
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

2-2018

Scheduling in Mapreduce Clusters
Chen He
University of Nebraska-Lincoln, che@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

He, Chen, "Scheduling in Mapreduce Clusters" (2018). Computer Science and Engineering: Theses, Dissertations, and Student Research.
148.
https://digitalcommons.unl.edu/computerscidiss/148

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/148?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages

SCHEDULING IN MAPREDUCE CLUSTERS

by

Chen He

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professors Ying Lu and David Swanson

Lincoln, Nebraska

February, 2018  

SCHEDULING IN MAPREDUCE CLUSTERS

Chen He, Ph.D.

University of Nebraska, 2018

Advisers: Ying Lu and David Swanson

 MapReduce is a framework proposed by Google for processing huge amounts

of data in a distributed environment. The simplicity of the programming model

and the fault-tolerance feature of the framework make it very popular in Big Data

processing.

 As MapReduce clusters get popular, their scheduling becomes increasingly

important. On one hand, many MapReduce applications have high performance

requirements, for example, on response time and/or throughput. On the other hand,

with the increasing size of MapReduce clusters, the energy-efficient scheduling of

MapReduce clusters becomes inevitable. These scheduling challenges, however,

have not been systematically studied.

The objective of this dissertation is to provide MapReduce applications with

low cost and energy consumption through the development of scheduling theory

and algorithms, energy models, and energy-aware resource management. In particu-

lar, we will investigate energy-efficient scheduling in hybrid CPU-GPU MapReduce

clusters. This research work is expected to have a breakthrough in Big Data pro-

cessing, particularly in providing green computing to Big Data applications such  

as social network analysis, medical care data mining, and financial fraud

detection. The tools we propose to develop are expected to increase utilization and

reduce energy consumption for MapReduce clusters. In this PhD dissertation, we

propose to address the aforementioned challenges by investigating and developing

1) a match-making scheduling algorithm for improving the data locality of Map-

Reduce applications, 2) a real-time scheduling algorithm for heterogeneous Map-

Reduce clusters, and 3) an energy-efficient scheduler for hybrid CPU-GPU Map-

Reduce cluster.  

!iv
Grant Information

This Ph.D. dissertation is supported by the National Science Foundation Award:

1018467, "CSR: Small: Energy Management for Heterogeneous MapReduce Data Cen-

ter.  

!v
Table of Contents

CHAPTER 1. INTRODUCTION 1 ..

2.1 Hadoop MapReduce 6 ..

2.1.1 Task Scheduling & Data Locality 8 ...

2.1.2 Speculative Execution 9 ..

2.1.3 Fault Tolerance 10 ...

2.1.4 YARN 10 ...

2.2 Hadoop Distributed File System 13 ..

2.2.1 HDFS Architecture 13 ...

2.2.2 Data Placement and Fault-tolerance 14 ...

2.2.3 Data Balancer 15 ...

2.4 GPGPU and CUDA 15 ...

CHAPTER 3. RELATED WORK 20 ...

3.1 MapReduce Scheduling 20 ...

3.2 Power Management in Hadoop Cluster 25 ...

CHAPTER 4. MATCHMAKING SCHEDULER 28 ...

4.1 Hadoop Default FIFO Scheduler 29 ...

4.2 Delay Scheduling Algorithm 30 ...

4.3 Matchmaking Scheduling Algorithm 31 ...

4.4 Evaluation of Different Data Locality Policies 35

4.4.1 Experimental Environment 35 ...

4.4.2 Experiments 38 ..

CHAPTER 5. REAL-TIME MAPREDUCE SCHEDULER 48

5.1 Deadline Constraint Scheduler 48 ..

 5.2 RTMR Scheduler 50 ..

5.2.1 Algorithm 51 ..

5.2.2 Proof of Correctness 63 ...

5.3 Evaluation of RTMR scheduler and Deadline Constraint Scheduler 72

5.3.1 Experimental Environment 73 ...

5.3.2 Workload and Experiments 73 ...

!vi

CHAPTER 6. ENERGY EFFICIENT SCHEDULER 79 ..

6.1.3 Adaptive Execution 82 ...

6.1.4 Relevant Container 84 ...

6.2 Scheduling Algorithm 85 ..

6.2.1 Level I: Application Scheduler 87 ...

6.2.2 Level II: Task Scheduler 92 ...

6.3 Evaluation 93 ..

6.3.1. Workload 95 ..

6.3.2. Energy Efficiency Profiling 96 ...

6.3.3. Experiment Results 98 ..

CHAPTER 7. CONCLUSION AND FUTURE WORK 107 ...

REFERENCES 109..

!vii
List of Figures

Figure 2.1 MapReduce Framework 6 ...

Figure 2.2 YARN Architecture[2] 11 ...

Figure 2.3 HDFS Architecture [2] 14 ...

Figure 2.4 CPU + GPU Architecture 18 ...

Figure 4.1 Loadgen Workload: Data Locality Ratio 40 ...

Figure 4.2 Wordcount Workload: Data Locality Ratio 40 ..

Figure 4.3 Loadgen Workload: Map Tasks' Average Response Time 41

Figure 4.4 Wordcount Workload: MapTasks' Average Response Time 42

Figure 4.5 Fair Scheduler: Data Locality Rate 45 ..

Figure 4.6 Fair Scheduler: Map Tasks' Average Response Time 47

Figure 6.1. Turnaround time, data locality, and energy consumption for three sched-
ulers 100 ...

Figure 6.2 Energy Consumption with IDEAL Energy Run (no idle energy) 103..........

!viii
List of Tables

Table 4.1 Matchmaking Algorithm 34 ..

Table 4.2 Locality Marker Maintenance 35 ..

Table 4.3 Experimental Environment 35 ..

Table 4.4 Facebook Workload 38 ...

Table 5.1 Admission Controller 56 ...

Table 5.2 Dispatcher Algorithm 60 ...

Table 5.3 Feedback Controller Algorithm 63 ...

Table 5.4 Experimental Environment 73 ..

Table 5.5 Workload I 74 ...

Table 5.6 Workload I’s Configuration (in Terms of Number of Map, Reduce Tasks
and Deadline) 74 ...

Table 5.7 Workload II 75 ..

Table 5.8 Scheduler Performance with workload I 77 ...

Table 5.9 Scheduler Performance with Workload II 77 ..

Table 6.1 Adaptive Execution for MapReduce Application 84

Table 6.2 Application Scheduler with Adaptive Execution 90

Table 6.3 Application Scheduler without Adaptive Execution 91

Table 6.4 Task Scheduler: Dispatcher 93 ...

Table 6.5 Experimental Environment 94 ..

Table 6.6 Workload I [20] 95 ..

Table 6.7 Workload Configuration (in terms of number of map and reduce) 96

Table 6.8 Energy consumption of MD simulation job (1 map) on different types of
nodes (1800 seconds sampling interval) 97 ..

Table 6.9 Energy efficiency factor for MD simulation 97 ..

Table 6.10 Energy efficiency factor for loadgen 98 ...

Table 6.11 EFH schedulers without Adaptive Execution comparing with FIFO
scheduler 101 ..

Table 6.12 EFH schedulers with and without adaptive execution 102

Table 6. 13 P-value with significance level 0.05 105 ...

!ix

Table 6. 14 Confidence intervals with 95% confidence 105 ..

Table 6. 15 Standard Error Estimation 106..

!1
CHAPTER 1. INTRODUCTION

MapReduce is a framework developed by Google [1] for processing huge amounts of

data in distributed computer systems. Hadoop MapReduce [2] is the open source clone of

Google’s MapReduce. Due to the simplicity of the programming model and the run-time

tolerance for node failures, MapReduce is widely used as a platform to solve Big Data

problems. In the following part of this dissertation, we will use Hadoop and MapReduce

interchangeably.

Big Data was first used in 1970 on atmospheric and oceanic soundings [3]. People use

it to refer to a collection of data sets that is too large and complex to be processed by tra-

ditional tools. Examples of Big Data include social network logs, financial fraud detec-

tions [4,5], AI applications [6,7], and electronic books. The McKinsey Global Institute

reports that Big Data will “become a basis of competition, underpinning new waves of

productivity growth, innovation, and consumer surplus.” With the help of MapReduce,

scientists and engineers made significant progresses in many fields. For example,

Michael C. Schatz [8] introduced MapReduce to parallelize BLAST that is a DNA se-

quence alignment program and achieved 250 times speedup. Event logs from Facebook’s

website are imported into a Hadoop cluster every hour, where they are used for a variety

of applications, including analyzing usage patterns to improve site design, detecting

spam, data mining and ad optimization [9]. Uber uses MapReduce to analyze mobile tra-

jectory of taxi [10].

As MapReduce clusters get popular, their scheduling becomes increasingly important.

!2
The current MapReduce scheduling, however, has some limitations.

First of all, in a MapReduce cluster, data is distributed to individual nodes and stored

in their disks. To execute a map task on a node, we first need to have its input data avail-

able on that node. Since transferring data from one node to another takes time and delays

task execution, an efficient MapReduce scheduler must avoid unnecessary data transmis-

sion. MapReduce default First In First Out (FIFO) scheduler has a policy to improve task

data locality. However, it has inevitable deficiencies because of its strict FIFO service

policy. Zaharia et al. [9] have developed a delay algorithm to improve the data locality

rate. With their technique, a MapReduce scheduler breaks the strict FIFO job order when

assigning map tasks to a node. That is, if the first job does not have a map task whose in-

put data is stored in the node's disk (a so-called local task), the scheduler can delay it and

assign another job’s local map tasks. A maximum delay time D is specified. Only when a

job has been delayed for more than D time units will the scheduler assign the job’s non-

local map tasks. For the delay algorithm, the maximum delay time D is a critical parame-

ter. It is configurable but may need to vary for different workloads and hardware envi-

ronments.

Secondly, many MapReduce applications [6,7], like online data analytics for spam de-

tection and advertisement optimization, are time sensitive. They require real-time data

processing. Scheduling real-time applications in MapReduce environment has become a

significant problem. Polo et al. [11] developed a soft real-time scheduler that allows per-

formance-driven management of MapReduce jobs. Dong et al. [12] extended the work by

!3
Polo et al., where a two-level MapReduce scheduler was developed to handle a mixture

of soft real-time and non-real-time jobs according to their respective performance de-

mands. Although taking MapReduce jobs’ QoS (Quality of Service) into consideration,

most existing approaches [11-16] do not provide deadline guarantees for the jobs. Kc and

Anyan Wu were the first to investigate the hard real-time scheduling of MapReduce ap-

plications [17], where they developed a Deadline Constraint scheduler, aiming to provide

time guarantees for MapReduce jobs. However, the Deadline Constraint scheduler has

several deficiencies (please see Chapter 5 for details), which may lead to not only re-

source underutilization but also deadline violations.

Thirdly, with the increasing demands of computational power in big data analysis,

Hadoop cluster becomes larger and larger (with thousands of servers) and the cost rises

correspondingly. To satisfy the increasing computation power requirement with sustain-

able costs, General Purpose Graphics Processing Units (GPGPU or simply GPU) are in-

troduced into MapReduce clusters as accelerators. Figure 1.1 provides a performance

comparison between CPU and GPU clusters in running the same benchmark. A medium-

size hybrid CPU-GPU cluster can be more than 3 times faster than a regular CPU cluster

running Hadoop MapReduce applications but with only 1/10 of the hardware costs and

1/20 of the power consumption costs [18]. J. A. Stuart et al. [19,20] built GPMR, an im-

plementation of MapReduce, on a cluster of GPUs. F. Ji et al. [21] developed and opti-

mized another MapReduce framework on GPU by considering GPU multi-level memory

hierarchy. K. Shirahata et al. [22] proposed a scheduling technique for hybrid CPU-GPU

!4
Hadoop MapReduce clusters. It tries to minimize the job execution time by using dynam-

ic profiling data of map tasks running on CPU cores and GPU devices. However, they

have focused on the performance of MapReduce applications and do not consider the en-

ergy consumption costs. Some scientists [22-30] have developed and improved the power

model for a hybrid CPU-GPU cluster. But these efforts are not targeted at MapReduce

clusters and their models do not consider the specialties of the MapReduce framework.

Last but not least, according to our investigation, energy-efficient real-time scheduling

in MapReduce clusters has not been systematically investigated. A. Saifullah et al. [31]

developed a method to find intermediate deadlines for synchronous parallel applications

running on multi-processor systems, which provides a feasible algorithm, to deal with

deadline constraints in MapReduce clusters. However, they do not address energy con-

sumption and data locality issues.

 To overcome the aforementioned four limitations, in this PhD dissertation work, we

plan to develop:

1. A MapReduce data locality improvement mechanism, which leverages a match-

making algorithm to adaptively increase the percentage of local tasks for MapReduce ap-

plications.

2. A real-time MapReduce scheduling algorithm that provides a deadline guarantee

for real-time MapReduce applications. In this work, we not only enforce the real-time

agreement but also maintain good cluster resource utilization.

http://scholar.google.com/citations?user=CYwffSUAAAAJ&hl=en&oi=sra

!5
3. An energy-efficient scheduling algorithm in hybrid CPU-GPU Hadoop clusters,

which schedules tasks to available nodes with less energy consumption and high data lo-

cality.

The remainder of this dissertation is organized as follows. Chapter 2 presents the back-

ground information about Hadoop MapReduce and GPGPU [33]. Related work is de-

scribed in Chapter 3. Chapter 4 demonstrates the match-making scheduler. In Chapter 5, a

real-time scheduler for heterogeneous MapReduce clusters are provided. Chapter 6 in-

cludes an energy-efficient scheduler for hybrid CPU-GPU Hadoop clusters. Chapter 7

concludes this dissertation and proposes our future work.

!6
CHAPTER 2. BACKGROUND

Hadoop is mainly composed of two parts: Hadoop Distributed File System (HDFS) [2]

and Hadoop MapReduce framework. In this Chapter, we first introduce MapReduce

working mechanism, illustrate the MapReduce resource management component: YARN

[34-36], and then present HDFS (for latest information about Hadoop community, please

refer to [2]). In the end, GPGPU and CUDA [37-39] are described. In the later parts of

this dissertation, we will use the terms “Hadoop cluster” and “MapReduce cluster” inter-

changeably.

2.1 Hadoop MapReduce

 The Hadoop MapReduce structure is illustrated in Figure 2.1:

!

Figure 2.1 MapReduce Framework

A MapReduce cluster is often composed of many commodity PCs, where one PC acts

!7
as the master node and others as slave nodes. A Hadoop cluster uses Hadoop Distributed

File System (HDFS) to manage its data. It divides each file into small fixed-size (e.g., 64

MB) blocks and stores several (e.g., 3) copies of each block in local disks of cluster ma-

chines. A MapReduce computation is comprised of two stages, map and reduce, which

take a set of input key/value pairs and produce a set of output key/value pairs. When a

MapReduce job is submitted to the cluster, it is divided into M map tasks and R reduce

tasks, where each map task will process one block (e.g., 64 MB) of input data.

A Hadoop cluster uses slave nodes to execute map and reduce tasks. There are limita-

tions on the number of map and reduce tasks that a slave node can accept and execute

simultaneously. That is, each slave node has a fixed number of map and reduce slots. Pe-

riodically, a slave node sends a heartbeat signal to the master node. Upon receiving a

heartbeat from a slave node that has empty map/reduce slots, the master node invokes the

MapReduce scheduler to assign tasks to the slave node. A slave node that is assigned a

map task reads the content of the corresponding input data block, parses input key/value

pairs out of the block, and passes each pair to the user-defined map function. The map

function generates intermediate key/value pairs, which are buffered in memory, and peri-

odically written to the local disk and partitioned into R regions by the partitioning func-

tion. The locations of these intermediate data are passed back to the master node, which is

responsible for forwarding these locations to reduce tasks. A reduce task uses remote pro-

cedure calls to read the intermediate data generated by the M map tasks of the job. Each

reduce task is responsible for a region (partition) of intermediate data. Thus, it has to re-

!8
trieve its partition of data from all slave nodes that have executed the M map tasks. This

process is called shuffle, which involves many-to-many communications among slave

nodes. The reduce task then reads in the intermediate data and invokes the reduce func-

tion to produce the final output data (i.e., output key/value pairs) for its reduce partition

[2].

2.1.1 Task Scheduling & Data Locality

MapReduce framework has a very important feature that is different from traditional

distributed computing environments like MPI, OpenMP, and computing Grid, etc. Tradi-

tional frameworks move data to where the computation is while MapReduce moves com-

putation to where data is. This way, MapReduce framework gets performance improve-

ment through reduced network traffic. Thus, how to schedule MapReduce jobs becomes

an important issue. In the following paragraphs, we will introduce MapReduce sched-

uling mechanism and its data locality policy.

Hadoop MapReduce framework has a default FIFO scheduler. It schedules MapReduce

jobs following a strict FIFO order, i.e., the second job will not be considered if the first

job still has a task to be scheduled. Facebook [9] and Yahoo! [36] have developed multi-

user schedulers in their production clusters, which will be described in the related work

chapter. In the next two paragraphs, we introduce how the FIFO scheduler works and its

data locality policy.

Hadoop default FIFO scheduler's data locality policy works as follows. First of all,

when a slave node with empty map slots sends the heartbeat signal, the scheduler checks

!9
the first job in the queue. If the job has map tasks whose input data blocks are stored in

the slave node, the scheduler assigns the node one of these local tasks. If a slave node has

more unused map slots, the scheduler will keep assigning local tasks to the node. Howev-

er, if the scheduler can no longer find a local task from the first job, it assigns the node

one and only one non-local task during this heartbeat interval, no matter how many free

slots the node has.

For reduce stage, to evenly distribute reduce tasks to slave nodes, FIFO scheduler only

assigns one reduce task to a node in a heartbeat interval because a worker node may be

congested if it is assigned many reduce tasks of a job.

2.1.2 Speculative Execution

Since a parallel job's turnaround time is decided by its slowest task, to avoid a MapRe-

duce job from being delayed by the slowest task, MapReduce framework has a specula-

tive execution policy that detects slow tasks and runs a duplicated copy of those tasks.

The MapReduce framework maintains task counters for every job. If a task is 1/3

slower than the average of a job's tasks' execution, the framework will launch another

copy of this task on a different slave node. The faster of these two executions will be tak-

en and the other one will be killed. This way, Hadoop MapReduce framework detects the

straggler in advance to avoid further delay of execution. There are some researches for

speculative execution including LATE [40], SAMR [41], and ESAMR [42], which will

be introduced in the related work chapter.

!10
2.1.3 Fault Tolerance

Fault tolerance is an important feature of Hadoop MapReduce. MapReduce clusters do

not require sophisticated high-end servers to be used as worker nodes. This assumes that

failures exist by default and happen frequently.

Failures are caused by many reasons, for example, network outage, hardware failure,

users’ misconfiguration, and so on. MapReduce deals with failures through re-execution.

Furthermore, Hadoop MapReduce framework has configurable timeout parameters to de-

tect tasks without response. However, some failures cannot be resolved through re-execu-

tion. Thus, the maximum-retry-times parameter is used to limit the maximum number of

re-executions of a failed task.

For failures caused by an individual slave node, Hadoop MapReduce framework can

blacklist a slave node that always fails to execute tasks. In this scenario, the system ad-

ministrator needs to get involved to restore the blacklisted nodes.

