

Accepted Manuscript

Task Scheduling in Big Data Platforms: A Systematic Literature
Review

Mbarka Soualhia, Foutse Khomh, Sofiène Tahar

PII: S0164-1212(17)30195-4
DOI: 10.1016/j.jss.2017.09.001
Reference: JSS 10033

To appear in: The Journal of Systems & Software

Received date: 20 October 2016
Revised date: 18 July 2017
Accepted date: 1 September 2017

Please cite this article as: Mbarka Soualhia, Foutse Khomh, Sofiène Tahar, Task Scheduling in Big
Data Platforms: A Systematic Literature Review, The Journal of Systems & Software (2017), doi:
10.1016/j.jss.2017.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211520040?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jss.2017.09.001
http://dx.doi.org/10.1016/j.jss.2017.09.001

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• A systematic review of scheduling models for Hadoop/Spark/Storm/Mesos
(2005-2016)

• An analysis of the scheduling models proposed for
Hadoop, Spark, Storm, and Mesos

• A research taxonomy for succinct classi

cation of the proposed scheduling models

• A discussion of some future challenges pertaining to
improving the current models

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Task Scheduling in Big Data Platforms:
A Systematic Literature Review

Mbarka Soualhia∗1, Foutse Khomh∗∗ , Sofiène Tahar∗

∗Concordia University, ∗∗Polytechnique Montréal, Montréal, Quebec, Canada
{soualhia,tahar}@ece.concordia.ca , foutse.khomh@polymtl.ca

Abstract

Context: Hadoop, Spark, Storm, and Mesos are very well known frameworks in both research and industrial communities
that allow expressing and processing distributed computations on massive amounts of data. Multiple scheduling algo-
rithms have been proposed to ensure that short interactive jobs, large batch jobs, and guaranteed-capacity production
jobs running on these frameworks can deliver results quickly while maintaining a high throughput. However, only a few
works have examined the effectiveness of these algorithms.
Objective: The Evidence-based Software Engineering (EBSE) paradigm and its core tool, i.e., the Systematic Literature
Review (SLR), have been introduced to the Software Engineering community in 2004 to help researchers systematically
and objectively gather and aggregate research evidences about different topics. In this paper, we conduct a SLR of task
scheduling algorithms that have been proposed for big data platforms.
Method: We analyse the design decisions of different scheduling models proposed in the literature for Hadoop, Spark,
Storm, and Mesos over the period between 2005 and 2016. We provide a research taxonomy for succinct classification
of these scheduling models. We also compare the algorithms in terms of performance, resources utilization, and failure
recovery mechanisms.
Results: Our searches identifies 586 studies from journals, conferences and workshops having the highest quality in this
field. This SLR reports about different types of scheduling models (dynamic, constrained, and adaptive) and the main
motivations behind them (including data locality, workload balancing, resources utilization, and energy efficiency). A
discussion of some open issues and future challenges pertaining to improving the current studies is provided.

Keywords: Task Scheduling, Hadoop, Spark, Storm, Mesos, Systematic Literature Review.

1. Introduction

The processing and analysis of datasets in cloud
environments has become an important and challenging
problem, because of the exponential growth of data
generated by social networks, research and healthcare
platforms, just to name a few. Hadoop [1], Spark [2],
Storm [3], and Mesos [4] are examples of widely used
frameworks for distributed storage and distributed
processing of ultra large data-sets in the cloud. Many
large organisations like Yahoo!, Google, IBM, Facebook,
or Amazon have deployed these well-known big data
frameworks [5]. Hadoop, Spark, Storm, and Mesos
are multi-tasking frameworks that support a variety of
different types of tasks processing. They have a pluggable
architecture that permits the use of schedulers optimized
for particular workloads and applications. The scheduling
of tasks in these frameworks is of a paramount importance
since it affects the computation time and resources utili-
sation. However, because of the dynamic nature of cloud

1Corresponding author: Mbarka Soualhia
(soualhia@ece.concordia.ca)

environments, efficient task scheduling is very challenging.
Multiple algorithms have been proposed to improve how
tasks are submitted, packaged, scheduled and recovered
(in case of failures) in these frameworks. Yet, only a
few works have compared the proposed algorithms and
investigated their impact on the performance of the afore-
mentioned frameworks. To the best of our knowledge,
there is no published literature that clearly articulates
the problem of scheduling in big data frameworks and
provides a research taxonomy for succinct classification
of the existing scheduling techniques in Hadoop, Spark,
Storm, and Mesos frameworks. Previous efforts [6], [7] [8]
that attempted to provide a comprehensive review of
scheduling issues in big data platforms were limited
to Hadoop only. Moreover, they did not include all
papers that were published during the periods covered
by their studies (i.e., 2012 and 2015). Also, these three
studies only propose general descriptions of Hadoop
schedulers in terms of architecture and objectives (e.g.,
learning, resources management) and do not discuss their
limitations. Neither do they discuss future research direc-
tions to improve these existing task scheduling approaches.

Preprint submitted to Journal of Systems and Software September 5, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In this paper, we follow the Evidence-based Software
Engineering (EBSE) paradigm in order to conduct a Sys-
tematic Literature Review (SLR) [9] of task scheduling
techniques in Hadoop, Spark, Storm, and Mesos, with the
aim to identify and classify the open challenges associated
with task scheduling in these frameworks.
We discuss different approaches and models of task
scheduling proposed for these four frameworks, that gained
a lot of momentum in the last decade in both research and
commercial communities. Also, we analyse the proposed
design decision of each approach in terms of performance,
resources utilization, failure recovery mechanisms, and en-
ergy efficiency. Our searches identified 586 journals, con-
ferences and workshops papers published in top ranked
software engineering venues between 2005 and 2016. We
organize our SLR in three parts:

• Part 1: Task Scheduling Issues in Big Data Plat-
forms:

First, we present the main issues related to task schedul-
ing in Hadoop, Spark, Storm, and Mesos, and explain how
these issues are addressed by researchers in the existing lit-
erature. We classify the issues into 6 main categories as fol-
lows: resources management, data management (including
data locality, replication and placement issues), fairness,
workload balancing, fault-tolerance, and energy-efficiency.

• Part 2: Task Scheduling Solutions in Big Data Plat-
forms:

Second, we describe the different types of scheduling ap-
proaches available in the open literature and discuss their
impact on the performance of the schedulers of the four
frameworks. Overall, we observe that we can classify the
scheduling approaches used in Hadoop, Spark, Storm, and
Mesos into three main categories: dynamic, constrained
and adaptive scheduling.

• Part 3: Research Directions on Task Scheduling in
Big Data Platforms:

Third, we describe some of the future research direc-
tions that can be addressed in each category discussed
previously in part 1 and part 2 of the SLR. From the
limitations of previous work (discussed in part 2), we
build a roadmap for future research to improve existing
scheduling approaches.

The remainder of this paper is organized as follows:
Section 2 briefly introduces Hadoop, Spark, Storm, and
Mesos. Section 3 describes the methodology followed in
this Systematic Literature Review. Sections 4, 5 and 6
discuss our study and the findings of this review, and posi-
tion our work in the existing literature. Section 7 presents
our conclusions, and outlines the main findings of this sys-
tematic review.

2. Background

Figure 1 describes the relationships between MapRe-
duce, Hadoop, Spark, Storm, and Mesos. Hadoop is a well-
known processing platform that implements the MapRe-
duce programming model. Spark is a novel in-memory
computing framework that can be running on Hadoop.
Storm is a distributed computation framework for real
time applications. Spark and Storm can implement the
MapReduce programming model, but with different fea-
tures to handle their topologies and data models. These
platforms can be typically deployed in a cluster, that can
be managed by Mesos or YARN (Yet Another Resources
Negotiator), which are cluster managers. In the sequel, we
briefly describe MapReduce, Hadoop, Spark, Storm, and
Mesos.

Implement

MapReduce

Apache Mesos

Programming
Model

Processing
Platform

Apache Hadoop

Topolgy: Map & Reduce
Data Model: <key, value>

Apache Spark

 Topolgy: DAG operators
 Data Model: RDD

Apache Storm

Topolgy: DAG operators
Data Model: tuples stream

Cluster
Manager

 YARN

Manage

RDD: Resilient Distributed Dataset
DAG: Directed Acyclic Graph
YARN: Yet Another Resources Negotiator

Figure 1: An overview of relationships among MapReduce, Hadoop,
Spark, Storm, and Mesos

2.1. Programming Model: MapReduce

MapReduce [10] is a programming model for process-
ing big amounts of data using a large number of comput-
ers (nodes). It subdivides the received users’ requests into
parallel jobs and executes them on processing nodes where
data are located, instead of sending data to the nodes that
execute the jobs. A MapReduce job is composed of “map”
and “reduce” functions and the input data. The input
data represents a set of distributed files that contain the
data to be processed. The map and reduce functions are
commonly used in functional programming languages like
Lisp. The map function takes the input data and outputs
a set of <key, value> pairs. The reduce function takes
the set of values for a given key as input and emits the

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

output data for this key. A shuffling step is performed to
transfer the map outputs to the corresponding reducers.
The set of intermediate keys are sorted by Hadoop and
given to the reducers. For each intermediate key, Hadoop
passes the key and its corresponding sorted intermediate
values to the reduce function. The reducers (i.e., worker
running a reduce function) use a hash function to collect
the intermediate data obtained from the mappers (i.e.,
worker running a map function) for the same key. Each
reducer can execute a set of intermediate results belong-
ing to the mappers at a time. The final output of the
reduce function will be stored in a file in the distributed
file system [11]. MapReduce follows a master-slave model.
The master is known as “JobTracker”, which controls the
execution of the “map” and “reduce” functions across the
slave workers using “TaskTrackers”. The JobTracker and
the TaskTrackers control the job execution to ensure that
all functions are executed and have their input data as
shown in Figure 2.

User
Program

Ouput File 0

Master

Worker

Worker

Worker

Worker

Worker

Split 0

Split 1

Split 4

Split 2

Split 3

1. Fork 1. Fork1. Fork

2. Assign
 Map

2. Assign
 Reduce

3. Read

4. Local
 Write

6. Remote
 Read

7. Write

Reduce PhaseMap Phase Intermediate Files Output FilesInput Files

Task Tracker

Job Tracker

Client

Ouput File 1

5. Shuffle & Sort
 Based on K

Figure 2: An overview of Job Execution in MapReduce [11]

2.2. Processing Platforms

In the sequel, we describe Hadoop, Spark, and Storm
processing platforms and we briefly discuss task scheduling
issues in these platforms.

2.2.1. Apache Hadoop

Hadoop [12] has become the de facto standard for pro-
cessing large data in today’s cloud environments. It is a
Java-based MapReduce implementation for large clusters
that was proposed by Cutting and Cafarella in 2005 [12].
Hadoop is composed of two main components: the Hadoop
Distributed File System (HDFS) and the MapReduce
framework. The HDFS is responsible for storing and man-
aging the input of the map function as well as the output
of the reduce function. The Hadoop MapReduce frame-
work follows a master-slave model [11]. The JobTracker
running on the master is responsible for managing the job
execution, progress and the status of the workers (slaves).
Each worker in Hadoop is composed of a TaskTracker and
a DataNode. The TaskTracker is responsible for process-
ing the jobs using their corresponding input data located in

the DataNode [11]. Hadoop allows the processing of large
data-sets across a distributed cluster using a simple pro-
gramming model. It is designed to hide all details related
to the job processing (such as error handling or distribu-
tion of tasks across the workers). This allows developers to
focus only on enhancing computation issues (in terms of
response time, resources utilisation, energy consumption
etc.) in their parallel programs rather than parallelism.

2.2.2. Apache Spark

Spark [2] is a novel in-memory computing framework
written in Scala for Hadoop, proposed in 2010. It was de-
veloped to address the problem in the MapReduce model,
which accepts only a particular linear data flow format
for distributed programs. Spark uses a data structure
called Resilient Distributed Dataset (RDD), which is a
distributed memory abstraction that allows for in-memory
computations on large clusters in a fault-tolerant way [13].
In MapReduce programs, the input data are read from the
disk then mapped through a map function, and reduced
using a reduce function to get the output data that will be
stored on the disk. Whereas in Spark programs, the RDDs
serve as a working set for distributed programs, which offer
a restricted form of distributed shared memory [2]. The
RDDs support more functions, compared to MapReduce,
that can be classified into two main categories; the “trans-
formation” and the “action” functions. The tranforma-
tion function can be a map, filter, sample, union, or an
intersetcion operation. While an action function can be
a reduce, collect, countbykey, take, or takeordered opera-
tion. Consequently, the RDDs allow to reduce the latency
for both iterative and interactive data analysis applica-
tions by several orders of magnitude when compared to
Hadoop [13]. Spark is comprised of two main components:
a cluster manager and a distributed storage system. Spark
supports the native Spark cluster, Hadoop YARN [14], or
Mesos [4] as a cluster manager. Also, it supports commu-
nication with a multitude of distributed storage systems
including HDFS, MapR File System (MapR-FS), and Cas-
sandra [15].

2.2.3. Apache Storm

MapReduce and Hadoop are designed for offline batch
processing of static data in cloud environments, which
makes them not suitable for processing stream data ap-
plications in the cloud (e.g., Twitter) [3]. To alleviate this
issue, Storm [3] has emerged in 2011 as a promising com-
putation platform for stream data processing. Storm is
a distributed computation framework written in Clojure
and Java, and designed for performing computations of
streams of data in real time. In order to be processed in
Storm, an application should be modelled as a directed
graph called a topology that includes spouts and bolts,
and the data strems of the applications can be routed and
grouped through this graph. Particularly, there are dif-
ferent grouping startegy to control the routing of data
streams through the directed graph including the field

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

grouping, global grouping, all grouping, and shuffle group-
ing [3]. The spouts are sources of data stream (sequence
of tuples), they read data from different sources including
database, messaging frameworks, and distributed file sys-
tems. The bolts are used to process data messages and
to acknowledge the processing of data messages when it
is completed. Also, they can be used to generate other
data messages for the subsequent bolts to process. Gen-
erally, one can utilize the bolts for filtering, managing,
aggregating the data messages, or to interact with exter-
nal systems. Storm can achieve a good reliability by using
efficient procedures to control message processing. Also, it
has fault-tolerant mechanisms that allow to restart failed
workers in case of failures [16].

2.2.4. Task Scheduling

In general, task scheduling is of paramount impor-
tance since it aims at allocating a number of dependent
and/or independent tasks to the machines having enough
resources in the clusters. An effective scheduler can find
the optimal task distribution across the machines in a clus-
ter, in accordance with execution time requirements and
resources availability. An optimal task distribution min-
imises the mean execution time of the scheduled tasks and
maximises the utilisation of the allocated resources. This
is in order to maximise the response time of the received
computations (tasks to be processed), and reduce (avoid)
resources waste. Each big-data platform in the cloud is
equipped with a scheduler that manages the assignment
of tasks. Here, we briefly present as examples the well-
known schedulers proposed for Hadoop that gained a lot
of attention from both industry and academia. In Hadoop,
the JobTracker is responsible for scheduling and provision-
ing the submitted jobs and tasks. It has a scheduling al-
gorithm, which initial implementation was based on the
First In First Out (FIFO) principle. The scheduling func-
tions were first regrouped in one daemon. Hadoop devel-
opers decided later to subdivide them into one Resource
Manager and (per-application) Application Master to ease
the addition of new pluggable schedulers. YARN (Yet An-
other Resources Negotiator) [14] is the daemon responsible
for managing applications’ resources. Facebook and Ya-
hoo! have developed two new schedulers for Hadoop: Fair
scheduler [17] and Capacity scheduler [18], respectively.

2.3. Cluster Manager: Apache Mesos

Mesos [4] is an open-source cluster manager that pro-
vides efficient resource usage and sharing across multiple
cluster computing frameworks. It was proposed in 2009
by the University of California, Berkeley. Instead of a cen-
tralized approach, Mesos supports a two-level scheduling
approach to allocate the resources to the frameworks (in
this context, a framework is a software system that exe-
cutes one or more jobs in a cluster). Hence, Mesos enables
efficient resources sharing in a fine-grained way. So, the
master node in Mesos decides the amount of resources to

be assigned for each framework. Then, each framework ac-
cepts the resources it needs and decides which jobs to exe-
cute on those resources. This approach can help optimize
the allocation of resources as well as provide near-optimal
data locality [4].

