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Abstract. The multiscale techniques for edge detection aim to combine
the advantages of small and large scale methods, usually by blending
their results. In this work we introduce a method for the multiscale ex-
tension of the Gravitational Edge Detector based on a t-norm T . We
smoothen the image with a Gaussian filter at different scales then per-
form inter-scale edge tracking. Results are included illustrating the im-
provements resulting from the application of the multiscale approach in
both a quantitative and a qualitative way.

1 Introduction

In the literature there exist a wide amount (and diversity) of edge detection
methods, featuring very diverse techniques. The inspirations for such techniques
come from different fields, including soft computing, physics or statistics. Nev-
ertheless, at some point of the processing, most of them evaluate the intensity
or color of the pixels in the neighbourhood of each pixel. This evaluation is per-
formed in many different ways, such as local measurements, discrete convolutions
or pattern-matching.

When a neighbourhood-based evaluation is to be performed, it is necessary
to define the size it should have. That is, how many pixels are to be considered
as neighbours of each pixel. Some edge detection methods make use of fixed-
size neighbourhoods (as FIRE [23] or the convolution with the Sobel [25] or
Prewitt [20] operators), while others adapt it based upon the values of their
parameters (as the LOG [15] or Canny [3] operators). Even if some operators
are meant to be infinite, they are always implemented as a discrete filter with
finite support. Generally, smaller scales are related to spatially accurate edge
detection, but also with higher sensitivity to noise. In the case of some specific
detectors, the relationship between both of them has been studied. The most
relevant case is the Canny method. Canny [3] grounds its development in the
modeling and optimization of three criteria, being two of them the spatial accu-
racy (localization) and the single response to an edge. As one of the conclusions,
Canny stated that there was necessarily a trade-off between the accuracy of the
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response and the ability of missing spurious responses. This work has been later
revisited by different authors as Demigny [6] or McIlhagga [17]. However, it is
accepted the fact that larger scales make the detectors more robust against noise,
textures and spurious edges, to the cost of potentially displacing them from their
true position [19,12]. Some authors have aimed to determine the better-suited
scale for a detector, but no consensus has been reached so far [8].

In this work we elaborate on an edge detection method based on fixed 3× 3
neighbourhoods, extending it with notions from multiscale theory. More specifi-
cally, we perform edge detection on increasingly smoothed versions of the image
and the combination of their results.

In Section 2 we analyze the scaling problem of the gravitational approach to
edge detection, then introduce a multiscale algorithm. Section 3 includes some
quantitative experiments, while some conclusions are drawn in Section 4

2 The Multiscale Gravitational Edge Detector Based on
a t-norm T

2.1 The Gravitational Approach

In the original gravitational approach [26] to edge detection, each pixel in the
image is taken as a body of mass equal to its intensity. Then, the position of
the pixel is associated a gradient equal to the sum of the gravitational forces its
immediate neighbors produce on it. Considering the situation depicted in Fig. 1,
we have gi,j =

∑
k=1,...,8 F k.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
��

�
��

�
��

�
�	




�

qi−1,j+1 qi,j+1 qi+1,j+1

qi−1,j qi,j qi+1,j

qi−1,j−1 qi,j−1 qi+1,j−1

F1

F2

F3F4F5

F6

F7

F8

Fig. 1. Gravitational forces acting on a given pixel

An extension of the gravitational approach, namely Gravitational Edge De-
tector based on a t-norm T 1 (GED-T ), was introduced in [13], allowing the
substitution of the product of the masses (in the calculation of the gravitational
forces) by any other t-norm [13]. The effect and usability of each t-norm was
studied. For example, in Figure 1, the force F1 is

F1 =
T (qi,j , qi+1,j+1)

|r|2 · r

|r| (1)

1 A triangular norm (t-norm) is a mapping [0, 1]2 → [0, 1] that is increasing, commu-
tative, associative and has neutral element 1.
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where r stands for the vector connecting the pixels (in this case qi,j and qi+1,j+1).
The GED-T was shown to be competitive with the Canny method, the refer-

ence in the field. Even if performing worst in an average scenario, it outperformed
the Canny and Sobel methods in a significant amount of natural images [13].

