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Abstract

Cloud computing has recently gained popularity as a cost-effective model for hosting
and delivering services over the Internet. In a cloud computing environment, a cloud
provider packages its physical resources in data centers into virtual resources and of-
fers them to service providers using a pay-as-you-go pricing model. Meanwhile, a service
provider uses the rented virtual resources to host its services. This large-scale multi-tenant
architecture of cloud computing systems raises key challenges regarding how data centers
resources should be controlled and managed by both service and cloud providers.

This thesis addresses several key challenges pertaining to resource management in cloud
environments. From the perspective of service providers, we address the problem of select-
ing appropriate data centers for service hosting with consideration of resource price, service
quality as well as dynamic reconfiguration costs. From the perspective of cloud providers, as
it has been reported that workload in real data centers can be typically divided into server-
based applications and MapReduce applications with different performance and scheduling
criteria, we provide separate resource management solutions for each type of workloads.
For server-based applications, we provide a dynamic capacity provisioning scheme that
dynamically adjusts the number of active servers to achieve the best trade-off between en-
ergy savings and scheduling delay, while considering heterogeneous resource characteristics
of both workload and physical machines. For MapReduce applications, we first analyzed
task run-time resource consumption of a large variety of MapReduce jobs and discovered
it can vary significantly over-time, depending on the phase the task is currently execut-
ing. We then present a novel scheduling algorithm that controls task execution at the
level of phases with the aim of improving both job running time and resource utilization.
Through detailed simulations and experiments using real cloud clusters, we have found
our proposed solutions achieve substantial gain compared to current state-of-art resource
management solutions, and therefore have strong implications in the design of real cloud
resource management systems in practice.
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Chapter 1

Introduction

With the rapid development of Internet technologies, recent years have witnessed the rise
of large-scale online service applications such as web search, social networking and content
delivery. As these applications often require significant storage, processing and network-
ing capacities, it is a critical challenge to design large-scale computing infrastructures for
supporting these applications in a cost-effective manner.

Cloud computing has recently emerged as a computing model for addressing this chal-
lenge. Specifically, cloud computing aims at harnessing massive resource capacities of data
centers to support applications in a scalable, flexible, reliable and dynamic manner. In
a cloud computing environment, the traditional role of service providers is divided into
two [126]: The Cloud providers (also known as infrastructure providers [22]) package phys-
ical resources (e.g. servers) into virtual resources (e.g. Virtual Machines (VMs)), and
allocate them to service providers; The service providers, on the other hand, use the allo-
cated virtual resources to run their service applications. Compared with traditional private
service hosting models, cloud computing offers the following salient features that make it
attractive to business owners:

• Multi-tenancy : The physical resources in data centers are shared among multiple
service providers. By separating virtual resources from physical resources, cloud
providers can assign and reassign virtual resources to service providers according
to their demand. This also provides management flexibilities to improve resource
utilization and to minimize operational cost.

• Elasticity : A service provider can rapidly acquire and release resources to scale-up
and down in accordance with demand fluctuation and system conditions. As a result,
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service providers are given the flexibility to manage their service infrastructures in a
dynamic manner, which leads to improved application performance and to reduced
operational cost.

• Ubiquitous network access : Cloud computing promotes the use of the Internet as the
infrastructure for service delivery. As a result, cloud services are easily accessible
through a variety of devices with Internet connections.

• Efficient-support for data intensive applications : Cloud computing frameworks such
as MapReduce [1] and Dryad [121] are designed for large-scale data-intensive com-
putations in a data center environment. By dividing a large computational workload
into small and independent tasks, these frameworks can leverage massive processing
and storage capacities of data centers to process large volumes of data in very short
time.

• Usage-based pricing : Cloud computing adopts utility-based pricing models. Specif-
ically, service providers are charged according to their actual resource usage. This
model is attractive to service providers as it lowers service operating cost by charging
customers on a per-use basis.

Despite the success of Cloud computing and its apparent benefits, the rapid growth in
scale and complexity of todays Cloud services and infrastructures also imposes significant
challenges on the design of the underlying resource management systems. First, a resource
management system must be capable of managing extremely large-scale workloads con-
sisting of vast numbers of applications with diverse performance objectives. Moreover, as
cloud computing also advocates on-demand resource provisioning, cloud resource manage-
ment must be done in a dynamic fashion, according to both demand fluctuation and system
conditions. Second, service providers and cloud providers generally have different resource
management objectives. The goal of a service provider is to find a resource allocation that
best meets its service level objectives (SLOs), while minimizing the total resource usage
cost. In contrast, the goal of a cloud provider is to maximize the total resource utilization
(which typically translates into revenue from leasing resources to service providers), while
minimizing the total operational cost. As service providers and cloud providers face differ-
ent resource management concerns, separate solution techniques should be developed for
each of them. Driven by its importance and difficulties, cloud resource management has
attracted significant attention from the research community, with many research topics
being actively pursued in recent years [126].

The overarching theme of this thesis is the development of resource management tech-
niques that address several key inefficiencies of today’s cloud resource management sys-
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tems. In the remainder of this chapter, we will first provide an overview of cloud computing
systems, including their architectures and typical workload characteristics. Then we will
provide a detailed description of the resource management challenges in cloud computing
environments. Lastly, we conclude this chapter by summarizing the main contributions of
this dissertation.

1.1 Cloud Computing System Architecture

The general architecture of a cloud computing system is shown in Figure 1.1. Specifically,
the physical resources in each data center are organized in racks of physical machines.
The racks are connected through data center networks, which offer high bandwidth, low
latency connections between physical machines. In order to reduce capital investments,
cloud providers often build their data centers with large quantities of commodity machines
and switches, as opposed to expensive high-end equipment. However, as commodity equip-
ment may become outdated over-time, it is necessary to upgrade data centers with new
equipment once a few years. As a consequence, modern cloud data centers often consist
of multiple generations of physical machines and switches with heterogenous processing,
storage and networking capacities.

In a cloud computing environment, an application can be divided into one or more
components (e.g. servers and processes) that run in separate virtual containers. Each
virtual container occupies a certain amount of resources (including CPU, memory, disk
and network) of the physical machine on which it is scheduled. The most common kinds
of virtual containers are virtual machines (VMs) [25, 115], although other types of virtual
containers can also be used in practice 1. The applications owned by service providers are
then used to provide services to end users across the Internet.

At run-time, each cloud provider runs a resource management system (sometimes re-
ferred to as a cloud operating system [119] [124]), which is responsible for provisioning
physical resources and scheduling virtual containers on physical machines. In a typical
usage scenario, a service provider submits application requests to the resource manage-
ment system, specifying the number of virtual containers required for each application as
well as the resource requirements for each virtual container. These application requests
are handled by the scheduler, which is responsible for scheduling virtual containers on

1Not all cloud systems use virtualization technology. For example, Google use software containers to
run application processes instead of virtual machines. But software containers are analogous to VMs in
Google’s cloud infrastructure.
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Figure 1.1: Cloud Computing System Architecture

physical machines. Advanced schedulers also provide the feature of dynamic reassigning a
virtual container to other physical machines using techniques such as VM migration [85]
and process migration [102].

Meanwhile, a resource monitor is responsible for collecting run-time statistics of each
machine, including machine availability, resource utilization and virtual container status.
The information collected by the resource monitor enables the scheduler to construct a
global view of the data center, allowing the scheduler to make informed scheduling deci-
sions. For example, when the scheduler needs to schedule a new request and none of the
machines has sufficient capacity to schedule new virtual containers, the scheduler places
the new request in a scheduling queue, or simply rejects the request.

In addition to racks of physical machines and data center networks, a data center also
contains power distribution and cooling systems. The power distribution system is respon-
sible for delivering power to individual physical machines and network switches and routers.
As physical machines may generate large amounts of heat over time, the cooling system
is responsible for reducing the temperature of data center, in order to prevent hardware
failures due to overheating conditions [83]. It has been widely reported that both power
generation and cooling requires a significant amount of energy. For example, data centers
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consumed about 1.3% of the worldwide electricity supply in 2011 [18]. Such large energy
consumption also raises environmental concerns regarding the carbon emissions incurred
in the electricity generation process, and their impact on the surrounding environment.
Motivated by this observation, cloud providers are constantly looking for ways to reduce
energy cost. These include not only better management solutions for power distribution
and cooling systems, but resource management techniques as well.

In practice, cloud providers typically build data centers across multiple geographical
regions, in order to reduce (1) network latency for accessing cloud services, (2) capital ex-
penditure (CAPEX) and operational expenditure (OPEX) for constructing and operating
data centers, respectively [54]. As a result, a service provider is given the freedom of choos-
ing the data centers in which its service application should be placed. At the same time,
data centers in different geographical location may be subjected to different electricity costs.
In many parts of the U.S., the electricity grid of each region is managed independently by
a Regional Transmission Organization (RTO) which operates wholesale electricity markets
in order to match supply and demand for electricity. As a result electricity prices in each
region can vary independently over-time. This raises interesting challenges regarding the
management of workload, power distribution and cooling systems in data centers in order
to save energy. We discuss these challenges in Section 1.3.2.

1.2 Cloud Applications

Even though cloud data centers typically run a wide variety of applications, it has been
reported that applications in real cloud data centers can be divided into the following two
types [127]:

• User-facing applications : These applications are responsible for interacting directly
with end users. Examples of user-facing applications include web search, content
delivery, gaming, and front-end of social networking applications. User-facing appli-
cations typically consist of one or more front-end and back-end servers. For example,
a typical 3-tier web application consists of a web server, application server and a
database server. Each of these servers runs in a dedicated virtual container. All 3
containers may or may not reside in a single physical machine.

• Batch applications : These applications do not interact directly with end users during
their execution. In a typical scenario, a service provider submits a batch applica-
tion to the resource management system and waits for its completion. During its
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execution, the batch application does not require additional instructions from the
service provider. Examples of batch applications include web crawling, data mining
and maintenance activities. It has been reported that most of these applications are
data-intensive and typically executed using parallel computing frameworks such as
MapReduce [127].