3. Methodology of the S.L.R.

The following subsections present our proposed
methodology to perform the Systematic Literature Review
(SLR), and the outcomes of the SLR:

3.1. Conducting the Study

3.1.1. Data Sources

Following the guidelines given in [9], we start our
SLR using the following relevant search engines: IEEE
Xplore, ACM, Google Scholar, CiteSeer, Engineering Vil-
lage, Web of Science and ScienceDirect. We perform an
electronically-based search and consider the main terms
related to this review: “scheduling”, “task scheduling”,
“scheduler”, “MapReduce”, “Hadoop”, “Spark”, “Storm”,
and “Mesos”. We use the same search strings for all seven
search engines. We look for published scientific literature
related to task scheduling in Hadoop, Spark, Storm and
Mesos between 2005 and 2016. Then, we restrict our study
to a number of journals, conferences, workshops and tech-
nical reports having the highest quality and considered
as the most important resources in this field. We perform
this step by selecting the studies published in journals with
high impact factors, conferences/workshops with competi-
tive acceptance rates and technical reports with high num-
ber of citations. Also, we check the citation of the studies
in order to evaluate their impact in this field. Other stud-
ies are rejected for quality reasons (e.g., the study is only
a small increment over a previous study, a technical report
that is extended into a journal or a conference/workshop
paper, etc). Table 1 presents a non-exhaustive list of work-
shops, conferences and journals considered in our SLR.

Table 1: A Non-Exhaustive List of Journals, Conferences, and Work-
shops Considered in our SLR

Journals

- Journal of Systems and Software (JSS)
- Future Generation Computer Systems (FGCS)
- Transactions on Parallel and Distributed Systems (TPDS)
- Transactions on Service Computing (TSC)
Conferences

- IEEE INFOCOM
- IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid)
- IEEE International Conference on Distributed Computing Sys-
tems (ICDCS)
Workshops

- Workshop on Data Engineering
- Workshop on Parallel Distributed Processing and Ph.D Forum
- Symposium on High-Performance Parallel and Distributed Com-
puting

3.1.2. Search and Selection Process

The search and selection process for the relevant stud-
ies from data sources is organized in three rounds as de-
scribed in Figure 3.

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Round 1: we perform a mapping study named also
a scoping review in order to identify and categorise
the primary studies related to the SLR based on their
scope. This scoping review helps identify the main
issues addressed and studied in the available litera-
ture. Next, we select the most relevant studies based
on their titles and abstracts. Any irrelevant study is
removed. If there is any doubt about any study at
this level, the study is kept.

• Round 2: it consists of a manual search of the stud-
ies obtained in the previous step (i.e., Round 1),
which are identified as the main sources for the SLR.
It is necessary to check the reliability of the selected
studies. To do so, the remaining studies at this step
are carefully read. Then, the irrelevant studies are
removed based on the selection criteria defined in the
work of Dyba and Dingsoyr [19]. More details about
the used criteria are given in Section 3.2.

• Round 3: we perform a snowball search based on
guidelines from [20]. We apply a backward snowball
search using the reference list of papers obtained in
the second round, to identify new papers and studies.
We use the same selection criteria (as in Round 2) to
decide whether to include or exclude a paper. These
remaining papers are read carefully.

Round 2:
Manual Search

Round 1:
Electronic Search

Round 3:
Snowball Search

Part 1

Part 2

Part 3

492 papers

94 papers

Data Sources

Selected
Studies

237 papers

237 papers

331 papers

Figure 3: Overview of SLR Methodology

3.2. Quality of the Selected Papers

We apply different inclusion and exclusion criteria on
the remaining studies in the second and third rounds.
These selection criteria can help decide whether to include
or not a paper for further search. Only relevant studies
that are retained will be used in the SLR analysis to answer
our research questions. (1) Only papers describing issues
related to Hadoop, Spark, Storm, and Mesos schedulers
and proposing models to improve their performance are
included. (2) Documents presented in the form of power
point presentations, abstract, and submitted papers are
not included in this review.

3.3. Outcomes of the Study

The different search stages of our SLR identify a to-
tal of 586 papers. Specifically, we obtain 492 papers from
Round 1, from which we extract 237 papers after Round
2. Next, we discover 94 new papers during the snowball

phase (i.e., Round 3). In total, the number of papers an-
alyzed in this SLR is 492 + 94 = 586 (from Round 1 and
Round 3). This is after removing those papers that are
not related to task scheduling in Hadoop, Spark, Storm,
or Mesos, and duplicates that are found by more than one
search engine. When a paper is found by two search en-
gines in Round 1, we keep the one published in the search
engine having the highest number of papers. For exam-
ple, if a paper is found by IEEE and ACM and IEEE has
the highest number of obtained study, we keep the one in
IEEE and remove the duplicate in ACM. The results ob-
tained on each of the seven search engines, for the three
rounds are presented in Table 2.

Table 2: Results of SLR Rounds

Search Engine Round 1 Round 2 Round 3

- IEEE 252 143 50
- ACM 95 61 28
- CiteSeer 41 8 2
- Google Scholar 37 6 9
- ScienceDirect 39 12 5
- Web of Science 5 1 0
- Engineering Village 23 6 0
Total 492 237 94

3.4. SLR Organization

The following paragraphs describe the motivation for
each part in the SLR:

Part 1: Task Scheduling Issues in Big Data Platforms:

This part provides a comprehensive overview of task
scheduling in Hadoop, Spark, Storm, and Mesos. It aims
at identifying the main topics of task scheduling addressed
in these frameworks. Hence, it can help determine the
challenges and issues that have been studied by both re-
search and commercial communities. The identified chal-
lenges and issues will help draw the map of the state of re-
search on task scheduling in these computing frameworks.

Part 2: Task Scheduling Solutions in Big Data Platforms:

This part describes the proposed solutions in the ex-
isting literature that addressed the scheduling issues iden-
tified in Part 1 . This exhaustive analysis can help give
a comprehensive overview about the characteristics of the
proposed solutions, their main objectives and their limita-
tions. In fact, it presents the advantages and limitations
of each solution that aimed to improve Hadoop, Spark,
Storm, and Mesos schedulers over time. Furthermore, it
can help identify some future work that can be addressed
by researchers in order to better improve the schedulers of
these frameworks.

Part 3: Research Directions on Task Scheduling in Big
Data Platforms:

This part identifies some of the future work that can
be done to cover the drawbacks of the solutions reported
in Part 2 . Based on the limitations of these proposed
solutions, we aim to identify some aspects that can be

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

enhanced to better improve Hadoop, Spark, Storm, and
Mesos schedulers. Part 3 draws a roadmap for further
studies on task scheduling in these frameworks.

3.5. SLR Analysis Approach

We perform a manual search over the papers found at
the different search stages. To do so, we proceed in two
steps. First, we skim through the papers, reading the most
relevant parts to get an overview of the issues addressed
in the existing literature to construct Part 1 . Next, we
classify the obtained studies in different categories based
on their scope to ease the analysis of the selected papers.
Also, we compute statistics about the number of published
studies and papers (i) in each category; and (ii) the evo-
lution of this metric over time (from 2005 up to 2016) to
get an overview of the most studied scheduling issues in
Hadoop, Spark, Storm, and Mesos. Second, we carefully
analyse all papers in order to extract the relevant informa-
tion about the proposed approaches and their limitations
to build Part 2 . Indeed, we classify the proposed ap-
proaches in different categories following the list of issues
identified in Part 1 . If there is a study that is addressing
two issues at the same time, it will be included in both
categories. Finally, to develop Part 3 , we identify some
future work that can be addressed to cover the limitations
of the approaches discussed in Part 2 . The following sec-
tions present and discuss the results of the three parts in
our SLR.

4. Task Scheduling Issues In Big Data Infrastruc-
tures

Before addressing the first part of the SLR, we examine
the candidate papers based on their publication years to
identify the distribution of the related studies over time.
Figure 4 shows the interest of researchers on task schedul-
ing for big data frameworks over time. We notice that
during the first three years, after proposing Hadoop in
2005, there was no study that analysed scheduling issues
in Hadoop. This is arguably due to the fact that re-
searchers were more interested in the computing functions
of Hadoop and were striving to improve them. Next, we
observe that in 2008, the topic of scheduling in Hadoop
started gaining attraction, with 2 papers published on the
topic in 2008. A limited number of studies were performed
on the topic between 2009 (11 papers) and 2010 (19 pa-
pers). Then, the number of studies significantly increased
from 11 papers in 2009 to 50 papers in 2016. This can
be explained by the constant increase of the popularity of
Hadoop (Hadoop is now widely used by different compa-
nies and research labs). Also, the high number of Hadoop
users was affecting the overall performance of the sched-
uler and hence many studies were needed to resolve the is-
sues faced while deploying Hadoop. With the emergence of
Mesos (2009), Spark (2010) and Storm (2011), many other
works were done to study the performance of these plat-
forms in Cloud environments. We can claim that during

three years starting from 2014 until 2016, a minimum of
45 studies were published on Hadoop/Spark/Mesos/Storm
scheduling issues each year; highlighting the importance of
this research topic. Also, we find that the majority of the
studies were addressing scheduling issues in Hadoop and
only a few works were analysing the other three platforms.
This can be explained by the popularity of Hadoop in both
academia and industry and also because Hadoop was pro-
posed before the other platforms (in 2005).

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0
10

20
30

40
50

0 0 0 2

11
19

32
38

43 45
48 50

N
um

be
r
of

P
ap

er
s

Figure 4: Distribution of Papers over Years [2005-2016]

Next, we identify the addressed task scheduling issues
in big data platforms using the papers obtained from the
three rounds. We find that we can classify these papers
into six categories as shown in Figure 5. For each category,
we briefly describe the addressed issues in the schedulers
of the big data platforms. Next, we select a relevant work
from the open literature, for each category, as an example
that can formally describe these issues and better illustrate
the addressed problems. The obtained categories can be
described as follows:

Hadoop, Spark,
Storm and Mesos

Schedulers

Resources Utilisation
(65 papers)

Data Managment
(78 papers)

Fairness
(49 papers)

Workload Balancing
(61 papers)

Fault-Tolerance
(42 papers)

Energy Efficiency
(36 papers)

Data Locality
(44 papers)

Data Placement
(21 papers)

Data Replication
(13 papers)

Figure 5: Scoping Review Results

4.1. Resources Utilisation (65 papers)

4.1.1. General Definition

In general, the resources allocation process aims to
distribute the available resources across the scheduled

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tasks, in order to ensure a good quality of services for users
and to reduce the cost of the services for cloud providers.
Particularly, the computing resources (e.g., CPU cores,
memory) are distributed using the two basic computing
units in a MapReduce job; map and reduce slots. A
slot is the basic unit used to abstract the computing
resources (e.g., CPU cores, memory) in Hadoop, Spark,
and Storm. It is used to indicate the capacity of a worker
(e.g., TaskTracker). There exist two types of slots in a
cluster: a slot that can be assigned to a map task, and
a slot to be assigned to a reduce task. These computing
units are statically configured by the administrator
before launching a cluster. The map slots must be only
allocated to the map tasks and the reduce slots must be
only given to the reduce tasks. The allocation of these
slots should be executed under the constraint that the
map tasks should be executed and finished before their
corresponding reduce task starts. Specifically, the map
and reduce phases in a job have a tight dependency on
each other. Indeed, the map tasks can be running in
parallel since they are small and independent. The reduce
tasks will be launched in parallel with the copy and merge
phases and will not release their assigned slots until all
reduce tasks are completed. Hence, they take much longer
time to be finished. So, this fundamental interdependence
can lead to a repeatedly observed starvation problem.
Furthermore, the map and reduce tasks may have highly
varying resources requests over time, which makes it
difficult for the scheduler to efficiently utilize the cluster
resources. In addition, given the dynamic nature of cloud
applications, the resources allocation process can be
complex and may fail to allocate the required resources
for some jobs (i.e., long running-time jobs) or fail to
prevent tasks from the starvation problem. As a result,
there can be some straggling map or reduce tasks because
of the unexpected contention time for CPU, memory and
other resources; resulting in unpredictable execution time
for the tasks. Overall, we found 65 studies addressing this
issue.

4.1.2. Problem Formulation Example

Cheng et al.[21] consider the problem of assigning the
resources in Hadoop scheduler as an optimization problem
where they aim to minimize the penalty of deadline misses.
Precisely, they consider that there are J jobs running in a
Hadoop cluster with dynamic resource availability ra and a
time control interval t (t ∈ [1,..,T]). The scheduler assigns
umj to the map tasks and urj to the reduce tasks belonging
to a job j. The completion time of a job j is yj and its

reference time that meets its deadline is urefj . Each job j
has a constant wj that represents its priority. The problem
of resources assignment is formally specified as follows:

min

T∑

t=1

J∑

j=1

ωj(
yj − yrefj

yrefj

) (1)

s.t.

J∑

j=1

(umj + urj) ≤ ra (2)

The equation 1 determines the lost revenue because of
deadline misses. The penalty remains zero unless the job j
misses its deadline. Equation 2 represents the constraints
to verify that the sum of the map and reduce resources
assigned to a job j are bounded by the amount of the
available resources in the cluster.

4.2. Data Management (78 papers)

We can claim that the problem of data management
in big data platforms can be sub-divided into three main
sub-problems as follows:

4.2.1. Data Locality (44 papers):

4.2.2. General Definition

In big data platforms, the computations (i.e., received
workloads) are sent as close as possible to where the input
data of the scheduled tasks is located. This is because of
the large size of the processed data rather than moving
these large data blocks to the computational nodes where
the tasks will be running. So, the scheduler decides where
to send the computations based on where the data exists.
Data locality is an important issue addressed by many
researchers as shown in Figure 5. In particular, we find
44 studies that addressed this problem in Hadoop, Spark,
Storm and Mesos schedulers. Scheduling tasks based on
the locality of their associated data is a crucial problem
that can affect the overall performance of a cluster.
Indeed, the execution of some jobs or tasks requires
the processing of tasks having distributed data across
different nodes. Therefore, it is necessary to find a better
allocation of these tasks over the available nodes while
maximizing the number of tasks executing local data.
This is to reduce the total execution time of tasks by
reducing the number of non-local-data tasks since these
tasks spend more time to read and write data compared
to the local-data tasks.

4.2.3. Problem Formulation Example

According to Xun et al. [22], the data locality issue
can be solved by reducing the data transfer cost for the
map tasks. They consider the input data for a job as
a set of transactions D = {t1, .., tn}, the corresponding
map tasks are M = {m1, ..,mp}, and I the set of in-
termediate key-value pairs generated by the mappers I
= {(G1, D1), .., (Gp, Dp)} where Di represents the set of
transactions associated to a group Gi. S(Gi) and T(Gi)
represent respectively the source and target node. Xun
et al. [22] propose to measure pi as a metric to indicate
whether a pair is produced on a local node or not as fol-
lows:

pi =

{
1 if S(Gi) 6= T (Gi)

0 if Otherwise
(3)

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Xun et al. [22] propose to reduce the cost of data transfer
as follows:

Minimize :

m∑

i=1

Di ∗ pi (4)

4.2.4. Data Placement (21 papers):

4.2.5. General Definition

Although, the proposed data locality strategies can
help improve the processing of tasks in the nodes having
the local input data and enough resources, an extra
overhead can be added when processing the non-local
data blocks and moving the intermediate data from
one node to another to get the final output; which may
decrease the overall performance of a cluster. Particularly,
the processing of scheduled tasks highly depends on the
location of the stored data and their placement strategy.
This makes it difficult (a) for the platform (e.g., Hadoop,
Spark) to distribute the stored data; and (b) for the
scheduler to assign the scheduled tasks across the avail-
able nodes in a cluster. Therefore, there are some studies
that are proposed to improve the data placement issue
within the distributed nodes in these big data platforms
in order to improve the strategies responsible for moving
the data blocks especially the large data-sets. We find 21
studies that addressed this problem.

4.2.6. Problem Formulation Example

According to Guo et al. [23], the problem of partition
placement can be formulated as a minimization problem
to find the nodes where to place the data. Given m map
partitions characterized by the sizes p1, p2, .., pm, the goal
of the proposed model in [23] is to find the placement of n
nodes S1, S2, .., Sn while minimizing the placement differ-
ence σ defined as follows:

σ =

√√√√ 1

n

n∑

i=1

(µ−
∑

j∈Si

pj) (5)

Where µ represents the average data size on one node.