2.1.4 YARN

Since previous Hadoop MapReduce clusters can only schedule MapReduce jobs, the

system is not well utilized if users want to run other applications when the MapReduce

cluster is not busy. Scientists and system architects proposed the next generation MapRe-

duce framework (YARN) to resolve this problem. In the following paragraphs, we will

explain YARN architecture.

!11

!

Figure 2.2 YARN Architecture[2]

The basic idea of YARN is to split up the two major functionalities of the JobTracker,

resource management and job scheduling/monitoring, into separate components. The idea

is to have a global ResourceManager (RM), per-node NodeManager (NM), and per-ap-

plication ApplicationMaster (AM). In YARN, an application is either a single job in the

classical sense of a MapReduce job or a job described as a DAG (Directed Acyclic

Graph, where a vertex is a processing stage and an edge represents data movement).

Users are allowed to submit different types of jobs, create different kinds of AMs, and ask

RM for resource allocation.

RM is responsible for allocating resources to the various running applications subject

to constraints like capacities, priorities, etc. Here, the cluster resources are regarded as a

!12
collection of LXCs (Linux containers) [43]. The "Slot" which is used in an older version

of Hadoop MapReduce is not used anymore. The RM's scheduler does not monitor or

track application status. Also, it offers no guarantees about restarting failed applications

either due to application failure or hardware failures. This scheduler performs its sched-

uling function based on the resource requirements of that application; which are ex-

pressed in terms of resource containers that incorporate elements such as memory, CPU,

disk, and network demands. The RM's scheduler has a policy plug-in, which is responsi-

ble for partitioning the cluster resources among the various queues, applications etc. The

current MapReduce schedulers such as the Capacity Scheduler [44] and the Fair Sched-

uler [45] would be some examples of the plug-in. The RM and per-node slave, the

NodeManager (NM), form the data-computation framework. The RM is the ultimate au-

thority that arbitrates resources among all the applications in the system. The NM is the

per-machine framework agent who is responsible for containers, monitoring their re-

source usage (CPU, memory, disk, network), and reporting to the RM's scheduler. The

per-application AM is, in effect, a framework specific library and is tasked with negotiat-

ing resources from the RM and working with the NM(s) to execute and monitor the tasks.

It is responsible for accepting job-submissions, negotiating the first container for execut-

ing the application specific AM and provides the service for restarting the AM container

upon a failure. It also has the responsibility of negotiating appropriate resource containers

from the RM scheduler.

Now a day, YARN starts to support label scheduling [46] and manages hybrid re-

!13
sources including accelerators such as GPU [47], etc. AM can specify a set of NMs to run

its tasks. For example, with label scheduling, an application that requires GPU can run on

NMs that have GPU installed.

2.2 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is an essential component of the Hadoop

framework.

HDFS is designed as a highly fault-tolerant, high throughput, and high capacity dis-

tributed file system. It is ideal for storing terabytes or even petabytes of data on clusters

that may be comprised of commodity hardware. HDFS is based on write-once-read-many

and streaming access models. HDFS is very efficient in distributing and storing large

amount of data.

2.2.1 HDFS Architecture

 HDFS follows the master/slave architecture. The master node in the HDFS cluster is

called the Namenode that manages the file system namespace and regulates client access-

es to files. There are a number of slave nodes, called Datanodes, which store actual data

in units of blocks.

The Namenode maintains a mapping table that maps data blocks to Datanodes in order

to process write and read requests from HDFS clients. It is also in charge of file system

namespace operations like closing, renaming, and opening files and directories.

The Datanode stores the blocks of files in its local disk and executes the instructions

!14
like replace, create, delete, and replicate from the Namenode. Figure 2.3 (adopted from

Apache Hadoop Project) illustrates the HDFS architecture.

!

Figure 2.3 HDFS Architecture [2]

A Datanode periodically reports its status (including aliveness, data blocks, etc.) to the

Namenode through sending messages (also called heartbeats) and asks the Namenode for

instructions. The heartbeat can also help the Namenode to detect connectivity with its

Datanodes. Every Datanode maintains an open server socket for data transferring from

other Datanodes and user client(s). In order to keep the content of a Namenode in case of

failures, HDFS allows a secondary Namenode to periodically backup Namenode data.

2.2.2 Data Placement and Fault-tolerance

HDFS can be deployed on a cluster composed of thousands of nodes. The probability

!15
of failure in a large-scale cluster becomes non-negligible. This means HDFS has to han-

dle the scenario in which some components are non-functional.

HDFS employs an intelligent replica placement policy to guarantee reliability and per-

formance. HDFS keeps 3 replicas for each data block by default. Once a data block is

created, the first replica will be placed in a random node. The second replica will be

placed in a node that is located in the same rack of that first node. The last replica will be

stored in a node from a different rack to guarantee data availability even in the event that

an entire rack is down.

2.2.3 Data Balancer

HDFS provides a balancer to equilibrate the disk usage among Datanodes. When plac-

ing data blocks, the Namenode randomly picks a node to place the first copy of a data

block. This mechanism may result in some nodes with smaller capacity having higher

percentage of disk usage. The balancer is designed to solve this problem. It allows an

administrator to balance HDFS Datanodes based on disk usage percentage.

2.4 GPGPU and CUDA

“General-Purpose Graphics Processing Unit (GPGPU) is utilizing the graphics-pro-

cessing unit (GPU) to do computation for applications that are traditionally handled by

the CPU” [33]. It is widely used in supercomputers as an accelerator to enhance the com-

putational power. The comparison between CPU and GPU is detailed documented [33,

37-39].

!16
CUDA [37] (Compute Unified Device Architecture) is a parallel computing architec-

ture designed for GPUs and proposed by NVIDIA in 2006. It enables programmers to

write C (C-CUDA) code to utilize GPUs for processing non-graphical data. C-CUDA

programs are compiled using a specialized Path Scale Open64 C compiler. CUDA has

been widely used to accelerate computations which otherwise take much longer or are

intractable with the current technology, e.g., molecular dynamics simulation, electronic

design automation, accelerated rendering of 3D graphics, speech indexing, and physical

simulations.

With a design principle different from traditional CPUs, GPUs are based on a parallel

throughput architecture that is aimed at executing a large number of concurrent threads

slowly, as opposed to executing a single thread very fast. CUDA provides APIs for multi-

ple operating systems, including Windows, Linux, and recently Mac OS X. Moreover,

CUDA is supported by all GPUs recently designed and manufactured by NVIDIA [48],

i.e., from the G8X series onwards, including GeForce, Quadro and the Tesla product

lines. NVIDIA maintains compatibility among different generations of their GPUs such

that CUDA programs developed for the GeForce 8 series will also work without modifi-

cation on all future NVIDIA graphics cards.

With a radically different design, CUDA is superior over traditional GPGPU solutions

with graphics APIs. For example, CUDA supports Scattered Reads, i.e., programs can

access memory at arbitrary addresses on both the host and the device. Moreover, CUDA

has a solid hardware implementation of floating-point arithmetic, which is essential for

!17
scientific computations.

Admittedly, CUDA also suffers several drawbacks at the current stage. For instance, C-

CUDA disallows the uses of recursion and function pointers, which might place a burden

on programmers while developing CUDA programs in some scenarios. Although

equipped with very fast internal cache memories, GPU might suffer from the limited bus

bandwidth along the data-path to the CPU. Furthermore, the deep memory hierarchy and

intricate internal mechanisms might have huge performance implications if CUDA pro-

grams are written without accounting for such complexities in the design. Nevertheless,

we believe the advantages of massive-parallelization offered by CUDA surely outweigh

the drawbacks, as mentioned above, in real world applications.

 Besides C, CUDA has bindings for most mainstream programming languages, includ-

ing C++, Java, .NET, Perl, Python, Ruby, Lua, FORTRAN, and Matlab. In this work, we

focus on JCuda [48], which is the CUDA binding for the Java language, which is being

actively developed with support for the most recent CUDA API. JCuda provides a solid

foundation for using CUDA libraries in Java applications.

 We use a very simple array summation example in Figure 2.4 to demonstrate how

GPU and CPU cooperate together. In order to distinguish arrays in main memory from

those in GPU’s global memory, we use “dev” (short for device) plus capital characters to

identify three arrays in GPU’s global memory. First of all, CPU allocates three arrays in

the main memory, array “a” and “b” contains elements we want to sum where array “c” is

used to store the results (step 1). Correspondingly, CPU also needs to allocate three arrays

!18
in GPU’s global memory that is the bottom rectangle in GPU (step 2). CPU copies array

“a” and “b” contents from main memory into GPU’s global memory (step 3). On the

GPU side, the first 4 rows of rectangles from top are computation elements and the fifth

row of rectangles are shared memories. Communication between shared memories should

employ global memory. The computation element needs to load array “devA” and

“devB” into shared memories before launching the summation (step 4).

After the summation operation (step 5), array “devC” will be stored to global memory

from shared memory (step 6). The next step is to copy array “devC” to array “c” from

global memory to main memory (step 7). Finally, all memory space in shared memories

and global memory will be recycled (step 8).

!

Figure 2.4 CPU + GPU Architecture

Comparing with CPU, GPGPU is more energy efficient [50]. According to NVIDIA's

!19
research reports: "On the Top500 Supercomputers list — a biannual ranking of super-

computing sites around the world — the number of GPU-powered systems is rapidly

growing. Today, three of the five fastest supercomputers in the world are NVIDIA GPU-

powered. And these systems are much more energy efficient." More and more Hadoop

clusters are equipped with GPUs to accelerate computational intensive MapReduce ap-

plications [20-33]. In this dissertation, we will develop an energy efficient scheduler for

Hadoop MapReduce clusters that have GPUs.

!20
CHAPTER 3. RELATED WORK

MapReduce framework was first proposed by Google [1]. It is a fault-tolerant platform

used for parallel processing huge amounts of data. Hadoop is a well-accepted open source

implementation of Google’s MapReduce framework. In this dissertation, we focus on re-

search work related to Hadoop MapReduce [2] from two aspects: scheduling and power

management.

3.1 MapReduce Scheduling

Early versions of Hadoop had a very simple approach to scheduling users’ jobs: they

ran in order of submission, using a FIFO scheduler by default. Typically, each job would

use the whole cluster, so jobs had to wait their turn. As MapReduce clusters got popular,

their scheduling became increasingly important. However, the default FIFO scheduler

does not support many desired features like QoS guarantee, resource sharing, preemption,

etc. Then, scientists started to explore various algorithms to improve MapReduce sched-

uling [15-62]. In this section, we mainly focus on introducing research work from follow-

ing areas that are related to my dissertation: detecting speculative tasks, improving data

locality, providing QoS guarantee, and scheduling MapReduce jobs in hybrid (CPU-

GPU) clusters.

Hadoop’s scheduler implicitly assumes that cluster nodes are homogeneous and Map-

Reduce tasks make progress linearly and uses these assumptions to decide when to specu-

latively re-execute tasks that appear to be stragglers [2]. To overcome this limitation and

!21
make the speculative execution mechanism effective in heterogeneous environments, re-

searchers then developed LATE (Longest Approximate Time to End) scheduler [40],

SAMR (Self-Adaptive MapReduce Scheduling) algorithm [41], and ESAMR algorithm

[42].

MapReduce framework has a significant difference from previous parallel processing

platforms, like computing Grid [63]. Previous frameworks move data to where the com-

putation resource is located. However, MapReduce allocates the computation to where

the data is stored. That is, when scheduling a task, MapReduce system will first consider

a server that stores this task’s input data in local disk. To enhance this data locality in ex-

ecuting MapReduce application, researchers have used technologies like prefetching [80],

node status prediction [81], and delay scheduling algorithm [40].

In order to improve MapReduce cluster utilization, researchers introduce resource

sharing [64-66], iterative execution [67-70], load balancing [72], online aggregation

[73], genetic algorithm based data-aware group scheduling [74], introducing erasure cod-

ing in storage [75], network-aware task placement scheduling [76], and multi-object

scheduling [77] into MapReduce. Yahoo! developed a multi-queue scheduler called Ca-

pacity Scheduler [44] for Hadoop clusters, where every queue is guaranteed a fraction of

the capacity. Within a queue, it supports job priorities but no job preemption is allowed.

To prevent one or more users from occupying all resources of a queue, each queue en-

forces a limit on the percentage of resources allocated to a user at any given time if there

is competition for resources.

!22
The fair scheduler [40] also supports multiple queues (also called pools). Jobs are or-

ganized into pools and resources are fairly divided between these pools. By default, there

is a separate pool for each user so that each user gets an equal share of the cluster. Within

each pool, jobs can be scheduled using either fair sharing or FIFO scheduling. Fair shar-

ing scheduling is a method of assigning resources to jobs such that all jobs get, on aver-

age, an equal share of resources over time. When there is a single job running, that job

uses the entire cluster. When other jobs are submitted, task slots that free up are assigned

to the new jobs so that each job gets roughly the same amount of CPU time. Unlike the

default Hadoop FIFO scheduler, which forms a queue of jobs based on job arrival times,

fair sharing scheduling mechanism guarantees that short jobs finish in reasonable time

without starving long jobs. It provides an easy way to share a cluster between multiple

users [40].

Since many MapReduce applications [73], including online data analytics for spam

detection and ad optimization, require real-time data processing, scheduling real-time ap-

plications in MapReduce Environment become an important problem [33,68-73]. Scien-

tists have already established many important theories for real-time scheduling [90-98],

especially in distributed systems [99-115]. For MapReduce real-time scheduling, J. Polo

et al. [68] developed a scheduler that focuses on MapReduce jobs that have soft dead-

lines. It estimates jobs’ execution times and tries to let jobs satisfy their deadlines by

scheduling resources according to the estimated finishing times. Dong et al. [70] extend-

ed the work by Polo et al., where a two-level MapReduce scheduler was developed to

!23
schedule mixed soft real-time and non-real-time jobs according to their respective per-

formance demands. Linh T.X. Phan et al [72] built HadoopRT that focuses on enhance-

ment of EDF with locality-awareness and overload handling in cloud environment. They

defined a parameter to describe the execution time difference between local and non-local

tasks. HadoopRT can adjust its scheduling policies according to this parameter to im-

prove MapReduce applications' performance. Chen F. et al. proposed a system that

schedule real-time MapReduce applications based on job size [115]. However, they did

not consider energy consumption and hybrid clusters.

Kamal Kc et al. [69] developed a scheduler for MapReduce applications with hard

deadlines. It also estimates the job finishing time according to available resources in a

MapReduce cluster. If a job cannot finish before the hard deadline, the scheduler will not

execute the job and will instead inform the user to adjust the job deadline. However, it

has deficiencies that may cause deadline misses and low hardware utilization.

After YARN was created, scientists and architects started to improve its performance

by optimizing the scheduling algorithms. Yao et al. [119] proposed YARN scheduler,

named HaSTE, which can effectively reduce the make-span of MapReduce jobs in YARN

by leveraging the information of requested resources, resource capacities, and dependen-

cy between tasks. Lin et al. [120] employed real time ABS-YARN, which is a formal lan-

guage for executable modeling of deployed virtualized software, to optimize the deploy-

ment decision in the cloud to reduce scheduling cost.

In recent years, accelerators and heterogeneous architectures, especially GPUs, have

!24
emerged as major players in high performance computing [119-133]. For some types of

MapReduce applications that require significant amount of computation (like machine

learning and data mining algorithms), hybrid CPU-GPU architecture can be a high- per-

formance, scalable, cost-effective, and power-efficient solution. [133-142].

B. Catanzaro et al. [135] created a platform that can automatically generate GPU

CUDA code for MapReduce applications. J.A. Stuart et al. [20] also created a MapRe-

duce framework on a cluster of GPUs to do volume rendering. Chen et al. [140] opti-

mized MapReduce performance for GPU through reduction-based method that allows

MapReduce to carry out reductions in shared memory. They designed and implemented

their MapReduce framework in a single AMD Fusion chip. Qiao Z. et al. [138] built MR-

Graph, an implementation of MapReduce, on a cluster of GPUs. F. Ji et al. [139] devel-

oped and optimized performance for another MapReduce framework on GPU by consid-

ering GPU multi-level memory hierarchy. However, all aforementioned frameworks did

not focus on Hadoop MapReduce that is a widely accepted MapReduce platform. Liu LF.

Et al. [142] developed an adaptive MapReduce framework for GPUs

K. Shirahata et al. [22] proposed a scheduling technique in hybrid CPU-GPU Hadoop

MapReduce clusters, which minimizes job execution time via dynamic profiling of Map

tasks running on CPU cores and GPU devices. However, they focused on optimizing the

map stage of MapReduce applications and did not consider the energy consumption in

their scheduling algorithm.

!25
3.2 Power Management in Hadoop Cluster

With the increasing scale of MapReduce clusters, the cost of maintaining a MapReduce

cluster becomes larger and larger. How to reduce MapReduce cluster power bill turns out

to be a critical concern. Scientists have done some research work on power management

of MapReduce clusters [144-148] inspired by previous theories in cluster power man-

agement.

 Lang et al. [143] provided an algorithm that only keeps the smallest number of servers

that can guarantee data integrity in HDFS. However, it is not flexible if the cluster exe-

cutes time-sensitive online applications. T. Wirtz et al. [144] used an experimental ap-

proach to study the scalability of performance, energy, and efficiency of MapReduce for

computation intensive workloads. They proposed a power management policy through

resource allocation that changes the number of available workers and DVFS (Dynamic

Voltage and Frequency Scaling) that adjusts the processor frequency based on current

computational needs. M. Cardosa et al. [145] considered power management in cloud en-

vironment through VMs management algorithm. Jerry Chou et al. [146] built an algo-

rithm that can monitor system utilization and re-direct requests to existing powered-on

recourses. N. Yigitbasi et al. [147] investigated scheduling algorithm in a heterogeneous

cluster made of high performance nodes and low power nodes. His scheduling algorithm

is limited in this specific hardware environment. Chen et al. [148] presented BEEMR

through tracing MapReduce interactive analytics in Facebook Hadoop production cluster.

It first categorizes MapReduce applications into different job zones according to service

!26
types, for example, batching jobs, interactive jobs, etc. Then, BEEMR saves energy by

flexibly adjusting the number of servers that work for interactive jobs according to sys-

tem requests. However, it is based on Facebook’s workload that is mainly composed of

online queries. It may not be a good fit for MapReduce clusters that work in other indus-

tries like banks, health care companies, etc.

Since hybrid CPU-GPU cluster becomes more and more popular, scientists start to

consider how to predict hybrid CPU-GPU cluster power consumption. Ren DQ et al.

[149] proposed an empirical power model for GPU to predict the optimal number of ac-

tive processors (CPU and GPU) for a given application. W. Liu et al. created a waterfall

model [150] which uses a mapping algorithm to apply different energy saving strategies

to keep the system at lower energy levels. In their mapping algorithm, they adopted dy-

namic voltage scaling, dynamic resource scaling and -migration for GPU to reduce ener-

gy consumption. H. Huo et al. [151] proposed a flexible energy efficient task-scheduling

scheme for heterogeneous tasks in the heterogeneous GPU-enhanced clusters. It includes

a system model to describe hardware heterogeneity and a task model to characterize ap-

plication heterogeneity in a cluster. However, they provide no evaluation data from either

simulation or real-system experiment. Kim et al. [153] proposed an algorithm about pow-

er management in MapReduce hybrid cluster. But they did not consider data locality.