2.2 Multiscale Edge Detection

As explained in Section 1, there is no easy solution for the scale-determination
problem. In fact, Torre and Poggio mention that, in order to characterize all of
the possible intensity changes, derivatives of different types, and possible differ-
ent scales would be needed [27]. Lindeberg [12] present a relevant study of the
behaviour of the edges with respect to the amount of smoothing the image, aim-
ing the automatic scale determination. The Anisotropic Diffusion, in the sense
of Perona and Malik [19], is also related to this idea, since it aims to combine
the small-scale filtering on the edges with the larger scale filtering of the objects
surface. An alternative direction is, instead of choosing the best possible scale,
combining the results obtained with many of them. This idea is based on the
fact that any feature at coarse level of resolution is required to posses a ’cause’
at a finer level of resolution, although the reverse is not true [19]. As pointed out
by Konishi et al. [10], this implies that edges existing at coarse scales continue
to exist at small scales. That is, we assume that the actual edges should appear
at any possible scale, while the noise and spurious responses should disappear at
larger ones. Hence, we only need to find a way to combine the spatial accuracy
of the detection at the small scales with the reliability of the classification at
the larger scales. Of course, we have to manage the fact that edges at larger
scales do not necessarily correspond (spatially) to their positions at the smaller
scales. The scale factor in edge detection has received some attention from the
community in the last 20 years [14], and many authors have further developed
multi-scale methods [21,10,24,5]

2.3 Multiscale Evolution of the GED-T

The GED-T has problems for scaling the neighbouhood of masses in Fig. 1,
mainly due to the nature of the intensity changes measurement. Pixels outside
the 3 × 3 windows may be considered, but their influence decreases drastically,
since the force they induce on the central pixel is inversely proportional to the
squared distance to the central pixel. Hence, larger windows tend to raise the
computational cost (due to the larger amount of forces calculated), but produce
similar results. This feature of the GED-T limits its ability to produce good
results, especially in high-noise environments.

Since it is not worth scaling the neighbourhood size, we propose to smooth
the original image with different Gaussian filters, and combine the results ob-
tained thereafter. That is, to vary the scale of the Gaussian filter used in the
preprocessing stage. Filters produced with large values of σ tend to oversmooth
images, but they are very effective suppressing noise in the image and allow the
detection of qualitatively new edges in the image (see [12] for some examples).



286 C. Lopez-Molina et al.

This approach is similar to that of, for example, Qian and Zhong [21] for extend-
ing the LOG method [15]. The idea of continuously smoothing a signal (in this
case, an image) has been widely studied in the literature. Specially interesting
is the case of the Gaussian smoothing, which is referred as Gaussian scale-space
(GSS). Different studies on the GSS (introduced by Iijima [28], but popularized
after Witkin [29]) have been presented by Babaud et al. [1], Yuille and Pog-
gio [30] and Florack and Kuijper [7], among others. The developments on the
study of the GSS gave rise to its application to several tasks, such as filtering
based on mathematical morphology [9], histogram analysis [4] or clustering [11].
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Fig. 2. Edge images generated on the span image applying the GED-TM after Gaussian
smoothing with different σ. Fuzzy edge images are converted into binary edge images
using NMS and the Rosin method for thresholding.

Examples of edge images obtained with GED-TM on images smoothed with
different amount of Gaussian smoothing are included in Fig. 2. These edge images
have been binarized after the GED-T procedure. In Fig. 2 we observe how larger
values of σ lead to better-looking edges, and to an almost complete removal of the
spurious responses. The spurious responses due to high-frequency signals (as the
texture of the span) disappear with relatively low σ, while the lower frequency
ones (as the imperfection on the right side of the image) only disappear with the
largest of the values of σ. However, it is also noteworthy how the shape of the
span is progressively degraded.