4.2.7. Data Replication (13 papers):

4.2.8. General Definition

Data locality and placement are very important prob-
lems as they significantly affect the system performance
and the availability of the data. However, some slow or
straggling nodes can go down and their data blocks will
not be available for sometime, which may affect the overall
performance. Therefore, several algorithms are proposed
to replicate the data across different processing nodes.
For example, if some data cannot be found, the scheduler
may find other replicas in other nodes, racks or other
clusters and run speculative copies of the straggling tasks.
By increasing the number of data replicas, the scheduler
may be able to increase the successful processing of tasks

that are not able to find their input data. However,
the distribution and number of these replica can vary
over time due to the dynamic nature of the applications
running on a cluster. Therefore, it is necessary to
propose better schemes to replicate data over big data
platforms nodes. This principle is known as data repli-
cation and is studied by 13 works as presented in Figure 5.

4.2.9. Problem Formulation Example

Convolbo et al. [24] consider a system composed of
N data centers S = {DC1, .., DCN}. Each task tji that
represents the ith task belonging to a job j is associated
with a required data dji . They propose to use a function
Li
j,k to check whether the data of the task tij is replicated

or not in the system as follows:

Li
j,k =

{
1 if data is replicated in the system

0 if otherwise
(6)

4.3. Fairness (49 papers)

4.3.1. General Definition

Ensuring fairness is particularly important to im-
prove the overall performance of a cluster for big data
infrastructures, especially when there are different jobs
running concurrently in the cluster. Particularly, 49
papers addressed this issue in the existing literature;
which explains the importance of this problem. A job
is composed of multiple map and reduce tasks that
occupy the available resource slots in the cluster. The
slot configuration can differ from one node to another.
Also, jobs can have different resource requirements and
consumptions over time. For example, some jobs can
occupy their assigned resources for long time, more than
expected, which may cause the starvation of some other
jobs waiting for their turn in the queue. Also, some jobs
may take the advantage of occupying the resources to
finish their tasks much faster while other jobs can be
waiting a long time for their turn to be executed using
the same resources. Overall, the scheduler can experience
many problems such as jobs starvation and long execu-
tion time if it does not define a fair plan to assign the
available slots across the jobs and tasks. Consequently,
the scheduler should fairly assign the received tasks to
the node slots in order to reduce the makespan time
between the scheduled tasks. Specifically, it should find
the optimal task assignment across the available slots
while reducing the overhead generated between the map
and reduce tasks to communicate the intermediate results.

4.3.2. Problem Formulation Example

Niu et al. [25] propose to formally measure the fairness
loss F of a scheduler. They consider J (J ∈ {1,..,k}) is the

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

set of users sharing the resources in a cluster. The com-
pletion times of the application of a user i under a specific
scheduler and a fair scheduler are t∗i and ti respectively.
Niu et al. [25] calculate first the reduction of the comple-
tion time of the applications of a user i ; si as follows:

si = max
{

t∗i−ti
ti

, 0
}

(7)

Next, they determine the fairness loss F of a scheduler
when processing the received workload as follows:

F =

∑
i∈J si
k

(8)

4.4. Workload Balancing (61 papers)

4.4.1. General Definition

The schedulers of cloud platforms, like Hadoop,
Spark, Mesos, or Storm, receive multiple jobs and tasks
having different characteristics and different resource
demands, which may lead to different system workloads.
Furthermore, workloads can be imbalanced when jobs
are running, under a current scheduler, across the cluster
nodes, which may cause important delays and many prob-
lems related to the reliability of the system. Therefore,
it is very important to balance the workload across the
distributed nodes to improve its performance in terms
of execution time and resources utilisation; especially
for cloud applications that should satisfy some defined
response requirements. The workload balancing is very
dependent on the fairness allocation of the available slots
across the scheduled tasks. In fact, one reason behind
unbalanced workload is a bad slot allocation in a worker,
which can generate straggling tasks waiting for slots to
be released. So, a good slot allocation strategy allows
to have a balanced workload. Other factors like resources
allocation, type of scheduler, can also affect the workload
behavior in each node. Many studies in the available
literature (i.e., 61 papers) proposed algorithms to balance
the received load in a cluster.

4.4.2. Problem Formulation Example

Guo et al. claim in [26] that the load balancing is
correlated to the skew in task execution; the lower is the
skewness, the more balanced is the task execution. There-
fore, they present a model to calculate the skew in a task
runtime in a job J as follows:

1

n

∑

i∈J

(xi − µ)3

σ3
(9)

Here, xi represents the runtime of a task, µ and σ are the
average and the deviation, respectively.

4.5. Fault-Tolerance (42 papers)

4.5.1. General Definition

Heterogeneity is the norm in cloud environments,
where different software configurations can be found.
Particularly, Sahoo et al. [27] claim that the complexity
of software systems and applications running on a cluster
can cause several software failures (e.g., memory leaks,
state corruption), make them prone to bugs and may
lead to crashes in the cluster. Physical machines in cloud
clusters are subject to failure (e.g., they can be down
for some time), which may lead to unexpected delays to
process the received jobs. Moreover, big-data platforms’
schedulers can experience several task failures because of
unpredicted demands of service, hardware outages, loss of
input data block, nodes failure, etc. Although, Hadoop,
Spark, Mesos and Storm have built fault-tolerance
mechanisms to cover the aforementioned limitations, one
task failure can cause important delays due to the tight
dependency between the map and reduce tasks. Also,
it can lead to not-efficient resources utilisation because
of an unexpected resources contention. Therefore, many
researchers addressed this issue in these platforms. In
particular, 42 studies are found in the literature address-
ing this crucial problem. These studies propose different
Fault-Tolerance mechanisms to reduce the number of
failures in the processing nodes, and hence improve the
overall performance of the cluster. In addition, they
describe different mechanisms to improve the availability
and reliability of platforms components, in order to better
improve the availability of the services offered to the users.

4.5.2. Problem Formulation Example

In [28], the authors formally define the scheduling out-
come of an executed job composed of X map tasks and Y
reduce tasks. S(MapAttip) is the status of a mapi after
the pth attempt, and S(ReduceAttjq) the status of reducej
after the qth attempt. S(MapAttip) and S(ReduceAttjq)
have 1 as a value when the attempt is successful and 0
when it is failed. K and L represent the maximum num-
bers of scheduling attempts allowed for map and reduce
tasks respectively. The authors [28] model the scheduling
outcome of a scheduled job as follows:

S(job) = [
X∏

i=1

(
K∑

p=1

S(MapAttip))] ∗ [
Y∏

j=1

(
L∑

q=1

S(ReduceAttjq))] (10)

4.6. Energy Efficiency (36 papers)

4.6.1. General Definition

The cost of data-intensive applications running on
large clusters represent a critical concern in terms of
energy efficiency. For instance, data-intensive applications
require more energy when processing the received work-
load, executing I/O disk operations, and managing and
processing the huge amount of data on big data platforms

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

like Hadoop, Spark, or Mesos. Moreover, the design of a
scheduler for big data platforms can largely affect the en-
ergy consumption of the system on which the applications
are executed. For instance, when processing tasks on the
nodes where the data exists, the node may receive a large
number of tasks and these nodes require more resources
to execute them, which can increase the level of energy
consumed. Moreover, the nodes in a cloud cluster can
experience several failures and can face straggling tasks
resulting in more energy being consumed. Therefore,
minimizing the energy consumption when processing
the received workload is of paramount importance. We
find 36 studies that addressed this critical issue in cloud
environments. These studies show that there is a trade-off
between improving the scheduler performance and the
energy consumption on the studied platforms in our SLR.

4.6.2. Problem Formulation Example

Cheng et al. [29] model the problem of energy consump-
tion in Hadoop as a minimization problem. They consider
a Hadoop cluster composed of M workers, and there are
J jobs to be processed composed of N tasks {T j

1 ,..,ujn}.
They formalize the problem of tasks assignment in order
to minimize the overall energy consumption as follows:

min

J∑

j=1

N∑

n=1

M∑

m=1

[E(T j
n(m))] (11)

s.t.

J∑

j=1

N∑

n=1

|T j
n(m)| ≤ mslot (12)

Here, E(T j
n(m) is the amount of energy consumed by

the nth task from the jth job that is running on the
mth machine. The formal definition of E(T j

n(m) can
be found in [29]. The constraint defined in equation 12
ensures that the number of concurrent task execu-
tions of the scheduled jobs are bounded by the number of
available slots on the machine m where they are processed.

Overall, the main issues related to task scheduling in
Hadoop, Spark, Storm and Mesos can be classified into
six main categories: resources management, data manage-
ment (including data locality, replication and placement
issues), fairness, workload balancing, fault-tolerance, and
energy efficiency. The solutions and approaches proposed
to solve the aforementioned issues in each category will be
described in the next section.

5. Task Scheduling Solutions In Big Data Infras-
tructures

After carefully checking the content of the obtained
papers, we can group them by scope/objective in order to
analyse the solutions proposed to address the issues men-
tioned in Section 4. The different proposed solutions are

described in the following subsections. In the following
subsections, we describe each of the proposed approaches
in more details. Since the majority of the papers is ad-
dressing scheduling issues on Hadoop framework in com-
parison to the other platforms (including Spark, Storm,
and Mesos); this is because of the popularity of Hadoop in
both academic and industrial communities. For each cat-
egory, we first discuss the solutions proposed for Hadoop,
and then, if applicable, we discuss solutions proposed for
other platforms. Finally, we present a summary to classify
and discuss the proposed approaches and the addressed
issues.

5.1. Resources Utilisation-aware Scheduling

Although there is a tight dependency between the map
and reduce tasks, these two phases are scheduled sep-
arately by existing schedulers. Additionally, Zhang et
al. [30] show that the resources consumption varies sig-
nificantly in these two phases. To mitigate this prob-
lem, many studies including [30] [31] [32] [33] are pro-
posed to correlate the progress of map and reduce tasks
while scheduling them and then assign them slots based
on their requirements. Just to name a few, the Coupling
Scheduler [31], PRISM [30], HFSP [33], and Preedoop [32]
are proposed as fine-grained resource-aware MapReduce
schedulers for Hadoop. The main goal of these schedulers
is to assign available slots according to the variability of
the requested resources in each phase of a Hadoop job and
the task execution progress. This is in order to reduce the
total execution time and to avoid a waste of resources.

Jian et al. [31] propose the Coupling Scheduler, which
is composed of two main parts (i) a wait scheduling for
the reduce tasks; and (ii) a random peeking scheduling
for the map tasks. The coupling scheduler can reduce the
average job processing time by 21.3% compared to the
Fair Scheduler. However, some jobs still face long-waiting
times because of other running jobs taking all reduce slots.
The idea behind Preedoop [32] is to preempt reduce tasks
that are idle and assign their allocated resources to sched-
uled map tasks, in order to allow for a faster processing at
the map phase. This is because reduce tasks waiting for
intermediate data, or results from some map tasks, often
detain resources that could have been used by some pend-
ing map tasks. Liang et al. [32] report that Preedoop can
reduce the execution time by up to 66.57%. However, the
preemption of the reduce tasks can delay the copy/merge
phases of the jobs, which may result in extra delays.

Hadoop Fair Sojourn Protocol (HFSP) [33] is a new
scheduling protocol that automatically adapts to resources
and workload changes while achieving resources efficiency
and short response times for Hadoop. HFSP uses job
size and progress information to allocate the available re-
sources to the received tasks. HFSP uses an aging function
to make scheduling decisions, such that jobs with higher
priority have more chance to get the resources. The prior-
ities of jobs are computed using the aging function. HFSP
can reduce the execution time of the scheduled tasks but,

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

it cannot reduce the number of task failures since it is
based on a preemptive technique. Moreover, HFSP delays
the scheduling of the map tasks on non-local data, for a
certain time and for a fixed number of attempts. This is in
order to ensure the processing of the map tasks with local
data and improve the performance of Hadoop. Meanwhile,
tasks having a lower priority can be processed. However,
postponing the processing of the map tasks several times
can generate extra delays to the total execution times of
the tasks. Hence, some tasks execution times can exceed
their specified deadlines; resulting in tasks deadline no-
satisfaction.

While processing batch jobs, Hadoop may encounter
problems due to inefficient resources utilization, which
may generate long and unpredictable delays. Particularly,
the static and fixed configuration of slots allocated to the
map and reduce tasks in Hadoop can affect their process-
ing time and may lead to a degradation of the cluster
resources. To alleviate this issue, some studies, includ-
ing [34] [35] [36] [37] [38] [39], introduce the dynamic as-
signment of the slots to the mappers and reducers depend-
ing on their requirements.

For instance, Fair and Efficient slot configuration and
Scheduling for Hadoop (FRESH) [37] is designed to find
the matching between the slot settings and the sched-
uled tasks to improve the makespan (which is defined as
the difference between the longest and the smallest execu-
tion time of the running tasks) while guaranteeing a fair
distribution of the slots among the map and the reduce
tasks. In the same line, Wolf et al. [34] propose a flexible
scheduling allocation scheme called FLEX aiming to op-
timize the response time, deadline satisfaction rates, SLA
(Service Level Agreement), and makespan of different type
of Hadoop jobs, while allocating the same minimum job
slots assigned in the Fair scheduler. Despite the fact that
FRESH and FLEX show good performances in terms of
total completion time and slot allocation, their proposed
scheduling schemes should relax the scheduling decisions
in terms of data locality. They only consider how to fairly
distribute the slots across the scheduled tasks but, they
do not take into account the necessity to schedule them
as close as possible to their input data. In addition, they
should take into account the remaining execution time of
the scheduled jobs to better assign, on the fly, the resources
slots.

FiGMR [40] is proposed as a fined-grained and dy-
namic scheduling scheme for Hadoop. FiGMR classifies
the nodes in a Hadoop cluster into high or low level
performance according to their resources utilisation, and
tasks into slow map tasks and slow reduce tasks. It uses
historical information from the nodes to dynamically find
the tasks that are slowed by a lack of resources. Then,
FiGMR launches speculative executions of the slow map
and reduce tasks on the high level performance nodes
in order to speed up their execution. Overall, FiGMR
can reduce the execution time of tasks and improve data
locality. But, it requires considerable time to find the

slow tasks and to assign them to high level performance
nodes, which can result in extra delays to the scheduler.

Because of the large scale of cloud environments, the
applications running on top of Hadoop systems are in-
creasingly generating a huge amount of data about the
system states (e.g., log-files, etc). These data can be used
to make better scheduling decisions and improve the over-
all cluster performance. Whereas, the primary Hadoop
schedulers rely only on a small amount of information
about the Hadoop environment, particularly about the re-
sources allocation/utilisation to make the scheduling de-
cisions. Therefore, many research work [41] [30] [42] [43]
have been proposed to build schedulers capable of collect-
ing data about the resources utilisation and adapting their
scheduling decisions based on the system states and the
events occurring in the cloud computing environment.

For example, HaSTE [42] is designed as a pluggable
scheduler to the existing Hadoop YARN [14]. HaSTE
schedules the received tasks according to many system in-
formation like the requested resources and their capaci-
ties, and the dependencies between the tasks. It assigns
the resources to tasks based on the ratio between the
requested resources and the capacity of the available re-
sources. Specifically, HaSTE measures the importance of
the received tasks in order to prioritize the most important
tasks in a job and to quantify the dependencies between
the scheduled tasks. Despite the fact that HaSTE can op-
timize the resources utilisations, it is limited only to the
CPU and memory resources.

Rasooli et al. [41] [43] propose to use the collected in-
formation about the Hadoop environment to classify the
received jobs according to their resources requirements.
They implement an algorithm that captures the changes
on the system states and adapts the scheduling decisions
according to the new system parameters (e.g., queue state,
free slots, etc.) in order to reduce the average execution
time of the scheduled tasks. But, their proposed approach
is associated with an overhead to estimate the execution
time of each received job and to make the slot allocation
in accordance to the captured system changes.

There are also considerable challenges to scheduling the
growing number of tasks with constraints-meeting objec-
tives. Along with the broad deployment of Hadoop sched-
ulers, many studies [44] [45] [46] [47] [48] [49] have been
proposed to improve the performance of Hadoop in terms
of deadline satisfaction. In a nutshell, these schedulers
identify the jobs (among the submitted ones) that could
be finished within a specific deadline, then, they check the
availability of resources to process the jobs. A job will be
scheduled if there are enough slots to satisfy its require-
ments.

In [47], Bin et al. propose a scheduling algorithm that
leverages historical information about scheduled and fin-
ished tasks and slot performance to make a decision about
whether a resources slot (CPU, memory, bandwidth) is
good enough for the assigned tasks, the delay threshold,

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and the tasks’ deadlines. Their proposed algorithm also
makes a decision about whether a scheduled task should
be delayed, since there will be some other available slots
better than the selected ones. The proposed scheduler is
able to assign the tasks to the suitable slots with accept-
able delays. However, delaying small jobs while looking
for the most suitable slots can affect their total comple-
tion time.

