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         MapReduce  is  a  framework  proposed  by  Google  for  processing  huge  amounts  

of  data  in  a  distributed  environment.  The  simplicity  of  the  programming  model  

and  the  fault-tolerance  feature  of  the  framework  make  it  very  popular  in  Big  Data  

processing. 

         As  MapReduce  clusters  get  popular,  their  scheduling  becomes  increasingly  

important.  On  one  hand,  many  MapReduce  applications  have  high  performance  

requirements,  for  example,  on  response  time  and/or  throughput.  On  the  other  hand,  

with  the  increasing  size  of  MapReduce  clusters,  the  energy-efficient  scheduling  of  

MapReduce  clusters  becomes  inevitable.  These  scheduling  challenges,  however,  

have  not  been  systematically  studied. 

The  objective  of  this  dissertation  is  to  provide  MapReduce  applications  with  

low  cost  and  energy  consumption  through  the  development  of  scheduling  theory  

and  algorithms,  energy  models,  and  energy-aware  resource  management.  In  particu-

lar,  we  will  investigate  energy-efficient  scheduling  in  hybrid  CPU-GPU  MapReduce  

clusters.  This  research  work  is  expected  to  have  a  breakthrough  in  Big  Data  pro-

cessing,  particularly  in  providing  green  computing  to  Big  Data  applications  such   



as  social  network  analysis,  medical  care  data    mining,    and  financial  fraud  

detection.  The  tools  we  propose  to  develop  are  expected  to  increase  utilization  and  

reduce  energy  consumption  for  MapReduce  clusters.  In  this  PhD  dissertation,  we  

propose  to  address  the  aforementioned  challenges  by  investigating  and  developing  

1)  a  match-making  scheduling  algorithm  for  improving  the  data  locality  of  Map-

Reduce  applications,  2)  a  real-time  scheduling  algorithm  for  heterogeneous  Map-

Reduce  clusters,  and  3)  an  energy-efficient  scheduler  for  hybrid  CPU-GPU  Map-

Reduce  cluster.  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CHAPTER 1. INTRODUCTION 

MapReduce is a framework developed by Google [1] for processing huge amounts of 

data in distributed computer systems. Hadoop MapReduce [2] is the open source clone of 

Google’s MapReduce. Due to the simplicity of the programming model and the run-time 

tolerance for node failures, MapReduce is widely used as a platform to solve Big Data 

problems. In the following part of this dissertation, we will use Hadoop and MapReduce 

interchangeably. 

Big Data was first used in 1970 on atmospheric and oceanic soundings [3]. People use 

it to refer to a collection of data sets that is too large and complex to be processed by tra-

ditional tools. Examples of Big Data include social network logs, financial fraud detec-

tions [4,5], AI applications [6,7], and electronic books. The McKinsey Global Institute 

reports that Big Data will “become a basis of competition, underpinning new waves of 

productivity growth, innovation, and consumer surplus.” With the help of MapReduce, 

scientists and engineers made significant progresses in many fields. For example, 

Michael C. Schatz [8] introduced MapReduce to parallelize BLAST that is a DNA se-

quence alignment program and achieved 250 times speedup. Event logs from Facebook’s 

website are imported into a Hadoop cluster every hour, where they are used for a variety 

of applications, including analyzing usage patterns to improve site design, detecting 

spam, data mining and ad optimization [9]. Uber uses MapReduce to analyze mobile tra-

jectory of taxi [10].  

As MapReduce clusters get popular, their scheduling becomes increasingly important. 
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The current MapReduce scheduling, however, has some limitations.  

First of all, in a MapReduce cluster, data is distributed to individual nodes and stored 

in their disks. To execute a map task on a node, we first need to have its input data avail-

able on that node. Since transferring data from one node to another takes time and delays 

task execution, an efficient MapReduce scheduler must avoid unnecessary data transmis-

sion. MapReduce default First In First Out (FIFO) scheduler has a policy to improve task 

data locality. However, it has inevitable deficiencies because of its strict FIFO service 

policy. Zaharia et al. [9] have developed a delay algorithm to improve the data locality 

rate. With their technique, a MapReduce scheduler breaks the strict FIFO job order when 

assigning map tasks to a node. That is, if the first job does not have a map task whose in-

put data is stored in the node's disk (a so-called local task), the scheduler can delay it and 

assign another job’s local map tasks. A maximum delay time D is specified. Only when a 

job has been delayed for more than D time units will the scheduler assign the job’s non-

local map tasks. For the delay algorithm, the maximum delay time D is a critical parame-

ter. It is configurable but may need to vary for different workloads and hardware envi-

ronments.  

Secondly, many MapReduce applications [6,7], like online data analytics for spam de-

tection and advertisement optimization, are time sensitive. They require real-time data 

processing. Scheduling real-time applications in MapReduce environment has become a 

significant problem. Polo et al. [11] developed a soft real-time scheduler that allows per-

formance-driven management of MapReduce jobs. Dong et al. [12] extended the work by 
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Polo et al., where a two-level MapReduce scheduler was developed to handle a mixture 

of soft real-time and non-real-time jobs according to their respective performance de-

mands.  Although taking MapReduce jobs’ QoS (Quality of Service) into consideration, 

most existing approaches [11-16] do not provide deadline guarantees for the jobs. Kc and 

Anyan Wu were the first to investigate the hard real-time scheduling of MapReduce ap-

plications [17], where they developed a Deadline Constraint scheduler, aiming to provide 

time guarantees for MapReduce jobs. However, the Deadline Constraint scheduler has 

several deficiencies (please see Chapter 5 for details), which may lead to not only re-

source underutilization but also deadline violations. 

Thirdly, with the increasing demands of computational power in big data analysis, 

Hadoop cluster becomes larger and larger (with thousands of servers) and the cost rises 

correspondingly. To satisfy the increasing computation power requirement with sustain-

able costs, General Purpose Graphics Processing Units (GPGPU or simply GPU) are in-

troduced into MapReduce clusters as accelerators. Figure 1.1 provides a performance 

comparison between CPU and GPU clusters in running the same benchmark. A medium-

size hybrid CPU-GPU cluster can be more than 3 times faster than a regular CPU cluster 

running Hadoop MapReduce applications but with only 1/10 of the hardware costs and 

1/20 of the power consumption costs [18]. J. A. Stuart et al. [19,20] built GPMR, an im-

plementation of MapReduce, on a cluster of GPUs. F. Ji et al. [21] developed and opti-

mized another MapReduce framework on GPU by considering GPU multi-level memory 

hierarchy. K. Shirahata et al. [22] proposed a scheduling technique for hybrid CPU-GPU 
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Hadoop MapReduce clusters. It tries to minimize the job execution time by using dynam-

ic profiling data of map tasks running on CPU cores and GPU devices. However, they 

have focused on the performance of MapReduce applications and do not consider the en-

ergy consumption costs. Some scientists [22-30] have developed and improved the power 

model for a hybrid CPU-GPU cluster. But these efforts are not targeted at MapReduce 

clusters and their models do not consider the specialties of the MapReduce framework. 

Last but not least, according to our investigation, energy-efficient real-time scheduling 

in MapReduce clusters has not been systematically investigated.  A. Saifullah et al. [31] 

developed a method to find intermediate deadlines for synchronous parallel applications 

running on multi-processor systems, which provides a feasible algorithm, to deal with 

deadline constraints in MapReduce clusters. However, they do not address energy con-

sumption and data locality issues. 

 To overcome the aforementioned four limitations, in this PhD dissertation work, we 

plan to develop:  

1. A MapReduce data locality improvement mechanism, which leverages a match-

making algorithm to adaptively increase the percentage of local tasks for MapReduce ap-

plications.  

2. A real-time MapReduce scheduling algorithm that provides a deadline guarantee 

for real-time MapReduce applications. In this work, we not only enforce the real-time 

agreement but also maintain good cluster resource utilization.    

http://scholar.google.com/citations?user=CYwffSUAAAAJ&hl=en&oi=sra
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3. An energy-efficient scheduling algorithm in hybrid CPU-GPU Hadoop clusters, 

which schedules tasks to available nodes with less energy consumption and high data lo-

cality. 

The remainder of this dissertation is organized as follows. Chapter 2 presents the back-

ground information about Hadoop MapReduce and GPGPU [33]. Related work is de-

scribed in Chapter 3. Chapter 4 demonstrates the match-making scheduler. In Chapter 5, a 

real-time scheduler for heterogeneous MapReduce clusters are provided. Chapter 6 in-

cludes an energy-efficient scheduler for hybrid CPU-GPU Hadoop clusters. Chapter 7 

concludes this dissertation and proposes our future work. 
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CHAPTER 2. BACKGROUND 

Hadoop is mainly composed of two parts: Hadoop Distributed File System (HDFS) [2] 

and Hadoop MapReduce framework. In this Chapter, we first introduce MapReduce 

working mechanism, illustrate the MapReduce resource management component: YARN 

[34-36], and then present HDFS (for latest information about Hadoop community, please 

refer to [2]). In the end, GPGPU and CUDA [37-39] are described.   In the later parts of 

this dissertation, we will use the terms “Hadoop cluster” and “MapReduce cluster” inter-

changeably. 

2.1 Hadoop MapReduce 

  The Hadoop MapReduce structure is illustrated in Figure 2.1: 

!  

Figure 2.1 MapReduce Framework 

A MapReduce cluster is often composed of many commodity PCs, where one PC acts 



!7
as the master node and others as slave nodes. A Hadoop cluster uses Hadoop Distributed 

File System (HDFS) to manage its data. It divides each file into small fixed-size (e.g., 64 

MB) blocks and stores several (e.g., 3) copies of each block in local disks of cluster ma-

chines. A MapReduce computation is comprised of two stages, map and reduce, which 

take a set of input key/value pairs and produce a set of output key/value pairs. When a 

MapReduce job is submitted to the cluster, it is divided into M map tasks and R reduce 

tasks, where each map task will process one block (e.g., 64 MB) of input data.  

A Hadoop cluster uses slave nodes to execute map and reduce tasks. There are limita-

tions on the number of map and reduce tasks that a slave node can accept and execute 

simultaneously. That is, each slave node has a fixed number of map and reduce slots. Pe-

riodically, a slave node sends a heartbeat signal to the master node. Upon receiving a 

heartbeat from a slave node that has empty map/reduce slots, the master node invokes the 

MapReduce scheduler to assign tasks to the slave node. A slave node that is assigned a 

map task reads the content of the corresponding input data block, parses input key/value 

pairs out of the block, and passes each pair to the user-defined map function. The map 

function generates intermediate key/value pairs, which are buffered in memory, and peri-

odically written to the local disk and partitioned into R regions by the partitioning func-

tion. The locations of these intermediate data are passed back to the master node, which is 

responsible for forwarding these locations to reduce tasks. A reduce task uses remote pro-

cedure calls to read the intermediate data generated by the M map tasks of the job. Each 

reduce task is responsible for a region (partition) of intermediate data. Thus, it has to re-
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trieve its partition of data from all slave nodes that have executed the M map tasks. This 

process is called shuffle, which involves many-to-many communications among slave 

nodes. The reduce task then reads in the intermediate data and invokes the reduce func-

tion to produce the final output data (i.e., output key/value pairs) for its reduce partition 

[2].  

2.1.1 Task Scheduling & Data Locality 

MapReduce framework has a very important feature that is different from traditional 

distributed computing environments like MPI, OpenMP, and computing Grid, etc. Tradi-

tional frameworks move data to where the computation is while MapReduce moves com-

putation to where data is. This way, MapReduce framework gets performance improve-

ment through reduced network traffic. Thus, how to schedule MapReduce jobs becomes 

an important issue. In the following paragraphs, we will introduce MapReduce sched-

uling mechanism and its data locality policy. 

Hadoop MapReduce framework has a default FIFO scheduler. It schedules MapReduce 

jobs following a strict FIFO order, i.e., the second job will not be considered if the first 

job still has a task to be scheduled. Facebook [9] and Yahoo! [36] have developed multi-

user schedulers in their production clusters, which will be described in the related work 

chapter. In the next two paragraphs, we introduce how the FIFO scheduler works and its 

data locality policy.  

Hadoop default FIFO scheduler's data locality policy works as follows. First of all, 

when a slave node with empty map slots sends the heartbeat signal, the scheduler checks 
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the first job in the queue. If the job has map tasks whose input data blocks are stored in 

the slave node, the scheduler assigns the node one of these local tasks. If a slave node has 

more unused map slots, the scheduler will keep assigning local tasks to the node. Howev-

er, if the scheduler can no longer find a local task from the first job, it assigns the node 

one and only one non-local task during this heartbeat interval, no matter how many free 

slots the node has.  

For reduce stage, to evenly distribute reduce tasks to slave nodes, FIFO scheduler only 

assigns one reduce task to a node in a heartbeat interval because a worker node may be 

congested if it is assigned many reduce tasks of a job. 

2.1.2 Speculative Execution 

Since a parallel job's turnaround time is decided by its slowest task, to avoid a MapRe-

duce job from being delayed by the slowest task, MapReduce framework has a specula-

tive execution policy that detects slow tasks and runs a duplicated copy of those tasks.   

The MapReduce framework maintains task counters for every job. If a task is 1/3 

slower than the average of a job's tasks' execution, the framework will launch another 

copy of this task on a different slave node. The faster of these two executions will be tak-

en and the other one will be killed. This way, Hadoop MapReduce framework detects the 

straggler in advance to avoid further delay of execution. There are some researches for 

speculative execution including LATE [40], SAMR [41], and ESAMR [42], which will 

be introduced in the related work chapter. 
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2.1.3 Fault Tolerance 

Fault tolerance is an important feature of Hadoop MapReduce. MapReduce clusters do 

not require sophisticated high-end servers to be used as worker nodes. This assumes that 

failures exist by default and happen frequently.  

Failures are caused by many reasons, for example, network outage, hardware failure, 

users’ misconfiguration, and so on. MapReduce deals with failures through re-execution. 

Furthermore, Hadoop MapReduce framework has configurable timeout parameters to de-

tect tasks without response. However, some failures cannot be resolved through re-execu-

tion. Thus, the maximum-retry-times parameter is used to limit the maximum number of 

re-executions of a failed task.  

For failures caused by an individual slave node, Hadoop MapReduce framework can 

blacklist a slave node that always fails to execute tasks. In this scenario, the system ad-

ministrator needs to get involved to restore the blacklisted nodes. 

2.1.4 YARN 

Since previous Hadoop MapReduce clusters can only schedule MapReduce jobs, the 

system is not well utilized if users want to run other applications when the MapReduce 

cluster is not busy. Scientists and system architects proposed the next generation MapRe-

duce framework (YARN) to resolve this problem. In the following paragraphs, we will 

explain YARN architecture. 
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!  

Figure 2.2 YARN Architecture[2]  

The basic idea of YARN is to split up the two major functionalities of the JobTracker, 

resource management and job scheduling/monitoring, into separate components. The idea 

is to have a global ResourceManager (RM), per-node NodeManager (NM), and per-ap-

plication ApplicationMaster (AM). In YARN, an application is either a single job in the 

classical sense of a MapReduce job or a job described as a DAG (Directed Acyclic 

Graph, where a vertex is a processing stage and an edge represents data movement). 

Users are allowed to submit different types of jobs, create different kinds of AMs, and ask 

RM for resource allocation.  