In summary, the previous research works outlined here do not consider multiple con-

straints including energy efficiency, data locality, and throughput together in the hybrid

heterogeneous Hadoop clusters. Instead, this dissertation will focus on resolve this hard

!27
problem step by step.

!28
CHAPTER 4. MATCHMAKING SCHEDULER

In a MapReduce cluster, data are distributed to individual nodes and stored in their

disks. To execute a map task on a node, we need to first have its input data available on

that node. Since transferring data from one node to another takes time, delays task execu-

tion, and consumes extra energy. An efficient MapReduce scheduler must avoid unneces-

sary data transmission.

We will focus on the problem of decreasing data transmission in a MapReduce cluster

and we develop a scheduling technique to improve map tasks’ data locality rate. For a

given execution of MapReduce workload, the data locality ratial is defined in this disser-

tation as the ratio between the numbers of local map tasks and all map tasks, where a lo-

cal map task refers to a task that has been executed on a node that contains its input data.

A low data locality rate means more data transfer between machines and higher network

traffic. To avoid unnecessary data transfer, our scheduling technique aims to achieve high

data locality rate and also short response time for MapReduce clusters. We developed a

new technique to enhance the data locality. The main idea of the technique is as follows.

To assign tasks to a node, local map tasks are always preferred over non-local map tasks,

no matter which job a task belongs to, and a locality marker is used to mark nodes and to

ensure each node a fair chance to grab its local tasks. Experiments are carried out to eval-

uate the aforementioned techniques and experimental results show that our technique

leads to the high data locality rate and the low response time for map tasks. Unlike the

delay algorithm [40], our technique does not require the tuning of the delay parameter.

!29
4.1 Hadoop Default FIFO Scheduler

The Hadoop default FIFO scheduler has already taken data locality into account. When

a slave node with empty map slots sends the heartbeat signal, the MapReduce scheduler

checks the first job in the queue. If the job has map tasks whose input data blocks are

stored in the slave node, the scheduler assigns the node one of these local tasks. If a slave

node has more unused map slots, the scheduler will keep assigning local tasks to the

node. However, if the scheduler can no longer find a local task from the first job, it as-

signs the node one and only one non-local task during this heartbeat interval, no matter

how many free slots the node has.

This default FIFO scheduler, however, has deficiencies. First of all, it follows the strict

FIFO job order to assign tasks, which means it will not allocate any task from other jobs

if the first job in the queue still has an unassigned map task. This scheduling rule has a

negative effect on the data locality because another job’s local tasks cannot be assigned to

the slave node unless the first job has all its map tasks (many of which are non-local to

the node) scheduled.

Secondly, the data locality is randomly decided by the heartbeat sequence of slave

nodes. If we have a large cluster that executes many small jobs, the data locality rate

could be quite low. As mentioned, in a MapReduce cluster, tasks are assigned to a slave

node in response to the node’s heartbeat. With the FIFO scheduler, heartbeats are also

processed in a FIFO order and a node is assigned a non-local map task when there is no

local task from the first job. In a large cluster many nodes heartbeat simultaneously.

!30
However, a small job has less input data that are stored in a small number of nodes. It is

thus a high probability event that the scheduler assigns tasks to slave nodes that do not

have the small job’s input data but give heartbeats first. For example, if we execute a job

of 5 map tasks on a MapReduce cluster of 100 slave nodes, it is unlikely to get a high lo-

cality rate. Since each map task needs one input data block, which by default has 3 repli-

cas stored in 3 nodes, at most 15 out of 100 nodes have input data for the job, i.e., the

job’s tasks are all non-local to at least 85 nodes. A slave node with empty map slots that

sends in a heartbeat first will always be assigned at least one map task, local or non-local.

It is highly likely that the job’s tasks will be assigned to many of those 85 nodes which do

not have the input data blocks before a node even gets a chance to grab a local task from

the job.

4.2 Delay Scheduling Algorithm

Zaharia et al. [40] have developed a delay scheduling algorithm to improve the data

locality rate of Hadoop clusters. It relaxes the strict job order for task assignment and de-

lays a job’s execution if the job has no map task local to the current slave node. To assign

tasks to a slave node, the delay algorithm starts the search at the first job in the queue for

a local task. If not successful, the scheduler delays the job’s execution and searches for a

local task from succeeding jobs. A maximum delay time D is set. If a job has been

skipped long enough, i.e., longer than D time units, its non-local tasks will then be as-

signed for execution. With the delay scheduling algorithm, a job’s execution is postponed

to wait for a slave node that contains the job’s input data. Here, the delay time D is a key

!31
parameter. By default, it is set at 1.5 times the slave node’s heartbeat interval. However,

to obtain the best performance for the delay scheduling algorithm, we have to choose an

appropriate D value. If the value is set too large, job starvations may occur and affect per-

formance. On the contrary, a too small D value allows non-local tasks to be assigned too

fast. For different kinds of workloads and hardware environments, the best delay time

may vary. To get an optimal delay time always requires careful D value tuning.

In addition, this delay algorithm allows a node to obtain multiple non-local map tasks

in a heartbeat interval if the node has more than one free slot. In some situations, this al-

gorithm could perform worse than the FIFO scheduler’s locality enhancement policy be-

cause the latter only allows one non-local task to be assigned to a node in a heartbeat in-

terval.

Although first developed to improve the data locality of the Hadoop fair scheduler

[20], delay scheduling is applicable beyond fair sharing, in general, applicable to any

scheduling policy (e.g., FIFO) that defines an order in which jobs should be given re-

sources [2]. It is very popular and widely used in Hadoop clusters.

4.3 Matchmaking Scheduling Algorithm

This section presents our new technique for enhancing the data locality in MapReduce

clusters. The main idea behind our technique is to give every slave node a fair chance to

grab local tasks before any non-local tasks are assigned to any slave node. Since our algo-

rithm tries to find a match, i.e., a slave node that contains the input data, for every unas-

signed map task, we call our new technique the matchmaking scheduling algorithm.

!32
First of all, like the delay scheduling algorithm, our matchmaking algorithm also relax-

es the strict job order for task assignment. If a local map task cannot be found in the first

job, the scheduler will continue searching the succeeding jobs. Second, in order to give

every slave node a fair chance to grab its local tasks, when a node fails to find a local task

in the queue for the first time in a row, no non-local task will be assigned to the node.

That is, the node gets no map task for this heartbeat interval. Since during a heartbeat in-

terval, all slave nodes with free map slots have likely given their heartbeats and been con-

sidered for local task assignment, when a node fails to find a local task for the second

time in a row (i.e., still no local task a heartbeat interval later), to avoid wasting comput-

ing resources, the matchmaking algorithm will assign the node a non-local task. This

way, our algorithm achieves not only high data locality rate but also high cluster utiliza-

tion. To enforce the aforementioned rule, our algorithm gives every slave node a locality

marker to mark its status. If none of the jobs in the queue has a map task local to a slave

node, depending on this node’s marked value, the matchmaking algorithm will decide

whether or not to assign the node a non-local task. Third, our matchmaking algorithm al-

lows a slave node to take at most one non-local task every heartbeat interval. At last, all

slave nodes’ locality markers will be cleared when a new job is added to the job queue.

Because a new job may comprise new local tasks for some slave nodes, upon the new

job’s arrival, our algorithm resets the status of all nodes and again starts the all-to-all

task-to-node matchmaking process. Tables 4.1 and 4.2 give the pseudo code of our algo-

rithm. Like delay scheduling algorithm, our matchmaking algorithm is applicable to any

!33
scheduling policy (e.g., FIFO or fair sharing scheduling) that defines an order in which

jobs should be given resources.

!34
Table 4.1 Matchmaking Algorithm

Algorithm 1: Matchmaking Scheduling Algorithm

1: for each node i of the N slave nodes do
2: set LocalityMarker[i]=null
3: end for

4: //Upon receiving a heartbat from node i:

5: while node i has free slots, i.e., its free slot count s>0

6: set previousMarker=LocalityMarker[i]

7: for each job j in the JobQueue do

8: if job j has an unassigned local task t then

9: assign t to node i

10: set s=s-1

11: if LocalityMarker[i]==null then

12: LocalityMarker[i]=1

13: else LocalityMarker[i]+=1

14: end if

15: break for

16: else continue

17: end if

18: end for

19: if previousMarker==LocalityMarker[i] then

20: set LocalityMarker[i]=0 //mark this node

21: break while

22: else if LocalityMarker[i]==0 then

23: assign node i a non-local task t’ from the first job in the JobQueue

24: set s=s-1

25: break while

26: end if

27: end while

!35
Table 4.2 Locality Marker Maintenance

4.4 Evaluation of Different Data Locality Policies

To evaluate our matchmaking scheduling algorithm, we compare it with the Hadoop

default FIFO scheduler and the delay scheduling algorithm. Two metrics, i.e., map tasks’

data locality ratio and average response time, are used for evaluation.

We run experiments in a private cluster of 1 head node and 30 slave nodes that are con-

figured as one rack. We modify Hadoop and integrate our matchmaking algorithm with

both Hadoop FIFO scheduler and Hadoop fair scheduler. The cluster is configured with a

block size of 128MB, which follows Facebook’s Hadoop cluster block size configuration

[20]. Table 4.3 lists our Hadoop cluster hardware environment and configuration.

Table 4.3 Experimental Environment

4.4.1 Experimental Environment

To evaluate our matchmaking algorithm, we create a submission schedule that is simi-

Algorithm 2: Locality Marker Cleaning Algorithm

1: //When a new job j is added into the JobQueue:
2: for each node i of the N slave nodes do
3: set LocalityMarker[i]=null
4: end for

Nodes Quantity Hardware and Hadoop Configuration

Master node 1 2 single-core 2.2GHz Optron-64 CPUs, 8GB RAM,
1Gbps Ethernet

Slave nodes 30
2 single-core 2.2GHz Optron-64 CPUs, 4GB RAM,
1 Gbps Ethernet, 1 rack, 2 map and 1 reduce slots

per node

!36
lar to the one used by Zaharia et al[20]. They generated a submission schedule for 100

jobs by sampling job inter-arrival times and input sizes from the distribution seen at

Facebook over a week. By sampling job inter-arrival times at random from the Facebook

trace, they found that the distribution of inter-arrival times was roughly exponential with

a mean of 14 seconds.

They also generated job input sizes based on the Facebook workload, by looking at the

distribution of the number of map tasks per job at Facebook and creating datasets with

the correct sizes (because there is one map task per 128 MB input block). Job sizes were

quantized into nine bins, listed in Table 4.4 [20], to make it possible to compare jobs in

the same bin within and across experiments. Our submission schedule has similar job

sizes and job inter-arrival times. In particular, our job size distribution follows the first six

bins of job sizes shown in Table 3.4, which cover about 89% of the jobs at the Facebook

production cluster. Because most jobs at Facebook are small and our test cluster is limited

in size, we exclude those jobs with more than 300 map tasks. Like the schedule in [20],

the distribution of inter-arrival times is exponential with a mean of 14 seconds, making

our submission schedule totally 21 minutes long.

We generate 100 input data blocks in Hadoop Distributed File System (HDFS). The

popularity of blocks is assumed to follow a uniform distribution. That is, when a job re-

quests a block, it is evenly likely to be any one of the blocks stored in HDFS. Each of the

blocks has 2 replicas. We distribute and store these 200 block replicas evenly in 30 slave

nodes, ensuring no two replicas of a block be stored in the same node. As a result, every

!37
slave node contains about 6 (or 7) blocks. By uniformly distributing blocks among our

cluster nodes, we avoid hotspots of data requests.

We use our submission schedule for two application workloads. One is loadgen that is

a test example from the Hadoop test package. It loads input data and outputs a fraction of

the data intact. This application has been used as a test workload for the delay algorithm

[20]. The other application we adopt is wordcount that is a classic example of Hadoop

applications.

As mentioned, we have modified Hadoop and integrated our matchmaking algorithm

with both Hadoop FIFO scheduler and Hadoop fair scheduler.

In our experiments, we always configure the cluster to have just one job queue. With

Hadoop fair scheduler, all jobs in a queue are scheduled following either fair sharing or

FIFO scheduling rule. With fair sharing scheduling, resources are assigned to jobs such

that all jobs get, on average, an equal share of resources over time. We have tested the

performance of delay algorithm within Hadoop fair scheduler. Depending on the applied

scheduling rules (FIFO or fair sharing), we have two different versions: FIFO with delay

algorithm and Fair with delay algorithm. Since we have tested our matchmaking algo-

rithm within Hadoop FIFO scheduler, when testing matchmaking algorithm within

Hadoop fair scheduler, only the fair sharing scheduling rule is applied.

We thus run each workload under five schedulers: Hadoop FIFO scheduler, Hadoop

FIFO scheduler with matchmaking algorithm, FIFO with delay algorithm, Fair with delay

algorithm, and Fair with matchmaking algorithm.

!38
For the delay algorithm, we need to configure the maximum delay time D. In our ex-

periments, a total of 8 different D values are chosen. They are from 0.1 to 10 times the

slave node’s heartbeat interval. Since we configure the heartbeat interval to be 3 seconds

long, the maximum delay time D changes from 0.3 to 30 seconds.

To eliminate the possible randomness of cluster hardware status, every point shown in

the figures is the average of three runs.

Table 4.4 Facebook Workload

4.4.2 Experiments

We first use the data locality rate to measure the performance of the following three

schedulers: Hadoop FIFO scheduler, Hadoop FIFO scheduler with matchmaking algo-

rithm, and FIFO with delay algorithm. Given a workload execution, the data locality rate

is defined as,

Bin #Maps %Jobs at Facebook #Maps in Benchmark # of jobs in Benchmark

1 1 39% 1 38

2 2 16% 2 16

3 3-20 14% 10 14

4 21-60 9% 50 8

5 61-150 6% 100 6

6 151-300 6% 200 6

7 301-500 4% 400 4

8 501-1500 4% 800 4

9 >1501 3% 4800 4

!39

Data Locality Rate= ! (4.1)

where l is the number of local map tasks and n is the total number of map tasks. To

make the figures properly fits the page, we did not follow numerical scale of delay times

in x coordinate but simply listed them side by side to show the trend of data locality rate

when delay time increases.

Our experimental results on data locality rate with the two application workloads are

shown in Figures 4.1 and 4.2. As we can see, the data locality rate achieved with the de-

lay algorithm increases with the maximum delay time D. The longer a job is delayed, the

higher the probability that the job finds slave nodes that contains the input data blocks. In

following diagrams, we use MM to represent Matchmaking algorithm.

!

!40
Figure 4.1 Loadgen Workload: Data Locality Ratio

!

Figure 4.2 Wordcount Workload: Data Locality Ratio

!41

!

Figure 4.3 Loadgen Workload: Map Tasks' Average Response Time

!

!42
Figure 4.4 Wordcount Workload: MapTasks' Average Response Time

Figures 4.1 and 4.2 also show that the FIFO scheduler leads to the worst performance,

i.e., the lowest data locality rate. However, when we integrate our matchmaking tech-

nique with the FIFO scheduler, the algorithm achieves the highest data locality rate, bet-

ter than any of those achieved with the delay algorithm of different D values.

To evaluate the algorithms’ performance only via the data locality rate is not enough

since we can easily design an algorithm that enforces the constraint that all tasks have to

be executed on slave nodes that contain their input data, leading to 100% data locality

rate but also long response time for map tasks due to the long delay required to satisfy the

strict constraint. Therefore, we also evaluate our algorithms by another metric: the aver-

age response time of all map tasks. Figures 4.3 and 4.4 present the experimental results.

As shown in the figures, when we run the workloads with the FIFO scheduler, we get the

longest average response time for map tasks. After enhancing the FIFO scheduler with

our matchmaking algorithm, we reduce the average response time significantly.

For the delay algorithm, although the higher the D value, the better the data locality

rate (see Figures 4.1 and 4.2), the relationship between the D value and the average re-

sponse time is not so straightforward. When running the loadgen workload, the average

response time varies with the D value, e.g., getting smaller when D increases from 0.3 to

1.5 seconds but longer when D increases from 1.5 to 3 seconds (see Figure 4.3). The low-

est average response time is achieved when the maximum delay time is set at 30 seconds

(see Figures 4.1 & 4.3-loadgen). But, that is not the optimal D value when running the

!43
wordcount workload. As shown in Figure 4.2 (and also in Figure 4.4-wordcount), when D

= 9 or 15 seconds, we get the best average response time for the wordcount workload. In

neither cases, the default configuration (i.e., D = 4.5 seconds, 1.5 times the heartbeat in-

terval) leads to the best performance. This group of experiments demonstrates that for

different workloads, the best delay parameter varies, indicating the necessity of parameter

tuning for the delay algorithm. However, our matchmaking algorithm does not require

this intricate parameter tuning process. For both workloads, the FIFO scheduler with our

matchmaking algorithm achieves the lowest average response time, better than that

achieved by the optimally configured delay algorithm.

Let tavg represent the average response time of all map tasks. It equals to the summa-

tion of two parts. That is,

! (4.2)

where Rl denotes the data locality rate, ! ! represents the average response time of

all local map tasks, and ! the average response time of all non-local map tasks.

Because network bandwidth is a relatively scarce resource in a MapReduce cluster

[1,2] and the network data transferring rate is slower than the disk access rate when

MapReduce was first developed, a local map task’s execution is often much faster than

that of a non-local map task. Therefore, according to Equation (4.2), increasing the data

locality rate Rl tends to decrease the average response time of all map tasks tavg. On the

other hand, with the delay algorithm, as the maximum delay time D increases, a job and

!44
its tasks’ execution is allowed to be delayed for a longer time. As a result, although Rl

increases, both ! and ! increase as well, leading to the potential increase of tavg. This

explains why map tasks’ average response time does not decrease monotonically with the

increase of the maximum delay time D.

So far, we have used experiments to compare three schedulers: Hadoop FIFO sched-

uler, Hadoop FIFO scheduler with matchmaking algorithm, and FIFO with delay algo-

rithm. The results show that the FIFO scheduler with matchmaking algorithm achieves

the highest locality rate and the lowest map task response time without the parameter tun-

ing hassle. Next, to further compare the delay algorithm and our matchmaking algorithm,

we integrate the matchmaking algorithm into Hadoop fair scheduler and compare the fol-

lowing two schedulers: fair scheduler with delay algorithm and fair with matchmaking

algorithm.

Figures 4.5 and 4.6 show the data locality rate and the map tasks’ average response

time for the Hadoop fair schedulers.

We can see that when integrated with the fair sharing scheduling, our matchmaking

algorithm still achieves better data locality rates and near-optimal average response times.

More importantly, our algorithm achieves this great performance without the necessity of

parameter tuning.

!45

!

!

Figure 4.5 Fair Scheduler: Data Locality Rate

!46

!

!47

!

Figure 4.6 Fair Scheduler: Map Tasks' Average Response Time

!48
CHAPTER 5. REAL-TIME MAPREDUCE SCHEDULER

With the increasing popularity of MapReduce, more and more applications were de-

veloped to employ this powerful platform. Some applications are sensitive to time. For

example, financial companies require data to be processed in an acceptable time interval.

A scheduler that supports real-time applications became more and more important.

In this section, we will introduce our Real-Time MapReduce (RTMR) scheduler to not

only provide deadline supports for MapReduce applications executing in heterogeneous

environments but also ensure good cluster utilization. The following of this section is or-

ganized as follows; first, we briefly describe the Deadline Constraint scheduler [17] and

its deficiencies. And then, our scheduling algorithm is presented in detail. Evaluations of

these two schedulers are provided in the end.