In [46], Ullah et al. consider the remaining execution
time of each job when deciding to preempt, in order to
maximize the utilization of the slots under the deadline
constraints and the execution time requirements. How-
ever, they use a static approach to estimate the remain-
ing time, which can affect the average of this value and
hence negatively impact the scheduling decisions. In [48],
Pletea et al. implement a genetic algorithm to speculate
the execution time of the tasks with respect to deadline
constraints and the heterogeneity of the distributed re-
sources in a Hadoop cluster. Overall, the genetic-based
algorithm must be efficient and fast in terms of execution
time while providing the optimal solution to the scheduler.
However, the authors do not implement any optimization
function to improve the performance of their proposed al-
gorithm; which may negatively impact the performance of
the scheduler.

In [49], Khan et al. propose a Hadoop job perfor-
mance model that can estimate the amount of required
resources so that jobs are finished before their deadlines
based on the estimation of job completion times. The
proposed model uses historical information about job exe-
cution records and a Locally Weighted Linear Regression
(LWLR) technique to determine the estimated execution
time of Hadoop jobs. It could reduce the total execution
time of jobs by up to 95.5% such that jobs are completed
before their expected deadlines. However, it only consid-
ers the independent Hadoop jobs, which can affect the re-
source allocation mechanism in Hadoop.

Jiang et al. [50] claim that the existing scheduler in
Spark does not consider any coordination between the uti-
lization of computation and network performance, which
may lead to a reduced resource utilisation. Therefore,
they design and implement Symbiosis, which is an online
scheduler that predicts resources imbalance in Spark clus-
ter. Jiang et al. [50] propose to schedule computation-
intensive tasks (with data locality) and network-intensive
tasks (without data locality) on the same CPU core in
Symbiosis. When several tasks are scheduled and compet-
ing on the same CPU core, they integrate a priority-based
strategy to select which task to process first. Symbiosis is
able to reduce the total completion times of Spark jobs by
11.9% when compared to the current scheduler of Spark
framework. However, the authors do not consider the re-
source and network utilisation for the intermediate steps
that involve especially network transfers hence, it can add
extra delays to the processing of the jobs.

Apache Storm is the most popular stream process-
ing system used in industry. It uses the default round-

robin scheduling strategy, which does not consider the
resources availability and demand. To alleviate this is-
sue, R-Storm [51] is proposed to satisfy soft and hard re-
sources constraints, minimize the network latency, and in-
crease the overall throughput. Peng et al. implement a
scheduling algorithm using the Quadratic Knapsack Prob-
lem (QKP) and find that R-Storm outperforms Storm
in terms of throughput (30%-47%) and CPU utilisation
(69%-350%).

Mesos [52] possesses a fined-grained resource sharing
scheduler that controls the sharing of resources across the
applications running on the platform. In other words,
Mesos decides the amount of resources that can be as-
signed to an application, and this application decides the
tasks to run on them. This approach allows the applica-
tion to communicate with the available resources to build
a scalable and efficient platform. Consequently, Mesos can
achieve better resource utilisation and near-optimal data
locality. But, it does not take into consideration the re-
quirements of applications running on Mesos while assign-
ing them the resources, which may result in a waste of
resources.

5.2. Data Management-aware Scheduling

Data management is a hot issue that caught the at-
tention of many researchers. This is because of its direct
impact on the performance of big data platforms includ-
ing those of the task scheduling techniques. For instance,
the performance of big data platforms’ schedulers is highly
dependent on the procedures dedicated to managing the
data to be processed in the computing nodes. This issue
is extensively studied by researchers who aim to efficiently
distribute data schemes across the nodes. In the follow-
ing paragraphs, we describe different approaches proposed
by researchers to improve the data locality , data place-
ment and data replication schemes.

5.2.1. Data Locality-aware Scheduling

MapReduce is widely used in many systems where
there are dynamic changes over time. However, it lacks the
flexibility to support small and incremental data changes.
To cover this limitation, the IncMR framework [53] is pro-
posed to improve the data locality incrementally. IncMR
fetches the prior state of runs in the system and combines
it with the newly added data. This can help find better
scheduling decisions according to the new changes in the
systems. So, the state of system runs periodically get up-
dated for future incremental data changes. The conducted
experiments in [53] show that their approach has a good
impact on non-iterative applications running in MapRe-
duce. Indeed, the running time is faster than the one ob-
tained when processing the entire input data. But, IncMR
is subject to high network utilisation and the large size of
files storing the system states consumes resources. There-
fore, it is very important to optimize the storage of the
states of the system (in terms of size and location) in order

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to get efficient processing times and optimize the network
bandwidth.

Chen et al. [54] propose the Locality-Aware Schedul-
ing Algorithm (LASA) in order to achieve better resource
assignments and data locality in Hadoop schedulers. They
present a mathematical model to calculate the weight of
data interference that will be given to LASA. The data in-
terference is derived using the number of data in each node
having free slots. Next, LASA selects the node having the
smallest weight and data locality to process the received
tasks. But, LASA does not guarantee a fair distribution
of the workload across the Hadoop nodes.

In [55], Chon et al. present a real-time scheduling
framework for Hadoop that can guarantee data locality for
interactive applications. In this work, the authors present
both a scheduler and a dispatcher for Hadoop. The sched-
uler is responsible for assigning tasks when the required
resources are available, and the dispatcher considers the
data locality of these tasks. The performance of the pro-
posed framework is evaluated using synthesized workload
and it shows good results in terms of execution time and
energy consumption optimization. Whereas it does not
consider the priority of the tasks while assigning the tasks
to the nodes having their local block data; which can affect
the performance of the applications running on Hadoop.

Zaharia et al. [56] [57] present the Longest Approxi-
mate Time End (LATE) algorithm, which collects data
about the running tasks and assigns weights to tasks based
on their progress. Using historical information about the
weights assigned to tasks in the past, LATE prioritizes the
new tasks waiting to be executed. LATE predicts the fin-
ish times of each task and speculates on the ones that can
meet most the response time in the future. The proposed
algorithm can improve the response time of the schedulers
by a factor of 2.

Later, Liying et al. [58] extended LATE by introduc-
ing a delay on the processing of tasks. Each task being
delayed for a maximum of K times. They propose that
a task should wait for T/S seconds before checking the
availability of slots in the nodes having local data. In this
equation, T is the average task execution time and S is
the number of slots in the cluster. Since a task could be
delayed up to K times, it is possible to have some tasks
waiting for up to K * T/S seconds before being processed.
Although, their proposed algorithm can reduce the overall
response time of tasks and improve the system through-
put, it has to sort twice the whole system to find the tasks
having local input data and the task that will be launched
speculatively; which may add extra delays to the response
time. Moreover, the value of K should be suitable for the
system status, to avoid the task starvation problem and
system performance degradation. Also, LATE faces some
issues (i.e., inaccurate estimation of the remaining time
of tasks) in calculating the task progress and identifying
the straggling ones due to its static approach. In addi-
tion, it does not distinguish between the map and reduce
tasks while calculating their progress, which may affect its

performance.
Processing data within a requesting node for a data-

intensive application represents a key factor to improve
the scheduling performance in Hadoop. Many researchers
(e.g., [56] [59] [60] [61]) have been working extensively to
solve this problem by evaluating the impact of many fac-
tors on the data locality. This can help identify the cor-
relation between data locality and those identified factors
and hence schedule tasks on the processing nodes as close
as possible to their input data. As illustration for this
solution, the research work in [59] [60] describe mathe-
matical models and scheduling algorithms to evaluate the
impact of many configuration factors on data locality. Ex-
amples of the configuration parameters can be the input
data size and type, the dependency between the data in-
put of tasks, the number of nodes, the network traffic,
etc. They propose to perform a job grouping step before
scheduling the tasks; the jobs belonging to the same group
should be ordered based on their priority and the locality
of their input data. Also, they propose to schedule multi-
ple tasks simultaneously instead of one by one to consider
the impact of other tasks that may not guarantee better
scheduling’s performance. These proposed algorithms can
increase the number of tasks processed using local data-
blocks, which can reduce their execution time. However,
these solutions do not show a good improvement when job
sizes are large. This is because large jobs have more dis-
tributed input data across different nodes and hence the
proposed algorithms cannot guarantee to have a maximum
number of local-data tasks for these jobs. The proposed
approaches work well only when the job sizes are small.

Although, Hadoop and Spark are characterized by
a good performance when allocating the resources and
processing the received workload, they show a poor
performance in handling skewed data. For instance,
scheduled tasks can experience several types of failure,
because of straggling tasks and skewed data. To solve this
problematic issue, many studies are proposed to avoid
data skewness and to find the optimal distribution of data
(e.g., [36] [62] [63] [64]). For example, FP-Hadoop [62] is
a framework that tackles the problem of data skewness for
the reduce tasks, by integrating a new phase in Hadoop
job processing. The intermediate phase is called interme-
diate reduce (IR). The IR can process intermediate values
between the map and reduce tasks in parallel with other
tasks. This approach can help speedup the processing of
the intermediate values even when all of them are associ-
ated with the same key. The experimental results show
that FP-Hadoop has a better performance compared to
Hadoop and can help reduce the execution times of reduce
tasks by a factor of 10 and the total execution time of jobs
by a factor of 5. But, Hadoop jobs can experience extra
delays when there are no skewed data, because the IR
workers add more time to the total execution time of a job.

Although, the data locality issue is tackled as one prob-
lem in the studies presented above, other research works

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

address it separately for map and reduce tasks, as de-
scribed in the sequel.

Data Locality of Map Tasks

The pre-fetching techniques of the input data are very im-
portant to improve the data locality factor for the map
tasks and avoid the data skewness problem. Particularly,
there are several research work that address this issue
including [65] [66] [67]. They propose pre-fetching and
scheduling techniques to address the data locality of map
tasks. These two techniques look for the suitable candi-
date input data for the map tasks. Also, they select which
reducer is better in order to minimize the network traf-
fic required to shuffle the key-value pairs. Although these
techniques can improve the data locality of the map tasks,
they cannot balance the load across the processing nodes.
This is because the proposed techniques can only improve
the number of local map tasks and does not take into ac-
count the resources utilisation and load balancing.

Asahara et al. [68] propose LoadAtomizer to improve
the data locality of map tasks and minimize the comple-
tion time of multiple jobs. The LoadAtomizer strategy
consists in assigning tasks on lightly loaded storage with
consideration to data locality, which can balance the load
between the storage nodes. LoadAtomizer can avoid I/O
congestion and reduce the CPU I/O waiting time ratio of
the map tasks. It could reduce the total execution time
of jobs by up to 18.6%. However, it cannot reduce the
data skewness for the map and reduce tasks since it aims
at balancing the I/O load and increase the data locality of
the scheduled tasks.

In [69] [70], the authors present scheduling techniques
to improve the data locality of map tasks by dynamically
collecting information about the received workload. Also,
they propose to dynamically control and adjust the process
responsible for allocating the slots across the received jobs
to meet their specified deadlines. The obtained results
show that the proposed algorithm gives a better perfor-
mance in terms of the amount of transmitted data across
the network and the execution time. To better improve
these proposed scheduling techniques, the authors may
consider the different types of received tasks (short, long,
continuous, etc.) and calculate the remaining execution
time of the scheduled tasks.

Data Locality of Reduce Tasks

There are a few other research work [71] [72] that are pro-
posed to improve the data-locality for the reduce tasks.
Hammoud et al. [71] proposed the Locality Aware Reduce
Task Scheduling (LARTS) algorithm to maximize data lo-
cality for the reduce tasks, i.e., the intermediate results
generated by the mappers. LARTS uses an early shuf-
fling technique to minimise the overall execution time by
activating the reduce task after a defined percentage of
mappers commit (e.g., a default value of 5%). Therefore,
it can help avoid data skewness and reduce the scheduling

delay between the mappers and reducers. LARTS is based
on locating the sweet spots of the reducers. These sweet
spots can be defined as the time during which a reducer
can recognize all its partitions. These spots are located by
LARTS statically. Therefore, dynamic identifications of
these spots can improve the performance of LARTS. Jian
et al. [72] propose a stochastic optimization framework to
improve the data locality of reducers and minimize the
cost associated with fetching the intermediate data. How-
ever, this approach works under a fixed number of map
and reduce slots in Hadoop; which may lead to an under
or over utilization of the available resources.

Motivated by the challenges associated with the default
scheduler in Storm, Xu et al. [73] proposed a new stream-
processing framework T-Storm based on the Storm frame-
work. In fact, Storm uses a default scheduler that assigns
the received workload based on the round-robin algorithm
without considering the data locality factor. Also, Storm
assigns the workload to the nodes regardless of their re-
quirements or the availability of the resources [73]. Hence,
T-Storm is proposed to use run time states to dynami-
cally assign tasks to the nodes where the data are located
so that none of the workers is overloaded or underloaded,
which could accelerate the task processing and minimize
the online traffic in Storm. Moreover, it can achieve better
performance with a smaller number of nodes since it allows
fine-grained control over the nodes consolidation. The ex-
perimental analysis shows that T-Storm can achieve a bet-
ter performance (up to 84% speedup), and a better data
locality for the stream processing applications. Although
T-STorm can achieve a good performance with 30% less
worker nodes, T-Storm still lacks a fault-tolerance mecha-
nism to handle failures in these nodes which have to pro-
cess more workload than others.

5.2.2. Data Placement-aware Scheduling

Many studies are proposed to improve data place-
ment strategies within Hadoop and provide optimized data
placement schemes, e.g., [74] [75] [76]. These optimized
schemes can help improve the data locality for the sched-
uled tasks.

For instance, Xie et al. [74] proposed to adapt the data
placement schemes in accordance to the workload distri-
bution in Hadoop clusters. They introduce an algorithm
to initially distribute input data across the nodes in accor-
dance to the node’s data processing speed. Second, they
describe a data redistribution algorithm to dynamically
solve the data skew issue, by reorganizing file fragments
through the cluster nodes based on their computing ratios.
Although these proposed algorithms can help improve the
placement and the locality of data in Hadoop clusters, they
do not include a mechanism to handle redundant file frag-
ments, neither do they provide a mechanism to redistribute
dynamically the data for data-intensive applications work-
ing together.

A Hierarchical MapReduce scheduler called HybridMR
is presented in [76] to classify the received MapReduce

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

jobs based on their expected overhead to guide the place-
ment between the physical and virtual machines in Hadoop
clusters. In addition, HybridMR can dynamically orga-
nize the resources orchestration between the different map
and reduce tasks and hence decrease their processing time
by 40% over a virtual cluster and save around 43% of
energy. Despite the fact that HybridMR shows a good
performance, it cannot handle different types of workload
in heterogeneous Hadoop environments and ensure a bal-
anced workload between the nodes.

MRA++ [77] is a new Mapreduce framework for
Hadoop proposed to handle large heterogeneous clusters.
It allows Hadoop to efficiently process data-intensive ap-
plications. This is by training tasks to collect information
about data distribution in order to dynamically update the
data placement schemes within the framework. MRA++
is mainly composed of a data division module responsible
for dividing the data for the tasks, a task scheduling mod-
ule that controls the task assignment to the available slots,
a clustering control module, that controls task execution,
and a measuring task module that controls and distributes
the data. MRA++ can improve performance of Hadoop
by 66.73%. It can also reduce the network traffic by more
than 70% in 10 Mbps networks. But, it adds extra de-
lays to the tasks’ processing times since they are collecting
more information and have to wait for the measuring task
module to assign them to the appropriate nodes.

5.2.3. Data Replication-aware Scheduling

Several studies address the problem of data repli-
cation in Hadoop to improve storage space utilization,
e.g., [78] [79] [80]. For instance, Jin et al. [78] pro-
pose the Availability-Aware MapReduce Data Placement
(ADAPT) algorithm to optimally dispatch data across
the nodes according to their availability, to reduce net-
work traffic without increasing the number of data replica.
Their strategy can improve network traffic, however, it
may lead to more disk utilization.

Ganesh et al. [79] propose Scarlett, which uses a proac-
tive replication scheme that periodically replicates files
based on the predicted popularity of data. In other words,
Scarlett calculates a replication factor for the data based
on their observed usage probability in the past history in
order to avoid the problem of data skewness. Scarlett is an
off-line system that improves data replicas using a proac-
tive approach but, many changes can occur in a Hadoop
storage system including recurrent as well as nonrecurrent
changes.