RM is responsible for allocating resources to the various running applications subject 

to constraints like capacities, priorities, etc. Here, the cluster resources are regarded as a 
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collection of LXCs (Linux containers) [43]. The "Slot" which is used in an older version 

of Hadoop MapReduce is not used anymore. The RM's scheduler does not monitor or 

track application status. Also, it offers no guarantees about restarting failed applications 

either due to application failure or hardware failures. This scheduler performs its sched-

uling function based on the resource requirements of that application; which are ex-

pressed in terms of resource containers that incorporate elements such as memory, CPU, 

disk, and network demands. The RM's scheduler has a policy plug-in, which is responsi-

ble for partitioning the cluster resources among the various queues, applications etc. The 

current MapReduce schedulers such as the Capacity Scheduler [44] and the Fair Sched-

uler [45] would be some examples of the plug-in. The RM and per-node slave, the 

NodeManager (NM), form the data-computation framework. The RM is the ultimate au-

thority that arbitrates resources among all the applications in the system. The NM is the 

per-machine framework agent who is responsible for containers, monitoring their re-

source usage (CPU, memory, disk, network), and reporting to the RM's scheduler. The 

per-application AM is, in effect, a framework specific library and is tasked with negotiat-

ing resources from the RM and working with the NM(s) to execute and monitor the tasks. 

It is responsible for accepting job-submissions, negotiating the first container for execut-

ing the application specific AM and provides the service for restarting the AM container 

upon a failure. It also has the responsibility of negotiating appropriate resource containers 

from the RM scheduler. 

Now a day, YARN starts to support label scheduling [46] and manages hybrid re-
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sources including accelerators such as GPU [47], etc. AM can specify a set of NMs to run 

its tasks. For example, with label scheduling, an application that requires GPU can run on 

NMs that have GPU installed.   

2.2 Hadoop Distributed File System 

Hadoop Distributed File System (HDFS) is an essential component of the Hadoop 

framework. 

HDFS is designed as a highly fault-tolerant, high throughput, and high capacity dis-

tributed file system. It is ideal for storing terabytes or even petabytes of data on clusters 

that may be comprised of commodity hardware. HDFS is based on write-once-read-many 

and streaming access models. HDFS is very efficient in distributing and storing large 

amount of data. 

2.2.1 HDFS Architecture 

 HDFS follows the master/slave architecture. The master node in the HDFS cluster is 

called the Namenode that manages the file system namespace and regulates client access-

es to files. There are a number of slave nodes, called Datanodes, which store actual data 

in units of blocks.  

The Namenode maintains a mapping table that maps data blocks to Datanodes in order 

to process write and read requests from HDFS clients. It is also in charge of file system 

namespace operations like closing, renaming, and opening files and directories.  

The Datanode stores the blocks of files in its local disk and executes the instructions 
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like replace, create, delete, and replicate from the Namenode. Figure 2.3 (adopted from 

Apache Hadoop Project) illustrates the HDFS architecture.  

!  

Figure 2.3 HDFS Architecture [2] 

A Datanode periodically reports its status (including aliveness, data blocks, etc.) to the 

Namenode through sending messages (also called heartbeats) and asks the Namenode for 

instructions. The heartbeat can also help the Namenode to detect connectivity with its 

Datanodes. Every Datanode maintains an open server socket for data transferring from 

other Datanodes and user client(s). In order to keep the content of a Namenode in case of 

failures, HDFS allows a secondary Namenode to periodically backup Namenode data. 

2.2.2 Data Placement and Fault-tolerance 

HDFS can be deployed on a cluster composed of thousands of nodes. The probability 
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of failure in a large-scale cluster becomes non-negligible. This means HDFS has to han-

dle the scenario in which some components are non-functional.  

HDFS employs an intelligent replica placement policy to guarantee reliability and per-

formance. HDFS keeps 3 replicas for each data block by default. Once a data block is 

created, the first replica will be placed in a random node. The second replica will be 

placed in a node that is located in the same rack of that first node. The last replica will be 

stored in a node from a different rack to guarantee data availability even in the event that 

an entire rack is down.  

2.2.3 Data Balancer 

HDFS provides a balancer to equilibrate the disk usage among Datanodes. When plac-

ing data blocks, the Namenode randomly picks a node to place the first copy of a data 

block. This mechanism may result in some nodes with smaller capacity having higher 

percentage of disk usage. The balancer is designed to solve this problem. It allows an 

administrator to balance HDFS Datanodes based on disk usage percentage.  

2.4 GPGPU and CUDA 

“General-Purpose Graphics Processing Unit (GPGPU) is utilizing the graphics-pro-

cessing unit (GPU) to do computation for applications that are traditionally handled by 

the CPU” [33]. It is widely used in supercomputers as an accelerator to enhance the com-

putational power. The comparison between CPU and GPU is detailed documented [33, 

37-39]. 
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CUDA [37] (Compute Unified Device Architecture) is a parallel computing architec-

ture designed for GPUs and proposed by NVIDIA in 2006. It enables programmers to 

write C (C-CUDA) code to utilize GPUs for processing non-graphical data. C-CUDA 

programs are compiled using a specialized Path Scale Open64 C compiler. CUDA has 

been widely used to accelerate computations which otherwise take much longer or are 

intractable with the current technology, e.g., molecular dynamics simulation, electronic 

design automation, accelerated rendering of 3D graphics, speech indexing, and physical 

simulations. 

With a design principle different from traditional CPUs, GPUs are based on a parallel 

throughput architecture that is aimed at executing a large number of concurrent threads 

slowly, as opposed to executing a single thread very fast. CUDA provides APIs for multi-

ple operating systems, including Windows, Linux, and recently Mac OS X. Moreover, 

CUDA is supported by all GPUs recently designed and manufactured by NVIDIA [48], 

i.e., from the G8X series onwards, including GeForce, Quadro and the Tesla product 

lines. NVIDIA maintains compatibility among different generations of their GPUs such 

that CUDA programs developed for the GeForce 8 series will also work without modifi-

cation on all future NVIDIA graphics cards. 

With a radically different design, CUDA is superior over traditional GPGPU solutions 

with graphics APIs. For example, CUDA supports Scattered Reads, i.e., programs can 

access memory at arbitrary addresses on both the host and the device. Moreover, CUDA 

has a solid hardware implementation of floating-point arithmetic, which is essential for 
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scientific computations.  

Admittedly, CUDA also suffers several drawbacks at the current stage. For instance, C-

CUDA disallows the uses of recursion and function pointers, which might place a burden 

on programmers while developing CUDA programs in some scenarios. Although 

equipped with very fast internal cache memories, GPU might suffer from the limited bus 

bandwidth along the data-path to the CPU. Furthermore, the deep memory hierarchy and 

intricate internal mechanisms might have huge performance implications if CUDA pro-

grams are written without accounting for such complexities in the design. Nevertheless, 

we believe the advantages of massive-parallelization offered by CUDA surely outweigh 

the drawbacks, as mentioned above, in real world applications. 

  Besides C, CUDA has bindings for most mainstream programming languages, includ-

ing C++, Java, .NET, Perl, Python, Ruby, Lua, FORTRAN, and Matlab. In this work, we 

focus on JCuda [48], which is the CUDA binding for the Java language, which is being 

actively developed with support for the most recent CUDA API. JCuda provides a solid 

foundation for using CUDA libraries in Java applications. 

    We use a very simple array summation example in Figure 2.4 to demonstrate how 

GPU and CPU cooperate together. In order to distinguish arrays in main memory from 

those in GPU’s global memory, we use “dev” (short for device) plus capital characters to 

identify three arrays in GPU’s global memory. First of all, CPU allocates three arrays in 

the main memory, array “a” and “b” contains elements we want to sum where array “c” is 

used to store the results (step 1). Correspondingly, CPU also needs to allocate three arrays 
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in GPU’s global memory that is the bottom rectangle in GPU (step 2). CPU copies array 

“a” and “b” contents from main memory into GPU’s global memory (step 3). On the 

GPU side, the first 4 rows of rectangles from top are computation elements and the fifth 

row of rectangles are shared memories. Communication between shared memories should 

employ global memory. The computation element needs to load array “devA” and 

“devB” into shared memories before launching the summation (step 4).  

After the summation operation (step 5), array “devC” will be stored to global memory 

from shared memory (step 6). The next step is to copy array “devC” to array “c” from 

global memory to main memory (step 7). Finally, all memory space in shared memories 

and global memory will be recycled (step 8). 

!

Figure 2.4 CPU + GPU Architecture 

Comparing with CPU, GPGPU is more energy efficient [50]. According to NVIDIA's 
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research reports: "On the Top500 Supercomputers list — a biannual ranking of super-

computing sites around the world — the number of GPU-powered systems is rapidly 

growing. Today, three of the five fastest supercomputers in the world are NVIDIA GPU-

powered. And these systems are much more energy efficient." More and more Hadoop 

clusters are equipped with GPUs to accelerate computational intensive MapReduce ap-

plications [20-33]. In this dissertation, we will develop an energy efficient scheduler for 

Hadoop MapReduce clusters that have GPUs. 
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CHAPTER 3. RELATED WORK 

MapReduce framework was first proposed by Google [1]. It is a fault-tolerant platform 

used for parallel processing huge amounts of data. Hadoop is a well-accepted open source 

implementation of Google’s MapReduce framework. In this dissertation, we focus on re-

search work related to Hadoop MapReduce [2] from two aspects: scheduling and power 

management.  

3.1 MapReduce Scheduling 

Early versions of Hadoop had a very simple approach to scheduling users’ jobs: they 

ran in order of submission, using a FIFO scheduler by default. Typically, each job would 

use the whole cluster, so jobs had to wait their turn. As MapReduce clusters got popular, 

their scheduling became increasingly important. However, the default FIFO scheduler 

does not support many desired features like QoS guarantee, resource sharing, preemption, 

etc. Then, scientists started to explore various algorithms to improve MapReduce sched-

uling [15-62]. In this section, we mainly focus on introducing research work from follow-

ing areas that are related to my dissertation: detecting speculative tasks, improving data 

locality, providing QoS guarantee, and scheduling MapReduce jobs in hybrid (CPU-

GPU) clusters.  

Hadoop’s scheduler implicitly assumes that cluster nodes are homogeneous and Map-

Reduce tasks make progress linearly and uses these assumptions to decide when to specu-

latively re-execute tasks that appear to be stragglers [2]. To overcome this limitation and 
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make the speculative execution mechanism effective in heterogeneous environments, re-

searchers then developed LATE (Longest Approximate Time to End) scheduler [40], 

SAMR (Self-Adaptive MapReduce Scheduling) algorithm [41], and ESAMR algorithm 

[42].  

MapReduce framework has a significant difference from previous parallel processing 

platforms, like computing Grid [63]. Previous frameworks move data to where the com-

putation resource is located. However, MapReduce allocates the computation to where 

the data is stored. That is, when scheduling a task, MapReduce system will first consider 

a server that stores this task’s input data in local disk. To enhance this data locality in ex-

ecuting MapReduce application, researchers have used technologies like prefetching [80], 

node status prediction [81], and delay scheduling algorithm [40].   

In order to improve MapReduce cluster utilization, researchers introduce resource 

sharing [64-66], iterative execution [67-70], load balancing [72], online aggregation 

[73], genetic algorithm based data-aware group scheduling [74], introducing erasure cod-

ing in storage [75], network-aware task placement scheduling [76], and multi-object 

scheduling [77] into MapReduce. Yahoo! developed a multi-queue scheduler called Ca-

pacity Scheduler [44] for Hadoop clusters, where every queue is guaranteed a fraction of 

the capacity. Within a queue, it supports job priorities but no job preemption is allowed. 

To prevent one or more users from occupying all resources of a queue, each queue en-

forces a limit on the percentage of resources allocated to a user at any given time if there 

is competition for resources.   
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The fair scheduler [40] also supports multiple queues (also called pools). Jobs are or-

ganized into pools and resources are fairly divided between these pools. By default, there 

is a separate pool for each user so that each user gets an equal share of the cluster. Within 

each pool, jobs can be scheduled using either fair sharing or FIFO scheduling. Fair shar-

ing scheduling is a method of assigning resources to jobs such that all jobs get, on aver-

age, an equal share of resources over time. When there is a single job running, that job 

uses the entire cluster. When other jobs are submitted, task slots that free up are assigned 

to the new jobs so that each job gets roughly the same amount of CPU time. Unlike the 

default Hadoop FIFO scheduler, which forms a queue of jobs based on job arrival times, 

fair sharing scheduling mechanism guarantees that short jobs finish in reasonable time 

without starving long jobs. It provides an easy way to share a cluster between multiple 

users [40].  

Since many MapReduce applications [73], including online data analytics for spam 

detection and ad optimization, require real-time data processing, scheduling real-time ap-

plications in MapReduce Environment become an important problem [33,68-73]. Scien-

tists have already established many important theories for real-time scheduling [90-98], 

especially in distributed systems [99-115]. For MapReduce real-time scheduling, J. Polo 

et al. [68] developed a scheduler that focuses on MapReduce jobs that have soft dead-

lines. It estimates jobs’ execution times and tries to let jobs satisfy their deadlines by 

scheduling resources according to the estimated finishing times. Dong et al. [70] extend-

ed the work by Polo et al., where a two-level MapReduce scheduler was developed to 
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schedule mixed soft real-time and non-real-time jobs according to their respective per-

formance demands. Linh T.X. Phan et al [72] built HadoopRT that focuses on enhance-

ment of EDF with locality-awareness and overload handling in cloud environment. They 

defined a parameter to describe the execution time difference between local and non-local 

tasks. HadoopRT can adjust its scheduling policies according to this parameter to im-

prove MapReduce applications' performance. Chen F. et al. proposed a system that 

schedule real-time MapReduce applications based on job size [115]. However, they did 

not consider energy consumption and hybrid clusters.   

Kamal Kc et al. [69] developed a scheduler for MapReduce applications with hard 

deadlines. It also estimates the job finishing time according to available resources in a 

MapReduce cluster. If a job cannot finish before the hard deadline, the scheduler will not 

execute the job and will instead inform the user to adjust the job deadline. However, it 

has deficiencies that may cause deadline misses and low hardware utilization.   

After YARN was created, scientists and architects started to improve its performance 

by optimizing the scheduling algorithms. Yao et al. [119] proposed YARN scheduler, 

named HaSTE, which can effectively reduce the make-span of MapReduce jobs in YARN 

by leveraging the information of requested resources, resource capacities, and dependen-

cy between tasks. Lin et al. [120] employed real time ABS-YARN, which is a formal lan-

guage for executable modeling of deployed virtualized software, to optimize the deploy-

ment decision in the cloud to reduce scheduling cost.  

In recent years, accelerators and heterogeneous architectures, especially GPUs, have 
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emerged as major players in high performance computing [119-133]. For some types of 

MapReduce applications that require significant amount of computation (like machine 

learning and data mining algorithms), hybrid CPU-GPU architecture can be a high- per-

formance, scalable, cost-effective, and power-efficient solution. [133-142].    

B. Catanzaro et al.  [135] created a platform that can automatically generate GPU 

CUDA code for MapReduce applications. J.A. Stuart et al. [20] also created a MapRe-

duce framework on a cluster of GPUs to do volume rendering. Chen et al. [140] opti-

mized MapReduce performance for GPU through reduction-based method that allows 

MapReduce to carry out reductions in shared memory. They designed and implemented 

their MapReduce framework in a single AMD Fusion chip. Qiao Z. et al. [138] built MR-

Graph, an implementation of MapReduce, on a cluster of GPUs. F. Ji et al. [139] devel-

oped and optimized performance for another MapReduce framework on GPU by consid-

ering GPU multi-level memory hierarchy. However, all aforementioned frameworks did 

not focus on Hadoop MapReduce that is a widely accepted MapReduce platform. Liu LF. 

Et al. [142] developed an adaptive MapReduce framework for GPUs   

K. Shirahata et al. [22] proposed a scheduling technique in hybrid CPU-GPU Hadoop 

MapReduce clusters, which minimizes job execution time via dynamic profiling of Map 

tasks running on CPU cores and GPU devices. However, they focused on optimizing the 

map stage of MapReduce applications and did not consider the energy consumption in 

their scheduling algorithm. 
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3.2 Power Management in Hadoop Cluster 

With the increasing scale of MapReduce clusters, the cost of maintaining a MapReduce 

cluster becomes larger and larger. How to reduce MapReduce cluster power bill turns out 

to be a critical concern. Scientists have done some research work on power management 

of MapReduce clusters [144-148] inspired by previous theories in cluster power man-

agement.   

