84 research outputs found

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Efficient Resource Management for Cloud Computing Environments

    Get PDF
    Cloud computing has recently gained popularity as a cost-effective model for hosting and delivering services over the Internet. In a cloud computing environment, a cloud provider packages its physical resources in data centers into virtual resources and offers them to service providers using a pay-as-you-go pricing model. Meanwhile, a service provider uses the rented virtual resources to host its services. This large-scale multi-tenant architecture of cloud computing systems raises key challenges regarding how data centers resources should be controlled and managed by both service and cloud providers. This thesis addresses several key challenges pertaining to resource management in cloud environments. From the perspective of service providers, we address the problem of selecting appropriate data centers for service hosting with consideration of resource price, service quality as well as dynamic reconfiguration costs. From the perspective of cloud providers, as it has been reported that workload in real data centers can be typically divided into server-based applications and MapReduce applications with different performance and scheduling criteria, we provide separate resource management solutions for each type of workloads. For server-based applications, we provide a dynamic capacity provisioning scheme that dynamically adjusts the number of active servers to achieve the best trade-off between energy savings and scheduling delay, while considering heterogeneous resource characteristics of both workload and physical machines. For MapReduce applications, we first analyzed task run-time resource consumption of a large variety of MapReduce jobs and discovered it can vary significantly over-time, depending on the phase the task is currently executing. We then present a novel scheduling algorithm that controls task execution at the level of phases with the aim of improving both job running time and resource utilization. Through detailed simulations and experiments using real cloud clusters, we have found our proposed solutions achieve substantial gain compared to current state-of-art resource management solutions, and therefore have strong implications in the design of real cloud resource management systems in practice

    Efficient Resource Management for Cloud Computing Environments

    Get PDF
    Cloud computing has recently gained popularity as a cost-effective model for hosting and delivering services over the Internet. In a cloud computing environment, a cloud provider packages its physical resources in data centers into virtual resources and offers them to service providers using a pay-as-you-go pricing model. Meanwhile, a service provider uses the rented virtual resources to host its services. This large-scale multi-tenant architecture of cloud computing systems raises key challenges regarding how data centers resources should be controlled and managed by both service and cloud providers. This thesis addresses several key challenges pertaining to resource management in cloud environments. From the perspective of service providers, we address the problem of selecting appropriate data centers for service hosting with consideration of resource price, service quality as well as dynamic reconfiguration costs. From the perspective of cloud providers, as it has been reported that workload in real data centers can be typically divided into server-based applications and MapReduce applications with different performance and scheduling criteria, we provide separate resource management solutions for each type of workloads. For server-based applications, we provide a dynamic capacity provisioning scheme that dynamically adjusts the number of active servers to achieve the best trade-off between energy savings and scheduling delay, while considering heterogeneous resource characteristics of both workload and physical machines. For MapReduce applications, we first analyzed task run-time resource consumption of a large variety of MapReduce jobs and discovered it can vary significantly over-time, depending on the phase the task is currently executing. We then present a novel scheduling algorithm that controls task execution at the level of phases with the aim of improving both job running time and resource utilization. Through detailed simulations and experiments using real cloud clusters, we have found our proposed solutions achieve substantial gain compared to current state-of-art resource management solutions, and therefore have strong implications in the design of real cloud resource management systems in practice

    Power Management in Heterogeneous MapReduce Cluster

    Get PDF
    The growing expenses of power in data centers as compared to the operation costs has been a concern for the past several decades. It has been predicted that without an intervention, the energy cost will soon outgrow the infrastructure and operation cost. Therefore, it is of great importance to make data center clusters more energy efficient which is critical for avoiding system overheating and failures. In addition, energy inefficiency causes not only the loss of capital but also environmental pollution. Various Power Management(PM) strategies have been developed over the years to make system more energy efficient and to counteract the sharply rising cost of electricity. However, it is still a challenge to make the system both power efficient and computation efficient due to many underlying system constraints. In this thesis, we investigate the Power Management technique in heterogeneous MapReduce clusters while also maintaining the required system QoS (Quality of Service). For a cluster that supports MapReduce jobs, it is necessary to develop a PM technique that also considers the data availability. We develop our PM strategy by exploiting the fact that the servers in the system are underutilized most of the time. Hence, we first develop a model of our testbed and study how the server utilization levels affect the power consumption and the system throughput. With the established models, we form and solve the power optimization problem for heterogeneous MadReduce clusters where we control the server utilization levels intelligently to minimize the total power consumption. We have conducted simulations and shown the power savings achieved using our PM technique. Then we validate some of our simulation results by running experiments in a real testbed. Our simulation and experimental data have shown that our PM strategy works well for heterogeneous MapReduce clusters which consists of different power efficient and inefficient servers. Adviser: Ying L

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Scheduling in Mapreduce Clusters

