine uptime

of all PMs, based on two principles: spatial fitting of VMs on PMs to achieve high

resource utilization according to complementary resource requirements from VMs,

and temporal fitting of PMs with VMs having similar runtime to ensure that a

server runs at a high utilization level throughout its uptime [17]. They also proposed

techniques that dynamically scale MapReduce clusters to further improve energy

consumption while ensuring that jobs meet or improve their expected runtimes.

Mashayekhy et al. modeled the energy-aware static task scheduling of a

MapReduce job as an integer programming problem, and designed two heuristics

that assign map/reduce tasks to machine slots to minimize energy consumption

while satisfying the service level agreement (SLA) [55]. Sharma et al. designed

a dynamic scheduler for interactive and batch MapReduce jobs in hybrid physical

and virtual environments to boost resource utilization and energy saving through

workload consolidation based on virtualization and avoid virtualization-incurred

overhead by executing “heavy” jobs immediately on PMs [67]. Cheng et al.

proposed a heterogeneity-aware dynamic task assignment approach using ant colony

optimization, referred to as E-Ant, to minimize the overall energy consumption of

MapReduce applications with heterogeneous workloads in a heterogeneous Hadoop

cluster without a priori knowledge of workload properties [22]. The use of the ant

colony algorithm in the Hadoop scheduler is based on an assumption that there exist

a large number of homogeneous tasks in a MapReduce job. However, an excessively

large number of tasks in a parallel job may incur very high overhead (compared with

11

the payload itself), hence leading to a significant waste of energy and delaying the

job completion time.

Renewable Energy : Several efforts were focused on utilizing renewable energy in

the operation of Hadoop clusters. Goiri et al. proposed a framework, GreenHadoop,

for a data center powered by renewable (green) energy from a photovoltaic solar

array and by carbon-intensive (brown) energy from the electrical grid as a backup.

It dynamically schedules MapReduce jobs to minimize brown energy consumption

by delaying background computations within their time bounds to match the green

energy supply that is not always available [30]. GreenHadoop dynamically schedules

MapReduce jobs to minimize brown energy consumption by postponing background

computations within their time bounds to run on the green energy supply that is not

always available. Cheng et al. designed a scheduler for a Hadoop cluster powered by

mixed brown and green energy, which dynamically determines resource allocation to

heterogeneous jobs based on the estimation of job completion time and the prediction

of future resource availability [23]. They formulated the job scheduling problem as

an online optimization problem of minimizing the penalty of job deadline misses and

solved it using a receding horizon control algorithm. To aid the control, they designed

a self-learning model to estimate job completion times and used a simple but effective

model to predict future resource availability. Despite the salient features for energy

cost saving enabled by mixed energy supplies, at present there is no mature technology

to support seamless switch between green and brown energy supplies or bring down

the cost for storing renewable energy in such MapReduce frameworks.

Overhead Reduction: A few efforts were devoted to workload overhead reduction

for energy saving. Sharma et al. designed a dynamic scheduler for interactive and

batch MapReduce jobs in hybrid physical and virtual environments to boost resource

utilization and energy saving through workload consolidation based on virtualization

and avoid virtualization-incurred overhead by executing “heavy” jobs immediately on

12

PMs [67]. The majority of existing efforts targeted the first generation of Hadoop.

The work on the second generation of Hadoop, i.e., YARN, is still quite limited.

Li et al. proposed a suspend-resume mechanism in YARN to mitigate the overhead

of preemption in cluster scheduling, and used a check pointing mechanism to save the

states of jobs for resumption [48]. Their approach dynamically selects appropriate

preemption mechanisms based on the progress of a task and its suspend-resume

overhead to improve job response time and reduce energy consumption. As opposed

to preemptive scheduling of interactive applications in their work, our work is focused

on energy saving in non-preemptive scheduling of MapReduce jobs in the background.

2.2.2 Energy-efficient Workflow Scheduling

Many efforts were made on energy-efficient scheduling of workflows comprised

of precedence-constrained serial programs. Some of these approaches targeted

virtualized environments [57] by migrating active VMs onto energy-efficient PMs in

time [75] or consolidating applications with complementary resource requirements [82].

Zhu et al. developed a workflow scheduling framework, pSciMapper, which consists

of two major components: i) online power-aware consolidation, based on available

information on the utilization of CPU, memory, disk, and network by each job, and

ii) offline analysis including a hidden Markov model for estimating resource usage

per job and kernel canonical correlation analysis for modeling the resource-time and

resource-power relationships [82].

Other approaches were focused on physical clusters as follows. Lee et al.

proposed a static workflow schedule compaction algorithm to consolidate the resource

use of a workflow schedule generated by any scheduling algorithm in homogeneous

environments [47, 45], and designed two static energy-conscious workflow scheduling

algorithms based on DVFS in heterogeneous distributed systems [46]. In [49],

three types of DVFS-based heuristics, namely, prepower-determination, postpower-

13

determination, and hybrid algorithms, were designed to solve a static problem of joint

power allocation and workflow scheduling for schedule length (or energy consumption)

minimization under an energy constraint (or a time constraint). Zhang et al. proposed

a DVFS-based heuristic to statically maximize workflow reliability under a energy

constraint in a heterogeneous cluster [80], and designed a Pareto-based bi-objective

genetic algorithm to achieve low energy consumption and high system reliability for

static workflow scheduling [79]. Zotkiewicz et al. proposed a communication-aware

minimum-dependency energy-efficient DAG (MinD+ED) scheduling strategy for

SaaS applications in heterogeneous data centers, which statically determines virtual

deadlines of individual tasks by favoring tasks less dependent on others and then

dynamically assigns tasks based on the load of network links and servers [83]. The

above work only considers serial or rigid jobs in workflows, while our work is focused on

moldable jobs in big data computing systems. Durillo et al. proposed a Pareto-based

multi-objective (MOHET) static workflow scheduling algorithm as an extension to

the heuristic, HEFT, capable of computing a set of tradeoff optimal solutions in

terms of makespan and energy efficiency [26, 27]. They used an empirical model

based on knowledge extracted from historical executions of real workflow tasks to

compare the energy consumption and execution time of workflows of different shapes

and sizes in heterogeneous parallel systems with different static and dynamic energy

consumption. Krish et al. proposed the first energy-efficient workflow scheduler in

Hadoop, so called ǫSched, which profiles the performance and energy characteristics

of applications on each hardware sub-cluster in a heterogeneous cluster to improve the

application-resource match while ensuring energy efficiency and performance-related

SLA goals [42]. Mao et al. designed GreenPipe, a scalable computational workflow

system that runs MapReduce jobs on virtual Hadoop clusters, and proposed a

power-aware scheduling algorithm in the workflow engine to optimize workflow

execution in terms of execution time and energy consumption [54].

14

2.2.3 Malleable Job Scheduling

Some efforts have been made to minimize the completion time of a workflow comprised

of malleable jobs [39, 56, 18, 51], but there exist relatively limited efforts on

moldable/malleable job scheduling for energy efficiency. Sanders et al. designed a

polynomial-time optimal solution and a fully polynomial-time approximation scheme

(FPTAS) to statically schedule independent malleable jobs with a common deadline

for energy consumption minimization based on the theoretical power models of a single

processor using the DVFS technology, i.e., p = fα and p = fα+δ, respectively, where f

is CPU frequency and δ is the constant static power consumption [64]. Different from

these theoretical models, our work employs measurement-based power consumption

models and performs workflow mapping to reduce the computing overhead and thus

improve the energy efficiency of big data workflows. To the best of our knowledge,

our work is among the first to study energy-efficient mapping of big data workflows

comprised of moldable jobs in Hadoop systems.

15

CHAPTER 3

PERFORMANCE MODELING AND OPTIMIZATION FRAMEWORK

This chapter is organized as follows. Section 3.1 presents a layered workflow

optimization architecture, within which big-data computing workflows are mapped

and scheduled. Section 3.2 conducts an in-depth investigation into the performance

computing model of moldable parallel jobs, exemplified by MapReduce programs, in

terms of execution time and dynamic energy consumption.

3.1 Workflow Optimization Architecture

As illustrated in Figure 3.1, we consider a layered workflow optimization architecture

in a data center deployed in two different environments. 1) In a single cloud

environment, we consider three layers for big data workflow mapping: i) the big data

workflow layer comprised of interdependent MapReduce jobs, each of which contains

one or more map tasks and zero or more reduce tasks, ii) the VM layer representing

a set of fully connected virtual machines, and iii) the server layer constituted by a

number of physical machines connected via a local network [73]. Note that end users

only knows the region of a VM, as the infrastructure in the bottom layer is invisible

to them. We consider a many-to-one mapping scheme such that multiple tasks of

the same job can be assigned to a shared VM instance. 2) In a shared PC cluster

environment, we only consider two layers for big data workflow mapping/scheduling,

i.e., i) the big data workflow layer and ii) the server layer, and consider a many-to-one

mapping scheme such that multiple tasks from the same job or different jobs can

be assigned to a shared PM. The interactions between these layers produce an

integrated and intelligent workflow solution to model and optimize big-data scientific

applications in resource sharing environments.

16

...
Data center:
A cluster of
physical machines

Virtual machines
...

Job 1

Job 2

Job 3

Job m-2

Job m-1

Job m

...

...

...

MapReduce Job

Big-data Workflow

Server Server

ServerServer Hiph-performance Switch

Figure 3.1 The architecture for MapReduce workflow optimization in a data center.

The top layer defines abstract scientific workflows comprised of data-intensive

computing jobs with application-level functional and I/O descriptions. This layer

also provides a unified web interface for users to compose, dispatch, and monitor

domain-specific workflows while the rest of the system is made completely transparent

to them. The simplest workflow may include only a chain of two jobs while a complex

one may involve as many as thousands of jobs with intricate execution dependencies.

The bottom layer defines underlying physical system resources including large

data repositories storing (simulated, observational, or experimental) high-resolution

multimodal scientific datasets, high-speed network infrastructures provisioning high

bandwidth for fast data transfer, and HPC facilities generating countless CPU cycles

for expeditious data processing.

17

In a cloud environment, the top and bottom layers meet at the middle layer

that defines a virtual overlay cluster through the following two operations:

• Resource virtualization: Build a virtual overlay cluster from the underlying

computing resources. Each overlay node with estimated processing power

corresponds to a VM in clouds.

• Workflow mapping and scheduling: Determine a workflow mapping scheme that

assigns each task in each job in the workflow to an overlay node, and decide a

task scheduling policy on each mapped node to optimize end-to-end workflow

performance such as latency.

3.2 Performance Model of Moldable Jobs

In big data systems such as Hadoop/Spark, there arises a new challenge to optimize

the mapping/scheduling of moldable parallel jobs. A moldable job typically follows a

computing performance model where the workload of each component task decreases

while the total workload increases as the number of allotted processors increases [31].

This model is based on the well-known Brent’s lemma, which states that the parallel

execution of a job may achieve some speedup if the job is sufficiently large, but does

not lead to superlinear speedups. The validity of this model has been verified by many

real-life parallel programs on disparate high-performance computing platforms and

will serve as a base of our mapping/scheduling solution for performance optimization

and energy saving of big data workflows.

In the performance model of a moldable job, as the number of component

tasks increases, the workload of each task (which decides the task execution time)

decreases, while the total workload of the job (which decides the job’s dynamic energy

consumption in a PC cluster and job’s financial cost in a cloud) increases. Hence, if

the number of tasks does not exceed the maximum number of parallel tasks (executed

simultaneously) supported by the system, the job execution time is the same as the

18

s1m1
m2

m1
m2

0 10

(a)

s111
s2

(b)

m1
m2

s11
s2

(c)

s3

7 6 12

(())
m3

222

((bb))
m3

222

(())
m3

0 0

Figure 3.2 A moldable job.

task execution time and thus decreases as the number of tasks increases; otherwise,

both the job execution time and energy consumption may increase with the number

of tasks.

We consider a computing performance model where the total dynamic energy

consumption (DEC), decided by the total workload, of a moldable parallel job

increases and the execution time of each task decreases as the number of parallel

tasks in the job increases. We present a numerical example in Figure 3.2 to illustrate

the possibility of reducing the execution time and DEC of a moldable job by properly

adjusting the number of parallel tasks. In this example, there are three homogeneous

machines, each of which can run at most one task, and two of which are idle at

present. We consider a moldable job that can be partitioned into one, two, or three

parallel tasks. In each of these three parallelization schemes, the workload of each

task is 10G, 7G, and 6G flops, which take 10, 7, and 6 seconds to run and consume

10, 7, and 6 units of energy, respectively, and thus the total workload of the entire job

is 10G, 14G, and 18G flops, which take 10, 7, and 12 seconds to run, and consume

10, 14, and 18 units of energy, respectively. Therefore, by changing the degree of

parallelism in the job from 3 to 2, we are able to reduce the job execution time and

DEC.

To validate this performance model, we conduct real-life experiments to

illustrate how the degree of parallelism affects job workload (or DEC) and execution

time in big data computing applications, which lays down the foundation of this

research.

19

High-speed

LAN

Servers
Dell Precision Rack 7910

Power Meter
HOBO Plug Load Data Logger - UX120-018

Figure 3.3 The experimental testbed for measuring energy consumption.

3.2.1 Experimental Settings

We set up a small-scale homogeneous cluster comprised of two Dell servers, each of

which is equipped with two processors of Intel(R) Xeon(R) CPU E5-2630 v3 with

15MB cache and six cores of 2.4GHz, 16GB 2133MHz DDR4 RDIMM ECC memory,

and 256GB 2.5inch serial ATA solid state drive. We install a power meter of 0.5%

relative measurement errors with a measurement resolution of 1 watt, HOBO Plug

Load Data Logger – UX120-018, to collect the active power/energy consumption of

the entire cluster in the testbed, as shown in Figure 3.3. The initial measurement

shows that the total static power consumption of this mini-cluster in an idle state is

153.5W on average.

On the cluster, we install Apache Hadoop 2.7.3 [2]. According to our Hadoop

configuration, at most 23 map/reduce tasks in a MapReduce job can run on the

cluster in parallel. We download the Wikipedia dataset from the PUMA website [8]

and use the example MapReduce programs in Apache Hadoop 2.7.3 as benchmarks.

We execute Grep on the 12GB/24GB dataset, referred to as Grep12/Grep24, and run

WordCount on the 12GB dataset, referred to as WordCount12. We also download the

airline on-time performance dataset of 11.2 GB for a period of 22 years (1987-2008)

from the statistical computing website [1], and implement three MapReduce programs

to compute 1) the probability of each airline for being on schedule (PAS), 2) the

20

average taxi in/out time per flight at each airport (ATA), and 3) the frequency of

each flight cancellation reason (FCR). Initially, each dataset is stored in multiple

separate files. To avoid block fragmentation in HDFS, we merge all the input data

in a dataset into a single file, and then upload the merged file into HDFS. In fact,

the number of reduce keys would affect the parallelism degree of reduce tasks. The

first MapReduce job (i.e., PAS) has 29 reduce keys (i.e., airport names); the second

MapReduce job (i.e., ATA) has 340 reduce keys (i.e., flight numbers); and the third

MapReduce job (i.e., FCR) has 5 reduce keys (i.e., cancellation codes).

We repeatedly run each MapReduce program with and/or without the reducing

phase for 10 times on our homogenous mini-cluster and measure the corresponding

DEC and execution time of the mapping and reducing phases in each MapReduce

job. To adjust the number of mappers and reducers in each MapReduce job, we set

the properties of “mapreduce.input.fileinputformat.split.minsize”, “mapreduce.input.

fileinputformat.split.maxsize”, and “mapreduce.job.reduces” to be different values in

the configuration file. To make the map tasks homogeneous, we divide the entire

input data evenly by properly adjusting the split size.

3.2.2 Experiment-based Model Validation

We tabulate the average DEC and execution time of the mapping phase of each

statistical MapReduce application with a varying number of map tasks in Table 3.1.

We further plot the average DEC and execution time of each MapReduce benchmark

and the mapping phase of each statistical application with different numbers of map

tasks in Figures 3.4 and 3.5, respectively, for a visual comparison. These results show

that the DEC of a MapReduce job increases with the number of map tasks, while its

execution time decreases as the number of parallel map tasks in a single wave [41]

increases up to 23, which is the largest number of map tasks supported simultaneously

by the system. When the number of map tasks exceeds 23, the job execution time

21

Table 3.1 The Execution Time and DEC of Mapping vs. the Number of Splits
The Number of Split Size Mapping in Job 1 Mapping in Job 2 Job 3 with one reducera

Splits (or Mappers) (MB) Time (s) DEC (KJ) Time (s) DEC (KJ) Time (s) DEC (KJ)

5 2250 79.9 2.770 102.1 3.066 65.1 2.125

10 1136 70.0 2.877 84.7 3.212 61.1 2.298

15 760 57.9 3.259 63.1 3.568 50.8 2.668

20 571 50.3 3.256 54.3 3.547 44.2 2.651

23 497 48.1 3.304 53.5 3.671 44.0 2.728

25 458 55.1 3.425 60.0 3.708 48.6 2.843

30 382 56.5 3.525 62.2 3.867 50.7 2.921

35 327 58.9 3.788 63.7 4.068 52.3 3.129

40 287 56.2 3.890 59.1 4.129 49.9 3.243

45 255 56.3 4.020 61.2 4.277 51.3 3.363

50 229 60.1 4.131 61.9 4.413 54.8 3.500

55 209 64.7 4.315 67.6 4.560 58.4 3.640

60 191 65.1 4.537 67.8 4.742 58.5 3.794

65 177 63.0 4.606 65.9 4.848 58.0 3.930

70 164 66.1 4.821 68.3 5.013 60.8 4.081

75 153 68.9 4.907 71.0 5.123 63.2 4.216

80 144 72.6 5.078 74.5 5.293 64.8 4.383

85 135 71.6 5.177 73.6 5.435 65.5 4.513

90 128 71.9 5.338 75.1 5.498 67.4 4.617

a Since the reducing workload of the MapReduce job FCR is negligible in comparison with its mapping workload,

we list the DEC and execution time of the whole job with only a single reducer here.

exhibits a fluctuant increase as the number of waves in the mapping phase increases

from 2 to ⌈96/23⌉ = 5 for Grep12 and WordCount12, ⌈192/23⌉ = 9 for Grep24, or

⌈90/23⌉ = 4 for our statistical applications. The fluctuation in Figure 3.5(b) is due

to the fact that the system capacity is not always fully utilized during the last wave

of the mapping phase.

We conduct a linear fitting on the DEC measurements, and observe that the

DEC of Jobs (including Grep12, Grep24, WordCount12, PAS, ATA, and FCR) with

k mappers over their DEC with a single mapper follows a linear function with respect

to k, i.e., f1(k) = 0.0181k+0.9819, f2(k) = 0.0097k+ 0.9903, and f3(k) = 0.0041k+

0.9959, f4(k) = 0.0108k + 0.965, f5(k) = 0.0092k + 0.982, and f6(k) = 0.0134k +

22

0 20 40 60 80 100 120 140 160 180 200

The Number of Map Tasks

0

2

4

6

8

10

12

14

16

18

D
y
n

a
m

ic
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

K
J
) Grep with 1 reducer (12GB input data)

Grep with 1 reducer (24GB input data)

WordCount with 22 reducers (12GB input data)

(a)

0 20 40 60 80 100 120 140 160 180 200

The Number of Map Tasks

0

40

80

120

160

200

240

280

320

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Grep with 1 reducer (12GB input data)

Grep with 1 reducer (24GB input data)

WordCount with 22 reducers (12GB input data)

(b)

Figure 3.4 Benchmarks: (a) the DEC vs. the number of map tasks; (b) the
execution time vs. the number of map tasks.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

The Number of Map Tasks

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8
5.2
5.6

D
y
n

a
m

ic
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

K
J
)

PAS Mapping

ATA Mapping

FCR with 1 reducer

(a)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

The Number of Map Tasks

0

8

16

24

32

40

48

56

64

72

80

88

96

104

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

PAS Mapping

ATA Mapping

FCR with 1 reducer

(b)

Figure 3.5 The mapping phase of our statistical application: (a) the DEC vs. the
number of map tasks; (b) the execution time vs. the number of map tasks.

0.9835, respectively, which serves as the base of parameter setting in our simulation

in Subsection 6.5.2. The system log shows that there are 0 to 3 killed/resumed map

tasks in each job execution, which explains the variations in Figures 3.4(a) and 3.5(a).

We also tabulate the average DEC and execution time of the reducing phase in

each MapReduce job in response to different numbers of tasks in Table 3.2. Such a

trend in reducing does not seem to be as obvious as that in mapping for two main

reasons: i) There exists critical reduce-skew [43] for a small number of reduce keys.

ii) Since the workload of reducing is much less than that of mapping in our statistical

MapReduce jobs, the measurement errors for reduce tasks in Table 3.2 are relatively

23

Table 3.2 The Execution Time and DEC of Reducing vs. the Number of Reducers

The Number Reducing in Job PAS Reducing in Job ATA

of Reducers Time (s) DEC (KJ) Time (s) DEC (KJ)

1 91.1 1.387 61.4 1.073

2 64.2 1.572 33.0 0.989

3 63.2 1.689 27.6 0.964

4 54.2 1.612 23.3 0.975

5 47.5 1.634 21.8 0.976

6 38.9 1.555 18.6 1.041

7 28.8 1.467 19.7 1.054

8 17.0 1.066

The Number of Map Tasks
22 29 51 96 187

E
x
e
c
u
ti
o
n
 T

im
e
 (

in
 M

in
u
te

s
)

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.6 The execution time of a MapReduce job vs. the number of tasks.

larger in our measuring approach, where the DEC (or execution time) of reduce tasks

is calculated as the difference between that of the entire job with 23 mappers and

that of the corresponding map-only job with the same number of mappers.

To further validate the computing performance model in different scenarios, we

run the third MapReduce program (i.e., FCR) with 22 separate input files in HDFS

on another older computer server equipped with two processors of Intel(R) Xeon(R)

CPU E5-2630 with six cores of 2.3GHz and 64GB memory. The program execution

time is measured and plotted in Figure 3.6, which shows that the execution time of

this MapReduce job increases as the number of tasks increases when the server is

24

fully utilized during the execution, which means that the total workload increases

with the number of tasks.

25

CHAPTER 4

PERFORMANCE OPTIMIZATION OF MAPREDUCE WORKFLOW

MAPPING IN CLOUDS

This chapter is organized as follows. Section 4.1 introduces the background and

significance of performance optimization of MapReduce workflow mapping in clouds.

Section 4.2 formulates a big data workflow mapping problem. We design an FPTAS

for a special case with a pipeline-structured workflow in Section 4.3, and a heuristic for

a generalized problem in Section 4.4. Section 4.5 presents the performance evaluation.

Section 4.6 concludes our work.

4.1 Introduction

Next-generation applications in science, industry, and business domains are producing

colossal amounts of data, now commonly termed as “big data”, which must be

analyzed in a timely manner for knowledge discovery and technological innovation.

Among many existing solutions, data-intensive computing workflows comprised of

MapReduce jobs have become an indispensable technique for big data analytics.

In recent years, an increasing number of big data workflows have migrated

to clouds, which has reaped the benefit of resource virtualization but meanwhile

has also brought many new challenges for workflow execution and performance

optimization [73]. Cloud computing makes computing a utility such that one pays

for only those cloud resources that are truly needed and used [52]. Hence, to support

cost-effective execution of big data workflows in clouds, researchers are now facing

the challenge of reducing financial cost in addition to meeting traditional performance

optimization goals [73].

In this chapter, we design a big-data workflow mapping model, where a

job scheduler adaptively partitions each MapReduce job into a certain number

26

of homogeneous tasks and executes them on a selected set of VM instances in

a single class of the same processing speed. Based on this mapping model, we

construct analytical cost models in a combination of a workflow engine and a

Hadoop/YARN resource manager and formulate a MapReduce workflow mapping

problem to minimize workflow makespan under a given budget constraint in public

clouds. We show this problem to be strongly NP-complete, and design an FPTAS

for a special case with a chain of linearly arranged jobs on VMs in a single class and

a heuristic for a generalized problem with an arbitrary DAG-structured workflow on

VMs in multiple classes. The performance superiority of the proposed solution in

terms of workflow makespan and financial cost is illustrated by extensive simulation

results in Hadoop/YARN in comparison with existing algorithms.