 Lang et al. [143] provided an algorithm that only keeps the smallest number of servers 

that can guarantee data integrity in HDFS. However, it is not flexible if the cluster exe-

cutes time-sensitive online applications. T. Wirtz et al. [144] used an experimental ap-

proach to study the scalability of performance, energy, and efficiency of MapReduce for 

computation intensive workloads. They proposed a power management policy through 

resource allocation that changes the number of available workers and DVFS (Dynamic 

Voltage and Frequency Scaling) that adjusts the processor frequency based on current 

computational needs. M. Cardosa et al. [145] considered power management in cloud en-

vironment through VMs management algorithm. Jerry Chou et al. [146] built an algo-

rithm that can monitor system utilization and re-direct requests to existing powered-on 

recourses. N. Yigitbasi et al. [147] investigated scheduling algorithm in a heterogeneous 

cluster made of high performance nodes and low power nodes. His scheduling algorithm 

is limited in this specific hardware environment. Chen et al. [148] presented BEEMR 

through tracing MapReduce interactive analytics in Facebook Hadoop production cluster. 

It first categorizes MapReduce applications into different job zones according to service 
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types, for example, batching jobs, interactive jobs, etc. Then, BEEMR saves energy by 

flexibly adjusting the number of servers that work for interactive jobs according to sys-

tem requests. However, it is based on Facebook’s workload that is mainly composed of 

online queries. It may not be a good fit for MapReduce clusters that work in other indus-

tries like banks, health care companies, etc.  

Since hybrid CPU-GPU cluster becomes more and more popular, scientists start to 

consider how to predict hybrid CPU-GPU cluster power consumption. Ren DQ et al. 

[149] proposed an empirical power model for GPU to predict the optimal number of ac-

tive processors (CPU and GPU) for a given application. W. Liu et al. created a waterfall 

model [150] which uses a mapping algorithm to apply different energy saving strategies 

to keep the system at lower energy levels. In their mapping algorithm, they adopted dy-

namic voltage scaling, dynamic resource scaling and -migration for GPU to reduce ener-

gy consumption. H. Huo et al. [151] proposed a flexible energy efficient task-scheduling 

scheme for heterogeneous tasks in the heterogeneous GPU-enhanced clusters. It includes 

a system model to describe hardware heterogeneity and a task model to characterize ap-

plication heterogeneity in a cluster. However, they provide no evaluation data from either 

simulation or real-system experiment. Kim et al. [153] proposed an algorithm about pow-

er management in MapReduce hybrid cluster. But they did not consider data locality.  

In summary, the previous research works outlined here do not consider multiple con-

straints including energy efficiency, data locality, and throughput together in the hybrid 

heterogeneous Hadoop clusters. Instead, this dissertation will focus on resolve this hard 
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problem step by step. 
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CHAPTER 4. MATCHMAKING SCHEDULER 

In a MapReduce cluster, data are distributed to individual nodes and stored in their 

disks. To execute a map task on a node, we need to first have its input data available on 

that node. Since transferring data from one node to another takes time, delays task execu-

tion, and consumes extra energy. An efficient MapReduce scheduler must avoid unneces-

sary data transmission. 

We will focus on the problem of decreasing data transmission in a MapReduce cluster 

and we develop a scheduling technique to improve map tasks’ data locality rate. For a 

given execution of MapReduce workload, the data locality ratial is defined in this disser-

tation as the ratio between the numbers of local map tasks and all map tasks, where a lo-

cal map task refers to a task that has been executed on a node that contains its input data. 

A low data locality rate means more data transfer between machines and higher network 

traffic. To avoid unnecessary data transfer, our scheduling technique aims to achieve high 

data locality rate and also short response time for MapReduce clusters. We developed a 

new technique to enhance the data locality. The main idea of the technique is as follows. 

To assign tasks to a node, local map tasks are always preferred over non-local map tasks, 

no matter which job a task belongs to, and a locality marker is used to mark nodes and to 

ensure each node a fair chance to grab its local tasks. Experiments are carried out to eval-

uate the aforementioned techniques and experimental results show that our technique 

leads to the high data locality rate and the low response time for map tasks. Unlike the 

delay algorithm [40], our technique does not require the tuning of the delay parameter. 
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4.1 Hadoop Default FIFO Scheduler 

The Hadoop default FIFO scheduler has already taken data locality into account. When 

a slave node with empty map slots sends the heartbeat signal, the MapReduce scheduler 

checks the first job in the queue. If the job has map tasks whose input data blocks are 

stored in the slave node, the scheduler assigns the node one of these local tasks. If a slave 

node has more unused map slots, the scheduler will keep assigning local tasks to the 

node. However, if the scheduler can no longer find a local task from the first job, it as-

signs the node one and only one non-local task during this heartbeat interval, no matter 

how many free slots the node has.  

This default FIFO scheduler, however, has deficiencies. First of all, it follows the strict 

FIFO job order to assign tasks, which means it will not allocate any task from other jobs 

if the first job in the queue still has an unassigned map task. This scheduling rule has a 

negative effect on the data locality because another job’s local tasks cannot be assigned to 

the slave node unless the first job has all its map tasks (many of which are non-local to 

the node) scheduled.  

Secondly, the data locality is randomly decided by the heartbeat sequence of slave 

nodes. If we have a large cluster that executes many small jobs, the data locality rate 

could be quite low. As mentioned, in a MapReduce cluster, tasks are assigned to a slave 

node in response to the node’s heartbeat. With the FIFO scheduler, heartbeats are also 

processed in a FIFO order and a node is assigned a non-local map task when there is no 

local task from the first job. In a large cluster many nodes heartbeat simultaneously. 
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However, a small job has less input data that are stored in a small number of nodes. It is 

thus a high probability event that the scheduler assigns tasks to slave nodes that do not 

have the small job’s input data but give heartbeats first. For example, if we execute a job 

of 5 map tasks on a MapReduce cluster of 100 slave nodes, it is unlikely to get a high lo-

cality rate. Since each map task needs one input data block, which by default has 3 repli-

cas stored in 3 nodes, at most 15 out of 100 nodes have input data for the job, i.e., the 

job’s tasks are all non-local to at least 85 nodes. A slave node with empty map slots that 

sends in a heartbeat first will always be assigned at least one map task, local or non-local. 

It is highly likely that the job’s tasks will be assigned to many of those 85 nodes which do 

not have the input data blocks before a node even gets a chance to grab a local task from 

the job.  

4.2 Delay Scheduling Algorithm 

Zaharia et al. [40] have developed a delay scheduling algorithm to improve the data 

locality rate of Hadoop clusters. It relaxes the strict job order for task assignment and de-

lays a job’s execution if the job has no map task local to the current slave node. To assign 

tasks to a slave node, the delay algorithm starts the search at the first job in the queue for 

a local task. If not successful, the scheduler delays the job’s execution and searches for a 

local task from succeeding jobs. A maximum delay time D is set. If a job has been 

skipped long enough, i.e., longer than D time units, its non-local tasks will then be as-

signed for execution. With the delay scheduling algorithm, a job’s execution is postponed 

to wait for a slave node that contains the job’s input data. Here, the delay time D is a key 
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parameter. By default, it is set at 1.5 times the slave node’s heartbeat interval. However, 

to obtain the best performance for the delay scheduling algorithm, we have to choose an 

appropriate D value. If the value is set too large, job starvations may occur and affect per-

formance.  On the contrary, a too small D value allows non-local tasks to be assigned too 

fast. For different kinds of workloads and hardware environments, the best delay time 

may vary. To get an optimal delay time always requires careful D value tuning.  

In addition, this delay algorithm allows a node to obtain multiple non-local map tasks 

in a heartbeat interval if the node has more than one free slot. In some situations, this al-

gorithm could perform worse than the FIFO scheduler’s locality enhancement policy be-

cause the latter only allows one non-local task to be assigned to a node in a heartbeat in-

terval.  

Although first developed to improve the data locality of the Hadoop fair scheduler 

[20], delay scheduling is applicable beyond fair sharing, in general, applicable to any 

scheduling policy (e.g., FIFO) that defines an order in which jobs should be given re-

sources [2]. It is very popular and widely used in Hadoop clusters. 

4.3 Matchmaking Scheduling Algorithm 

This section presents our new technique for enhancing the data locality in MapReduce 

clusters. The main idea behind our technique is to give every slave node a fair chance to 

grab local tasks before any non-local tasks are assigned to any slave node. Since our algo-

rithm tries to find a match, i.e., a slave node that contains the input data, for every unas-

signed map task, we call our new technique the matchmaking scheduling algorithm.  
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First of all, like the delay scheduling algorithm, our matchmaking algorithm also relax-

es the strict job order for task assignment. If a local map task cannot be found in the first 

job, the scheduler will continue searching the succeeding jobs. Second, in order to give 

every slave node a fair chance to grab its local tasks, when a node fails to find a local task 

in the queue for the first time in a row, no non-local task will be assigned to the node. 

That is, the node gets no map task for this heartbeat interval. Since during a heartbeat in-

terval, all slave nodes with free map slots have likely given their heartbeats and been con-

sidered for local task assignment, when a node fails to find a local task for the second 

time in a row (i.e., still no local task a heartbeat interval later), to avoid wasting comput-

ing resources, the matchmaking algorithm will assign the node a non-local task. This 

way, our algorithm achieves not only high data locality rate but also high cluster utiliza-

tion. To enforce the aforementioned rule, our algorithm gives every slave node a locality 

marker to mark its status. If none of the jobs in the queue has a map task local to a slave 

node, depending on this node’s marked value, the matchmaking algorithm will decide 

whether or not to assign the node a non-local task. Third, our matchmaking algorithm al-

lows a slave node to take at most one non-local task every heartbeat interval. At last, all 

slave nodes’ locality markers will be cleared when a new job is added to the job queue. 

Because a new job may comprise new local tasks for some slave nodes, upon the new 

job’s arrival, our algorithm resets the status of all nodes and again starts the all-to-all 

task-to-node matchmaking process. Tables 4.1 and 4.2 give the pseudo code of our algo-

rithm. Like delay scheduling algorithm, our matchmaking algorithm is applicable to any 
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scheduling policy (e.g., FIFO or fair sharing scheduling) that defines an order in which 

jobs should be given resources.    
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Table 4.1 Matchmaking Algorithm 

Algorithm 1: Matchmaking Scheduling Algorithm

1:      for each node i of the N slave nodes do 
2:          set LocalityMarker[i]=null 
3:      end for

4:      //Upon receiving a heartbat from node i:

5:       while node i has free slots, i.e., its free slot count s>0 

6:           set previousMarker=LocalityMarker[i] 

7:           for each job j in the JobQueue do     

8:                if  job j has an unassigned local task t then

9:                     assign t to node i

10:                   set s=s-1

11:                   if LocalityMarker[i]==null then 

12:                       LocalityMarker[i]=1 

13:                   else LocalityMarker[i]+=1

14:                   end if

15:                   break for

16:                   else continue

17:              end if

18:        end for    

19:        if previousMarker==LocalityMarker[i] then

20:            set LocalityMarker[i]=0          //mark this node

21:            break while

22:        else if LocalityMarker[i]==0 then

23:            assign node i a non-local task t’ from the first job in the JobQueue

24:            set s=s-1

25:            break while

26:        end if

27:    end while
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Table 4.2 Locality Marker Maintenance 

4.4 Evaluation of Different Data Locality Policies 

To evaluate our matchmaking scheduling algorithm, we compare it with the Hadoop 

default FIFO scheduler and the delay scheduling algorithm. Two metrics, i.e., map tasks’ 

data locality ratio and average response time, are used for evaluation.  

We run experiments in a private cluster of 1 head node and 30 slave nodes that are con-

figured as one rack. We modify Hadoop and integrate our matchmaking algorithm with 

both Hadoop FIFO scheduler and Hadoop fair scheduler. The cluster is configured with a 

block size of 128MB, which follows Facebook’s Hadoop cluster block size configuration 

[20]. Table 4.3 lists our Hadoop cluster hardware environment and configuration. 

Table 4.3 Experimental Environment 

4.4.1 Experimental Environment 

To evaluate our matchmaking algorithm, we create a submission schedule that is simi-

Algorithm 2: Locality Marker Cleaning Algorithm

1: //When a new job j is added into the JobQueue: 
2:    for each node i of the N slave nodes do 
3:         set LocalityMarker[i]=null 
4:    end for

Nodes Quantity Hardware and Hadoop Configuration

Master node 1 2 single-core 2.2GHz Optron-64 CPUs, 8GB RAM, 
1Gbps Ethernet

Slave nodes 30
2 single-core 2.2GHz Optron-64 CPUs, 4GB RAM, 
1 Gbps Ethernet, 1 rack, 2 map and 1 reduce slots 

per node
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lar to the one used by Zaharia et al[20]. They generated a submission schedule for 100 

jobs by sampling job inter-arrival times and input sizes from the distribution seen at 

Facebook over a week. By sampling job inter-arrival times at random from the Facebook 

trace, they found that the distribution of inter-arrival times was roughly exponential with 

a mean of 14 seconds. 

They also generated job input sizes based on the Facebook workload, by looking at the 

distribution of the number of map tasks per job at Facebook and creating datasets with 

the correct sizes (because there is one map task per 128 MB input block). Job sizes were 

quantized into nine bins, listed in Table 4.4 [20], to make it possible to compare jobs in 

the same bin within and across experiments. Our submission schedule has similar job 

sizes and job inter-arrival times. In particular, our job size distribution follows the first six 

bins of job sizes shown in Table 3.4, which cover about 89% of the jobs at the Facebook 

production cluster. Because most jobs at Facebook are small and our test cluster is limited 

in size, we exclude those jobs with more than 300 map tasks. Like the schedule in [20], 

the distribution of inter-arrival times is exponential with a mean of 14 seconds, making 

our submission schedule totally 21 minutes long.  

We generate 100 input data blocks in Hadoop Distributed File System (HDFS). The 

popularity of blocks is assumed to follow a uniform distribution. That is, when a job re-

quests a block, it is evenly likely to be any one of the blocks stored in HDFS. Each of the 

blocks has 2 replicas. We distribute and store these 200 block replicas evenly in 30 slave 

nodes, ensuring no two replicas of a block be stored in the same node. As a result, every 



!37
slave node contains about 6 (or 7) blocks. By uniformly distributing blocks among our 

cluster nodes, we avoid hotspots of data requests.  

We use our submission schedule for two application workloads. One is loadgen that is 

a test example from the Hadoop test package. It loads input data and outputs a fraction of 

the data intact. This application has been used as a test workload for the delay algorithm 

[20]. The other application we adopt is wordcount that is a classic example of Hadoop 

applications.  

As mentioned, we have modified Hadoop and integrated our matchmaking algorithm 

with both Hadoop FIFO scheduler and Hadoop fair scheduler.  

In our experiments, we always configure the cluster to have just one job queue. With 

Hadoop fair scheduler, all jobs in a queue are scheduled following either fair sharing or 

FIFO scheduling rule. With fair sharing scheduling, resources are assigned to jobs such 

that all jobs get, on average, an equal share of resources over time. We have tested the 

performance of delay algorithm within Hadoop fair scheduler. Depending on the applied 

scheduling rules (FIFO or fair sharing), we have two different versions: FIFO with delay 

algorithm and Fair with delay algorithm. Since we have tested our matchmaking algo-

rithm within Hadoop FIFO scheduler, when testing matchmaking algorithm within 

Hadoop fair scheduler, only the fair sharing scheduling rule is applied.  