    Get PDF
    MapReduce is a framework proposed by Google for processing huge amounts of data in a distributed environment. The simplicity of the programming model and the fault-tolerance feature of the framework make it very popular in Big Data processing. As MapReduce clusters get popular, their scheduling becomes increasingly important. On one hand, many MapReduce applications have high performance requirements, for example, on response time and/or throughput. On the other hand, with the increasing size of MapReduce clusters, the energy-efficient scheduling of MapReduce clusters becomes inevitable. These scheduling challenges, however, have not been systematically studied. The objective of this dissertation is to provide MapReduce applications with low cost and energy consumption through the development of scheduling theory and algorithms, energy models, and energy-aware resource management. In particular, we will investigate energy-efficient scheduling in hybrid CPU-GPU MapReduce clusters. This research work is expected to have a breakthrough in Big Data processing, particularly in providing green computing to Big Data applications such as social network analysis, medical care data mining, and financial fraud detection. The tools we propose to develop are expected to increase utilization and reduce energy consumption for MapReduce clusters. In this PhD dissertation, we propose to address the aforementioned challenges by investigating and developing 1) a match-making scheduling algorithm for improving the data locality of Map- Reduce applications, 2) a real-time scheduling algorithm for heterogeneous Map- Reduce clusters, and 3) an energy-efficient scheduler for hybrid CPU-GPU Map- Reduce cluster. Advisers: Ying Lu and David Swanso

    Energy consumption in big data environments – a systematic mapping study

    Get PDF
    Big Data is a term that describes a large volume of structured and unstructured data. Big Data must be acquired, stored, analyzed and visualized by means of non-conventional methods requiring normally a big set of resources, which includes energy consumption. Although Big Data is not new as a phenomenom, its explosion of the interest in literature is recent and its study in new scenarios presents several gaps. On the other hand, Green IT is also a growing field in computing, given the increasing role of IT in energy consumption in the world. Green IT is aimed to reduce IT-related energy consumption and overall IT environmental impact. In order to investigate the reported initiatives regarding the Big Data and Green IT with a focus of energy consumption, the authors conducted a systematic mapping on the topic. The search strategy which was used resulted in 28 relevant studies which were relevant to the topic. We found that a majority of the studies performed present algorithms designed to reduce the energy consumption in data centres. The rest of the studies present benchmarks and energy measurements, reviews, proposals of hardware-based solutions, as well as studies which give an overview of one or more aspects on Big Data.publishedVersio

    Towards auto-scaling in the cloud: online resource allocation techniques

    Get PDF
    Cloud computing provides an easy access to computing resources. Customers can acquire and release resources any time. However, it is not trivial to determine when and how many resources to allocate. Many applications running in the cloud face workload changes that affect their resource demand. The first thought is to plan capacity either for the average load or for the peak load. In the first case there is less cost incurred, but performance will be affected if the peak load occurs. The second case leads to money wastage, since resources will remain underutilized most of the time. Therefore there is a need for a more sophisticated resource provisioning techniques that can automatically scale the application resources according to workload demand and performance constrains. Large cloud providers such as Amazon, Microsoft, RightScale provide auto-scaling services. However, without the proper configuration and testing such services can do more harm than good. In this work I investigate application specific online resource allocation techniques that allow to dynamically adapt to incoming workload, minimize the cost of virtual resources and meet user-specified performance objectives

    Task Scheduling in Big Data Platforms: A Systematic Literature Review

    Get PDF
    Context: Hadoop, Spark, Storm, and Mesos are very well known frameworks in both research and industrial communities that allow expressing and processing distributed computations on massive amounts of data. Multiple scheduling algorithms have been proposed to ensure that short interactive jobs, large batch jobs, and guaranteed-capacity production jobs running on these frameworks can deliver results quickly while maintaining a high throughput. However, only a few works have examined the effectiveness of these algorithms. Objective: The Evidence-based Software Engineering (EBSE) paradigm and its core tool, i.e., the Systematic Literature Review (SLR), have been introduced to the Software Engineering community in 2004 to help researchers systematically and objectively gather and aggregate research evidences about different topics. In this paper, we conduct a SLR of task scheduling algorithms that have been proposed for big data platforms. Method: We analyse the design decisions of different scheduling models proposed in the literature for Hadoop, Spark, Storm, and Mesos over the period between 2005 and 2016. We provide a research taxonomy for succinct classification of these scheduling models. We also compare the algorithms in terms of performance, resources utilization, and failure recovery mechanisms. Results: Our searches identifies 586 studies from journals, conferences and workshops having the highest quality in this field. This SLR reports about different types of scheduling models (dynamic, constrained, and adaptive) and the main motivations behind them (including data locality, workload balancing, resources utilization, and energy efficiency). A discussion of some open issues and future challenges pertaining to improving the current studies is provided
    • …
    corecore