4.2 Problem Formulation

We construct rigorous cost models and formulate a budget-constrained workflow

mapping problem for makespan minimization.

4.2.1 Cost Models

Cloud Model We consider a set Y of available VM types, partitioned into multiple

classes {Ci}, such as general-purpose VMs, computation-optimized VMs, memory-

optimized VMs, storage-optimized VMs, and GPU-based VMs in Amazon EC2. The

VM types in the same class have the same computer architecture (i.e., identical

processing speed) with different specifications, and the VM types in different classes

have different computer architectures. Each VM type yj in class Ci is associated

with performance- and price-related attributes (si, nj , mj, pj), where i) si denotes the

processing speed of a CPU core in class Ci, ii) nj denotes the number of homogeneous

CPU cores of VM type yj, iii) mj denotes the memory size of VM type yj, and iv)

pj denotes the price for using a VM instance of type yj per time unit. In general,

27

the price is a linear function with respect to the capacity of the VM types in a single

class, and the capacity of a VM type is αj (αj > 1, αj ∈ Z) times that of the next

lower VM type, as in Amazon EC2 pricing model.

Workflow Model We consider a user request in the form of a workflow f(G,B),

which specifies a workflow structure G and a budget B for the entire workflow

execution. The workflow structure is defined as a DAG G(V,A), where each vertex

vk ∈ V represents a component job, and each directed edge ak,k′ ∈ A between job

vk and job vk′ denotes an execution dependency, i.e., the actual finish time (AFT)

tFk of job vk must not be later than the actual start time (AST) tSk′ of job vk′. The

completion time of the workflow is denoted as tC . We consider the map and reduce

phases of each MapReduce job as two component jobs connected via an execution

dependency edge.

MapReduce Job Model We consider a component job vk that contains a set of

parallel map (or reduce) tasks, each of which requires a memory of size mk and spends

a percentage ui,k of time executing CPU-burst instructions on a CPU core of a VM

in class Ci. In job vk, as the number Lk of parallel tasks in vk increases, the total

workload wk(Lk) of all tasks would increase while the workload wk,l(Lk) = wk(Lk)/Lk

of each task rk,l would decrease.

In Hadoop/YARN, a portion of input data to be processed by one map task is

called a split. The largest number of splits of a MapReduce job is typically equal to

the number of data blocks (the data unit in HDFS) in the input data (i.e., a map

task processes one data block), which is decided by the volume of the entire dataset

divided by the data block size of HDFS. In general, the number of reduce tasks is

much less than the number of reduce keys in a MapReduce job. Hence, the maximum

number L′
k of tasks in job vk is limited by the number of input data blocks of the

MapReduce job. We assume that each task is assigned onto a different CPU core.

28

Time Model Since contiguous tasks can time-share a common VM instance over

different periods, the total VM initialization time for large-scale workflows could be

negligible. Since our work targets big data applications in cloud environments in

a single data center where PMs are interconnected via high-speed links, we do not

specifically consider data transfer time. Hence, the time cost of a task rk,l running

on a VM instance of a type in class Ci can be simplified as the execution time of rk,l

on a VM in Ci, i.e., ti,k,l = wk,l(Lk)/(ui,k · si), and so is the time cost ti,k(Lk) of job

vk if all Lk tasks start to run on VM instances in class Ci at the same time. To avoid

financial waste, at least one task is executed as soon as a VM instance is activated,

and the instance should be stopped if no suitable tasks can run on it immediately.

Financial Cost Model Data transfer within the same data center is typically free

of charge. For example, in the Amazon pricing scheme, there is no data transfer

charge between Amazon EC2 and S3 within the same region. Furthermore, public

clouds support scalable storage by enabling a user to create an Amazon EBS volume

and attach it to a VM instance, so the storage size is independent of the VM type.

In addition, the price for storage is counted in unit of months, so the financial cost of

storage during task execution may be ignored. Hence, the expense of executing a job

vk with Lk tasks on VM instances of types in class Ci can be simplified as the financial

cost of the active VM instances, on which Lk tasks are running during period ti,k(Lk),

i.e., ei,k(Lk) = ti,k(Lk) ·
∑

yj∈Ci
(pjhj,k), where hj,k is the number of VM instances of

type yj in class Ci assigned to job vk. Given Lk tasks in job vk and a single class

of VM types, we can find the least expensive combination of VM instances in linear

time, which are powerful enough to run Lk tasks simultaneously. Thus, the expense

ei,k(Lk) of job vk mentioned below denotes the minimum expense of job vk with Lk

tasks on VM instances in class Ci.

29

Data transferred between Amazon EC2 instances located in different Availability

Zones in the same Region will be charged Regional Data Transfer. Data transferred

between AWS services in different regions will be charged as Internet Data Transfer

on both sides of the transfer. Usage for other Amazon Web Services is billed

separately from Amazon EC2. Availability Zone Data Transfer: $0.00 per GB all

data transferred between instances in the same Availability Zone using private IP

addresses. Regional Data Transfer: $0.01 per GB all data transferred between

instances in different Availability Zones in the same region.

Mapping Function We define a workflow mapping function as M : {vk
[tS
k
,tF
k
]

===⇒
Lk

Ci, ∀vk ∈ V, ∃Lk ∈ [1, L′
k], ∃Ci ⊂ Y, ∃[tSk , t

F
k] ⊂ T}, which denotes that the k-th job is

partitioned into Lk tasks and mapped onto a set of VM instances of types in the i-th

class from time tSk to time tFk . The domain of this mapping function covers all possible

combinations of a set V of moldable jobs of the workflow, a set of VM classes, and a

time period T of workflow execution.

4.2.2 Problem Definition

We formulate a Budget-Constrained Workflow Mapping problem with Moldable jobs

for Makespan Minimization in public Clouds, referred to as BCWM4C, as follows.

Definition 1. BCWM4C: Given a set Y of VM types divided into classes {Ci},

and a workflow request f(G(V,A), B), where each job vk has a set {wk(Lk)|Lk =

1, 2, . . . , L′
k} of workloads corresponding to different degrees of parallelism, and each

task in job vk has a memory demand mk and spends ui,k percent of time executing

CPU-burst instructions on a VM in class Ci, we wish to find a mapping function

M : (V, Y, T)→ {vk
[tS
k
,tF
k
]

===⇒
Lk

Ci} to minimize makespan:

minM tC ,

30

Table 4.1 Notations Used in the Cost Models

Notations Definitions

Y =
⋃

i Ci a set of VM types divided into classes {Ci}

yj(si, nj ,mj, pj) the j-th VM type of price pj , equipped with a memory of size mi

and nj CPU cores of speed si

f(G(V,A), B) a workflow request consisting of a workflow structure of a DAG

G(V,A) and a budget B

vk, rk,l the k-th component job in a workflow and the l-th task in job vk

ak,k′ the directed edge from job vk to job vk′

tSk , t
F
k the actual start and finish time of job vk

tC the completion time of a workflow

ui,k the percentage of execution time for CPU-burst instructions in job

vk on a VM instance of a type in class Ci

mk the memory demand per task in job vk

wk(L) the workload of job vk partitioned into L tasks

wk,l(L) the workload of task rk,l in job vk with L tasks

Lk, L
′
k the number and the maximum possible number of tasks in job vk

ti,k,l the execution time of task rk,l running on a VM in class Ci

ti,k(L), ei,k(L) the execution time and minimun expense of job vk with L tasks

running in parallel on VM instances of types in class Ci

hj,k the number of VM instances of type yj assigned to job vk

subject to the budget and precedence constraints:

∑

vk∈V
ek ≤ B,

tFk ≤ tSk′, ∀ak,k′ ∈ A.

31

4.2.3 Computational Complexity Analysis

We first consider a special case of BCWM4C as follows: given a VM type of price

p with sufficient memory and 5 CPU cores of speed s, and K independent serial

jobs {vk} with CPU-burst workload wk, does there exist a feasible non-preemptive

scheduling scheme under a budget constraint B such that the makespan is no more

than T = B/p? This special case has been proved to be strongly NP-hard in [25],

so is the general BCWM4C problem, which, with a polynomially bounded objective

function, has no FPTAS unless P = NP [69].

4.3 A Pipeline-structured Workflow on VMs in a Single Class

We start with a special case with a pipeline-structured workflow running on VM

instances of types in a single class (PWSC), which is also NP-complete, and design

an FPTAS. The BCWM4C-PWSC problem is formally defined as follows.

Definition 2. BCWM4C-PWSC: Given J VM types {yj(s, nj , mj, pj)} in a single

class with increasing capacity, and a workflow G(V,A) containing a chain of K jobs,

where each job vk has a workload list {wk(Lk)|Lk = 1, 2, . . . , L′
k}, and each task in

job vk has a memory demand mk (≤ mj) and spends uk percent of time executing

CPU-burst instructions, does there exist a feasible mapping scheme such that the

expense and the makespan are no more than a budget B and a bound T , respectively?

4.3.1 Computational Complexity Analysis

We prove BCWM4C-PWSC to be NP-complete by reducing the NP-complete two-

choice knapsack problem (TCKP) to it.

Definition 3. Two-Choice Knapsack: Given K classes S1, S2, . . . , SK of items

to pack in a knapsack of capacity Q, where each class has exactly two items dk,l ∈ Sk

(l ∈ {1, 2}, k = 1, 2, . . . , K), each of which has a value ok,l and a weight qk,l, is there

32

e1,1 e2,1

e1,2 e2,2

e1,l e2,l

e1,L’(1) e2,L’(1)

 ⁞

 ⁞

v1,1

v1,2

v1,l

v1,L’(1)

u1u0

e3,l

…

e2K-2,l

uK-1

e2K-1,1 e2K,1

e2K-1,2 e2K,2

e2K-1,l e2K,l

e2K-1,L’(K) e2K,L’(K)

 ⁞

 ⁞

vK,1

vK,2

vK,l uK

1
st
 Job K

th
 Job

vK,L’(K)

Figure 4.1 A constructed network corresponding to a workflow with a pipeline
structure, where L′(1) = L′

1 and L′(K) = L′
K .

a choice of exactly one item from each class such that the total value is no less than

O and the total weight does not exceed capacity Q?

The 0-1 knapsack problem is a special case of TCKP where we put each item

from the 0-1 knapsack problem and a dummy item with zero value and zero weight

in the same class. Since the knapsack problem is NP-hard, so is TCKP.

Theorem 1. BCWM4C-PWSC is NP-complete.

Proof. Obviously, BCWM4C-PWSC ∈ NP . We prove BCWM4C-PWSC to be NP-

hard by reducing TCKP to it.

Let ({Sk(ok,1, qk,1, ok,2, qk,2)|1 ≤ k ≤ K}, O,Q) be an arbitrary instance of

TCKP. Without loss of generality, we assume that ok,1 > ok,2, and qk,1 > qk,2 > 0. If

qk,1 ≤ qk,2, dk,1 would always be picked. If qk,2 = 0, we can always add τ > 0 to qk,1,

qk,2, and Q such that qk,2 > 0.

We construct an instance of BCWM4C-PWSC as follows. Let n1 = 1, n2 = 2,

m2 = 2m1, p1 = (ok,1−ok,2)/(2qk,2−qk,1), p2 = 2p1, vk = Sk, L
′
k = 2, wk(1) = qk,1uks,

wk(2) = 2qk,2uks, T = Q, and B =
∑

1≤k≤K Ok − O, where Ok = (2qk,2ok,1 −

33

qk,1ok,2)/(2qk,2 − qk,1). It is obvious that this construction process can be done in

polynomial time.

Then, if job vk only has one task, the task is mapped onto one VM instance

of type y1, so its execution time is tk(1) = wk(1)/(uks) = qk,1, and its expense is

ek(1) = p1tk(1) = Ok−ok,1. If job vj has two tasks, the execution time of each task is

tk(2) = wk(2)/(2uks) = qk,2, and the expense of job vk is ek(2) = p2tk(2) = Ok − ok,2.

Obviously, two tasks in job vk are mapped onto two VMs of type y1 or one VM of

type y2 simultaneously.

Therefore, if the answer to the given instance of TCKP is YES (or NO), the

answer to the constructed instance of BCWM4C-PWSC is also YES (or NO). Proof

ends.

4.3.2 Approximation Algorithm

We design an FPTAS to solve BCWM4C-PWSC by reducing BCWM4C-PWSC to

the restricted shortest path (RSP) problem, which is solvable with an FPTAS.

Definition 4. Restricted Shortest Path: Given a directed graph G(V,E), where

each edge e ∈ E is associated with cost c(e) > 0 and length d(e) > 0, vertices s, t ∈ V,

and cost constraint C > 0, we wish to find the shortest simple path from s to t in G

with the total cost not exceeding C.

Given an instance of BCWM4C-PWSC, we construct an instance of RSP

according to the pipeline as follows. As illustrated in Figure 5.1, the network graph

G consists of V = {vk,l|k = 1, . . . , K, l = 1, . . . , L′
k} ∪ {u0, uk|k = 1, . . . , K} with a

source u0 and a destination uk, and E = {e2k−1,l, e2k,l|k = 1, . . . , K, l = 1, . . . , L′
k},

where e2k−1,l = (uk−1, vk,l) and e2k,l = (vk,l, uk). Then, we calculate the execution

time of job vk with l tasks as tk(l) = wk(l)/(l · s · uk), and accordingly its expense as

ek(l) = tk(l)pk(l), where pk(l) is the least expensive price for executing l tasks in vk

in parallel.

34

Algorithm 1: PMMM()

1: Construct a DAG G(V,E) for a given pipeline-structured workflow as shown in

Figure 5.1, and assign cost ek(l) and length tk(l) to edge e2k−1,l and zero cost and zero

length to edge e2k,l;

2: Use FPTAS in [28] to find the shortest path from u0 to uK under cost constraint B

with approximate rate ǫ1 and convert it to mapping scheme

Based on the same decision version of BCWM4C-PWSC in Definition 2, we

provide an FPTAS to each of its two different optimization problems as follows:

To minimize makespan under a budget constraint In Algorithm 1, we assign

the cost c(e) and length h(e) of each edge e ∈ E as c(e2k−1,l) = ek(l), l(e2k−1,l) = tk(l),

and c(e2k,l) = l(e2k,l) = 0, and set the cost constraint on a path from u0 to uK to be

budget B. As a result, the shortest length in RSP is exactly the minimum makespan

in BCWM4C-PWSC, and if vk,l is on the solution path to RSP, the k-th job has l

tasks. If the FPTAS in [28] is used to solve RSP, BCWM4C-PWSC finds a feasible

solution within the shortest makespan multiplied by (1 + ǫ1) in time O(K2L′2/ǫ1),

where L′ = max1≤k≤K L′
k. If the FPTAS in [28] is used to solve RSP in the topology

in Figure 5.1, BCWM4C-PWSC finds a feasible solution within the shortest makespan

multiplied by (1 + ǫ1) in time O(KL′(logL′ + 1/ǫ1)), thanks to the special topology

in Figure 5.1, where L′ = max1≤k≤K L′
k.

To minimize expense under a makespan constraint In Algorithm 10, we

swap the cost and length of each edge in Algorithm 1, and set the path cost

constraint to be makespan bound T . Similarly, the shortest length in RSP is exactly

the minimum expense in BCWM4C-PWSC. If the FPTAS in [19] is used to solve

RSP, BCWM4C-PWSC finds a solution with the least expense under the makespan

35

Algorithm 2: PMEM()

1: Construct a DAG G(V,E) for a given pipeline-structured workflow as shown in

Figure 5.1, and assign cost tk(l) and length ek(l) to edge e2k−1,l and zero cost and zero

length to edge e2k,l;

2: Use FPTAS in [19] to find the shortest path from u0 to uK under cost constraint T

with approximate rate ǫ2 and convert it to mapping scheme

constraint multiplied by (1+ ǫ2) in time O((K2L′)/ǫ2), thanks to the special topology

in Figure 5.1.

4.4 Algorithm for Arbitrary Workflows on VMs in Different Classes

We consider BCWM4C with a DAG-structured workflow on heterogeneous VM types

in different classes and design a heuristic algorithm, big-data adaptive workflow

mapping (BAWM), for minimum end-to-end delay.

4.4.1 An Overview of BAWM

For the sake of clarification, we list some variables and functions used in BAWM

in Table 4.2. Each job vk is associated with a set of pairs of the number Lk,n

of tasks (Lk,n ∈ [1, L′
k]) and the class Ck,n of assigned VM types (Ck,n ∈ {Ci}).

Each pair corresponds to certain execution time tk,n = tk(Lk,n, Ck,n) and expense

ek,n = ek(Lk,n, Ck,n) as listed in Table 4.3. The quadruples {(tk,n, ek,n, Lk,n, Ck,n)} in

Table 4.3 are sorted in the ascending order of execution time, and are referred to as

the time-expense table (TET) tetk of job vk. Here, each quadruple corresponds to an

execution option of job vk, so if its execution time and expense are both larger than

those of another one, it would be deleted from tetk;

In Algorithm 3, BAWM first builds a time-expense table for each job by calling

bldTET (), and then considers two special cases: i) If the input workflow is a pipeline,

36

Table 4.2 Variables and Functions Used in Algorithm Design

Notations Definitions

emin the smallest allowable budget for a feasible workflow mapping scheme

emax the smallest sufficient budget for the fastest execution of all jobs

tet← bldTET Build TETs tet for all jobs in V according to a set V of jobs and a set

(V, {Ci}) of classes {Ci} of VM types

(t, e, optIdx) Reclaim unnecessary budget allocation for workflow f without

← save makespan increase and then return makespan t, expense e, and the

(f, tet, optIdx) option indices optIdx of all jobs in the latest mapping

(g, t)← getCG Compute the critical subgraph g and makespan t of workflow f based

(f, tet, optIdx) on the TETs tet and option indices optIdx of all jobs

t← calMS Calculate the makespan of workflow f based on the TETs tet and

(f, tet, optIdx) option indices optIdx of all jobs

e← calExp Calculate the expense e of workflow f based on the TETs tet and

(f, tet, optIdx) option indices optIdx of all jobs

Table 4.3 Time-Expense Table tetk of Job vk
tk,1 < tk,2 < . . . < tk,n < . . . < tk,N

ek,1 > ek,2 > . . . > ek,n > . . . > ek,N

Lk,1 Lk,2 . . . Lk,n . . . Lk,N

Ck,1 Ck,2 . . . Ck,n . . . Ck,N

Algorithm 1 is used to select an execution option for each job (Lines 5-7). Due to

different execution speeds of a task running on VMs in different classes, Algorithm 1

is merely a heuristic, not an approximation algorithm. ii) If the budget approaches

the smallest sufficient budget emax for the fastest execution of all jobs, BAWM keeps

makespan the shortest and reduces the expense of jobs on non-critical paths by calling

save() to search for the minimal expense (Lines 8-12). In save(), we calculate the

ratio of the expense decrease over the time increase for each slower execution option

37

Algorithm 3: BAWM()

Input: A workflow f(G(V,A), B) and a set Y =
⋃

iCi of VM types

Output: a makespan t and a remaining budget b

1: tet← bldTET (V, {Ci});

2: Find the minimum expense as emin when each job selects the least expensive execution

option and the maximum expense as emax when each job selects the fastest execution

option;

3: if B < emin then

4: Exit with an error.

5: if f is a pipeline then

6: Use Algorithm 1 to compute the option index optIdx[k] of each job vk;

7: return (calMS(f, tet, optIdx), B − calExp(f, tet, optIdx));

8: for all vk ∈ V do

9: optIdx[k]← the index of the first (fastest) option in tetk;

10: (t, e, optIdx)← save(f, tet, optIdx);

11: if e ≤ B then

12: return (t, B − e);

13: if B ≤ emin + δ · (emax − emin)|δ=0.07 then

14: for all vk ∈ V do

15: optIdx[k]← the index of the last (least expensive) option in tetk;

16: return CGG(f,B − emin, tet, optIdx);

17: (b, optIdx)← BSMCEM(f, tet);

18: return CGG(f, b, tet, optIdx).

38

Algorithm 4: bldTET()

Input: all the jobs {vk} in a workflow f and VM type classes {Ci}

Output: time-expense tables {tetk} for all jobs {vk}

1: for all vk ∈ V do

2: tetk ← ∅;

3: for all Ci ⊂ Y do

4: for L← 1 to L′
k do

5: Calculate the execution time tk(L,Ci) and the minimum expense ek(L,Ci) for

job vk with L tasks running on a set of VM instances in class Ci in parallel;

6: Add (tk(L,Ci), ek(L,Ci), L,Ci) into tetk.

7: Sort quadruples in tetk in the ascending order of tk(L,Ci);

8: For each quadruple, if its execution time and expense are both larger than those of

another one, delete it from tetk;

9: return {tetk}.

of each non-critical job, and then downgrade the job with the highest ratio to the

corresponding execution option one at a time.

As shown in Algorithm 3, the key idea of BAWM is as follows. Each workflow

mapping consists of two components: critical-subgraph-greedy (CGG) and binary

search based on makespan-constrained expense minimization (BSMCEM). A CP is

the longest execution path in a workflow, which can be calculated in linear time.

Here, we define the union of all critical paths as a critical subgraph, which can also be

calculated in linear time. CGG is designed to find a local optimal solution; BSMCEM

is designed to find a feasible solution near a global optimal solution with some

remaining budget. Therefore, if the budget approaches the smallest allowable budget

emin for a feasible workflow mapping scheme, BAWM uses CGG() in Algorithm 6

39

Algorithm 5: save()

Input: a workflow f(G(V,A)), time-expense tables {tetk} and the option index

optIdx[k] of job vk

Output: makespan t, expense e, and the indices optIdx of options for all jobs

1: while b > 0 do

2: (g, t)← getCG(f, tet, optIdx); g′ ← f − g;

3: if g′ = ∅ then

4: break;

5: for all vk ∈ g′ do

6: i← optIdx[k];

7: for l = i+1 to tetk.size() do

8: optIdx[k]← l; t′ ← calMS(f, tet, optIdx);

9: if t′ = t then

10: etr(k, l)← (tetk[i].e-tetk[l].e)/(tetk [l].t-tetk[i].t);

11: optIdx[k]← i;

12: Find job k∗ and option index l∗ with the maximum etr(k∗, l∗);

13: if etr(k∗, l∗) > 0 then

14: optIdx[k∗]← l∗;

15: else

16: break;

17: e← calExp(f, tet, optIdx);

18: return (t, e, optIdx).

40

to search for the shortest makespan (Lines 13-16). Otherwise, BAWM first uses

BSMCEM() in Algorithm 7 to find a near-optimal feasible solution, and then starts

CGG() with this solution and utilizes its remaining budget to achieve a better solution

(Lines 17-18).

Algorithm 6: CGG()

Input: a workflow f(G(V,A)), remaining budget b, time-expense tables {tetk}

and the option index optIdx[k] of each job vk

Output: makespan t and remaining budget b∗

1: t← calMS(f, tet, optIdx); b∗ ← b;

2: while b > 0 do

3: (g, t)← getCG(f, tet, optIdx);

4: if Remaining budget b cannot be used to speed up any job in g then

5: break;

6: S ← {v ∈ g| all critical paths traverse v};

7: for all vk ∈ S do

8: i← optIdx[k];

9: for n = i-1 to 1 do

10: optIdx[k]← n; t′ ← calMS(f, tet, optIdx);

11: ∆e(k, n)← ek,n − ek,i;

12: if ∆e(k, n) < b then

13: ter(k, n)← (t− t′)/∆e(k, n);

14: optIdx[k]← i;

41

15: Find job k1 and option index n1 with the maximum ter(k1, n1);

16: if ter(k1, n1) > 0 then

17: optIdx[k1]← n1; b← b−∆e(k1, n1); continue;

18: b∗ ← b; optIdx∗ ← optIdx;

19: for all vk ∈ g − S do

20: n← optIdx[k];

21: ter′(k, n− 1)← (tk,n − tk,n−1)/(ek,n−1 − ek,n);

22: Find job k2 and option index n2 with the maximum ter′(k2, n2);

23: if ter′(k2, n2) > 0 then

24: optIdx[k2]← n2; b← b−∆e(k2, n2);

25: return (t, b∗).