We thus run each workload under five schedulers: Hadoop FIFO scheduler, Hadoop 

FIFO scheduler with matchmaking algorithm, FIFO with delay algorithm, Fair with delay 

algorithm, and Fair with matchmaking algorithm. 
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For the delay algorithm, we need to configure the maximum delay time D. In our ex-

periments, a total of 8 different D values are chosen. They are from 0.1 to 10 times the 

slave node’s heartbeat interval. Since we configure the heartbeat interval to be 3 seconds 

long, the maximum delay time D changes from 0.3 to 30 seconds.  

To eliminate the possible randomness of cluster hardware status, every point shown in 

the figures is the average of three runs.  

Table 4.4 Facebook Workload 

4.4.2 Experiments 

We first use the data locality rate to measure the performance of the following three 

schedulers: Hadoop FIFO scheduler, Hadoop FIFO scheduler with matchmaking algo-

rithm, and FIFO with delay algorithm. Given a workload execution, the data locality rate 

is defined as, 

Bin #Maps %Jobs at Facebook #Maps in Benchmark # of jobs in Benchmark

1 1 39% 1 38

2 2 16% 2 16

3 3-20 14% 10 14

4 21-60 9% 50 8

5 61-150 6% 100 6

6 151-300 6% 200 6

7 301-500 4% 400 4

8 501-1500 4% 800 4

9 >1501 3% 4800 4
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Data Locality Rate= !       (4.1) 

where l is the number of local map tasks and n is the total number of map tasks. To 

make the figures properly fits the page, we did not follow numerical scale of delay times 

in x coordinate but simply listed them side by side to show the trend of data locality rate 

when delay time increases. 

Our experimental results on data locality rate with the two application workloads are 

shown in Figures 4.1 and 4.2. As we can see, the data locality rate achieved with the de-

lay algorithm increases with the maximum delay time D. The longer a job is delayed, the 

higher the probability that the job finds slave nodes that contains the input data blocks. In 

following diagrams, we use MM to represent Matchmaking algorithm. 

!  
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Figure 4.1 Loadgen Workload: Data Locality Ratio 

!  

Figure 4.2 Wordcount Workload: Data Locality Ratio 
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!  

Figure 4.3 Loadgen Workload: Map Tasks' Average Response Time 

!  
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Figure 4.4 Wordcount Workload: MapTasks' Average Response Time 

Figures 4.1 and 4.2 also show that the FIFO scheduler leads to the worst performance, 

i.e., the lowest data locality rate. However, when we integrate our matchmaking tech-

nique with the FIFO scheduler, the algorithm achieves the highest data locality rate, bet-

ter than any of those achieved with the delay algorithm of different D values.  

To evaluate the algorithms’ performance only via the data locality rate is not enough 

since we can easily design an algorithm that enforces the constraint that all tasks have to 

be executed on slave nodes that contain their input data, leading to 100% data locality 

rate but also long response time for map tasks due to the long delay required to satisfy the 

strict constraint. Therefore, we also evaluate our algorithms by another metric: the aver-

age response time of all map tasks. Figures 4.3 and 4.4 present the experimental results. 

As shown in the figures, when we run the workloads with the FIFO scheduler, we get the 

longest average response time for map tasks. After enhancing the FIFO scheduler with 

our matchmaking algorithm, we reduce the average response time significantly.  

For the delay algorithm, although the higher the D value, the better the data locality 

rate (see Figures 4.1 and 4.2), the relationship between the D value and the average re-

sponse time is not so straightforward. When running the loadgen workload, the average 

response time varies with the D value, e.g., getting smaller when D increases from 0.3 to 

1.5 seconds but longer when D increases from 1.5 to 3 seconds (see Figure 4.3). The low-

est average response time is achieved when the maximum delay time is set at 30 seconds 

(see Figures 4.1 & 4.3-loadgen). But, that is not the optimal D value when running the 



!43
wordcount workload. As shown in Figure 4.2 (and also in Figure 4.4-wordcount), when D 

= 9 or 15 seconds, we get the best average response time for the wordcount workload. In 

neither cases, the default configuration (i.e., D = 4.5 seconds, 1.5 times the heartbeat in-

terval) leads to the best performance. This group of experiments demonstrates that for 

different workloads, the best delay parameter varies, indicating the necessity of parameter 

tuning for the delay algorithm. However, our matchmaking algorithm does not require 

this intricate parameter tuning process. For both workloads, the FIFO scheduler with our 

matchmaking algorithm achieves the lowest average response time, better than that 

achieved by the optimally configured delay algorithm.  

Let tavg represent the average response time of all map tasks. It equals to the summa-

tion of two parts. That is,   

! (4.2) 

where Rl denotes the data locality rate, ! ! represents the average response time of 

all local map tasks, and  ! the average response time of all non-local map tasks.  

Because network bandwidth is a relatively scarce resource in a MapReduce cluster 

[1,2] and the network data transferring rate is slower than the disk access rate when 

MapReduce was first developed, a local map task’s execution is often much faster than 

that of a non-local map task. Therefore, according to Equation (4.2), increasing the data 

locality rate Rl tends to decrease the average response time of all map tasks tavg.  On the 

other hand, with the delay algorithm, as the maximum delay time D increases, a job and 
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its tasks’ execution is allowed to be delayed for a longer time. As a result, although Rl 

increases, both !  and ! increase as well, leading to the potential increase of tavg. This 

explains why map tasks’ average response time does not decrease monotonically with the 

increase of the maximum delay time D.  

So far, we have used experiments to compare three schedulers: Hadoop FIFO sched-

uler, Hadoop FIFO scheduler with matchmaking algorithm, and FIFO with delay algo-

rithm. The results show that the FIFO scheduler with matchmaking algorithm achieves 

the highest locality rate and the lowest map task response time without the parameter tun-

ing hassle. Next, to further compare the delay algorithm and our matchmaking algorithm, 

we integrate the matchmaking algorithm into Hadoop fair scheduler and compare the fol-

lowing two schedulers: fair scheduler with delay algorithm and fair with matchmaking 

algorithm.  

Figures 4.5 and 4.6 show the data locality rate and the map tasks’ average response 

time for the Hadoop fair schedulers. 

We can see that when integrated with the fair sharing scheduling, our matchmaking 

algorithm still achieves better data locality rates and near-optimal average response times. 

More importantly, our algorithm achieves this great performance without the necessity of 

parameter tuning.   
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!  

!  

Figure 4.5 Fair Scheduler: Data Locality Rate 
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!  
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!  

Figure 4.6 Fair Scheduler: Map Tasks' Average Response Time  
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CHAPTER 5. REAL-TIME MAPREDUCE SCHEDULER 

With the increasing popularity of MapReduce, more and more applications were de-

veloped to employ this powerful platform. Some applications are sensitive to time. For 

example, financial companies require data to be processed in an acceptable time interval. 

A scheduler that supports real-time applications became more and more important. 

In this section, we will introduce our Real-Time MapReduce (RTMR) scheduler to not 

only provide deadline supports for MapReduce applications executing in heterogeneous 

environments but also ensure good cluster utilization. The following of this section is or-

ganized as follows; first, we briefly describe the Deadline Constraint scheduler [17] and 

its deficiencies. And then, our scheduling algorithm is presented in detail. Evaluations of 

these two schedulers are provided in the end. 

5.1 Deadline Constraint Scheduler 

The Deadline Constraint Scheduler [17] aims to ensure deadlines for real-time Map-

Reduce jobs. After a job is submitted, the scheduler first determines whether the job can 

be completed within the specified deadline or not using a schedulability test:  

It assumes that all reduce tasks of a job will start executing simultaneously for the 

same amount of time that is known a priori. Based on this assumption, the Deadline Con-

straint Scheduler calculates the latest reduce start time for the job to meet its deadline. If 

sm is the map start time of the job, then the maximum time for the job to complete its 

map stage is. Unlike for the reduce stage, the Deadline Constraint Scheduler assumes that 
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each job executes at a minimum degree of task parallelism for the map stage. That is, the 

scheduler only assigns the job the minimum number  of map slots that are required to 

meet its deadline. However, it demands all map slots to be available simultaneously at  to 

run the job’s map tasks. Assume the job’s input data size is σ and the cost (i.e., time) of 

processing a unit data in a map task is seconds, then, the scheduler calculates as:  

! . (5.1) 

The Deadline Constraint scheduler, however, has some limitations and deficiencies, 

which may lead to resource underutilization and deadline violations. First, because the 

scheduler assumes that all reduce tasks of a job start to run simultaneously, it cannot ac-

cept a job with more reduce tasks than the cluster’s total number of reduce slots. Second, 

by checking the aforementioned two conditions in the schedulability test, the scheduler 

only considers a single scenario where the job’s deadline might be satisfied. Those condi-

tions are, however, unnecessary for meeting a job’s deadline. Many jobs that do not pass 

the test can nevertheless be accepted and completed by their deadlines. For instance, even 

if the system does not have  number of map slots available upon the job’s arrival, the job 

can still finish its map stage on time and meet the job’s deadline if we have more re-

sources available at a later time point. Furthermore, the constraint scheduler does not 

consider the case where slots become available and utilized at different time points. Due 

to these reasons, the Deadline Constraint scheduler rejects tasks unnecessarily and cannot 

well utilize system resources.  
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    Last but not least, the schedulability test conditions checked by the scheduler are 

insufficient to ensure the deadline constraint. As a result, accepted jobs may actually miss 

their deadlines, violating the hard real-time scheduler’s characteristics. The cause for the 

deadline violation is that the scheduler only checks if a certain number of reduce slots are 

available at a particular time point . Instead, the job requires the specified number of re-

duce slots for the time interval [, D]. What could happen is that the scheduler first accepts 

job A because at the time when job A arrives, the system status indicates that there are 

reduce slots available at , and then accepts job B because we have  reduce slots available 

at . However, the later acceptance of job B means that the job will use reduce slots for the 

whole time interval [, DB] and could result in less than reduce slots being left available at 

and job A missing its deadline.   

   5.2 RTMR Scheduler 

In this paper, we develop a new Real-Time MapReduce (RTMR) scheduler for hetero-

geneous MapReduce environments. RTMR scheduler not only provides deadline guaran-

tees to accepted jobs but also well utilizes system resources. We have made the following 

three assumptions when designing RTMR scheduler: 

The input data is available in Hadoop Distributed File System (HDFS) before a job 

starts.   

No preemption is allowed. The proposed scheduler orders the job queue according to 

job deadlines. However, once a job starts to execute its first map task, the job will not be 

preempted. That is, even if a new coming job B has an earlier deadline than a currently 
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running job A, our scheduler makes no attempt to execute B’s tasks before A’s tasks.  

A MapReduce job contains two stages: map and reduce stages. Similar to [21,24,26] 

we assume in this paper that a job’s reduce stage does not start until the job’s map tasks 

have all finished. 

5.2.1 Algorithm 

    1) Definition 

Before describing the algorithm, we first present the parameters and data structures 

used in RTMR scheduler.  

• J=(A, D, M, R, δ): A MapReduce job J is specified by the tuple (A, D, M, R, δ), 

where A is the job arrival time, D is the relative deadline, M and R specify the 

number of map and reduce tasks for the job, respectively, and δ is the input data 

size of the job. For a MapReduce job, each map task processes a unique part, ! , 

of the job’s input data, where ! .  

• η: The estimated maximum ratio between a job’s intermediate data size ! and in-

put data size δ. That is, the input data size !  for the job’s reduce stage is at most 

η*δ. For a MapReduce job, each reduce task processes a unique part, ! , of the 

job’s intermediate data, where ! . 

• cm: We use cm to denote the estimated cost (i.e., time) of processing a unit of data 
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in a map task. In a heterogeneous environment, ! represents the estimated high-

est cost of processing a unit of data in a map task, i.e., the estimated cost that is 

incurred on the slowest worker node.  

• cr: We use cr to denote the estimated cost (i.e., time) of processing a unit of data in 

a reduce task. Similar to ! , ! represents the estimated highest cost of process-

ing a unit of data in a reduce task. 

• ! : For each accepted job J, we maintain a sorted vector !  to 

record the estimated available time of the cluster’s map slots, after scheduling J’s 

map tasks. In the vector, l denotes the total number of map slots in the MapReduce 

cluster. 

• ! : For each accepted job J, we maintain a sorted vector ! to 

record the estimated available time of the cluster’s reduce slots, after scheduling 

J’s reduce tasks. In the vector, q denotes the total number of reduce slots in the 

MapReduce cluster. 

• ! : For each accepted job J, we use a sorted vector !  to repre-

sent the actual available time of the cluster’s map slots after considering J’s actual 

execution. 

• ! : For each accepted job J, we use a sorted vector !  to represent 

the actual available time of the cluster’s reduce slots after considering J’s actual 
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execution. 

• ΔT: The threshold that we set for triggering the feedback controller. That is, if the 

difference of a job’s actual and estimated finish times is larger than ΔT, RTMR 

scheduler will invoke the feedback controller to update waiting jobs’ ! and !

vectors. 

• : The execution time of the ith map task of job J. 

• : The execution time of the ith reduce task of job J. 

RTMR scheduler uses historical job execution data to estimate some of the aforemen-

tioned parameters: η, ! , and ! . After executing a job J, we could update ratio η 

through the following equation:  

! (4.2) 

Similarly, we update the values of ! and ! as follows: 

! (4.3) 

! (4.4) 

RTMR scheduler is comprised of three components. The first and most important one 

is the admission controller, which makes decisions on whether to accept or reject a job. 

The second component is the job dispatcher, which assigns tasks to execute on worker 
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nodes. The last component is the feedback controller. Since a job may finish at a different 

time than that estimated by the admission controller, when the difference is large (i.e., 

larger than the threshold ΔT), we use a feedback controller to update the ! and !  vec-

tors of the waiting jobs. Currently, our scheduler does not consider events like node fail-

ures and re-execution of slow tasks. Consequently, deadlines might be missed in such un-

expected scenarios. Therefore, we also trigger the feedback controller to keep the admis-

sion controller updated when a deadline miss happens. As a result, the admission con-

troller could make decisions based on more accurate estimates.  

2) Admission Controller 

In this dissertation, we assume, for both Deadline Constraint and RTMR schedulers, 

that jobs are put in a priority queue following EDF (earliest deadline first) order. Our ad-

mission control mechanism is, however, applicable beyond EDF, in general, to any policy 

(e.g., FIFO) that defines an order in which jobs should be given resources. When a new 

MapReduce job arrives, the admission controller determines if it is feasible to schedule 

the new job without compromising the guarantees for previously admitted jobs.  

Algorithms 5.1, 5.2, and 5.3 show the pseudo code of the admission control. RTMR 

scheduler first checks if the new job J’s deadline can be satisfied or not, i.e., to check if e 

is not larger than A + D, where e is the estimated finish time of the job (Algorithm 5.1 

lines 1-9). To estimate J’s finish time, we start with identifying J’s proceeding job Jp if J 

were inserted in the priority queue. If J were at the head of the queue, !  is the job that 
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has been started latest by the dispatcher. If J is the first job submitted to the cluster, it 

does not have a proceeding job. Since ! and ! record the estimated available time of the 

cluster’s map and reduce slots after the scheduled execution of ! and ! ’s predecessors, 

we can estimate job J’s finish time based on these vectors. If the new job J’s deadline can 

be satisfied, RTMR scheduler then checks whether accepting J will violate the deadline of 

any previously admitted job (Algorithm I lines 10-21). Since only jobs that succeed job J 

in the priority queue will be delayed, RTMR scheduler re-estimates their finish times. If 

any of them will miss deadline as a result of J’s acceptance, RTMR scheduler rejects job 

J. Finally, once the admission controller decides to accept job J, the priority queue and the 

! and ! vectors of J and J’s successors will be updated to reflect the change (Algo-

rithm 5.1 lines 22-23).   
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Table 5.1 Admission Controller 

ALGORITHM 5.1. ADMISSION CONTROLLER 

AC(J = (A, D, M, R, δ), Priority-Q)

// Identifying J’s proceeding job Jp if J were inserted in the queue 
1:   Jp = getPredecessor(J, Priority-Q) 

2:  = Jp. ( = [0,0, …0] if Jp = nil) 

3:  = Jp. ( = [0,0, …0] if Jp = nil) 
// invoke Algorithms 5.2 and 5.3 to do the calculation 

4:   ! .! = Cal! (J, ! ) . !  

