93 research outputs found

    Data analysis using scale-space filtering and Bayesian probabilistic reasoning

    Get PDF
    This paper describes a program for analysis of output curves from Differential Thermal Analyzer (DTA). The program first extracts probabilistic qualitative features from a DTA curve of a soil sample, and then uses Bayesian probabilistic reasoning to infer the mineral in the soil. The qualifier module employs a simple and efficient extension of scale-space filtering suitable for handling DTA data. We have observed that points can vanish from contours in the scale-space image when filtering operations are not highly accurate. To handle the problem of vanishing points, perceptual organizations heuristics are used to group the points into lines. Next, these lines are grouped into contours by using additional heuristics. Probabilities are associated with these contours using domain-specific correlations. A Bayes tree classifier processes probabilistic features to infer the presence of different minerals in the soil. Experiments show that the algorithm that uses domain-specific correlation to infer qualitative features outperforms a domain-independent algorithm that does not

    Mass spectrometry data processing using zero-crossing lines in multi-scale of Gaussian derivative wavelet

    Get PDF
    Motivation: Peaks are the key information in mass spectrometry (MS) which has been increasingly used to discover diseases-related proteomic patterns. Peak detection is an essential step for MS-based proteomic data analysis. Recently, several peak detection algorithms have been proposed. However, in these algorithms, there are three major deficiencies: (i) because the noise is often removed, the true signal could also be removed; (ii) baseline removal step may get rid of true peaks and create new false peaks; (iii) in peak quantification step, a threshold of signal-to-noise ratio (SNR) is usually used to remove false peaks; however, noise estimations in SNR calculation are often inaccurate in either time or wavelet domain. In this article, we propose new algorithms to solve these problems. First, we use bivariate shrinkage estimator in stationary wavelet domain to avoid removing true peaks in denoising step. Second, without baseline removal, zero-crossing lines in multi-scale of derivative Gaussian wavelets are investigated with mixture of Gaussian to estimate discriminative parameters of peaks. Third, in quantification step, the frequency, SD, height and rank of peaks are used to detect both high and small energy peaks with robustness to noise

    Scale-space and edge detection using anisotropic diffusion

    Get PDF
    The scale-space technique introduced by Witkin involves generating coarser resolution images by convolving the original image with a Gaussian kernel. This approach has a major drawback: it is difficult to obtain accurately the locations of the “semantically meaningful” edges at coarse scales. In this paper we suggest a new definition of scale-space, and introduce a class of algorithms that realize it using a diffusion process. The diffusion coefficient is chosen to vary spatially in such a way as to encourage intraregion smoothing in preference to interregion smoothing. It is shown that the “no new maxima should be generated at coarse scales” property of conventional scale space is preserved. As the region boundaries in our approach remain sharp, we obtain a high quality edge detector which successfully exploits global information. Experimental results are shown on a number of images. The algorithm involves elementary, local operations replicated over the image making parallel hardware implementations feasible

    Rotation Invariant Object Recognition from One Training Example

    Get PDF
    Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds

    Multiscale extension of the gravitational approach to edge detection

    Get PDF
    The multiscale techniques for edge detection aim to combine the advantages of small and large scale methods, usually by blending their results. In this work we introduce a method for the multiscale extension of the Gravitational Edge Detector based on a t-norm T. We smoothen the image with a Gaussian filter at different scales then perform inter-scale edge tracking. Results are included illustrating the improvements resulting from the application of the multiscale approach in both a quantitative and a qualitative way

    Evaluation of sets of oriented and non-oriented receptive fields as local descriptors

    Get PDF
    Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The descriptors that we evaluated are Gaussian derivatives up to the third order, gray image patches, and Laplacian-based descriptors with either three scales or one scale filters. We compare selectivity and invariance to several affine changes such as rotation, scale, brightness, and viewpoint. Comparisons have been made keeping the dimensionality of the descriptors roughly constant. The overall results indicate a good performance by the descriptor based on a set of oriented Gaussian filters. It is interesting that oriented receptive fields similar to the Gaussian derivatives as well as receptive fields similar to the Laplacian are found in primate visual cortex

    Scale-Space: A Framework for Handling Image Structures at Multiple Scales

    Get PDF
    This article gives a tutorial overview of essential components of scale-space theory --- a framework for multi-scale signal representation, which has been developed by the computer vision community to analyse and interpret real-world images by automatic methods. 1 The need for multi-scale representation of image data An inherent property of real-world objects is that they only exist as meaningful entities over In: Proc. CERN School of Computing, Egmond aan Zee, The Netherlands, 8--21 September, 1996. certain ranges of scale. A simple example is the concept of a branch of a tree, which makes sense only at a scale from, say, a few centimeters to at most a few meters, It is meaningless to discuss the tree concept at the nanometer or kilometer level. At those scales, it is more relevant to talk about the molecules that form the leaves of the tree, and the forest in which the tree grows, respectively. This fact, that objects in the world appear in different ways depending on the scale of ..

    SKCS-A Separable Kernel Family with Compact Support to improve visual segmentation of handwritten data

    Get PDF
    Extraction of pertinent data from noisy gray level document images with various and complex backgrounds such as mail envelopes, bank checks, business forms, etc... remains a challenging problem in character recognition applications. It depends on the quality of the character segmentation process. Over the last few decades, mathematical tools have been developed for this purpose. Several authors show that the Gaussian kernel is unique and offers many beneficial properties. In their recent work Remaki and Cheriet proposed a new kernel family with compact supports (KCS) in scale space that achieved good performance in extracting data information with regard to the Gaussian kernel. In this paper, we focus in further improving the KCS efficiency by proposing a new separable version of kernel family namely (SKCS). This new kernel has also a compact support and preserves the most important properties of the Gaussian kernel in order to perform image segmentation efficiently and to make the recognizer task particularly easier. A practical comparison is established between results obtained by using the KCS and the SKCS operators. Our comparison is based on the information loss and the gain in time processing. Experiments, on real life data, for extracting handwritten data, from noisy gray level images, show promising performance of the SKCS kernel, especially in reducing drastically the processing time with regard to the KCS

    Wavelet primal sketch representation using Marr wavelet pyramid and its reconstruction

    Full text link

    Landmark-Based Registration of Curves via the Continuous Wavelet Transform

    Get PDF
    This paper is concerned with the problem of the alignment of multiple sets of curves. We analyze two real examples arising from the biomedical area for which we need to test whether there are any statistically significant differences between two subsets of subjects. To synchronize a set of curves, we propose a new nonparametric landmark-based registration method based on the alignment of the structural intensity of the zero-crossings of a wavelet transform. The structural intensity is a multiscale technique recently proposed by Bigot (2003, 2005) which highlights the main features of a signal observed with noise. We conduct a simulation study to compare our landmark-based registration approach with some existing methods for curve alignment. For the two real examples, we compare the registered curves with FANOVA techniques, and a detailed analysis of the warping functions is provided
    corecore