While Scarlett uses a proactive approach, Abad et
al. [80] present the Distributed Adaptive Data REplication
(DARE) algorithm, which is a reactive approach to adapt
the data popularity changes at smaller time scales. The
DARE algorithm aims at determining how many replicas
to allocate; and at controlling where to place them using a
probabilistic sampling and competitive ageing algorithm.
As a result, the data locality factor in DARE is improved
by 7 times when compared to the FIFO scheduler and by

85% in comparison to the Fair scheduler. However, both
Scarlett and DARE do not take into account data with
low replica factors.

5.3. Fairness-aware Scheduling

In big data platforms’ clusters, data locality and fair-
ness represent two conflicting challenges. Indeed, to
achieve a good data locality, a maximum number of
tasks should be submitted close to their computation
data. However, to achieve fairness, resources should be
allocated to the tasks after being requested in order to
reduce tasks delays [57]. Many research work includ-
ing [37] [81] [82] [83] [84] [85] are proposed in the available
literature to solve the above issues.

Jiayin et al. [37] present FaiR and Efficient slot config-
uration and Scheduling algorithm for Hadoop (FRESH),
to find the matching between the submitted tasks and the
available slots. FRESH can help not only minimize the
makespan but, also fairly assign available resources across
the scheduled tasks. In Hadoop, each node has a specific
number of slots. However, the Hadoop scheduler continu-
ously receives concurrent jobs that require different slots
configurations. Therefore, Jiayin et al. [37] extend FRESH
by adding a new management plan to dynamically find the
best slot setting. In other words, FRESH allows to dynam-
ically change the assignment of slots between the map and
reduce tasks according to the availability of slots and the
requirement of the tasks. After a slot finishes its assigned
task, FRESH can assign it to another task. While FRESH
can improve the assignment of slots and the fairness of
the distribution of resources among the scheduled tasks, it
does not ensure a better memory usage.

Isard et al. [81] propose Quincy, which is a flexible and
efficient scheduling algorithm to compute the scheduling
distribution among the different nodes with a min-cost flow
while improving data locality, fairness and starvation free-
dom factors. However, Quincy is only formulated based on
the number of computers in a cluster and there is no effort
to dynamically reduce its cost in terms of data transfer.

In [82], Yin et al. show that processor-based sched-
ulers like the Fair scheduler can lead to a degradation of
performance in terms of execution time, in a multi-user
environment. Therefore, they propose the Hybrid Paral-
lel pessimistic Fair Schedule Protocol (H-PFSP), which is
able to finish jobs later than the Fair Scheduler and im-
prove the mean flow time of jobs while improving the fair-
ness between the tasks and jobs. The H-PFSP use infor-
mation about the finished tasks over time to estimate the
remaining execution time of the scheduled jobs at prede-
fined intervals and make incremental estimations updates.
The H-PFSP can reduce the total execution time but, it
cannot guarantee an efficient resources utilisation in the
cluster.

Zhao et al. [83] describe a scheduling algorithm based
on a multi-queue task planning to adjust the maximum
number of tasks assigned to each node by defining the value
of fairness threshold “K% ”. The K%-Fairness scheduling

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

algorithm can be suitable for different types of workloads
in MapReduce to achieve maximum of data locality under
this constraint. However, this approach cannot support
much continuous/dependent jobs in the queue since it can-
not decide how to fairly distribute them (due to tight de-
pendencies between them) and reduce the associated over-
head while processing them.

Phuong et al. [84] propose a HyBrid-Scheduling
(HyBS) algorithm for Hadoop. It is dedicated for process-
ing data-intensive workloads based on the dynamic priority
and data locality of the scheduled tasks. In other words, it
uses dynamic priorities information, estimated map run-
ning times, and service level values defined by the user
to minimize the delays for concurrent running tasks which
may have different lengths. HyBS can guarantee a fair dis-
tribution between the map and reduce tasks. Also, it de-
creases the waiting time between the map and reduce tasks
by resolving data dependencies for data intensive MapRe-
duce workloads. This is by assigning a dynamic priority,
obtained from historical Hadoop log files, to the different
tasks received in order to reduce the latency for different
length (in terms of execution time) concurrent jobs. HyBS
is using a greedy fractional Knapsack algorithm [84] to as-
sign jobs to the appropriate processing nodes.

The authors of [85] propose Natjam to evaluate the
smart eviction policies for jobs and tasks, the priorities
for real time job scheduling and the resources availabil-
ity and usage. Natjam is based on two main priorities
policies. These policies are based on the remaining time
of each task: Shortest Remaining Time (SRT) in which
tasks characterized by the shortest remaining time are the
candidate to be suspended; and Longest Remaining Time
(LRT) in which tasks characterized by the longest remain-
ing time will be suspended. The two proposed policies
that are based on priorities aim to reduce the execution
time of each task. Next, they propose Natjam-R, a gener-
alization of Natjam, which specifies hard and fix deadlines
for jobs and tasks [85]. So, the deadline of Hadoop jobs
can automatically define the priority of the jobs and their
composing tasks for accessing the resources slots. This ap-
proach was found to have a negative impact (i.e., delay)
on short running tasks that have low priorities, since they
can get evicted several times.

In [86], Guo et al. present FlexSlot a task slot man-
agement scheme for Hadoop schedulers that can identify
the straggling map tasks and adjust their assigned slots
accordingly. This approach can accelerate the execution
of these straggling tasks and avoid extra delays. FlexS-
lot changes the number of slots on each node in Hadoop
according to the collected information about resource util-
isation and the straggling map tasks. Hence, the available
resources in Hadoop cluster are efficiently utilised and the
problem of data skew can be mitigated with an adaptive
speculative execution strategy. The obtained results show
that FlexSlot could reduce the total job completion times
by up to 47.2% compared to the Hadoop scheduler. How-
ever, FlexSlot generates a delay that can impact the pro-

cessing of the Hadoop job since it is using the task-killing-
based approach in the slot memory resizing. In addition,
FlexSlot allows to kill tasks multiple times, which may gen-
erate not only extra delays but also may cause the failure
of the whole job.

5.4. Workload Balancing-aware Scheduling

Distributing the received loads across computing nodes
represents a crucial problem in big data platforms’ sys-
tems. An efficient distribution can help improve the re-
sources utilisation and guarantee a fair distribution of
tasks to be processed, resulting in a better performance
for their schedulers.

For instance, Chao et al. [87] report that the First
Come First Served (FCFS) strategy works well only for
jobs belonging to the same class (e.g., having the same size,
the same resources requirements). Thus, they propose a
Triple-Queue Scheduler, which dynamically classifies the
received Hadoop jobs into three different categories based
on their expected CPU and I/O utilisation. Also, they
integrate a workload prediction mechanism called MR-
Predict, which determines the type of the workloads on
the fly and distributes them fairly (based on their type)
across the different queues. MR-Predict can increase the
map tasks throughput by up to 30% and reduce the total
makespan by 20% over the Triple-Queue scheduler. How-
ever, it still faces other issues to efficiently manage the
resources utilisation; to reduce the resources waste and to
improve the data locality.

Hong et al. [88] propose a load-driven Dynamic Slot
Controller (DSC) algorithm that can adjust the slots of
map and reduce tasks according to the workload of the
slave nodes. Hence, DSC can improve the CPU utilisation
by 34% and the response time by 17% when processing
10 GB of data. But, the DSC algorithm does not take
into account the issue of data locality while balancing the
load between the nodes.

Teng et al. [89] propose Shortest Period Scheduler
(SPS) to ensure that most of the jobs are finished before
their specified deadlines. SPS supports preemption and
can make dynamic decisions when new workflow plans are
received periodically in the scheduler. SPS is limited to
scheduling the independent tasks within the received work-
flow. However, it should cover dependent tasks and anal-
yse the impact of the communication between the sched-
uled tasks on their expected deadline and the resources
utilisation.

Lu et al. [90] propose a Workload Characteristic Ori-
ented (WCO) scheduler to consider the characteristics
of the running workloads and make smart decisions that
can improve the resource utilisation. The WCO sched-
uler is able to dynamically detect the difference between
the received and the running workloads. Consequently, it
can help balance the CPU and I/O usage among Hadoop
nodes which could improve the system throughput by 17%.
WCO can be improved by enhancing its static analysis
method used for the workload characteristics.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Cheng et al. [91] proposed to use the configuration
of large MapReduce workloads to design a self-adaptive
task scheduling approach. Their proposed solution con-
sists of an Ant-based algorithm that allows for an efficient
workload distribution across the available resources, based
on the tasks characteristics. As a result, their approach
can improve the average completion time of the sched-
uled tasks by 11%. Also, they find that their proposed
Ant-based algorithm is more suitable for large jobs that
have multiple rounds of map task execution. However, this
proposed algorithm cannot cover multi-tenant scenarios in
MapReduce. In addition, Cheng et al. [91] do not pro-
vide details about the optimization of the Ant-algorithm
to reduce its execution overhead.

Zhuo et al. [92] propose a scheduling algorithm (to op-
timize the workflow scheduling) in which jobs are repre-
sented as Directed Acyclic Graph (DAG) and classified
into I/O intensive or computations intensive jobs. Then,
the scheduler can assign priorities to the jobs based on
their types and assign the available slots with respect to
data locality and load balancing. But, this proposed ap-
proach was found to work well only for large jobs. It can
negatively impact the performance of small jobs.

Li et al. [93] propose WOrkflow over HAdoop (WOHA)
to improve workflow deadline satisfaction rates in Hadoop
clusters. WOHA relies on the job ordering and progress re-
quirements to select the worklflow that falls furthest from
its progress based on the Longest Path First and Highest
Level First algorithms. As a result, WOHA can improve
workflow deadline satisfaction rates in Hadoop clusters by
10% compared to the existing scheduling solutions (FIFO,
Fair and Capacity schedulers). WOHA uses the workloads
received over time to estimate the deadline of each task
that are not known by the scheduler ahead of time. In
addition, the dynamic nature of Hadoop workloads may
affect the performance of the scheduler. But, developers
of WOHA do not include these two criteria while imple-
menting it.

In [41], Rasooli et al. propose a hybrid solution to
select the appropriate scheduling approach to use based
on the number of the incoming jobs and the available
resources. This proposed solution is a combination of
three different schedulers: FIFO, Fair sharing and Clas-
sification, and Optimization based Scheduler for Hetero-
geneous Hadoop (COSHH). The COSHH scheduler uses
Linear Programming (LP) to classify the incoming work-
loads and find an efficient resources allocation using job
classes requirements. The aim of this hybrid scheduler
is to improve the average completion time, fairness, lo-
cality and scheduling times in order to improve Hadoop’s
scheduling performance. The FIFO algorithm is used for
under-loaded systems, the Fair Sharing algorithm is used
when the system is balanced and the COSHH is used when
the system is overloaded (i.e., peak hours). Rasooli et al.
define three different usage scenarios and specify when to
use each of them, however, they do not provide thresholds
that can be used to decide about which scheduler to follow.

Sidhanta et al. [94] propose OptEx, which is a closed-
form model that analytically analyses and estimates the
job completion time on Spark. OptEx model uses the size
of input dataset, the number of nodes within the cluster
and the number of operations in the job to be scheduled,
to estimate the total completion time of the given job.
The results show that it can estimate the job completion
time in Spark with a mean relative error of 6% when
integrated with the scheduler of Spark. Furthermore,
OptEx can estimate the optimal cost for running a Spark
job under a specific deadline in the Service Level Objective
(SLO) with an accuracy of 98%. Although OptEx is the
first model in the open literature to analytically estimate
the job completion time on Spark, it only considers the
job profiles of PageRank and WordCount as parameters
along with the size of the cluster and the dataset. This
model cannot be representative for real cluster where
different workload having different profiles are running.

Sparrow [95] is a distributed scheduler that allows
the machines to operate autonomously and support more
requests from different applications running Hadoop or
Spark. In other words, Sparrow is a decentralized sched-
uler across a set of machines that operate together to
accommodate additional workload from users. When a
scheduler in a machine fails, other machines may accept its
received requests and process it according to their avail-
ability. The challenge in Sparrow consists in balancing
the load between the machines’ schedulers and provid-
ing shorter response times, especially when the distributed
schedulers make conflicting scheduling decisions. Sparrow
uses three main techniques to improve the performance of
its schedulers: Batch Sampling, Late Binding, and Policies
and Constraints. Batch Sampling schedules m tasks in a
job on the lightly loaded machines, rather than schedul-
ing them one by one. Late Binding places the m tasks
on the machine queue only when it is ready to accept new
tasks to reduce the waiting time in the queue that is based
on FCFS. The Policies and Constraints are to control the
scheduling decisions and avoid the conflicts on the schedul-
ing decisions. Sparrow allows to distribute the received
workload and balance it across the available workers in
a shorter time. While Sparrow can reduce the execution
time of the jobs by up to 40%, it lacks mechanisms to
take into account the requirements of the received work-
load while distributing them across the nodes. Also, it
does not consider the resources availability on each node,
the schedulers accept the new requests if the queue is not
yet empty, which can overload the machines. Moreover in
case of a scheduler failure, the meta-data scheduling of the
tasks running on that machine will not be shared with the
other machines.

5.5. Fault-Tolerance-aware Scheduling

Although, Hadoop, Spark, Storm, and Mesos are
equipped with some built-in fault-tolerance mechanisms,

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

they still experience several tasks failures due to unfore-
seen events in the Cloud. For example, the HDFS in
Hadoop keeps multiple replicas of data blocks on different
machines to ensure an effective data restoration in case of
a node failure. The failed map and reduce tasks will be
rescheduled on other nodes and re-executed from scratch.
This fault-tolerant solution is associated with a high cost
because of the task re-execution events, which can signifi-
cantly affect the performance of the Hadoop scheduler. To
address the aforementioned limitations, researchers have
proposed new mechanisms to improve the fault-tolerance
of Hadoop (e.g., [96] [97]).

Quiane-Ruiz et al. [96] proposed Recovery Algorithm
for Fast-Tracking (RAFT) for Hadoop to dynamically save
the states of tasks at regular intervals and at different
stages. This approach allows the JobTracker to restart
the tasks from the last checkpoint in the event of a fail-
ure. Indeed, RAFT enables the Hadoop scheduler to not
re-execute the finished tasks of the failed jobs since their
intermediate data are saved. So, the scheduler will only re-
execute the failed tasks. As a result of this strategy, RAFT
can reduce the total execution time of tasks by 23% under
different failure scenarios.

Bian et al. [97] propose an approach that dynamically
detects the failures of scheduled tasks and makes back-
ups of the tasks. In case of a failure, the scheduler would
launch the failed tasks on other nodes without losing their
intermediate data. Although the two works presented
in [96] [97] can improve the fault-tolerance of the system,
they do not provide a mechanism to improve the availabil-
ity of the checkpoints and the used backups.

In [98], Xu et al. claim that the long delays of jobs
are due to the straggling tasks and that the LATE sched-
uler [56] can make inaccurate estimations of the remain-
ing time of tasks, which may lead to resource waste. Thus,
they propose a dynamic tuning algorithm that uses histori-
cal information about tasks progresses to tune the weights
of each map and reduce tasks. In addition, they design
an evaluation approach that decides whether to launch a
straggling task on another node when there are free slots
in order to reduce the execution time and resources waste.
However, they do not propose a mechanism to distinguish
between different types of straggling tasks, i.e., whether it
is a map or a reduce task. This is particularly important
since it can affect the speculative executions.

Dinu et al.[99] analyse the behavior of the Hadoop
framework under different types of failures and report that
the recovery time of the failed components in Hadoop can
be long and can cause important delays, which may affect
the overall performance of a cluster. They claim that shar-
ing information about straggling and failed tasks between
JobTrackers and TaskTrackers, can significantly improve
the success rate of task executions.

To quickly detect Hadoop nodes failures, Hao et
al. [100] develop an adaptive heartbeat interval module
for the JobTracker. Using this module, the JobTracker
can dynamically estimate its expiry interval for various

job sizes. They show that when the expiry interval de-
creases (which means that the average number of heart-
beats sent to the JobTracker increases), the total execu-
tion time of small jobs decreases. In addition, they propose
a reputation-based detector to evaluate the reputation of
the workers. A worker will be marked as failed when its
reputation is lower than a threshold. They claim that if
equipped with their proposed tools, Hadoop can detect
node failures in shorter times and balance the load re-
ceived by the JobTracker to reduce job execution times.
However, they only consider the job size when deciding
to adjust the heartbeat interval and they do not include
other parameters related to the nodes environment (e.g.,
running load, availability of resources, failure occurrence).