To better understand the resource and performance characteristics of batch applications,
we now provide a brief description of the MapReduce programming model, as it is one of
the most prevalent parallel computing frameworks for batch applications in today’s cloud
data centers. Originally proposed by Google, MapReduce has been designed for processing
large data sets [1]. In a MapReduce system, a batch application is called a job that can be
sub-divided into multiple tasks. A typical MapReduce job consists of two types of tasks:
map and reduce. The input of a MapReduce job is divided into multiple file blocks of equal
size (typically either 64MB or 128MB) stored in the underlying distributed file system,
such as Google File System (GFS) [52] or Hadoop Distributed File System (HDFS) [2].
At run-time, each file block is processed by a map task to generate a set of intermediate
key/value pairs. Each reduce task then merge all the intermediate values associated with
the same key to generate the final output. For example, Figure 1.2 illustrates the execution
of a word count job whose input consists of a collection of text files. A single map task
emits a number of intermediate key-value pairs. Each key-value pair contains a word and
the number of occurrence of the word in the file block the map task processes. These map
tasks are executed independently of each other. Once all the map tasks are finished, the
intermediate word counts produced by map tasks are collected (also known as shuffled),
sorted, and summed up by reduce tasks to compute the total count for each word in the
text collection. As for implementation, each map (or reduce task) can be executed by a
mapper (or reducer) process that runs in a dedicated virtual container (e.g. a Java Virtual
Machines).

Currently, the most popular implementation of MapReduce is Apache Hadoop MapRe-
duce [8]. A Hadoop cluster is composed of a large number of machines with one node
serving as the master and the others acting as slaves. The master node runs a job sched-
uler (also known as the job tracker [8]) that is responsible for scheduling tasks on slave
nodes. Each slave node runs a local scheduler (also known as the task tracker [8]) that
is responsible for launching and allocating resources for each task. To do so, the local
scheduler launches a Java Virtual Machine (JVM) that executes the corresponding map
(or reduce) task.

The original Hadoop adopts a slot-based resource allocation scheme, where the sched-
uler assigns tasks to each machine based on the number of available slots on that machine.
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Figure 1.2: MapReduce Wordcount Example

The number of slots on each machine is usually determined by the machines capacity.
However, it can also be manually specified in the cluster configuration file.

As a Hadoop cluster is usually a multi-user system, many users can simultaneously
submit jobs to the cluster. The job scheduling is then performed by the job tracker, which
maintains a queue of jobs to schedule. A slave node runs a task tracker that keeps track
of the number of occupied map and reduce slots. The task tracker communicates with the
job tracker in the master node by periodically transmitting a heartbeat message containing
its state information. The state information contains the current status of each running
task as well as the number of unused slots on the machine. The job tracker will use the
provided information to make scheduling decisions.

Generally speaking, user-facing applications and batch applications have different per-
formance objectives. The typical Quality-of-Service (QoS) metric for user-facing applica-
tions is user-perceived latency (i.e., how long it takes for the application to return the
response upon receiving a user request) that is measured in orders of seconds. On the
other hand, the typical QoS metric for batch applications is running time (i.e. how long
it takes for the application to finish processing the input data set), which ranges from
several seconds to several days. Even though both types of applications can be scheduled
by the same resource management system, in this dissertation we study the scheduling
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problem for each type of application separately, as better scheduling policies can be de-
vised if scheduler is aware of the application type and performance objectives. This is also
the typical case in production environments, where dedicated clusters are used to execute
MapReduce and Dryad jobs [63, 69]. Public cloud providers such as Amazon also provide
a separate service called Elastic MapReduce [7] specifically for MapReduce applications.
Nevertheless, recent work such as Mesos [62] has also studied the problem of sharing data
center resources among multiple scheduling frameworks.

Lastly, despite limited application categories, workloads in real cloud data center often
show significant heterogeneity in terms of resource requirements, running time, arrival
rates and priority levels [98]. Specifically, it has been reported that even though most
of the applications in Google data centers consume very little resources, a few dozens of
application can be very large and consume most of the resources (over 80%) in each data
center. At the same time, applications also show diverse resource requirements. Some
applications are CPU intensive, while others have high demand for I/O speed and network
bandwidth. The running time of applications can also vary significantly: although most
of the MapReduce jobs can finish within seconds, a few MapReduce jobs can take very
long time to complete. Furthermore, like many other service systems, the arrival rate of
applications requests can vary significantly over time, and sometimes can be quite spiky
[32]. Lastly, applications have different priority levels. Typically, production jobs (i.e., jobs
that generate revenue) are given higher priorities than non-production jobs (e.g., research
experiments). Similar characteristics have also been found in Microsoft and Facebook data
centers [63] [123] [53]. The heterogenous nature of cloud workload has a profound impact
on the design of scheduling policies and resource management solutions, as we describe in
the next section.

1.3 Resource Management Challenges

This section provides an overview of the key research challenges pertaining to resource man-
agement in cloud computing environments. As both service providers and cloud providers
are involved in resource management activities, we summarize the challenges faced by
service providers and cloud providers separately in the following subsections.

1.3.1 Challenges for Service Providers

In a cloud computing environment, a service provider leases resources from a cloud provider
to run its applications. Therefore, the goal for a service provider is to achieve desired per-
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formance objectives as specified in its service level agreement (SLA), while minimizing
the total resource rental cost. However, performance objectives vary from application to
application. For MapReduce applications, the typical objective is to find the appropriate
job configuration (e.g. number of mapper and reducer processes), in order to meet job
running time requirements while minimizing the total resource usage for running the map-
pers and reducers. This problem has been studied extensively in recent research literature.
Even though several simple techniques have been shown to provide decent performance in
practice [110] [90] [105], more sophisticated schemes, for example using machine learning
techniques, have also been proposed in the literature (e.g. [61]).

In addition, the problem for user-facing applications is much more challenging. The
typical QoS metric for user-facing applications is user-perceived latency. This metric is not
only determined by the processing time and queueing delay of each request, but also the
network delay due to carrying traffic over the Internet. The processing time and queueing
delay can be controlled by carefully provisioning the resources allocated to the application.
However, the network delay can only be minimized by placing the application in data
centers close to end users. This problem is known as the service placement problem [73] [87],
which has been studied for over a decade under many contexts, such as Peer-to-peer (P2P)
networks and content delivery networks (CDNs) [92] [133] [42]. A key challenge here is
that demand can fluctuate over time. In the context of cloud computing environments, the
use of virtualization technologies enables service applications to be dynamically placed or
migrated across multiple geographically distributed data centers. As cloud computing also
provides support for dynamic (i.e., “elastic”) resource provisioning, it is desirable to adjust
the placement of applications dynamically. However, existing solutions for dynamic service
placement are mostly heuristic driven, and lack a systematic approach for dealing with the
dynamic nature of the problem, where demand and system conditions (e.g., resource price
and network conditions) can change over time. More importantly, none of the existing
solutions has considered the cost of reconfiguration in the optimization model, which may
cause system instability under dynamic conditions. Due to these difficulties, the service
placement problem has been an active research topic that has been pursued by various
research communities [87] [130] [73] [113] [68].

1.3.2 Challenges for Cloud Providers

As the owner of physical data centers, cloud providers are responsible for allocating re-
sources to service providers to maximize the total income, while minimizing operational
expenditures. Typical operational expenditures in data center environments include costs
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for server and network maintenance, energy (power and cooling) cost, as well as mainte-
nance cost for building, floor, and racks [15]. In order to maximize total revenue from
leasing resources while minimizing total operational costs, cloud providers are facing the
following management challenges:

• Workload Scheduling : As mentioned previously, cloud data centers often consist of
machines with heterogeneous resource capacities and performance characteristics. At
the same time, cloud workloads show significant diversity in terms of priority, resource
requirements, demand characteristics and performance objectives. Therefore, it be-
comes a challenging problem to determine the optimal assignment of resources to
applications in order to satisfy application performance objectives, while maximizing
the total utilization of the physical resources. Furthermore, it is advantageous to
design separate schedulers for each type of applications. For instance, it is possible
to design more effective schedulers for MapReduce jobs by leveraging the knowledge
of the characteristics of MapReduce jobs.

• Energy Management : Data centers consume significant amount of energy. Therefore,
cloud providers have strong motivation to improve data center energy efficiency. The
ultimate objective of energy management is to make data centers energy-proportional,
meaning that the energy consumption should be proportional to the actual resource
usage in the data center. However, commodity machines today are far from being
energy proportional. It has been reported that most of the commodity computers
consume more than 50% of the maximum energy consumption even when they are
idle [26]. Therefore, the most effective way to save energy is to turn the machines
off when they are not being used. Various techniques, such as server consolida-
tion [112] [108], have been shown to be effective for minimizing the number of used
machines. More recently, energy efficient hardware architectures that enable slowing
down CPU speeds (e.g. Dynamic Voltage Frequency Scaling (DVFS) [114]) has be-
come commonplace. Recent research has also begun to study energy-efficient data
center networks. However, in practice, reducing energy consumption often produces
a negative impact on application performance. Therefore, it is a challenging issue to
find the optimal trade-off between minimizing energy consumption and optimizing
application performance in a dynamic cloud environment.

• Pricing: Pricing is another important issue not only because it directly affects the
revenue of the cloud provider, but also because it can influence the allocation strat-
egy of the service providers, which will eventually affect the effectiveness of a re-
source allocation scheme. Currently most of the providers such as Amazon EC2 [6],
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Rackspace [17] leases virtual resources at a fixed price. However, recent work has
suggested that this flat rate charging scheme can lead to inefficient outcomes, due
to the mismatch between resource availability and demand fluctuation [129] [56]. A
common solution for this problem is to adjust the price according to supply and
demand using dynamic pricing schemes such as auctions. However, understanding
the influence of dynamic pricing schemes on service providers is still a challenging
problem that has not been fully addressed in the literature.

1.4 Research Contributions

In this thesis, we address the following research challenges pertaining to resource manage-
ment in cloud computing environments:

1.4.1 Dynamic Service Placement in Geographically Distributed
Clouds

As mentioned previously, the service placement problem concerns the placement of user-
facing applications across multiple geographically distributed data centers. It can be de-
scribed as follows: Given a geographically distributed and time varying demand from cus-
tomers, where should a service provider place its service application, in order to minimize
the resource rental cost while satisfying customer’s SLA requirements? Current solutions
to this problem have not fully analyzed the dynamic aspect of the problem, where demand
and system conditions (e.g. resource price and network conditions) can change over time.
In particular, if the placement configuration needs to be changed, the cost of reconfigura-
tion (such as VM migration) must be considered in the optimization model.

To tackle this problem, we have developed a control-theoretic solution using the Model
Predictive Control (MPC) framework [72]. Experiments show our proposed approach can
minimize the resource rental cost by adapting the placement decisions according to both
demand and resource price fluctuations, while minimize the cost of placement reconfig-
uration. Using real workload traces, we also demonstrate that a greedy, reconfiguration
cost-oblivious algorithm sometimes can cause significant oscillation in service placement
configurations, whereas our approach can significantly outperform the greedy solution in
terms of both resource cost and reconfiguration cost.
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1.4.2 Dynamic Heterogeneity-Aware Resource Provisioning in
the Cloud

Data centers today consume a tremendous amount of energy for power distribution and
cooling. Dynamic capacity provisioning is a promising approach for reducing energy con-
sumption by dynamically adjusting the number of active machines to match resource de-
mands. However, despite extensive studies of the problem, existing solutions for dynamic
capacity provisioning often assume that servers and resource demands are homogeneous.
In practice, it has been observed that both resource demands and machine configurations
have heterogeneous characteristics, as described before. This raises the question of how to
dynamically determine the number of machines of each type to be active at any given time
in order to minimize total energy consumption while meeting the Service Level Objectives
(SLOs) of heterogeneous workloads.