5:   ! .! = Cal! (J, ! , ! ).!  

6:    e = Cal! (J, ! , ! ).e 
7:   if e > A + D then 
8:       return false  
9:   end if 
10: Jp = J  
11: Js = getSuccessor(Jp, Priority-Q) 
12: while (Js != nil) do 
           // invoke Algorithms 5.2 and 5.3 to do the calculation 

13:          = Cal ( Js, Jp. ) .  

14:          = Cal ( Js,  Jp. , Jp. ).  

15:          es = Cal ( Js, Jp. , Jp. ).e 
16:          if es > Js.A + Js.D then         
17:             return false 
18:         end if 
19:         Jp = Js 
20:         Js = getSuccessor(Jp, Priority-Q) 
21: end while 
22: Proiority-Q.insert(J) 

23: record ! .! ,! .! ,!  and ! computed above as the new ! & !
vectors for J and J’s successors 
24: return true
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ALGORITHM 5.2. CACULATION OF ! AND !  

ALGORITHM 5.3. CACULATION OF ! AND e 

Cal! (J = (A, D, M, R, δ), ! ) 

// This algorithm estimates ! , job J’s map stage finish time and ! , the 
available time of map slots after the scheduled execution of J and J’s predecessors

1:  ! !  
2:  for k =1 to M  do   

3:     pick the smallest value in vector ! , i.e., !  

4:    ! = ! ( ! , current Time)  

5:    ! +=!  

6:    ! = !  

7:    sort items in ! to keep ! a sorted vector 
8:  end for      

9:  return ! , !     

Cal! (J = (A, D, M, R, δ), ! ,! ) 

// This algorithm estimates e, job J’s finish time and ! , the available time of 
reduce slots after the scheduled execution of J and J’s predecessors

     // invoke Algorithm 5.2 to estimate J’s map stage finish time  

1:  ! = Cal! (J, ! ). !  

2:  ! !  
3:   for k = 1 to R do 

4:      pick the smallest value in vector ! , i.e., !  

5:     ! = ! ( ! ,! ) 

6:     ! += !  

7:      e = !  

8:      sort items in ! to keep ! a sorted vector 
9:   end for 

10:  return ! , e
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 3) Dispatcher 

As mentioned in Chapter 2, a Hadoop cluster uses worker nodes to execute map and 

reduce tasks. Each worker node has a fixed number of map slots and reduce slots, which 

limit the number of map tasks and reduce tasks that a worker node can execute simulta-

neously. Periodically, a worker node sends a heartbeat signal to the master node. Upon 

receiving a heartbeat from a worker node with empty map/reduce slots, the master node 

invokes the scheduler to assign tasks. RTMR scheduler’s dispatcher fulfills this role, allo-

cating tasks to execute on worker nodes. Algorithm 5.4 shows the pseudo code of the dis-

patcher. 

When jobs are inserted into the priority queue, their map stages can start and their map 

tasks are ready to run. Therefore, it is straightforward to dispatch map tasks following the 

job order/priority. No modification is needed here and RTMR scheduler dispatches map 

tasks following the same approach as the default Hadoop system (lines 4-5).  

However, since a job’s map stage finish time depends on not only the job’s map stage 

start time but also the number of map tasks the job has, when there are multiple jobs con-

currently running in the cluster, which jobs can finish their map stages and start their re-

duce stages earlier is not determined by the job priority alone. Although jobs start their 

map stages following the job order/priority, it is highly likely that jobs will not finish 

their map stages in that order. As a result, the reduce tasks of a lower-priority job could 

become ready earlier than those of a higher-priority job. Thus, if ready reduce tasks are 
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assigned to execute on worker nodes without any constraint, the proper execution of 

higher-priority jobs may be interfered by the execution of lower-priority jobs, leading to 

deadline violations. One simple method to avoid such interferences is to strictly enforce 

that jobs start their reduce stages following the job order. That is, a job cannot start the 

reduce stage until all proceeding jobs have finished their map stages. However, this 

straightforward method puts a strong constraint on job parallelism and causes inefficient 

utilization of system resources. Therefore, we instead design a reservation-based dis-

patcher, which simply ensures that a lower-priority job does not occupy slots that belong 

to higher-priority jobs. That is, the dispatcher reserves slots that are needed by higher-

priority jobs to avoid potential interferences. Upon receiving a heartbeat from a worker 

node with empty reduce slots, the dispatcher assigns a reduce task to the worker node 

only if enough reduce slots have been left unused for higher-priority jobs (lines 6-21). 

We have proved that all jobs accepted by the admission controller can be successfully 

dispatched and completed by their deadlines in normal scenarios when there is neither a 

node failure nor a task re-execution (please refer to the section 5.2.2 for the proof). 
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Table 5.2 Dispatcher Algorithm 

ALGORITHM 5.4. DISPATCHER 

 4) Feedback Controller 

A feedback controller is developed to keep the admission controller’s records up-to-

date.  As described in the previous section, the admission controller makes decisions 

based on the job records，i.e., job’s ! and ! vectors. These vectors record the estimat-

ed available time of the cluster’s map and reduce slots after scheduling a job’s execution. 

However, a job’s actual execution may be different from the estimate. For instance, be-

cause we use ! and ! as the estimated cost of processing a unit of data in a map and 

a reduce task and η as the estimated ratio between a job’s intermediate data size and input 

DP(J=(A, D, M, R, δ), Priority-Q,i,Ra)

1:  m: available map slots on node i 
2:  r: available reduce slots on node i 
3:  Ra: the number of available reduce slots in the cluster, which is counted upon 

calling this algorithm 
     // dispatch map tasks:   
4:  if (m>0) then 
5:       follow the same approach as the default Hadoop system to dispatch map 

tasks 
     // dispatch reduce tasks: 
6:  if  r > 0 then 
7:      reservedSlot: the number of reduce slots reserved for high-priority jobs 
8:      reservedSlot = 0  
9:     for J from Priority-Q do 
10:         if reservedSlot > Ra then 
11:               break for 
12:        end if 
13:        T = findAReadyReduceTask(J) 
14:        if  T != nil then 
15:             assign T to node i 
16:             break for 
17:        else if J has not reached its reduce stage then 
18:             reservedSlot += J.R 
19:        end if 
20:    end for 
21: end if
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data size, it is highly likely that some job finishes earlier than that estimated by the ad-

mission controller. In addition, node failures or speculative re-execution of slow tasks can 

result in a job finish time later than expected. To reduce false negatives (i.e., rejecting 

jobs that can meet their deadlines) and deal with unexpected events (such as node fail-

ures), a feedback controller is invoked to update all waiting jobs’ ! and ! vectors if the 

difference between a job’s actual and estimated finish times is larger than a certain 

threshold ΔT. The feedback controller is also triggered if a job misses its deadline due to 

unexpected events. As a result of the update, the admission controller makes decisions 

based on more accurate estimates. In this paper, we set the threshold ΔT to be a typical 

map task execution time after profiling. 

ALGORITHM 5.5. FEEDBACK CONTROLLER

FC(J=(A, D, M, R, δ), Priority-Q)
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ALGORITHM 5.6. SLOT AVAILABLE TIME UPDATE

SATU (J=(A, D, M, R, δ),!  , ! ,!  , ! )

1:  ⊗:  threshold to trigger the update 

2:  ! :   job J’s actual finish time 

3:  !  = getPredecessor(J, Priority-Q) 

4:  !  =  Jp.! ( ! = [0,0, …0] if Jp = nil) 

5:  !  = Jp.! ( ! = [0,0, …0] if Jp = nil) 
     // invoke Algorithm 5.3 to do the calculation 

6:  e = Cal! (J, ! ,! ).e 
7:  if | e- ! | !  ⊗ or ! > (A+D) then 

8:     build ! , the sorted vector containing the actual finish time of job J’s map 
tasks 

9:     build ! , the sorted vector containing the actual finish time of job J’s 
reduce tasks 
// invoke Algorithm 5.4 to calculate the updated estimates 

10:    ! = SATU(J, ! ,! , ! ,! ). !  

11:    ! = SATU(J, ! ,! , ! ,! ). !  

12:    !  = J  

13:    !  = getSuccessor( ! , Priority-Q) 

14:    while ! != nil do 
          // invoke Algorithms 5.2 and 5.3 to do the calculation 

15:          ! = Cal! ( ! ,! ) .!  

16:          ! = Cal! ( ! ,! ,! ).!      17:          ! = !    

18:          !  = getSuccessor( ! , Priority-Q) 
19:    end while 
20: else return 
21: end if
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Table 5.3 Feedback Controller Algorithm 

5.2.2 Proof of Correctness 

 First, the correctness of admission control and dispatch algorithms is proved. That is, 

we prove that all jobs accepted by the admission controller can be successfully dis-

patched and completed by their deadlines in normal scenarios when there is neither a 

node failure nor a task re-execution. Several vector operators used in the proof are de-

fined below.  

Definition-1: > & ≥ 

For two sorted vectors ! and ! , where 

!  

1:  ! : map slot available time in J’s predecessor’s record 

2:  ! : reduce slot available time in J’s predecessor’s record 
3:  ! : sorted vector containing the actual finish time of job J’s map tasks 
4:  ! : sorted vector containing the actual finish time of job J’s reduce tasks 

5:  ! = !  

6:  ! =  !  
7:  while ! is not empty do 
8:     remove the item currently located at the beginning of vector ! , say it is 

!  

9:     ! = ! (where ! is the first and smallest item in vector ! ) 
10:   sort  items in ! to keep ! a sorted vector 
11: end while   
12: while  ! is not empty do 
13:    remove the item currently located at the beginning of vector ! , say it is 

!  

14:   ! = !  (where ! is the first and smallest item in vector ! ) 
15:    sort  items in ! to keep ! a sorted vector 
21: end while 
22: return ! ,!
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and !  

 ! if and only if ! ; 

! if and only if ! . 

Definition-2: ⊕ 

For a sorted vector !  

!  

and a vector !  

!  

! generates an n dimensional vector ! as follows: first, let ! ; second, 

from ! , remove the item currently located at the beginning of the vector, say it is ! ; 

third, change ! to be equal to ! and resort ! to keep it a sorted vector; forth, re-

peat the second and third steps until there is no element left in ! . 

Definition-3 maximum of a vector and a value 

For a sorted vector !  

!  
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and a value ! , ! generates an n dimensional vector as follows:  

!  

It can be easily proved that the following properties hold for the aforementioned opera-

tors: 

1) If ! and ! , then !  

2) If ! and ! ,  

then !  

3) If ! and ! ,  

then !  

The admission controller generates ! .! and ! .!  vectors, which record the estimated 

slot available time after the scheduled execution of job J and J’s predecessors, while ! .

! and ! .! respectively represent the actual available time of the cluster’s map and re-

duce slots after considering these jobs’ actual execution. To guarantee that an accepted 

job !  does not miss its deadline in normal scenarios, we prove ! and 

!  when there is neither a node failure nor a task re-execution.   

Proof-1:  

Admission control algorithm ensures !  

For the first job J1 admitted to the cluster, since it does not have a proceeding job, 



!66

when the admission controller calculates ! , we have! (see Algorithm 1), 

which equals ! , the initial available time of the cluster’s map slots. According to Algo-

rithm 2, ! is calculated as follows:  

! where ! is a vector composed 

of M items with equal value of ! . In addition, we have:  

!  

where is the vector composed of the actual execution time of J1’s map tasks. Since 

!  is a pessimistic estimation of a map task’s execution time, we have:  

!  

According to the property of vector operator “⊕”, we conclude from the above three 

equations and inequality that: 

 !  

Assuming! , we can show that ! following a similar proof 

procedure. According to mathematical induction, we conclude ! for all ac-

cepted job ! . 

Proof-2:  

Admission control algorithm ensures !  
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For the first job J1 admitted to the cluster, since it does not have a proceeding job, 

when the admission controller calculates ! , we have!  (see Algorithm 1), 

which equals ! , the initial available time of the cluster’s reduce slots. According to Al-

gorithm 3, ! is calculated as follows:  

! where ! is the estimated finish 

time of J1’s map stage and is a vector composed of R items with equal value of 

! . In addition, we have:  

!  

where is the actual finish time of J1’s map stage and is the vector composed of 

the actual execution time of J1’s reduce tasks. Since as shown in Proof-1 , 

it implies the following relation for the largest items (i.e., ! and ! ) of the two 

vectors: 

!  

And since !  is a pessimistic estimation of a reduce task’s execution time, we have: 

!  

According to the properties of “MAX” and “⊕” operators, we conclude from the above 

four equations and inequalities that: 
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 !  

Assuming! , we can show that! following a similar proof 

procedure. According to mathematical induction, we conclude ! for all accept-

ed job ! . 

In the following part of this section, we prove the correctness of the feedback con-

troller by showing that! ! .! and ! ! .! . Therefore, after updating job J’s vec-

tors ! and ! with! and ! in Algorithm 5 (lines 10-11), the condition ! .! ! .!

and ! .! ! .!  (i.e., the estimated slot available time is greater or equal to the actual 

available time) still holds for job J.  

Proof-3: Algorithm 5.6 ensures ! ! .!  

We first prove by induction that holds after the ith iteration (where i=1, …, 

M) of the first while loop (i.e., lines 7-11) of Algorithm 5.6. Here, ! represents how ! .

looks like after considering the actual execution of the ith map task of job J. 

Step 1: ! is true after the first iteration of the while loop, i.e. !  is true 

for i=1.  

As we have shown in Proof-1, the admission control algorithm ensures ! .! ! .! , 

therefore, after executing line 5 of Algorithm 6 (i.e., ! = ! ) we have ! and 

thus !  holds before entering the while loop (i.e., ! is true for i=0).  
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Upon the completion of the first map task of job J at time point ! ,! , 

the sorted vector representing the actual available time of the cluster’s map slots, first 

gets updated to be ! . Here, it is assumed that the map slot corre-

sponding to the current jth position of vector has been used to execute the task and 

thus gets updated to ! . Since it takes some time to execute a task, we have the new 

available time greater than the old available time of the slot, i.e., ! . We thus know 

that! holds, which means that for the first j items of vector

! , we have! . Then, we sort the vector 

and get! , where n ≥ j-1. In addition, we know for 1≤ p ≤ j-1, 

! and for j-1 < p ≤ n and n+1 ≤ p ≤ l-1, ! .  

After the first iteration of the while loop, !  changes to be a new sort-

ed vector ! .  

Before entering the while loop, ! ,! , and !

holds. Thus, we have for 1≤ p ≤ l, ! . After the aforementioned updates, we have

! and ! , and  

For the first k-1 items of the two vectors, i.e., when 1 ≤ p ≤ k-1, ! holds. The 

reasoning is as follows: ! equals either ! or ! . When ! , because! ,



!70

! , and ! , we have ! ; and when ! , because ! and 

! , we too have ! . 