5.1 Deadline Constraint Scheduler

The Deadline Constraint Scheduler [17] aims to ensure deadlines for real-time Map-

Reduce jobs. After a job is submitted, the scheduler first determines whether the job can

be completed within the specified deadline or not using a schedulability test:

It assumes that all reduce tasks of a job will start executing simultaneously for the

same amount of time that is known a priori. Based on this assumption, the Deadline Con-

straint Scheduler calculates the latest reduce start time for the job to meet its deadline. If

sm is the map start time of the job, then the maximum time for the job to complete its

map stage is. Unlike for the reduce stage, the Deadline Constraint Scheduler assumes that

!49
each job executes at a minimum degree of task parallelism for the map stage. That is, the

scheduler only assigns the job the minimum number of map slots that are required to

meet its deadline. However, it demands all map slots to be available simultaneously at to

run the job’s map tasks. Assume the job’s input data size is σ and the cost (i.e., time) of

processing a unit data in a map task is seconds, then, the scheduler calculates as:

! . (5.1)

The Deadline Constraint scheduler, however, has some limitations and deficiencies,

which may lead to resource underutilization and deadline violations. First, because the

scheduler assumes that all reduce tasks of a job start to run simultaneously, it cannot ac-

cept a job with more reduce tasks than the cluster’s total number of reduce slots. Second,

by checking the aforementioned two conditions in the schedulability test, the scheduler

only considers a single scenario where the job’s deadline might be satisfied. Those condi-

tions are, however, unnecessary for meeting a job’s deadline. Many jobs that do not pass

the test can nevertheless be accepted and completed by their deadlines. For instance, even

if the system does not have number of map slots available upon the job’s arrival, the job

can still finish its map stage on time and meet the job’s deadline if we have more re-

sources available at a later time point. Furthermore, the constraint scheduler does not

consider the case where slots become available and utilized at different time points. Due

to these reasons, the Deadline Constraint scheduler rejects tasks unnecessarily and cannot

well utilize system resources.

!50
 Last but not least, the schedulability test conditions checked by the scheduler are

insufficient to ensure the deadline constraint. As a result, accepted jobs may actually miss

their deadlines, violating the hard real-time scheduler’s characteristics. The cause for the

deadline violation is that the scheduler only checks if a certain number of reduce slots are

available at a particular time point . Instead, the job requires the specified number of re-

duce slots for the time interval [, D]. What could happen is that the scheduler first accepts

job A because at the time when job A arrives, the system status indicates that there are

reduce slots available at , and then accepts job B because we have reduce slots available

at . However, the later acceptance of job B means that the job will use reduce slots for the

whole time interval [, DB] and could result in less than reduce slots being left available at

and job A missing its deadline.

 5.2 RTMR Scheduler

In this paper, we develop a new Real-Time MapReduce (RTMR) scheduler for hetero-

geneous MapReduce environments. RTMR scheduler not only provides deadline guaran-

tees to accepted jobs but also well utilizes system resources. We have made the following

three assumptions when designing RTMR scheduler:

The input data is available in Hadoop Distributed File System (HDFS) before a job

starts.

No preemption is allowed. The proposed scheduler orders the job queue according to

job deadlines. However, once a job starts to execute its first map task, the job will not be

preempted. That is, even if a new coming job B has an earlier deadline than a currently

!51
running job A, our scheduler makes no attempt to execute B’s tasks before A’s tasks.

A MapReduce job contains two stages: map and reduce stages. Similar to [21,24,26]

we assume in this paper that a job’s reduce stage does not start until the job’s map tasks

have all finished.

5.2.1 Algorithm

 1) Definition

Before describing the algorithm, we first present the parameters and data structures

used in RTMR scheduler.

• J=(A, D, M, R, δ): A MapReduce job J is specified by the tuple (A, D, M, R, δ),

where A is the job arrival time, D is the relative deadline, M and R specify the

number of map and reduce tasks for the job, respectively, and δ is the input data

size of the job. For a MapReduce job, each map task processes a unique part, ! ,

of the job’s input data, where ! .

• η: The estimated maximum ratio between a job’s intermediate data size ! and in-

put data size δ. That is, the input data size ! for the job’s reduce stage is at most

η*δ. For a MapReduce job, each reduce task processes a unique part, ! , of the

job’s intermediate data, where ! .

• cm: We use cm to denote the estimated cost (i.e., time) of processing a unit of data

!52

in a map task. In a heterogeneous environment, ! represents the estimated high-

est cost of processing a unit of data in a map task, i.e., the estimated cost that is

incurred on the slowest worker node.

• cr: We use cr to denote the estimated cost (i.e., time) of processing a unit of data in

a reduce task. Similar to ! , ! represents the estimated highest cost of process-

ing a unit of data in a reduce task.

• ! : For each accepted job J, we maintain a sorted vector ! to

record the estimated available time of the cluster’s map slots, after scheduling J’s

map tasks. In the vector, l denotes the total number of map slots in the MapReduce

cluster.

• ! : For each accepted job J, we maintain a sorted vector ! to

record the estimated available time of the cluster’s reduce slots, after scheduling

J’s reduce tasks. In the vector, q denotes the total number of reduce slots in the

MapReduce cluster.

• ! : For each accepted job J, we use a sorted vector ! to repre-

sent the actual available time of the cluster’s map slots after considering J’s actual

execution.

• ! : For each accepted job J, we use a sorted vector ! to represent

the actual available time of the cluster’s reduce slots after considering J’s actual

!53
execution.

• ΔT: The threshold that we set for triggering the feedback controller. That is, if the

difference of a job’s actual and estimated finish times is larger than ΔT, RTMR

scheduler will invoke the feedback controller to update waiting jobs’ ! and !

vectors.

• : The execution time of the ith map task of job J.

• : The execution time of the ith reduce task of job J.

RTMR scheduler uses historical job execution data to estimate some of the aforemen-

tioned parameters: η, ! , and ! . After executing a job J, we could update ratio η

through the following equation:

! (4.2)

Similarly, we update the values of ! and ! as follows:

! (4.3)

! (4.4)

RTMR scheduler is comprised of three components. The first and most important one

is the admission controller, which makes decisions on whether to accept or reject a job.

The second component is the job dispatcher, which assigns tasks to execute on worker

!54
nodes. The last component is the feedback controller. Since a job may finish at a different

time than that estimated by the admission controller, when the difference is large (i.e.,

larger than the threshold ΔT), we use a feedback controller to update the ! and ! vec-

tors of the waiting jobs. Currently, our scheduler does not consider events like node fail-

ures and re-execution of slow tasks. Consequently, deadlines might be missed in such un-

expected scenarios. Therefore, we also trigger the feedback controller to keep the admis-

sion controller updated when a deadline miss happens. As a result, the admission con-

troller could make decisions based on more accurate estimates.

2) Admission Controller

In this dissertation, we assume, for both Deadline Constraint and RTMR schedulers,

that jobs are put in a priority queue following EDF (earliest deadline first) order. Our ad-

mission control mechanism is, however, applicable beyond EDF, in general, to any policy

(e.g., FIFO) that defines an order in which jobs should be given resources. When a new

MapReduce job arrives, the admission controller determines if it is feasible to schedule

the new job without compromising the guarantees for previously admitted jobs.

Algorithms 5.1, 5.2, and 5.3 show the pseudo code of the admission control. RTMR

scheduler first checks if the new job J’s deadline can be satisfied or not, i.e., to check if e

is not larger than A + D, where e is the estimated finish time of the job (Algorithm 5.1

lines 1-9). To estimate J’s finish time, we start with identifying J’s proceeding job Jp if J

were inserted in the priority queue. If J were at the head of the queue, ! is the job that

!55
has been started latest by the dispatcher. If J is the first job submitted to the cluster, it

does not have a proceeding job. Since ! and ! record the estimated available time of the

cluster’s map and reduce slots after the scheduled execution of ! and ! ’s predecessors,

we can estimate job J’s finish time based on these vectors. If the new job J’s deadline can

be satisfied, RTMR scheduler then checks whether accepting J will violate the deadline of

any previously admitted job (Algorithm I lines 10-21). Since only jobs that succeed job J

in the priority queue will be delayed, RTMR scheduler re-estimates their finish times. If

any of them will miss deadline as a result of J’s acceptance, RTMR scheduler rejects job

J. Finally, once the admission controller decides to accept job J, the priority queue and the

! and ! vectors of J and J’s successors will be updated to reflect the change (Algo-

rithm 5.1 lines 22-23).

!56
Table 5.1 Admission Controller

ALGORITHM 5.1. ADMISSION CONTROLLER

AC(J = (A, D, M, R, δ), Priority-Q)

// Identifying J’s proceeding job Jp if J were inserted in the queue
1: Jp = getPredecessor(J, Priority-Q)

2: = Jp. (= [0,0, …0] if Jp = nil)

3: = Jp. (= [0,0, …0] if Jp = nil)
// invoke Algorithms 5.2 and 5.3 to do the calculation

4: ! .! = Cal! (J, !) . !

5: ! .! = Cal! (J, ! , !).!

6: e = Cal! (J, ! , !).e
7: if e > A + D then
8: return false
9: end if
10: Jp = J
11: Js = getSuccessor(Jp, Priority-Q)
12: while (Js != nil) do
 // invoke Algorithms 5.2 and 5.3 to do the calculation

13: = Cal (Js, Jp.) .

14: = Cal (Js, Jp. , Jp.).

15: es = Cal (Js, Jp. , Jp.).e
16: if es > Js.A + Js.D then
17: return false
18: end if
19: Jp = Js
20: Js = getSuccessor(Jp, Priority-Q)
21: end while
22: Proiority-Q.insert(J)

23: record ! .! ,! .! ,! and ! computed above as the new ! & !
vectors for J and J’s successors
24: return true

!57
ALGORITHM 5.2. CACULATION OF ! AND !

ALGORITHM 5.3. CACULATION OF ! AND e

Cal! (J = (A, D, M, R, δ), !)

// This algorithm estimates ! , job J’s map stage finish time and ! , the
available time of map slots after the scheduled execution of J and J’s predecessors

1: ! !
2: for k =1 to M do

3: pick the smallest value in vector ! , i.e., !

4: ! = ! (! , current Time)

5: ! +=!

6: ! = !

7: sort items in ! to keep ! a sorted vector
8: end for

9: return ! , !

Cal! (J = (A, D, M, R, δ), ! ,!)

// This algorithm estimates e, job J’s finish time and ! , the available time of
reduce slots after the scheduled execution of J and J’s predecessors

 // invoke Algorithm 5.2 to estimate J’s map stage finish time

1: ! = Cal! (J, !). !

2: ! !
3: for k = 1 to R do

4: pick the smallest value in vector ! , i.e., !

5: ! = ! (! ,!)

6: ! += !

7: e = !

8: sort items in ! to keep ! a sorted vector
9: end for

10: return ! , e

!58

 3) Dispatcher

As mentioned in Chapter 2, a Hadoop cluster uses worker nodes to execute map and

reduce tasks. Each worker node has a fixed number of map slots and reduce slots, which

limit the number of map tasks and reduce tasks that a worker node can execute simulta-

neously. Periodically, a worker node sends a heartbeat signal to the master node. Upon

receiving a heartbeat from a worker node with empty map/reduce slots, the master node

invokes the scheduler to assign tasks. RTMR scheduler’s dispatcher fulfills this role, allo-

cating tasks to execute on worker nodes. Algorithm 5.4 shows the pseudo code of the dis-

patcher.

When jobs are inserted into the priority queue, their map stages can start and their map

tasks are ready to run. Therefore, it is straightforward to dispatch map tasks following the

job order/priority. No modification is needed here and RTMR scheduler dispatches map

tasks following the same approach as the default Hadoop system (lines 4-5).

However, since a job’s map stage finish time depends on not only the job’s map stage

start time but also the number of map tasks the job has, when there are multiple jobs con-

currently running in the cluster, which jobs can finish their map stages and start their re-

duce stages earlier is not determined by the job priority alone. Although jobs start their

map stages following the job order/priority, it is highly likely that jobs will not finish

their map stages in that order. As a result, the reduce tasks of a lower-priority job could

become ready earlier than those of a higher-priority job. Thus, if ready reduce tasks are

!59
assigned to execute on worker nodes without any constraint, the proper execution of

higher-priority jobs may be interfered by the execution of lower-priority jobs, leading to

deadline violations. One simple method to avoid such interferences is to strictly enforce

that jobs start their reduce stages following the job order. That is, a job cannot start the

reduce stage until all proceeding jobs have finished their map stages. However, this

straightforward method puts a strong constraint on job parallelism and causes inefficient

utilization of system resources. Therefore, we instead design a reservation-based dis-

patcher, which simply ensures that a lower-priority job does not occupy slots that belong

to higher-priority jobs. That is, the dispatcher reserves slots that are needed by higher-

priority jobs to avoid potential interferences. Upon receiving a heartbeat from a worker

node with empty reduce slots, the dispatcher assigns a reduce task to the worker node

only if enough reduce slots have been left unused for higher-priority jobs (lines 6-21).

We have proved that all jobs accepted by the admission controller can be successfully

dispatched and completed by their deadlines in normal scenarios when there is neither a

node failure nor a task re-execution (please refer to the section 5.2.2 for the proof).

!60
Table 5.2 Dispatcher Algorithm

ALGORITHM 5.4. DISPATCHER

 4) Feedback Controller

A feedback controller is developed to keep the admission controller’s records up-to-

date. As described in the previous section, the admission controller makes decisions

based on the job records，i.e., job’s ! and ! vectors. These vectors record the estimat-

ed available time of the cluster’s map and reduce slots after scheduling a job’s execution.

However, a job’s actual execution may be different from the estimate. For instance, be-

cause we use ! and ! as the estimated cost of processing a unit of data in a map and

a reduce task and η as the estimated ratio between a job’s intermediate data size and input

DP(J=(A, D, M, R, δ), Priority-Q,i,Ra)

1: m: available map slots on node i
2: r: available reduce slots on node i
3: Ra: the number of available reduce slots in the cluster, which is counted upon

calling this algorithm
 // dispatch map tasks:
4: if (m>0) then
5: follow the same approach as the default Hadoop system to dispatch map

tasks
 // dispatch reduce tasks:
6: if r > 0 then
7: reservedSlot: the number of reduce slots reserved for high-priority jobs
8: reservedSlot = 0
9: for J from Priority-Q do
10: if reservedSlot > Ra then
11: break for
12: end if
13: T = findAReadyReduceTask(J)
14: if T != nil then
15: assign T to node i
16: break for
17: else if J has not reached its reduce stage then
18: reservedSlot += J.R
19: end if
20: end for
21: end if

!61
data size, it is highly likely that some job finishes earlier than that estimated by the ad-

mission controller. In addition, node failures or speculative re-execution of slow tasks can

result in a job finish time later than expected. To reduce false negatives (i.e., rejecting

jobs that can meet their deadlines) and deal with unexpected events (such as node fail-

ures), a feedback controller is invoked to update all waiting jobs’ ! and ! vectors if the

difference between a job’s actual and estimated finish times is larger than a certain

threshold ΔT. The feedback controller is also triggered if a job misses its deadline due to

unexpected events. As a result of the update, the admission controller makes decisions

based on more accurate estimates. In this paper, we set the threshold ΔT to be a typical

map task execution time after profiling.

ALGORITHM 5.5. FEEDBACK CONTROLLER

FC(J=(A, D, M, R, δ), Priority-Q)

!62

ALGORITHM 5.6. SLOT AVAILABLE TIME UPDATE

SATU (J=(A, D, M, R, δ),! , ! ,! , !)

1: ⊗: threshold to trigger the update

2: ! : job J’s actual finish time

3: ! = getPredecessor(J, Priority-Q)

4: ! = Jp.! (! = [0,0, …0] if Jp = nil)

5: ! = Jp.! (! = [0,0, …0] if Jp = nil)
 // invoke Algorithm 5.3 to do the calculation

6: e = Cal! (J, ! ,!).e
7: if | e- ! | ! ⊗ or ! > (A+D) then

8: build ! , the sorted vector containing the actual finish time of job J’s map
tasks

9: build ! , the sorted vector containing the actual finish time of job J’s
reduce tasks
// invoke Algorithm 5.4 to calculate the updated estimates

10: ! = SATU(J, ! ,! , ! ,!). !

11: ! = SATU(J, ! ,! , ! ,!). !

12: ! = J

13: ! = getSuccessor(! , Priority-Q)

14: while ! != nil do
 // invoke Algorithms 5.2 and 5.3 to do the calculation

15: ! = Cal! (! ,!) .!

16: ! = Cal! (! ,! ,!).! 17: ! = !

18: ! = getSuccessor(! , Priority-Q)
19: end while
20: else return
21: end if

!63

Table 5.3 Feedback Controller Algorithm

5.2.2 Proof of Correctness

 First, the correctness of admission control and dispatch algorithms is proved. That is,

we prove that all jobs accepted by the admission controller can be successfully dis-

patched and completed by their deadlines in normal scenarios when there is neither a

node failure nor a task re-execution. Several vector operators used in the proof are de-

fined below.

Definition-1: > & ≥

For two sorted vectors ! and ! , where

!

1: ! : map slot available time in J’s predecessor’s record

2: ! : reduce slot available time in J’s predecessor’s record
3: ! : sorted vector containing the actual finish time of job J’s map tasks
4: ! : sorted vector containing the actual finish time of job J’s reduce tasks

5: ! = !

6: ! = !
7: while ! is not empty do
8: remove the item currently located at the beginning of vector ! , say it is

!

9: ! = ! (where ! is the first and smallest item in vector !)
10: sort items in ! to keep ! a sorted vector
11: end while
12: while ! is not empty do
13: remove the item currently located at the beginning of vector ! , say it is

!

14: ! = ! (where ! is the first and smallest item in vector !)
15: sort items in ! to keep ! a sorted vector
21: end while
22: return ! ,!

!64

and !

 ! if and only if ! ;

! if and only if ! .

Definition-2: ⊕

For a sorted vector !

!

and a vector !

!

! generates an n dimensional vector ! as follows: first, let ! ; second,

from ! , remove the item currently located at the beginning of the vector, say it is ! ;

third, change ! to be equal to ! and resort ! to keep it a sorted vector; forth, re-

peat the second and third steps until there is no element left in ! .

Definition-3 maximum of a vector and a value

For a sorted vector !

!

!65

and a value ! , ! generates an n dimensional vector as follows:

!

It can be easily proved that the following properties hold for the aforementioned opera-

tors:

1) If ! and ! , then !

2) If ! and ! ,

then !

3) If ! and ! ,

then !

The admission controller generates ! .! and ! .! vectors, which record the estimated

slot available time after the scheduled execution of job J and J’s predecessors, while ! .

! and ! .! respectively represent the actual available time of the cluster’s map and re-

duce slots after considering these jobs’ actual execution. To guarantee that an accepted

job ! does not miss its deadline in normal scenarios, we prove ! and

! when there is neither a node failure nor a task re-execution.

Proof-1:

Admission control algorithm ensures !