Let Gσ be the Gaussian convolution operator. Given a set of values of the
standard deviation of the Gaussian convolution, Ω = {σ1, . . . , σn}, we gener-
ate n versions of the image I. The GSS is therefore sampled with n images
I = {Gσ1(I), . . . , Gσn(I)}. We apply the GED-T on each of the images, then
threshold the fuzzy edge image using non-maxima suppression [3] and the Rosin
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method for thresholding [22]. That is, we generate a sequence of n fuzzy edge
images Zi=GED-T (Gσ1(I)), later turned into binary images Bi. Once we have
constructed the set of edge images B = {B1, . . . , Bn}, we consider that the po-
sition (i, j) is an edge pixel if:

(C1). It is an edge at the finest scale, i.e. B1(i, j) = 1 and
(C2). It is displaced at most Td positions in two consecutive edge images Bi,

Bi+1.

The constraint C1 is very easy to test. However, in the validation of C2 we
have to track the position of the edge pixel at each Bi. In order to do so, we
increasingly check the position of the edge pixel. We assume that the position
of the edge at the next step (if any) is the closest edge point at that scale. In
case the closest edge point is further away than Td positions, then we assume
the response is due to another edge, and discard the position (i, j). In this way,
we aim to combine the ability to remove spurious edges of the large values of σ
(C2) with the spatial accuracy of the small ones (C1). The procedure to do the
tracking is included in Algorithm 1. This procedure tracks the edges from finer
to coarser scale, in opposition to other works using coarse-to-fine tracking [10].

Data: A set of images B = {B1, . . . , Bn}, a distance threshold Td

Result: A binary edge image B
begin

for every edge pixel (i, j) of B1 do
s = 1;
(i, j)′ = (i, j);
δ = 0;
while s < n and Td ≥ δ do

// Update the position of the edge

δ = min(d((i, j)′, (k, l)) | B(s+1)(k, l) = 1);
(i, j)′ = argmin(k,l)(d((i, j)

′, (k, l)) | B(s+1)(k, l) = 1);

// Update edge image

s = s+ 1;

end
if s ≥ n then

B(i, j) = 1;
else

Discard (i, j);
end

end

end
Algorithm 1: Procedure for fine-to-coarse edge tracking.

We refer to our proposal as multiscale extension of the GED-T , briefly MGED-
T . The overall processing of the MGED-T is as presented in Fig. 3. As an example
of the performance of the procedure, we have applied the MGED-T on the span
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image used in Fig. 2 with three different t-norms. The selected t-norms are the
product (TP), the minimun (TM) and the �Lukasiewicz t-norm (TL) [13]. We have
used 4 sets of values of σ, the Euclidean distance d and Td = 1.5 (it includes all
the pixels in a 3×3 window centered at the pixel). As illustrated in Fig. 4, most
of the noise and spurious responses are removed, but the silhouette of the span
is still placed in the actual intersection of the objects.
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Fig. 3. Schematic visualization of the Multiscale GED-T

Since the algorithm elaborates on (and aims to improve the performance of)
the GED-T , it is necessary to estimate the computational overhead it implies.
We assume that the cost of the GED-T is O(M · N), where M and N are the
number of rows and columns of the image, respectively. The cost of MGED-T
having n different values of σ, is O(n ·M · N + |B1| · n). That is, the cost of
performing n times the GED-T procedure and then tracking the points of B1

along (up to) n edge images. We can safely assume that most of the points in
the image do not belong to any edge, and hence |B1| << M · N . Therefore,
O(n ·M ·N + |B1| · n) ≈ O(n ·M ·N), that is, n times the computational cost
of the original GED-T .
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Fig. 4. Edge images generated on the span image applying the MGED-TM, the
MGED-TP and the MGED-TL using different sets of values of σ