To answer this question, we designed Harmony, a heterogeneity-aware resource man-
agement system for dynamic capacity provisioning in cloud computing environments. We
first use the k-means clustering algorithm to divide the workload into distinct task classes
with similar characteristics in terms of resources, running times and performance require-
ments. Then we present a control-theoretic solution for dynamically adjusting the number
of machines of each type in order to minimize total energy consumption in the data center
while achieving the desired SLO in terms of scheduling delay.

1.4.3 Improving MapReduce Performance Through Predictive
Scheduling

MapReduce jobs are the most prevalent type of batch applications in production data cen-
ters. The execution of both map and reduce tasks can be divided into phases. For example,
a Reduce task can be divided into 3 phases: Shuffle, Sort and Reduce. One interesting
observation is that different phases have different resource consumption characteristics.
For example, Shuffle is an network-intensive phase with very little CPU usage, whereas the
Merge phase consumes primarily CPU power and no network bandwidth. This raises the
question of whether the scheduler can effectively consolidate tasks on individual machines,
taking into consideration the fine-grained resource characteristics of each phase.

To take advantage of phase-level resource consumption characteristics, we have designed
PRISM, a novel scheduling algorithm that effectively consolidates MapReduce tasks on
servers based on fine-grained resource usage characteristics of each phase. A salient feature
of this scheduler is its ability to schedule individual task execution phases of both map and
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reduce tasks. Experiments show PRISM offers high resource utilization and provides up
to 1.3× improvement in job running time compared to the current Hadoop resource-aware
schedulers.

1.5 Thesis Organization

The remainder of this document is organized as follows. Chapter 2 provides a comprehen-
sive overview of related work, technical preliminaries, and previous results on the problems
we address in this thesis. Chapter 3, 4 and 5 are organized around the 3 research contribu-
tions described in the thesis, namely, the dynamic service placement in distributed clouds,
Harmony, a heterogeneity-aware resource provisioning scheme and PRISM, a fine-grained
phase-level resource scheduler for MapReduce. Finally, Chapter 6 provides concluding
remarks and outlines potential future research.
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Chapter 2

Related Work

This chapter surveys prior work on resource management in cloud computing environments.
As discussed previously, cloud resource management concerns both service providers and
cloud providers. Therefore, we describe the management challenges faced by each of them
and discuss how they are addressed in the current research literature.

2.1 Resource Management Concerns of Service

Providers

Given an application to be run in the cloud, the objective of the service provider is to
determine how many resources should be leased from each data center in order to ensure
the application performance objective is achieved. In practice, the situation differs from
application to application. As mentioned before, cloud applications can be divided into
two types: user-facing applications and batch applications. For batch applications such
as MapReduce jobs, due to the data-intensive nature and high I/O requirement of these
applications, all the virtual containers (i.e., tasks) belonging to a single job are executed in
the data center where the input data is stored, in order to avoid inter-data center communi-
cation. Therefore, the objective of the service provider is to decide the number of mappers
and reducers as well as their resource requirements to meet job running time requirement.
On the other hand, the situation is more complicated for user-facing applications, where
end users can spread over a wide range of geographical locations. In this case, deciding how
many instances of the application to be placed in each data center to meet the response
time requirement becomes a challenging problem.
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In the following subsections, we first discuss the state-of-the-art research on resource
allocation for user-facing applications in Section 2.1.1. Then we describe the recent work
on resource allocation for MapReduce applications.

2.1.1 Request Specification for User-facing Applications

Placing a service across geographically distributed data centers has received significant
attention in the recent research literature. Given a variety of data center locations with
different resource prices and service quality in terms of access latency, the service placement
problem seeks to determine the optimal placement of applications in data centers, in order
to minimize total resource cost while achieving a desired service level objective (SLO) in
terms of response time.

Generally speaking, the service placement problem falls into the category of facility
location problems (FLP), which is a topic that has been studied extensively in operations
research since the 1970’s [71] [80]. The problem can be described as follows: Given a
graph G = (V ∪ F,E), where V denotes the set of demand locations and F denotes the
set of candidate locations where service facilities can be placed, let dij ∈ R+ represent the
distance between a demand location j ∈ V and candidate location i ∈ F . Assume there
is an opening cost fi ∈ R+ for opening a service facility in i ∈ F , the objective of the
problem is to (1) determine the subset of locations S ⊆ F where services should be placed,
and (2) assign each demand location j ∈ V to an open service facility σ(j) ∈ S, in order
to minimize the total operational cost and total service distance. The exact definition of
the total operational cost leads to several different variants of the problem:

• If the objective is to minimize the total facility opening cost and total service distance,
(i.e. C =

∑
i∈S fi +

∑
j∈V djσ(j)), the problem is called the facility location problem.

• If the number of facilities is a predetermined constant K ∈ N+, and the objective is
to minimize the total service distance (i.e. C =

∑
j∈V djσ(j)), the problem is called

the K-median problem.

• If there is an upper bound d ∈ R+ on the distance between j and its service facility
σ(j), (i.e. djσ(j) ≤ d), and the objective is to minimize the total facility opening cost
(i.e. C =

∑
i∈S fi), the problem becomes the dominating set problem.

In addition, the above problems also have their capacitated versions. If each service i ∈ F
has a capacity Ci that specifies the maximum number of clients that can be assigned to i,
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Figure 2.1: Facility Location Problem

(i.e. |{j : σ(j) = i}| ≤ Ci), the above problems become the capacitated FLP, capacitated
K-median problem and the capacitated dominating set problem, respectively.

Unfortunately, all of these problems are NP-hard to solve. In fact, they are also
APX-hard [58], meaning it is unlikely to find polynomial time algorithms that can find
near-optimal solutions in all cases. Therefore, most of the existing solutions for these
problems rely on polynomial time heuristic algorithms. From a theoretical perspective,
the quality of an algorithm for an NP-hard problem is determined by its approximation
ratio ρ, which is defined as the ratio between the objective function of the solution produced
by the algorithm SOL and the objective function of the optimal solution OPT [107]:

ρ =
SOL

OPT
.

Among all the problems defined above, the facility location problem is the simplest, and
most widely studied in the literature. It has been shown that a simple greedy algorithm
can achieve an approximation factor of ρ = O(log n), and usually works well in practice
(e.g. Internet topology graphs [92]). As depicted by Algorithm 1, the greedy algorithm
proceeds in iterations. In each iteration, the algorithm tries to find a facility i ∈ F and
a set of unassigned demands S ∈ V such that assigning S to i achieves minimum average
per-demand cost CiS, which is defined as:

CiS =
1

|S|
(fi +

∑
j∈S

dij)
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Algorithm 1 Greedy Algorithm for Facility Location Problem
1: U ← V
2: while U 6= {∅} do
3: Find (i, S) that minimizes CiS among all (i, S) ⊆ V × U
4: Open facility i, assign demand in S to i
5: U ← U\S
6: end while

The algorithm repeats until all demand are assigned.

This greedy algorithm can be easily adapted to solve the other two problems. In
fact, it can be shown that this greedy algorithm can be modified to create approximation
algorithms for the K-median [65] and the dominating set problem [107]. Furthermore, due
to its simplicity and the fact that it usually performs well in practice, it has been commonly
used as a baseline for evaluating the quality of placement algorithms.

In the distributed systems literature, the service placement problem has been studied
under many different contexts, most notably in content delivery networks (CDNs). In this
context, the problem is called the replica placement problem, which aims at finding the
optimal placement of content replicas across multiple geographically distributed content
servers. The original replica placement problem was introduced by Qiu et al. [92], who
formulated the problem as a K-median problem, and showed that the greedy algorithm
(adaptation of Algorithm 1) is able to find a solution with cost within 1.1-1.6× that of the
optimal solution. Subsequently, the replica placement problem has received considerable
attention in the distributed systems literature. Radoslavov et al. [94] propose a fan-out
heuristic that places replicas at nodes with high node degree in the AS topology graph
can perform within 1.1− 1.2× times the cost of the the greedy solution. Tang et al. [104]
give a variant of the replica placement problem similar to the capacitated dominating set
problem, where the distance between a client and its replica is upper-bounded by fixed
distance. They found that for tree topologies, the replica placement problem can be solved
optimally in polynomial time. Karlsson [68] describe a framework for selecting replica
placement heuristics, based on the problem objective, constraints and knowledge about
the network topology.

Most of the early studies on the service placement have mainly focused on the case
where the global network topology is static and can be fully obtained by the placement
algorithm. However, this is not necessarily the case in practice. For large-scale or dynamic
service infrastructures (e.g. peer-to-peer networks), collecting global information can be
expensive. Furthermore, as service demand can change over time, the service placement
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needs to be updated over-time. This may incur additional management overhead in terms
of replication cost. As a result, recent research on service placement problem has been fo-
cusing on two specific aspects of the problem: (1) Enabling distributed service placement,
and (2) Dynamic service placement that considers the reconfiguration cost. Distributed
replica placement is important when running a centralized algorithm is inefficient in terms
of measurement overhead and computational cost. For example, Chen et al. [42] study the
problem of placing content replicas in a Tapestry [132] P2P network, and proposed sev-
eral heuristics for distributed content replication to ensure contents are replicated close to
sources of demand. Several researchers have also devised distributed approximation algo-
rithms for the facility location problem [84] [49]. Laoutaris et al. [73] describe a distributed
local search heuristic for improving the quality of service placement solutions.