4.4.2 Critical-subgraph Greedy

In Algorithm 6, we allocate the remaining budget based on the currently selected

option for each job to accelerate the workflow execution. We select those jobs all CPs

traverse as critical points and upgrade their options to faster ones, with an attempt

to maximize the impact of a local speed-up on the global end-to-end delay. For

each such job, we first calculate its local maximum ratio of the makespan decrease

over the expense increase and record the corresponding option index, and then select

the job that achieves the global maximum ratio over the entire critical subgraph for

rescheduling. If none of the jobs at the critical points can be accelerated, we upgrade

one of the rest in the critical subgraph by one level with the same selection method

as above.

4.4.3 BSMCEM

The CP plays a significant role in the performance optimization of workflow

mapping. However, it is difficult to balance the expenses between the jobs on

42

the CP and the jobs on noncritical paths (NCPs) as the CP might change during

the workflow mapping process. Towards this end, we first design an heuristic

to solve another optimization problem, MAkespan-constrained Workflow Mapping

for Expense Minimization (MAWMEM), which has the same decision version as

Algorithm 7: BSMCEM()

Input: A budget-constrained workflow f(G(V,A), B) and TETs tet

Output: remaining budget b and the option indices optIdx of all jobs

1: Find the minimum makespan as tmin when each job selects the fastest execution

option and the maximum makespan as tmax when each job selects the least expensive

execution option;

2: tF ← tmin/(1 + ǫ2); tS ← tmax;

3: t′ ← -1; // t′ is the time constraint of the latest successful mapping

4: while tS − tF > ∆t do

5: t← (tS + tF)/2; (tC , e, optIdx)←MAWMEM(t, f, tet);

6: if e > B then

7: if tF < tC < t then

8: tF ← tC ;

9: else

10: tF ← t;

11: else

12: if tS > tC then

13: tS ← tC ; t′ ← t;

14: else

15: break;

43

16: Cancel the mapping of all the jobs in V ;

17: if t′ ≥ 0 then

18: (tC , e, optIdx)←MAWMEM(t′, f, tet);

19: b← B − save(f, tet, optIdx);

20: else

21: b← B − emin;

22: return (b, optIdx).

BCWM4C. The difference between BCWM4C and MAWMEM is that their objective

and one of the constraints are swapped. The objective of MAWMEM is

min
M

∑

vk∈V
ek,

and the first constraint of MAWMEM is

tC ≤ T.

Accordingly, the framework of BSMCEM in Algorithm 7 is as follows. Initially,

we set the infeasible makespan tF to be the minimum makespan tmin minus a tiny

amount and the feasible makespan tS to be the maximum makespan tmax, and seek

for workflow mapping with a minimal makespan by binary search (Lines 4-16). Then,

BSMCEM searches for the maximal remaining budget with this minimal makespan

fixed by calling save().

For the sake of clarification, we define the following notations. If all the

preceding jobs of job vk are mapped, its earliest start time (EST) tES
k is the maximum

AFT of its preceding jobs; if all the succeeding jobs of job vk are mapped, its last finish

time (LFT) tLFk is the minimum AST of its succeeding jobs. The EST of the start

job is 0, and the LFT of the end job is a makespan bound. If there exist unmapped

preceding and succeeding jobs of vk, its temporary earliest start time (TEST) t′ES(vk)

44

Algorithm 8: MAWMEM()

Input: makespan constraint T , workflow f(G(V,A)), and TETs tet

Output: makespan tC , expense e, the option indices optIdx of all jobs

1: tLFk ← +∞ for ∀vk ∈ f ; tLFK ← T for the end job vK in f ;

2: G′ ← G; // G′ is a subgraph of all the unmapped jobs in G.

3: while G′ 6= ∅ do

4: Find the critical path cp ending at a job with the earliest LFT in

5: G′ according to {ti,k(L
′
k)|ei,k(L

′
k) = minCi′⊂Y ei′,k(L

′
k)};

6: if PM(cp, tet) = False then

7: vk ← the last mapped job in cp;

8: D(vk)← {the downstream jobs of vk in G};

9: for all vk′ ∈ D(vk) s.t. t
S
k′ < tFk do

10: Cancel the mapping of vk′ , and add it and its associated precedence constraints

back to G′;

11: G′ ← G′ − {v ∈ cp|v is mapped};

12: tC ← calMS(f, tet, optIdx); e← calExp(f, tet, optIdx);

13: return (tC , e, optIdx).

and temporary last finish time (TLFT) t′LF (vk) can be calculated based on only its

mapped preceding and succeeding jobs, respectively. The EST and LFT of a pipeline

are the EST of its first job and LFT of its end job, respectively.

We consider MAWMEM and design a heuristic algorithm in Algorithm 8, whose

key idea is as follows. Each workflow mapping consists of two components: iterative

CP selection and pipeline mapping. The algorithm starts with computing an initial

CP according to the execution time of each job with a maximum number of tasks

45

running in parallel in the least expensive VM class, followed by a pipeline mapping

process. Then, it iteratively computes a CP with the earliest last finish time (LFT)

from the remaining unmapped workflow branches based on the same execution time

of a job as above and performs a pipeline mapping of the computed CP until there

are no branches left. If the mapping of the last mapped job on the CP violates

the precedence constraint with its downstream jobs, all these downstream jobs in

violation would be unmapped. Note that the first job on each previous mapped CP

Algorithm 9: PM()

Input: a pipeline pl with its EST pl.est and LFT pl.lf t and TETs tet

Output: a boolean variable to indicate whether mapped jobs in pl follow

precedence constraints

1: Label the index k of each job in pl from 1 to the length of pl;

2: Update TEST t′ES(vk) and TLFT t′LF (vk) for ∀vk ∈ pl;

3: if
∑

vk∈pl
tk,1 > pl.lf t− pl.est then

4: tS1 ← pl.est;

5: for vk ∈ pl do

6: if k > 1 then

7: tSk ← max{tFk−1, t
′
ES(vk)};

8: tFk ← tSk + tk,1; Lk ← Lk,1;

9: if tFk > t′LF (vk) then

10: return False.

11: return False.

12: Use Algorithm 10 to calculate the execution option index optIdx[k], AST tSk and AFT

tFk for each job vk ∈ pl based on {tetk|vk ∈ pl};

46

13: for vk+1 ∈ pl do

14: if tFk > t′LF (vk) or t
F
k < t′ES(vk+1) then

15: Let pl(1, k) be the sub-pipeline of pl from its 1st to the k-th job;

16: pl(1, k).est← pl.est;

17: if tFk > t′LF (vk) then

18: pl(1, k).lf t← t′LF (vk);

19: else

20: pl(1, k).lf t← min{t′ES(vk+1), t
′
LF (vk)}

21: Clear optIdx[k], tSk and tFk for each job vk in pl;

22: return PM(pl(1, k), tet);

23: Map vk from tSk to tFk according to the optIdx[k]-th option in tetk;

24: return True.

would not be cancelled because the CP with the earliest LFT is selected and mapped

in each iteration.

In pipeline mapping in Algorithm 9, due to the homogeneity of tasks in a job,

we map all the tasks in the same job onto VM instances in a single class, hence

using Algorithm 10 to balance the trade-off between execution time and expense for

each job on a pipeline (Line 12). When the jobs in a pipeline are mapped in their

execution order, we check if everyone respects precedence constraints, and remap a

pipeline with the updated LFT and length, if needed (Lines 13-22).

Since CGG is of O(I2K2L′2|A|) and BSMCEM is of O(IK5L′ log(tmax/∆t)/ǫ2),

the time complexity of BAWM is O(I2K2L′2|A|+IK5L′ log(tmax/∆t)/ǫ2+I2K2L′2/ǫ1),

where I is the number of classes of VM types, K is the number of jobs, L′ is the

maximum possible number of tasks in a job.

47

4.5 Performance Evaluation

4.5.1 Simulation Settings

We conduct simulations to evaluate our mapping model, referred to as Job-VMC,

which maps each job with adaptive task partitioning onto a set of VM instances

of types in the same class, in comparison with two existing mapping models: one

mapping each task onto a VM instance, referred to as Task-VMI [71], and the other

mapping each job with a preset number of tasks onto a set of VM instances of the same

VM type, referred to as Job-VMT [73]. Then, we conduct simulations to evaluate the

performance and financial cost of BAWM in our mapping model in comparison with

existing algorithms: global-greedy-budget (GGB) in [71], gradual refinement (GR)

in [71], and critical-path-greedy (CPG) in [73].

We generate a series of random workflows, in each of which the number of

precedence constraints is set to 1.5 times the number of jobs, if possible. The workload

of a job is randomly selected between 0.06 × 1015 and 2.16 × 1015 CPU cycles when

running in serial. The workload w(l) of a job with l > 1 tasks is randomly selected

between w(l − 1)[1 + 0.3/(l − 1)] and w(l − 1)[1 + 0.7/(l − 1)]. The percentage of

time executing CPU-burst instructions of each job on VMs in each class is randomly

selected between 0.1 and 1. The memory demand of a task in each job is randomly

selected from 0.5GB to 3.5GB at an interval of 0.5GB.

We conduct the simulation on five classes of VM types for different usage

purposes, consisting of 20 VM types as tabulated in Table 4.4, based on real-life

VM types in Amazon EC2. The parameters ǫ1 in Algorithm 1 and ǫ2 in Algorithm 10

are set to 0.05 and 0.01, respectively. By default, each data point denotes the average

of 1000 runs with standard deviations; the workflow size and the number of VM

types are set to be 100 jobs and 20, respectively; the maximum number L′ of tasks

for each job is randomly selected between 30 and 50; the budget factor β, which

48

Table 4.4 Specifications for Virtual Machine Types

VM Type Class Name Processor Speed # of cores Memory Price

(GHz) (MB) ($/hour)

1 General Purpose 3.25 1 3840 0.067

2 General Purpose 3.25 2 7680 0.134

3 General Purpose 3.25 4 15360 0.268

4 General Purpose 3.25 8 30720 0.536

5 Compute Optimized 3.5 2 3840 0.105

6 Compute Optimized 3.5 4 7680 0.21

7 Compute Optimized 3.5 8 15360 0.42

8 Compute Optimized 3.5 16 30720 0.84

9 Compute Optimized 3.5 32 61440 1.68

10 Memory Optimized 3.25 2 15360 0.166

11 Memory Optimized 3.25 4 31232 0.332

12 Memory Optimized 3.25 8 62464 0.664

13 Memory Optimized 3.25 16 124928 1.328

14 Memory Optimized 3.25 32 249856 2.656

15 Storage Optimized 3.5 4 31232 0.853

16 Storage Optimized 3.5 8 62464 1.706

17 Storage Optimized 3.5 16 124928 3.412

18 Storage Optimized 3.5 32 249856 6.824

19 GPU Instances 3.25 8 15360 0.65

20 GPU Instances 3.25 32 61440 2.6

is a factor determining the actual budget B based on a budget range [emin, emax] as

B = emin + β(emax − emin), is set to 0.3.

In each simulation, the mapping success rate (MSR) is defined as the ratio of the

number of workflow requests (i.e., pairs of a workflow instance and a budget), each of

which has a feasible mapping scheme, to the total number of workflow requests in a

49

Table 4.5 Problem Sizes

Index (|V |, L′, |Y |) Index (|V |, L′, |Y |)

1 (5, 15-26, 1) 11 (55, 23-38, 11)

2 (10, 16-27, 2) 12 (60, 24-40, 12)

3 (15, 17-28, 3) 13 (65, 24-41, 13)

4 (20, 18-30, 4) 14 (70, 25-42, 14)

5 (25, 18-31, 5) 15 (75, 26-43, 15)

6 (30, 19-32, 6) 16 (80, 27-45, 16)

7 (35, 20-33, 7) 17 (85, 27-46, 17)

8 (40, 21-35, 8) 18 (90, 28-47, 18)

9 (45, 21-36, 9) 19 (95, 29-48, 19)

10 (50, 22-37, 10) 20 (100, 30-50, 20)

mapping model. The performance improvement, i.e., makespan reduction, over other

algorithms in comparison is defined as

Imp(Other) =
MSOther −MSBAWM

MSOther

· 100%,

where MSOther is the makespan achieved by the other algorithm, andMSBAWM is the

makespan achieved by BAWM. The financial improvement of BAWM over another

algorithm in comparison is defined as the remaining budget percentage of BAWM

minus that of another algorithm.

4.5.2 Mapping Success Rate for Mapping Models

We first examine the performance of Job-VMC, Job-VMT, and Task-VMI in terms of

MSR with various problem sizes under different budget constraints. We consider 20

different problem sizes from small to large scales, indexed from 1 to 20, as tabulated

in Table 5.6. Each problem size is defined as a triple of the number |V | of jobs per

workflow, the maximum number L′ of tasks per job, and the number |Y | of VM types.

50

Budget Factor
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
a
p
p
in

g
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Job-VMC
Job-VMT
Task-VMI

(a)

Problem Size
1 2 3 4 5 6 7 8 9 1011121314151617181920

M
a
p
p
in

g
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

0

10

20

30

40

50

60

70

80

90

100
Job-VMC Job-VMT Task-VMI

(b)

Figure 4.2 Mapping success rate: (a) in 2,000,000 instances (20 different problem
sizes × 100,000 random workflow instances) for each budget factor; (b) in 2,100,000
instances (21 different budget factors × 100,000 random workflow instances) for each
problem size.

The budget factor on the budget range [emin, emax] calculated based on the Job-VMC

mapping model varies from 0 to 2 in the evaluation. The MSR of these mapping

models with different budget factors and problem sizes are plotted in Figure 4.2(a)

and Figure 4.2(b), respectively. Figure 4.2(a) shows that Job-VMC achieves 100%

MSR when β ≥ 0, while Job-VMT and Task-VMI do not achieve 100% MSR until

β reaches 1.1 and 1.7, respectively. Figure 4.2(b) shows that with different problem

sizes, the MSR of BAWM is 100%, while the MSRs of Job-VMT and Task-VMI are

only between 50.3% and 66.0%, and between 31.8% and 52.4%, respectively.

4.5.3 Makespan for Mapping Algorithms

Problem Size and Budget Scale We evaluate the performance of GGB, GR,

CPG, and BAWM in the Job-VMC mapping model in terms of makespan and

remaining budget with problem sizes from index 1 to 20 under budget constraints

from 0 to 1 at an interval of 0.05. We plot the average makespan reduction and

financial improvement of BAWM over GGB, GR, and CPG with different budget

factors and problem sizes in Figures 4.3-4.8, respectively. These measurements show

that BAWM reduces makespan by up to 30.8%, 49.1%, and 20.8%, and by 20.5%,

51

2019181716151413

Problem Size

1211109876543210
0.1

0.2
0.3

0.4

Budget Factor

0.5
0.6

0.7
0.8

0.9

16

32

28

24

20

0

12

8

4

1

M
a
k
e
s
p
a
n
 R

e
d
u
c
ti
o
n
 (

%
)

Figure 4.3 The average performance
improvement of BAWM over GGB in 400
instances for each budget factor and each
problem size.

2019181716151413

Problem Size

1211109876543210
0.1

0.2
0.3

0.4

Budget Factor

0.5
0.6

0.7
0.8

0.9

12

0

10.5

13.5
15

1.5
3

4.5
6

7.5
9

1

D
if
fe

re
n
c
e
 o

f
R

e
m

a
in

in
g
 B

u
d
g
e
t
P

e
rc

e
n
ts

 (
%

)

Figure 4.4 The average financial
improvement of BAWM over GGB in 400
instances for each budget factor and each
problem size.

2019181716151413

Problem Size

1211109876543210
0.1

0.2
0.3

0.4

Budget Factor

0.5
0.6

0.7
0.8

0.9

50
45
40
35
30
25
20
15
10
5
0
1

M
a
k
e
s
p
a
n
 R

e
d
u
c
ti
o
n
 (

%
)

Figure 4.5 The average performance
improvement of BAWM over GR in 400
instances for each budget factor and each
problem size.

2019181716151413

Problem Size

1211109876543210
0.1

0.2
0.3

0.4

Budget Factor

0.5
0.6

0.7
0.8

0.9

13.5
15

0
1.5

3
4.5

6
7.5

9
10.5

12

1

D
if
fe

re
n
c
e
 o

f
R

e
m

a
in

in
g
 B

u
d
g
e
t
P

e
rc

e
n
ts

 (
%

)

Figure 4.6 The average financial
improvement of BAWM over GR in 400
instances for each budget factor and each
problem size.

24.3%, and 8.4% on average in comparison with GGB, GR and CPG, respectively.

The performance optimization of GGB and GR is limited by the bounds of each stage,

and thus is inferior to that of BAWM. CPG, recursively improving the performance

of the CP, ignores the impact of jobs in the non-critical paths on the budget usage,

and thus causes unnecessary financial waste and limits its performance improvement.

When the budget reaches emin (or emax), all the jobs run the slowest (or fastest),

and CPG and BAWM obtain the optimal makespan in polynomial time, so there is

no performance improvement of BAWM over CPG in both scenarios. Furthermore,

52

2019181716151413

Problem Size

1211109876543210
0.1

0.2
0.3

0.4

Budget Factor

0.5
0.6

0.7
0.8

0.9

3

0

21

6

9

12

15

18

1

M
a
k
e
s
p
a
n
 R

e
d
u
c
ti
o
n
 (

%
)

Figure 4.7 The average performance
improvement of BAWM over CPG in 400
instances for each budget factor and each
problem size.

2019181716151413

Problem Size

1211109876543210
0.1

0.2
0.3

0.4

Budget Factor

0.5
0.6

0.7
0.8

0.9

15

0

3

6

9

12

27

18

21

24

1

D
if
fe

re
n
c
e
 o

f
R

e
m

a
in

in
g
 B

u
d
g
e
t
P

e
rc

e
n
ts

 (
%

)

Figure 4.8 The average financial
improvement of BAWM over CPG in 400
instances for each budget factor and each
problem size.

when BAWM performs other three algorithms in terms of makespan, it increases the

percentage of remaining budget by up to 14.3%, 14.3%, and 26.9%, and by 2.9%, 2.9%,

and 4.3% on average in comparison with GGB, GR and CPG, respectively. With tight

budgets, all these algorithms exhaust budgets to seek for the least end-to-end delay;

with loose budgets, since all the jobs do not need to run the fastest to achieve the

minimum makespan, BAWM save a significant amount of financial cost.

Workflow Size We execute GGB, GR, CPG, and BAWM in the Job-VMC model

under different workflow sizes for scalability evaluation. We plot the makespan

reduction in Figure 4.9, where we observe that as the number of jobs increases, BAWM

improves the performance by 4.7% to 31.2%, 8.8% to 48.0%, and 8.3% to 20.4% in

comparison with GGB, GR, and CPG, respectively, hence exhibiting a satisfactory

scalability property with respect to the workflow size.

The Number of Virtual Machine Types We also run these algorithms in the

Job-VMC model under different numbers of VM types. The set of available VM types

are selected in the order of VM types listed in Table 4.4 every time. The makespan

reduction of BAWM over GGB, GR, and CPG is plotted in Figure 4.10, which shows

53

The Number of Jobs
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
a

k
e

s
p

a
n

 R
e

d
u

c
ti
o

n
 (

%
)

-5

0

5

10

15

20

25

30

35

40

45

50

55

60
Imp(GGB) Imp(GR) Imp(CPG)

Figure 4.9 The performance
improvement of BAWM in 1000 instances
for each workflow size.

The Number of Virtual Machine Types
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
a

k
e

s
p

a
n

 R
e

d
u

c
ti
o

n
 (

%
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65
Imp(GGB) Imp(GR) Imp(CPG)

Figure 4.10 The performance
improvement of BAWM in 1000 instances
for each number of VM types.

Workflow Structures
Random Chain Tree Reverse Tree Diamond

M
a
k
e
s
p
a
n
 R

e
d
u
c
ti
o
n
 (

%
)

0

5

10

15

20

25

30

35

40

45

50

55

60
Imp(GGB) Imp(GR) Imp(CPG)

Figure 4.11 The performance improvement of BAWM in 1000 instances for each
workflow structure.

that BAWM improves the performance by 29.6% to 37.6%, 46.0% to 49.2%, and

15.2% to 21.2% in comparison to GGB, GR, and CPG, respectively.

Workflow Structure We evaluate the performance of these algorithms in the Job-

VMC model with different workflow structures, including a random shape, a chain, a

tree, a reverse tree, and a diamond. The makespan reduction is plotted in Figure 4.11,

which shows that BAWM improves the performance by 31.5%, 4.3%, 22.2%, 22.1%

and 22.2%, by 48.4%, 35.4%, 27.3%, 27.9% and 27.1%, and by 20.7%, 5.9%, 24.5%,

24.4% and 22.1% in comparison with GGB, GR, and CPG for five different workflow

structures, respectively. Although there is less room for performance improvement

54

in such a simple workflow structure as pipeline, BAWM still achieves considerable

performance improvement as a result of incorporating Algorithm 1 for the first special

case.

4.6 Conclusion

We investigated the properties of moldable jobs and designed a big-data workflow

mapping model in clouds, based on which, we formulated a strongly NP-complete

workflow mapping problem to minimize workflow makespan under a budget constraint.

We designed an FPTAS for a special case with a pipeline on VMs in a single class and

a heuristic for a generalized problem with an arbitrary workflow on VMs in multiple

classes. The performance superiority of the proposed solution was illustrated by

extensive simulation-based results in comparison with existing mapping models and

algorithms. We plan to implement and evaluate the proposed mapping solution using

real-life scientific workflows in public clouds.

55

CHAPTER 5

ENERGY-EFFICIENT STATIC MAPPING OF MAPREDUCE

WORKFLOWS IN SHARED CLUSTERS

This chapter is organized as follows. Section 5.1 introduces the background and

significance of energy efficiency of MapReduce workflows. Section 5.2 formulates a

MapReduce workflow mapping problem, and provides its strong NP-hardness proof.

We prove a special case to be weakly NP-complete and design an FPTAS for it

in Section 5.3, and design a heuristic for the generalized problem in Section 5.4.

Section 5.5 evaluates the performance and Section 5.6 concludes our work.

5.1 Introduction

Next-generation applications in science, industry, and business domains are producing

colossal amounts of data, now frequently termed as “big data”, which must be

analyzed in a timely manner for knowledge discovery and technological innovation.

Among many practical computing solutions, workflows have been increasingly

employed as an important technique for big data analytics, and consequently such

big data workflows have become a main consumer of energy in data centers. Most

existing research efforts on green computing were focused on a batch of independent

MapReduce jobs in Hadoop systems or traditional workflows comprised of serial/rigid

programs. Energy efficiency of large-scale workflows in big data systems such as

Hadoop still remains largely unexplored.

Modern computing systems achieve energy saving mainly through two types

of techniques, i.e., i) task consolidation to reduce static energy consumption (SEC)

by turning off idle servers [17, 23, 12, 20], and ii) load balancing to reduce DEC

through DVFS [37, 50, 46, 49, 80, 79], or a combination of both. However, these

green computing techniques are not sufficient to address the energy efficiency issue of

56

big data workflows, because i) frequently switching on and off a server may reduce its

lifespan or cause unnecessary peaks of power consumption, and ii) DVFS may not be

always available on all servers in a cluster. According to the work by Chen et al. on

the analysis of the impact of MapReduce operating parameters on energy efficiency

under different workloads in Hadoop clusters [21], energy efficiency is equivalent to

time efficiency if the amount of work accomplished per unit time is proportional to

the amount of consumed resources. Following this line of research, we direct our

efforts to workflow mapping for dynamic energy saving by adaptively determining

the degree of parallelism in each MapReduce job to mitigate the workload overhead

while meeting a given performance requirement.

In this chapter, we construct analytical cost models and formulate a workflow

mapping problem to minimize the DEC of a workflow under deadline and resource

constraints in a Hadoop cluster. This problem is strongly NP-hard because a

subproblem to minimize the makespan of independent jobs on identical machines

under a single resource constraint without considering energy cost has been proved

to be strongly NP-hard [25]. In our problem, it is challenging to balance the trade-off

between energy cost and execution time of each component job to determine their

respective completion time in MapReduce workflows, regardless of several previous

efforts in traditional workflows, such as the partial critical path and minimum

dependency methods in [10, 83].

