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Abstract

This article gives a tutorial overview of essential components of scale-space theory — a
framework for multi-scale signal representation, which has been developed by the computer
vision community to analyse and interpret real-world images by automatic methods.

1 The need for multi-scale representation of image data

An inherent property of real-world objects is that they only exist as meaningful entities over
certain ranges of scale. A simple example is the concept of a branch of a tree, which makes sense
only at a scale from, say, a few centimeters to at most a few meters, It is meaningless to discuss
the tree concept at the nanometer or kilometer level. At those scales, it is more relevant to talk
about the molecules that form the leaves of the tree, and the forest in which the tree grows,
respectively. This fact, that objects in the world appear in different ways depending on the scale
of observation, has important implications if one aims at describing them. It shows that the
notion ofscaleis of utmost importance. This general need is well understood in cartography,
where maps are produced at different degrees of abstraction. Similarly in physics, phenomena are
modelled at several scales, ranging from particle physics and quantum mechanics at fine scales,
through solid mechanics and thermodynamics dealing with everyday phenomena, to astronomy
and relativity theory at scales much larger than those we are usually dealing with. Notably, the
form of description may be strongly dependent upon the scales at which the world is modelled,
and this is in clear contrast to certain idealized mathematical concepts, such as ’point’ and ’line’,
which are independent of the scale of observation.

Specifically, the need for multi-scale representation arises when designing methods for
automatically analysing and deriving information from real-world measurements. To be able to
extract any information from image data, one obviously has to interact with it using certain
operators. The type of information that can be obtained is largely determined by the relationship
between the size of the actual structures in the data and the size (resolution) of the operators
(probes). Some of the very fundamental problems in image processing concernwhatoperators to
use,whereto apply them andhow largethey should be. If these problems are not appropriately
addressed, then the task of interpreting the operator response can be very hard.

In certain controlled situations, appropriate scales for analysis may be knowna priori. For
example, a desirable quality of a physicist is his intuitive ability to select proper scales to model a
given situation. Under other circumstances, however, it may not be obvious at all to determine in
advance what are the proper scales. One such example is a vision system with the task of
analysing unknown scenes. Besides the inherent multi-scale properties of real-world objects
(which, in general, are unknown), such a system has to face the problems that the perspective
mapping gives rise to size variations, that noise is introduced in the image formation process, and
that the available data are two-dimensional data sets reflecting indirect properties of a
three-dimensional world. To be able to cope with these problems, an essential tool is a formal
theory for how to describe image structures at different scales.

2 Scale-space representation: Definition and basic ideas

Scale-space theory is a framework for early visual operations, which has been developed by the
computer vision community (in particular by Witkin [21], Koenderink [11], Yuille and Poggio
[23], Lindeberg [15] and Florack [4]) to handle the above-mentioned multi-scale nature of image
data. A main argument behind its construction is that if no prior information is available about
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Figure 1: A multi-scale representation of a signal is an ordered set of derived signals intended to represent

the original signal at different levels of scale.

what are the appropriate scales for a given data set, then the only reasonable approach for an
uncommitted vision system is to represent the input data at multiple scales. This means that the
original signal should be embedded into a one-parameter family of derived signals, in which
fine-scale structures are successively suppressed (see figure 1). How should such an idea be
carried out in practice? A crucial requirement is that structures at coarse scales in the multi-scale
representation should constitute simplifications of corresponding structures at finer scales—they
should not be accidental phenomena created by the method for suppressing fine-scale structures.
This idea has been formalized in a variety of ways by different authors. A noteworthy
coincidence is that similar conclusions can be obtained from several different starting points. A
main result is that if rather general conditions are imposed on the types of computations that are
to be performed, then convolution by the Gaussian kernel and its derivatives is singled out as a
canonical class of smoothing transformations. The requirements (scale-space axioms) that
specify the uniqueness are essentially linearity and spatial shift invariance, combined with
different ways of formalizing the notion that new structures should not be created in the
transformation from fine to coarse scales. In summary, for anyN -dimensional signal
f : RN ! R, its scale-space representationL : RN � R+ ! R is defined by