On the other hand, the dynamic service placement problem aims at incrementally
adjusting the service placement in order to find a balance between service quality and
dynamic reconfiguration cost. In this context, the dynamic reconfiguration cost refers to
the cost of dynamically replicating the service (e.g. copy over the data content and updating
the service state). The importance of dynamic reconfiguration has been reported in several
recent studies. For example, the paper by Oppenheimer et al. [87] studies the problem of
placing applications on PlanetLab. The authors discovered that CPU and network usage
can be heterogeneous and time-varying among the Planet-Lab nodes. Furthermore, a
placement decision can become sub-optimal within 30 minutes, suggesting that dynamic
service migration can potentially improve the system performance. A simple load-sensitive
service placement strategy is then proposed, and has been shown to significantly outperform
a random placement strategy. Presti et al. [91] formulate the dynamic service placement
problem as a mixed integer program (MIP), for which a distributed local search algorithm
was developed. Our previous work [30] also propose a distributed heuristic for capacitated
facility location problem and showed that at steady state, the algorithm is able to achieve a
constant performance guarantee. However, these local search algorithms do not minimize
the total reconfiguration cost. Rather, the reconfiguration cost is controlled indirectly
by limiting the number of local search moves. More recently, Arora et al. [23] provide
an approximation algorithm for the Dynamic service problem in the context of virtual
networks that explicitly considers the reconfiguration cost, however, the approximation
guarantee is weak and not sufficient to guarantee the quality of the solution in the general
case.

With the growth of large-scale data center infrastructures, recently the replica place-
ment problem has been adapted to placing online services across geographically distributed
data centers. The goal is to minimize the resource rental cost while achieving performance
objectives specified in the SLA. Even though the replica placement model is still applicable,

18



data center environments exhibit several interesting features that can lead to simplified so-
lutions. First, the number of data centers is usually small (in the order of 10s), mainly due
to the high investment for building data centers. Furthermore, each data center usually
has large free capacity. As a result, a common assumption made for the service placement
problem in data centers is that the number of replicas can take fractional values. This
allows the problem to be formulated as a convex optimization problem that can be solved
optimally in polynomial time. In the implementation, the fractional values can be rounded
up to the nearest integer value. This is a reasonable assumption when the number of ser-
vice instances is large. Using this assumption, Rao et al. [95] study the problem of server
placement in a multi-electricity market environment with the goal of minimizing electricity
cost. More recently, Liu et al. [79] present a distributed solution for the same problem, tak-
ing into consideration both request response time and energy cost. However, both of these
works only studied the static case of the problem. As both service and resource price can
change independently over time, it is necessary to find a solution that dynamically adjust
the placement strategies to optimize both service performance and cost, while minimizing
the overhead of reconfiguration.

2.1.2 Request Specification for MapReduce Applications

MapReduce is another type of application that is popular in data center environments.
However, different from user-facing applications, MapReduce applications are data inten-
sive and usually scheduled in these data centers that store the input data sets, in order to
minimize inter-data center communication. Thus, for each MapReduce job, the objective
of the service provider becomes determining appropriate request specification in terms of
the minimum number of mappers and reducers, as well as the amount of resources allo-
cated to each mapper and reducer, such that total resource rental cost is minimized while
ensuring the job is able to meet performance objective in terms of job completion time.

To achieve this objective, a typical approach employed by service providers is job pro-
filing [110], which typically records the following information about the execution of a
job:

• The job specification, which specifies the input size, the number of map and reduce
tasks, the number of mappers (i.e. processes used to execute map tasks) and reducers
(i.e. processes used to execute reduce tasks) and other job specific input parameters
[61].

• The run-time task characteristics, which includes the running time, the consumption
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of CPU, memory, disk and network resources of each task. Additional information,
such as intermediary file size, can also be recorded in the job profile.

Once a job is profiled, the service provider can use the profile information to decide how
much resources are required to minimize total cost while meeting the job running time
objective. For example, ARIA [111] is a system that uses profiled information to decide
the number of mappers and reducers. The authors first discover that for individual jobs,
task running time is stable (within 10% variation) over multiple runs. Based on this
observation, an analytic model for task competition time for all three phases: map, shuffle
and reduce, is developed. The parameters of the model are determined either through
historical logs or using small scale experiments. Using the proposed model, the authors
give a polynomial time algorithm for determining the minimum number of required mapper
and reducers to ensure the job finishes before its deadline.

Similarly, Tian et al. [105] propose a technique for estimating the completion time of
MapReduce jobs using a simple performance model. Based on a few assumptions, their
model breaks a map task into 4 phases: Read, Map, Partition, Sort, and Combine. The
cost of each phase is modeled as a function of the total number of map tasks in the job
and number of slots available for the job. Similarly, a reduce task is divided into 4 phases:
Copy, Sort, Reduce, and Write Back. The actual values of parameters used in the cost
model can be estimated using small scale experiments. Using this performance model,
the authors formulate optimization problems for (1) optimizing job performance subject
to budget constraint, and (2) minimizing the budget used subject to completion time
constraint. Their initial experiments show the prediction model achieves good accuracy.

More recently Herodotou et al. present a self-tuning system for Hadoop called Starfish
[61] which, similar to [105] and [111], uses profiled information to predict job running time
and optimize job configurations. Starfish provides a sophisticated profiler that is capable
of collecting detailed statistical information about MapReduce task execution, such as the
time each task spends in each phase, and the size of intermediary files. Based on the
statistical information collected by the profiler, Starfish uses machine learning techniques
to answer questions concerning job performance under various input parameters. To date,
this is the most sophisticated tool available for helping service providers determining the
best specification for MapReduce jobs.

Despite these recent efforts, however, existing solutions still suffer from several limita-
tions. In particular, all of the existing solutions have assumed that run-time task usage
is stable over-time.However, this is not true in practice as run-time task usage can vary
significantly, depending on the phase it is currently running. For example, the network I/O
consumption during the shuffle phase can be significantly higher than during the reduce
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phase. As a result, using the profiles produced by task-level profilers can lead to inefficient
job schedules that can potentially cause either resource under-utilization or contention.

2.2 Resource Management Concerns of Cloud Providers

As the owner of the physical infrastructure of data centers, the objective of the cloud
provider is to schedule resource requests, in order to maximize total revenue, minimize the
operational expenditure while satisfying the SLA requirements. In this section, we focus
on two important activities, namely workload scheduling and energy management. For
workload scheduling, we separately discuss the scheduling of traditional VM workload and
MapReduce scheduling.

2.2.1 Scheduling VM Workload in Data Centers

Traditional data centers schedule applications that run in dedicated containers (e.g. VMs).
Even though not every cloud uses virtualization technology, the problem of scheduling these
applications is commonly studied under the topic of VM scheduling [126]. Given physical
machines with various resource capacities and heterogeneous VMs of different size in terms
of CPU, memory, disk and bandwidth requirements, the VM scheduling problem aims at
finding an assignment of VMs to physical machines that minimizes the scheduling delay
(the difference between the time at which a VM request is received and the time it is
scheduled) and maximize the utilization of the physical machines used.

In the context of Cloud data centers, the VM scheduling problem can be modeled
as a variant of the online vector bin-packing problem [39], where VMs arrive and leave
the system over-time. Based on this intuition, it is natural to adopt online bin-packing
algorithms, such as first-fit, best-fit and round-robin first-fit (i. e., running first-fit in a
round-robin fashion for the purpose of load balancing) for VM scheduling. Indeed, this is
the case for many real cloud systems. For example, it has been reported that Microsoft uses
a variant of first-fit bin packing algorithm for VM scheduling in its clusters [75]. Google uses
a variant of the best-fit algorithm for workload scheduling in its compute clusters [100].
Specifically, a score is computed for each VM-to-machine assignment, and each VM is
assigned to the machine with the highest score. In open source cloud platforms, it has been
reported that Eucalyptus [11] provides the first-fit and round-robin first-fit algorithm for
VM scheduling. To study the effectiveness of bin-packing algorithms for VM scheduling, the
work by Lee et al. [75] recently quantitatively evaluated the performance of several variants
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of the best-fit and first-fit algorithms using a production workload for the Microsoft Bing
product. For the best-fit based algorithms, the authors proposed several ways to combine
multiple resource requirements into a single score to measure the “fitness” of a VM-to-
machine assignment. Their evaluation result show that all the bin-packing algorithms can
produce schedules that are no worse than 20% of the optimal schedule, in terms of the
number of physical machines used. Furthermore, “smart” bin-packing algorithms that
consider utilization of multiple resource types can reduce the performance gap to less than
10%. These quantitative evaluations support the use of bin-packing algorithms for VM
scheduling in data centers.

So far the discussion on VM scheduling has been focusing on the assignment of VMs
to physical machines. Another important aspect of VM scheduling that has been largely
overlooked is the allocation of network resources. As cloud applications can also be sensitive
to network performance, recent research proposals have advocated to offer Virtual Data
Center (VDCs) instead of VMs [59] [131]. A VDC consists of virtual machines (VMs)
connected through switches, routers and links with guaranteed bandwidth. Scheduling
VDCs in data centers is more complicated than VM scheduling. In fact, it generalizes the
virtual network embedding problem, which has been shown to be strongly NP-hard [43].
However, the bin-packing algorithms described above can be adapted for VDC scheduling.
In particular, a greedy algorithm that assigns each VM to a machine that minimizes the
average distance to all assigned VMs has been proposed in several recent systems including
Oktopus [24], CloudNaaS [29] and VDC-Planner [131]. These studies show that this simple
greedy algorithm generally performs well for network-aware VM scheduling.

2.2.2 MapReduce Scheduling

MapReduce is another of type of application that is commonly found in data centers.
Even though VM scheduling algorithms can also be used for MapReduce scheduling, lever-
aging the domain knowledge of the MapReduce framework can lead to a better scheduling
algorithm for MapReduce jobs.

Generally speaking, the responsibility of a MapReduce job scheduler is to assign tasks
to machines with consideration for both efficiency and fairness. To achieve efficiency, job
schedulers must reduce resource wastage and maintain high utilization of the cluster. At
the same time, fairness is also an important concern since a cluster is often shared by many
jobs from multiple users. The most common fairness criteria are [63]: (1) preventing one
job from occupying the whole cluster, delaying the completion of everyone else’s jobs; (2)
ensuring low latency for small or short jobs while maintaining a high overall throughput.
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The level of fairness also reflects stability of service quality. Because resources are fairly
divided among the running jobs, each job will experience similar speed up or slow down
depending on workload conditions. Job response time thus becomes steady and predictable
under fair scheduling. A system with reasonable and predictable response time is often
considered more desirable than a system that is faster on average but is highly variable in
job performance.

The original Hadoop uses a First-In-First-Out (FIFO) scheduler for job scheduling.
However, FIFO is not a fair scheduling policy, because a large job can occupy the entire
cluster and delay the execution of all subsequent small jobs. Based on this observation,
the Hadoop fair scheduler [14] was developed to allow multiple jobs to share the cluster
resources [122]. As mentioned previously, in the Hadoop implementation, the resources
in Hadoop cluster are divided into multiple slots. At run-time, the Hadoop fair scheduler
computes the fair share of resources (e.g., the fraction of the total slots) that each job
should receive. By default, the Hadoop fair scheduler uses the max-min fair sharing policy
for assigning tasks to slots, even though it also allows job owners to specify the minimum
number of slots the job should receive.