In addition to the above work, Astro [101] is designed
to predict anomalies in Hadoop clusters and identify the
most important metrics contributing towards the failure of
the scheduled tasks using different machine learning algo-
rithms. The predictive model in Astro can detect anoma-
lies in systems early and send a feedback to the scheduler.
These early notifications can improve resources usage by
64.23% compared to existing implementations of Hadoop
schedulers. Astro can be improved by adding mechanisms
that enable a better distribution of workloads between the
nodes of the cluster. This would reduce the execution time
of the scheduled tasks by 26.68% during the time of an
anomaly.

The execution of MapReduce jobs in Hadoop clusters
can undergo many failures or other issues, which may affect
the response time and delay submitted jobs. Preemtion is
proposed as an effective solution to identify straggling jobs
and tasks in advance and make quick scheduling decisions
to prevent a waste of resources. Different approaches based
on speculative executions have been proposed to address
this issue in distributed Hadoop clusters:

Qi et al. [102], develop an algorithm called Maximum
Cost Performance (MCP), to improve existing speculative
execution strategies. However, MCP was found to nega-
tively impact the scheduling time of some jobs (batch jobs
in particular) [103].

The Combination Re-Execution Scheduling Technol-
ogy (CREST) [104] algorithm is proposed to improve
MCP, by considering data locality during the speculative
scheduling of slow running tasks. The authors propose
to optimally re-execute map tasks having local data in-
stead of launching speculative tasks without considering
data locality. However, there is a cost associated with the
replication of executed map tasks.

Self-Adaptive MapReduce scheduling (SAMR) uses
hardware system information over time to estimate the
progress of the tasks and adjust the weights of the map
and reduce tasks, in order to minimize the total comple-
tion time [105]. However, SAMR does not consider jobs
characteristics in terms of size, execution time, weights,
etc.

Enhanced Self-Adaptive MapReduce scheduling
(ESAMR) is designed to overcome the drawbacks of

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SAMR and consider system information about straggling
tasks, jobs length, etc. ESAMR uses the K-means
clustering algorithm to estimate tasks execution times
and identify slow tasks. It is more accurate than SAMR
and LATE [56]. Although ESAMR can identify straggling
map and reduce tasks and improve the execution time
of jobs, it does not provide rescheduling mechanisms for
these straggling tasks and does not improve the number
of the finished tasks.

AdapTive faiLure-Aware Scheduler (ATLAS) [28] is
proposed as a new scheduler for Hadoop that adapts its
scheduling decisions to events occurring in the cloud en-
vironment. ATLAS can identify task failures in advance
and adjust its scheduling decisions on the fly based on sta-
tistical models. It can reduce task failure rates, resources
utilisation and total execution time. However, it requires
training its predictive model at fixed time intervals, which
may negatively impact the scheduling time. Also, it may
face problems to find the appropriate scheduling rule or
it can give wrong predictions that can cause the failure of
tasks.

Yildiz et al. [106] [107] propose Chronos, a failure-
aware scheduling strategy that enables early actions to re-
cover the failed tasks in Hadoop. Chronos is characterized
by a pre-emption technique to carefully allocate resources
to the recovered tasks. It can reduce the job completion
times by up to 55%. However, it is still relying on wait
and kill pre-emptive strategies, which can lead to resource
waste and degrade the performance of Hadoop clusters.

5.6. Energy Efficiency-aware Scheduling

The total energy consumption of the applications run-
ning on big data platforms depends on many factors in-
cluding the number of the low-load nodes and the pro-
cessed load on each node. Several studies addressed the
issue of finding good task assignments while saving the
energy, e.g., [108] [109] [110] [111].

Lena et al. [108] propose to model the problem of sav-
ing energy on MapReduce jobs as an integer programming
problem and design two heuristics Energy-MapReduce
Scheduling Algorithm I and II (EMRSA-I and EMRSA-
II). The proposed model considers the dependencies be-
tween the reduce tasks and the map tasks such that all
tasks are finished before their expected deadlines, while
the main goal of the proposed approach is to minimize
the amount of energy consumed by these map and reduce
tasks. EMRSA-I and EMRSA-II are evaluated using Tera-
Sort, PageRank, and K-means clustering applications and
are able to reduce the energy consumption by up to 40%
on average, when compared to the default scheduler of
Hadoop. In addition, they can reduce the makespan be-
tween the processed MapReduce jobs. However, in the
proposed model, the authors assume that map tasks be-
longing to the same job should all receive resources slots
(same assumption for the reduce tasks), before the execu-
tion of the job. However, this is not generally the case in
Hadoop and such restriction can delay the execution of a

MapReduce job if even a single map or reduce task fail to
obtain a slot.

Wen [109] propose a dynamic task assignment ap-
proach to reduce the overall system energy consumption
for dynamic Cloud Hosts (CHs). The idea of the ap-
proach is to have a set of power-on/suspending thresholds
to satisfy the constant and variable traffic loads, migra-
tion overhead, and the processing power between the CHs.
Based on the proposed thresholds, the Hadoop scheduler
can dynamically assign tasks to satisfy those constraints
and achieve better energy efficiency. The evaluation of
these schemes shows that setting the thresholds between
the CHs can help obtain the lowest energy consumption
and acceptable execution times for Hadoop jobs. How-
ever, there is an overhead that comes when suspending or
powering on the CHs, which can affect the network traf-
fic in Hadoop, especially when the frequency of these two
operations is high.

Paraskevopoulos et al. [110] propose a strategy to
schedule the tasks for Hadoop, while balancing between
energy consumption and response time. Their proposed
strategy can help identify the nodes in a cluster that can
satisfy the constraint of less energy in a reasonable re-
sponse time. Next, it can determine which nodes should
be turned on–or–off, and when that should be done, based
on the derived nodes and the received workload in the
cluster. The experimental results show a significant im-
provement on energy consumption without sacrificing the
scheduler performance. In this work, the authors only con-
sider the response times of the jobs when deciding about
the best task scheduling policies that can minimize energy
consumption. They do not consider balancing the work-
load between the nodes that have the highest impact on
the energy consumption of a Hadoop cluster.

Chen et al. [111] introduce a scheduling approach for
Hadoop to minimize the energy consumption of MapRe-
duce jobs. The proposed approach consists in dividing the
jobs into time-sensitive jobs and less time-sensitive ones.
The former group of jobs are run on dedicated nodes where
there are enough resources, while the later ones run on the
remaining nodes in the cluster. Chen et al. [111] introduce
a management framework for Hadoop named Berkeley En-
ergy Efficient MapReduce (BEEMR). BEEMR is able to
reduce the energy consumption in Hadoop clusters by 40-
50% under tight design constraints. However, although
BEEMR can achieve energy savings for workloads with
significant interactive analysis, BEEMR cannot reduce the
processing times of long running jobs that have inherently
low levels of parallelism, even when all resources in the
cluster were available [111].

5.7. Discussion

In the previous subsections, we describe the different
types of scheduling approaches available in the open liter-
ature to solve the issues presented in Section 4. Table 3
presents a classification of these approaches and the ad-
dressed issues. The main addressed issues in the studied

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

papers are: improve the resources utilisation, reduce tasks
delays, tasks dependency consideration, reduce the execu-
tion times of tasks and jobs, improve the deadline satis-
faction of tasks, reduce network traffic, improve the data
locality/placement/replication strategies, reduce the data
skew, balance the workload, reduce failures rates (tasks,
workers, etc), and reduce the amount of energy consumed
in big data platforms. The proposed approaches can be
classified into three main categories: dynamic, constrained,
and adaptive. We observe that most of the existing solu-
tions propose to collect and use data about the environ-
ment where the computations are processed (e.g., clusters,
machines, workers). This can be explained by the dy-
namic behavior and structure of the cloud computing en-
vironment where Hadoop, Spark, Storm, and Mesos plat-
forms are deployed. This requires to adapt the scheduling
decisions of these platforms according to the continuous
changes across the clusters.

In general, we observe the lack of formal description of
the addressed issues and the proposed solutions in the pa-
pers analysed in this SLR. Indeed, we notice that most pa-
pers conduct empirical studies (e.g., [34] [35] [36]) and very
few work propose analytical models (e.g., [24] [26] [29]) to
solve the scheduling issues. So, an interesting direction
could be to improve the empirical studies by developing
formal models in order to improve the performance of the
Hadoop, Spark, Storm, and Mesos’ schedulers. Another
concern is the benchmarks (e.g., WordCount, TeraSort)
used to implement and build the proposed solutions. The
use of these benchmarks is highly dependent on the ob-
jective of the study (e.g., resources optimization, failures
recovery). The absence of dataset to configure and define
the parameters of these benchmarks may lead to biased re-
sults. Furthermore, we find that several studies conducted
by the academics do not become commercialized and part
of Apache projects (Hadoop, Spark, and Storm) or Mesos.
Finally, we can conclude that applying and adapting the
proposed solutions for Hadoop to Spark, Storm, and Mesos
could be an interesting direction since we notice that only
a few work are done to improve the performance of Spark,
Storm, and Mesos compared to Hadoop.

6. Research Directions on Task Scheduling in Big
Data Infrastructures

In this section, we present some suggestions for poten-
tial research directions using the results from the above
paragraphs. These suggestions can help build a roadmap
for future work related to task scheduling in the studied
platforms, i.e., Hadoop, Spark, Storm, and Mesos.

6.1. Resources Utilisation-aware Scheduling

During our study, we observe that existing work in
the literature propose different approaches to assign the
map and reduce slots and evaluate the performance of
the scheduler. Moreover, most of the studies randomly

select the map tasks that satisfy the slots requirements.
But, it is very important to include the data locality is-
sue while scheduling the map tasks in order to improve
their execution and hence, avoid the data skewness prob-
lem and reduce the execution times of the reduce tasks
(as mentioned in Section 5). Besides, we notice that the
task preemption while occupying or waiting for a slot can
cause unpredictable delays. So, an efficient approach is
required to manage task preemption in a way that do not
generate an overhead and avoid task starvation. Further-
more, analysing several factors (e.g., queue state, avail-
able slots, received workload, number of nodes) on the
resources utilisation can be helpful to guide the scheduler
to change its scheduling decisions based on the events oc-
curring in its environment. The scheduler may consider
different constraints-objectives along with a fair distribu-
tion of load constraint while scheduling the tasks. Exam-
ples of these constraints can be the Service Level Agree-
ment (SLA), the number of tasks having local data, the
transferred data in the network, etc. Finally, more studies
need to be done in order to improve the performance of
Spark, Mesos, and Storm schedulers in terms of resources
utilisation since we find very few work done in this as-
pect. For instance, considering the characteristics of work-
load running on Spark, Mesos, and Storm can guide the
scheduler to make better scheduling decisions while assign-
ing the available resources to the tasks. Also, we believe
that some of the existing solutions proposed to improve
the performance of Hadoop-Mapreduce can be reused and
adapted for the other platforms. To do that, one should
consider the data structure/format and the way these data
are processed within these platforms. For example, new
approaches should consider the characteristics of the in-
memory operations performed in Spark using the Resilient
Distributed Dataset (RDD). The allocation of resources
to tasks in Spark should be done, taking into account
the amount of memory required to store the intermedi-
ate data between the tasks, since a Spark job does the
whole computation and then stores the final output to the
disk. In the case of Storm, it is important to consider the
structure of the applications processing the spouts and the
bolts, and the dependency between these tasks, especially
the bolts that process the data read from input streams
or the generated output of other bolt tasks. This is be-
cause there might be some bolt tasks running in sequen-
tial or/and parallel. Therefore, one should consider the
parallel and the sequential aspects while scheduling the
tasks in Storm. For Mesos, the type of frameworks should
be considered (e.g. CPU-intensive, memory-intensive or
network-intensive frameworks), when adapting existing so-
lutions to improve the resources utilisation. This is be-
cause the type of the framework can affect the performance
of the assigned resources by Mesos. So, Mesos should con-
sider not only the amount of the assigned resources to each
framework but also the type of resources to offer them. In
addition, the two levels of the scheduling process of Mesos
require synchronization between them.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: An Overview of Task Scheduling Issues and Solutions in Big Data Platforms

Issue/Solution
Map/Reduce
Dependency

Slot
Assignment

Data
Collecting

Load
Profiling

Prefetchning
& Shuffling
Techniques

Recovery
Techniques

Failure
Prediction

Resources
Variability

[30] [31]
[32] [33]

[34] [35] [36]
[37] [38] [39]

[81]
[50] [52]

Task Delays
[34] [35] [36]
[37] [38] [39]

[81]

[81] [83]
[84] [85]

Dependency
Tasks

[42] [51] [42] [51]

Execution
Time

[94]
[41] [30]
[42] [43]

Deadline
Satisfaction

[44] [45] [46]
[47] [48] [49]

[51]

Data Locality/
Network Traffic

[56] [57]
[58]

[51] [52] [53]
[54] [55] [56]
[57] [58] [73]

[56] [59]
[60] [61]

Data Skew
[36] [62]
[63] [64]

[86] [69] [70] [68]
[65] [66] [67]

[71] [72]
Data

Placement
[74] [75] [76]

Data
Replication

[78] [79] [80]

Unbalanced
Workload

[89] [91]
[93] [95]

[87] [88] [90]
[92] [41]

Failures
Rates

[96] [97] [104]
[98] [99] [100]
[102] [105]

[96] [97] [104]
[98] [99] [100]
[102] [105]

[101] [28]
[106] [107]

Energy
Consumption

[108] [109] [108] [109] [110] [111]

6.2. Data Management-aware Scheduling

While reviewing the data-management aware schedul-
ing solutions in the literature, we notice that the proposed
schemes that place or duplicate the data across the clus-
ter nodes are not made based on a workload analysis.
Therefore, analysing the impact of different workloads,
data placements and replication mechanisms are needed
to improve the data locality of the scheduled tasks. More-
over, having a large number of local tasks may cause an
unbalanced workload across the processing nodes. Hierar-
chical scheduling can be a solution for this issue; this ap-
proach consists in having one scheduling layer to consider
the data locality and another scheduling layer to handle
workload balancing. These two layers should communicate
their global and local information to cooperate together.
In addition, we observe that most of the solutions that try
to achieve data locality are characterized by an overhead
due to the cost of finding the optimal distribution of file
fragments. This would significantly affect the performance
of the scheduler. So, better solutions need to be devel-
oped to reduce this overhead. On the other hand, existing
scheduling solutions cannot guarantee high data locality
for large jobs since there is a lot of data to be transferred.
Therefore, efficient approaches should be developed in this
direction in order to handle different job scales. Moreover,
we notice that the majority of the studies we find are re-
lated to Hadoop schedulers. So, more work should be done
to analyse the performance of Spark, Mesos and Storm in
terms of data locality, replication and duplication.

6.3. Fairness-aware Scheduling

Distributing the available resources slots among the
scheduled tasks is important in order to avoid the star-
vation problem. However, to the best of our knowledge,
the research studies that address this issue do not consider
the difference between the map and reduce tasks during
slots assignments. Indeed, while estimating the remaining
execution time, the proposed solutions do not distinguish
between them; which may affect the slots assignment since
the map and reduce tasks have different slot requirements.
In addition, developing a constraint-solver that combines
several objectives including data locality, resources utilisa-
tion and fairness can significantly improve the performance
of schedulers on these platforms. Implementing heuristics
can solve this constrained-problem, however, it may cause
an overhead. Moreover, we notice that most of the studies
in this research direction do not handle fairness for con-
tinuous jobs that can occupy the available slots for longer
time than the small ones. Therefore, proposing an efficient
approach that can estimate the amount of slots required
to guarantee successful processing for both continuous and
non-continuous jobs while having a fair distribution for the
available slots would be useful. Also, it is very important
to reduce the amount of data communication for depen-
dent jobs, in order to mitigate the overhead due to the
transfer of intermediate data.

6.4. Workload Balancing-aware Scheduling

To improve the performance of schedulers of the stud-
ied platforms, one can develop efficient solutions that esti-
mate the remaining execution time of the scheduled tasks

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

based on their progress rate in order to redistribute the
loads across the nodes. Indeed, existing schedulers use a
simple approach to estimate the remaining execution time
and hence the resulting average execution time cannot be
used in heterogeneous clusters and may lead to unbalanced
workloads. Besides, the performance of the prediction
models used to estimate the type of received workloads
can significantly affect the load distribution. Hence, it is
required to build robust models with high accuracy, to pre-
dict the characteristics of the upcoming loads. Based on
these predictions, the scheduler can make better decisions
when assigning the slots and guarantee data locality for the
scheduled tasks. Moreover, it is very important to propose
a model to adjust the scheduling decisions considering de-
pendencies between the tasks within the workload. This
can help reduce the overhead to communicate the interme-
diate results and allow for faster processing. Also, it can
reduce the amount of data transferred in the network. The
analysis of the impact of virtual machines placements on
the processing of the load could enable a better workload
distribution.