L(x; t) =

Z
�2RN

f(x� �) g(�) d� (1)

whereg : RN � R+ ! R denotes the Gaussian kernel

g(x; t) =
1

(2��2)D=2
e
�(x2

1
+���+x2D)=2t (2)

and the variancet of this kernel is referred to as thescale parameter. Equivalently, the
scale-space family can be obtained as the solution to the (linear) diffusion equation

@tL =
1

2
r2

L (3)

with initial conditionL(�; t) = f . Then, based on this representation,scale-space derivativesat
any scalet are defined by

Lx�(�; t) = @x
�1
1

::: x
�D
D

L(�; t) = (@x�1
1

::: x
�D
D

g(�; t)) � f: (4)

Figure 2(a) shows the result of applying Gaussian smoothing to a one-dimensional signal in this
way. Notice how this successive smoothing captures the intuitive notion of fine-scale information
being suppressed, and the signals becoming successively smoother. Figure 3 gives a
corresponding example for a two-dimensional image. Here, to emphasize the local variations in
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Figure 2: (a) The main idea of a scale-space representation is to generate a one-parameter family of derived

signals in which the fine-scale information is successively suppressed. This figure shows a signal which

has been successively smoothed by convolution with Gaussian kernels of increasing width. (b) Since new

zero-crossings cannot be created by the diffusion equation in the one-dimensional case, the trajectories of

zero-crossings in scale-space (here, zero-crossings of the second derivative) form paths across scales that

are never closed from below.

Figure 3: Different levels in the scale-space representation of a two-dimensional image at scale levels t =

0, 2, 8, 32, 128 and 512 together with grey-level blobs indicating local minima at each scale.
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the grey-level landscape, local minima in the grey-level images at each scale have been indicated
by dark blobs (with spatial extent determined from a certain watershed analogy, which essentially
describes how large a region associated with a local minimum can be filled with water, without
water flooding over to regions associated with other local minima). As can be seen, mainly small
blobs due to noise and texture are detected at fine scales. After a small amount of smoothing, the
buttons on the keyboard manifest themselves as distinct minima, whereas at even coarser scales
they merge to one unit (the keyboard). Also other dominant dark image structures (such as the
calculator, the cord and the receiver) appear as single blobs at coarser scales. This example gives
one illustration of the types of hierarchical shape decompositions that can be obtained by varying
the scale parameter in the scale-space representation. The relations between image structures at
different scales induced in this way is referred to asdeep structure[11, 15].

3 Axiomatic scale-space formulations

For a reader not familiar with the scale-space literature, the task of designing a multi-scale signal
representation may at first glance be regarded as somewhat arbitrary. Why make use of Gaussian
smoothing, and why not just carry outany type of “smoothing operation”? To illuminate the
special properties that have lead computer vision researchers to consider linear scale-space
representation as a natural model for an uncommitted visual front-end, we shall in this section
give a very brief review of a number of the major scale-space formulations. By necessity, this
presentation will be somewhat technical, and the hasty reader may without loss of continuity
proceed to section 4. More extensive reviews can be found in [14, 15, 17, 20].

Original formulation. When Witkin [21] introduced the term scale-space, he was concerned
with one-dimensional signals and observed that new local extrema cannot be created in this
family. Since differentiation commutes with convolution,

@xnL(�; t) = @xn(g(�; t) � f) = g(�; t) � @xnf; (5)

this non-creation property applies also to anynth-order spatial derivative computed from the
scale-space representation. Figure 2(b) illustrates this property, by showing zero-crossings of the
second derivative of the smoothed signal at different scales. Note that the trajectories of
zero-crossings in scale-space form paths across scales that are never closed from below. This
property does, however, not extend to dimensions higher than one.