We start with a special case with a pipeline-structured workflow (a set of linearly

arranged jobs with a dependency between any two neighbors along the line) on a

homogeneous cluster. We prove this special case to be weakly NP-complete and

design an FPTAS of time complexity linear with respect to 1/ǫ. By leveraging the

near optimality and low time complexity of our FPTAS, we design a heuristic for

the generalized problem with a DAG-structured workflow on a heterogeneous cluster.

This heuristic iteratively selects the longest chain of unmapped jobs from the workflow

57

and applies our FPTAS to the selected pipeline while taking machine heterogeneity

into consideration.

In sum, our work makes the following contributions to the field.

• Our work validates with experimental results that the DEC of a moldable job

increases with the number of parallel tasks, and to the best of our knowledge,

is among the first to study energy-efficient mapping of big data workflows

comprised of moldable jobs in Hadoop systems.

• We prove a deadline-constrained pipeline-structured workflow mapping problem

for minimum total (energy) cost to be weakly NP-complete and design an

FPTAS, whose performance is illustrated through real-life workflow implemen-

tation and extensive experimental results using the Oozie workflow engine in

Hadoop/YARN systems.

• The performance superiority of the proposed heuristic for the general workflow

mapping problem in terms of dynamic energy saving and deadline missing rate

is illustrated by extensive simulation results in Hadoop/YARN in comparison

with existing algorithms.

5.2 Problem Formulation

5.2.1 Cost Models

Cluster Model We consider a heterogeneous Hadoop cluster consisting of a set

M of machines connected via high-speed switches, which can be partitioned into

homogeneous sub-clusters {Cl}. Each machine mi is equipped with Ni homogeneous

CPU cores of speed pi and a shared memory of size oi. For the entire cluster, a

central scheduler maintains an available resource-time (ART) table R, which records

the number NA
i (t) ≤ Ni of idle CPU cores and the size oAi (t) ≤ oi of available memory

in each machine mi at time t.

58

Table 5.1 Notations Used in the Cost Models

Notations Definitions

M =
⋃

l Cl a cluster of machines divided into homogeneous subclusters {Cl}

mi(Ni, pi, oi, Pi) the i-th machine equipped with a memory of size oi and Ni CPU

cores of speed pi and DPC Pi per core at full utilization

R the available resource-time table of cluster M

NA
i (t) the number of idle CPU cores on machine mi at time t

oAi (t) the size of available memory on machine mi at time t

f(G(V,A), d) a workflow request consisting of a workflow structure of a DAG

G(V,A) and a deadline d

vj , sj,k the j-th component job in a workflow and the k-th task in job vj

aj,j′ the directed edge from job vj to job vj′

tAS
j , tAF

j the actual start and finish time of job vj

tC the completion time of a workflow

µi,j the percentage of execution time for CPU-bound instructions in job

vj on machine mi

oj the memory demand per task in job vj

wj(K) the workload of job vj partitioned into K tasks

wj,k(K) the workload of task sj,k in vj with K tasks

Kj , K
′
j the number and the maximum possible number of tasks in vj

ti,j,k the execution time of task sj,k running on machine mi

ai,j,k(t) indicate whether task sj,k is active on machine mi at time t

ni,j(t) the number of running tasks in job vj on machine mi at time t

ni(t) the number of CPU cores used by f on machine mi at time t

oi(t) the size of memory used by workflow f on machine mi at time t

E the DEC of workflow f in cluster M

Workflow Model We consider a user request in the form of a workflow f(G, d),

which specifies a workflow structure G and a deadline d. The workflow structure is

59

defined as a DAG G(V,A), where each vertex vj ∈ V represents a component job,

and each directed edge aj,j′ ∈ A denotes an execution dependency, i.e., the actual

finish time (AFT) tAF
j of job vj must not be later than the actual start time (AST)

tAS
j′ of job vj′. The completion time of the workflow is denoted as tC . We consider

the map and reduce phases of each MapReduce job as two component jobs connected

via an execution dependency edge.

MapReduce Model We consider a MapReduce job vj running a set of parallel

map (or reduce) tasks, each of which requires a memory of size oj and spends a

percentage µi,j of time executing CPU-bound instructions on a CPU core of machine

mi and a percentage (1− µi,j) of time executing I/O-bound instructions on machine

mi. In job vj , generally, as the number Kj of parallel tasks increases, the workload

wj,k(Kj) of each task sj,k decreases and the total workload wj(Kj) = Kj ·wj,k(Kj) of

all tasks increases. However, the maximum number K ′
j of tasks that can be executed

in parallel without performance degradation is limited by the cluster capacity, e.g.,

K ′
j ≤

∑

mi∈M
min{Ni, ⌊oi/oj⌋}. Note that a serial program can be considered as a

special case of a MapReduce job with K ′
j = 1. The execution time of task sj,k on

machine mi is ti,j,k = wj,k(Kj)/(µi,j · pi). Estimating the execution time of a task on

any service is an important issue. Many techniques have been proposed such as code

analysis, analytical benchmarking/code profiling, and statistical prediction [61, 66],

which are beyond the scope of this chapter.

The active state ai,j,k(t) of task sj,k on machine mi is 1 (or 0) if it is active (or

inactive) at time t. The number of active tasks in job vj on machine mi at time t is

ni,j(t) =
∑

sj,k∈vj
ai,j,k(t). The number of CPU cores and the size of memory used by

all component jobs of a workflow on machine mi at time t are ni(t) =
∑

vj∈V
ni,j(t)

and oi(t) =
∑

vj∈V
[ojni,j(t)], respectively.

60

Energy Model The DEC of a workflow in a cluster is

E =
∑

mi∈M
{Pi

∑

vj∈V
[µi,j

∫ tC

0

ni,j(t)dt]},

where Pi is the dynamic power consumption (DPC) of a fully utilized CPU core, and

which is validated by energy measurements of practical systems in [22].

Mapping Function We define a workflow mapping function as

M : {sk(vj)
[tS
j,k

, tE
j,k

]
=====⇒ mi, ∀vj ∈ V, ∃mi ∈M, ∃[tSj,k, t

F
j,k] ⊂ T},

which denotes that the k-th task of the j-th job is mapped onto the i-th machine from

time tSj,k to time tEj,k. The domain of this mapping function spans across all possible

combinations of a set V of component jobs of the workflow, a set M of machines, and

a time period T of workflow execution.

5.2.2 Problem Definition

We formulate a deadline- and resource-constrained workflow mapping problem for

energy efficiency (EEWM):

Definition 5. EEWM: Given a cluster {mi(Ni, pi, oi, Pi)} of machines with an

available resource-time table {NA
i (t), o

A
i (t)}, and a workflow request f(G(V,A), d),

where each job vj has a set {wj(Kj)|Kj = 1, 2, . . . , K ′
j} of workloads for different

task partitions, and each task in job vj has a percentage µi,j of execution time for

CPU-bound instructions on machine mi and a memory demand oj, we wish to find

a mapping function M : (V,M, T) → {sk(vj)
[tS
j,k

, tE
j,k

]
=====⇒ mi} to minimize the dynamic

energy consumption:

min
M

E,

61

subject to the following time and resource constraints:

tC ≤ d,

tAF
j ≤ tAS

j′ , ∀aj,j′ ∈ A,

ni(t) ≤ NA
i (t), ∀mi ∈M,

oi(t) ≤ oAi (t), ∀mi ∈M.

5.2.3 Complexity Analysis

We first consider a special case of EEWM with a sufficiently large upper bound

on dynamic energy consumption as follows: given five machines with sufficient

memory and a single CPU core of speed p and DPC Pi at full utilization, and J

independent serial jobs {vj} with CPU-burst workload wj , does there exist a feasible

non-preemptive scheduling scheme such that the makespan is no more than d? This

special case has been proved to be strongly NP-hard in [25], so is the general EEWM

problem, which, with a polynomially bounded objective function, has no FPTAS

unless P = NP [69].

5.3 Special Case: Pipeline-structured Workflow

We start with a special case with a Pipelined-structured workflow running on

HOmogeneous machines (PHO). We prove it to be NP-complete and design an FPTAS

to solve EEWM-PHO.

Generally, we may achieve more energy savings on an under-utilized cluster

than on a fully-utilized cluster. Hence, the problem for a single pipeline-structured

workflow is still valuable in real-life systems. The EEWM-PHO problem is defined

as follows.

Definition 6. EEWM-PHO: Given I idle homogeneous machines {mi(N, p, o, P)}

and a workflow f(G(V,A), d) containing a chain of J jobs, where each job vj has a

workload list {wj(Kj)|Kj = 1, 2, . . . , K ′
j}, and each task in job vj has a percentage µj

62

of execution time for CPU-bound instructions and a memory demand oj, does there

exist a feasible mapping scheme such that DEC is no more than E?

5.3.1 Complexity Analysis

We prove that EEWM-PHO is NP-complete by reducing the two-choice knapsack

problem (TCKP) to it.

Definition 7. Two-Choice Knapsack: Given J classes of items to pack in a

knapsack of capacity H, where each class Cj (j = 1, 2, . . . , J) has two items and each

item rj,l (l = 1, 2) has a value bj,l and a weight hj,l, is there a choice of exactly one

item from each class such that the total value is no less than B and the total weight

does not exceed H?

The knapsack problem is a special case of TCKP when we put each item in the

knapsack problem and a dummy item with zero value and zero weight together into

a class. Since the knapsack problem is NP-complete, so is TCKP.

Theorem 2. EEWM-PHO is NP-complete.

Proof. Obviously, EEWM-PHO ∈ NP . We prove that EEWM-PHO is NP-hard by

reducing TCKP to EEWM-PHO. Let ({Cj(bj,1, hj,1, bj,2, hj,2)|1 ≤ j ≤ J}, B,H) be

an instance of TCKP. Without loss of generality, we assume that bj,1 > bj,2 and

hj,1 > hj,2 > 0. If hj,1 < hj,2, rj,1 would always be selected. If hj,2 = 0, we can always

add τ > 0 to hj,1, hj,2 and H such that hj,2 > 0.

We construct an instance of EEWM-PHO as follows. Let I = 2, d = H ,

vj = Cj, K
′
j = 2, oj = o, wj(1) = hj,1µjp, wj(2) = 2hj,2µjp, uj = (Bj − bj,1)/(hj,1P)

and E =
∑

1≤j≤J Bj −B, where Bj = (2hj,2bj,1 − hj,1bj,2)/(2hj,2− hj,1). This process

can be done in polynomial time.

Then, if job vj only has one task, its execution time is tj(1) = wj(1)/(µjp) =

hj,1, and its DEC is Ej(1) = tj(1)µjP = Bj − bj,1. If job vj has two tasks, the

63

execution time of each task is tj(2) = wj(2)/(2µjp) = hj,2, and the DEC of job vj is

Ej(2) = 2tj(2)µjP = Bj − bj,2. Obviously, two tasks in a job are mapped onto two

machines simultaneously.

As a result,
∑

1≤j≤J tj(Kj) =
∑

1≤j≤J hj,Kj
, which means

∑

1≤j≤J tj(Kj) ≤ d⇔
∑

1≤j≤J hj,Kj
≤ H . Similarly,

∑

1≤j≤J Ej(Kj) =
∑

1≤j≤J (Bj − bj,Kj
) =

∑

1≤j≤J Bj −
∑

1≤j≤J bj,Kj
= E + B −

∑

1≤j≤J bj,Kj
, which means that

∑

1≤j≤J Ej(Kj) ≤ E ⇔
∑

1≤j≤J bj,Kj
≥ B. Therefore, if the answer to the given instance of TCKP is Yes

(or No), the answer to the constructed instance of EEWM-IJOM is also Yes (or No).

Proof ends.

5.3.2 Approximation Algorithm

We prove that EEWM-PHO is weakly NP-complete and design an FPTAS as shown in

Algorithm 10 by reducing this problem to the weakly NP-complete restricted shortest

path (RSP) problem, which can then be solved using an FPTAS proposed in [28].

Given an instance of EEWM-PHO, we construct an instance of RSP according to

the pipeline-structured workflow as follows. As illustrated in Figure 5.1, the network

graph G consists of V = {vj,k|j = 1, . . . , J, k = 1, . . . , K ′
j}∪{u0, uj|j = 1, . . . , J} with

a source u0 and a destination uJ , and E = {e2j−1,k, e2j,k|j = 1, . . . , J, k = 1, . . . , K ′
j},

where e2j−1,k = (uj−1, vj,k) and e2j,k = (vj,k, uj). Then, we calculate the execution

time of job vj with k tasks as tj(k) = wj(k)/(k · p · µj), and accordingly its DEC as

Ej(k) = k · P · µj · tj(k). Subsequently, we assign the cost c(e) and delay l(e) of each

edge e ∈ E as c(e2j−1,k) = Ej(k), l(e2j−1,k) = tj(k), and c(e2j,k) = l(e2j,k) = 0, and set

the delay constraint on a path from u0 to uJ to be d. As a result, the minimum cost

in RSP is exactly the minimum DEC in EEWM-PHO, and if vj,k is on the solution

path to RSP, the j-th job has k tasks. Based on Theorem 2 and the above reduction,

we have

Theorem 3. EEWM-PHO is weakly NP-complete.

64

e1,1 e2,1

e1,2 e2,2

e1,k e2,k

e1,K’ e2,K’

 ⁞

 ⁞

v1,1

v1,2

v1,k

v1,K’

u1u0

e3,k

…

e2J-2,k

uJ-1

e2J-1,1 e2J,1

e2J-1,2 e2J,2

e2J-1,k e2J,k

e2J-1,K’ e2J,K’

 ⁞

 ⁞

vJ,1

vJ,2

vJ,k uJ

1
st
 Job J

th
 Job

vJ,K’1

11 J

J

J

Figure 5.1 A constructed network corresponding to a workflow with a pipeline
structure.

Algorithm 10: EEWM-PHO-FPTAS

Input: A cluster {mi(N, p, o, P)} and a chain of jobs {vj} with a deadline d and

a set {wj(Kj)} of workloads

1: Construct a DAG G(V,E) for pipeline {vj} as shown in Figure 5.1, and assign energy

cost Ej(k) and delay tj(k) to edge e2j−1,k and zero cost and zero delay to edge e2j,k;

2: Use FPTAS in [28] to find the minimum-cost path from u0 to uJ under delay

constraint d with approximate rate (1 + ǫ) and convert it to mapping scheme.

Let K ′ = max1≤j≤J K
′
j. Then, |V| ≤ JK ′ + J + 1 and |E| ≤ 2JK ′ in the

constructed graph G. It is obvious that the construction process can be done within

time O(JK ′). Therefore, EEWM-PHO finds a feasible solution that consumes energy

within the least DEC multiplied by (1 + ǫ) in time O(J2K ′2/ǫ) if the FPTAS in [28]

is used to solve RSP in acyclic graphs. Thanks to the special topology in Figure 5.1,

the time complexity is further reduced to O(JK ′(logK ′ + 1/ǫ)).

65

5.4 Algorithm for an Arbitrary Workflow on a Heterogeneous Cluster

We consider EEWM with a DAG-structured workflow on a heterogeneous cluster and

design a heuristic algorithm, referred to as big-data adaptive workflow mapping for

energy efficiency (BAWMEE).

5.4.1 An Overview of BAWMEE

The key idea of BAWMEE is to partition a DAG into a set of pipelines and then

repeatedly employ Algorithm 10 with near optimality and low time complexity to

achieve energy-efficient mapping of each pipeline.

In BAWMEE, each workflow mapping consists of two components: iterative

critical path (CP) selection and pipeline mapping. A CP is the longest execution

path in a workflow, which can be calculated in linear time. The algorithm starts with

computing an initial CP according to the average execution time of each job running in

serial on all the machines, followed by a pipeline mapping process. Then, it iteratively

computes a CP with the earliest last finish time (LFT) from the remaining unmapped

workflow branches based on the same average execution time of a job as above and

performs a pipeline mapping of the computed CP until there are no branches left.

In pipeline mapping, we consider two extreme scenarios: resource/time suffi-

ciency and resource/time insufficiency. In the former case, we only need to focus on

energy efficiency, while in the latter case, it may be unlikely to meet the performance

requirement. Therefore, we design one algorithm for each of these two scenarios: a

heuristic for energy-efficient pipeline mapping (EEPM) under a deadline constraint

in Algorithm 12, which calls Algorithm 10, and a heuristic for minimum delay pipeline

mapping (MDPM) with energy awareness in Algorithm 13. If Algorithm 12 fails to

find a feasible mapping scheme due to limited resources, we resort to Algorithm 13. In

EEPM, due to the homogeneity of tasks in a job, we map all the tasks in the same job

onto a homogeneous sub-cluster, hence using Algorithm 10 to balance the trade-off

66

Table 5.2 Time-Energy Table Tblj of Job vj

tj(Kj,1, Cj,1) < tj(Kj,2, Cj,2) < . . . < tj(Kj,n, Cj,n)

Ej(Kj,1, Cj,1) > Ej(Kj,2, Cj,2) > . . . > Ej(Kj,nCj,n)

Kj,1 ∈ [1,K ′
j] Kj,2 ∈ [1,K ′

j] . . . Kj,n ∈ [1,K ′
j]

Cj,1 ⊂M Cj,2 ⊂M . . . Cj,n ⊂M

between execution time and DEC (directly associated with total workload) for each

job on a pipeline. In MDPM, we search for a good task partitioning to minimize

the end time of each job through a limited number of tries by reducing the possible

number of tasks in each job vj from {1, 2, 3, . . . , K
′
j} to {1, 2, 2

2, . . . , 2⌊logK
′

j⌋}∪{K ′
j}.

5.4.2 Algorithm Description

If a job vj has been mapped, it has AST tAS
j and AFT tAF

j . If all the preceding (and

succeeding) jobs, in Prec (and Succ), of job vj are mapped, its earliest start time

(EST) (and LFT) can be calculated as

tES
j =

0, if vj is the start job of workflow f,

max
vj′∈Prec(vj)

tAF
j′ , otherwise;

and

tLFj =

d, if vj is the end job of workflow f,

min
vj′∈Succ(vj)

tAS
j′ , otherwise,

respectively. If there exist unmapped preceding and succeeding jobs of vj , its

temporary earliest start time (TEST) t′ES(vj) and temporary last finish time (TLFT)

t′LF (vj) can be calculated based on only its mapped preceding and succeeding jobs,

respectively. The EST and LFT of a pipeline are the EST of its first job and LFT of

its end job, respectively.

67

Each job vj is associated with a set of pairs of the number Kj,n of tasks and

the used homogeneous sub-cluster Cj,n. Each pair corresponds to a certain execution

time tj(Kj,n, Cj,n) and DEC Ej(Kj,n, Cj,n) = P (Cj,n)wj(Kj,n)/p(Cj,n), where p(Cj,n)

and P (Cj,n) are the speed and the DPC of a fully utilized CPU core on a machine

in Cj,n, respectively, and wj(Kj,n) is the workload of vj with Kj,n tasks. All

the quadruples {(tj(Kj,n, Cj,n), Ej(Kj,n, Cj,n), Kj,n, Cj,n)} are sorted in the ascending

order of execution time as listed in Table 5.2, and are referred to as the time-energy

table (TET) Tblj of job vj . Any quadruple with both execution time and DEC larger

(worse) than those of another will be deleted from Tblj.

In Algorithm 11, BAWMEE first builds a time-energy table for each job by

calling buildTET () (in Line 1). If the workflow cannot meet its deadline with each

job running the fastest, BAWMEE performs energy-aware job mapping (EAJM)

with minimum finish time for each job in a topologically sorted order by calling

simplyMap() (in Line 2). Otherwise, BAWMEE employs iterative CP selection to

find a CP with the earliest LFT from unmapped jobs (in Line 8), and performs

EEPM or MDPM (if EEPM fails) for the selected CP (in Lines 9-10), where EEPM

and MDPM are described later in Algorithms 12 and 13, respectively. If there is

any job that cannot be mapped in MDPM, we cancel the mapping of its downstream

jobs (in Lines 11-14). If it is the last job of the workflow, we perform EAJM with

minimum finish time (in Lines 15-16).

In Algorithm 12 of EEPM, we reset the EST for the input pipeline according

to the earliest time such that enough resources are made available to the first job

(in Lines 2-3). If the pipeline cannot meet its LFT with each job running the fastest,

we exit EEPM (in Lines 4-5); otherwise, the mapping of a pipeline with its EST and

LFT is converted into the RSP problem with a relaxed resource limit (in Line 6).

Accordingly, we calculate the number of tasks, the sub-cluster, and the start/finish

time for each job using Algorithm 10 (in Line 7). Then, we check if the start and

68

Algorithm 11: BAWMEE

Input: a workflow f(G(V,A), d) and an ART table R for sub-clusters {Cl}

1: Tbl← buildTET (V, {Cl});

2: if simplyMap(f,R({Cl}), T bl) =True then

3: return .

4: tLFj ← +∞ for ∀vj ∈ f ; tLFJ ← d for the end job vJ in f ;

5: Calculate the average execution time t̄j of each job vj running in serial on all the

machines;

6: G′ ← G;

7: while ∃ an unmapped job ∈ V do

8: Find the critical path cp ending at a job v with the earliest LFT in G′ according to

{t̄j|vj ∈ G′};

9: if EEPM(cp,R({Cl}), T bl) =False then

10: v ←MDPM(cp,R({Cl}));

11: if v 6= Null then

12: D ← {all the downstream jobs of v in G−G′};

13: if D 6= ∅ then

14: Cancel the mapping of each job v′ ∈ D, and add v′ and its associated

precedence constraints to G′;

15: if v is the last job of f then

16: EAJM(v,R({Cl});

17: G′ ← G′ − {vj ∈ cp|vj is mapped};

finish time of each job are between its TEST and TLFT in their execution order

(in Lines 8-9). If there exists a job that violates the precedence constraint, we divide

69

the pipeline at this job, and use Algorithm 12 to compute the mapping of the upstream

sub-pipeline with an updated LFT constraint (in Lines 10-15). We repeat this process

until we find a sub-pipeline whose mapping meets all precedence constraints. If

the cluster is able to provide each job in this sub-pipeline with enough computing

resources based on the mapping result of Algorithm 10, we proceed with this mapping

(in Lines 16-18); otherwise, we fail to find an EEPM and thus exit (in Line 19). In

this case, BAWMEE would proceed to search for an MDPM.

In Algorithm 13 of MDPM, we search for the earliest finish time (EFT) of each

job using EAJM in their execution order, and thus obtain the EFT of the entire

pipeline. In Algorithm 14 of EAJM with the minimum finish time under resource

constraints, we exponentially relax the limit on the maximum number of tasks in a

job to make a tradeoff between the optimality and the time complexity of EAJM.

Since the calculation of the earliest possible start time of the first job in

EEPM takes time of O(M ′H) and the pipeline mapping in EEPM takes time of

O(JK ′L[log(K ′L) + 1/ǫ]), the time complexity of EEPM is O(J2K ′L[log(K ′L) +

1/ǫ] + M ′H). Since EAJM takes time of O(M ′HK ′ logK ′), the time complexity

Algorithm 12: EEPM

Input: a pipeline pl with its EST pl.est and LFT pl.lf t, an ART table R({Cl}),

and TETs {Tblj}

Output: a boolean variable to indicate whether pl or its part is mapped

1: Label the index j of each job in pl from 1 to the length of pl;

2: Calculate the earliest possible start time of the first job in pl on any machine as est

according to R({Cl});

3: pl.est← max{est, pl.est};

4: if
∑

vj∈pl
tj(Kj,1, Cj,1) > pl.lf t− pl.est then

5: return False.