For the first job J1 admitted to the cluster, since it does not have a proceeding job,

!66

when the admission controller calculates ! , we have! (see Algorithm 1),

which equals ! , the initial available time of the cluster’s map slots. According to Algo-

rithm 2, ! is calculated as follows:

! where ! is a vector composed

of M items with equal value of ! . In addition, we have:

!

where is the vector composed of the actual execution time of J1’s map tasks. Since

! is a pessimistic estimation of a map task’s execution time, we have:

!

According to the property of vector operator “⊕”, we conclude from the above three

equations and inequality that:

 !

Assuming! , we can show that ! following a similar proof

procedure. According to mathematical induction, we conclude ! for all ac-

cepted job ! .

Proof-2:

Admission control algorithm ensures !

!67
For the first job J1 admitted to the cluster, since it does not have a proceeding job,

when the admission controller calculates ! , we have! (see Algorithm 1),

which equals ! , the initial available time of the cluster’s reduce slots. According to Al-

gorithm 3, ! is calculated as follows:

! where ! is the estimated finish

time of J1’s map stage and is a vector composed of R items with equal value of

! . In addition, we have:

!

where is the actual finish time of J1’s map stage and is the vector composed of

the actual execution time of J1’s reduce tasks. Since as shown in Proof-1 ,

it implies the following relation for the largest items (i.e., ! and !) of the two

vectors:

!

And since ! is a pessimistic estimation of a reduce task’s execution time, we have:

!

According to the properties of “MAX” and “⊕” operators, we conclude from the above

four equations and inequalities that:

!68

 !

Assuming! , we can show that! following a similar proof

procedure. According to mathematical induction, we conclude ! for all accept-

ed job ! .

In the following part of this section, we prove the correctness of the feedback con-

troller by showing that! ! .! and ! ! .! . Therefore, after updating job J’s vec-

tors ! and ! with! and ! in Algorithm 5 (lines 10-11), the condition ! .! ! .!

and ! .! ! .! (i.e., the estimated slot available time is greater or equal to the actual

available time) still holds for job J.

Proof-3: Algorithm 5.6 ensures ! ! .!

We first prove by induction that holds after the ith iteration (where i=1, …,

M) of the first while loop (i.e., lines 7-11) of Algorithm 5.6. Here, ! represents how ! .

looks like after considering the actual execution of the ith map task of job J.

Step 1: ! is true after the first iteration of the while loop, i.e. ! is true

for i=1.

As we have shown in Proof-1, the admission control algorithm ensures ! .! ! .! ,

therefore, after executing line 5 of Algorithm 6 (i.e., ! = !) we have ! and

thus ! holds before entering the while loop (i.e., ! is true for i=0).

!69

Upon the completion of the first map task of job J at time point ! ,! ,

the sorted vector representing the actual available time of the cluster’s map slots, first

gets updated to be ! . Here, it is assumed that the map slot corre-

sponding to the current jth position of vector has been used to execute the task and

thus gets updated to ! . Since it takes some time to execute a task, we have the new

available time greater than the old available time of the slot, i.e., ! . We thus know

that! holds, which means that for the first j items of vector

! , we have! . Then, we sort the vector

and get! , where n ≥ j-1. In addition, we know for 1≤ p ≤ j-1,

! and for j-1 < p ≤ n and n+1 ≤ p ≤ l-1, ! .

After the first iteration of the while loop, ! changes to be a new sort-

ed vector ! .

Before entering the while loop, ! ,! , and !

holds. Thus, we have for 1≤ p ≤ l, ! . After the aforementioned updates, we have

! and ! , and

For the first k-1 items of the two vectors, i.e., when 1 ≤ p ≤ k-1, ! holds. The

reasoning is as follows: ! equals either ! or ! . When ! , because! ,

!70

! , and ! , we have ! ; and when ! , because ! and

! , we too have ! .

The kth item of is always greater or equal to that of . The reasoning is as fol-

lows: because when 1 ≤ p ≤ k-1,! and both ! and

! are sorted vectors, ! ’s position in ! must be earlier

than that in , i.e., k ≤ n+1. If k = n+1, the kth items of vectors and all equal to

. If k < n+1, the kth items of vectors and are and . Since

! is a sorted vector, i.e., ! , we have

. That is, the kth item of is always greater or equal to that of .

For all items from the (k+1)th to the nth positions, i.e., when k+1 ≤ p ≤ n, we have

! since ! and ! .

The (n+1)th item of is always greater or equal to that of . The reasoning is as fol-

lows: we know that k ≤ n+1. If k = n+1, the kth items of vectors and are equal

since they both equal to . If k < n+1, the (n+1)th items of and , are and

respectively. Since ! is a sorted vector, i .e. ,

!

, we have , the (n+1)th item of is greater or equal to that of .

!71
For the last l-(n+1) items of the two vectors, i.e., when n+1 ≤ p ≤ l-1, we have

! since! and ! .

In summary, ! holds after the first iteration of the while loop, i.e., ! is

true for i=1.

Step 2: Assume holds after the qth iteration of the while loop, i.e.,

is true for i=q.

Step 3: Following a procedure similar to Step 1, we can prove that ! also holds

after the (q+1)th iteration of the while loop, i.e., is true for i=q+1.

According to mathematical induction, we conclude holds after the ith itera-

tion, for i=1, …, M, of the first while loop (i.e., lines 7-11) of Algorithm 6.

Since the values of both vectors (i.e., ! and !) do not change after the first while

loop, we have proved that Algorithm 6 ensures ! for i=M, that is, ! .

Proof-4: Algorithm 5.6 ensures !

Similar to the procedure of Proof-3, we can prove Algorithm 5.6 ensures ! .

According to Proof-3 and Proof-4, we conclude that after updating ! .! and ! .! with

! and ! by invoking Algorithm 5.6 in Algorithm 5.5, the condition ! .! ! .! and

! .! ! .! (i.e., the estimated slot available time is greater or equal to the actual

available time) still holds for job J.

!72
5.3 Evaluation of RTMR scheduler and Deadline Constraint Sched-

uler

Our implementation of Deadline Constraint scheduler and RTMR scheduler are all

based on the Hadoop 0.21. These two schedulers are implemented and compared experi-

mentally in terms of real-time property and cluster utilization. To test the effects of feed-

back control, we run RTMR scheduler twice, with and without the feedback controller

enabled. In addition, since the cluster utilization is determined by not only the scheduling

algorithm but also the workload volume, we run the default Hadoop FIFO scheduler,

which accepts all jobs to execute in the cluster, collecting its resultant cluster utilization

to reflect the workload volume. If a real-time scheduler achieves a cluster utilization

close to that achieved by the default Hadoop FIFO scheduler, we consider that the re-

source cost of providing the real-time property is not high.

For the RTMR scheduler, the admission controller is implemented in the JobQueue-

JobInProgressListener class, which makes the admission control decision and maintains

the MapReduce job queue. The dispatcher is in the RTMRTaskScheduler class, which ex-

tends from the TaskScheduler class and is in charge of dispatching map and reduce tasks.

The feedback controller is also in the JobQueueJobInProgressListener class, where we

set the threshold Δ to be a typical map task execution time.

Similarly, Deadline Constraint scheduler’s admission controller is in JobQueueJobIn-

ProgressListener class and its dispatcher, called DCTaskScheduler, extends from the

TaskScheduler class.

!73
5.3.1 Experimental Environment

We have evaluated RTMR scheduler and compared it with Deadline Constraint Sched-

uler [21] in a heterogeneous Hadoop cluster that contains one master node and 30 worker

nodes.

Table 5.4 Experimental Environment

A heterogeneous Hadoop cluster that contains one master node and 30 worker nodes is

used as the testbed. The 30 worker nodes are configured as one rack and they are of two

types. 20 of them are 2 dual-core CPU nodes and 10 of them are 2 single-core CPU

nodes. Table I gives the detailed hardware information of the cluster. We make the num-

ber of map slots in a worker node equal to the number of CPU cores. Because each node

has only one Ethernet card, we configure one reduce slot per worker node to avoid band-

width competition between multiple reduce tasks on a single node. Loadgen, a test exam-

ple in Hadoop source code for evaluating Hadoop schedulers [40], is used as the test ap-

plication.

5.3.2 Workload and Experiments

We first create a submission schedule (workload I) that is similar to the one used by

Nodes Quantity Hardware and Hadoop
Configuration

Master node 1 2 single-core 2.2GHz Opteron-248
CPUs, 8GB RAM, 1Gbps Ethernet

Type 1 worker
nodes 20

2 dual-core 2.2GHz Opteron-275
CPUs, 4GB RAM, 1 Gbps Ethernet,
4 map and 1 reduce slots per node

Type II worker
nodes 10

2 single-core 2.2GHz Opteron-64
CPUs, 4GB RAM, 1 Gbps Ethernet,
, 2 map and 1 reduce slots per node

!74
Zaharia et al [40] that was described in Chapter 4.

Table 5.5 Workload I

Table 5.6 Workload I’s Configuration (in Terms of Number of Map, Reduce Tasks and Deadline)

Since most jobs in the Facebook workload are small, in particular, some of them hav-

ing only 1 map task, we create workload II to include more jobs with higher parallelism.

That is, in workload II, we let the number of map tasks per job follow a normal distribu-

Bin #Maps %Jobs at
Facebook

#Maps in
Benchmark

of jobs in
Benchmark

1 1 39% 1 38

2 2 16% 2 16

3 3-20 14% 10 14

4 21-60 9% 50 8

5 61-150 6% 100 6

6 151-300 6% 200 6

7 301-500 4% 400 4

8 501-1500 4% 800 4

9 >1501 3% 4800 4

Bin #Maps #Reduces Deadline (second)

1 1 [1,5] [200,300]

2 2 [1,5] [200,300]

3 10 [5,10] [300,400]

4 50 [10,20] [500,800]

5 100 [20,30] [1000,1500]

6 200 30 [2000,2500]

!75
tion with an average of 100. Again, because of the moderate size of our cluster, we do not

include the three jobs that have more than 300 map tasks. Table 5.7 shows the detailed

information of workload II. To test how RTMR scheduler works with large jobs, we also

create some jobs with more reduce tasks than the cluster’s total number of reduce slots in

workload II. However, since we already know that Deadline Constraint scheduler cannot

accept such jobs, they are not included in workload II when Deadline Constraint sched-

uler is tested.

For performance evaluation of the real-time schedulers, the following three metrics,

i.e. job accept ratio, job success ratio, and cluster utilization are used:

!

!

!

Table 5.7 Workload II

The following equation is used to calculate the cluster utilization achieved by default

Bin No.
Job #Maps #Reduces Deadline (second)

1 9 [1,10] [1,5] [200,300]

2 24 [10,50] [5,10] [300,500]

3 25 [50,100] [15,30] [1000,1500]

4 18 [100,200] [25,50] [1500,2500]

5 13 [200,300] [35,70] [2500,3500]

!76
Hadoop FIFO scheduler:

!

Here, successful_jobs denote those jobs that finish before their deadlines and slot_-

time_used_by_successful_jobs refer to the total map and reduce slot time used to execute

them. Since Hadoop FIFO scheduler does not consider job deadlines and provides no

real-time guarantees, it accepts all jobs and its cluster utilization is calculated using slot_-

time_used_by_all_jobs instead.

available_slot_time_during_workload_exe refers to the total usable time of cluster

map and reduce slots during the execution of a workload, i.e., the product of the number

of slots and the turnaround execution time of all accepted jobs in a workload.

Tables 5.8 and 5.9 show how the tested schedulers perform with workload I and II re-

spectively. As we can see, although compared to RTMR scheduler Deadline Constraint

scheduler accepts more jobs, it fails to provide deadline guarantees to all accepted jobs,

with job success ratio of 85.7% and 22.5% respectively. Since not all accepted jobs are

successful while more jobs are accepted, which prolong the workload’s execution in the

cluster, Deadline Constraint scheduler leads to much lower cluster utilizations of only

5.7% and 0.7% respectively. In contrast, RTMR scheduler maintains good cluster utiliza-

tion of 15.5% and 64.6%, in comparison to 21.3% and 69.7% achieved by default

Hadoop FIFO scheduler. Deadline Constraint scheduler’s very poor performance with

workload II experimentally demonstrates its deficiencies in handling real-time MapRe-

!77
duce jobs with high parallelism. From the data, we can also conclude that RTMR sched-

uler performs better when we enable the feedback controller to keep the admission con-

troller up-to-date, which results in better job accept ratio and cluster utilization.

Table 5.8 Scheduler Performance with workload I

Table 5.9 Scheduler Performance with Workload II

The FIFO scheduler has highest utilization in both Workload I and Workload II. This is

because FIFO scheduler does not reject any job. Our RTMR scheduler achieve second

highest utilization. It is because the Feedback controller helps RTMR to accept more jobs

that can be finished before their deadlines.

Through the development of RTMR scheduler, we well understood how to support ap-

plications/jobs that have SLA requirements in Hadoop MapReduce clusters. It helps us

Metrics Constraint
Scheduler

RTMR
Scheduler

RTMR No
Feedback

FIFO
Scheduler

Accept Ratio 71.6% 56.8% 46.6% n/a

Success
Ratio 85.7% 100% 100% n/a

Cluster
Utilization 5.7% 15.5% 11.6% 21.3%

Metrics
Constrain

t
Scheduler

RTMR
Schedule

r

RTMR
No

Feedbac
k

FIFO Scheduler

Accept
Ratio 44.9% 24.7% 15.7% n/a

Success
Ratio 22.5% 100% 100% n/a

Cluster
Utilization 0.7% 64.6% 49.8% 69.7%

!78
deep understand Hadoop MapReduce features, mechanisms, and patterns. For our next

step research, an energy efficient scheduler will be developed based on the knowledge

obtained from these achievements.

!79

CHAPTER 6. ENERGY EFFICIENT SCHEDULER

With the increasing demands of computational power in big data analytics, Hadoop

cluster becomes larger and larger and the maintenance cost rises correspondingly. How to

improve a Hadoop cluster’s computational power with sustainable costs is a big challen-

ge. To resolve this problem, scientists introduced GPU into Hadoop cluster

[121,123,124,129,130,131]. However, scheduling MapReduce applications in hybrid

CPU-GPU clusters has not been systematically studied. The remaining work will focus

on this problem.

In this paper, we will build an energy-efficient scheduler in a hybrid MapReduce envi-

ronment. we must consider several factors simultaneously. After analyzing this problem

carefully, we propose our energy consumption model and list the challenges that need to

be resolved in building a two-level energy-efficient scheduler.

6.1 Background

Since scheduling MapReduce applications in a hybrid Hadoop cluster is complicated,

in this section, we first present the background information to explain the challenges.

6.1.1 YARN label scheduling

In Chapter 2, we have described how YARN framework works. With the increasing

demand for computational power, different types of hardware can be added to it. It means

NodeManger needs to run on various types of servers. To provide a flexible scheduling

!80
mechanism, the Hadoop community introduced label scheduling.

In a label scheduling algorithm, Hadoop administrators can give different types of la-

bels to different NodeManagers. Customers/users should be able to know these labels be-

fore submitting applications and thus submit applications with the proper labels. For ex-

ample, there are 3 NodeManagers: A, B, and C. A has label-1 and label-2, B has label-2,

and C has no label. There is a user submitting an application with label-2. Then, this app-

lication can only run on NodeManager A and B. That is, resources on NodeManagers that

do not have label-2 are not allowed to run this application. But an application without a

label can run on any NodeManager. NodeManagers that have no label can run ap-

plications that have no label requirement or require no label NodeManagers.

With the help of a label scheduling mechanism, we give label-1 to a CPU node and la-

bel-2 to a GPU node. All applications that require GPU (aka. GPU application) will be

given label-2 during submission. It means a GPU application can only run on a NodeMa-

nager that has GPU in place. For CPU applications, they are able to run on CPU nodes as

well as GPU nodes (where they will only use CPUs of GPU nodes and leave GPUs idle).

In next section, we present assumptions we have for our research work. And then, we

provide a solution called adaptive execution to instead allow GPU applications to run on

both GPU and CPU nodes.

6.1.2 Assumptions

In most of the research works in the cluster power management field, two constraints

!81
need to be considered simultaneously. One is the energy consumption which scientists/

researchers want to optimize. The other is throughput or response time that is related to

the applications turnaround time. Research work may become impractical if we only con-

sider first constraint but neglect the second one. Take a small cluster as example, assume

we have a 3-node cluster: node A, B, and C. Node A is the most energy efficient compa-

ring with node B and node C. To minimize the energy consumption without considering

throughput, we can simply turn off node B and node C because node A is the most energy

efficient server which has the lowest cost to do the same computation comparing with

other two nodes. In this way, we saved energy but applications take more time to finish.

However, this is not an acceptable balance between turnaround time and efficiency. Ba-

sed on these common sense, we need to clarify three important assumptions that are criti-

cal to our research work.

1.All servers of our cluster are always powered up, in this dissertation we assume all

servers are up all the time.

2.GPUs can only run one task at a time and there is no preemption or time-sharing in-

side a GPU.

3. We only consider map task scheduling and only map tasks will utilize GPU. The rea-

son is that reduce tasks include shuffle which is I/O intensive. To run an I/O intensive

task on a GPU may not be faster and is energy inefficient. Data needs to be moved from

main memory to GPU memory before using GPU and moved out from GPU memory to

main memory before and after running a task on a GPU.

!82
 Since we are providing a Hadoop system for applications to run, customers/users have

to write their program in a particular way to utilize a GPU. That is, a GPU program is

using specific libraries and instruction sets and can only run on a GPU. Current technolo-

gy does not support adaptive execution to allow an application to run on both GPU and

CPU. In this work, we will propose our adaptive execution mechanism to enable that.

6.1.3 Adaptive Execution

From the introduction in Chapter 1, we know that GPUs can save more energy than

CPUs when run some applications. However, GPUs are more expensive and applications

that are capable to utilize GPUs require more time to develop. Consequently, current Ha-

doop MapReduce clusters have less GPU nodes than CPU nodes. In some extreme case,

if a cluster has a very limited number of GPU nodes, a GPU application may suffer star-

vation or experience a long waiting time. To resolve this problem, we have proposed a

solution called: adaptive execution. It helps customers/users leverage both GPU and CPU

to run their applications. It works as follows:

1. Customers/users need to include both CPU code and GPU code in their program.

2. Customers/users need to add a device checking module in their program so that it

can detect whether a node has an idle GPU or not. If so, it will run the GPU code. Other-

wise, it runs the CPU code. Without the GPU only constraint, customers/users no longer

need to specify a label for their program during the job submission.

Instead of waiting for GPU nodes, adaptive execution provides a positive effect on the

!83
job execution in a parallelized and load-balanced data processing platform like MapRe-

duce. For example, a task of a MapReduce job, which has 3 tasks in total, takes 10 minu-

tes running on a GPU node but 20 minutes on a CPU node. However, there is only 1 GPU

node available at that moment. Then, if the scheduler only uses the GPU node, this job

will take about 30 minutes to finish. However, if the scheduler assigns 2 tasks to the GPU

node and one task to a CPU node, it takes 20 minutes. In this way, we saved energy and

optimized turnaround time at the same time.

In Table 6.1, we demonstrate how to enable adaptive execution in a MapReduce appli-

cation. We have two methods: mapOnGPU() and mapOnCPU(). When a map task is dis-

patched, it will automatically run the setup() method. In the setup() method, it detects

whether the current node has idle GPU or not. If so, it sets the hasGPU flag to be "true".

Then, when running the map() method, the "hasGPU" is used to decide which set of code

should be executed. If "true", then, it calls mapOnGPU(). Otherwise, It calls mapOnC-

PU().