Causality. Witkins observation shows that Gaussian convolution satisfies certain sufficiency
requirements for being a smoothing operation. The first proof of thenecessityof Gaussian
smoothing for generating a scale-space representation was given by Koenderink [11], who also
gave a formal extension of the scale-space theory to higher dimensions. He introduced the
concept ofcausality, which means that new level surfaces

f(x; y; t) 2 R
2 � R : L(x; y; t) = L0g (6)

must not be created in the scale-space representation when the scale parameter is increased. By
combining causality with the notions ofisotropyandhomogeneity, which essentially mean that
all spatial positions and all scale levels must be treated in a similar manner, he showed that the
scale-space representation must satisfy the diffusion equation. Related formulations have been
expressed by Yuille and Poggio [23] and by Hummel [9].

Non-creation of local extrema and semi-group structure. Lindeberg [15] considered the
problem of characterizing those kernels in one dimension that share the property of not
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introducing new local extrema in a signal under convolution. Such kernels have to be
non-negative and unimodal. Moreover, they can be completely classified. He also imposed a
semi-groupstructure on the family of kernels, which means that if two such kernels are
convolved with each other, then the resulting kernel will be a member of the same family

h(�; t1) � h(�; t2) = h(�; t1 + t2): (7)

In particular, this condition ensures that the transformation from a fine scale to any coarse scale
should be of the same type as the transformation from the original signal to any scale in the
scale-space representation,

L(�; t2) = fdefinitiong = h(�; t2) � f

= fsemi-groupg = (h(�; t2 � t1) � h(�; t1)) � f

= fassociativityg = h(�; t2 � t1) � (h(�; t1) � f)

= fdefinitiong = h(�; t2 � t1) � L(�; t1):

(8)

If this semi-group structure is combined with non-creation of local extrema and the existence of a
continuous scale parameter, and if the kernels are required to be symmetric and satisfy a mild
degree of smoothness in the scale direction, then it can be shown that the family is uniquely
determined to consist of Gaussian kernels.

Non-enhancement of local extrema and infinitesimal generator. If the semi-group structure
per seis combined with a strong continuity requirement with respect to the scale parameter, then
it follows from well-known results in functional analysis [7] that the scale-space family must have
an infinitesimal generator. In other words, if a transformation operatorTt from the input signal to
the scale-space representation at any scalet is defined byL(�; t) = Ttf , then under reasonable
regularity requirements there exists a limit case of this operator (the infinitesimal generator)

Af = lim
h#0

Thf � f

h
(9)

and the scale-space family satisfies the differential equation

lim
h#0

L(�; �; t+ h)� L(�; �; t)

h
= A(Ttf) = AL(�; t): (10)

Lindeberg [15, 17] showed that this structure implies that the scale-space family must satisfy the
diffusion equation if combined with a slightly modified formulation of Koenderinks causality
requirement expressed asnon-enhancement of local extrema:

Non-enhancement of local extrema:If for some scale levelt0 a pointx0 is a
non-degenerate local maximum for the scale-space representation at that level
(regarded as a function of the space coordinates only) then its value must not
increase when the scale parameter increases. Analogously, if a point is a
non-degenerate local minimum then its value must not decrease when the scale
parameter increases.

Moreover, he showed that this scale-space formulation extends to discrete data as well as to
non-symmetric temporal and spatio-temporal image domains.

Scale invariance. A formulation by Florack [4] and continued work by Pauwelset al. [19]
show that the class of allowable scale-space kernels can be restricted under weaker conditions,
essentially by combining the conditions about linearity, shift invariance, rotational invariance and
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semi-group structure withscale invariance. It can be shown that for a scale invariant rotationally
symmetric semi-group, the Fourier transform of the convolution kernel must be of the form

ĥ(!; �) = Ĥ(!�) = e
�� j!�jp=2 (11)

for some� > 0 andp > 0, which gives a one-parameter class of possible semi-groups. Florack
[4] proposed to use separability in Cartesian coordinates as an additional basic constraint. Except
in the one-dimensional case, this fixatesh to be a Gaussian. Pauwelset al. showed [19] that the
corresponding multi-scale representations havelocal infinitesimal generators(basically meaning
that the operatorA in (9) is a differential operator) if and only if the exponentp is an even
integer. Out of this countable set of choices,p = 2 is the only choice that corresponds to a
non-negative convolution kernel(recall from above that non-creation of local extrema implies
that the kernel has to be non-negative). Koenderink and van Doorn [12] carried out a closely
related study, and showed that derivative operators are natural operators to derive from a
scale-space representation given the assumption of scale invariance.