Quincy [63] is another fair scheduler that achieves fairness by limiting the number of
running tasks belonging to each job at a given time. Specifically, it defines fairness as the
objective of ensuring a job j which runs for Tj seconds given exclusive access to a cluster
should take no more than J · Tj seconds when there are J jobs concurrently executing on
that cluster. The intuition is that when multiple jobs share the same cluster, each job
should experience similar performance gain or performance loss in terms of running time.
For example, we can consider a cluster that currently has J jobs running, and each job is
executing nj tasks concurrently. Suppose each job j can execute Nj tasks simultaneously
when it is given exclusive access to the cluster, then the objective of the fair scheduler is
to satisfy

n1

N1

=
n2

N2

= ... =
nJ
NJ

, (2.1)

as doing so can ensure every job receives similar speed-up (or slow-down) in terms of job
running time. In this case, we say a job j has the highest deficit if it receives the lowest
fair share (i.e.

nj
Nj
≤ nl

Nl
for all 1 ≤ l ≤ j). Therefore, a simple greedy scheduling algorithm

is to schedule a task that belongs to the job with the highest deficit in attempt to equalize
their fair share, as shown in Equation 2.1. Furthermore, different from the Hadoop fair
scheduler, Quincy considers data locality in addition to job fairness. Data locality is a
major concern because transferring large volumes of data across the data center network
can be expensive in terms of both latency and bandwidth usage. To achieve both fairness
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and data locality, Quincy encodes the scheduling decisions as a flow network where edge
weights represent the demands of job scheduling. In this way, the cost of each scheduling
decision is quantified in terms of the cost for data transfer and the overhead of terminating
tasks. Every time a scheduling decision needs to be made (for example, a new job arrives),
a min-cost flow algorithm is used to find a minimum cost assignment of tasks to machines.
Quincy then launches new tasks according to the minimum cost assignment. Through
experiments, it has been reported that Quincy can significantly outperform a queue-based
FIFO scheduler in large MapReduce clusters.

Another line of research on MapReduce scheduling focuses on the issue of mitigating
stragglers. A straggler (also known as an outlier [21]) is a task that runs much slower
than other tasks that belong to the same job. Stragglers can become a major performance
bottleneck for MapReduce jobs. For example, if a map task is experiencing a long running
time, then the execution of all the reducers will be delayed since they are all waiting for the
intermediatory output from the map task. To address this issue, the work by Zaharia et al.
proposes a scheduling algorithm called Longest Approximate Time to End (LATE) [125],
which monitors the progress of every running task and launches speculative copies of tasks
that have longest expected time to finish. More recently, Ananthanarayanan et al. [21]
provide an extensive study of root causes of stragglers found in a Microsoft compute cluster,
and discovered resource contention, imbalance in input size for reduce tasks and lacking
of data locality (i.e. map tasks placed far from the machines hosting the input data) are
the major causes of stragglers. They present Mantri, a system that monitors tasks and
reduces outliers using cause- and resource-aware techniques. Mantri’s strategies include
restarting outliers, greedy network-aware placement of tasks and protecting outputs of
valuable tasks. Similar to LATE, Mantri preempts and restarts a task elsewhere if doing
so can improve the task running time. Compared to LATE, Mantri further considers the
impact of network congestion on a task’s progress, resulting in much better performance
than LATE.

The original Hadoop MapReduce implements a slot-based resource allocation scheme,
which does not take run-time task resource consumption into consideration. As a result,
several recent studies have reported the inefficiency introduced due to such simple design,
and proposed solutions. For instance, Ghodsi et al. [53] propose Dominate Resource Fair-
ness (DRF) as a fairness criterion for determining how much resource of each type should
be allocated to each job. DRF is a generalization of the max-min fairness [116] to multiple
resource types. As tasks belonging to different jobs have different bottleneck resources
(called dominant resources), DRF essentially ensures that the share of the dominant re-
source is allocated according to the max-min principle. Specifically, consider a cluster of
R types of resources whose capacity for each type of resource r ∈ R is Cr. Assume for
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each user (or job) j, the resource consumption of type r is cjr, then the dominant share of

user (or job) j can be computed as maxr∈R

{
cjr
Cr

}
. At run-time, the DRF scheduler aims

at equalize their fair share

max
r∈R

{
c1r

Cr

}
= max

r∈R

{
c2r

Cr

}
= ... = max

r∈R

{
cJr
Cr

}
, (2.2)

The authors of [53] further show that compared to many other fairness criteria, DRF is
Pareto-efficient, strategy-proof, envy-free, and incentivizes users to share their resources.
Subsequently, DRF scheduling algorithm has been extended into a network scheduling
algorithm called Dominant Resource Fair Queuing (DRFQ), which is a variant of the
Start-time Fair Queuing (SFQ) [55] that achieves flow-level DRF in network components
such as routers, firewalls and intrusion detection systems.

Polo et al. propose an Adaptive Resource-aware Scheduler (RAS) [90] that uses job
specific slots for scheduling. The size of each slot is determined by the task requirements
captured in job profiles, as described in Section 2.1.2. By considering the task resource
requirements as well as job deadline requirements, RAS is able to find a better tradeoff
between resource utilization and job running time than the current Hadoop Fair Scheduler.

Sharma et al. recently propose a framework called MROrchestrator [101] to shift the
resource allocation from a slot-based model to a more flexible and adaptive resource sharing
model. In particular, MROrchestrator dynamically detects resource bottleneck on each
machine, and reallocates resources among tasks to fairly share the bottleneck resource.
However, MROrchestrator is mainly designed for mitigating resource contention among
collocated tasks. It does not provide a scheme for resource-aware scheduling.

More recently, Xie et al. have proposed PROTEUS [120], a framework that allocates
virtual clusters (similar to VDCs) for MapReduce jobs, taking into consideration the time
varying bandwidth requirement of each job. Through simulations and preliminary experi-
ments using a small MapReduce cluster, it can be shown that by considering job bandwidth
requirements at a fine-grained level, it is possible to improve the job throughput by up to
40%. However, PROTEUS mainly focuses on allocating network bandwidth among col-
located jobs, and ignores other system resources such as CPU and disk. Finally, Next
Generation Hadoop [16] represents a major endeavor towards efficient resource allocation
in Hadoop MapReduce clusters. It offers the ability to specify the size of the task virtual
machine in terms of CPU, memory, disk, and network usage.

One of the key limitations of the above resource-aware scheduling schemes is that they
assume task usage does not vary significantly over the course of execution. However, this
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is not true in practice. As mentioned in Section 1.2, the execution of a MapReduce task
can be divided into phases with significantly different resource requirements. As a result,
recent work has begun to study MapReduce scheduling at phase-level. More recently,
Lin et al. [78] have studied the problem of optimizing the overlapping of shuffle phases
with map phases. Specifically, the MapReduce scheduler is modeled as an overlapping
tandem queue and the optimal phase scheduling problem can be shown to be an NP-hard
optimization problem. The authors then propose an online scheduling algorithm that has
guaranteed competitive ratio compared to the optimal offline solution. However, they have
not considered the different resource consumption characteristics of each phase as well as
network resource allocation.

2.2.3 Energy Management in Data Centers

Improving energy efficiency is another major concern of cloud providers. In practice, the
operational expenditure on energy not only comes from running physical machines, but also
from cooling down the entire data center. For large companies like Google, a 3% reduction
in energy cost can translate into over a million dollars in cost savings [93]. On the other
hand, governmental agencies continue to implement standards and regulations to promote
energy-efficient (i.e., “Green”) computing [10]. Motivated by these observations, cutting
down electricity cost has become a primary concern of today’s data center operators.

In the research literature, a large body of recent work tries to improve energy efficiency
of data centers. A plethora of techniques have been proposed to tackle different aspects of
the problem. In the context of resource management, one of the simplest yet most effective
approach for reducing energy cost is to dynamically adjust the data center capacity by
turning off unused machines, or to set them to a power-saving (e.g., “sleep”) state. This is
supported by the evidence that an idle machine can consume as much as 50% of the power
when the machine is fully utilized [40] [50]. Unsurprisingly, a number of efforts are trying
to leverage this fact to save energy by minimizing the number of active machines using a
combination of server consolidation and dynamic capacity provisioning:

Server consolidation aims at finding an assignment of workload to machines in order to
minimize the number of used machines. Typically, server consolidation is achieved through
(1) resource-aware workload scheduling, as described in Section 2.2.1, and (2) dynamically
adjusting workload placement using migration. The former approach relies on the scheduler
to find a good initial placement of workloads, whereas the second approach realizes that
the initial workload placement can become sub-optimal over time, and improves workload
placement using techniques such as VM migration.
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On the other hand, dynamic capacity provisioning aims at dynamically controlling the
number of active machines by switching machines on and off (or in and out of “sleep”
state), based on various factors such as the workload arrival rate, workload performance
requirement and the electricity price. While over-provisioning the data center capacity
can lead to sub-optimal energy savings, under-provisioning the data center capacity can
cause significant performance penalty in terms of scheduling delay, which is the time a
resource request has to wait before it is scheduled in the data center. Furthermore, there
is usually a reconfiguration cost associated with switching machine state. For example, it
has been reported that frequently switching a machine on and off will reduce the lifetime
of the machine (often known as the “wear-and-tear” effect) [77]. Therefore, it is necessary
to consider both the scheduling delay and the reconfiguration cost while carrying out a
dynamic capacity provisioning procedure.

There is a large body of literature that has investigated one or more aspects of server
consolidation and dynamic capacity provisioning. For example, pMapper [109] is a dy-
namic, migration-aware server consolidation scheme that aims at finding a tradeoff between
application performance and power consumption. As the server consolidation problem gen-
eralizes the bin-packing problem, several greedy heuristics are then proposed for placing
new VMs. As workload placement can become stale over time, local search heuristics
are used to incrementally convert the current workload placement to the desired work-
load placement. Through simulations using realistic workload traces, it has been shown
that pMapper is capable of achieving significant energy savings. Similarly, Mistral [67] is
a workload consolidation framework that dynamically adjusts VM placement in order to
achieve the optimal tradeoff between power consumption, application performance, and
adaptation costs (which includes the cost of adjusting VM capacity, live migrating VMs
and shutting down/restarting a physical machine). Mistral relies on offline measurements
to estimate run time adaptation costs, and a workload predictor to estimate the periods
during which the workload for each application is stable. As the optimal VM consolida-
tion problem is NP-hard, Mistral proposes a self-aware A∗ search algorithm to prune the
search space. Experiments show that Mistral can significantly reduce the cost of energy
and performance penalty due to VM migration.