The process described in Table 6.1 happens after a map task is dispatched. In our eva-

luation, we will test our scheduler with and without adaptive execution to demonstrate the

difference.

!84
Table 6.1 Adaptive Execution for MapReduce Application

6.1.4 Relevant Container

In this section, we will introduce a new concept: relevant container. It is used in our

scheduling algorithm as the resource unit. Since we have 2 types of jobs; CPU job and

GPU job, the relevant container concept is used by the scheduler to allocate appropriate

resources to different types of jobs.

For a task in a given CPU job, the relevant container means the CPU and memory re-

sources that can be used to execute this task. Similarly, for a task in a GPU job, the rele-

vant container means the GPU, memory, and CPU resources that are needed. For examp-

le, there is a 2-node idle cluster which has one CPU node with 4 CPU containers and one

Example: Adaptive Execution in MapReduce Application

//Beginning of MapReduce Application
1: public class MapReduceApp {
2: //mapper class
3: public static class MapClass extends MapReduceBase implements
Mapper<Writable, Writable> {
4: //flag to identify whether a node has GPU or not
5: boolean hasGPU = false;
6: //setup environment before map stage
7: setup() { if (node has idle GPU) then hasGPU = true}
8: // map method
9: public void map() {
10: if (hasGPU) then run mapOnGPU();
11: else run mapOnCPU();
12: end if
13: }
14: //map code run on GPU
15: void mapOnGPU() { do map on GPU using GPU code}
16: //map code run on CPU
17: void mapOnCPU() {do map on CPU using CPU code}
18: }
19: ….........
20: //rest of the MapReduce application
21: }

!85
GPU node with 1 GPU container (contains 1 GPU and 1 CPU resources) and 3 CPU con-

tainers. For a CPU job j which requests 3 containers, there are 8 relevant containers be-

cause it does not need GPU. For a GPU job g which requests 2 GPU containers, there are

two scenarios:

1. Without adaptive execution, job g has only one relevant container.

2. With adaptive execution, job g has 8 relevant containers.

 Our scheduling algorithm chooses relevant containers while considering energy cost,

data locality, and performance.

6.2 Scheduling Algorithm

There are three aspects that need to be considered simultaneously when we design an

energy-efficient MapReduce scheduler: energy minimization, data locality, and QoS con-

trol. Based on our assumptions and adaptive execution, both CPU and GPU applications

can run on CPU and GPU nodes. Thus, we do not need to involve label scheduling in the

case where adaptive execution is applied.

Resource scheduling is a match-making and bin-packing problem which is NP-hard.

How to match MapReduce jobs to energy efficient containers becomes a critical problem

for us to resolve. In this work, we introduce a heuristic function to facilitate our decision-

making:

hij = efij * dopij (6.1)

dopij = (input data on node i for job j) / (total data requested by job j) (6.2)

!86
efij=1/Eij_map (6.3)

 Eij_map is the energy consumption for job j's map task running on container i. efij is the

energy efficiency of a given container i running job j's map task. dopij is the job's data

overlap percentage on the node of the container and hij is the fitness score.

We can get Eij_map for all types of map tasks running on all kinds of containers by pro-

filing a single map task of job j on all containers. Based on our first assumption in section

6.1.2, we do not turn off any server. It means idle energy consumption is always there.

Then, Eij_map can be computed as shown in the following formula:

Eij_map= Eij_total - Pidle*T (6.4)

Eij_total is the total energy consumed by a single map task of job j running on container i

in time T. Eij_total can be obtained by running a single map task of job j on a node which

only runs container i. T is the execution time of job j's single map task and Pidle is the idle

power consumption of the node. In this work, a kill-a-watt meter [148] is used to collect

the energy consumption and measure the idle power consumption.

In a MapReduce cluster, it is possible that a server that has the most input data of a job

may not be energy efficient to run the job. As we have described in Chapter 2, data locali-

ty is important for reducing unnecessary data transfer within a cluster when a Hadoop

application is running. For a MapReduce application, high data locality percentage means

shorter average map task response time. In this work, dopij is introduced to measure this

data locality feature of a container. When a job is submitted dopij will be computed and

!87
saved in memory during the whole life cycle of an application. When allocating contai-

ners to a job, the fitness score hij is used by the scheduler to rank all candidate containers

and to make the decision.

 To achieve high data locality and energy efficiency, we need to find the best candidate

container to run a task of a given job. However, it is impractical to let job/task wait till

the best candidate container becomes available since it will lead to Hadoop cluster

throughput degradation. By considering these requirements on data locality, energy effi-

ciency, and QoS, we have designed and developed our algorithm.

In the following two sections, we will describe our work in developing a two-level en-

ergy-efficient mapreduce scheduler.

6.2.1 Level I: Application Scheduler

The RM (ResourseManager) level scheduling, which we refer to as application schedu-

ler, is important since it determines if a MapReduce job can get the most energy-efficient

containers or not. Table 6.2 shows how our application scheduler works.

When job j is submitted, the job scheduler will calculate the fitness scores for this job.

Assuming we already know the energy efficiency for running job j on container i, we

have the fitness score by simply multiplying dopij and efij. The scheduler will rank all the

containers in the cluster according to the fitness score hij. Then, the scheduler creates an

optsetj for job j. It is a collection of containers from slave nodes in the cluster. The sche-

duler picks containers from slave nodes in non-increasing order of fitness score hij. For

!88
example, job j requests 3 containers. If node k has 2 containers with fitness score of 3 and

node l has 3 containers with fitness score of 2. The optsetj will have 3 containers in which

two of them are from node k and 1 container is from node l. Note, a node's CPU container

and GPU container could have different fitness scores for a job.

 However, since we assume a shared environment and there may be other jobs running

in the cluster, it is possible that the currently available containers are not in the job’s op-

tset. To help making the selection, we introduce a ranking factor rj :

rj= (currently available containers in optsetj) / (total No. of containers of a job in op-

tsetj)

After getting rj, the scheduler will reorder all jobs in the job queue in non-increasing

order of their ranking factors rj. This way, we will first schedule jobs with the most

amount of desirable resources available and we have ordered jobs by considering both

energy efficiency and data locality.

For each submitted job j, we try to assign containers in its optsetj as many as possible

since this can provide better energy consumption according to our algorithm. However, it

is possible that the cluster is busy and does not have enough idle resources to meet job j's

resource requirement at a certain moment. Then, starvation or long job delay may hap-

pen.

 To avoid job starvation, we introduce two queues. One is for newly submitted jobs and

the other is for jobs that have waited longer than a given threshold. When a job is submit-

!89
ted, it will go to the first queue. However, according to our scheduling algorithm, it is

possible that a job is ranked low and has not been picked for a long time. To job avoid

starvation, we introduce a delay time threshold. The time counter starts once a job is

submitted and put in the job queue. If a job waits longer than a given threshold, we will

move it to the long waiting queue. Every time there is a node heartbeat, the scheduler will

check whether this long waiting queue has a job or not. If so, it will first schedule a job

from the long waiting queue. If there is no job in the long waiting queue, the scheduler

starts to consider the original queue. This way, we prioritize the jobs considering their

ages to avoid starvation.

In Table 6.2, we did not specify label scheduling because we assume customers/users

implement adaptive execution. With adaptive execution, both CPU and GPU applications

can run on any NodeManager. The following algorithm is invoked every time when a job

releases resources, i.e., more resources become available.

Table 6.3 demonstrates how the Algorithm works without adaptive execution. If we do

not have adaptive execution, GPU jobs can only run on GPU containers. Then, when

computing optsetj and container allocation, the scheduler needs to first check Labelj that is

associated with job j. Only nodes that have Labelj will be considered.

!90
Table 6.2 Application Scheduler with Adaptive Execution

 Algorithm 1: Application Scheduler with Adaptive Execution

Rj: the number of containers that job j requests, for CPU job, it requests
CPU containers, for GPU job, it requests GPU or CPU containers
Rr: currently available CPU and GPU containers in the cluster
dopij: data overlap percentage for job j on container i
hij: fitness score for job j running on container i
rj: ranking factor of job j
optsetj: optimal-set for job j
T: waiting time threshold
1: for each job j in the job queue //initialize optimal-set for all jobs
2: for each relevant container i in the cluster
3: calculate dopij and hij
4: end for
5: rank all containers in non-increasing order of hij
6: optsetj= the first Rj containers
7: end for
8: for each job j in the job queue //calculate rj for each job
9: count=0
10: for each relevant container k in Rr
11: if (container k is in optsetj) then
12: count++
13: end if
14: end for
15: rj = count/Rj
16: end for
17: if job j’s waiting time exceeds T then
18: move job j to the long-waiting job queue
19: end if
20: sort both job queues (the regular job queue & the long-waiting job
queue) respectively in non-increasing order of rj
//assign resources to jobs in long-waiting queue
21: for each job j in the long-waiting job queue
22: if (Rr .relevantContainers.size() >= Rj) then
23: assign job j the currently available best Rj relevant containers and
remove them from Rr
24: update Rj
25: else
26: assign job j all the relevant containers that are currently available
and remove them from Rr and update Rj
27: end if
28: end for
29: if (the long-waiting job queue is empty) then
30: for each job j in the regular job queue
31: if (Rr .relevantContainers.size() >= Rj) then
32: assign job j the currently available best Rj relevant containers
and remove them from Rr
33: update Rj
34: else
35: break
36: end if
37: end for
38: end if

!91

Table 6.3 Application Scheduler without Adaptive Execution

 Algorithm 1: Application Scheduler without Adaptive Execution

Rj: the number of containers that job j requests, for CPU job, it requests
for CPU containers, for GPU job, it requests for GPU containers
Rr: currently available CPU and GPU containers in the cluster
dopij: data overlap percentage for job j on container i
hij: fitness score for job j running on container i
rj: ranking factor of job j
optsetj: optimal-set for job j
Labelj: job j's label (only GPU job has a label)
T: waiting time threshold
1: for each job j in the job queue //initialize optimal-set for all jobs
2: for the relevant containers that has Labelj in the cluster
3: calculate dopij and hij
4: end for
5: rank all relevant containers have in non-increasing order of hij
6: optsetj= the first Rj relevant containers
7: end for
8: for each job j in the job queue //calculate rj for each job
9: count=0
10: for each container k in Rr that has Labelj
11: if (container k is in optsetj) then
12: count++
13: end if
14: end for
15: rj = count/Rj
16: end for
17: if job j’s waiting time exceeds T then
18: move job j to the long-waiting job queue
19: end if
20: sort both job queues (the regular job queue & the long-waiting job
queue) respectively in non-increasing order of rj
//assign resources to jobs in long-waiting queue
21: for each job j in the long-waiting job queue
22: if (Rr .relevantContainers.size() >= Rj) then
23: assign job j the relevant containers that are available and remove
them from Rr
24: update Rj
25: else
26: assign job j relevant containers and remove them from Rr, update Rj
27: end if
28: end for
29: if (the long-waiting job queue is empty) then
30: for each job j in the regular job queue
31: if (Rr.relevantContainers.size() >= Rj) then
32: assign job j the best Rj available relevant containers and remove
them from Rr
33: update Rj
34: else
35: break
36: end if
37: end for
38: end if

!92

6.2.2 Level II: Task Scheduler

Once ApplicationMaster (AM) gets containers from RM, it will sort Job j's tasks in a

non-decreasing order of Lk,

Lk= the number of task k’s local containers (6.5)

For job j, we sort tasks with positive Lk in a non-decreasing order of Lk because the task

which has less local containers should be assigned first. For example, task A only has one

local container (container A), however, task B has two local containers (container A and

container B). If we accidentally assign task B to container A, task A has no local contai-

ner anymore since one container runs one task at a time. To get a higher data locality ra-

tio, we should schedule task A to container A and task B to container B. For tasks that

have no locality, that is Lk = 0, we always put them in the end of the task queue. That is,

non-local tasks will be scheduled only if there is no local task remaining in the task

queue.

Another optimization which enhances the energy efficiency is to sort available contai-

ners according to the fitness scores when dispatching tasks to the containers. In Algo-

rithm 2, we first sort containers according to their fitness score hij. Once AM dispatcher

finishes sorting containers, it picks a task from the task queue and searches all available

containers. It only assigns the task to a container under the following two conditions:

1. The container's node stores the data needed by a task;

!93
2. Current task's Lk = 0. It means there is no local task in the task queue. We should start

to assign these non-local tasks;

Table 6.4 Task Scheduler: Dispatcher

After a map task is dispatched, it will run the process described in Table 6.1.

6.3 Evaluation

To evaluate our scheduler, we create a hybrid cluster which has two types of nodes:

Algorithm 2: Application Master (AM) Dispatching (job j)’s Tasks

// This algorithm is invoked when AM obtained containers from RM and
starts to dispatch tasks.
CR: AM obtained a collection of containers from RM in current scheduling
period in Algorithm 1
Lk: locality factor = number of task k’s local container(s) in CR
Q: task queue
1: sort task queue in non-decreasing order of Lk (except tasks with Lk =0
will be added to the end of the Q)

2: sort containers in CR in non-increasing order of hij
3: while Q is not empty and CR is not empty:
4: t = Q.offer() //get the first task from task queue
 assigned = false
5: for each container c in CR
6: if t.Lk =0 then //no local task anymore
7: assign t to c
 assigned = true
8: remove c from CR
9: break
10: end if

11: if container c has t’s input data then // local task
12: assign t to c //assign local task
 assigned = true
13: remove c from CR
14: break
15: end if
16: end for
 if (assigned = false) then
 put t to the end of the queue and set t.Lk =0 // since t's local
container is already be occupied by another task.
17: end while

!94
GPU nodes and CPU nodes. There are 2 GPU nodes, one has 112 CUDA cores (Geforce

9800-gt), the other has 16 CUDA cores (Geforce 210). We choose two types applications

in our experiment. One includes MapReduce job that can employs GPU (aka. GPU job).

The other is a general MapReduce job that uses CPU (aka. CPU job). In Table 6.5, there

are specifications about the hybrid MapReduce cluster which has 2 GPU servers (each

server has one GPU card) and 6 multi-core CPU servers.

Table 6.5 Experimental Environment

To measure the energy consumption, we use a kill-a-watt meter [148] that connects to

the cluster power outlet. It can measure the total energy consumption for the whole clus-

ter.

Nodes Quantity Hardware

Master node 1
2 single-core 2.2GHz
Opteron-248 CPUs, 8GB
RAM, 1Gbps Ethernet

GPU server Type I 1

2 single-core 2.2GHz
Opteron-275 CPUs, 4GB
RAM, Geforce 9800-gt
GPU 512M RAM, 1 Gbps
Ethernet

GPU server Type II 1

2 single-core 2.2GHz
Opteron-275 CPUs, 4GB
RAM, Geforce 210 GPU,
1Gbps Ethernet

CPU server 6

4 d u a l - c o r e 2 . 2 G H z
Opteron-248 2.2G CPUs,
8 G B R A M , 1 G b p s
Ethernet

!95
6.3.1. Workload

 We employ Facebook’s workload [40] that has been used in our Chapter 4 and Chap-

ter 5 to evaluate our energy-efficient scheduler against the Hadoop default FIFO schedu-

ler.

Table 6.6 Workload I [20]

Table 6.6 contains totally about 100 jobs. However, we have a relatively smaller cluster

comparing with Facebook's production ones. We take the first 6 rows which covers about

87% of total jobs. Since the number of reduce tasks is not provided in their paper [40],

we accordingly add reduce tasks for each category based on the number of map tasks.

Basically, the number of reduce tasks is smaller than the number of map tasks. At the

same time, to make it more general, we randomly pick the number of reduce tasks within

a given interval for each category.

Bin #Maps
%Jobs

at
Facebook

#Maps in
Benchmark

of jobs in
Benchmark

1 1 39% 1 38

2 2 16% 2 16

3 3-20 14% 10 14

4 21-60 9% 50 8

5 61-150 6% 100 6

6 151-30
0 6% 200 6

7 301-50
0 4% 400 4

8 501-1,5
00 4% 800 4

9 >1,501 3% 4,800 4

!96
Table 6.7 Workload Configuration (in terms of number of map and reduce)

This workload submission takes about 24 minutes and contains 87 jobs. The inter-arri-

val time follows the Poisson distribution with expectation of 14 seconds. Data accessing

pattern is in the zipf distribution (skew = 1). Job size in the workload follows a Gaussian

distribution. We mix two types of jobs: loadgen (CPU job) and MD simulation (GPU job)

using MapReduce. For loadgen, each map task will take a data block as input. For MD

simulation, its input data size is about 60KB. Two types of jobs are submitted randomly

following the uniform distribution which means the number of jobs from each type is ne-

arly the same (one is 44, the other is 45).

6.3.2. Energy Efficiency Profiling

 Since we need to know each node’s energy efficiency before scheduling any job, we

did profiling of each node's energy efficiency for the two types of jobs.

 For each job type, we run a single map task job on each container, measure the energy

consumption during the job execution. We set the time interval as half hour (1,800 se-

conds), which guarantees the job can finish. Data is demonstrated in Table 6.8.

Bin #Maps #Reduces

1 1 1

2 2 [1,2]

3 10 [5,10]

4 50 [10,20]

5 100 [20,30]

6 200 30

!97
Table 6.8 Energy consumption of MD simulation job (1 map) on different types of nodes (1800 seconds sampling

interval)

 We can see that using a GPU node can save energy for running GPU jobs. To make

the result more intuitive, we employ the following method to obtain the energy efficiency

factor of a node. For a given type of MapReduce job, the energy efficiency factor is the

reciprocal of the energy consumption of this job on a server (i.e., the total energy minus

the idle energy). We also normalize CPU node energy efficiency factor as 1 and get all

other nodes’ energy efficiency factor proportionally. For example, the CPU node’s total

energy consumption is 0.1446 kwh in the half hour sampling interval. To obtain the ener-

gy used by the MD simulation job, this 0.1446 kwh value should deduct the idle energy

consumption in the sampling interval (235w*1,800s = 0.1175 kwh). We can see that only

0.0269 kwh is used for running a single task MD job on the CPU server. Since we take

CPU node’s energy efficient factor as 1, other nodes’ energy efficient factor should divide

0.0269 kwh. We get Table 6.9.

Table 6.9 Energy efficiency factor for MD simulation

Node Type Only use CPU CPU + GPU

CPU node 0.1446 kwh N/A

GPU node Type I 0.061 kwh 0.05858 kwh

GPU node Type II 0.0533 kwh 0.05185 kwh

Node Type Only use CPU CPU + GPU

CPU node 1 N/A

GPU node Type I 1.23 1.41

GPU node Type II 1.4 1.52

!98
In Table 6.10, we use data to demonstrate that it is energy efficient to run CPU job on

CPU node. We also observed that the energy efficiency factor for GPU and CPU nodes

are close if they both use CPU. This is because loadgen is a pure I/O job. Additionally,

for type I GPU and type II GPU nodes, they are using the same CPU. Then, their energy

efficiency factors are even closer.

Table 6.10 Energy efficiency factor for loadgen

6.3.3. Experiment Results

After having the energy efficiency factor of each application type, we start our final

evaluation. The experiment time interval T is configured as 6.5 hours. Each experiment

will be executed 3 times and we take average as final result.

Three metrics are introduced in this work:

1. Workload turnaround time s the time interval between the first job arrival and the

last job completion. This value is the smaller, the better.