70

6: Convert pipeline pl, where each quadruple in Tblj of each job vj ∈ pl

corresponds to one of its mapping options, into a network graph in RSP;

7: Use Algorithm 10 to calculate the number Kj of tasks, sub-cluster C(vj), and

start and finish time, tSj and tFj , for each job vj;

8: for vj+1 ∈ pl do

9: if tFj > t′LF (vj) or t
F
j < t′ES(vj+1) then

10: pl(1, j).est← pl.est;

11: if tFj > t′LF (vj) then

12: pl(1, j).lf t← t′LF (vj);

13: else

14: pl(1, j).lf t← min{t′ES(vj+1), t
′
LF (vj), pl.lft};

15: return EEPM(pl(1, j), R({Cl}), T bl);

16: if ∃ Kj pairs of a CPU core and memory of size oj in R(C(vj)) for ∀vj ∈ pl

then

17: Map all Kj tasks onto C(vj) from tSj to tFj for ∀vj ∈ pl;

18: return True;

19: return False;

of MDPM is O(M ′HJK ′ logK ′). Therefore, the time complexity of BAWMEE is

O(JK ′[JL(1/ǫ+log(K ′L))+M ′H logK ′]). Here, M ′ is the number of machines; L is

the number of homogeneous sub-clusters, J is the number of jobs; K ′ is the maximum

number of tasks in a job; and H is the number of time slots in the ART table.

5.4.3 Numerical Examples

In this subsection, we use two simple examples to illustrate BAWMEE: one with

sufficient resource and time, and the other with insufficient resource and time.

71

Algorithm 13: MDPM

Input: a pipeline pl and an ART table R for {Cl}

Output: the first job that cannot be mapped

1: for all vj ∈ pl do

2: if EAJM(vj , R({Cl})) > t′LF (vj) then

3: Cancel the mapping of job vj ;

4: return vj;

5: return Null.

Algorithm 14: EAJM

Input: a job vj and an ART table R for sub-clusters {Cl}

Output: the EFT tEF
j of job vj

1: Update the TEST t′ES(vj); tEF
j ← +∞;

2: for K ← 1, 2, 4, . . . 2⌊logK
′

j⌋,K ′
j do

3: Calculate the EFT tEF
j (K) of job vj with K tasks by minimizing the finish time of

each task one by one;

4: if tEF
j > tEF

j (K) then

5: tEF
j ← tEF

j (K); Kj ← K;

6: Map job vj consisting of Kj tasks until tEF
j ;

7: return tEF
j .

The first example considers an idle clusterM = C1∪C2 consisting of 4 single-core

machines, where C1 = {m1, m2} and C2 = {m3, m4}, and receives a workflow f

comprised of homogeneous jobs organized in Figure 5.2 with a deadline of 19 time

units. The execution time and DEC of a job with a different task partitioning

on a different sub-cluster are calculated and listed on the left side of Table 5.3.

72

v1

v2

v3

v4

v5

v6

v7

v8

Figure 5.2 An example of a workflow structure G.

Table 5.3 Time-Energy Table in Example 1

Time 3 2 5 4 2 3 5

Energy 6 8 5 8 ⇒ 8 6 5

of Tasks 1 2 1 2 2 1 1

Sub-cluster C1 C1 C2 C2 C1 C1 C2

v1 v2

v4 v8

222
v3

444
v5

v6666
v7

C1 m2

m1

m3
m4

0 3 6 11 14 19

C2

(a)

v1 v2

v4

222
v3

4
v5

v6666
v7

v8m1
m2
m3
m4

0 3 6 11 16 19

C1

C2

(b)

Figure 5.3 Workflow mapping in example 1: (a) BAWMEE; (b) Optimal.

BAWMEE first builds a TET for each job on the right side of Table 5.3. A pipeline

{v1, v2, v4, v6, v8} is selected as the initial CP. We assume that ǫ is set to be 0.02. In an

approximation solution of pipeline mapping with EST of 0 and LFT of 19, each job

has only one task, and v1, v2 and v6 are mapped onto machine m1 in C1 from 0 to 3,

from 3 to 6, and from 11 to 14, respectively, and v4 and v8 are mapped onto machine

m3 in C2 from 6 to 11 and from 14 to 19, respectively. Then, the second pipeline

{v3, v5, v7} is selected as the CP inG−{v1, v2, v4, v6, v8}. In an approximation solution

of pipeline mapping with EST of 3 and LFT of 14, v3 intends to have one task and be

mapped onto C2 from 3 to 8, and v5 and v7 intend to have one task and be mapped

onto C1 from 8 to 11 and from 11 to 14, respectively. Since v3 misses its TLFT of 6,

73

v1

v2

v3

v4

(a)

0 5 10 15 20

m4mm
m3m333mmm
m2

0

m22mmm
m1 v1:s1 v2:s122 11

v2:s2
v3:s133 11
v3:s2

m8m88m
m7mm777mm
m6

m4m

mm666

444

mm
m5 v1:s3 v2:s3v22:s33

v2:s4
v3:s3v33:s33
v3:s4

11 11
v1:s2

v111:s333
v1:s4

v4:s144 11
v4:s2

v4:s3v444:s333
v4:s4

(b)

Figure 5.4 Example 2: (a) workflow structure; (b) workflow mapping.

the first sub-pipeline {v3} of {v3, v5, v7} is extracted and the approximation solution

of sub-pipeline mapping with EST of 3 and LFT of 6 is that v3 has one task and is

mapped onto a machinem2 in C1 from 3 to 6. Subsequently, the third pipeline {v5, v7}

is selected as the CP in G− {v1, v2, v3, v4, v6, v8}, and the approximation solution of

its mapping with EST of 6 and LFT of 14 is that v5 intends to have one task and be

mapped onto C2 from 6 to 9 and v7 intends to have one task and be mapped onto

C1 from 9 to 14. Since v7 starts before its TEST of 11, the first sub-pipeline {v5}

of {v5, v7} is extracted and the approximation mapping solution of the sub-pipeline

with EST of 6 and LFT of 11 is that v5 has one task and is mapped onto a machine

m4 in C2 from 6 to 11. Finally, the fourth pipeline {v7} is selected as the CP in

G−{v1, v2, v3, v4, v5, v6, v8}, and the approximation solution of its mapping with EST

of 11 and LFT of 14 is that v7 has one task and is mapped onto machine m2 in C2

from 11 to 14. Specifically, the mapping result of BAWMEE is shown in Figure 5.3(a),

and its DEC is 45 units. The optimal mapping is shown in Figure 5.3(b), and the

minimum DEC is 44 units.

The second example considers a cluster M = C1 ∪C2 consisting of 8 single-core

machines, where C1 = {m1, m2, m3, m4} and C2 = {m5, m6, m7, m8}, and m3, m4, m7

and m8 are busy and occupied by previous workflows. A user request specifies

a workflow f comprised of homogeneous jobs organized in Figure 5.4(a) with a

74

Table 5.4 Time and Energy per Job in Example 2

Time 8 7 6 5 8 7 6 5

Energy 8 14 18 20 12 21 27 30

of Tasks 1 2 3 4 1 2 3 4

Sub-cluster C1 C1 C1 C1 C2 C2 C2 C2

deadline of 15 time units. The execution time and DEC of a job with a different

task partitioning on a different sub-cluster are calculated and listed in Table 5.4. A

pipeline {v1, v2, v4} is selected as the initial CP. EEPM intends to perform pipeline

mapping with EST of 0 and LFT of 15 by partitioning each job of v1, v2 and v4 into

four tasks and mapping them onto C1. However, C1 does not have enough resources

to support this mapping. Due to the failure of EEPM, MDPM attempts to partition

each job into one, two, and four tasks to search for the minimum completion time

of each job one by one. As a result, v1, v2 and v4 are all partitioned into four tasks,

and mapped onto m1, m2, m5 and m6 from 0 to 5, from 5 to 10, and from 10 to

15, respectively. Then, the second pipeline {v3} with EST of 5 and LFT of 10 is

selected as the CP in G − {v1, v2, v4}, but fails to be mapped during time window

[5, 10] by EEPM and MDPM due to insufficient resources. Hence, BAWMEE cancels

the mapping of the downstream mapped job {v4} of v3, which is the first job that

fails to be mapped before its TLFT of 10 by MDPM. Subsequently, the third pipeline

{v3, v4} with EST of 10 and LFT of 15 is selected as the CP in G − {v1, v2}, and

fails to be mapped by EEPM. Thus, MDPM partitions v3 into four tasks and maps

them onto M from 10 to 15, but does nothing for v4 due to missing its TLFT of 15.

Finally, BAWMEE partitions the end job v4 of the workflow into four tasks and maps

them onto M from 15 to 20. Specifically, the mapping result of BAWMEE is shown

in Figure 5.4(b), and its DEC is 176 units.

75

5.5 Performance Evaluation

We conduct experiments to illustrate the effect of task partitioning on job workload

and energy consumption, and evaluate the performance of EEWM-PHO-FPTAS

in a practical setting for the special case of a pipeline-structured workflow on a

homogeneous cluster in comparison with the default and optimal workflow mapping

schemes. For the generalized problem, we conduct simulations to evaluate the

performance of BAWMEE in comparison with three existing algorithms adapted

from different scenarios: i) EEDAW in Algorithm 16 adapted from a MapReduce

job scheduling algorithm EEDAJ in Algorithm 15 (integrated with the algorithms

in [22] and [23]) by extending the progress estimation of a MapReduce job to

that of a workflow, ii) MinD+ED adapted from a workflow scheduling algorithm

with serial jobs in [83] by fixing the number of tasks in each MapReduce job

and replacing preemptive task scheduling with non-preemptive task scheduling, and

iii) MinD+EEDAJ comprised of the MinD algorithm in [83] for determining the

virtual deadline of each job in a workflow and EEDAJ for scheduling MapReduce

jobs onto energy-efficient machines before their virtual deadlines. In these three

existing algorithms, we preset the number of tasks in each MapReduce job to be the

maximum number of tasks to illustrate the benefits brought forth by the adaptive

task partitioning strategy in our algorithm.

5.5.1 Experiments

Although EEWM-PHO-FPTAS is designed for the special case of a pipeline-

structured MapReduce workflow on a homogeneous cluster, it is the most important

component of BAWMEE to solve the generalized problem.

Experimental Settings The testbed is the same as described in Subsection 3.2.1.

On the cluster in our testbed, we also install Oozie 4.3 [3], a workflow engine

that dispatches each component MapReduce job in a workflow with its respective

76

Algorithm 15: EEDAJ()

Input: Unmapped jobs {v, d(v)} and an available resource-time table R for a

cluster M

1: while QJ 6= ∅ do

2: v ← QJ .top(); // QJ is a priority queue of all ready jobs. The priority of each job

v is based on its deadline and execution progress, i.e., rank(v) = d(v) −
∑

s∈U(v) t̄(s),

where U(v) is a set of all unmapped tasks in v, and t̄(s) is the average execution time

of task s on all machines.

3: if v is ready then

4: Select a task s from job v and estimate its expected finish time

d(s) = d(v) − [d(v) − tES(v)] · (|U(v)| − 1)/|v|, where |v| is the number of tasks in v;

5: Map task s to minimize incremental energy consumption before d(s) or to

minimize finish time if the former fails;

6: if s is the last task in v then

7: Update the AFT of v and the EST of all its succeeding jobs;

8: QJ .dequeue();

9: else

10: Sleep for a period ∆t; // ∆t = 6 seconds

ATA FCR PAS FCR ATA FCR PAS FCR ATA FCR

PAS ATA FCR PAS ATA PAS ATA FCR PAS ATA

Pipeline 1

Pipeline 2

Figure 5.5 Pipeline-structured MapReduce workflows.

configuration once all its preceding jobs finish. We generate two pipeline-structured

workflows, each comprised of 10 MapReduce jobs, as shown in Figure 5.5. These jobs

77

Algorithm 16: EEDAW()

Input: Unmapped workflows {f(G(V,A), d)} and an available resource-time

table R for a cluster M

1: while QW 6= ∅ do

2: f ← QW .top(); // QW is a workflow priority queue. The priority of each workflow

f is based on its deadline d(f) and execution progress, i.e.,

rank(f) = d(f)−
∑

s∈U(f) t̄(s), where U(f) is a set of all unmapped tasks in f , and

t̄(s) is the average execution time of task s on all machines.

3: v ← QJ(f).f irst(); // The jobs in the job queue QJ(f) of workflow f follow a

topological sorting.

4: Estimate the virtual deadline d(v) of job v by

d(v) = tES(v) + [d(f)− tES(v)] · t̄(v)/[t̄(v) +
∑

vj∈D(v) t̄(vj)], where t̄(v) =
∑

s∈v t̄(s).

5: if v is ready then

6: Select a task s from job v;

7: Map task s to minimize incremental energy consumption before d(v) or to

minimize finish time if the former fails;

8: if s is the last task in v then

9: Update the AFT of v and the EST of all its succeeding jobs;

10: QJ(f).dequeue();

11: if QJ(f) = ∅ then

12: QW .pop();

13: else

14: Sleep for a period ∆t; // ∆t = 10 minutes

78

587 634 681 727 774 820 867 914 960 1007

Deadline (s)

28

30

32

34

36

38

40

42

44

46

48

50

52

54

D
y
n
a
m

ic
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

K
J
)

Default (Meas.)

Default (Est.)

EEWM-PHO-FPTAS [ǫ=0.2] (Meas.)

EEWM-PHO-FPTAS [ǫ=0.2] (Est.)

Optimal [ǫ<0.0009] (Meas.)

Optimal [ǫ<0.0009] (Est.)

Figure 5.6 The DEC of Pipeline 1
under different deadline constraints.

587 634 681 727 774 820 867 914 960 1007

Deadline (s)

450

520

590

660

730

800

870

940

1010

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Default (Meas.)

Default (Est.)

EEWM-PHO-FPTAS [ǫ=0.2] (Meas.)

EEWM-PHO-FPTAS [ǫ=0.2] (Est.)

Optimal [ǫ<0.0009] (Meas.)

Optimal [ǫ<0.0009] (Est.)

Deadline

Figure 5.7 The completion time
of Pipeline 1 under different deadline
constraints.

670 732 794 856 918 979 1041 1103 1165 1227

Deadline (s)

33

36

39

42

45

48

51

54

57

60

D
y
n
a
m

ic
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

K
J
)

Default (Meas.)

Default (Est.)

EEWM-PHO-FPTAS [ǫ=0.2] (Meas.)

EEWM-PHO-FPTAS [ǫ=0.2] (Est.)

Optimal [ǫ<0.002] (Meas.)

Optimal [ǫ<0.002] (Est.)

Figure 5.8 The DEC of Pipeline 2
under different deadline constraints.

670 732 794 856 918 979 1041 1103 1165 1227

Deadline (s)

530

600

670

740

810

880

950

1020

1090

1160

1230

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Default (Meas.)

Default (Est.)

EEWM-PHO-FPTAS [ǫ=0.2] (Meas.)

EEWM-PHO-FPTAS [ǫ=0.2] (Est.)

Optimal [ǫ<0.002] (Meas.)

Optimal [ǫ<0.002] (Est.)

Deadline

Figure 5.9 The completion time
of Pipeline 2 under different deadline
constraints.

are randomly selected from the aforementioned three MapReduce programs: PAS,

ATA, and FCR. Here, we consider pipelines as this is one typical workflow structure

supported by our cluster testbed.

Since the existing energy-efficient MapReduce workflow mapping algorithms do

not adjust the number of mappers and reducers, their workflow mapping schemes in

this special case are exactly the same and completely rely on the default settings in

Hadoop, where the number of mappers is the input size divided by the split size of

128 MB, and the number of reducers is 1. Hence, we refer to the mapping scheme

produced by these existing algorithms as the “default” scheme in this scenario.

79

Experimental Results To test the practical performance of EEWM-PHO-FPTAS,

we conduct the workflow experiment on our homogeneous cluster, and plot in Figures 5.6-

5.9 the analytical estimations and experimental measurements of the DEC and

completion time based on the workflow mapping scheme produced by EEWM-

PHO-FPTAS, as well as the default and optimal workflow mapping schemes under

10 different deadline constraints. The experimental measurements show that

EEWM-PHO-FPTAS with ǫ = 0.2 cuts down 27% to 40% DEC at the cost of

up to 6% more computing time in comparison with the default mapping scheme,

and consumes only 6% more dynamic energy in comparison with the optimal

mapping scheme. Hence, these results clearly illustrate the performance superiority

of EEWM-PHO-FPTAS over existing energy-efficient workflow mapping algorithms

in practice. Furthermore, we observe that the differences between the analytical

estimations and the experimental measurements are less than 8% for the first pipeline

and 11% for the second pipeline, which indicates the accuracy of our cost models in

describing the main characteristics of workflow execution on a real Hadoop cluster.

These discrepancies are mainly caused by ignoring the impact of the number of

mappers and reducers on the execution time and DEC of shuffling in MapReduce

jobs, and the measurement errors on reduce tasks.

5.5.2 Simulation

Simulation Settings To further evaluate the performance of the proposed heuristic

for the generalized problem of larger scales, we conduct extensive simulations in

various scenarios. We first generate a series of random workflows as follows: (i)

randomly select the length L of the critical path of a workflow (no less than 3) and

divide the workflow into L levels, in each of which every job has the same length of

the longest path from the start job; (ii) randomly select the number of jobs in each

level except the first and last levels, in which there is only one job; (iii) for each

80

job, add an input edge from a randomly selected job in the immediately preceding

level, if absent, and an output edge to a randomly selected job in its downstream

level(s); (iv) randomly pick up two jobs in different levels and add a directed edge

from the job in the upstream level to the job in the downstream level until we reach

the given number of edges. The number of precedence constraints of the workflow is

set to 1.5 times of the number of jobs, if possible. The maximum possible number of

tasks for each job is randomly selected between 12 and 48. The workload of a job is

randomly selected between 0.6 × 1012 and 21.6 × 1012 CPU cycles when running in

serial. According to the performance model of moldable jobs, the workload w(k) of

a job with k > 1 tasks is randomly selected between w(k − 1)[1 + 0.2/(k − 1)] and

w(k − 1)[1 + 0.6/(k − 1)]. We calculate the sum t1 of the average execution time of

the serial jobs on the critical path and the sum t2 of the average execution time of

all serial jobs according to the CPU speeds of all types of machines, and randomly

select a workflow deadline baseline from the time range [t1, t2]. The percentage of

execution time for the CPU-bound instructions of a task in each job on each type

of machine is randomly selected from 0.6 to 1 at an interval of 0.1. By default, the

amount of memory to request from the scheduler for each map/reduce task is 1GB

in Hadoop/YARN. Based on our empirical study, we randomly select the memory

demand of a task in each job from a range between 0.5GB and 4GB at an interval of

0.5GB.

We evaluate these algorithms in a heterogeneous cluster consisting of machines

with four different specifications listed in Table 5.5, based on four types of Intel

processors. Each homogeneous sub-cluster has the same number of machines. Each

scheduling simulation lasts for 3 days and is repeated for 20 times with different

workflow instances, whose arrivals follow the Poisson distribution. In the performance

evaluation, each data point represents the average of 20 runs with a standard

deviation. We set parameter ǫ in BAWMEE to be 0.2 to balance between workflow

81

Table 5.5 Specifications for Four Types of Machines

Mach. CPU Models # of Freq. DPC per Mem.

Type cores (GHz) core (W) (GB)

1 6-core Xeon E7450 18 2.40 90 64

2 Single Core Xeon 6 3.20 92 64

3 2-core Xeon 7150N 12 3.50 150 64

4 Itanium 2 9152M 8 1.66 104 64

energy consumption and algorithm execution time. According to Figures 5.6-5.9,

when ǫ is set to be 0.2, the energy optimization performance is close to the optimal

solution and BAWMEE is a polynomial-time solution. By default, the workflow size

is randomly selected between 40 and 60 jobs; the cluster size and the average arrival

interval of workflows are set to be 128 machines and 30 minutes, respectively; the

deadline factor, which is a coefficient multiplied by the deadline baseline to determine

the actual workflow deadline, is set to 0.15.

The dynamic energy consumption reduction (DECR) over the other algorithms

in comparison is defined as

DECR(Other) =
DECOther −DECBAWMEE

DECOther

· 100%,

where DECBAWMEE and DECOther are the average DEC per workflow achieved by

BAWMEE and the other algorithm, respectively. The deadline missing rate (DMR)

is defined as the ratio of the number of workflows missing their deadlines to the

total number of workflows. The unit running time (URT) is measured as the average

simulation running time for computing the mapping scheme of each workflow. The

simulation runs on a Linux machine equipped with Intel Xeon CPU E5-2620 v3 of

2.4 GHz and a memory of 16 GB.

82

Table 5.6 Problem Sizes

Index (|V |, |M |, 1/λ, T) Index (|V |, |M |, 1/λ, T)

1 (3-7, 4, 240, 7) 11 (53-57, 192, 30, 1)

2 (8-12, 8, 200, 7) 12 (58-62, 256, 25, 1)

3 (13-17, 12, 160, 7) 13 (63-67, 384, 20, 1)

4 (18-22, 16, 150, 7) 14 (68-72, 512, 15, 1)

5 (23-27, 24, 120, 7) 15 (73-77, 768, 12, 1)

6 (28-32, 32, 105, 3) 16 (78-82, 1024, 10, 1/3)

7 (33-37, 48, 90, 3) 17 (83-87, 1536, 8, 1/3)

8 (38-42, 64, 60, 3) 18 (88-92, 2048, 6, 1/3)

9 (43-47, 96, 45, 3) 19 (93-97, 3072, 5, 1/3)

10 (48-52, 128, 30, 3) 20 (98-102, 4096, 4, 1/3)

Simulation Results Problem Size: For performance evaluation, we consider 20

different problem sizes from small to large scales, indexed from 1 to 20 as tabulated

in Table 5.6. Each problem size is defined as a quadruple (|V |, |M |, 1/λ, T), where

1/λ is the average arrival interval of workflow requests in minutes, and T is the

time period in unit of days for accepting workflow requests in each simulation. As

the workflow size and arrival frequency increase from index 1 to 20, we increase

the resources correspondingly to meet tight deadlines with factor 0.15. We plot the

DECR, DMR, and URT of EEDAW, MinD+ED, MinD+EEDAJ, and BAWMEE

in Figures 5.10-5.12, respectively, which show that BAWMEE saves 5.3% to 35.6%,

5.9% to 33.3%, and 6.3% to 34.5% DEC, and misses less deadlines in comparison

with EEDAW, MinD+ED, and MinD+EEDAJ, respectively. Furthermore, the URT

of BAWMEE is on the same order of magnitude as those of EEDAW, MinD+ED,

and MinD+EEDAJ, and is less than 13 seconds even for problem index 20. We

also plot the average number of tasks per job and average workload reduction of

BAWMEE in Figure 5.13, which sheds light on the energy efficiency of BAWMEE.

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem Index

0

4

8

12

16

20

24

28

32

36

40

D
E

C
 R

e
d
u
c
ti
o
n
 (

%
)

BAWMEE over EEDAW

BAWMEE over MinD+ED

BAWMEE over MinD+EEDAJ

Figure 5.10 The DECR vs. problem
sizes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem Index

0

10

20

30

40

50

60

70

80

90

100

D
e
a
d
lli

n
e
 M

is
s
in

g
 R

a
te

 (
%

) EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.11 The DMR vs. problem
sizes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem Index

2x10-4

2x10-3

2x10-2

2x10-1

2x100

2x101

R
u
n
n
in

g
 T

im
e
 p

e
r

W
o
rk

fl
o
w

 M
a
p
p
in

g
 (

s
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.12 The URT vs. problem
sizes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem Index

11

13

15

17

19

21

23

25

27

29

31

T
h
e
 M

e
a
n
 N

u
m

b
e
r

o
f
T

a
s
k
s
 p

e
r

J
o
b

0

3

6

9

12

15

18

21

24

27

30

33

36

A
v
e
ra

g
e
 W

o
rk

lo
a
d
 R

e
d
u
c
ti
o
n
 (

%
)

Max Num of Tasks Num of Tasks Workload Reduction

Figure 5.13 The adaptive task parti-
tioning of BAWMEE vs. problem sizes.

We observe from all the problem indices in Figures 5.10 and 5.13 that on average a

smaller number of tasks in each job would result in more reduced workload and thus

more DEC reduction achieved by BAWMEE.