The kth item of is always greater or equal to that of .  The reasoning is as fol-

lows: because when 1 ≤ p ≤ k-1,! and both ! and 

!  are sorted vectors, ! ’s position in ! must be earlier 

than that in , i.e., k ≤ n+1. If k = n+1, the kth items of vectors and all equal to

. If k < n+1, the kth items of vectors and are and . Since

! is a sorted vector, i.e., ! , we have

. That is, the kth item of is always greater or equal to that of .  

For all items from the (k+1)th to the nth positions, i.e., when  k+1 ≤ p ≤ n, we have 

! since ! and ! . 

The (n+1)th item of is always greater or equal to that of . The reasoning is as fol-

lows: we know that k ≤ n+1. If k = n+1, the kth items of vectors and are equal 

since they both equal to . If k < n+1, the (n+1)th items of and , are and

respectively. Since !  is a sorted vector, i .e. , 

!  

, we have , the (n+1)th item of is greater or equal to that of . 
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For the last l-(n+1) items of the two vectors, i.e., when n+1 ≤ p ≤ l-1, we have

!  since! and ! .  

In summary, ! holds after the first iteration of the while loop, i.e., !  is 

true for i=1. 

Step 2: Assume holds after the qth iteration of the while loop, i.e.,  

is true for i=q. 

Step 3: Following a procedure similar to Step 1, we can prove that ! also holds 

after the (q+1)th iteration of the while loop, i.e.,  is true for i=q+1. 

According to mathematical induction, we conclude holds after the ith itera-

tion, for i=1, …, M, of the first while loop (i.e., lines 7-11) of Algorithm 6.     

Since the values of both vectors (i.e., ! and ! ) do not change after the first while 

loop, we have proved that Algorithm 6 ensures !  for i=M, that is, ! .  

Proof-4: Algorithm 5.6 ensures !  

Similar to the procedure of Proof-3, we can prove Algorithm 5.6 ensures ! . 

According to Proof-3 and Proof-4, we conclude that after updating ! .! and ! .! with 

! and ! by invoking Algorithm 5.6 in Algorithm 5.5, the condition ! .! ! .! and

! .! ! .!  (i.e., the estimated slot available time is greater or equal to the actual 

available time) still holds for job J. 



!72
5.3 Evaluation of RTMR scheduler and Deadline Constraint Sched-

uler 

Our implementation of Deadline Constraint scheduler and RTMR scheduler are all 

based on the Hadoop 0.21. These two schedulers are implemented and compared experi-

mentally in terms of real-time property and cluster utilization. To test the effects of feed-

back control, we run RTMR scheduler twice, with and without the feedback controller 

enabled. In addition, since the cluster utilization is determined by not only the scheduling 

algorithm but also the workload volume, we run the default Hadoop FIFO scheduler, 

which accepts all jobs to execute in the cluster, collecting its resultant cluster utilization 

to reflect the workload volume. If a real-time scheduler achieves a cluster utilization 

close to that achieved by the default Hadoop FIFO scheduler, we consider that the re-

source cost of providing the real-time property is not high.  

For the RTMR scheduler, the admission controller is implemented in the JobQueue-

JobInProgressListener class, which makes the admission control decision and maintains 

the MapReduce job queue. The dispatcher is in the RTMRTaskScheduler class, which ex-

tends from the TaskScheduler class and is in charge of dispatching map and reduce tasks. 

The feedback controller is also in the JobQueueJobInProgressListener class, where we 

set the threshold Δ to be a typical map task execution time. 

Similarly, Deadline Constraint scheduler’s admission controller is in JobQueueJobIn-

ProgressListener class and its dispatcher, called DCTaskScheduler, extends from the 

TaskScheduler class. 
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5.3.1 Experimental Environment 

We have evaluated RTMR scheduler and compared it with Deadline Constraint Sched-

uler [21] in a heterogeneous Hadoop cluster that contains one master node and 30 worker 

nodes.  

Table 5.4 Experimental Environment 

A heterogeneous Hadoop cluster that contains one master node and 30 worker nodes is 

used as the testbed. The 30 worker nodes are configured as one rack and they are of two 

types. 20 of them are 2 dual-core CPU nodes and 10 of them are 2 single-core CPU 

nodes. Table I gives the detailed hardware information of the cluster. We make the num-

ber of map slots in a worker node equal to the number of CPU cores. Because each node 

has only one Ethernet card, we configure one reduce slot per worker node to avoid band-

width competition between multiple reduce tasks on a single node. Loadgen, a test exam-

ple in Hadoop source code for evaluating Hadoop schedulers [40], is used as the test ap-

plication.  

5.3.2 Workload and Experiments 

We first create a submission schedule (workload I) that is similar to the one used by 

Nodes Quantity Hardware and Hadoop 
Configuration

Master node 1 2 single-core 2.2GHz Opteron-248 
CPUs, 8GB RAM, 1Gbps Ethernet

Type 1 worker 
nodes 20

2 dual-core 2.2GHz Opteron-275 
CPUs, 4GB RAM, 1 Gbps Ethernet, 
4 map and 1 reduce slots per node

Type II worker 
nodes 10

2 single-core 2.2GHz Opteron-64 
CPUs, 4GB RAM, 1 Gbps Ethernet, 
, 2 map and 1 reduce slots per node
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Zaharia et al [40] that was described in Chapter 4. 

Table 5.5 Workload I 

Table 5.6 Workload I’s Configuration (in Terms of Number of Map, Reduce Tasks and Deadline) 

Since most jobs in the Facebook workload are small, in particular, some of them hav-

ing only 1 map task, we create workload II to include more jobs with higher parallelism. 

That is, in workload II, we let the number of map tasks per job follow a normal distribu-

Bin #Maps %Jobs at 
Facebook

#Maps in 
Benchmark

# of jobs in 
Benchmark

1 1 39% 1 38

2 2 16% 2 16

3 3-20 14% 10 14

4 21-60 9% 50 8

5 61-150 6% 100 6

6 151-300 6% 200 6

7 301-500 4% 400 4

8 501-1500 4% 800 4

9 >1501 3% 4800 4

Bin #Maps #Reduces Deadline (second)

1 1 [1,5] [200,300]

2 2 [1,5] [200,300]

3 10 [5,10] [300,400]

4 50 [10,20] [500,800]

5 100 [20,30] [1000,1500]

6 200 30 [2000,2500]



!75
tion with an average of 100. Again, because of the moderate size of our cluster, we do not 

include the three jobs that have more than 300 map tasks. Table 5.7 shows the detailed 

information of workload II. To test how RTMR scheduler works with large jobs, we also 

create some jobs with more reduce tasks than the cluster’s total number of reduce slots in 

workload II. However, since we already know that Deadline Constraint scheduler cannot 

accept such jobs, they are not included in workload II when Deadline Constraint sched-

uler is tested. 

For performance evaluation of the real-time schedulers, the following three metrics, 

i.e. job accept ratio, job success ratio, and cluster utilization are used: 

!  

!  

!  

Table 5.7 Workload II 

The following equation is used to calculate the cluster utilization achieved by default 

Bin No. 
Job #Maps #Reduces Deadline (second)

1 9 [1,10] [1,5] [200,300]

2 24 [10,50] [5,10] [300,500]

3 25 [50,100] [15,30] [1000,1500]

4 18 [100,200] [25,50] [1500,2500]

5 13 [200,300] [35,70] [2500,3500]
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Hadoop FIFO scheduler: 

!  

Here, successful_jobs denote those jobs that finish before their deadlines and slot_-

time_used_by_successful_jobs refer to the total map and reduce slot time used to execute 

them. Since Hadoop FIFO scheduler does not consider job deadlines and provides no 

real-time guarantees, it accepts all jobs and its cluster utilization is calculated using slot_-

time_used_by_all_jobs instead. 

available_slot_time_during_workload_exe refers to the total usable time of cluster 

map and reduce slots during the execution of a workload, i.e., the product of the number 

of slots and the turnaround execution time of all accepted jobs in a workload.  

Tables 5.8 and 5.9 show how the tested schedulers perform with workload I and II re-

spectively.  As we can see, although compared to RTMR scheduler Deadline Constraint 

scheduler accepts more jobs, it fails to provide deadline guarantees to all accepted jobs, 

with job success ratio of 85.7% and 22.5% respectively. Since not all accepted jobs are 

successful while more jobs are accepted, which prolong the workload’s execution in the 

cluster, Deadline Constraint scheduler leads to much lower cluster utilizations of only 

5.7% and 0.7% respectively. In contrast, RTMR scheduler maintains good cluster utiliza-

tion of 15.5% and 64.6%, in comparison to 21.3% and 69.7% achieved by default 

Hadoop FIFO scheduler. Deadline Constraint scheduler’s very poor performance with 

workload II experimentally demonstrates its deficiencies in handling real-time MapRe-
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duce jobs with high parallelism. From the data, we can also conclude that RTMR sched-

uler performs better when we enable the feedback controller to keep the admission con-

troller up-to-date, which results in better job accept ratio and cluster utilization. 

Table 5.8 Scheduler Performance with workload I 

Table 5.9 Scheduler Performance with Workload II 

The FIFO scheduler has highest utilization in both Workload I and Workload II. This is 

because FIFO scheduler does not reject any job. Our RTMR scheduler achieve second 

highest utilization. It is because the Feedback controller helps RTMR to accept more jobs 

that can be finished before their deadlines.  

Through the development of RTMR scheduler, we well understood how to support ap-

plications/jobs that have SLA requirements in Hadoop MapReduce clusters. It helps us 

Metrics Constraint 
Scheduler

RTMR 
Scheduler

RTMR No  
Feedback

FIFO 
Scheduler

Accept Ratio 71.6% 56.8% 46.6% n/a

Success 
Ratio 85.7% 100% 100% n/a

Cluster 
Utilization 5.7% 15.5% 11.6% 21.3%

Metrics
Constrain

t 
Scheduler

RTMR 
Schedule

r

RTMR 
No 

Feedbac
k

FIFO Scheduler

Accept  
Ratio 44.9% 24.7% 15.7% n/a

Success 
Ratio 22.5% 100% 100% n/a

Cluster 
Utilization 0.7% 64.6% 49.8% 69.7%
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deep understand Hadoop MapReduce features, mechanisms, and patterns. For our next 

step research, an energy efficient scheduler will be developed based on the knowledge 

obtained from these achievements. 
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CHAPTER 6. ENERGY EFFICIENT SCHEDULER 

With the increasing demands of computational power in big data analytics, Hadoop 

cluster becomes larger and larger and the maintenance cost rises correspondingly. How to 

improve a Hadoop cluster’s computational power with sustainable costs is a big challen-

ge. To resolve this problem, scientists introduced GPU into Hadoop cluster 

[121,123,124,129,130,131]. However, scheduling MapReduce applications in hybrid 

CPU-GPU clusters has not been systematically studied. The remaining work will focus 

on this problem. 

In this paper, we will build an energy-efficient scheduler in a hybrid MapReduce envi-

ronment. we must consider several factors simultaneously. After analyzing this problem 

carefully, we propose our energy consumption model and list the challenges that need to 

be resolved in building a two-level energy-efficient scheduler. 

6.1 Background 

Since scheduling MapReduce applications in a hybrid Hadoop cluster is complicated, 

in this section, we first present the background information to explain the challenges.  

6.1.1 YARN label scheduling 

In Chapter 2, we have described how YARN framework works. With the increasing 

demand for computational power, different types of hardware can be added to it. It means 

NodeManger needs to run on various types of servers. To provide a flexible scheduling 
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mechanism, the Hadoop community introduced label scheduling.  

In a label scheduling algorithm, Hadoop administrators can give different types of la-

bels to different NodeManagers. Customers/users should be able to know these labels be-

fore submitting applications and thus submit applications with the proper labels. For ex-

ample, there are 3 NodeManagers: A, B, and C. A has label-1 and label-2, B has label-2, 

and C has no label. There is a user submitting an application with label-2. Then, this app-

lication can only run on NodeManager A and B. That is, resources on NodeManagers that 

do not have label-2 are not allowed to run this application. But an application without a 

label can run on any NodeManager. NodeManagers that have no label can run ap-

plications that have no label requirement or require no label NodeManagers. 

With the help of a label scheduling mechanism, we give label-1 to a CPU node and la-

bel-2 to a GPU node. All applications that require GPU (aka. GPU application) will be 

given label-2 during submission. It means a GPU application can only run on a NodeMa-

nager that has GPU in place. For CPU applications, they are able to run on CPU nodes as 

well as GPU nodes (where they will only use CPUs of GPU nodes and leave GPUs idle). 

In next section, we present assumptions we have for our research work. And then, we 

provide a solution called adaptive execution to instead allow GPU applications to run on 

both GPU and CPU nodes. 

6.1.2 Assumptions 

In most of the research works in the cluster power management field, two constraints 
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need to be considered simultaneously. One is the energy consumption which scientists/

researchers want to optimize. The other is throughput or response time that is related to 

the applications turnaround time. Research work may become impractical if we only con-

sider first constraint but neglect the second one. Take a small cluster as example, assume 

we have a 3-node cluster: node A, B, and C. Node A is the most energy efficient compa-

ring with node B and node C. To minimize the energy consumption without considering 

throughput, we can simply turn off node B and node C because node A is the most energy 

efficient server which has the lowest cost to do the same computation comparing with 

other two nodes. In this way, we saved energy but applications take more time to finish.  

However, this is not an acceptable balance between turnaround time and efficiency. Ba-

sed on these common sense, we need to clarify three important assumptions that are criti-

cal to our research work.   

1.All servers of our cluster are always powered up, in this dissertation we assume all 

servers are up all the time.  

2.GPUs can only run one task at a time and there is no preemption or time-sharing in-

side a GPU. 

3. We only consider map task scheduling and only map tasks will utilize GPU. The rea-

son is that reduce tasks include shuffle which is I/O intensive. To run an I/O intensive 

task on a GPU may not be faster and is energy inefficient. Data needs to be moved from 

main memory to GPU memory before using GPU and moved out from GPU memory to 

main memory before and after running a task on a GPU.   
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  Since we are providing a Hadoop system for applications to run, customers/users have 

to write their program in a particular way to utilize a GPU. That is, a GPU program is 

using specific libraries and instruction sets and can only run on a GPU. Current technolo-

gy does not support adaptive execution to allow an application to run on both GPU and 

CPU. In this work, we will propose our adaptive execution mechanism to enable that. 

6.1.3 Adaptive Execution 

From the introduction in Chapter 1, we know that GPUs can save more energy than 

CPUs when run some applications. However, GPUs are more expensive and applications 

that are capable to utilize GPUs require more time to develop. Consequently, current Ha-

doop MapReduce clusters have less GPU nodes than CPU nodes. In some extreme case, 

if a cluster has a very limited number of GPU nodes, a GPU application may suffer star-

vation or experience a long waiting time. To resolve this problem, we have proposed a 

solution called: adaptive execution. It helps customers/users leverage both GPU and CPU 

to run their applications. It works as follows: 

1. Customers/users need to include both CPU code and GPU code in their program. 

2. Customers/users need to add a device checking module in their program so that it 

can detect whether a node has an idle GPU or not. If so, it will run the GPU code. Other-

wise, it runs the CPU code. Without the GPU only constraint, customers/users no longer 

need to specify a label for their program during the job submission. 

Instead of waiting for GPU nodes, adaptive execution provides a positive effect on the 
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job execution in a parallelized and load-balanced data processing platform like MapRe-

duce. For example, a task of a MapReduce job, which has 3 tasks in total, takes 10 minu-

tes running on a GPU node but 20 minutes on a CPU node. However, there is only 1 GPU 

node available at that moment. Then, if the scheduler only uses the GPU node, this job 

will take about 30 minutes to finish. However, if the scheduler assigns 2 tasks to the GPU 

node and one task to a CPU node, it takes 20 minutes. In this way, we saved energy and 

optimized turnaround time at the same time. 