Another energy reduction technique that has been proposed in the literature is tem-
perature management. The goal is to minimize the total cooling cost while preventing
the occurrence of overheating conditions. The overheating conditions are undesirable as
they have a negative impact on hardware reliability and often cause higher server energy
consumption due to increased fan speed. To understand why temperature management is
important, recently El-Sayed et al. [48] have analyzed traces from several Google data cen-
ters to identify the impact of temperature on machine reliability and energy consumption.
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They found the machine failure rate tends to grow linearly with the average machine tem-
perature. On the other hand, high temperature can cause significant increase in machine
power consumption due to increased fan speed. Furthermore, machine temperature may
vary across data centers. In order words, certain machines may become “hot spots” of
the data center. In this context, Bash et al. [28] have studied the problem of dynamically
controlling the air conditioning system based on the measured temperature in data cen-
ters. Moore et al. [83] have studied the problem of temperature-aware workload placement.
They discovered that, by placing workload according to the temperature profile of each
physical machine, it is possible to reduce the cooling cost substantially. Through experi-
ments, the authors show that in the best case, temperature-aware workload placement can
reduce cooling cost by almost 50%.

It has been reported that data center networks are responsible for 10%-20% energy
consumption of a typical data center. As a result, recent studies have proposed techniques
for saving energy in data center networks. For example, ElasticTree [60] is a network
power manager that finds a subset of network components (links and switches) where
network traffic can be feasibly routed using these components. This allows the unused
components to be turned off to save energy. The authors first present a formal model
for minimizing energy consumption in data center networks, and showed that optimally
solving this problem is intractable in practical settings. Then the authors propose two
heuristics, including a greedy bin-packing algorithm and a topology-aware heuristic that
takes advantage of the symmetry of the recently proposed fat-tree topology. Experiments
using real data center traffic traces show ElasticTree is able to reduce data center energy
consumption by up to 50%. Similarly Abts et al. [20] describe several ways for designing
energy-proportional data center networks, including topology design and dynamic switch
link-rate adjustments. Clearly, as physical servers become more energy efficient, the energy
efficiency of network equipment is becoming an increasingly important field for research
innovation.

So far all the discussion on energy efficiency has been focusing on the case of a single
data center. However, most cloud providers build data centers across multiple geographical
regions. Interestingly, the energy cost of data centers in different regions can differ signifi-
cantly from time to time. In many parts of the U.S., the electricity grid of each region is
managed independently by a Regional Transmission Organization (RTO) which operates
wholesales electricity markets in order to match supply and demand for electricity. Fur-
thermore, the source of energy can differ from region to region. Even though traditional
energy sources such as fossil fuel are still being harvested nowadays, they generally have
negative impact on the environment in terms of carbon emission. As result, there is a
strong incentive to use green energy as a source of electricity to power up data centers.
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However, green energy such as solar can be easily obtained in areas such as California,
and tidal energy can only be harvested in coastal regions. Therefore, it is a challenging
problem to find ways to leverage differences in energy source and price to reduce total
energy consumption and carbon emissions across multiple data centers. In this context,
Rao et al. [95] have studied the problem of service placement and request routing in order
to minimize energy cost by leveraging the electricity price difference across data centers.
Gao et al. [51] have studied the problem of achieving a 3-way tradeoff among service access
latency, energy cost and carbon emission for CDNs, using request routing and dynamic
data placement. However, a limitation of all existing approaches is that as service demand
can fluctuate significantly over-time (e.g. flash crowd effect), it is necessary to reconfigure
the placement configuration at a rapid rate in order to ensure high service performance
at all times. However, none of the existing works has considered the cost of dynamic
reconfiguration.
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Chapter 3

Dynamic Service Placement in
Geo-Distributed Clouds

3.1 Introduction

Large-scale online service providers have been increasingly relying on geographically dis-
tributed cloud infrastructures for service hosting and delivery. In this context, a key chal-
lenge faced by service providers is to determine the locations where service applications
should be placed such that the hosting cost is minimized while key performance require-
ments (e.g. response time) are assured. This involves solving two problems jointly: (1)
deciding on the number of servers placed in each data center, and (2) routing each request
to appropriate servers to minimize response time. As cloud providers typically offer on-
demand and elastic resource access, it is possible to adjust the number of servers to match
service demand in a dynamic way. Furthermore, the cost of reconfiguration (i.e., the cost
of adding and removing servers) must be taken into account. The consideration of recon-
figuration cost is important for ensuring the system stability and minimum management
overhead and costs. In particular, these operations have costs for setup (e.g., VM image
distribution) and tear-down (e.g., data fetching / state transfer). For example, it has been
reported that starting up a VM in Amazon EC2 cloud can take between 20 seconds to more
than 13 minutes, depending on the VM size and OS running in the VM [81]. Thus, the
time it takes to scale up the service needs to be considered when making scaling decisions,
as under-provisioning servers during the scaling up process can cause revenue loss. Thus,
it is in the interest of service providers to reduce such reconfiguration cost.

On the other hand, the price of resources offered by cloud providers is also subject to
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Figure 3.1: Model of service placement in geographically distributed data centers

change. In particular, energy consumption is a major contributor to the operational cost
of a data center. In many regions of the U.S., the electricity grid of each region is managed
independently by a Regional Transmission Organization (RTO) which operates wholesales
electricity markets in order to match supply and demand for electricity, as illustrated in
Figure 3.1. As a result, electricity prices in each region can vary independently over time.
Based on this fact, recently there have been several studies on dynamic server placement
[79,95] and request dispatching [93] in private clouds, taking into account fluctuating energy
costs. The same benefit can be achieved in public clouds by introducing some degree of
dynamic pricing, such as the one being used by Amazon EC2 [5].

Combining the above observations, a service provider is facing the problem of how to
dynamically control the number of servers placed in each data center to minimize the total
resource cost while satisfying SLA requirements, taking into consideration the fluctuation of
both demand and resource price. We call this problem dynamic service placement problem
(DSPP). This problem shares many similarities with traditional replica placement problem
in [68, 92, 113]; however, the price fluctuation is often neglected in the existing literature.
Recently, there have been several studies on this problem (e.g., [79]). However, the dynamic
aspect of the problem, particularly the cost of dynamically starting and shutting down
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servers, is still largely unaddressed.

In this chapter, we study the DSPP problem using both control and game theoretic
methods. In our solution, we first propose a control framework based on Model Predictive
Control (MPC) approach to provide an online adaptive control mechanism which aims
at reducing service provider costs, namely, resource allocation and reconfiguration costs.
We further extend this framework to a game-theoretic model to consider the competition
among multiple service providers, taking into consideration the capacity constraint of each
data center. This model is realistic for several reasons: (1) on-demand resource alloca-
tion mechanisms can often lead to situations where resource demand exceeds the capacity
available in a data center (e.g., during holiday seasons). (2) Recently, there are numerous
proposals that advocate for small-scale data centers (e.g., [45], [64]). In both cases, lim-
ited data center capacity can result in some service providers to fail to obtain the desired
resources. In this case, we analyze the outcome of resource competition and show that
there exists an optimal outcome, and provide algorithms to compute this outcome. Fi-
nally, using simulations based on realistic topologies, demand and prices, we demonstrate
the effectiveness of our proposed approach and analyze various properties of the resource
competition game.

The remainder of the chapter is organized as follows. Section 3.2 presents the proposed
framework for a single service provider. Section 3.4.6 describes the problem formulation
of DSPP for a single service provider. The design of our controller for DSPP is provided
in Section 3.5. In Section 3.6, we extend our framework to a multi-provider scenario
and analyze the outcome of the resource competition game. Section 3.7 presents our
experimental results. Finally, we conclude the chapter in Section 3.8.

3.2 System Architecture and Design

We consider a multi-regional cloud environment that consists of multiple data centers situ-
ated at different geographical locations. Our system architecture consists of 4 components
as depicted in Figure 3.2: (1) request routers, (2) monitoring module, (3) analysis and
prediction module, and (4) the resource controller. Both the request routers and the mon-
itoring module can be directly owned by the service provider, or leased from other service
providers who offer them as services. In particular, the service provider controls request
routers (also known as redirectors) which are responsible for redirecting the requests to
the appropriate servers [89, 118]. In practice, request redirection can play a key role in
improving server accessibility through load balancing, latency minimization and content
replication. For instance, Amazon EC2 Elastic Load Balancing service [6] is an example
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Figure 3.2: System architecture for a single service provider

of a simplified request router. More sophisticated designs (e.g. DONAR [118]) have also
been studied in the literature. The monitoring module is responsible for collecting statis-
tics, including the amount of requests received (i.e. the demand) at the different request
routers and the prices offered by each data center. The analysis and prediction module
models the dynamics of demand and price fluctuations, and forecasts the future values
of both demand and resource prices. In practice, it has been shown that both demand
and price in production data centers generally exhibit daily fluctuation patterns [79], [93].
In this case, the demand can be reasonably predicted using historical traces. However,
there are occasions where both demand and resource price can behave in an unexpected
manner, e.g., flash-crowd effect or system failure. Alternative prediction models such as
autoregressive (AR) models [35], and demand characterization models [31] may be used.
It is important to point out that our control-theoretic model is generic and can work with
any demand prediction technique.

Finally, the resource controller is responsible for solving the DSPP and making online
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control decisions at run time. It dynamically adjusts the number of servers leased in each
data center in order to satisfy the SLA requirements (in terms of latency), while minimizing
the resource rental cost. Furthermore, it informs the request routers about the number
of servers allocated in each data center. The request routers must then find appropriate
assignment of demand to the allocated servers. In our system architecture, each request
router adopts a simple strategy which is to split demand proportionally among the servers
that satisfy the SLA requirements. The formal demand assignment model is discussed in
Section 3.13.

3.3 Understanding Server Reconfiguration Cost

One of the key differences between our framework and previous work is the modeling of
server reconfiguration cost, which includes both the cost of scaling up and scaling down
servers within a data center. Modeling server reconfiguration cost is important for several
reasons. First, starting up a new server running in a VM takes time. Several recent
papers [88] [81] have examined the VM start-up time and shut-down time. The VM start-
up time is defined as the time it takes for the VM to become accessible through ssh after
the acquisition request is submitted. Similarly, the shut-down time is defined as the time
it takes for the cloud to release the resources occupied by the VM. Mao et. al. measured
the VM start-up and shut-down time for several major cloud providers including Amazon,
Windows Azure and Rackspace [81]. The measurements show that VM startup time is
independent of the time of day at which the request is issued. However, it is typically
dependent on the cloud provider, the data center that schedules the VM as well as the
VM image size. For example, it has been shown that on average it takes roughly 100
seconds to start a single VM of instance types m1.small, c1.medium and m1.large
running Linux operating system. This number can be up to 9 times greater for Windows
instances. Furthermore, the VM start-up time grows linearly with VM image size. A VM
with 4GB image can take up to 400 seconds to start up, which is almost 4× the start-up
time of a VM with 1GB image. Moreover, VM start-up time can also vary from data
center to data center. It has been found that VM start-up time for newly constructed data
centers sometimes can be much worse than other data centers. Finally, VM shut-down
time is usually very short (typically less than 10 seconds) compared to VM start-up time.
These results are consistent in the sense that similar observations have also been found in
Rackspace and Windows Azure data centers [81].