Relations to biological vision. Interestingly, the results of this computationally motivated
analysis are in qualitative agreement with the results of biological evolution. Neurophysiological
studies by Young [22] have shown that there are receptive field profiles in the mammalian retina
and visual cortex, which can be well modelled by superpositions of Gaussian derivatives.

Figure 4: Gaussian derivative kernels up to order four the two-dimensional case.

4 Multi-scale feature detection

The above-mentioned results serve as a formal and empirical justification for using Gaussian
filtering followed by derivative computations as initial steps in early processing of image data.
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More important, a catalogue is provided of what smoothing kernels are natural to use, as well as a
framework for relating filters of different types and at different scales. (Figure 4 shows a few
examples of filter kernels from thisfilter bank.) Linear filtering, however, cannot be used as the
only component in a vision system aimed at deriving symbolic representations from images;
some non-linear processing steps must be introduced into the analysis. More concretely, some
mechanism is required for combining the output of theseGaussian derivative operatorsof
different orders and at different scales into more explicit descriptors of the image geometry.
An approach that has been advocated by Koenderink and his co-workers is to describe image
properties in terms of differential geometric descriptors,i.e., different possibly non-linear
combinations of derivatives. Since one would typically like image descriptors to possess
invariance properties under certain transformations (typically, rotations, rescalings and affine or
perspective deformations), this naturally leads to the study of differential invariants [6]. A major
difference compared to traditional invariant theory, however, is that the primitive derivative
operators in this case are smoothed derivatives computed from the scale-space representation.1 In
this section, a few examples will be given of how this framework ofmulti-scale differential
geometrycan be used for expressing various types of multi-scale feature detectors. The output
from these feature detectors is in turn intended to be used as input to higher-level visual modules,
for task such as object recognition, object reconstruction/manipulation and robot navigation.

4.1 Feature detectors expressed in terms of local directional derivatives

Edge detection. A notion ofgauge coordinateswhich has been adopted in the computer vision
community is to express image descriptors in terms of local directional derivatives defined from
certain preferred coordinate systems. At any image point, introduce a local(u; v)-system such

that thev-direction is parallel to the gradient direction(cos�; sin�) = (Lx; Ly)=
q
L2
x + L2

y,

and introduce directional derivative operators along these directions by

@�u = sin�@x � cos� @y; @�v = cos� @x + sin� @y: (12)

Then, we can define an edge point as a point for which the gradient assumes a local maximum in
the gradient direction, and restate this edge definition as�

Lvv = 0;

Lvvv < 0;
(13)

whereLvv andLvvv denote second- and third-order directional derivatives in thev-direction.
After expansion to Cartesian coordinates and simplification, this edge definition assumes the form

�
~Lvv = L2

vLvv = L2
xLxx + 2LxLyLxy + L2

yLyy = 0;
~Lvvv = L3

vLvvv = L3
xLxxx + 3L2

xLyLxxy + 3LxL
2
yLxyy + L3

yLyyy < 0:
(14)

Interpolating for zero-crossings of~Lvv within the sign-constraints of~Lvvv gives a straightforward
method for sub-pixel edge detection. Figure 5(a) shows the result of applying this edge detector
to an image of an arm at scale levelst = 1:0, 16:0 and256:0. Observe how qualitatively different
types of edge curves are extracted at the different scales. A characteristic behaviour is that most
of the sharp edge structures corresponding to object boundaries give rise to edge curves at both
fine and coarse scales. Moreover, the number of spurious edges due to noise is much larger at fine
scales, whereas the localization of the edges can be poor at coarse scales. Notably, the shadow of
the arm can only be extracted as a connected curve at a coarse scale. This example constitutes
one illustration of theneedfor including image operators at coarse scales when extracting general
classes of image structures from real-world data.