Deadline Constraint : We evaluate the performance of EEDAW, MinD+ED,

MinD+EEDAJ, and BAWMEE in terms of DEC, DMR, and URT under different

deadline constraints obtained from the deadline baseline multiplied by a factor from

0.05 to 1 with an interval of 0.05. The DEC, DMR, and URT of these algorithms are

plotted in Figures 6.10-5.16, respectively. These measurements show that BAWMEE

saves up to 23.7%, 27.5%, and 28.2% DEC as the deadline increases in comparison

with EEDAW, MinD+ED, and MinD+EEDAJ, respectively, and reduces DMR from

99.9% to 93.0% with a deadline factor of 0.05 and from 83.3% to 25.9% with a

84

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

55

60

65

70

75

80

85

90

95

D
E

C
 p

e
r

W
o
rk

fl
o
w

 (
M

J
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.14 The DEC vs. deadlines.

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

0

10

20

30

40

50

60

70

80

90

100

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.15 The DMR vs. deadlines.

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

R
u
n
n
in

g
 T

im
e
 p

e
r

W
o
rk

fl
o
w

 M
a
p
p
in

g
 (

s
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.16 The URT vs. deadlines.

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

16

18

20

22

24

26

28

30

32

T
h
e
 M

e
a
n
 N

u
m

b
e
r

o
f
T

a
s
k
s
 p

e
r

J
o
b

0

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 W

o
rk

lo
a
d
 R

e
d
u
c
ti
o
n
 (

%
)

Max Num of Tasks Num of Tasks Workload Reduction

Figure 5.17 The adaptive task parti-
tioning of BAWMEE vs. deadlines.

deadline factor of 0.1 compared to EEDAW. The DMR of BAWMEE is close to zero

when the deadline factor is larger than 0.15, and is similar to those of MinD+ED

and MinD+EEDAJ under various deadline constraints. Additionally, the URT of

BAWMEE is less than 0.7 second and is 17.7% to 5.9, 9.8% to 6.0, and 45.6% to

5.1 times of those of EEDAW, MinD+ED, and MinD+EEDAJ, respectively. It is

worth pointing out that as the deadline increases, the DEC and URT of BAWMEE

decrease, because EEPM plays a more significant role than MDPM in BAWMEE.

We plot the average number of tasks per job and the average workload reduction of

BAWMEE under different deadline constraints in Figure 5.17, which clearly shows

that BAWMEE reduces more workload overhead due to a decreased number of tasks as

the deadline is relaxed, and explains why BAWMEE makes a better tradeoff between

85

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

The Number of Jobs on Average

0

5

10

15

20

25

30

35

40

45

D
E

C
 R

e
d
u
c
ti
o
n
 (

%
)

BAWMEE over EEDAW

BAWMEE over MinD+ED

BAWMEE over MinD+EEDAJ

Figure 5.18 The DECR vs. workflow
sizes.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

The Number of Jobs on Average

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

EEDAW MinD+ED MinD+EEDAJ BAWMEE

Figure 5.19 The DMR vs. workflow
sizes.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

The Number of Jobs on Average

2x10-4

2x10-3

2x10-2

2x10-1

2x100

2x101

R
u
n
n
in

g
 T

im
e
 p

e
r

W
o
rk

fl
o
w

 M
a
p
p
in

g
 (

s
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.20 The URT vs. workflow
sizes.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

The Number of Jobs on Average

11

13

15

17

19

21

23

25

27

29

31

T
h
e
 M

e
a
n
 N

u
m

b
e
r

o
f
T

a
s
k
s
 p

e
r

J
o
b

0

4

8

12

16

20

24

28

32

A
v
e
ra

g
e
 W

o
rk

lo
a
d
 R

e
d
u
c
ti
o
n
 (

%
)

Max Num of Tasks Num of Tasks Workload Reduction

Figure 5.21 The adaptive task parti-
tioning of BAWMEE vs. workflow sizes.

DEC and DMR than the other algorithms in comparison at an acceptable cost of

running time.

Workflow Size: For scalability evaluation, we run these four algorithms under

different average workflow sizes with 5 to 100 jobs per workflow at an interval of 5,

where the maximum and minimum workflow sizes are 2 jobs more and less than the

average workflow size, respectively. We plot the DECR, DMR, and URT of these

algorithms in Figures 6.12-5.20, respectively, where we observe that BAWMEE with

DMRs close to zero achieves an increasing DECR from 4.7% to 34.6%, from 4.9% to

40.7%, as well as from 5.0% to 41.2% in comparison with EEDAW, MinD+ED, and

MinD+EEDAJ, respectively. For large workflow sizes with 50 to 100 jobs per workflow

that impose high resource demands, BAWMEE achieves DECR only from 4.7% to

86

64 80 96 112 128 144 160 176 192 208 224 240 256

The Number of Machines

55

60

65

70

75

80

85

90

95

D
E

C
 p

e
r

W
o
rk

fl
o
w

 (
M

J
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.22 DEC vs. cluster sizes.

64 80 96 112 128 144 160 176 192 208 224 240 256

The Number of Machines

0

10

20

30

40

50

60

70

80

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.23 The DMR vs. cluster sizes.

64 80 96 112 128 144 160 176 192 208 224 240 256

The Number of Machines

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

R
u
n
n
in

g
 T

im
e
 p

e
r

W
o
rk

fl
o
w

 M
a
p
p
in

g
 (

s
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.24 The URT vs. cluster sizes.

64 80 96 112 128 144 160 176 192 208 224 240 256

The Number of Machines

13

15

17

19

21

23

25

27

29

31

T
h
e
 M

e
a
n
 N

u
m

b
e
r

o
f
T

a
s
k
s
 p

e
r

J
o
b

0

3

6

9

12

15

18

21

24

27

30

A
v
e
ra

g
e
 W

o
rk

lo
a
d
 R

e
d
u
c
ti
o
n
 (

%
)

Max Num of Tasks

Num of Tasks

Workload Reduction

Figure 5.25 The adaptive task parti-
tioning of BAWMEE vs. cluster sizes.

9.8%, because MDPM plays a more significant role than EEPM in BAWMEE, which

is justified by the changes in the average number of tasks per job and the average

workload reduction of BAWMEE plotted in Figure 5.21. The DMR of EEDAW

experiences a slump under the medium workflow sizes because a higher accuracy

could be achieved in the execution progress of a smaller workflow than a larger one,

while a further increase in the workflow size may lead to a more severe shortage of

computing resources. In addition, the URT of BAWMEE is comparable with those

of EEDAW, MinD+ED, and MinD+EEDAJ.

Cluster Size: We run these four algorithms under different cluster sizes of 64

to 256 machines at a step of 16 for scalability test. The DEC, DMR, and URT of

these algorithms are plotted in Figures 6.13-5.24, respectively, where we observe that

as the number of machines increases, BAWMEE consumes 2.5% to 26.1%, 2.0% to

87

Random Chain Tree Reverse Tree Diamond

Workflow Structures

40

45

50

55

60

65

70

75

80

85

90

95

100

D
E

C
 p

e
r

W
o
rk

fl
o
w

 (
M

J
)

EEDAW MinD+ED MinD+EEDAJ BAWMEE

Figure 5.26 The DEC vs. workflow
structures.

Random Chain Tree Reverse Tree Diamond

Workflow Structures

0

10

20

30

40

50

60

70

80

90

100

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.27 The DMR vs. workflow
structures.

Random Chain Tree Reverse Tree Diamond

Workflow Structures

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
u
n
n
in

g
 T

im
e
 p

e
r

W
o
rk

fl
o
w

 M
a
p
p
in

g
 (

s
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 5.28 The URT vs. workflow
structures.

Random Chain Tree Reverse Tree Diamond

Workflow Structures

0

4

8

12

16

20

24

28

32

T
h
e
 M

e
a
n
 N

u
m

b
e
r

o
f
T

a
s
k
s
 p

e
r

J
o
b

0

5

10

15

20

25

30

35

40

45

A
v
e
ra

g
e
 W

o
rk

lo
a
d
 R

e
d
u
c
ti
o
n
 (

%
)

Max Num of Tasks

Num of Tasks

Workload Reduction

Figure 5.29 The adaptive task parti-
tioning of BAWMEE vs. workflow
structures.

30.1%, and 1.9% to 30.5% less DEC than EEDAW, MinD+ED, and MinD+EEDAJ,

respectively, hence exhibiting a satisfactory scalability property with respect to the

cluster size. Furthermore, the DMR of DAWMEE is only between 0.1% and 10.5% and

is similar to those of MinD+ED and MinD+EEDAJ, while EEDAW misses 36.2% to

71.2% deadlines. The increase in the cluster size results in a relatively looser deadline

and a more flexible workflow mapping, as a result of which, the DEC and DMR

of these four algorithms decrease, and BAWMEE has more chances to save energy,

which is consistent with the changes in the average number of tasks per job and

the average workload reduction of BAWMEE plotted in Figure 5.25. Moreover, the

URT of BAWMEE is less than 2.7 seconds and is comparable with those of EEDAW,

MinD+ED, and MinD+EEDAJ.

88

Workflow Structure: We further investigate these four algorithms with various

workflow structures, including a random shape, a chain, a tree, a reverse tree, and a

diamond. The DEC, DMR, and URT are plotted in Figures 5.26-5.28, respectively,

which show that BAWMEE reduces DEC by 6.9% to 9.0%, 31.7% to 36.7%, 36.1%

to 40.4%, and 29.6% to 33.8% in comparison with the other three algorithms in

random, tree, reverse tree and diamond structured workflows, respectively. Here,

BAWMEE fails to save energy in chain-structured workflows, because the deadline

baseline is set too tight for this structure based on our deadline generation method, as

indicated by the average number of tasks per job and the average workload reduction

of BAWMEE in Figure 5.29. BAWMEE almost misses no deadlines except in tree-

structured workflows, where it favors the jobs close to the root more than those close

to leaves and thus leads to an unfair division of the slack time [83]. Besides, the URT

of BAWMEE is less than 0.8 seconds, and is 31.2% to 5.4, 1.2 to 4.1, and 87.4% to 2.3

times of those of EEDAW, MinD+ED, and MinD+EEDAJ with different workflow

structures, respectively.

5.6 Conclusion

Based on the investigation on the properties of moldable MapReduce jobs, We

formulated a workflow mapping problem to minimize dynamic energy consumption

under deadline and resource constraints. We designed an FPTAS for a special case

with a pipeline-structured workflow on a homogeneous cluster, which we proved to

be weakly NP-complete, and a heuristic for a generalized problem with an arbitrary

workflow on a heterogeneous cluster. The performance superiority of the proposed

solution in terms of dynamic energy saving and deadline missing rate was illustrated

by extensive simulation results in comparison with existing algorithms, and further

validated by real-life workflow implementation and experimental results using the

Oozie workflow engine in the Hadoop/YARN ecosystem.

89

CHAPTER 6

ENERGY-EFFICIENT DYNAMIC SCHEDULING OF MAPREDUCE

WORKFLOWS IN SHARED CLUSTERS

This chapter is organized as follows. Section 6.1 introduces the significant impact

of dynamic scheduling of MapReduce workflows on energy efficiency. Section 6.2

formulates a dynamic big data workflow scheduling problem. Section 6.3 discusses

the algorithm design principles of the scheduling problem. We design a heuristic for

the problem and the corresponding system modules for algorithm implementation in

Section 6.4. Section 6.5 presents performance evaluation. Section 6.6 concludes our

work.

6.1 Introduction

Big data analytics require the invocation and coordination of a large collection of

computing tools, programs, libraries, services, or systems with complex execution

dependencies, which are increasingly managed by workflow technologies. Big data

workflows are typically comprised of moldable parallel MapReduce programs running

on a large number of processors and have become a main consumer of energy in data

centers.

In Section 3.2, we validate with experimental results that the DEC of a

MapReduce job increases with the number of its parallel tasks. Based on this, we

direct our efforts to workflow scheduling for dynamic energy saving by adaptively

determining the degree of parallelism in each MapReduce job to reduce the workload

overhead while meeting a given performance requirement. Our approach is orthogonal

to two commonly used green computing techniques, i.e., task consolidation to reduce

SEC by turning off idle servers and load balancing to reduce DEC through DVFS,

90

and would add an additional level of energy efficiency to current computing platforms

processing big data workflows.

Task scheduling algorithms are divided into two categories: static and dynamic

scheduling algorithms. The former determines task mapping onto resources before

the execution of the entire application, based on accurate information about task

execution cost, which is supposed to be known at compilation time. The latter

schedules tasks to resources in the runtime to flexibly optimize certain goals on line,

and have much lower or no requirements on the accuracy of a priori knowledge, so

that it is more widely applied to practical systems. In Chapter 5, we formulated

an energy-efficient deadline-constrained static mapping problem for a single workflow

comprised of moldable jobs, which has been proved to be strongly NP-hard. In this

chapter, we focus on the dynamic scheduling for a set of MapReduce workflows to

minimize DEC under deadline and resource constraints in a cluster. The execution

dynamics among multiple workflows make this problem even more challenging.

There is a trade-off between energy cost and execution time of each component

job with multiple degrees of task partitioning granularity. Purely static scheduling

as our approach in Chapter 5 requires a priori knowledge of exact job execution cost

and an accurate snapshot of available computing resources to schedule an individual

MapReduce job in its entirety. Such a scheduling approach is not best suited

for production high-performance computing systems, which are typically shared by

a large number of users with high dynamics in resource use. However, a fully

dynamic scheduling approach, benefiting resource allocation in a shared system such

as the schedulers in [22] and [23], may lack a global perspective to balance the

trade-off between energy cost and execution time of component jobs in each workflow.

Therefore, we propose a semi-dynamic scheduling method consisting of three phases:

i) Phase I for static mapping of each workflow on a virtual homogeneous cluster to

determine the task partitioning of each component job, ii) Phase II for static mapping

91

of each workflow on an idle heterogeneous cluster to set the virtual deadline of each

component job, and iii) Phase III for dynamic resource allocation to ready-to-execute

tasks based on their virtual job deadlines and the energy efficiency of heterogeneous

machines. The first two static subproblems are processed in a workflow engine, such

as Oozie and Tez, from the perspective of the entire workflow; the last dynamic

subproblem is naturally handled by the resource manager in Hadoop/YARN from

the perspective of a shared system.

Our work makes the following contributions to the field.

• We validate with experimental measurements that the DEC of a MapReduce

job in a Hadoop/YARN system increases with the number of parallel tasks, and

analyze the performance variation.

• We consider a set of MapReduce workflows and propose a semi-dynamic online

scheduling algorithm, which adaptively reduces DEC from a global perspective

in both temporal and spatial aspects, and explicitly accounts for execution time

estimation inaccuracies and computing system dynamics.

• The performance superiority of the proposed algorithm in terms of dynamic

energy saving and deadline missing rate is illustrated by experimental results

using the Oozie workflow engine in Hadoop/YARN systems and extensive

simulation results in comparison with existing algorithms.

6.2 Problem Formulation

6.2.1 Cost Models

Cluster Model We consider a heterogeneous Hadoop cluster consisting of a set M

of machines connected via high-speed switches, where each machine mi is equipped

with Ni homogeneous CPU cores of speed pi and a shared memory of size oi.

Workflow Model We consider multiple user requests as a set of workflows F =

{fj(Gj , tj, dj)}, where fj specifies a workflow structure Gj, submission time tj , and

92

a deadline dj . The structure of a workflow is defined as a DAG Gj(Vj, Aj), where

each vertex vj,k ∈ Vj represents a component job, and each directed edge aj,k,k′ ∈ Aj

denotes an execution dependency. We consider the map and reduce phases of each

MapReduce job as two component jobs connected via a dependency edge. Each

mapped job vj,k has its actual start time (AST) tSj,k and actual finish time (AFT) tFj,k.

We denote the completion time of an entire workflow fj as t
C
j .

MapReduce Model We consider a MapReduce job vj,k executing a set of parallel

map (or reduce) tasks, each of which requires a memory of size oj,k and spends a

percentage µi,j,k of time executing CPU-burst instructions on a CPU core of machine

mi. In job vj,k, as the number Lj,k of parallel tasks increases, the total workload

wj,k(Lj,k) of all tasks would increase and the workload wj,k,l(Lk) = wj,k(Lj,k)/Lj,k of

each task sj,k,l would decrease. However, the maximum number L′
j,k of tasks that

can be executed in parallel without performance degradation is limited by the cluster

capacity, e.g., L′
k ≤

∑

mi∈M
⌊oi/oj,k⌋. In addition, the execution time of task sj,k,l on

machine mi is ti,j,k,l = wj,k,l(Lj,k)/(µi,j,k · pi). Estimating the execution time of a task

on any service is an important issue. Many techniques have been proposed such as

code analysis, analytical benchmarking/code profiling, and statistical prediction [61,

66], which are beyond the scope of this work. We denote the number of tasks in job

vj,k mapped to machine mi at time t as ni,j,k(t). The number of CPU cores and the

amount of memory used by all component jobs in a set F of workflows on machine mi

at time t are ni(t) =
∑

fj∈F

∑

vj,k∈fj
ni,j,k(t) and oi(t) =

∑

fj∈F

∑

vj,k∈Vj
oj,kni,j,k(t),

respectively.

Energy Model The DEC of a cluster is

E =
∑

mi∈M

∫ T

0

Pi

∑

fj∈F

∑

vj,k∈fj
[µi,j,kni,j,k(t)]dt,

93

Table 6.1 Notations Used in the Cost Models

Notations Definitions

M a cluster of machines

mi(Ni, pi, oi, Pi) the i-th machine equipped with a memory of size oi and Ni CPU

cores of speed pi and DPC Pi per core at full utilization

fj(Gj(Vj , Aj), tj , dj) the j-th workflow request consisting of a workflow structure of a

DAG Gj(Vj , Aj) and a deadline dj arrives at time tj

tCj the completion time of workflow fj

vj,k the k-th component job in workflow fj

aj,k,k′ the directed edge from job vj,k to job vj,k′

tSj,k, t
F
j,k the actual start and finish time of job vj,k

µi,j,k the percentage of time executing CPU-burst instructions in

job vj,k on machine mi

oj,k the memory demand per task in job vj,k

sj,k,l the l-th task in job vj,k

Lj,k, L
′
j,k the number and the maximum possible number of tasks in vj,k

wj,k(Lj,k) the workload of job vj,k partitioned into Lj,k tasks

wj,k,l(Lj,k) the workload of task sj,k,l in vj,k with Lj,k tasks

ti,j,k,l the execution time of task sj,k,l running on machine mi

ni,j,k(t) the number of tasks in job vj,k running on machine mi at time t

ni(t) the number of used CPU cores on machine mi at time t

oi(t) the size of used memory on machine mi at time t

T a time period of the cluster’s operation

E the dynamic energy consumption of cluster M

where Pi is the dynamic power consumption (DPC) of a fully utilized CPU core, and

which is validated by energy measurements of practical systems in [22].

94

Mapping Function We define a workflow mapping function as

M : {sl(vk(fj))
[tS
j,k,l

, tF
j,k,l

]
=======⇒ mi, ∀fj ∈ F, ∃mi ∈M, ∃[tSj,k,l, t

F
j,k,l] ⊂ T},

which denotes that the l-th task of the k-th job of the j-th workflow is mapped to

the i-th machine from time tSj,k,l to time tFj,k,l. The domain of this mapping function

covers all possible combinations of component jobs in a set F of workflows, a set M

of machines, and a time period T of the cluster’s operation.

6.2.2 Problem Definition

We formulate a dynamic energy-efficient workflow scheduling problem (EEWS) under

deadline constraints:

Definition 8. EEWS: Given a cluster of machines {mi(Ni, pi, oi, Pi)}, and a set

of workflows {fj(Gj(Vj, Aj), dj)} whose arrivals follow Poisson distribution, where

job vj,k in workflow fj has a set {wj,k(Lj,k)|Lj,k = 1, 2, . . . , L′
j,k} of workloads

corresponding to different degrees of parallelism, and each task in job vj,k has a

memory demand oj,k and spends a percentage µi,j,k of time executing CPU-burst

instructions on machine mi, we wish to find a mapping function M : (F,M, T) →

{sl(vk(fj))
[tS
j,k,l

, tE
j,k,l

]
=======⇒ mi} to minimize the dynamic energy consumption:

min
M

E,

subject to the following deadline, precedence, and resource constraints:

tCj ≤ dj, ∀fj ∈ F

tFj,k ≤ tSj,k′, ∀aj,k,k′ ∈ Aj , ∀fj ∈ F

ni(t) ≤ Ni, ∀mi ∈M,

oi(t) ≤ oi, ∀mi ∈M.

95

Table 6.2 Scheduling in a Heterogeneous Cluster

Algorithms Parallelism Scheduling Decoupling Long Tasks

BAWMEE Yes Purely static No Yes

EEDAW No Fully dynamic No No

MinD+ED No Semi-dynamic Yes Yes

ATP-EEDAW Yes Semi-dynamic No No

DAWSEE Yes Semi-dynamic Yes Yes

6.3 The Design Principles of the Scheduler

We first summarize the design of four algorithms adapted from different scenarios: i)

BAWMEE in Chapter 5 that repeatedly maps each complete MapReduce workflow

one at a time, ii) EEDAW adapted from a MapReduce job scheduling algorithm

(integrated with the algorithms in [22] and [23]) by extending the progress estimation

of a MapReduce job to that of a workflow, iii) MinD+ED adapted from a workflow

scheduling algorithm with serial jobs in [83] by fixing the number of tasks in each

MapReduce job and replacing preemptive task scheduling with non-preemptive task

scheduling, and iv) ATP-EEDAW comprised of ATP proposed in Subsection 6.4.2

for static virtual mapping of each MapReduce workflow and EEDAW for dynamic

energy-efficient and deadline-aware MapReduce workflow scheduling. However, these

algorithms have their own weaknesses. BAWMEE, as a fully static scheduler, is

not suited for systems shared by a large number of workflows; EEDAW, as a fully

dynamic scheduler, lacks a global view to balance the tradeoff between energy cost

and execution time of component jobs in each workflow; MinD+ED does not consider

adaptive task partitioning for possible energy saving; ATP-EEDAW significantly

increases the deadline missing rate in comparison to EEDAW because reducing the

degree of parallelism for energy saving makes it more difficult to meet deadlines.

To overcome these weaknesses, we discuss three design principles of a scheduling

algorithm for a set of MapReduce workflows in addition to adjusting the degree of

96

parallelism in each component job, and tabulate the differences in Table 6.2 between

the aforementioned four algorithms and our proposed method in Section 6.4.

6.3.1 Dynamic Task Scheduling

Static mapping decides the mapping scheme for each entire workflow upon its arrival,

while dynamic scheduling decides an on-demand mapping scheme for any ready-to-

execute component of the workflows on the fly. Given a set of workflows, a greedy

local optimization method such as BAWMEE in Chapter 5 repeatedly performs static

mapping of each workflow. We adopt dynamic scheduling to consider resource sharing

among multiple workflows from a global perspective.

6.3.2 Decoupling Dependencies and Shared Resources

In each workflow, the component jobs may affect each other’s execution dynamics

through the deadline and precedence constraints, while in a shared system, all

ready-to-execute jobs may affect each other’s execution dynamics through the resource

constraint. Since both of these subproblems are NP-complete, conducting a joint

optimization is very complicated. Setting an appropriate deadline for each component

job in each workflow is an effective method to decouple the job dependencies in

a workflow (i.e., temporal constraint) and resource sharing in the entire system

(i.e., spatial constraint). As a result, the scheduler may only focus on the resource

allocation for each job with its respective deadline, as each workflow is able to meet

its deadline if all its jobs finish on time.

6.3.3 Avoiding Deadline Violation Caused by Heavyweight Tasks

Reducing the degree of parallelism increases the percentage of heavyweight tasks. In

general, it is more challenging to schedule heavyweight tasks than lightweight ones

to meet a certain deadline. In addition, in a heterogeneous cluster, the execution

time and DEC of a task are unknown before it is assigned to a specific machine, so

97

many existing research efforts consider an estimate based on the average or expected

execution time and DEC [83]. The inaccuracy and uncertainty in such estimates

further increase the difficulty of adjusting the workload of each component task

in a moldable job. However, the heterogeneity of the cluster makes it possible to

allocate more powerful computers to execute heavyweight tasks to meet the deadline

constraint. Therefore, with inaccurate information, we may reduce the deadline

missing rate if we consider the heterogeneity of machines after determining the degree

of parallelism in each job.

6.4 Algorithm and System Design

In this section, we design a dynamic adaptive workflow scheduling algorithm for

energy efficiency (DAWSEE).