3 Some Practical Experiments

In [13] the GED-T was shown to be competitive with the Canny method, the
reference method in the field. It performed worst than the Canny method in
average, but beat it in a significant numbed of cases. The multiscale edge detec-
tion methods are meant to maintain the amount of true positive (TP) responses
while decreasing the number of false positives (FP). In this experiment we at-
tempt to compare the evolution of both statistical features (TP and FP) when
using different values of σ in the Gaussian smoothing. That is, whether the ex-
tra overhead the multiscale version implies is worth it or not. Note that the
performance measures based on statistical features are not completely satisfac-
tory, since they do not consider the overall shapes in the edge image. Moreover,
they penalize in the same way pixels being at very different distances of the
true edges [2,18]. However, even if they are not useful for evaluating the overall
quality of an image, they illustrate the specific fact we want to investigate in
this experiment.

For testing we select the first 50 images of the test subset of the BSDS [16].
The images have a resolution of 321 × 481 pixels in grayscale. Each image is
provided with 5 to 10 hand-made segmentations. Since those segmentations are
given as region boundaries, we use them as ground truth in the quantification
of the quality of the resulting edge images.

We have used in the experiments the MGED-T with Ω = {0, 0.1, . . . , σM},
where σM is a parameter we have progressively increased. For the original GED-
T we use the classical Gaussian smoothing with a single σM . In Fig. 5 we illus-
trate the evolution of TP and FP generated by the MGED-T and the GED-T
using different values of σM and t-norm T ∈ {TP, TM}. We take as a FP any
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Fig. 5. Results obtained by the MGED-T and the GED-T on the sample images. The
uppermost plot displays the average number of TP, while the second illustrates the
average number of FP.

pixel being at most 2.5 positions away from a true pixel. Note that the σM stands
for the standard deviation of G in the case of the GED-T and for the maximum
σ when using MGED-T .

We observe in Fig. 5 that the number of FP is usually larger than the number
of TP. Moreover, both quantities are reduced when σM increases. This is con-
sistent with the examples in Figs. 2 and 4, where larger values of σ resulted in
a lower number of edge points. The decrease of FP is due to the fact that noise
and textures are usually high-frequency signals, and are therefore tackled by Gσ

with relatively low σ. The decrease of TP is related to the fact that increasing
smoothing may potentially displace the edges further away from its true posi-
tion. Hence, the larger the value of σ, the more possibilities of the edges to be
considered FP, even if related to a true edge. The number of TP can also decrease
due to the overblurring of the image. Eventually, an edge may be smoothed to
the point of not being detected (see the image in Fig. 3). The fact that an edge
may become non-visible because of oversmoothing collides with the theoretical
considerations by Konishi [10], but is very common in the practical application
of multiscale methods.

We notice as well how the decrease of TP and FP cast different shapes. The
decrease of FP is very fast at the beginning (when the high frequency noise is
removed), and then decreases slowly. In the case of the TP, we observe a more
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homogeneous behaviour, casting a slow decrease. In this way, even if the number
of FP is much larger at the beginning (about 4 times higher in average), the
largest values of σ produce a similar number of TP and FP. We also observe
how the improvement of the MGED-T with respect to the GED-T increases
along with σ. Obviously, when n = 1 we have that the result produced by each
detector is the same. In the comparison of t-norms, we have that the TM-based
detectors always outperform their counterparts. Nevertheless, this is not the
question raised in this experiment, since we intend to compare the original with
the multiscale detectors.

Even if the improvement of the multiscale methods is evident, we have to bear
in mind that it comes to the cost of a computational increase proportional to n.
Therefore, we might find more interesting to use intermediate σM (in this case,
for example, σM = 3) rather than using as many scales as possible.

4 Conclusions

We have introduced a multiscale extension of the GED-T , denoted MGED-T .
In order to do so, we have used a fine-to-coarse edge tracking algorithm. Then
we have illustrated the improvement it represents, with some visual examples.
To conclude, we have tested the detector on a large number of images find-
ing that, when increasing the amount of smoothing, the MGED-T provides a
better preservation of the correctly detected edges while removing the spurious
responses. However, it comes to the cost of a higher computational complexity,
which might discard it in some scenarios.
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