1In this respect, there is a high degree of similarity to Schwartz distribution theory [8], although in scale-space
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Figure 5: Edges and bright ridges detected at scale levels t = 1:0, 16:0 and 256:0, respectively.

Ridge detection. A ridge detector can be expressed in a conceptually similar way as follows:
Introduce at any image point a local(p; q)-system aligned to the principal curvature directions
such that the mixed second-order derivative is zero,i.e., Lpq = 0. Then, we can define a bright
(dark) ridge point as a point for which the intensity assumes a local maximum in the main
principal curvature direction. In terms of the(p; q)-coordinates, this definition can be written8<

:
Lp = 0;

Lpp < 0;

jLppj � jLqqj;

or

8<
:

Lq = 0;

Lqq < 0;

jLqqj � jLppj;

(15)

depending on whether thep- or theq-direction corresponds to the maximum absolute value of the
principal curvatures. At points where the gradient does not vanish, this condition can equivalently
be expressed as follows in the(u; v)-system and in terms of Cartesian partial derivatives�

Luv = LxLy (Lxx � Lyy)� (L2
x � L2

y)Lxy = 0;

L2
uu � L2

vv = (L2
y � L2

x) (Lxx � Lyy)� 4LxLyLxy > 0:
(16)

Figure 5(b) shows the result of applying this ridge detector to an image of an arm. As can be
seen, the types of ridge curves that are obtained are strongly strongly scale dependent. At very
fine scales, the ridge detector responds mainly to noise and spurious fine-scale textures. Then, the
fingers give rise to ridge curves at scale levelt = 16:0, and the arm as a whole is extracted as a
long ridge curve att = 256:0. Notably, these ridge descriptors are much more sensitive to the
choice of scale levels than the edge features in figure 5(a). In particular, no single scale level is
appropriate for describing the dominant ridge structures in this image.

theory it is neither needed nor desired to approach the infinitesimal limit case when the support regions of the test
functions associated with the generalized derivative operators tend to zero.
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Corner detection and blob detection. A useful entity for blob detection is the curvature of
level curves� multiplied by the gradient magnitudeLv raised to the power of three

~� = L
3
v � = L

2
vLuu = L

2
xLyy + L

2
yLxx � 2LxLyLxy; (17)

whereas zero-crossings and spatial maxima of the Laplacian

r2
L = Lxx + Lyy = Luu + Lvv (18)

can be used for stereo matching and blob detection, respectively.

5 Automatic scale selection

Although the scale-space theory presented so far provides a well-founded framework for
representingand detecting image structures at multiple scales, it does not address the problem of
how toselectlocally appropriate scales for further analysis. Whereas the problem of finding “the
best scales” for handling a given real-world data set may be regarded as intractable unless further
information is available, there are many situations in which a mechanism is required for
generating hypotheses about interesting scales. A general methodology for feature detection with
automatic scale selection has been proposed in [15, 16]. The approach is based on the evolution
over scales of (possibly non-linear) combinations ofnormalized derivativesdefined by

@�i = t
=2

@xi ; (19)

where is a free parameter to be tuned to the task at hand. The basic idea proposed in the
abovementioned sources is to apply the feature detector at all scales, and thenselect scale levels
from the scales at which normalized measures of feature strength assume local maxima with
respect to scale. Intuitively, this approach corresponds to the selection of the scales at which the
operator response is as strongest. Moreover, it can be shown that the specific form of derivative
normalization in (19) spans a large class of normalization approaches for which the scale
selection mechanism has a desirable behaviour under size variations of the input pattern.