6.4.1 DAWSEE Overview

The workflow scheduling process consists of three components as shown in Figure 6.1:

adaptive task partitioning (ATP), virtual deadline setting (VDS), and dynamic

energy-efficient task scheduling (DEETS). Upon the arrival of a workflow request,

ATP calculates the number of parallel tasks in each component job in the workflow

according to the workflow’s deadline, and each job’s DEC (or workload) and average

execution time across different numbers of parallel tasks on one machine across the

entire cluster. Then, VDS computes an virtual deadline for each component job in

the workflow, following the MinD algorithm in [83], whose main idea is to prioritize

jobs with smaller dependencies on other jobs while extending their virtual deadlines

based on the heterogeneity of machines, and take equal slack time into account.

We use MinD for VDS because MinD is able to balance the virtual deadlines of

interdependent component jobs in a workflow and thus counteract the delay caused

by ATP for energy saving. Once a job is ready to execute, DEETS allows its tasks

98

S
p

a
ti

a
l

co
n

st
ra

in
t:

R
e
so

u
rc

e
sh

ar
in

g
Temporal constraint:

Job dependencies

Heterogeneity
of machines Degree of

Parallelism

Objective:
Minimize DEC

1. Static adaptive
task partitioning

2. Static virtual
deadline setting

3. Dynamic
energy-
efficient task
scheduling

⁞ ⁞ ⁞

v2,1 v2,2 v2,3

f1

f2

⁞ ⁞ ⁞

v1,1 v1,2 v1,3

Figure 6.1 Decoupling and semi-dynamic scheduling.

to wait for the most energy-efficient machines until its virtual deadline expires or

schedules them to machines to achieve the earliest finish time (EFT) if the former

fails. Meanwhile, it prioritizes ready-to-execute jobs with tighter virtual deadlines in

the process of resource allocation.

A data center typically has local storage attached to computing nodes, which

are connected via high-speed switches. The workflow engine, such as Oozie [3], on

Hadoop/YARN is responsible for handling MapReduce workflow requests. As shown

in Figure 6.2, we add two new modules, ATP and VDS, into Oozie. A submitted

workflow is first processed by these two modules and its component jobs then wait

for the completion of their preceding jobs in the automatic job submission module.

Once a job is ready to execute, Oozie submits the job with its parallelism degree

and virtual deadline to the resource manager in Hadoop/YARN, where the DEETS

99

MapReduce Job 1MapReduce Job 1

MapReduce Job 2

MapReduce Job 3

MapReduce Job 4API

Processing
Framework

Resource
Management

Distributed
File Storage

MapRecude Workflow Request
- MapReduce v2 Programs
- Workflow structure

Workflow
Scheduler

Spark ...

t

Hadoop/YARN

Master Node

Job History Server

Data Node

Slave Node

HDFS
Block Block ...

Name Node

Node Manager

Container (Mapper)

Application Master

Container (Reducer)

.

.

.

Data Node

Slave Node

Block Block

...

Node Manager

Container (Reducer)

Application Master

Container (Mapper)

.

.

.

Data Node
HDFS

Block Block ...

Name Node Data Node

Block Block

Submit MapReduce Jobs with parallelism degrees and virtual deadlines

Submit MapReduce workflows with deadlines

...Metadata

Oozie: a workflow scheduler for Hadoop

Adaptive task
partitioning

Virtual
deadline seting

Automatic
MapReduce

job submission

Resource Manager

Job scheduling

Resource
management

Task scheduling

Tez

Figure 6.2 The architecture of the MapReduce workflow scheduling system.

module sits. This architecture keeps the workflow engine and the Hadoop system

loosely coupled and is best suited for our algorithm implementation.

6.4.2 Adaptive Task Partitioning

According to the system workload, we determine the current slack factor β, which

is a coefficient multiplied by the difference between the deadline and the submission

time of a workflow to decide its expected due as d′j = dj − β · (dj − tj).

Initially, we calculate the average task execution time (TET) and the average job

DEC (JDEC) of each job across all possible numbers of parallel tasks running on one

machine across the entire cluster (in Lines 1-4 of Algorithm 17). Here, the JDEC of

vj,k with Lj,k tasks on machine mi can be computed as ej,k(Lj,k, mi) = Piwj,k(Lj,k)/pi.

100

Based on the average TET and JDEC of each job, we are able to perform task

partitioning and virtual mapping for each job, i.e., determining the number of tasks

in each job but without the actual mapping of jobs to a specific machine at the time

of workflow submission, and compute its virtual start time (VST) tV S
j,k and virtual

finish time (VFT) tV F
j,k . If all the preceding jobs of job vj,k are virtually mapped, its

earliest virtual start time (EVST) tES
j,k is the maximum VFT of its preceding jobs;

if all the succeeding jobs of job vj,k are virtually mapped, its last virtual finish time

(LVFT) tLFj,k is the minimum VST of its succeeding jobs. The EVST of the start job is

tj and the LVFT of the end job is d′j. If there exist virtually unmapped preceding and

succeeding jobs of vj,k, we calculate its temporary earliest virtual start time (TEVST)

t′ES(vj,k) and temporary last virtual finish time (TLVFT) t′LF (vj,k) based only on its

virtually mapped preceding and succeeding jobs, respectively.

Algorithm 17 for ATP consists of two components: iterative critical path (CP)

selection, and virtual pipeline mapping (VPM) including the task partitioning of

each job in a pipeline. i) it starts with computing an initial CP, which is the

longest execution path in a workflow, according to the average execution time of

each job running in serial on one machine across the entire cluster, followed by the

VPM process. Then, it iteratively computes a CP with the earliest LVFT from the

remaining unmapped workflow branches based on the same average execution time

of each job as above and performs the VPM of the computed CP until there are no

branches left (in Lines 9 and 16). ii) For each selected CP, we perform the VPM for

the CP by calling V PM() in Algorithm 18. If the pipeline has any job whose virtual

mapping violates the precedence constraints, we cancel the virtual mapping of its

downstream jobs whose VSTs are earlier than its VFT (in Lines 11-15). The virtual

mapping of the first job on each previously selected CP would not be cancelled because

the CP with the earliest LVFT is selected and virtually mapped in each iteration.

Hence, Algorithm 17 terminates after at most |Vj| iterations.

101

Algorithm 17: ATP()

Input: A workflow fj(Gj(Vj , Aj), tj , dj) and β

1: for all vj,k ∈ Vj do

2: L′
j,k ← min{L′

j,k,
∑

mi∈M
min{Ni, ⌊oi/oj,k⌋}};

3: for L← 1, . . . , L′
j,k do

4: For job vj,k with L tasks, calculate its average TET t̃j,k(L) and average JDEC

ẽj,k(L) on one machine across the entire cluster;

5: tLFj,k ← +∞ for ∀vj,k ∈ fj;

6: tLFj,K ← d′j for the end job vj,K in fj, where d′j = dj − β · (dj − tj);

7: Initialize unmapped workflow branches G′ ← Gj ;

8: while G′ 6= ∅ do

9: Find the critical path cp ending at a job vj,k1 with the earliest LVFT in G′

according to {t̃j,k(1)|vj,k ∈ G′};

10: cp.lvft← tLFj,k1;

11: if V PM(cp, {(t̃j,k(L), ẽj,k(L))|L ∈ [1, L′
j,k]}) = False then

12: vj,k2 ← the last job with determined Lj,k, t
V S
j,k and tV F

j,k in cp;

13: D(vj,k2)← {the downstream jobs of vj,k2 in Gj};

14: if {vj,k′ ∈ D(vj,k2)|t
V S
j,k′ < tV F

j,k2
} 6= ∅ then

15: Clear Lj,k′, t
V S
j,k′ and tV F

j,k′ , and add vj,k′ and its associated precedence

constraints back to G′;

16: G′ ← G′ − {vj,k ∈ cp|Lj,k, t
V S
j,k and tV F

j,k are determined};

In Algorithm 18 for VPM, if a pipeline cannot meet its LVFT with each job

vj,k ∈ pl divided into the maximum number L′
j,k of tasks, VPM virtually maps each

job vj,k with L′
j,k tasks in their execution order until reaching a job that violates the

102

precedence constraints, and then returns False (in Lines 3-10); otherwise, we consider

the pipeline with its EVST and LVFT, where each job vj,k has a set of pairs of

average TET and JDEC {(t̃j,k(L), ẽj,k(L))|L ∈ [1, L′
j,k]}, and use an FPTAS based on

Algorithm 10 to calculate the number of tasks and the virtual start and finish time

for each job in the pipeline (in Line 11). Then, we check whether the VST and VFT

of each job are between its TEVST and TLVFT in their execution order (in Line 12).

If there exists a job that violates the precedence constraints, we divide the pipeline

at this job, and recursively call Algorithm 18 to compute the virtual mapping of the

upstream sub-pipeline with updated EVST and LVFT constraints (in Lines 13-20).

Algorithm 18: VPM()

Input: a pipeline pl with its EVST pl.evst and LVFT pl.lvft and a set of pairs

{(t̃j,k(L), ẽj,k(L))|vj,k ∈ Vj , L ∈ [1, L′
j,k]}

Output: a boolean variable to indicate the nonexistence of precedence violation

1: Label the index k of each job in pl from 1 to the length of pl;

2: Update TEVST t′ES(vj,k) and TLVFT t′LF (vj,k) for ∀vj,k ∈ pl;

3: if
∑

vj,k∈pl
t̃j,k(L

′
j,k) < pl.lvft− pl.evst then

4: tV S
j,1 ← pl.evst; tV F

j,1 ← tV S
j,1 + t̃1(L

′
j,1); Lj,1 ← L′

j,1;

5: for vj,k ∈ pl − {vj,1} do

6: tV S
j,k ← max{tV F

j,k−1, t
′
ES(vj,k)}; tV F

j,k ← tV S
j,k + t̃j,k(L

′
j,k);

7: Lj,k ← L′
j,k;

8: if tV F
j,k > t′LF (vj,k) then

9: return False;

10: return False.

103

11: Use Algorithm 10 to calculate the number Lj,k of tasks, VST tV S
j,k and VFT tV F

j,k

for each job vj,k in pipeline pl, where each job vj,k ∈ pl has a set of pairs

{(t̃j,k(L), ẽj,k(L))};

12: for vj,k+1 ∈ pl do

13: if tV F
j,k > t′LF (vj,k) or t

V F
j,k < t′ES(vj,k+1) then

14: pl(1, k).evst← pl.evst; // pl(1, k) is a sub-pipeline from the first job to

k-th job in pipeline pl

15: if tV F
j,k > t′LF (vj,k) then

16: pl(1, k).lvft← t′LF (vj,k);

17: else

18: pl(1, k).lvft← min{t′ES(vj,k+1), t
′
LF (vj,k), pl.lvft};

19: Clear Lj,k, t
V S
j,k and tV F

j,k for each job vj,k in pl;

20: return V PM(pl(1, k), {(t̃j,k(L), ẽj,k(L))});

21: return True.

6.4.3 Virtual Deadline Setting

Initially, all jobs are supposed to run the fastest on their respective machines. The

priority of job vk is set as pr(vj,k) = −
∑

vj,k′∈R(vj,k)
wj,k′(Lj,k′), where R(vj,k) is a set

of jobs that have a path from/to vj,k in Gj. The job with the highest priority is

considered to be virtually reassigned to a slower but more energy-efficient machine

by one level for deadline extension. Then, the rest of the jobs are considered in the

order, followed by another round, if possible. As a result, it is more likely for the

virtual deadlines of lightweight jobs to be extended than those of heavyweight jobs,

which, to some extent, counteracts the delay caused by heavyweight jobs. In MinD,

please refer to [83] about applying equal slack time to deadlines in the following step.

104

ATA FCR PAS FCR ATA FCR PAS FCR ATA FCR

PAS ATA FCR PAS ATA PAS ATA FCR PAS ATA

Pipeline 1:

Pipeline 2:

60 s

Figure 6.3 Pipeline-structured MapReduce workflows.

6.5 Performance Evaluation

We first conduct experiments to evaluate the performance of ATP in comparison with

the default workflow scheduling schemes in Oozie and Hadoop systems. We then

conduct simulations to evaluate the performance of DAWSEE in comparison with

BAWMEE, EEDAW, MinD+ED, and ATP-EEDAW. In EEDAW and MinD+ED

algorithms, we preset the number of tasks in each MapReduce job to be the

maximum number of tasks to illustrate the benefits brought forth by the adaptive

task partitioning strategy in our algorithm.

6.5.1 Experiments

Experimental Settings The testbed is the same as described in Subsection 3.2.1.

On the cluster in our testbed, we also install Oozie 4.3 [3], a workflow engine

that dispatches each component MapReduce job in a workflow with its respective

configuration once all its preceding jobs finish. We generate two pipeline-structured

workflows, each comprised of 10 MapReduce jobs, as shown in Figure 5.5. These jobs

are randomly selected from the aforementioned three MapReduce programs: PAS,

ATA, and FCR. Here, we consider pipelines as this is one typical workflow structure

supported by our cluster testbed.

Since EEDAW and MinD+ED do not adjust the number of mappers/reducers

and only employ the heterogeneity of machines for energy saving, they produce

identical scheduling schemes on a homogeneous cluster that strongly rely on the

105

Default (960,1165)
β = 12%
ǫ = 0.2

(987,1167)
β = 24%
ǫ = 0.05

(962,1475)
β = 22%
ǫ = 0.05

(1269,1197)
β = 26%
ǫ = 0.05

(1174,1440)
β = 20%
ǫ = 0.05

Cases

0

10

20

30

40

50

60

70

80

90

100

110

120

D
y
n
a
m

ic
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

K
J
)

Measurement

Estimation

Figure 6.4 The DEC of a pair of
pipelines with different approximate
ratios under different deadline
constraints.

Default (960,1165)
β = 12%
ǫ = 0.2

(987,1167)
β = 24%
ǫ = 0.05

(962,1475)
β = 22%
ǫ = 0.05

(1269,1197)
β = 26%
ǫ = 0.05

(1174,1440)
β = 20%
ǫ = 0.05

Cases

0

250

500

750

1000

1250

1500

1750

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Pipeline 1 Pipeline 2 Deadline

Figure 6.5 The completion time
of a pair of pipelines with different
approximate ratios under different
deadline constraints.

default settings in Hadoop, where the number of mappers is the input size divided

by the split size of 128 MB, and the number of reducers is 1. Hence, we refer to the

mapping scheme produced by these two algorithms as the “default” scheme in this

scenario.

Experimental Results Although ATP can be treated as one preprocessing phase

in MapReduce workflow scheduling, it is the most important component of DAWSEE

to employ the property of Moldable jobs to save DEC. To test the practical energy

saving achieved by the ATP component for multiple workflows, we conduct an

experiment of scheduling these two pipeline-structured MapReduce workflows on our

homogeneous cluster, where the second pipeline arrives 60 seconds after the arrival

of the first one as shown in Figure 6.3, and plot in Figures 6.4 and 6.5 the analytical

estimates and experimental measurements of the DEC and completion time based

on the default workflow mapping scheme, as well as the scheme produced by ATP

in various cases with different deadline constraints for each workflow, different slack

factor β, and different approximate ratios ǫ in ATP. The horizontal axis represents

different cases. For example, in the first case for ATP, the deadlines of the first and

second pipelines are 960 seconds and 1165 seconds, respectively, and β = 12%, ǫ = 0.2.

106

The experimental measurements show that ATP cuts down DEC by 34.5% to 38.8%,

as well as completion time by 3.2% to 27.8% for the first pipeline and by 16.6%

to 35.3% for the second pipeline in comparison with the default mapping scheme.

These results clearly illustrate the dramatic dynamic energy saving and execution

time reduction by ATP for multiple MapReduce workflows in practice. Due to the

competition for shared resources, the workflow slack factors are set to be 12% to 26%

in different cases to allow some extra time for avoiding missing deadline. However, the

completion time of the first and second pipelines is in the same order as their deadlines,

which shows that to some extent, ATP is able to balance the resource usage among

multiple workflows according to their performance requirements. Furthermore, we

observe that the differences between the analytical estimates and the experimental

measurements of DEC are less than 2.0% for the mapping schemes produced by

ATP, and 5.1% for the default mapping scheme, which indicates the accuracy of our

cost models in describing the characteristics of workflow execution on a real Hadoop

cluster.

6.5.2 Simulation

Simulation Settings We generate a set of random workflows using the method in

Subsection 5.5.2. The number of precedence constraints of the workflow is set to 1.5

times of the number of jobs, if possible. The maximum possible number of tasks for

each job is randomly selected between 30 and 120. The workload of a job is randomly

selected between 0.6 × 1012 and 21.6 × 1012 flops when running in serial. Based on

our measurements in Subsection 3.2.2, the workload w(k) of a job with k > 1 tasks

is randomly selected between w(1)[1+α · (k− 1.4)] and w(1)[1+α · (k− 0.6)], where

α is fixed for each job, but is randomly selected from the range of [0.009, 0.013] for

different jobs. We calculate the sum of the average execution time of the serial jobs on

the critical path and set it as a deadline baseline. The percentage of execution time

107

for CPU-burst instructions of a task in each job on each type of machine is randomly

selected from 0.8, 0.9, and 1. The memory demand of a task in each job is randomly

selected from 0.5GB to 4GB at an interval of 0.5GB.

We evaluate these algorithms in a heterogeneous cluster consisting of machines

with four different specifications in Table 5.5, based on four types of Intel processors:

1) Six-core Xeon E7450, 2) Single Core Xeon, 3) Dual Core Xeon 7150N, and 4)

Itanium 2 9152M. Each homogeneous sub-cluster has the same number of machines.

Each scheduling simulation lasts for 3 days and is repeated 20 times with different

workflow instances, whose arrivals follow Poisson distribution. In the performance

evaluation, each data point represents the average of 20 runs with a standard

deviation. The parameter ε in BAWMEE and DAWSEE is set to 0.2. The workflow

size is randomly selected from 40 to 60 jobs; the cluster size and the average arrival

interval of workflows are set to be 128 machines and 30 minutes, respectively; the

deadline factor, which is a coefficient multiplied by the deadline baseline to decide

the actual workflow deadline, is set to 0.1.

We define the DEC reduction (DECR) over the other algorithms in comparison

as

DECR(Other) =
DECOther −DECDAWSEE

DECOther

· 100%,

where DECDAWSEE and DECOther are the average DEC per workflow achieved by

DAWSEE and the other algorithm, respectively. The deadline missing rate (DMR)

is defined as the ratio of the number of workflows missing their deadlines to the total

number of workflows.

Deadline Missing Rate We evaluate the DMR of BAWMEE, EEDAW, MinD+ED,

ATP-EEDAW, and DAWSEE with different deadline constraints, average workflow

arrival intervals, average workflow sizes, and cluster sizes, and plot the DMR in

Figures 6.6-6.9, respectively. We observe that the DMR of all the algorithms

108

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

0

2

4

6

8

10

12

14

16

18

20

22

24

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

BAWMEE

EEDAW

MinD+ED

DAWSEE

ATP-EEDAW

Figure 6.6 The DMR vs. deadlines.

900 1200 1500 1800 2100 2400 2700 3000 3300 3600

Average Arrival Interval (s)

-3

0

3

6

9

12

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

BAWMEE EEDAW MinDED DAWSEE ATPEEDAW

Figure 6.7 The DMR vs. arrival
intervals.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

The Number of Jobs on Average

0

4

8

12

16

20

24

28

32

36

40

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

BAWMEE

EEDAW

MinD+ED

DAWSEE

ATP-EEDAW

Figure 6.8 The DMR vs. workflow
sizes.

64 80 96 112 128 144 160 176 192 208 224 240 256

The Number of Machines

0

1

2

3

4

5

6

7

8

9

10

11

12

13

D
e
a
d
lin

e
 M

is
s
in

g
 R

a
te

 (
%

)

BAWMEE

EEDAW

MinD+ED

DAWSEE

ATP-EEDAW

Figure 6.9 The DMR vs. cluster sizes.

except ATP-EEDAW is close to zero. The performance superiority of DAWSEE

over ATP-EEDAW indicates that setting an appropriate job deadline and selecting

a suitable machine for each job according to the job deadline would help reduce the

execution time, which may have been prolonged by a lower degree of parallelism. Since

the deadline requirement is of the highest priority, we do not compare ATP-EEDAW

with others in terms of DEC in the rest of the simulation.

Dynamic Energy Saving We evaluate the DEC of BAWMEE, EEDAW, MinD+ED,

and DAWSEE under different deadline constraints obtained from the deadline baseline

multiplied by a factor from 0.05 to 1 with an interval of 0.05. The DEC measurements

of these algorithms are plotted in Figure 6.10, which shows that DAWSEE saves DEC

109

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

0

3

6

9

12

15

18

21

24

27

30

33

36

39

D
E

C
 p

e
r

W
o
rk

fl
o
w

 (
M

J
)

BAWMEE

EEDAW

MinDED

DAWSEE

Figure 6.10 The DEC vs. deadlines.

900 1200 1500 1800 2100 2400 2700 3000 3300 3600

Average Arrival Interval (s)

0

3

6

9

12

15

18

21

24

27

30

33

36

39

D
E

C
 p

e
r

W
o
rk

fl
o
w

 (
M

J
)

BAWMEE

EEDAW

MinDED

DAWSEE

Figure 6.11 The DEC vs. arrival
intervals.

by 12.6% to 35.0%, 15.8% to 32.2%, and 30.4% to 41.8% as the deadline increases

in comparison with BAWMEE, EEDAW, and MinD+ED, respectively. It is worth

pointing out that as the deadline increases, the DEC of DAWSEE decreases due

to a lower degree of parallelism. Furthermore, DAWSEE reduces the number of

tasks much more significantly than BAWMEE because the ATP in DAWSEE ignores

resource availability considered by subsequent DEETS.

To evaluate dynamic adoption, we run these four algorithms under different

average workflow arrival intervals of 15 to 60 minutes at a step of 5 minutes. The DEC

measurements of these algorithms are plotted in Figure 6.11, where we observe that

as the arrival interval increases, DAWSEE consumes relatively stable DEC, which is

7.1% to 30.5%, 17.7% to 28.2%, and 35.9% to 36.5% less than the DEC of BAWMEE,

EEDAW, and MinD+ED, respectively.

For scalability evaluation, we run these four algorithms under different average

workflow sizes with 5 to 100 jobs per workflow at an interval of 5 jobs. The maximum

and minimum workflow sizes are 2 jobs more and less than the average workflow size,

respectively. We plot the DECR of these algorithms in Figure 6.12, where we observe

that DAWSEE achieves an increased DECR from 15.5% to 29.5% and from 35.7% to

37.1% in comparison with EEDAW and MinD+ED, respectively. For small workflows

110

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

The Number of Jobs on Average

-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30
35
40

D
E

C
 R

e
d
u
c
ti
o
n
 (

%
)

DAWSEE over BAWMEE

DAWSEE over EEDAW

DAWSEE over MinD+ED

Figure 6.12 The DECR vs. workflow
sizes.

64 80 96 112 128 144 160 176 192 208 224 240 256

The Number of Machines

0

3

6

9

12

15

18

21

24

27

30

33

36

39

D
E

C
 p

e
r

W
o
rk

fl
o
w

 (
M

J
)

BAWMEE

EEDAW

MinDED

DAWSEE

Figure 6.13 The DEC vs. cluster sizes.

with 5 to 25 jobs that demand less resources, DAWSEE achieves negative DECR over

BAWMEE, because shared systems without resource competition lead to exclusive

resource use and thus joint optimization of task partitioning and resource allocation

in BAWMEE outperforms the respective optimization of separate subproblems in

DAWSEE.

We run these four algorithms under different cluster sizes of 64 to 256 machines

at a step of 16 machines for scalability test. The DEC measurements of these

algorithms are plotted in Figure 6.13, which shows that as the number of machines

increases, DAWSEE consumes relatively fixed dynamic energy, which is 16.7% to

28.4% and 35.8% to 36.4% less than the DEC of EEDAW andMinD+ED, respectively,

hence exhibiting a satisfactory scalability property with respect to the cluster size.