6.5. Fault-Tolerance-aware Scheduling

Reducing the occurrence of failures in big data plat-
forms is very important in order to improve the resources
utilisation and the performance of the scheduled tasks.
However, existing schedulers only make use of a limited
amount of information when re-executing failed tasks.
This is due to the lack of information sharing between the
different components of these frameworks. Adaptive solu-
tions that collect data about the events occurring in the
cloud environment and adjust the decisions of the sched-
uler accordingly could help avoid decisions leading to task
failures. Moreover, the speculative execution still experi-
ences many failures and waste of resources due to inaccu-
rate estimations of the scheduled tasks progresses or the
availability of resources. This can affect their starting time
and the number of speculatively executed tasks. There-
fore, it is very important to analyse the impact of different
factors on the start time and the number of speculative
executions required for the straggling tasks. Finally, it is
very important to distinguish between the failure of a map
and a reduce task since they have different impacts on the
processing of tasks.

6.6. Energy-Efficiency-aware Scheduling

Determining the configuration for big data platforms
like Hadoop or Spark can be very helpful to achieve en-
ergy savings and make efficient scheduling decisions. Also,
analysing the correlation between the number of nodes in
a cluster and the amount of energy consumed can be rel-
evant in order to specify the nodes to turn on–or–off, so
that the number of active nodes satisfy the requirements
of the received tasks. Moreover, analysing the level of
parallelism in a cluster when the number of active nodes
increases can be an important direction to guide the sched-
uler to scale up–or–down the level of parallelism for the

scheduled tasks especially for the long jobs. In addition,
most of the studies proposed to improve the performance
of Hadoop schedulers does not consider the impact of de-
laying the execution of tasks on the overall performance of
the scheduler in terms of users’ requirements. Another as-
pect that can be interesting for future studies is to analyse
the impact of frequencies at which machines are turned on
or off in a cluster, especially large ones, on the amount of
energy consumed. Although turning off some nodes in a
cluster can help reduce energy consumption, this can gen-
erate more traffic on the network since the scheduled tasks
may not find their data on the nodes where they will be
executed; which could increase the number of data transfer
in the cluster.

7. Conclusion

In recent years, task scheduling has evolved to become
a critical factor that can significantly affect the perfor-
mance of cloud frameworks such as Hadoop, Spark, Storm
and Mesos. This crucial issue is addressed by many re-
searchers. However, to the best of our knowledge, there is
no extensive study on the literature of task scheduling for
these frameworks that classifies and discusses the proposed
approaches. Hence, we perform a SLR to review existing
literature related to this topic. In this work, we review 586
papers and identify the most important factors affecting
the performance of the proposed schedulers. We discuss
these factors in general with their associated challenges
and issues namely, resources utilisation, total execution
time, energy efficiency etc. Moreover, we categorize the
existing scheduling approaches from the literature (e.g.,
adaptive, constrained, dynamic, multi-objective) and sum-
marise their benefits and limitations. Our mapping study
allows us to classify the scheduling issues in different cat-
egories including resources management, data manage-
ment (data locality, data placement and data replication
), fairness, workload balancing, fault-tolerance, and en-
ergy efficiency. We describe and discuss the approaches
proposed to address these issues, classifying them into
four main groups; dynamic scheduling approaches, con-
strained scheduling approaches, and adaptive scheduling
approaches. Finally, we outline some directions for future
research that can be included in a roadmap for research
on task and jobs scheduling in Hadoop, Spark, Storm and
Mesos frameworks.

References

References

[1] S. Kurazumi, T. Tsumura, S. Saito, H. Matsuo, Dynamic Pro-
cessing Slots Scheduling for I/O Intensive Jobs of Hadoop
MapReduce, in: Proceedings of International Conference on
Networking and Computing, 2012, pp. 288–292.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Sto-
ica, Spark: Cluster Computing with Working Sets, in: Pro-
ceedings of USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, 2010, pp. 1–7.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[3] B. Peng, M. Hosseini, Z. Hong, R. Farivar, R. Campbell, R-
Storm: Resource-Aware Scheduling in Storm, in: Proceedings
of Annual Middleware Conference, 2015, pp. 149–161.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, I. Stoica, Mesos: A Platform for
Fine-grained Resource Sharing in the Data Center, in: Pro-
ceedings of USENIX Conference on Networked Systems Design
and Implementation, 2011, pp. 295–308.

[5] T. Jian, M. Shicong, M. Xiaoqiao, Z. Li, Improving Reduc-
eTask Data Locality for Sequential MapReduce Jobs, in: Pro-
ceedings of IEEE INFOCOM, 2013, pp. 1627–1635.

[6] S. Patil, S. Deshmukh, Survey on Task Assignment Techniques
in Hadoop, International Journal of Computer Application
59 (14) (2012) 15–18.

[7] B. Rao, L. Reddy, Survey on Improved Scheduling in Hadoop
MapReduce in Cloud Environments, CoRR abs/1207.0780.
URL http://arxiv.org/abs/1207.0780

[8] N. Singh, S. Agrawal, A review of research on MapReduce
scheduling algorithms in Hadoop, in: Proceedings of Inter-
national Conference on Computing, Communication Automa-
tion, 2015, pp. 637–642.

[9] B. Kitchenham, Procedure for Performing Systemic Reviews,
Tech. rep., Keele University and NICTA, Australia (2004).

[10] K. Lee, Y. Lee, H. Choi, Y. Chung, B. Moon, Parallel Data
Processing with MapReduce: A Survey, SIGMOD Record
40 (4) (2012) 11–20.

[11] J. Dean, S. Ghemawat, MapReduce: Simplified Data Process-
ing on Large Clusters, ACM Communication 51 (1) (2008)
107–113.

[12] Apache Hadoop Project (2017).
URL http://hadoop.apache.org/

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, I. Stoica, Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing, in: Proceedings of USENIX Con-
ference on Networked Systems Design and Implementation,
2012, pp. 1–14.

[14] N. Liu, X. Yang, X. H. Sun, J. Jenkins, R. Ross, YARNsim:
Simulating Hadoop YARN, in: Proceedings of IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Comput-
ing, 2015, pp. 637–646.

[15] S. Karpate, A. Joshi, J. Dosani, J. Abraham, Cascket: A Bi-
nary Protocol Based C Client-Driver for Apache Cassandra,
in: Proceedings of International Conference on Advances in
Computing, Communications and Informatics, 2015, pp. 387–
393.

[16] J. Xu, Z. Chen, J. Tang, S. Su, T-Storm: Traffic-Aware Online
Scheduling in Storm, in: Proceedings of IEEE International
Conference on Distributed Computing Systems, 2014, pp. 535–
544.

[17] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, I. Stoica, Job Scheduling for Multi-User MapRe-
duce Clusters, Tech. rep., EECS Department, University of
California, Berkeley, USA (2009).
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/

EECS-2009-55.html

[18] A. Raj, K. Kaur, U. Dutta, V. Sandeep, S. Rao, Enhancement
of Hadoop Clusters with Virtualization Using the Capacity
Scheduler, in: Proceedings of International Conference on Ser-
vices in Emerging Markets, 2012, pp. 50–57.

[19] T. Dyb̊a, T. Dingsøyr, Empirical studies of agile software de-
velopment: A systematic review, Information and Software
Technology 50 (9-10) (2008) 833–859.

[20] C. Wohlin, Guidelines for Snowballing in Systematic Litera-
ture Studies and a Replication in Software Engineering, in:
Proceedings of International Conference on Evaluation and As-
sessment in Software Engineering, 2014, pp. 38:1–38:10.

[21] D. Cheng, J. Rao, C. Jiang, X. Zhou, Resource and Deadline-
Aware Job Scheduling in Dynamic Hadoop Clusters, in: IEEE
International Parallel and Distributed Processing Symposium,
2015, pp. 956–965.

[22] Y. Xun, J. Zhang, X. Qin, X. Zhao, FiDoop-DP: Data Parti-
tioning in Frequent Itemset Mining on Hadoop Clusters, IEEE
Transactions on Parallel and Distributed Systems 28 (1) (2017)
101–114.

[23] Y. Guo, J. Rao, D. Cheng, X. Zhou, iShuffle: Improving
Hadoop Performance with Shuffle-on-Write, IEEE Transac-
tions on Parallel and Distributed Systems PP (99) (2016) 1–14.

[24] M. W. Convolbo, J. Chou, S. Lu, Y. C. Chung, DRASH: A
Data Replication-Aware Scheduler in Geo-Distributed Data
Centers, in: IEEE International Conference on Cloud Com-
puting Technology and Science, 2016, pp. 302–309.

[25] Z. Niu, S. Tang, B. He, An Adaptive Efficiency-Fairness Meta-
scheduler for Data-Intensive Computing, IEEE Transactions
on Services Computing PP (99) (2016) 1–14.

[26] Y. Guo, J. Rao, C. Jiang, X. Zhou, FlexSlot: Moving Hadoop
into the Cloud with Flexible Slot Management, in: Proceedings
of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2014, pp. 959–969.

[27] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, Y. Zhang,
Failure data analysis of a large-scale heterogeneous server envi-
ronment, in: International Conference on Dependable Systems
and Networks, 2004, pp. 772–781.

[28] M. Soualhia, F. Khomh, S. Tahar, ATLAS: An Adaptive
Failure-Aware Scheduler for Hadoop, in: Proceedings of Inter-
national Performance Computing and Communications Con-
ference, 2015, pp. 1–8.

[29] D. Cheng, P. Lama, C. Jiang, X. Zhou, Towards Energy Ef-
ficiency in Heterogeneous Hadoop Clusters by Adaptive Task
Assignment, in: IEEE International Conference on Distributed
Computing Systems, 2015, pp. 359–368.

[30] Q. Zhang, M. Zhani, Y. Yang, R. Boutaba, B. Wong,
PRISM: Fine-Grained Resource-Aware Scheduling for MapRe-
duce, IEEE Transactions on Cloud Computing 3 (2) (2015)
182–194.

[31] T. Jian, M. Xiaoqiao, Z. Li, Coupling Task Progress for
MapReduce Resource-Aware Scheduling, in: Proceedings of
IEEE INFOCOM, 2013, pp. 1618–1626.

[32] Y. Liang, Y. Wang, M. Fan, C. Zhang, Y. Zhu, Predoop: Pre-
empting Reduce Task for Job Execution Accelerations, in: Big
Data Benchmarks, Performance Optimization, and Emerging
Hardware, Vol. 8807 of LNCS, Springer, 2014, pp. 167–180.

[33] M. PASTORELLI, D. Carra, M. Dell’Amico, P. Michiardi,
HFSP: Bringing Size-Based Scheduling To Hadoop, IEEE
Transactions on Cloud Computing PP (99) (2015) 1–14.

[34] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,
S. Parekh, K. Wu, A. balmin, FLEX: A Slot Allocation
Scheduling Optimizer for MapReduce Workloads, in: Proceed-
ings of International Conference on Middleware, 2010, pp. 1–
20.

[35] T. Shanjiang, L. Bu-Sung, H. Bingsheng, Dynamic Slot Allo-
cation Technique for MapReduce Clusters, in: International
Conference on Cluster Computing, 2013, pp. 1–8.

[36] Z. Liu, Q. Zhang, R. Ahmed, R. Boutaba, Y. Liu, Z. Gong, Dy-
namic Resource Allocation for MapReduce with Partitioning
Skew, IEEE Transactions on Computers 13 (9) (2014) 1–14.

[37] W. Jiayin, Y. Yi, M. Ying, S. Bo, M. Ningfang, FRESH: Fair
and Efficient Slot Configuration and Scheduling for Hadoop
Clusters, in: International Conference on Cloud Computing,
2014, pp. 761–768.

[38] Y. Yao, J. Wang, B. Sheng, C. Tan, N. Mi, Self-Adjusting Slot
Configurations for Homogeneous and Heterogeneous Hadoop
Clusters, IEEE Transactions on Cloud Computing PP (99)
(2015) 1–14.

[39] S. Tang, B. S. Lee, B. He, Dynamic Job Ordering and Slot
Configurations for MapReduce Workloads, IEEE Transactions
on Services Computing 9 (1) (2016) 4–17.

[40] Y. Mao, H. Zhong, L. Wang, A Fine-Grained and Dynamic
MapReduce Task Scheduling Scheme for the Heterogeneous
Cloud Environment, in: Proceedings of International Sympo-
sium on Distributed Computing and Applications for Business
Engineering and Science, 2015, pp. 155–158.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[41] A. Rasooli, D. Down, A Hybrid Scheduling Approach for
Scalable Heterogeneous Hadoop Systems, in: Proceedings of
IEEE Conference on High Performance Computing, Network-
ing Storage and Analysis, 2012, pp. 1284–1291.

[42] Y. Yao, J. Wang, B. Sheng, J. Lin, N. Mi, HaSTE: Hadoop
YARN Scheduling Based on Task-Dependency and Resource-
Demand, in: Proceedings of IEEE International Conference on
Cloud Computing, 2014, pp. 184–191.

[43] A. Rasooli, D. Down, An Adaptive Scheduling Algorithm for
Dynamic Heterogeneous Hadoop Systems, in: Conference of
the Center for Advanced Studies on Collaborative Research,
2011, pp. 30–44.

[44] D. Cheng, J. Rao, C. Jiang, X. Zhou, Resource and Deadline-
Aware Job Scheduling in Dynamic Hadoop Clusters, in: IEEE
International Parallel and Distributed Processing Symposium,
2015, pp. 956–965.

[45] Z. Wei, S. Rajasekaran, T. Wood, Z. Mingfa, MIMP: Dead-
line and Interference Aware Scheduling of Hadoop Virtual Ma-
chines, in: Proceedings of International Symposium on Clus-
ter, Cloud and Grid Computing, 2014, pp. 394–403.

[46] I. Ullah, C. Jihyeon, R. Yonjoong, Y. Man, Y. Hee, Hadoop
Preemptive Deadline Constraint Scheduler, in: Proceedings of
International Conference on Cyber-Enabled Distributed Com-
puting and Knowledge Discovery, 2014, pp. 201–208.

[47] Y. Bin, D. Xiaoshe, Z. Pengfei, Z. Zhengdong, L. Qiang,
W. Zhe, A Delay Scheduling Algorithm Based on History Time
in Heterogeneous Environments, in: Proceedings of ChinaGrid
Annual Conference, 2013, pp. 86–91.

[48] D. Pletea, F. Pop, V. Cristea, Speculative Genetic Scheduling
Method for Hadoop Environments, in: Proceedings of Inter-
national Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2012, pp. 281–286.

[49] M. Khan, Y. Jin, M. Li, Y. Xiang, C. Jiang, Hadoop Perfor-
mance Modeling for Job Estimation and Resource Provision-
ing, IEEE Transactions on Parallel and Distributed Systems
27 (2) (2016) 441–454.

[50] J. Jiang, S. Ma, B. Li, B. Li, Symbiosis: Network-aware task
scheduling in data-parallel frameworks, in: IEEE International
Conference on Computer Communications, 2016, pp. 1–9.

[51] B. Peng, M. Hosseini, Z. Hong, R. Farivar, R. Campbell, R-
Storm: Resource-Aware Scheduling in Storm, in: Proceedings
of Annual Middleware Conference, 2015, pp. 149–161.

[52] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, I. Stoica, Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center, in: Proceedings
of Conference on Networked Systems Design and Implementa-
tion, 2011, pp. 295–308.

[53] Y. Cairong, Y. Xin, Y. Ze, L. Min, L. Xiaolin, IncMR: Incre-
mental Data Processing Based on MapReduce, in: Proceed-
ings of International Conference on Cloud Computing, 2012,
pp. 534–541.

[54] C. Tseng-Yi, W. Hsin-Wen, W. Ming-Feng, C. Ying-Jie,
H. Tsan-sheng, S. Wei-Kuan, LaSA: A Locality-Aware
Scheduling Algorithm for Hadoop-MapReduce Resource As-
signment, in: Proceedings of International Conference on Col-
laboration Technologies and Systems, 2013, pp. 342–346.

[55] Y.-C. Kao, Y.-S. Chen, Data-locality-aware mapreduce real-
time scheduling framework, Journal of Systems and Software
112 (2016) 65 – 77.