In Table 6.1, we demonstrate how to enable adaptive execution in a MapReduce appli-

cation. We have two methods: mapOnGPU() and mapOnCPU(). When a map task is dis-

patched, it will automatically run the setup() method. In the setup() method, it detects 

whether the current node has idle GPU or not. If so, it sets the hasGPU flag to be "true". 

Then, when running the map() method, the "hasGPU" is used to decide which set of code 

should be executed. If "true", then, it calls mapOnGPU(). Otherwise, It calls mapOnC-

PU().  

The process described in Table 6.1 happens after a map task is dispatched. In our eva-

luation, we will test our scheduler with and without adaptive execution to demonstrate the 

difference. 
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Table 6.1 Adaptive Execution for MapReduce Application 

6.1.4 Relevant Container 

In this section, we will introduce a new concept: relevant container. It is used in our 

scheduling algorithm as the resource unit. Since we have 2 types of jobs; CPU job and 

GPU job, the relevant container concept is used by the scheduler to allocate appropriate 

resources to different types of jobs.  

For a task in a given CPU job, the relevant container means the CPU and memory re-

sources that can be used to execute this task. Similarly, for a task in a GPU job, the rele-

vant container means the GPU, memory, and CPU resources that are needed. For examp-

le, there is a 2-node idle cluster which has one CPU node with 4 CPU containers and one 

Example: Adaptive Execution in MapReduce Application

//Beginning of MapReduce Application 
1:  public class MapReduceApp { 
2:        //mapper class 
3:     public static class MapClass extends MapReduceBase implements 
Mapper<Writable, Writable> {   
4:           //flag to identify whether a node has GPU or not 
5:             boolean hasGPU = false;                   
6:            //setup environment before map stage 
7:            setup() { if (node has idle GPU) then hasGPU = true} 
8:            // map method 
9:            public void map()  {  
10:                 if (hasGPU) then run mapOnGPU(); 
11:                 else run mapOnCPU(); 
12:                 end if 
13:           } 
14:           //map code run on GPU 
15:         void mapOnGPU() { do map on GPU using GPU code}     
16:           //map code run on CPU 
17:           void mapOnCPU() {do map on CPU using CPU code} 
18:       } 
19:          ….........           
20:       //rest of the MapReduce application 
21:   }             
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GPU node with 1 GPU container (contains 1 GPU and 1 CPU resources) and 3 CPU con-

tainers. For a CPU job j which requests 3 containers, there are 8 relevant containers be-

cause it does not need GPU. For a GPU job g which requests 2 GPU containers, there are 

two scenarios:  

1. Without adaptive execution, job g has only one relevant container.  

2. With adaptive execution, job g has 8 relevant containers.  

  Our scheduling algorithm chooses relevant containers while considering energy cost, 

data locality, and performance. 

6.2 Scheduling Algorithm 

There are three aspects that need to be considered simultaneously when we design an 

energy-efficient MapReduce scheduler: energy minimization, data locality, and QoS con-

trol. Based on our assumptions and adaptive execution, both CPU and GPU applications 

can run on CPU and GPU nodes. Thus, we do not need to involve label scheduling in the 

case where adaptive execution is applied. 

Resource scheduling is a match-making and bin-packing problem which is NP-hard. 

How to match MapReduce jobs to energy efficient containers becomes a critical problem 

for us to resolve. In this work, we introduce a heuristic function to facilitate our decision-

making: 

hij = efij *  dopij   (6.1) 

dopij = (input data on node i for job j) / (total data requested by job j)   (6.2) 
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efij=1/Eij_map     (6.3) 

 Eij_map is the energy consumption for job j's map task running on container i. efij is the 

energy efficiency of a given container i running job j's map task. dopij is the job's data 

overlap percentage on the node of the container and hij is the fitness score.  

We can get Eij_map  for all types of map tasks running on all kinds of containers by pro-

filing a single map task of job j on all containers. Based on our first assumption in section 

6.1.2, we do not turn off any server. It means idle energy consumption is always there. 

Then, Eij_map can be computed as shown in the following formula: 

Eij_map= Eij_total - Pidle*T  (6.4) 

Eij_total is the total energy consumed by a single map task of job j running on container i 

in time T. Eij_total can be obtained by running a single map task of job j on a node which 

only runs container i. T is the execution time of job j's single map task and Pidle is the idle 

power consumption of the node. In this work, a kill-a-watt meter [148] is used to collect 

the energy consumption and measure the idle power consumption. 

In a MapReduce cluster, it is possible that a server that has the most input data of a job 

may not be energy efficient to run the job. As we have described in Chapter 2, data locali-

ty is important for reducing unnecessary data transfer within a cluster when a Hadoop 

application is running. For a MapReduce application, high data locality percentage means 

shorter average map task response time. In this work, dopij is introduced to measure this 

data locality feature of a container. When a job is submitted dopij will be computed and 
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saved in memory during the whole life cycle of an application. When allocating contai-

ners to a job, the fitness score hij is used by the scheduler to rank all candidate containers 

and to make the decision.  

 To achieve high data locality and energy efficiency, we need to find the best candidate 

container to run a task of a given job. However, it is impractical to let job/task wait till 

the best candidate container becomes available since it will lead to Hadoop cluster 

throughput degradation. By considering these requirements on data locality, energy effi-

ciency, and QoS, we have designed and developed our algorithm. 

In the following two sections, we will describe our work in developing a two-level en-

ergy-efficient mapreduce scheduler. 

6.2.1 Level I: Application Scheduler 

The RM (ResourseManager) level scheduling, which we refer to as application schedu-

ler, is important since it determines if a MapReduce job can get the most energy-efficient 

containers or not. Table 6.2 shows how our application scheduler works. 

When job j is submitted, the job scheduler will calculate the fitness scores for this job. 

Assuming we already know the energy efficiency for running job j on container i, we 

have the fitness score by simply multiplying dopij and efij. The scheduler will rank all the 

containers in the cluster according to the fitness score hij. Then, the scheduler creates an 

optsetj for job j. It is a collection of containers from slave nodes in the cluster. The sche-

duler picks containers from slave nodes in non-increasing order of fitness score hij. For 
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example, job j requests 3 containers. If node k has 2 containers with fitness score of 3 and 

node l has 3 containers with fitness score of 2. The optsetj will have 3 containers in which 

two of them are from node k and 1 container is from node l. Note, a node's CPU container 

and GPU container could have different fitness scores for a job. 

  However, since we assume a shared environment and there may be other jobs running 

in the cluster, it is possible that the currently available containers are not in the job’s op-

tset. To help making the selection, we introduce a ranking factor  rj : 

rj= (currently available containers in optsetj ) / (total No. of containers of a job in op-

tsetj) 

After getting rj, the scheduler will reorder all jobs in the job queue in non-increasing 

order of their ranking factors rj. This way, we will first schedule jobs with the most 

amount of desirable resources available and we have ordered jobs by considering both 

energy efficiency and data locality.   

For each submitted job j, we try to assign containers in its optsetj  as many as possible 

since this can provide better energy consumption according to our algorithm. However, it 

is possible that the cluster is busy and does not have enough idle resources to meet job j's 

resource requirement at a certain moment. Then, starvation or long job delay may hap-

pen. 

 To avoid job starvation, we introduce two queues. One is for newly submitted jobs and 

the other is for jobs that have waited longer than a given threshold. When a job is submit-
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ted, it will go to the first queue. However, according to our scheduling algorithm, it is 

possible that a job is ranked low and has not been picked for a long time. To job avoid 

starvation, we introduce a delay time threshold. The time counter starts once a job is 

submitted and put in the job queue. If a job waits longer than a given threshold, we will 

move it to the long waiting queue. Every time there is a node heartbeat, the scheduler will 

check whether this long waiting queue has a job or not. If so, it will first schedule a job 

from the long waiting queue. If there is no job in the long waiting queue, the scheduler 

starts to consider the original queue. This way, we prioritize the jobs considering their 

ages to avoid starvation. 

In Table 6.2, we did not specify label scheduling because we assume customers/users 

implement adaptive execution. With adaptive execution, both CPU and GPU applications 

can run on any NodeManager. The following algorithm is invoked every time when a job 

releases resources, i.e., more resources become available. 

Table 6.3 demonstrates how the Algorithm works without adaptive execution. If we do 

not have adaptive execution, GPU jobs can only run on GPU containers. Then, when 

computing optsetj  and container allocation, the scheduler needs to first check Labelj that is 

associated with job j. Only nodes that have Labelj will be considered. 
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Table 6.2 Application Scheduler with Adaptive Execution 

  Algorithm 1: Application Scheduler with Adaptive Execution

Rj:        the number of containers that job j requests, for CPU job, it requests 
CPU containers, for GPU job, it requests GPU or CPU containers 
Rr:        currently available CPU and GPU containers in the cluster 
dopij:    data overlap percentage for job j on container i 
hij:        fitness score for job j running on container i 
rj:         ranking factor of job j 
optsetj:  optimal-set for job j 
T:          waiting time threshold 
1:  for each job j in the job queue          //initialize optimal-set for all jobs 
2:       for each relevant container i in the cluster 
3:           calculate dopij and hij 
4:       end for 
5:       rank all containers in non-increasing order of hij  
6:       optsetj= the first Rj containers 
7:  end for 
8: for each job j in the job queue      //calculate rj for each job 
9:    count=0 
10:    for each relevant container k in Rr 
11:        if (container k is in optsetj)   then  
12:             count++ 
13:        end if 
14:    end for 
15:    rj = count/Rj 
16: end for 
17: if job j’s waiting time exceeds T then  
18:         move job j to the long-waiting job queue 
19: end if 
20: sort both job queues (the regular job queue & the long-waiting job 
queue) respectively in non-increasing order of rj 
//assign resources to jobs in long-waiting queue 
21: for each job j in the long-waiting job queue 
22:     if (Rr .relevantContainers.size() >= Rj) then  
23:          assign job j the currently available best Rj relevant containers and 
remove them from Rr   
24:           update Rj  
25:     else   
26:       assign job j all the relevant containers that are currently available 
and remove them from Rr and update Rj  
27:     end if 
28: end for 
29: if (the long-waiting job queue is empty) then 
30:     for each job j in the regular job queue 
31:          if (Rr .relevantContainers.size() >= Rj) then 
32:               assign job j the currently available best Rj relevant containers 
and remove them from Rr  
33:                  update Rj 
34:          else   
35:               break 
36:         end if 
37:      end for 
38: end if
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Table 6.3 Application Scheduler without Adaptive Execution 

  Algorithm 1: Application Scheduler without Adaptive Execution

Rj:        the number of containers that job j requests, for CPU job, it requests 
for CPU containers, for GPU job, it requests for GPU containers 
Rr:        currently available CPU and GPU containers in the cluster 
dopij:    data overlap percentage for job j on container i 
hij:        fitness score for job j running on container i 
rj:         ranking factor of job j 
optsetj:  optimal-set for job j 
Labelj:  job j's label (only GPU job has a label) 
T:          waiting time threshold 
1:  for each job j in the job queue  //initialize optimal-set for all jobs 
2:       for the relevant containers that has Labelj in the cluster 
3:           calculate dopij and hij 
4:       end for 
5:       rank all relevant containers have in non-increasing order of hij  
6:       optsetj= the first Rj relevant containers 
7:  end for 
8: for each job j in the job queue        //calculate rj for each job 
9:    count=0 
10:    for each container k in Rr that has Labelj 
11:        if (container k is in optsetj)   then  
12:             count++ 
13:        end if 
14:    end for 
15:    rj = count/Rj 
16: end for 
17: if job j’s waiting time exceeds T then  
18:         move job j to the long-waiting job queue 
19: end if 
20: sort both job queues (the regular job queue & the long-waiting job 
queue) respectively in non-increasing order of rj 
//assign resources to jobs in long-waiting queue 
21: for each job j in the long-waiting job queue 
22:     if (Rr .relevantContainers.size() >= Rj) then  
23:      assign job j the relevant containers that are available and remove 
them from Rr 
24:          update Rj 
25:    else   
26:       assign job j relevant containers and remove them from Rr, update Rj  
27:     end if 
28: end for 
29: if (the long-waiting job queue is empty) then 
30:     for each job j in the regular job queue 
31:          if (Rr.relevantContainers.size() >= Rj) then 
32:           assign job j the best Rj available relevant containers and remove 
them from Rr 
33:                 update Rj 
34:          else   
35:               break 
36:         end if 
37:      end for 
38: end if
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6.2.2 Level II: Task Scheduler 

Once ApplicationMaster (AM) gets containers from RM, it will sort Job j's tasks in a 

non-decreasing order of Lk,  

Lk= the number of task k’s local containers   (6.5) 

For job j, we sort tasks with positive Lk in a non-decreasing order of Lk because the task 

which has less local containers should be assigned first. For example, task A only has one 

local container (container A), however, task B has two local containers (container A and 

container B). If we accidentally assign task B to container A, task A has no local contai-

ner anymore since one container runs one task at a time. To get a higher data locality ra-

tio, we should schedule task A to container A and task B to container B. For tasks that 

have no locality, that is Lk = 0, we always put them in the end of the task queue. That is, 

non-local tasks will be scheduled only if there is no local task remaining in the task 

queue.  

Another optimization which enhances the energy efficiency is to sort available contai-

ners according to the fitness scores when dispatching tasks to the containers. In Algo-

rithm 2, we first sort containers according to their fitness score hij. Once AM dispatcher 

finishes sorting containers, it picks a task from the task queue and searches all available 

containers. It only assigns the task to a container under the following two conditions: 

1. The container's node stores the data needed by a task; 
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2. Current task's Lk = 0.  It means there is no local task in the task queue. We should start 

to assign these non-local tasks;  

Table 6.4 Task Scheduler: Dispatcher 

After a map task is dispatched, it will run the process described in Table 6.1.  

6.3 Evaluation 

To evaluate our scheduler, we create a hybrid cluster which has two types of nodes: 

Algorithm 2: Application Master (AM) Dispatching (job j)’s Tasks 

// This algorithm is invoked when AM obtained containers from RM and 
starts to dispatch tasks.  
CR: AM obtained a collection of containers from RM in current scheduling 
period in Algorithm 1 
Lk: locality factor =   number of task k’s local container(s) in CR 
Q: task queue 
1:  sort task queue in non-decreasing order of Lk (except tasks with Lk =0 
will be added to the end of the Q) 

2:  sort containers in CR in non-increasing order of hij  
3:  while Q is not empty and CR is not empty: 
4:          t = Q.offer()                   //get the first task from task queue 
            assigned = false 
5:        for each container c in CR 
6:              if t.Lk =0 then                //no local task anymore 
7:                    assign t to c 
                       assigned = true 
8:                    remove c from CR 
9:                    break 
10:            end if      

11:            if container c has t’s input data then // local task 
12:                  assign t to c           //assign local task 
                       assigned = true 
13:                  remove c from CR 
14:                  break 
15:            end if 
16:        end for 
             if (assigned = false) then 
                 put t to the end of the queue and set t.Lk =0    // since t's local 
container is already be occupied by another task. 
17: end while                           
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GPU nodes and CPU nodes. There are 2 GPU nodes, one has 112 CUDA cores (Geforce 

9800-gt), the other has 16 CUDA cores (Geforce 210). We choose two types applications 

in our experiment. One includes MapReduce job that can employs GPU (aka. GPU job). 

The other is a general MapReduce job that uses CPU (aka. CPU job).  In Table 6.5, there 

are specifications about the hybrid MapReduce cluster which has 2 GPU servers (each 

server has one GPU card) and 6 multi-core CPU servers. 

Table 6.5 Experimental Environment 

To measure the energy consumption, we use a kill-a-watt meter [148] that connects to 

the cluster power outlet. It can measure the total energy consumption for the whole clus-

ter. 