The main implication of the above observations is that dynamic server capacity provi-
sioning cannot be achieved instantaneously. It takes time for a virtual server to start-up,
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depending on the exact type of virtual server as well as the clould provider and data center
locations. During busy periods when provisioned server capacity is unable to fulfill de-
mand with the desired QoS, scaling up the service infrastructure may take several minutes
to complete, during which service quality continues to suffer. Thus, we consider the revenue
loss during the service scaling-up periods as part of the reconfiguration cost. Therefore,
service providers need to find a trade-off between service agility (for minimizing resource
cost) and reconfiguration cost when making service placement decisions.

3.4 Problem Formulation

We model the network as a bipartite graph G = (L ∪ V,E), where L denotes the set of
data centers, V denotes the location of customers. For instance, V can be the set of access
networks to which customers are connected. Denote by E ⊆ L × V the communication
paths between customers and data centers. We also assign constant weights dlv to denote
the network latency between a data center l ∈ L and a client location v ∈ V .

In our framework, we consider a discrete-time system model where time is divided into
multiple time periods called reconfiguration periods corresponding to the timescale at which
server placement and routing decisions are made. We assume that there is an interval of
interest K = {0, 1, 2, ..., K} that consists of K + 1 periods. Let N = {1, 2, ..., n} denote
the set of service providers. We assume that at time k ∈ K, each customer location v ∈ V
has demand Dv

k in terms of average arrival rate of requests from location v at time k. For
simplicity, we assume that all the servers rented by each service provider have identical size
and functionality. For instance, a server can be a virtual machine (VM) that runs a specific
application image. We define the state variable xlk ∈ R+ as the number of servers owned
by the service provider at location l ∈ L at time k. To simplify the model, we assume that
xlk can take continuous values rather than discrete values. This assumption is reasonable
for large-scale services that require tens or hundreds of servers, where the weight of each
individual server in the overall solution is small. In this case, we can always obtain a
feasible solution by rounding up the continuous values to the nearest integer values. Based
on this assumption, we can further decouple xlk by defining xlvk ∈ R+ as the number of
servers at location l serving demand from v ∈ V :

xlk =
∑
v∈V

xlvk , ∀l ∈ L, 0 ≤ k ≤ K. (3.1)

Let ulvk ∈ R denote the change in the number of servers in xlvk at time k, we then have:

xlvk+1 = xlvk + ulvk , ∀l ∈ L, v ∈ V, 0 ≤ k ≤ K. (3.2)
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Table 3.1: Table of Notations

Symbol Meaning

xlk Num. of servers at DC l at time k

xlvk Num. of servers at l serving demand from v at time k

Dv
k Avg. demand arrival rate originated from v

σlvk Avg. arrival rate of demand from v to DC l at time k

ulvk Change in the number of servers at DC l at time k

λlvk Avg. arrival rate to each server from v to l at time k

dlv Network latency between location v and data center l

µ Request process rate of a single server

pl Price of each server at DC l

r Reservation ratio

Cl Capacity of DC l

Hk Resource allocation cost at time k

Gk Reconfiguration cost at time k

J Total operational cost

3.4.1 Modeling the Server Allocation and Reconfiguration Cost

To model the cost of server allocation, we assume that there is a price plk for running a
server at data center l ∈ L at time k. The total resource cost Rk for service hosting at
time k is

Rk =
∑
l∈L

xlkp
l
k ∀0 ≤ k ≤ K (3.3)

We also assume that there is a convex function g : R → R+ that computes the cost of
reconfiguration. A possible reconfiguration cost function is

Gk =
∑
l∈L

gl(ulk) =
∑
l∈L

clon(
∑
v∈V

ulk)
+ − cloff (

∑
v∈V

ulk)
−,∀0 ≤ k ≤ K. (3.4)
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where clon and cloff are the average monetary costs for adding an additional VM and re-

moving a VM, respectively. For example, the clon can measure the performance penalty
during the startup time of a server, as mentioned in 3.3. Our framework can also support
other reconfiguration cost functions as well.

3.4.2 Modeling the Performance Objectives

While minimizing the total operational cost, the allocation of servers and demand as-
signment must satisfy a set of constraints, including (1) demand constraint and (2) SLA
performance constraint. Define σlvk as the demand arrival rate from v assigned to data
center l at time k, the demand constraint ensures that all demands are satisfied:∑

l∈L

σlvk = Dv
k, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (3.5)

In addition, there is a SLA performance constraint that specifies a maximum delay d̄lv that
the service provider tries to achieve between a location v and a data center l. We focus on
modeling this constraint in the rest of this subsection. For data center l ∈ L, we assume
that there is a load balancer placed in data center l such that demand σlk =

∑
v∈V σ

lv
k

arriving from location v is equally split among the local servers xlk. Assuming each server

has mean service time µ, the utilization of a server can be defined as ρlk =
σlk
xlkµ

. We assume

the queuing delay of a server is a convex function f(·) of the server utilization ρlk:

qlk = f(ρlk) (3.6)

This is true for most of the queuing systems. For example, if each server can be modeled
as a G/G/1 queue, then the queueing delay can be approximated by [70]:

qlk =

(
ρlk

1− ρlk

)(
c2
a + c2

s

2

)
· 1

µ
(3.7)

where ca and cs are the coefficient of variation of arrival rate (i.e.
σlk
xlk

) and service time,

respectively. It is evident that this is convex in ρlk. This also holds for other queueing
systems such as M/M/1 queues.
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We aim to ensure that for any (v, l) ∈ E with σlvk > 0, the average delay (i.e., the sum
of propagation and queuing delay) is less than d̄1:

dlv + qlk ≤ d̄, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (3.8)

By defining the constant

alv =

{
1

f−1(d̄−dlv)µ
, if d̄− dlv > 0,

∞, otherwise,
(3.9)

we can rewrite the constraint (3.8) as:

xlvk ≥ alvσlvk , ∀v ∈ V, l ∈ L. (3.10)

We can combine constraints (3.5) and (3.10) to eliminate σlvk :∑
l∈L

xlvk
alv
≥ Dv

k, ∀, v ∈ V, 0 ≤ k ≤ K. (3.11)

Alternatively, we can model the performance objective as a SLA penalty function.
Assume there is a convex penalty function h(·) that measures revenue loss due to exceeding
the delay requirement. Thus the total performance penalty can thus be measured as:

Pk =
∑
v∈V

h(
∑
l∈L

xlvk
alv
−Dv

k) (3.12)

3.4.3 Demand Assignment Policy

We can define the demand assignment policy for each request router as:

σlvk = Dv
k ·

xlvk
alv∑
l∈L

xlvk
alv

. (3.13)

Imposing constraint (3.13) implies that SLA requirement is met by all request routers. In
practice, each request router for location v ∈ V can implement the policy by splitting the
demand Dv

k proportionally according to equation (3.13) using any standard load balancing
technique.

1It should be pointed out that even though our model focuses on guaranteeing the average delay, it is
straightforward to extend it to handle more general cases, such as φ-percentile delay (where φ is typically

95%). For example, the φ-percentile delay of an M/M/1 queue can be computed as q =
ln( 1

1−φ )

µ−σlk
, where

ln
(

1
1−φ

)
is a constant.
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3.4.4 Modeling the Capacity Constraint

We also assume each data center has finite resource capacities, this implies the number of
VMs that can be launched in each data center is upper-bounded by its capacity. In the
simplest case where all servers have the same size, we can specify the capacity constraint
as xlk ≤ C l, ∀l ∈ L where C l is the number of launchable servers in data center l. In our
model, we adopt a more general model that captures the capacity constraint as a penalty
function. In particular, assuming each data center possesses R types of resources, let sr

denote the size of a server for a resource type r ∈ R, and C lr is the capacity of data center
l for resource type r, we can use a convex penalty function πr(srxlk) to measure the penalty
due to violation of capacity constraint. For example, we can define

Ck = πr(srxlk) = ζ(srxlk − Cr)+∀l ∈ L, k ∈ K, r ∈ R

where ζ is a very large constant that severely penalizes the violation of capacity constraints.
The purpose of using a penalty function is that it admits more general forms of capacity
constraints, as we shall further elaborate in Section 3.6.2.

3.4.5 DSPP formulation

Given the system model described above, the goal of DSPP is to minimize the total cost
of operating a given service. In other words, the goal of DSPP is to minimize the following
objective function:

J :=
K∑
k=0

Hk +Gk + Pk + Ck

subjects to constraints (3.2) and the requirement that xvlk ≥ 0 ∀l ∈ L, k ∈ K.

Define xk = [x11
k , ...x

L1, ..., xlvk , ..., x
LV
k ]> ∈ RLV

+ , p
′

k = [p1
k, p

2
k, ..., p

L
k ] ∈ RL

+, pk =
[p
′

k,p
′

k, ...p
′

k]
> ∈ RLV

+ , uk = [u11
k , ...u

L1, ..., ulvk , ..., u
LV
k ]> ∈ RLV , avk = [ 1

a1vk
, 1
a2vk
, ..., 1

aLvk
]>,

ak = diag−1{a1
k, ..., a

V
k } ∈ RLV×V

+ , gk : RL → RL that captures the reconfiguration
cost, R = [1, 1, ..., 1]> ∈ RL

+, B = diag−1{R, ...,R} ∈ RLV×V
+ , Dk = [D1

k, ..., D
V
k ]>,

C = [C1, C2, ...CL]> ∈ RL
+, s = [IL×L, ..IL×L]> ∈ RLV×L

+ , we can rewrite DSPP as:

min
{u0,..,uK−1}

J =
K∑
k=0

p>k xk + R>gk(Buk) +Pk(akxk −Dk) + π(s>xk)

s.t xk+1 = xk + uk ∀k ∈ K,
xk ∈ RLV

+ ∀k ∈ K
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3.4.6 Example: An Extension to Multi-Tiered Applications

The DSPP model presented in previous section is generic enough to capture many different
service architectures. In this section, we present one particular architecture: multi-tiered
applications. Particully, in previous sections we assume that each service is hosted in a
single VM that can operate independently of other VMs. However, this model may be over
simplified in many cases. For example, many online services may consist of multiple tiers
of applications, where different tiers may be placed in different data centers and use VMs
of different size. Furthermore, these applications may or may not be placed in a single
data center. For example, for many online services where data is partitioned and stored
across multiple data centers, in many cases it is necessary for an application to retrieve the
data remotely from a different data center. To deal with these issues, in this section we
show how DSPP formulation can model the placement problem of multi-tiered applications
across geographically distributed data centers.