[56] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, Im-
proving MapReduce Performance in Heterogeneous Environ-
ments, in: Proceedings of USENIX Conference on Operating
Systems Design and Implementation, 2008, pp. 29–42.

[57] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, I. Stoica, Delay Scheduling: A Simple Technique
for Achieving Locality and Fairness in Cluster Scheduling, in:
Proceedings of European Conference on Computer Systems,
2010, pp. 265–278.

[58] L. Liying, T. Zhuo, L. Renfa, Y. Liu, New Improvement
of the Hadoop Relevant Data Locality Scheduling Algorithm
Based on LATE, in: Proceedings of International Conference

on Mechatronic Science, Electric Engineering and Computer,
2011, pp. 1419–1422.

[59] Z. Hui, Y. Shuqiang, C. Zhikun, Y. Hong, J. Songchang, An
Locality-aware Scheduling based on a Novel Scheduling Model
to Improve System Throughput of MapReduce Cluster, in:
Proceedings of International Conference on Computer Science
and Network Technology, 2012, pp. 111–115.

[60] Z. Guo, G. Fox, M. Zhou, Investigation of Data Locality in
MapReduce, in: Proceedings of International Symposium on
Cluster, Cloud and Grid Computing, 2012, pp. 419–426.

[61] R. Xue, S. Gao, L. Ao, Z. Guan, BOLAS: Bipartite-Graph
Oriented Locality-Aware Scheduling for MapReduce Tasks, in:
Proceedings of International Symposium on Parallel and Dis-
tributed Computing, 2015, pp. 37–45.

[62] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, P. Valduriez, Fp-
hadoop: Efficient processing of skewed mapreduce jobs, Infor-
mation Systems 60 (2016) 69 – 84.

[63] E. Coppa, I. Finocchi, On Data Skewness, Stragglers, and
MapReduce Progress Indicators, in: Proceedings of ACM Sym-
posium on Cloud Computing, 2015, pp. 139–152.

[64] S. Zheng, Y. Liu, T. He, L. Shanshan, X. Liao, SkewControl:
Gini Out of the Bottle, in: Proceedings of IEEE International
Parallel Distributed Processing Symposium Workshops, 2014,
pp. 1572–1580.

[65] S. Sangwon, J. Ingook, W. Kyungchang, K. Inkyo, K. Jin-
Soo, M. Seungryoul, HPMR: Prefetching and Pre-shuffling in
Shared MapReduce Computation Environment, in: Proceed-
ings of International Conference on Cluster Computing and
Workshops, 2009, pp. 1–8.

[66] W. Chunguang, W. Qingbo, T. Yusong, W. Wenzhu,
W. Quanyuan, Locality Based Data Partitioning in MapRe-
duce, in: Proceedings of International Conference on Compu-
tational Science and Engineering, 2013, pp. 1310–1317.

[67] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, A Throughput
Optimal Algorithm for Map Task Scheduling in Mapreduce
with Data Locality, ACM SIGMETRICS Performance Evalu-
ation Review 40 (4) (2013) 33–42.

[68] M. Asahara, S. Nakadai, T. Araki, LoadAtomizer: A Local-
ity and I/O Load Aware Task Scheduler for MapReduce, in:
Proceedings of IEEE International Conference onCloud Com-
puting Technology and Science, 2012, pp. 317–324.

[69] Z. Xiaohong, Z. Zhiyong, F. Shengzhong, T. Bibo, F. Jian-
ping, Improving Data Locality of MapReduce by Scheduling
in Homogeneous Computing Environments, in: Proceedings of
International Symposium on Parallel and Distributed Process-
ing with Applications, 2011, pp. 120–126.

[70] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. Whalley,
J. Torres, E. Ayguade, Deadline-Based MapReduce Work-
load Management, IEEE Transactions on Network and Service
Management 10 (2) (2013) 231–244.

[71] M. Hammoud, M. Sakr, Locality-Aware Reduce Task Schedul-
ing for MapReduce, in: Proceedings of International Confer-
ence on Cloud Computing Technology and Science, 2011, pp.
570–576.

[72] T. Jian, M. Shicong, M. Xiaoqiao, Z. Li, Improving Reduc-
eTask Data Locality for Sequential MapReduce Jobs, in: Pro-
ceding of IEEE INFOCOM, 2013, pp. 1627–1635.

[73] J. Xu, Z. Chen, J. Tang, S. Su, T-Storm: Traffic-Aware Online
Scheduling in Storm, in: Proceedings of IEEE International
Conference on Distributed Computing Systems, 2014, pp. 535–
544.

[74] X. Jiong, Y. Shu, R. Xiaojun, D. Zhiyang, T. Yun, J. Majors,
A. Manzanares, Q. Xiao, Improving MapReduce Performance
Through Data Placement in Heterogeneous Hadoop clusters,
in: Proceedings of International Symposium on Parallel Dis-
tributed Processing, 2010, pp. 1–9.

[75] Z. Xiaohong, F. Yuhong, F. Shengzhong, F. Jianping,
M. Zhong, An effective Data Locality Aware Task Scheduling
Method for MapReduce Framework in Heterogeneous Environ-
ments, in: Proceedings of International Conference on Cloud
and Service Computing, 2011, pp. 235–242.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[76] B. Sharma, T. Wood, C. Das, HybridMR: A Hierarchical
MapReduce Scheduler for Hybrid Data Centers, in: Proceed-
ings of International Conference on Distributed Computing
Systems, 2013, pp. 102–111.

[77] J. C. Anjos, I. Carrera, W. Kolberg, A. L. Tibola, L. B.
Arantes, C. R. Geyer, Mra++: Scheduling and data place-
ment on mapreduce for heterogeneous environments, Future
Generation Computer Systems 42 (2015) 22 – 35.

[78] J. Hui, Y. Xi, S. Xian-He, I. Raicu, ADAPT: Availability-
Aware MapReduce Data Placement for Non-dedicated Dis-
tributed Computing, in: Proceedings of International Confer-
ence on Distributed Computing Systems, 2012, pp. 516–525.

[79] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, E. Harris, Scarlett: Coping with Skewed
Content Popularity in Mapreduce Clusters, in: Proceedings of
Conference on Computer Systems, 2011, pp. 287–300.

[80] C. Abad, L. Yi, R. Campbell, DARE: Adaptive Data Replica-
tion for Efficient Cluster Scheduling, in: Proceedings of Inter-
national Conference on Cluster Computing, 2011, pp. 159–168.

[81] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
A. Goldberg, Quincy: Fair Scheduling for Distributed Com-
puting Clusters, in: Proceedings of ACM SIGOPS Symposium
on Operating Systems Principles, 2009, pp. 261–276.

[82] L. Yin, L. Chuang, R. Fengyuan, G. Yifeng, H-PFSP: Effi-
cient Hybrid Parallel PFSP Protected Scheduling for MapRe-
duce System, in: Proceedings of International Conference on
Trust, Security and Privacy in Computing and Communica-
tions, 2013, pp. 1099–1106.

[83] Z. Hui, Y. Shuqiang, C. Zhikun, F. Hua, X. Jinghu, K%-Fair
scheduling: A Flexible Task Scheduling Strategy for Balanc-
ing Fairness and Efficiency in MapReduce Systems, in: Pro-
ceedings of International Conference on Computer Science and
Network Technology, 2012, pp. 629–633.

[84] N. Phuong, T. Simon, M. Halem, D. Chapman, Q. Le, A Hy-
brid Scheduling Algorithm for Data Intensive Workloads in
a MapReduce Environment, in: Proceedings of International
Conference on Utility and Cloud Computing, 2012, pp. 161–
167.

[85] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad,
N. Roberts, P. Lin, Natjam: Design and Evaluation of Evic-
tion Policies for Supporting Priorities and Deadlines in Mapre-
duce Clusters, in: Proceedings of Annual Symposium on Cloud
Computing, 2013, pp. 6:1–6:17.

[86] Y. Guo, J. Rao, C. Jiang, X. Zhou, Moving MapReduce into
the Cloud with Flexible Slot Management and Speculative Ex-
ecution, IEEE Transactions on Parallel and Distributed Sys-
tems PP (99) (2016) 1–14.

[87] T. Chao, Z. Haojie, H. Yongqiang, Z. Li, A Dynamic MapRe-
duce Scheduler for Heterogeneous Workloads, in: Proceedings
of International Conference on Grid and Cooperative Comput-
ing, 2009, pp. 218–224.

[88] H. Mao, S. Hu, Z. Zhang, L. Xiao, L. Ruan, A Load-Driven
Task Scheduler with Adaptive DSC for MapReduce, in: Pro-
ceedings of International Conference on Green Computing and
Communications, 2011, pp. 28–33.

[89] T. Fei, Y. Hao, L. Tianrui, Y. Yan, L. Zhao, Scheduling Real-
time Workflow on MapReduce-based Cloud, in: Proceedings
of International Conference on Innovative Computing Tech-
nology, 2013, pp. 117–122.

[90] L. Peng, C. L. Young, W. Chen, B. Bing, C. Junliang,
A. Zomaya, Workload Characteristic Oriented Scheduler for
MapReduce, in: Proceedings of International Conference on
Parallel and Distributed Systems, 2012, pp. 156–163.

[91] D. Cheng, J. Rao, Y. Guo, X. Zhou, Improving MapReduce
Performance in Heterogeneous Environments with Adaptive
Task Tuning, in: Proceedings of International Middleware
Conference, 2014, pp. 97–108.

[92] Z. Tang, M. Liu, A. Ammar, K. Li, K. Li, An Optimized
MapReduce Workflow Scheduling Algorithm for Heteroge-
neous Computing, Journal of Supercomputing 72 (6) (2016)
2059–2079.

[93] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, R. Pace,
WOHA: Deadline-Aware Map-Reduce Workflow Scheduling
Framework over Hadoop Clusters, in: Proceedings of Interna-
tional Conference on Distributed Computing Systems, 2014,
pp. 93–103.

[94] S. Sidhanta, W. Golab, S. Mukhopadhyay, OptEx: A
Deadline-Aware Cost Optimization Model for Spark, in:
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2016, pp. 193–202.

[95] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica, Sparrow:
Distributed, Low Latency Scheduling, in: Proceedings of ACM
Symposium on Operating Systems Principles, 2013, pp. 69–84.

[96] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, J. Dittrich, RAFTing
MapReduce: Fast Recovery on the RAFT, in: Proceedings of
International Conference on Data Engineering, 2011, pp. 589–
600.

[97] Z. Yuan, J. Wang, Research of Scheduling Strategy Based on
Fault Tolerance in Hadoop Platform, in: Geo-Informatics in
Resource Management and Sustainable Ecosystem, Vol. 399
of Communications in Computer and Information Science,
Springer, 2013, pp. 509–517.

[98] Z. Xu, D. Xiaoshe, C. Haijun, F. Yuanquan, Z. Huo, A Param-
eter Dynamic-Tuning Scheduling Algorithm Based on History
in Heterogeneous Environments, in: Proceedings of ChinaGrid
Annual Conference, 2012, pp. 49–56.

[99] F. Dinu, T. Ng, Understanding the Effects and Implications of
Compute Node Related Failures in Hadoop, in: Proceedings
of International Symposium on High-Performance Parallel and
Distributed Computing, 2012, pp. 187–198.

[100] Z. Hao, C. Haopeng, Adaptive Failure Detection via Heartbeat
under Hadoop, in: Proceedings of IEEE Asia-Pacific Services
Computing Conference, 2011, pp. 231–238.

[101] C. Gupta, M. Bansal, T.-C. Chuang, R. Sinha, S. Ben-
romdhane, Astro: A Predictive Model for Anomaly Detection
and Feedback-based Scheduling on Hadoop, in: Proceedings of
International Conference on Big Data, 2014, pp. 854–862.

[102] C. Qi, L. Cheng, X. Zhen, Improving MapReduce Performance
Using Smart Speculative Execution Strategy, IEEE Transac-
tions on Computers 63 (4) (2014) 954–967.

[103] T. Shanjiang, L. Bu-Sung, H. Bingsheng, DynamicMR: A Dy-
namic Slot Allocation Optimization Framework for MapRe-
duce Clusters, IEEE Transactions on Cloud Computing 2 (3)
(2014) 333–347.

[104] L. Lei, W. Tianyu, H. Chunming, CREST: Towards Fast Spec-
ulation of Straggler Tasks in MapReduce, in: Proceedings of
International Conference on e-Business Engineering, 2011, pp.
311–316.

[105] C. Quan, Z. Daqiang, G. Minyi, D. Qianni, G. Song, SAMR:
A Self-Adaptive MapReduce Scheduling Algorithm in Hetero-
geneous Environment, in: Proceedings of International Con-
ference on Computer and Information Technology, 2010, pp.
2736–2743.

[106] O. Yildiz, S. Ibrahim, T. A. Phuong, G. Antoniu, Chronos:
Failure-aware Scheduling in Shared Hadoop Clusters, in: Pro-
ceedings of IEEE International Conference on Big Data, 2015,
pp. 313–318.

[107] O. Yildiz, S. Ibrahim, G. Antoniu, Enabling fast failure recov-
ery in shared hadoop clusters: Towards failure-aware schedul-
ing, Future Generation Computer Systems (2016) –doi:http:
//dx.doi.org/10.1016/j.future.2016.02.015.

[108] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, W. Shi,
Energy-Aware Scheduling of MapReduce Jobs for Big Data
Applications, IEEE Transactions on Parallel and Distributed
Systems 26 (10) (2015) 2720–2733.

[109] Y.-F. Wen, Energy-aware dynamical hosts and tasks assign-
ment for cloud computing, Journal of Systems and Software
115 (C) (2016) 144–156.

[110] P. Paraskevopoulos, A. Gounaris, Optimal Tradeoff between
Energy Consumption and Response Time in Large-Scale
MapReduce Clusters, in: Proceedings of Panhellenic Confer-
ence on Informatics, 2011, pp. 144–148.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[111] Y. Chen, S. Alspaugh, D. Borthakur, R. Katz, Energy Effi-
ciency for Large-scale MapReduce Workloads with Significant
Interactive Analysis, in: Proceedings of the ACM European
Conference on Computer Systems, 2012, pp. 43–56.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mbarka Soualhia holds an M.Sc degree in Engineer-
ing concentration Information Technology from École de
Technologie Supérieure (ÉTS),Canada and a bachelor de-
gree in Computer Sciences from École Nationale Superieure
d’Ingenieurs de Tunis (ÉNSIT), Tunisia. She is currently a
Ph.D candidate at Concordia University, Canada and she is
working as research assistant under the supervision of Prof.
Sofiène Tahar and Prof. Foutse Khomh. Her research focuses
on designing adaptive software components and software ar-

chitecture to process intensive data applications in distributed systems and their
verification using formal methods such as Theorem Proving and Model Check-
ing.

Foutse Khomh is an assistant professor at the École
Polytechnique de Montréal, where he heads the SWAT Lab
on software analytics and cloud engineering research. He
received a Ph.D in Software Engineering from the Univer-
sity of Montreal in 2010. His research interests include soft-
ware maintenance and evolution, cloud engineering, service-
centric software engineering, empirical software engineering,
and software analytic. He has published several papers in in-
ternational conferences and journals, including ICSM, MSR,

WCRE, ICWS, JSS, JSP, and EMSE. He has served on the program commit-
tees of several international conferences including ICSM, WCRE, MSR, ICPC,
SCAM, and has reviewed for top international journals such as SQJ, EMSE,
TSE and TOSEM. He is program co-chair of the Workshops track at WCRE
2013, program chair of the Tool track at SCAM 2013, program chair for Satellite
Events at SANER 2015, and program co-chair for SCAM 2015. He is one of the
organizers of the RELENG workshop series and guest editor for a special issue
on Release Engineering in the IEEE Software magazine.

Sofiène Tahar received the Diploma degree in computer
engineering from the University of Darmstadt, Germany, in
1990, and the Ph.D. degree with distinction in computer sci-
ence from the University of Karlsruhe, Germany, in 1994.
Currently, he is a professor and the research chair in formal
verification of system-on-chip at the Department of Electri-
cal and Computer Engineering, Concordia University. His
research interests are in the areas of formal hardware verifi-
cation, system-on-chip verification, analog and mixed signal
circuits verification, and probabilistic, statistical and relia-

bility analysis of systems. Dr. Tahar, a professional engineer in the Province
of Quebec, is the founder and director of the Hardware Verification Group at
Concordia University. He is a senior member of ACM and a senior member of
IEEE.

1