Nodes Quantity Hardware

Master node 1
2 single-core 2.2GHz 
Opteron-248 CPUs, 8GB 
RAM, 1Gbps Ethernet

GPU server Type I 1

2 single-core 2.2GHz 
Opteron-275 CPUs, 4GB 
RAM, Geforce 9800-gt 
GPU 512M RAM, 1 Gbps 
Ethernet

GPU server Type II 1

2 single-core 2.2GHz 
Opteron-275 CPUs, 4GB 
RAM, Geforce 210 GPU, 
1Gbps Ethernet

CPU server 6

4 d u a l - c o r e 2 . 2 G H z 
Opteron-248 2.2G CPUs, 
8 G B R A M , 1 G b p s 
Ethernet
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6.3.1. Workload 

  We employ Facebook’s workload [40] that has been used in our Chapter 4 and Chap-

ter 5 to evaluate our energy-efficient scheduler against the Hadoop default FIFO schedu-

ler.  

Table 6.6 Workload I [20] 

Table 6.6 contains totally about 100 jobs. However, we have a relatively smaller cluster 

comparing with Facebook's production ones. We take the first 6 rows which covers about 

87% of total jobs. Since the number of reduce tasks is not provided in their paper [40], 

we accordingly add reduce tasks for each category based on the number of map tasks. 

Basically, the number of reduce tasks is smaller than the number of map tasks. At the 

same time, to make it more general, we randomly pick the number of reduce tasks within 

a given interval for each category.  

Bin #Maps
%Jobs 

at 
Facebook

#Maps in 
Benchmark

# of jobs in 
Benchmark

1 1 39% 1 38

2 2 16% 2 16

3 3-20 14% 10 14

4 21-60 9% 50 8

5 61-150 6% 100 6

6 151-30
0 6% 200 6

7 301-50
0 4% 400 4

8 501-1,5
00 4% 800 4

9 >1,501 3% 4,800 4
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Table 6.7 Workload Configuration (in terms of number of map and reduce) 

This workload submission takes about 24 minutes and contains 87 jobs. The inter-arri-

val time follows the Poisson distribution with expectation of 14 seconds. Data accessing 

pattern is in the zipf distribution (skew = 1). Job size in the workload follows a Gaussian 

distribution. We mix two types of jobs: loadgen (CPU job) and MD simulation (GPU job) 

using MapReduce. For loadgen, each map task will take a data block as input. For MD 

simulation, its input data size is about 60KB. Two types of jobs are submitted randomly 

following the uniform distribution which means the number of jobs from each type is ne-

arly the same (one is 44, the other is 45).  

6.3.2. Energy Efficiency Profiling 

 Since we need to know each node’s energy efficiency before scheduling any job, we 

did profiling of each node's energy efficiency for the two types of jobs.  

 For each job type, we run a single map task job on each container, measure the energy 

consumption during the job execution. We set the time interval as half hour (1,800 se-

conds), which guarantees the job can finish. Data is demonstrated in Table 6.8. 

Bin #Maps #Reduces

1 1 1

2 2 [1,2]

3 10 [5,10]

4 50 [10,20]

5 100 [20,30]

6 200 30
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Table 6.8 Energy consumption of MD simulation job (1 map) on different types of nodes (1800 seconds sampling 

interval) 

  We can see that using a GPU node can save energy for running GPU jobs. To make 

the result more intuitive, we employ the following method to obtain the energy efficiency 

factor of a node. For a given type of MapReduce job, the energy efficiency factor is the 

reciprocal of the energy consumption of this job on a server (i.e., the total energy minus 

the idle energy). We also normalize CPU node energy efficiency factor as 1 and get all 

other nodes’ energy efficiency factor proportionally. For example, the CPU node’s total 

energy consumption is 0.1446 kwh in the half hour sampling interval. To obtain the ener-

gy used by the MD simulation job, this 0.1446 kwh value should deduct the idle energy 

consumption in the sampling interval (235w*1,800s = 0.1175 kwh). We can see that only 

0.0269 kwh is used for running a single task MD job on the CPU server. Since we take 

CPU node’s energy efficient factor as 1, other nodes’ energy efficient factor should divide 

0.0269 kwh. We get Table 6.9. 

Table 6.9 Energy efficiency factor for MD simulation 

Node Type Only use CPU CPU + GPU

CPU node 0.1446 kwh N/A

GPU node Type I 0.061 kwh 0.05858 kwh

GPU node Type II 0.0533 kwh 0.05185 kwh

Node Type Only use CPU CPU + GPU

CPU node 1 N/A

GPU node Type I 1.23 1.41

GPU node Type II 1.4 1.52
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In Table 6.10, we use data to demonstrate that it is energy efficient to run CPU job on 

CPU node. We also observed that the energy efficiency factor for GPU and CPU nodes 

are close if they both use CPU. This is because loadgen is a pure I/O job. Additionally, 

for type I GPU and type II GPU nodes, they are using the same CPU. Then, their energy 

efficiency factors are even closer. 

Table 6.10 Energy efficiency factor for loadgen 

6.3.3. Experiment Results 

After having the energy efficiency factor of each application type, we start our final 

evaluation. The experiment time interval T is configured as 6.5 hours. Each experiment 

will be executed 3 times and we take average as final result. 

Three metrics are introduced in this work:  

1. Workload turnaround time s the time interval between the first job arrival and the 

last job completion. This value is the smaller, the better. 

2. Energy consumption is the total energy consumption during the given experiment 

time interval which is 6.5 hours. This value is the smaller, the better. 

3. Data locality ratio is the ratio of the number of local map tasks divided by the 

number of all map tasks in the whole workload. We employ this metric to evaluate 

Node Type Only use CPU CPU + GPU

CPU node 1 N/A

GPU node Type I 1.04 N/A

GPU node Type II 1.05 N/A
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the data locality performance of different schedulers. This value is the higher, the 

better, up to 100%.  

We compared three schedulers: FIFO, our scheduler (aka. Energy Efficient Hybrid, 

EFH for short), and EFH without adaptive execution (EFH-w/o-AE for short). The FIFO 

scheduler is the default scheduler of YARN.  To avoid randomness, we run each experi-

ment 3 times and take the average as the final result 

!

a. Turnaround time

!

b.  Data Locality Percentage 
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!  

c. Energy Consumption 

Figure 6.1. Turnaround time, data locality, and energy consumption for three 

schedulers 

In Figure 6.1, we demonstrate all our results of three metrics. Each bar means one sam-

pling point for a given scheduler. Each scheduler we get 3 times run and take the average 

as the final result. In Table 6.11, we demonstrate the final results. 

6.3.3.1 FIFO vs. EFH w/o adaptive execution 

We can see from Table 6.11, the EFH-w/o-AE scheduler consumes about 10% less en-

ergy in comparison to the FIFO scheduler which has no power management policy. For 

data centers that pays millions of dollars power bill, using our EFH scheduler can save 

about hundreds of thousands of dollars. We expect more energy saving if we have more 

GPU nodes or computation intensive jobs in the workload. We  take 3 times run average 
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and also show all three times run result in parentheses.  

Table 6.11 EFH schedulers without Adaptive Execution comparing with FIFO scheduler 

The difference of data locality ratio between FIFO and EFH-w/o-AE scheduler is about 

6%. This difference is not significant because our EFH-w/o-AE scheduler not only opti-

mizes the energy consumption but also considers data locality. 

For the workload turnaround time, the EFH-w/o-AE scheduler runs about 6.6% longer. 

It is as expected since we allow MapReduce jobs to wait for the best energy efficient re-

sources. However, we have a 2-queue mechanism to prevent a job from starvation. At the 

same time, the data locality does not heavily affect the turnaround time since our GPU 

application’s input data is relatively small (60KB). Even as the number of non-local map 

tasks increase, it did not cause too much network traffic or delay for the task execution.  

Scheduler
Turnaround 

Time 
(hour)

Energy (kwh)
Energy no idle 

(kwh)

Data 
Locality Ratio 

(%)

FIFO
4.54 

(4.49,4.56,4.57)
13.19 

(13.13,13.22,13.21) 2.61(2.59, 2.57, 2.68)
77 

(76,73,82)

EFH-w/o-AE 
4.84 

(4.87,4.83,4.83)
11.75 

(11.66,11.73,11.87)
1.17 (1.15, 1.18, 1.19

71 
(69,70,73)
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6.3.3.2 EFH with and without adaptive execution 

Table 6.12 EFH schedulers with and without adaptive execution 

 In Table 6.12, we can see the adaptive execution did contribute to the workload tur-

naround time. It gives an improvement of 5.2%. However, there is no free lunch, EFH 

scheduler consumes 1.9% more energy than EFH-w/o-AE. It allows some “long waiting” 

GPU jobs to run on a CPU node and trades energy consumption for time. The data locali-

ty ratio difference between these two schedulers is 4%. Since we have more CPU nodes 

than GPU nodes, it is possible that the CPU nodes hold more input data. Then, it inclines 

to achieve a higher data locality ratio when GPU jobs are allowed to run on CPU nodes. 

6.3.3.3 Ideal Energy Consumption 

In Figure 6.2, we add ideal energy consumption which is to run all map tasks on the 

node which is the most energy efficient without considering the cluster throughput. For 

example, if we have 10 map tasks that runs on node A is more energy efficient than run-

ning on node B, we will not allow any map task run on node B. In this way,  we can get 

the ideal energy consumption for running a given workload on a given cluster. However, 

it may cause significant throughput degradation. However, we have this ideal result is to 

Scheduler
Turnaround 

Time 
(hour)

Energy (kwh)
Energy no idle 

(kwh)

Data Locality 
Ratio 

(%)

EFH-w/o-
AE

4.84 
(4.87,4.83,4.83)

11.75 
(11.66,11.73,11.87

)

1.17 (1.15, 1.18, 
1.19 71 (69,70,73)

EFH
4.59 (4.57, 

4.62,4.59)
11.78 (11.85, 
11.69,11.80)

1.2 (1.26,1.14, 
1.21)

75 (75,77,73)

IDEAL
 16.73 (16.82, 
17.14,16.23)

43.96(44.05,44.37,
43.46)

0.63 
(0.65,0.68,0.55)

9.6 (11,10,8)
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show the upper bound. To make it comparable to our previous data, we deduct all idle 

energy consumption for three candidate schedulers. 

!  

Figure 6.2 Energy Consumption with IDEAL Energy Run (no idle energy) 

In Figure 6.3, we see the execution time is about 3 times longer than other three sche-

dulers. This is as expected because we only run map tasks on the most energy efficient 

nodes. Other servers are idle.  

!  

Figure 6. 3 Turnaround Time with IDEAL Energy Run 
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!  

Figure 6. 4 Data Locality with IDEAL Energy Run 

In Figure 6.4, we can see the data locality in IDEAL Energy group is about 10% . It is 

significant degradation comparing with other three schedulers. Since we only run map 

tasks on the most energy efficient nodes, this is inevitable.  

6.3.3.4 Statement of Result Statistics 

In order to further analyze our experiment results, we did some statistical comparison 

between EFH, FIFO, and EFHnoAE schedulers. It includes: p-value with t test, confi-

dence interval, and standard error estimation. 

First of all, we use p-value[154] to show the asymptotic significance of experimental 

data.  In Table 6.13, we show p-value of energy consumption, data locality, and tur-

naround time. According to the p-value definition, in our evaluation, if p < 0.05, it means 

there is high probability that two sets of data come from different distribution. For tur-

naround time, FIFO and EFHnoAE have significant difference, as well as EFH and 

EFHnoAE. But FIFO and EFH are close. For data locality, the significances for 3 candi-

dates are small. For energy consumption, we can see FIFO and EFH has significant diffe-
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rence. At the same time, FIFO and EFHnoAE are significantly different.  

Table 6. 13 P-value with significance level 0.05 

On the other hand, we provide confidence intervals for three scheduler experiment re-

sults. Results are shown in Table 6.14. With 95% confidence interval, we can see, in the 

turnaround time, EFH data variance is smaller than FIFO and EFHnoAE. For data locali-

ty, FIFO data has the larger variance. For energy consumption, EFHnoAE has the largest 

variance. 

Table 6. 14 Confidence intervals with 95% confidence 

In the end, we provide the error estimation for our three scheduler results. They are in 

Table 6.15. The standard error for our experiment data are relatively small except data 

locality. 

Scheduler Turnaround Time Data Locality Energy Consumption

FIFO vs. EFH 0.0793 0.65 0.0014

FIFO vs. EFHnoAE 0.0129 0.0696 0.0021

EFH vs. EFHnoAE 0.0105 0.1859 0.4266

Scheduler
Turnaround Time 

(hour)
Data Locality (%)

Energy Consumption 

(kwh)

FIFO 4.54 (+/-0.1) 77 (+/-11) 13.19 (+/-0.13)

EFH 4.59 (+/-0.06) 75 (+/-5) 11.79 (+/-0.13)

EFH no AE 4.84 (+/-0.1) 70.67 (+/-5) 11.75 (+/-0.28)
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Table 6. 15 Standard Error Estimation 

Scheduler
Turnaround Time 

(hour)
Data Locality (%)

Energy Consumption 

(kwh)

FIFO 0.02 2.16 0.02

EFH 0.01 0.94 0.03

EFH no AE 0.01 0.98 0.05
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

In this dissertation, we studied, designed, developed, and evaluated three sched-

ulers for the Hadoop MapReduce framework step by step to approach our proposed tar-

get: to provide MapReduce applications with low cost and energy consumption through 

the development of scheduling theory and algorithms, energy models, and energy-aware 

resource management [42,74-77]. (refer all my previous publications) 

First of all, we investigate Hadoop MapReduce framework’s data locality mecha-

nism and develop a matchmaking scheduling algorithm for improving the data locality of 

MapReduce applications. Evaluation using a Facebook workload shows our scheduler 

can adaptively achieve a high data locality ratio and a shorter map task response time 

comparing with the delay scheduler and the Hadoop default scheduler. 

Secondly, a real-time scheduling algorithm has been developed for MapReduce 

applications that require QoS and run in heterogeneous Hadoop MapReduce clusters. A 

mathematical proof has been provided as well as a real cluster evaluation. Both con-

firmed our real-time scheduler can achieve higher cluster utilization without deadline 

missing comparing with deadline constraint scheduler.  

Last but not least, we proposed an energy efficient scheduler for Hadoop YARN to 

resolve a multi-constraint optimization problem: saving cluster power consumption, satis-

fying MapReduce applications increasing demands on computation power, considering 

data locality, and avoiding performance degradation. In this work, we proposed our two 
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levels scheduling algorithm. To evaluate our scheduler, we build a hybrid Hadoop cluster 

which has two types of computing nodes: GPU nodes and CPU nodes. Comparing with 

the Hadoop YARN default scheduler, our algorithm can save about 10% energy without 

significant performance degradation. Since Hadoop YARN is a general resource sched-

uler, our algorithm can also benefit not only MapReduce applications but also other 

frameworks like Apache TEZ[149], Apache Spark[150], etc.  

With the increasing growth of public cloud applications, we will focus our future 

work on Big Data clusters resource scheduling in the cloud environment with the help of 

machine learning algorithms. Based on our previous study in Big Data framework and the 

cloud environment, our future plan is to develop an intelligent scheduler. It is able to an-

ticipate the workload peak and automatically scale out or scale in resources by learning 

from the historical workloads. For example, the Hadoop cluster may encounter workload 

burst in some special holiday like Thanksgiving, Christmas, etc. A smart scheduler should 

be able to request more resources before the burst happens and release idle resources after 

the rush hours. The elasticity of the cloud provides a possible infrastructure for the smart 

scheduler to realize this feature adaptively. However, the cloud environment is more 

complicated than dedicated clusters, it needs more investigation and research work to be 

done in this area. We will carry forward our learned knowledge, research skills, and expe-

riences to forge ahead in the future. 
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