Feature type Normalized strength measure for scale selection Value of

Edge t=2 Lv 1/2
Ridge t2(Lpp � Lqq)

2 3/4
Corner t2L2

vLuu 1
Blob tr2L 1

Table I: Measures of feature strength used for feature detection with automatic scale selection.

Figures 6–15 show a few examples of integrating this scale selection mechanism with the
differential geometric feature detectors considered in section 4. Here, the extracted features have
been illustrated graphically in two ways; (i) as two-dimensional spatial projections onto the
image plane, and (ii) as three-dimensional entities in scale-space, with the height over the image
plane representing the selected scales. Figure 6–8 show the result of performing edge detection
on the arm image and introducing a measure of significance by integrating the measure of edge
strength along each connected edge curve. As can be seen, coarse scales are selected for the
diffuse edge structures due to illumination effects, whereas fine scales are selected for the sharp
edges due to object boundaries. Notably, the selected scale levels vary substantially along the
shadow of the arm, which is necessary to obtain a good trade-off in the inherent conflict between
detection and localization properties. Figures 9–11 show corresponding ridge curves detected
from the other hand image. Observe how a coarse-scale ridge descriptor is obtained for the arm
as a whole, whereas the individual fingers give rise to ridge curves at finer scales. Figures 12–13
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Figure 6: Results of edge detection with automatic

scale selection on the arm image (all edges).

Figure 7: The 50 and 10 most significant edge

curves as ranked on the integrated measure of edge

strength along each connected edge curve.

Figure 8: Three-dimensional view of the 10 most

significant edge curves drawn in three-dimensional

scale-space with the selected scale represented as

the height over the image plane.

Figure 9: The 10 strongest bright ridge curves ob-

tained by with automatic scale selection.

Figure 10: Three-dimensional view of the five

strongest ridge curves in scale-space.

Figure 11: Backprojections of the five strongest

ridge curves to the image domain in terms of unions

of bright circles centered at the ridge curves and

with the radius proportional to the selected scale.
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show the result of detecting corners in a closely related way, by detecting points at which the
normalized measure of corner strength assumes a simultaneous local maximum over space and
scale. Note in figure 13 that a coarse scale response is obtained for the large size corner structure
as a whole, whereas finer-scale responses are obtained for the superimposed corner structures of
smaller spatial extent. Figures 14–15 show corresponding result of blob detection on a sunflower
image, where we can see how the size variations in the image of the sunflowers are captured in
the features extracted by the scale selection mechanism.

Figure 12: Results of corner detection with auto-

matic scale selection on an office scene

(200 strongest junction responses).

Figure 13: Three-dimensional view of corners de-

tected from a synthetic image with corner structures

of different spatial extent.

Figure 14: Results of blob detection detection with

automatic scale selection on a sunflower image

(200 strongest blob responses).

Figure 15: Three-dimensional view of the blob re-

sponses obtained from the sunflower image.

6 Summary and outlook

Scale-space theory provides a framework for modelling image structures at multiple scales, and
the output from the scale-space representation can be used as input to a variety of early visual
tasks. Operations like feature detection, feature classification and shape computation can be
expressed directly in terms of (possibly non-linear) combinations of Gaussian derivatives at
multiple scales. In this sense, the scale-space representation can serve as a basis for early vision.
In the terminology of Kuhn [13], scale-space theory can also be seen as a promising seed to a
new paradigm for computer vision. During the last few decades a number of other approaches to
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multi-scale representations have been developed, which are more or less related to scale-space
theory, notably the theories ofpyramids[1, 2, 10],wavelets[18, 3] andmulti-grid methods[5].
Despite their qualitative differences, the increasing popularity of each of these approaches
indicates that the crucial notion ofscaleis increasingly appreciated by the computer vision
community and by researchers in other fields. The goal of this presentation has been to provide a
few selected pointers to central ideas behind the recently developed scale-space theory and to
show examples of straightforward applications. Main issues of current research concern the
incorporation of scale-space techniques into increasingly complex visual modules and the
extension to non-linear scale-space concepts more committed to specific tasks at hand [20].
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