2. Energy consumption is the total energy consumption during the given experiment

time interval which is 6.5 hours. This value is the smaller, the better.

3. Data locality ratio is the ratio of the number of local map tasks divided by the

number of all map tasks in the whole workload. We employ this metric to evaluate

Node Type Only use CPU CPU + GPU

CPU node 1 N/A

GPU node Type I 1.04 N/A

GPU node Type II 1.05 N/A

!99
the data locality performance of different schedulers. This value is the higher, the

better, up to 100%.

We compared three schedulers: FIFO, our scheduler (aka. Energy Efficient Hybrid,

EFH for short), and EFH without adaptive execution (EFH-w/o-AE for short). The FIFO

scheduler is the default scheduler of YARN. To avoid randomness, we run each experi-

ment 3 times and take the average as the final result

!

a. Turnaround time

!

b. Data Locality Percentage

!100

!

c. Energy Consumption

Figure 6.1. Turnaround time, data locality, and energy consumption for three

schedulers

In Figure 6.1, we demonstrate all our results of three metrics. Each bar means one sam-

pling point for a given scheduler. Each scheduler we get 3 times run and take the average

as the final result. In Table 6.11, we demonstrate the final results.

6.3.3.1 FIFO vs. EFH w/o adaptive execution

We can see from Table 6.11, the EFH-w/o-AE scheduler consumes about 10% less en-

ergy in comparison to the FIFO scheduler which has no power management policy. For

data centers that pays millions of dollars power bill, using our EFH scheduler can save

about hundreds of thousands of dollars. We expect more energy saving if we have more

GPU nodes or computation intensive jobs in the workload. We take 3 times run average

!101
and also show all three times run result in parentheses.

Table 6.11 EFH schedulers without Adaptive Execution comparing with FIFO scheduler

The difference of data locality ratio between FIFO and EFH-w/o-AE scheduler is about

6%. This difference is not significant because our EFH-w/o-AE scheduler not only opti-

mizes the energy consumption but also considers data locality.

For the workload turnaround time, the EFH-w/o-AE scheduler runs about 6.6% longer.

It is as expected since we allow MapReduce jobs to wait for the best energy efficient re-

sources. However, we have a 2-queue mechanism to prevent a job from starvation. At the

same time, the data locality does not heavily affect the turnaround time since our GPU

application’s input data is relatively small (60KB). Even as the number of non-local map

tasks increase, it did not cause too much network traffic or delay for the task execution.

Scheduler
Turnaround

Time
(hour)

Energy (kwh)
Energy no idle

(kwh)

Data
Locality Ratio

(%)

FIFO
4.54

(4.49,4.56,4.57)
13.19

(13.13,13.22,13.21) 2.61(2.59, 2.57, 2.68)
77

(76,73,82)

EFH-w/o-AE
4.84

(4.87,4.83,4.83)
11.75

(11.66,11.73,11.87)
1.17 (1.15, 1.18, 1.19

71
(69,70,73)

!102
6.3.3.2 EFH with and without adaptive execution

Table 6.12 EFH schedulers with and without adaptive execution

 In Table 6.12, we can see the adaptive execution did contribute to the workload tur-

naround time. It gives an improvement of 5.2%. However, there is no free lunch, EFH

scheduler consumes 1.9% more energy than EFH-w/o-AE. It allows some “long waiting”

GPU jobs to run on a CPU node and trades energy consumption for time. The data locali-

ty ratio difference between these two schedulers is 4%. Since we have more CPU nodes

than GPU nodes, it is possible that the CPU nodes hold more input data. Then, it inclines

to achieve a higher data locality ratio when GPU jobs are allowed to run on CPU nodes.

6.3.3.3 Ideal Energy Consumption

In Figure 6.2, we add ideal energy consumption which is to run all map tasks on the

node which is the most energy efficient without considering the cluster throughput. For

example, if we have 10 map tasks that runs on node A is more energy efficient than run-

ning on node B, we will not allow any map task run on node B. In this way, we can get

the ideal energy consumption for running a given workload on a given cluster. However,

it may cause significant throughput degradation. However, we have this ideal result is to

Scheduler
Turnaround

Time
(hour)

Energy (kwh)
Energy no idle

(kwh)

Data Locality
Ratio

(%)

EFH-w/o-
AE

4.84
(4.87,4.83,4.83)

11.75
(11.66,11.73,11.87

)

1.17 (1.15, 1.18,
1.19 71 (69,70,73)

EFH
4.59 (4.57,

4.62,4.59)
11.78 (11.85,
11.69,11.80)

1.2 (1.26,1.14,
1.21)

75 (75,77,73)

IDEAL
 16.73 (16.82,
17.14,16.23)

43.96(44.05,44.37,
43.46)

0.63
(0.65,0.68,0.55)

9.6 (11,10,8)

!103
show the upper bound. To make it comparable to our previous data, we deduct all idle

energy consumption for three candidate schedulers.

!

Figure 6.2 Energy Consumption with IDEAL Energy Run (no idle energy)

In Figure 6.3, we see the execution time is about 3 times longer than other three sche-

dulers. This is as expected because we only run map tasks on the most energy efficient

nodes. Other servers are idle.

!

Figure 6. 3 Turnaround Time with IDEAL Energy Run

!104

!

Figure 6. 4 Data Locality with IDEAL Energy Run

In Figure 6.4, we can see the data locality in IDEAL Energy group is about 10% . It is

significant degradation comparing with other three schedulers. Since we only run map

tasks on the most energy efficient nodes, this is inevitable.

6.3.3.4 Statement of Result Statistics

In order to further analyze our experiment results, we did some statistical comparison

between EFH, FIFO, and EFHnoAE schedulers. It includes: p-value with t test, confi-

dence interval, and standard error estimation.

First of all, we use p-value[154] to show the asymptotic significance of experimental

data. In Table 6.13, we show p-value of energy consumption, data locality, and tur-

naround time. According to the p-value definition, in our evaluation, if p < 0.05, it means

there is high probability that two sets of data come from different distribution. For tur-

naround time, FIFO and EFHnoAE have significant difference, as well as EFH and

EFHnoAE. But FIFO and EFH are close. For data locality, the significances for 3 candi-

dates are small. For energy consumption, we can see FIFO and EFH has significant diffe-

!105
rence. At the same time, FIFO and EFHnoAE are significantly different.

Table 6. 13 P-value with significance level 0.05

On the other hand, we provide confidence intervals for three scheduler experiment re-

sults. Results are shown in Table 6.14. With 95% confidence interval, we can see, in the

turnaround time, EFH data variance is smaller than FIFO and EFHnoAE. For data locali-

ty, FIFO data has the larger variance. For energy consumption, EFHnoAE has the largest

variance.

Table 6. 14 Confidence intervals with 95% confidence

In the end, we provide the error estimation for our three scheduler results. They are in

Table 6.15. The standard error for our experiment data are relatively small except data

locality.

Scheduler Turnaround Time Data Locality Energy Consumption

FIFO vs. EFH 0.0793 0.65 0.0014

FIFO vs. EFHnoAE 0.0129 0.0696 0.0021

EFH vs. EFHnoAE 0.0105 0.1859 0.4266

Scheduler
Turnaround Time

(hour)
Data Locality (%)

Energy Consumption

(kwh)

FIFO 4.54 (+/-0.1) 77 (+/-11) 13.19 (+/-0.13)

EFH 4.59 (+/-0.06) 75 (+/-5) 11.79 (+/-0.13)

EFH no AE 4.84 (+/-0.1) 70.67 (+/-5) 11.75 (+/-0.28)

!106
Table 6. 15 Standard Error Estimation

Scheduler
Turnaround Time

(hour)
Data Locality (%)

Energy Consumption

(kwh)

FIFO 0.02 2.16 0.02

EFH 0.01 0.94 0.03

EFH no AE 0.01 0.98 0.05

!107
CHAPTER 7. CONCLUSION AND FUTURE WORK

In this dissertation, we studied, designed, developed, and evaluated three sched-

ulers for the Hadoop MapReduce framework step by step to approach our proposed tar-

get: to provide MapReduce applications with low cost and energy consumption through

the development of scheduling theory and algorithms, energy models, and energy-aware

resource management [42,74-77]. (refer all my previous publications)

First of all, we investigate Hadoop MapReduce framework’s data locality mecha-

nism and develop a matchmaking scheduling algorithm for improving the data locality of

MapReduce applications. Evaluation using a Facebook workload shows our scheduler

can adaptively achieve a high data locality ratio and a shorter map task response time

comparing with the delay scheduler and the Hadoop default scheduler.

Secondly, a real-time scheduling algorithm has been developed for MapReduce

applications that require QoS and run in heterogeneous Hadoop MapReduce clusters. A

mathematical proof has been provided as well as a real cluster evaluation. Both con-

firmed our real-time scheduler can achieve higher cluster utilization without deadline

missing comparing with deadline constraint scheduler.

Last but not least, we proposed an energy efficient scheduler for Hadoop YARN to

resolve a multi-constraint optimization problem: saving cluster power consumption, satis-

fying MapReduce applications increasing demands on computation power, considering

data locality, and avoiding performance degradation. In this work, we proposed our two

!108
levels scheduling algorithm. To evaluate our scheduler, we build a hybrid Hadoop cluster

which has two types of computing nodes: GPU nodes and CPU nodes. Comparing with

the Hadoop YARN default scheduler, our algorithm can save about 10% energy without

significant performance degradation. Since Hadoop YARN is a general resource sched-

uler, our algorithm can also benefit not only MapReduce applications but also other

frameworks like Apache TEZ[149], Apache Spark[150], etc.

With the increasing growth of public cloud applications, we will focus our future

work on Big Data clusters resource scheduling in the cloud environment with the help of

machine learning algorithms. Based on our previous study in Big Data framework and the

cloud environment, our future plan is to develop an intelligent scheduler. It is able to an-

ticipate the workload peak and automatically scale out or scale in resources by learning

from the historical workloads. For example, the Hadoop cluster may encounter workload

burst in some special holiday like Thanksgiving, Christmas, etc. A smart scheduler should

be able to request more resources before the burst happens and release idle resources after

the rush hours. The elasticity of the cloud provides a possible infrastructure for the smart

scheduler to realize this feature adaptively. However, the cloud environment is more

complicated than dedicated clusters, it needs more investigation and research work to be

done in this area. We will carry forward our learned knowledge, research skills, and expe-

riences to forge ahead in the future.

!109
REFERENCES

1. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on
large clusters." Communications of the ACM 51.1 (2008): 107-113.

2. Hadoop http://www.hadoop.com
3. Big Data, https://en.wikipedia.org/wiki/Big_data
4. Kong, Fansheng, and Xiaola Lin. "The method and application of big data mining for mobile

trajectory of taxi based on MapReduce." Cluster Computing (2018): 1-8.
5. Carcillo, Fabrizio, et al. "Scarff: a scalable framework for streaming credit card fraud detection

 with spark." Information fusion 41 (2018): 182-194.
6. Hosseini, Behrooz, and Kourosh Kiani. "FWCMR: A scalable and robust fuzzy weighted

clustering based on MapReduce with application to microarray gene expression." Expert Sys-
tems with Applications 91 (2018): 198-210.

7. Zhu, Fubao, et al. "A Classification Algorithm of CART Decision Tree based on MapReduce
Attribute Weights." International Journal of Performability Engineering 14.1 (2018): 17.

8. M.C. Schatz, “BlastReduce: high performance short read mapping with
MapReduce”. http://www.cbcb.umd.edu/software/blastreduce/

9. M. Zaharia Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica, “Improving MapReduce
performance in heterogeneous environments”, in: Proc. 8th USENIX Symposium on Operating
 Systems Design and Implementation, OSDI 2008, San Diego,USA, Dec. 2008.

10. Kong, Fansheng, and Xiaola Lin. "The method and application of big data mining for mobile
trajectory of taxi based on MapReduce." Cluster Computing (2018): 1-8.

11. Polo, Jorda, et al. "Performance-driven task co-scheduling for mapreduce environments." Net-
work Operations and Management Symposium (NOMS), 2010 IEEE. IEEE, 2010.

12. Xicheng Dong, Ying Wang, Huaming Liao “Scheduling Mixed Real-time and Non-real-time
Applications in MapReduce Environment”. In the proceeding of 17th International Conference
on Parallel and Distributed Systems. 2011, pp. 9 – 16

13. Marco A. S. Netto and Rajkumar Buyya. "Offer-based scheduling of deadline-constrained bag-
of- tasks applications for utility computing systems". In Proceedings of the 18th International
 Heterogeneity in Computing Workshop, in conjunction with the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS’09), Roma, Italy, May 2009.

14. Verma, Abhishek, Ludmila Cherkasova, and Roy H. Campbell. "ARIA: automatic resource
inference and allocation for mapreduce environments." Proceedings of the 8th ACM in-
ternational conference on Autonomic computing. ACM, 2011.

15. Phan, Linh TX, et al. "An empirical analysis of scheduling techniques for real-time cloud-
based data processing." Service-Oriented Computing and Applications (SOCA), 2011
IEEE International Conference on. IEEE, 2011.

16. Liu, Li, et al. "Preemptive Hadoop Jobs Scheduling under a Deadline." Semantics, Knowledge
and Grids (SKG), 2012 Eighth International Conference on. IEEE, 2012.

17. K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet deadlines,” in 2nd IEEE In-
ternational Conference on Cloud Computing Technology and Science (CloudCom), 2010,
pp. 388 –392.

18. D. Luebke, and M. Harris. "General-purpose computation on graphics hardware." Workshop,
SIGGRAPH. 2004.

19. J. A. Stuart, C.-K. Chen, K.-L. Ma, and J. D. Owens, “Multi-gpu volume rendering
using mapreduce,” 1st International Workshop on MapReduce and its Applications, June 2010.

20. Jeff A. Stuart and John D. Owens. "Multi-GPU MapReduce on GPU Clusters". In IPDPS,
2011.

21. F. Ji and X. Ma. "Using Shared Memory to Accelerate Mapreduce on Graphics Processing
Units". In IPDPS ’11, pages 805–816, 2011

22. Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. "Hybrid map task scheduling for gpu-
based heterogeneous clusters." Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on. IEEE, 2010.

http://www.hadoop.com/
https://en.wikipedia.org/wiki/Big_data
http://www.cbcb.umd.edu/software/blastreduce/

!110
23. Sundaresan Venkatasubramanian and Richard W. Vuduc. "Tuned and wildly asynchronous

stencil kernels for hybrid cpu/gpu systems". In ICS ’09: Proceedings of the 23rd in-
ternational conference on Supercomputing, pages 244–255, New York, NY, USA, 2009. ACM

24. Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. "A Map Reduce Framework for
Programming Graphics Processors". In Third Workshop on Software Tools for MultiCore Sys-
tems (STMCS), 2008

25. Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin. "MapCG: Writ-
ing Parallel Program Portable between CPU and GPU". In PACT, pages 217–226, 2010.

26. L. Chen, and Gagan Agrawal. "Optimizing MapReduce for GPUs with effective shared memo-
ry usage." Proceedings of the 21st international symposium on High-Performance Parallel
and Distributed Computing. ACM, 2012.

27. Stuart, Jeff A., and John D. Owens. "Multi-GPU MapReduce on GPU clusters." Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 2011.

28. Chen, Cen, et al. "Gflink: An in-memory computing architecture on heterogeneous CPU-GPU
clusters for big data." IEEE Transactions on Parallel and Distributed Systems (2018).

29. Feng, Jiaying, Xiaowang Zhang, and Zhiyong Feng. "MapSQ: A MapReduce-based Frame-
work for SPARQL Queries on GPU." arXiv preprint arXiv:1702.03484 (2017).

30. Jiang, Hai, et al. "Scaling up MapReduce-based big data processing on multi-GPU
systems." Cluster Computing 18.1 (2015): 369-383.

31. Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. "Multi-core real-
time scheduling for generalized parallel task models." Real-Time Systems Symposium
(RTSS), 2011 IEEE 32nd (pp. 217-226). IEEE.

32. Li, Shen, Shaohan Hu, and Tarek Abdelzaher. "The packing server for real-time scheduling
of mapreduce workflows." Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE. IEEE, 2015.

33. GPGPU http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_u-
nits

34. The next generation Apache Hadoop. http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop- yarn-site/YARN.html

35. Yao, Yi, et al. "Haste: Hadoop yarn scheduling based on task-dependency and resource-
demand." Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on. IEEE,
2014.

36. Lin, Jia-Chun, et al. "ABS-
YARN: A formal framework for modeling Hadoop YARN clusters." the International
Conference on Fundamental Approaches to Software Engineering. Springer, Berlin Heidelberg,
 2016.

37. CUDA http://developer.NVIDIA.com/cuda.
38. D.Luebke. "CUDA: Scalable parallel programming for high performance scientific computing.

" B iomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International
Symposium on. IEEE, 2008.

39. J. Nickolls, I. Buck, M. Garland, and K. Skadron,“Scalable parallel programming with CUDA,
” A CM Queue, pp. 40–53, Mar./Apr. 2008

40. Zaharia, Matei, et al. "Improving MapReduce performance in heterogeneous
environments." Osdi. Vol. 8. No. 4. 2008.

41. Chen, Quan, et al. "Samr: A self- adaptive mapreduce scheduling algorithm in hetero-
geneous environment." Computer and Information Technology (CIT), 2010 IEEE 10th
International Conference on. IEEE, 2010.

42. Sun, Xiaoyu, Chen He, and Ying Lu. "ESAMR: An Enhanced Self-Adaptive MapReduce
Scheduling Algorithm." Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th I n-
ternational Conference on. IEEE, 2012.

43. Linux Container. http://lxc.sourceforge.net/
44. Capacity Scheduler, https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/CapacityScheduler.html
45. Zaharia, Matei. "Job scheduling with the fair and capacity schedulers." Hadoop Summit 9

(2009).
46. Lable Scheduling, https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn- s i t e /

NodeLabel.html

http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://developer.nvidia.com/cuda
http://lxc.sourceforge.net/
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/NodeLabel.html

!111
47. YARN-6223, https://issues.apache.org/jira/browse/YARN-6223
48. NVIDIA, http://www.nvidia.com
49. Y. Yan, M. Grossman, and V. Sarkar, “Jcuda: A programmer-friendly interface for accelerating

java programs with cuda,” Lecture Notes in Computer Sciences, vol. 5704 (2009), pp. 887–
899, 2009

50. GPUs are driving energy efficiency across the computing industry, from phones to super
computers. http://www.nvidia.com/object/gcr-energy-efficiency.html

51. Xie, Qiaomin, et al. "Pandas: Robust locality-aware scheduling with stochastic delay o p t i-
mality." IEEE/ACM Transactions on Networking (TON) 25.2 (2017): 662-675.

52. Isard, Michael, et al. "Dryad: distributed data-parallel programs from sequential building
blocks." ACM SIGOPS Operating Systems Review 41.3 (2007): 59-72.

53. Polato, Ivanilton, et al. "A comprehensive view of Hadoop research—A systematic literature
review." Journal of Network and Computer Applications 46 (2014): 1-25.

54. Althebyan, Qutaibah, et al. "Evaluating map reduce tasks scheduling algorithms over cloud
computing infrastructure." Concurrency and Computation: Practice and Experience27.18
(2015): 5686-5699.