As the cluster size increases to 224 machines and beyond, with sufficient resources,

the energy saving from balancing the resource use among workflows in DAWSEE is

less than that from joint optimization of task partitioning and resource allocation

within a single workflow in BAWMEE. the superior performance of BAWMEE over

DAWSEE for large cluster sizes is not caused by the difference in the number of tasks.

111

6.6 Conclusion

We formulated a dynamic scheduling problem of big data workflows to minimize

energy consumption under deadline constraints in Hadoop systems with time-varying

computing resources. To solve the problem, we designed a semi-dynamic online

scheduling algorithm with adaptive task partitioning to reduce dynamic energy

consumption while meeting performance requirements from a global perspective. The

performance superiority of the proposed algorithm in term of dynamic energy saving

and deadline miss rates is illustrated by extensive simulation results and further

validated through real-life workflow implementation and experimental results using

the Oozie workflow engine in Hadoop/YARN.

112

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

7.1.1 Achievements

Performance Optimization of MapReduce Workflow Mapping in Clouds

Cloud computing provides a cost-effective computing platform for big data workflows

where moldable parallel computing models such as MapReduce are widely applied

to meet stringent performance requirements. The granularity of task partitioning in

each moldable job has a significant impact on workflow completion time and financial

cost that is decided by the total workload. We designed a big-data workflow mapping

model, based on which, we formulated a strongly NP-complete problem of workflow

mapping to minimize workflow makespan under a budget constraint in public clouds.

We designed an FPTAS for a special case with a pipeline-structured workflow executed

on virtual machines of a single class and a heuristic for the generalized problem with an

arbitrary DAG-structured workflow executed on virtual machines of multiple classes.

Energy Efficiency of MapReduce Workflow Mapping/Scheduling in Shared

Clusters Large-scale workflows for big data analytics have become a main consumer

of energy in data centers. Such big data workflows are typically comprised of

MapReduce programs, which are moldable parallel jobs running on any number

of processors decided prior to execution. However, most of the existing efforts

on energy-efficient computing were focused on independent MapReduce jobs and

workflows comprised of serial jobs. The widely adopted energy-saving techniques,

including task consolidation to reduce SEC by turning off idle servers and load

balancing to reduce DEC through DVFS, are not sufficient to address the energy

efficiency issue of big data workflows. Therefore, we directed our efforts to workflow

113

scheduling for dynamic energy saving by adaptively determining the degree of

parallelism in each job to mitigate the workload overhead while meeting a given

performance requirement. A moldable job typically follows a performance model

where the workload of each component task decreases and the total workload, which

decides DEC, increases as the number of parallel component tasks increases. This

model was validated with experimental results and served as a base of our workflow

scheduling solutions for energy saving of big data workflows.

We formulated a workflow scheduling problem to minimize the DEC of a given

workflow request under deadline and resource constraints in a Hadoop cluster, which

has been shown to be strongly NP-hard. We started with a special case with a chain

of moldable jobs on a homogeneous cluster, which has been proved to be weakly NP-

complete and solved by an FPTAS of linear time complexity with respect to 1/ǫ. By

leveraging the near optimality and low time complexity of this FPTAS, we designed

a heuristic for the generalized problem of statically scheduling a DAG-structured

workflow on a heterogeneous cluster. Static scheduling typically requires a priori

knowledge of exact job execution cost and an accurate snapshot of available computing

resources to schedule an individual MapReduce job, while dynamic scheduling may

lack a global perspective to balance the trade off between energy cost and execution

time of component jobs in each workflow. Therefore, we also proposed a semi-dynamic

online scheduling algorithm, which adaptively reduces the DEC of a set of MapReduce

workflows while meeting performance requirements from a global perspective, and

explicitly accounts for inaccurate execution time estimates and computing system

dynamics. The performance superiority of the proposed solutions was illustrated by

extensive simulation and experimental results in comparison with existing algorithms.

114

7.1.2 Discussion

Novelty In this dissertation, we optimize the mapping feasibility, workflow makespan,

and energy efficiency of big-data scientific workflows by adaptively determining the

degree of parallelism in each MapReduce job to reduce workload overhead. Our

approach is orthogonal to the existing techniques, and would add an additional level

of intelligence to the current computing platforms executing big data workflows.

Contributions The MapReduce workflow mapping problem for makespan minimization

in clouds and the MapReduce workflow scheduling problem for energy efficiency in

shared clusters are both strongly NP-complete. We proved that their special case

of a pipeline-structured workflow on homogeneous machines is weakly NP-complete,

and solved it by an FTPAS of linear time complexity with respect to 1/ǫ. Based on

the insights into the computational complexity of the aforementioned problems, we

leveraged the properties of near optimality and low time complexity of the FPTAS in

the design of heuristics for the generalized problems, yielding superior performances

over existing algorithms.

Application Scope Our approach of adjusting the degree of parallelism in each

MapReduce job in a workflow does not require any support from extra hardware

and third-party service providers, and thus can be applied to different computing

environments, such as public clouds and shared clusters. In addition to the

performance measurements on several standard big data benchmarks, such as

Word-Count and Grep in Section 3.2, we carefully investigated other big data

benchmarks, such as BigBench and TeraSort. The measurements of execution time

and energy consumption with different degrees of parallelism show that BigBench and

TeraSort do not follow the performance model of a moldable job. We observed that

most of the instructions in BigBench are actually I/O-bound. Hence, BigBench that

reads data from a single disk may not be considered as a typical parallel computing

115

program because I/O operations on the same disk are not performed in parallel.

Also, we observed that the map and reduce functions of TeraSort are empty, and the

majority of the workload in TeraSort occurs in the shuffling phase. We would like

to point out that our approach is most suitable for big data workflows comprised of

CPU-bound computing jobs whose main workloads are in the map and reduce phases.

In the Hadoop/Spark system, the reduction of job workload with a decreasing

number of parallel component tasks is attributed to less communication between

the resource manager and node managers for scheduling tasks and less overhead

for launching containers to execute tasks. In our experimental testbed, the highest

degree of parallelism supported by the system is only 23 and is considered small in

comparison with large-scale production computing systems. For a MapReduce job

with no more than 23 parallel tasks to process a large dataset, the task execution

time is far more than the overhead, so the workload variation is not very obvious

with different degrees of parallelism. However, in large-scale production systems,

we believe that adaptively determining the number of parallel component tasks in

a MapReduce job would significantly reduce the total workload. In addition, the

degree of parallelism should have a lower bound to limit the longest execution of a

task because resuming a failed task would involve a significant amount of workload.

Observations In our experimental results, we observed that the number of killed

tasks slightly varies in different runs of the same MapReduce job on the same input

data, and is closely related to the preset number of parallel tasks. This is an interesting

phenomenon and deserves further efforts for exploration.

7.2 Future Work

With the ever-increasing data volume, velocity, variety, and veracity, domain experts

in various scientific fields will be facing more challenges along the line of our research

in the coming years as follows.

116

In addition to CPU-bound MapReduce applications, there exist many I/O-

bound MapReduce applications, such as BigBench, which cannot be optimized based

on our approach in this dissertation. Therefore, it is critical to model and optimize

the performance and energy efficiency of I/O-bound MapReduce applications and

workflows comprised of such type of applications.

Spark on Hadoop/YARN based on the MapReduce framework is gaining

its popularity because it provides convenient programming APIs and supports

the processing of interactive and streaming data. Meanwhile, high-performance

computing paradigms such as MPI, OpenMP, CUDA, and OpenCL have flexible

computing and message passing models for accelerating complex computing. When

big data meet high-performance computing, performance optimization that considers

the integration of distributed data storage and parallel computing becomes a more

complex problem.

In machine learning and data mining, various intelligent classifiers have been

widely applied to next-generation scientific applications and their deep learning

strategies heavily rely on large-scale neural networks, which could be modeled as

big data workflows with layered structures. It is of paramount importance to

optimize the performance of and reduce the energy consumption of such workflows for

computational intelligence by exploiting integrated parallel computing and big data

technologies.

117

BIBLIOGRAPHY

[1] 2009. Statistical Computing. http://stat-computing.org/dataexpo/2009/the-data
.html.

[2] 2016. Apache Hadoop. http://hadoop.apache.org.

[3] 2016. Apache Oozie. https://oozie.apache.org.

[4] 2017. Atmospheric Sciences Division, Brookhaven National Laboratory.
http://www.ecd.bnl.gov/aboutASD.html.

[5] 2017. Climate Change Science Institute, Oak Ridge National Laboratory.
https://climatechangescience.ornl.gov.

[6] 2017. Spallation Neutron Source. https://neutrons.ornl.gov/sns.

[7] 2017. Relativistic Heavy Ion Collider, Brookhaven National Laboratory.
http://www.bnl.gov/rhic.

[8] 2017. PUMA Benchmarks and dataset downloads. https://engineering.purdue.edu
/ puma/datasets.htm.

[9] S. Abrishami and M. Naghibzadeh. Deadline-constrained workflow scheduling in
software as a service cloud. Scientia Iranica, (0), 2012.

[10] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema. Cost-driven scheduling of grid
workflows using partial critical paths. IEEE TPDS, 23(8):1400–1414, 2012.

[11] J. Leverich amd C. Kozyrakis. On the energy (in)efficiency of Hadoop clusters. ACM
SIGOPS Operating Systems Review, 44(1):61–65, 2010.

[12] H. Amur, J. Cipar, V. Gupta, G.R. Ganger, M.A. Kozuch, and K. Schwan. Robust and
flexible power-proportional storage. In Proc. of ACM SoCC, pages 217–228,
Indianapolis, IN, USA, Jun 2010.

[13] H. Arabnejad and J.G. Barbosa. A budget constrained scheduling algorithm for
workflow applications. Springer J. Grid Comp., 12(4):665–679, 2014.

[14] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A
Berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28,
Reliable Adaptive Distributed Systems Laboratory, University of California,
Berkeley, Feb 2009.

[15] R. Bajaj and D. Agrawal. Improving scheduling of tasks in a heterogeneous
environment. IEEE TPDS, 15(2):107–118, Feb. 2004.

118

[16] E. Bampis, V. Chau, D. Letsios, G. Lucarelli, I. Milis, and G. Zois, 2014. Energy
Efficient Scheduling of MapReduce Jobs. https://arxiv.org/pdf/1402.2810.pdf.

[17] M. Cardosa, A. Singh, H. Pucha, and A. Chandra. Exploiting spatio-temporal
tradeoffs for energy-aware MapReduce in the cloud. IEEE Tran. on
Computers, 61(12):1737–1751, 2012.

[18] C. Chen and C. Chu. A 3.42-approximation algorithm for scheduling malleable tasks
under precedence constraints. IEEE TPDS, 24(8):1479–1488, 2013.

[19] S. Chen, M. Song, and S. Sahni. Two techniques for fast computation of constrained
shortest paths. IEEE/ACM Tran. on Net., 16(1):105–115, 2008.

[20] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy efficiency for large-scale
MapReduce workloads with significant interactive analysis. In Proc. of ACM
EuroSys, pages 43–56, Bern, Switzerland, Apr 2012.

[21] Y. Chen, L. Keys, and R.H. Katz. Towards energy efficient MapReduce.
Technical Report No. UCB/EECS-2009-109, EECS Department, University
of California, Berkeley, Aug 2009.

[22] D. Cheng, P. Lama, C. Jiang, and X. Zhou. Towards energy efficiency in heterogeneous
Hadoop clusters by adaptive task assignment. In Proc. of IEEE ICDCS, pages
359–368, Columbus, OH, USA, Jun-Jul 2015.

[23] D. Cheng, J. Rao, C. Jiang, and X. Zhou. Resource and deadline-aware job scheduling
in dynamic Hadoop clusters. In Proc. of IEEE IPDPS, pages 956–965,
Hyderabad, India, May 2015.

[24] M. Drozdowski. Scheduling for Parallel Processing. Springer-Verlag London, 2009.

[25] J. Du and J. Y-T. Leung. Complexity of scheduling parallel task systems. SIAM J.
Disc. Math., 2(4):473–487, 1989.

[26] J.J. Durillo, V. Nae, and R. Prodan. Multi-objective workflow scheduling: An
analysis of the energy efficiency and makespan tradeoff. In Proc. of IEEE/ACM
CCGrid, pages 203–210, Delft, Netherlands, May 2013.

[27] J.J. Durillo, V. Nae, and R. Prodan. Multi-objective energy-efficient workflow
scheduling using list-based heuristics. Elsevier FGCS, 36:221–236, 2014.

[28] F. Ergun, R. Sinha, and L. Zhang. An improved FPTAS for restricted shortest path.
Info. Processing Letters, 83(5):287–291, 2002.

[29] B. Flaugher. The dark energy survey camera (decam). Bulletin of the American
Astronomical Society, 42(406), 2010.

[30] I. Goiri, K. Le, T.D. Nguyen, J. Guitart, J. Torres, and R. Bianchini. GreenHadoop:
Leveraging green energy in data-processing frameworks. In Proc. of ACM
EuroSys, pages 57–70, Bern, Switzerland, Apr 2012.

119

[31] T. F. Gonzalez, editor. Handbook of Approximation Algorithms and Metaheuristics.
Chapman and Hall/CRC, 2007.

[32] Y. Gu and Q. Wu. Optimizing distributed computing workflows in heterogeneous
network environments. In Proc. of the 11th Int. Conf. on Distributed
Computing and Networking, Kolkata, India, Jan. 3-6 2010.

[33] Y. Gu, Q. Wu, and N.S.V. Rao. Analyzing execution dynamics of scientific workflows
for latency minimization in resource sharing environments. In Proc. of the 7th
IEEE World Congress on Services, Washington DC, Jul. 4-9 2011.

[34] T. Hacker and K. Mahadik. Flexible resource allocation for reliable virtual cluster
computing systems. In Proc. of the ACM/IEEE Supercomputing Conference,
pages 48:1–48:12, 2011.

[35] B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing statistical data analysis in
the cloud. In Proc. of ACM SIGMOD, pages 1–12, New York, NY, USA, Jun
2013.

[36] R. Huang and H. Casanova. Automatic resource specification generation for resource
selection. Proceedings of the 2007 ACM/IEEE, 2007.

[37] S. Ibrahim, T.-D. Phanb, A. Carpen-Amarie, H.-E. Chihoubd, D. Moisee, and
G. Antoniu. Governing energy consumption in hadoop through cpu frequency
scaling: An analysis. Elsevier FGCS, 54:219–232, 2016.

[38] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints. In
Proc. of SPAA, pages 86–95, Las Vegas, Nevada, USA, Jul 2005.

[39] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints. J.
of Computer and System Sci., 78(1):245–259, 2012.

[40] Q. Jiang, Y.C. Lee, and A.Y. Zomaya. Executing large scale scientific workflow
ensembles in public clouds. In Proc. of IEEE ICPP, pages 520–529, Beijing,
China, Sep 2015.

[41] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. Hadoop performance modeling for
job estimation and resource provisioning. IEEE TPDS, 27(2):441–454, 2016.

[42] K.R. Krish, M.S. Iqbal, M.M. Rafique, and A.R. Butt. Towards energy awareness in
Hadoop. In Proc. of Int. Work. on Network-Aware Data Management, pages
16–22, New Orleans, LA, USA, Jun-Jul 2014.

[43] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune: Mitigating skew in
mapreduce applications. In Proc. of ACM SIGMOD, pages 25–36, Scottsdale,
AZ, USA, May 2012.

[44] W. Lang and J.M. Patel. Energy management for MapReduce clusters. Proceedings
of the VLDB Endowment, 3(1):129–139, 2010.

120

[45] Y.C. Lee, H. Han, A.Y. Zomaya, and M. Yousif. Resource-efficient workflow
scheduling in clouds. Elsevier Knowledge-Based Systems, 80:153–162, 2015.

[46] Y.C. Lee and A.Y. Zomaya. Energy conscious scheduling for distributed computing
systems under different operating conditions. IEEE TPDS, 22(8):1374–1381,
2011.

[47] Y.C. Lee and A.Y. Zomaya. Stretch out and compact: Workflow scheduling with
resource abundance. In Proc. of IEEE/ACM CCGrid, pages 203–210, Delft,
Netherlands, May 2013.

[48] J. Li, C. Pu, Y. Chen, V. Talwar, and D. Milojicic. Improving preemptive scheduling
with application-transparent checkpointing in shared clusters. In Proc. of ACM
Middleware, pages 222–234, Vancouver, BC, Canada, Dec 2015.

[49] K. Li. Scheduling precedence constrained tasks with reduced processor energy on
multiprocessor computers. IEEE Tran. on Computers, 61(12):1668–1681,
2012.

[50] P. Li, L. Ju, Z. Jia, and Z. Sun. SLA-aware energy-efficient scheduling scheme for
Hadoop YARN. In Proc. of IEEE HPCC, pages 623–628, New York, USA,
Aug 2015.

[51] K. Makarychev and D. Panigrahi. Precedence-constrained scheduling of malleable jobs
with preemption. In Proc. of ICALP, pages 823–834, Copenhagen, Denmark,
Jul 2014.

[52] M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proc. of ACM/IEEE SC, pages 1–12, Seatle,
WA, USA, Nov 2011.

[53] M. Mao, J. Li, and H. Marty. Cloud auto-scaling with deadline and budget
constraints. In Grid Computing, pages 41–48, Oct. 2010.

[54] Y. Mao, W. Wu, H. Zhang, and L. Luo. GreenPipe: a Hadoop based workflow system
on energy-efficient clouds. In Proc. of IPDPS Work. and PhD Forum, pages
2211–2219, Shanghai, China, May 2012.

[55] L. Mashayekhy, M.M. Nejad, D. Grosu, Q. Zhang, and W. Shi. Energy-aware
scheduling of MapReduce jobs for big data applications. IEEE TPDS,
26(10):2720–2733, 2015.

[56] V. Nagarajan, J. Wolf, A. Balmin, and K. Hildrum. FlowFlex: Malleable scheduling
for flows of MapReduce jobs. In Proc. of ACM/IFIP/USENIX Middleware,
pages 103–122, Beijing, China, Dec 2013.

[57] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and R. Sakellariou.
Energy-constrained provisioning for scientific workflow ensembles. In Proc. of
IEEE International Conference on Cloud and Green Computing, pages 34–41,
Karlsruhe, Germany, Sep-Oct 2013.

121

[58] M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical path algorithm for
scheduling scientific workflow applications on global grids. In IEEE Int. Conf.
on e-Science and Grid Comp., pages 35–42, Dec. 2007.

[59] A. Rasmussen, K. Gilmore, S.M. Kahn, J. Geary, S. Marshall, M. Nordby,
P. O’Connor, S. Olivier, J. Oliver, V. Radeka, T. Schalk, R. Schindler,
J. Tyson, R.V. Berg, and LSST Camera Team. The camera for LSST and
its focal plane array. Bulletin of the American Astronomical Society, 41(221),
2010.

[60] M.A. Rodriguez and R. Buyya. Deadline based resource provisioningand scheduling
algorithm for scientific workflows on clouds. IEEE Trans. on Cloud Comp.,
2(2):222–235, 2014.

[61] F. Arickx S. Verboven, P. Hellinckx and J. Broeckhove. Runtime prediction based grid
scheduling of parameter sweep jobs. In Proc. of IEEE Asia-Pacific Services
Computing Conference, pages 33–38, Taiwan, Dec 2008.

[62] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on heterogeneous
systems. In Proc. of the 18th IEEE IPDPS, volume 2, page 111, 2004.

[63] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiakos. Scheduling workflows
with budget constraints. In Sergei Gorlatch and Marco Danelutto, editors,
Integrated Research in GRID Computing, pages 189–202. Springer US, 2007.

[64] P. Sanders and J. Speck. Energy efficient frequency scaling and scheduling for
malleable tasks. In Proc. of Euro-Par, pages 167–178, Rhodes Island, Greece,
Aug 2012.

[65] T. Sandholm and K. Lai. Dynamic proportional share scheduling in hadoop. In Proc.
of Int. Work. on JSSPP, pages 110–131, Atlanta, GA, USA, Apr 2010.

[66] J. Shanthini and K.R. Shankarkumar. Anatomy study of execution time predictions
in heterogeneous systems. International Journal of Computer Applications,
45(7):39–43, 2012.

[67] B. Sharma, T. Wood, and C.R. Das. HybridMR: A hierarchical mapreduce scheduler
for hybrid data centers. In Proc. of IEEE ICDCS, pages 102–111, Philadelphia,
PA, USA, Jul 2013.

[68] H. Topcuoglu, S. Hariri, and M.Y. Wu. Performance effective and low-complexity
task scheduling for heterogeneous computing. IEEE TPDS, 13(3):260–274,
2002.

[69] V.V. Vazirani. Approximation Algorithms. Springer-Verlag Berlin Heidelberg, 2003.

[70] Y. Wang and W. Shi. On scheduling algorithms for MapReduce jobs in heterogeneous
clouds with budget constraints proceeding. In Proc. of OPODIS, pages 251–
265, Nice, France, Dec 2013.

122

[71] Y. Wang and W. Shi. Budget-driven scheduling algorithms for batches of MapReduce
jobs in heterogeneous clouds. IEEE Tran. on Cloud Comp., 2(3):306–319, 2014.

[72] C.Q. Wu and H. Cao. Optimizing the performance of big data workflows in multi-
cloud environments under budget constraint. In Proc. of IEEE SCC, pages
138–145, San Francisco, CA, USA, Jun - Jul 2016.

[73] C.Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li. End-to-end delay minimization for
scientific workflows in clouds under budget constraint. IEEE Tran. on Cloud
Comp., 3(2):169–181, 2015.

[74] Q. Wu and Y. Gu. Optimizing end-to-end performance of data-intensive computing
pipelines in heterogeneous network environments. J. of Parallel and
Distributed Computing, 71(2):254–265, 2011.

[75] X. Xu, W. Dou, X. Zhang, and J. Chen. Enreal: An energy-aware resource allocation
method for scientific workflow executions in cloud environment. IEEE Tran.
on Cloud Comp., 4(2):166–179, 2016.

[76] J. Yu. A budget constrained scheduling of workflow applications on utility grids using
genetic algorithms. In Proc. of SC WORKS Workshop, pages 1–10, 2006.

[77] J. Yu, R. Buyya, and C. Tham. Cost-based scheduling of scientific workflow
application on utility grids. In Proc. of the 1st Int. Conf. on e-Science and
Grid Comp., pages 140–147, Washington, DC, USA, 2005.

[78] D. Yuan, Y. Yang, X. Liu, and J. Chen. A data placement strategy in scientific cloud
workflows. Future Generation Computer Systems, 26(8):1200–1214, October
2010.

[79] L. Zhang, K. Li, C. Li, and K. Li. Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems. Elsevier
Info. Sci., 379:241–256, 2017.

[80] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li. Maximizing reliability with
energy conservation for parallel task scheduling in a heterogeneous cluster.
Elsevier Info. Sci., 319:113–131, 2015.

[81] W. Zheng and R. Sakellariou. Budget-deadline constrained workflow planning for
admission control. Springer J. Grid Comp., 11(4):633–651, 2013.

[82] Q. Zhu, J. Zhu, and G. Agrawal. Power-aware consolidation of scientific workflows
in virtualized environments. In Proc. of ACM/IEEE SC, pages 1–12, New
Orleans, LA, USA, Nov 2010.

[83] M. Zotkiewicz, M. Guzek, D. Kliazovich, and P. Bouvry. Minimum dependencies
energy-efficient scheduling in data centers. IEEE TPDS, 27(12):3561–3574,
2016.

123

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Summer 2017

	Performance optimization and energy efficiency of big-data computing workflows
	Tong Shu
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Dedication
	Acknowledgment
	Table Of Contents (1 of 3)
	Table Of Contents (2 of 3)
	Table Of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Performance Modeling And Optimization Framework
	Chapter 4: Performance Optimization Of Mapreduce Workflow Mapping In Clouds
	Chapter 5: Energy-Efficient Static Mapping Of Mapreduce Workflows In Shared Clusters
	Chapter 6: Energy-Efficient Dynamic Scheduling Of Mapreduce Workflows In Shared Clusters
	Chapter 7: Conclusion And Future Work
	Bibliography

	List Of Tables
	List Of Figures (1 of 3)
	List Of Figures (2 of 3)
	List Of Figures (3 of 3)