55. Xie, Qiaomin, Ali Yekkehkhany, and Yi Lu. "Scheduling with multi-level data locality:
Throughput and heavy-traffic optimality." INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications, IEEE. IEEE, 2016.

56. Gaur, Manisha, Bhawna Minocha, and Sunil Kumar Muttoo. "A Study of Factors Affecting
MapReduce Scheduling." Big Data Analytics. Springer, Singapore, 2018. 275-281.

57. Ekanayake, Jaliya, Shrideep Pallickara, and Geoffrey Fox. "Mapreduce for data intensive
scientific analyses." eScience, 2008. eScience'08. IEEE Fourth International Conference on.
IEEE, 2008.

58. He, Bingsheng, et al. "Mars: a MapReduce framework on graphics processors." Proceedings of
the 17th international conference on Parallel architectures and compilation techniques. ACM,
2008.

59. Shan, Yi, et al. "Fpmr: Mapreduce framework on fpga." Proceedings of the 18th annual
ACM/SIGDA international symposium on Field programmable gate arrays. ACM, 2010.

60. Yang, Hung-chih, et al. "Map-reduce-merge: simplified relational data processing on large
clusters." Proceedings of the 2007 ACM SIGMOD international conference on Management of
 data. ACM, 2007.

61. De Kruijf, Marc, and Karthikeyan Sankaralingam. "Mapreduce for the cell broadband engine
architecture." IBM Journal of Research and Development 53.5 (2009): 10-1.

62. Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. “Phoenix Rebirth: S c a l-
able mapReduce on a Large-Scale Shared-Memory System” in IISSWC, pg 198-207,2009

63. Computing Grid. http://www.e-sciencecity.org/EN/gridcafe/what-is-the-grid.html
64. T.Sandholm, K. Lai, “Dynamic Proportional Share Scheduling in Hadoop”, in Proceedings of

the 15th workshop on job scheduling strategies for parallel processing, pg 110-131, 2010
65. Kambatla, Karthik, Abhinav Pathak, and Himabindu Pucha. "Towards

optimizing hadoop provisioning in the cloud." Proc. of the First Workshop on Hot Topics in
Cloud Computing. 2009.

66. Faraz Ahmad, et al. “Tarazu: Optimizing MapReduce on Heterogeneous Clusters”,
ASPLOS’12 March 3, 2012, London, England, UK

67. Hong Mao, et al. “A Load-Driven Task Scheduler with Adaptive DSC for
MapReduce”, GreenCom 2011.

68. Bu, Yingyi, et al. "HaLoop: Efficient iterative data processing on large clusters." Proceedings
of the VLDB Endowment 3.1-2 (2010): 285-296.

69. Li, Qiuhong, et al. "LI-MR: A Local Iteration Map/Reduce Model and Its Application to Mine
Community Structure in Large-Scale Networks." Data Mining Workshops (ICDMW), 2011
IEEE 11th International Conference on. IEEE, 2011.

70. Zhang, Yanfeng, et al. "imapreduce: A distributed computing framework for iterative c o m-
putation." Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on. IEEE, 2011.

71. Cascading http://www.cascading.org/
72. Eslam Elnikety, Tamer Elsayed, Hany E. Ramadan, “iHadoop: Asynchronous Iterations for

MapReduce”, CloudCom 2011, Athens, Greece

http://www.nvidia.com/
http://www.e-sciencecity.org/EN/gridcafe/what-is-the-grid.html
http://www.cascading.org/

!112
73. Condie, Tyson, et al. "MapReduce online." Proceedings of the 7th USENIX conference on

Networked systems design and implementation. 2010.
74. Kune, Raghavendra, et al. "Genetic algorithm based data-aware group scheduling for Big Data

 clouds." Big Data Computing (BDC), 2014 IEEE/ACM International Symposium on.
IEEE, 2014.

75. Li, Runhui, and Patrick PC Lee. "Making mapreduce scheduling effective in erasure-coded
storage clusters." Local and Metropolitan Area Networks (LANMAN), 2015 IEEE In-
ternational Workshop on. IEEE, 2015.

76. Shen, Haiying, et al. "Probabilistic network-aware task placement
for mapreduce scheduling." Cluster Computing (CLUSTER), 2016 IEEE International Confer-
ence on. IEEE, 2016.

77. Hashem, Ibrahim Abaker Targio, et al. "Multi-objective scheduling of MapReduce jobs in big
data processing." Multimedia Tools and Applications (2017): 1-16.

78. He, Chen, Ying Lu, and David Swanson. "Matchmaking: A new mapreduce scheduling
technique." Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on. IEEE, 2011.

79. He, Chen, Ying Lu, and David Swanson. "Real-time scheduling in mapreduce clusters." High
Performance Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Confer-
ence on. IEEE, 2013.

80. He, Chen. "Molecular dynamics simulation based on hadoop mapreduce." (2011).
81. M. Mustafa Rafique, Benjamin Rose, Ali Raza Butt, and Dimitrios S. Nikolopoulos. CellMR:

A Framework for Supporting Mapreduce on Asymmetric Cell-Based Clusters. In IPDPS,
pages 1–12, 2009.

82. Marwa Elteir, Heshan Lin, and Wu-chun Feng. StreamMR: An Optimized MapReduce
Framework for AMD GPUs. In ICPADS ’11, Tainan, Taiwan, December 2011

83. Chen He, Derek Weitzel, Ying Lu, David Swanson, “HOG: Distributed Hadoop MapReduce on
 the Grid”, in the proceeding of SC12, 5th MTAGS Workshop

84. Sangwon Seo, Ingook Jang, et al., “HPMR: Prefetching and Pre-Shuffling in Shared MapRe-
duce Computation Environment.” IEEE International Conference on Cluster Computing and
Workshops, 2009

85. X. Zhang, Z. Zhong, S. Feng, B. Tu, J. Fan,  “Improving Data Locality of MapReduce by
Scheduling in Homogeneous Computing Environments”, in 9th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA), pp. 120-126, 2011

86. M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Job sched-
uling for multi-user mapreduce clusters,” EECS Department, University of California,
Berkeley, Tech. Rep., Apr 2009.

87. Dhall, Sudarshan K., and C. L. Liu. "On a real-time scheduling problem." Operations R e-
search 26.1 (1978): 127-140.

88. Jensen, E. Douglas, C. Douglass Locke, and Hideyuki Tokuda. "A time-driven scheduling
model for real-time operating systems." Proceedings of the 6th IEEE Real-Time Sys-
tems Symposium. 1985.

89. Perkins, James R., and P. R. Kumark. "Stable, distributed, real-time scheduling of flexible
manufacturing/assembly/diassembly systems." Automatic Control, IEEE Transactions on 34.2
(1989): 139-148.

90. Audsley, Neil C., et al. "‘Hard Real-Time Scheduling: The Deadline Monotonic A p-
proach." Proceedings 8th IEEE Workshop on Real-Time Operating Systems and Software.
1991.

91. Van Tilborg, Andre M., and Gary M. Koob. Foundations of real-time computing: Scheduling
and resource management. Vol. 141. Springer, 1991.

92. Hyman, Jay M., Aurel A. Lazar, and Giovanni Pacifici. "Real-time scheduling with quality of
service constraints." Selected Areas in Communications, IEEE Journal on 9.7 (1991):
1052-1063.

93. Sha, Lui, and John B. Goodenough. "Real-time scheduling theory and Ada." Mission-Critical
Operating Systems (1992): 294-319.

94. Stankovic, John A., et al. "Implications of classical scheduling results for real-time
systems." Computer 28.6 (1995): 16-25.

!113
95. Garvey, Alan J., and Victor R. Lesser. "Design-to-time real-time scheduling." Systems, Man

and Cybernetics, IEEE Transactions on 23.6 (1993): 1491-1502.
96. Stankovic, John A., et al. "The case for feedback control real-time scheduling." Real-Time

Systems, 1999. Proceedings of the 11th Euromicro Conference on. IEEE, 1999.
97. Shakkottai, Sanjay, and Alexander L. Stolyar. Scheduling algorithms for a mixture of real-time

 and non-real-time data in HDR. Bell Laboratories, Lucent Technologies, 2000.
98. Lu, Chenyang, et al. "Feedback control real-time scheduling: Framework, modeling, and

algorithms*." Real-Time Systems 23.1 (2002): 85-126.
99. Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic integrated

scheduling of hard real-time, soft real-time and non-real-time processes. In Proceedings of the
24th IEEE International Real-Time Systems Symposium, pages 396–409, December 2003.
Cancun, Mexico.

100. Sha, Lui, et al. "Real time scheduling theory: A historical perspective." Real-time systems 28.2
 (2004): 101-155.

101. C. L. Liu and James, W, Layland, “Scheduling algorithms for multiprogramming in a hard-real-
 time environment”, J. ACM, 20:46-61. Jan 1973

102. K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed scheduling of tasks with deadlines
 and resource requirements. IEEE Transactions on Computers, 38(8):1110–1123, 1989.
ISSN 0018-9340.

103. M. L. Dertouzos and A. K. Mok. Multiprocessor online scheduling of hard-real-time tasks.
IEEE Trans. Softw. Eng., 15(12):1497–1506, 1989. ISSN 0098-5589.

104. Krithi Ramamritham, John A. Stankovic, and Perng fei Shiah. Efficient scheduling algorithms
for real-time multiprocessor systems. IEEE Trans. on Parallel and Distributed Systems, 1(2):
184–194, April 1990.

105. Davender Babbar and Phillip Krueger. On-line hard real-time scheduling of parallel tasks on
partitionable multiprocessors. In ICPP, pages 29–38, 1994.

106. G. Manimaran and C. S. R. Murthy. An efficient dynamic scheduling algorithm for multi-
processor real-time systems. IEEE Trans. on Parallel and Distributed Systems, 9(3):312–319,
1998. URL citeseer.ist.psu.edu/manimaran98efficient.html.

107. David Steere, Ashvin Goel, Joshua Gruenberg, Dylan Mcnamee, Calton Pu, and Jonathan Wal-
pole. A feedback-driven proportion allocator for real-rate scheduling, 1999.

108. Xiao Qin and Hong Jiang. Dynamic, reliability-driven scheduling of parallel real-time jobs in
heterogeneous systems. In Proc. of 30th International Conference on Parallel Processing, pages
 113–122, Valencia, Spain, September 2001.

109. John A. Stankovic, Tian He, Tarek Adbelzaher, Mike Marley, Gang Tao, Sang Son, and
Chenyang Lu. Feedback control scheduling in distributed real-time systems*. In In IEEE
Real-Time Systems Symposium, pages 59–72, 2001.

110. Lichen Zhang. Scheduling algorithm for real-time applications in grid environment.
In Proc.of IEEE International Conference on Systems, Man and Cybernetics, volume 5, page 6
pp., Hammamet, Tunisia, October 2002.

111. Reda A. Ammar and Abdulrahman Alhamdan. Scheduling real time parallel structure on cluster
 computing. In Proc. of 7th IEEE International Symposium on Computers and Com-
munications, pages 69–74, Taormina, Italy, July 2002.

112. Tyagi, Rinki, and Santosh Kumar Gupta. "A Survey on Scheduling Algorithms for Parallel and
 Distributed Systems." Silicon Photonics & High Performance Computing. Springer,
Singapore, 2018. 51-64.

113. Xie, Guoqi, et al. "High performance real-time scheduling of multiple mixed-criticality func-
tions in heterogeneous distributed embedded systems." Journal of Systems Architecture 70
(2016): 3- 14.

114. Alghamdi, Mohammed I., et al. "Towards two-phase scheduling of real-time applications in
distributed systems." Journal of Network and Computer Applications 84 (2017): 109-117.

115. Chen, Fangbing, Ji Liu, and Yuesheng Zhu. "A Real-Time Scheduling Strategy Based on
Processing Framework of Hadoop." Big Data (BigData Congress), 2017 IEEE International
Congress on. IEEE, 2017.

116. Thirunavukkarasu, Gokul Sidarth, and Ragil Krishna. "Scheduling Algorithm for Real-Time
Embedded Control Systems using Arduino Board." KnE Engineering 2.2 (2017): 258-266.

!114
117. Dantong Yu and Thomas G. Robertazzi. Divisible load scheduling for grid computing.

In Proc.of IASTED International Conference on Parallel and Distributed Computing and Sys-
tems, Los Angeles, CA, November 2003.

118. Yao, Yi, et al. "Haste: Hadoop yarn scheduling based on task-dependency and resource-
demand." Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on. IEEE,
2014.Lin, Jia-Chun, et al. "ABS-YARN: A formal framework for modeling Hadoop YARN
clusters." International Conference on Fundamental Approaches to Software Engineering.
Springer Berlin Heidelberg, 2016.

119. Yigitbasi, Nezih, et al. "Energy efficient scheduling of MapReduce workloads on heteroge-
neous clusters." Green Computing Middleware on Proceedings of the 2nd International
Workshop. ACM, 2011.

120. Chen, Yanpei, et al. "Energy efficiency for large-scale mapreduce workloads with significant
interactive analysis." Proceedings of the 7th ACM european conference on Computer Systems.
 ACM, 2012.

121. Fan, Zhe, et al. "GPU cluster for high performance computing." Proceedings of the 2004
ACM/IEEE conference on Supercomputing. IEEE Computer Society, 2004.

122. Owens, John. GPUs: Engines for future high-performance computing. CALIFORNIA UNIV
DAVIS, 2004.

123. D. Luebke, and M. Harris. "General-purpose computation on graphics hardware." Workshop,
SIGGRAPH. 2004.

124. M. Pharr, and R. Fernando. "GPU Gems 2: Programming Techniques For High-Performance
Graphics And General-Purpose Computation Author: Matt Pharr, Randi." (2005): 880.

125. D. Luebke. "CUDA: Scalable parallel programming for high-performance scientific c o m-
puting." Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International
Symposium on. IEEE, 2008.

126. J. Nickolls, I. Buck, M. Garland, and K. Skadron,“Scalable parallel programming with
CUDA,” ACM Queue, pp. 40–53, Mar./Apr. 2008

127. J. D.Owens, M. Houston, D. Luebke, S. Green, J. E.Stone, and J. C.Phillips, “GPU c o m-
puting,” Proc IEEE, vol. 96, no. 5, pp. 879–899,2008.

128. R. Colby, R. Ramanan, P. Arun, B. Gary, and K. Christos, “Evaluating mapreduce for multi-
core and multiprocessor systems,” in Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 13–24.

129. Lee, Seyong, Seung-Jai Min, and Rudolf Eigenmann. "OpenMP to GPGPU: a compiler
framework for automatic translation and optimization." ACM Sigplan Notices 44.4 (2009):
101- 110.

130. Y. Yan, M. Grossman, and V. Sarkar, “Jcuda: A programmer-friendly interface for accelerating
java programs with cuda,” Lecture Notes in Computer Sciences, vol. 5704 (2009), pp. 887–
899, 2009

131. B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-means on
commodity gpus with cuda,” Computer Science and Information Engineering, 2009 WRI
World Congress, pp. 651–655, 2009.

132. Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin:exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping. In Micro-42: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 45–55, New
York, NY, USA, 2009. ACM.

133. Vignesh T. Ravi, Wenjing Ma, Vignesh T. Ravi, and Gagan Agrawal. Compiler and Runtime
Support for Enabling Generalized Reduction Computations on Heterogeneous Parallel
Configurations’. In Proceedings of International Conference on Supercomputing (ICS), 2010.

134. Sundaresan Venkatasubramanian and Richard W. Vuduc. Tuned and wildly asynchronous sten-
cil kernels for hybrid cpu/gpu systems. In ICS ’09: Proceedings of the 23rd
international conference on Supercomputing, pages 244–255, New York, NY,USA,
2009. ACM

135. Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A Map Reduce Framework for
Programming Graphics Processors. In Third Workshop on Software Tools for MultiCore Sys-
tems (STMCS), 2008

!115
136. Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin. MapCG: Writ-

ing Parallel Program Portable between CPU and GPU. In PACT, pages 217–226, 2010.
137. Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. "Hybrid map task scheduling for gpu-

based heterogeneous clusters." Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on. IEEE, 2010.

138. J. A. Stuart, C.-K. Chen, K.-L. Ma, and J. D. Owens, “Multi-gpu volume rendering
using mapreduce,” 1st International Workshop on MapReduce and its Applications, June 2010.

139. F. Ji and X. Ma. Using Shared Memory to Accelerate Mapreduce on Graphics Processing
Units. In IPDPS ’11, pages 805–816, 2011

140. L. Chen, and Gagan Agrawal. "Optimizing MapReduce for GPUs with effective shared memo-
ry usage." Proceedings of the 21st international symposium on High-Performance Parallel
and Distributed Computing. ACM, 2012.

141. Qiao, Zhi, et al. "MR-Graph: a customizable GPU MapReduce." Cyber Security and Cloud
Computing (CSCloud), 2015 IEEE 2nd International Conference on. IEEE, 2015.

142. Liu, Lifeng, et al. "A-MapCG: An Adaptive MapReduce Framework for GPUs." Networking,
Architecture, and Storage (NAS), 2017 International Conference on. IEEE, 2017.

143. Lang, Willis, and Jignesh M. Patel. "Energy management for mapreduce clusters." Proceedings
of the VLDB Endowment 3.1-2 (2010): 129-139.

144. Wirtz, Thomas, and Rong Ge. "Improving MapReduce energy efficiency for computation
intensive workloads." Green Computing Conference and Workshops (IGCC), 2011 In-
ternational. IEEE, 2011.

145. Cardosa, Michael, et al. "Exploiting spatio-temporal tradeoffs for energy-aware MapReduce in
the Cloud." Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE,
2011.

146. Chou, Jerry, Jinoh Kim, and Doron Rotem. "Energy-aware scheduling in disk storage
systems." Distributed Computing Systems (ICDCS), 2011 31st International Conference on.
IEEE, 2011.

147. Yigitbasi, Nezih, et al. "Energy efficient scheduling of MapReduce workloads on heteroge-
neous clusters." Green Computing Middleware on Proceedings of the 2nd International
Workshop. ACM, 2011.

148. Chen, Yanpei, et al. "Energy efficiency for large-scale mapreduce workloads with significant
interactive analysis." Proceedings of the 7th ACM european conference on Computer Systems.
 ACM, 2012.

149. Ren, Da Qi. "Algorithm level power efficiency optimization for CPU–GPU processing element
in data intensive SIMD/SPMD computing." Journal of Parallel and Distributed
Computing 71.2 (2011): 245-253.

150. Liu, Wenjie, et al. "A waterfall model to achieve energy efficient tasks mapping for large
scale gpu clusters." Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
 2011 IEEE International Symposium on. IEEE, 2011.

151. Huo, Hongpeng, et al. "An energy efficient task scheduling scheme for heterogeneous GPU-
enhanced clusters." Systems and Informatics (ICSAI), 2012 International Conference on.
IEEE, 2012,(pp.623-627)

152. Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin:exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping. In Micro-42: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 45–55, New
York, NY, USA, 2009. ACM.

153. Kim, SungYe, et al. "Power efficient mapreduce workload acceleration using integrated-
gpu." Big Data Computing Service and Applications (BigDataService), 2015 IEEE First
International Conference on. IEEE, 2015.

154. P-value, https://en.wikipedia.org/wiki/P-value

https://en.wikipedia.org/wiki/P-value

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2-2018

	Scheduling in Mapreduce Clusters
	Chen He

	SCHEDULING IN MAPREDUCE CLUSTERS-Mar 20 (1) 2