We assume the service to be placed consists of n tiers of components, each tier 1 ≤ i ≤ n
can be assigned to a subset of data centers Li ⊆ L. We shall use a 3-tier web application
shown in Figure 3.3 to illustrate our model. As is the typical case, the 3-tier web application
consists of (1) front-end web servers, (2) application servers that run the business logic,
and (3) database servers who have access to data storage. Let Dv

k denote the arrival rate
of type v service request from access network v ∈ V during time period k. Each service
request will invoke internal requests among service applications. In the context of multi-
tiered services, the service invocation for a single request can be modelled as a flow along
a path from the front-end to back-end servers. Define Ps ⊆ V × L1 × L2 × ...× Ln as set
of possible path requests are routed . Let the demand along each flow path p be σpk ∈ R+.
Furthermore, define P (n, l) ⊆ P as the set of flow paths that has tier n service routed
through data center l ∈ Ln, to simplify our notation, we assume V represents the 0th tier
of the service, as shown in Figure 3.1. Let xpnlk represent the number of servers at tier n

in data center l ∈ Ln at time k, and upnlk as change in xpnlk at time k respectively, we thus
have the following state equation:

xpnlk = xpnlk + upnlk ∀n ∈ N, l ∈ L, p ∈ P, k ∈ K

The total resource cost Rk for service hosting at time k is

Rk =
N∑
n=1

∑
l∈L

∑
p∈P

xpnlk pnlk ∀0 ≤ k ≤ K (3.14)

We also assume that there is a convex function g : R → R+ that computes the cost of
reconfiguration. A possible reconfiguration cost function is
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Figure 3.3: Service Placement Model

Gk =
N∑
n=1

∑
l∈Ln

gnl(
∑

p∈P (n,l)

upnlk )

=
N∑
n=1

∑
l∈Ln

cnlon(
∑

p∈P (n,l)

upnlk )+ − cnloff (
∑

p∈P (n,l)

upnlk )−. (3.15)

We also know that total tier n demand that arrives at data center l at time k can be
computed as λnlk =

∑
p∈P (n,l) λ

p
k. We assume at each data center, there is a load balancer

that spreads the total demand evenly across all servers. Assuming the service time for a
tier n server is µn, the utilization of a tier n server at data center l can be computed as

ρnlk =

∑
p∈P (n,l) λ

p
k

xnlk µ
n

(3.16)

Similar to our previous model, we assume the queuing delay qnlk of tier n servers at DC l is
a convex function of ρnlk . Similar to existing work [106], we want to ensure that the latency
for each tier of service is bounded, namely

qnlk + dln−1ln ≤ d̄n ∀p ∈ P (3.17)
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By defining the constant

apnl =

{
1

f−1(d̄n−dln−1ln
)µn
, if d̄− dln−1ln > 0,

∞, otherwise,
(3.18)

It is easy to see that the we can rewrite the performance objective (i.e. constraint (3.17))
as ∑

l∈L

∑
p∈P (0,v)∪P (n,l)

xpnlk

apnlk

≥ Dv
k ∀p ∈ P (3.19)

Alternatively, we can model the performance objective as a SLA penalty function.
Assume there is a convex penalty function h(·) that measures revenue loss due to exceeding
the delay requirement. Thus the total performance penalty can thus be measured as:

Pk =
∑
v∈V

∑
n∈N

h(
∑
l∈L

∑
p∈P (0,v)∪P (n,l)

xpnlk

apnlk

−Dv
k) (3.20)

We thus have the following objective function:

min
K∑
k=1

Rk +Gk + Pk + Ck

s.t xpnlk = xpnlk + upnlk ∀l ∈ L, v ∈ V, k ∈ K
xpnlk ∈ R+, u

pnl
k ∈ R ∀l ∈ L, v ∈ V, k ∈ K

Define xk = [x111
k , ...xpnl, ..., x

|P |NL
k ]> ∈ R|P |NL+ , p

′

k = [p1
k, p

2
k, ..., p

L
k ]> ∈ RL

+, pk = [p
′

k,p
′

k, ...,p
′

k] ∈
R|P |NL+ , uk = [u111

k , ...upnl, ..., u
|P |NL
k ]> ∈ R|P |NL+ . gk : RL → RL that captures the re-

configuration cost, R = [1, 1, ..., 1]> ∈ RL
+, ψpnl ∈ {0, 1} as a boolean variable that in-

dicates whether the nth hop of path p goes through l. Bnl = [ψ1nl, ..., ψ|P |nl] ∈ R|P |+ ,

B = [B11>, ...,B1L>, ...BNL>] ∈ R|P |NL+ , Dk = [D1
k, ..., D

V
k ]>, C = [C1, C2, ...CL]> ∈ RL

+,
s = [IL×L, ..IL×L]> ∈ RLV×L

+ . Furthermore, define θpnl ∈ {0, 1} as a boolean vari-
able that indicates whether the nth hop of path p goes through l ∈ L ∪ V . Also, de-

fine apnk = [ 1

apn1k

, ..., 1

apnLk

] ∈ RL
+, ank =

 a1n
k · θp01 · · · a

|P |n
k · θp01

...
. . .

...

a1n
k · θp0V · · · a

|P |n
k · θp0V

 ∈ R|P |L×V+ , ak =
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Algorithm 2 MPC Algorithm for DSPP

1: Provide initial state x0, k ← 0
2: while true do
3: At beginning of control period k:
4: Predict Dl

k+i|k for horizons i = 1, · · · , K using a demand prediction model
5: Solve DSPP to obtain uk+t|k for t = 0, · · · ,W − 1
6: Change the resource allocation according to uk|k
7: Update demand assignment policy of request routers according to equation (3.13)
8: k ← k + 1
9: end while

diag−1[a1
k, ..., a

n
k ] ∈ R|P |NL×NV+ , D

′

k = [D1
k, ..., D

V
k ]> ∈ RV

+, Dk = [D
′>
k , ..., D

′>
k ]> ∈ RNV

+ ,

sr =

 θp11 · · · θp11

...
. . .

...
θpNL · · · θpNL

 · sr, s = [s1>, ..., sR>], we can rewrite DSPP as:

min
{u0,..,uK−1}

J =
K∑
k=0

p>k xk + R>gk(Buk) +Pk(akxk −Dk) + π(s>xk)

s.t. xk+1 = xk + uk ∀k ∈ K,
xk ∈ RLV

+ ∀k ∈ K

which is exactly our DSPP model as described in Section 3.4.5. Thus, a solution technique
for DSPP can also be used to solve the mult-tiered service placement problem.

3.5 Controller design for DSPP

DSPP is a convex optimization problem that can be solved optimally using standard
methods [37] However, even though DSPP can be solved optimally, the resource controller
must solve this problem in an online fashion where future demand is unknown. In this
case, we use the Model Predictive Control (MPC) framework that is widely used for solving
online control problems. Algorithm 2 is our MPC algorithm used by the resource controller
for solving DSPP online. It can be described as follows. At time k, the resource controller
predicts the future demand Dv

k for multiple periods [k + 1, ..., k + W ]. Using the demand
predicted by the analysis and prediction module, whereW is the prediction horizon. Denote
by Dv

k+t|k the demand predicted for time k + t at time k. The controller then solves
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the optimization problem for the horizon [k, ..., k + W ], starting with the initial state
xk|k = xk. Even though the solution of the optimization problem will contain a set of
values uk|k, ...,uk+W−1|k, the controller will only execute the first step in sequence uk|k.
When the next control period k + 1 starts, the same procedure is performed again by the
controller. Using this MPC algorithm, the controller can effectively adjust the number of
servers in each data center.

3.6 Competition Among Multiple Providers

In this section, we extend our previous model and consider the case where multiple ser-
vice providers share the cloud platform in terms of resources in data centers. The goal of
each service provider is to minimize its operational costs while respecting the SLA perfor-
mance requirements and the data center capacity constraints. In our model, we assume
that the placement configuration of each service provider is kept private from other ser-
vice providers. In this scenario, strategic interactions may arise as each service provider
makes decisions independently. Therefore, we can model the system as a multi-person
non-cooperative game. Our objective is to analyze the equilibrium outcome, and design
appropriate algorithms if the resulting competition leads to sub-optimal outcome in terms
of social welfare. Generally speaking, the social welfare is defined as the sum of the service
revenue minus the resource rental cost of all the service providers. In our case, the service
revenue of each service provider is fixed assuming that it can provision resources to satisfy
its demand. As a result, the social welfare is maximized when the sum of the total resource
rental cost of all service providers is minimized.

3.6.1 Player Model

We formally define the resource competition game in this section. Define N = {1, 2, ..., N}
as the set of service providers, and let i ∈ N represent the index of each service provider.
Let K = {0, 1, 2, ...K} denote the set of stages (i.e., time indices) of the game. At time
k, 0 ≤ k ≤ K, each service provider i has a state xik that describes the number of servers
allocated in data center l ∈ L, as defined in the previous section. Each service provider
i also makes a control decision uik at time k ∈ K, where uilk denotes the change in the
number of servers at data center l ∈ L at time k. Given an initial system state xi0, the
system dynamics are captured by the following state equation:

xik+1 = xik + uik ∀i ∈ N , v ∈ V, k ∈ K (3.21)
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At time k ∈ K, we assume each service provider i has a demand Di
k = [Di1

k , D
i2
k , ..., D

iv
k ]>.

Lastly, we define ui = {ui0,ui1, ...,uiK−1} xi = {xi0,xi1, ...,xiK−1}. Furthermore, let u−i =
{u1, ...,u(i−1),u(i+1), ...,uN} represent the control decisions of the other service providers
N\{i}, the objective of service provider i is to minimize its cost function:

J i(ui,u−i) =
K∑
k=0

p>k xik + Ri>gik(u
i
k) +Pk(a

i
kx

i
k −Di

k) + πi(
∑

i∈N sixik)

where aik is defined as in Section 3.4.5 for each service provider i. subject to equation
(3.21) and the following constraint, which specifies the number of servers per location
must remain non-negative:

xik � 0∀i ∈ N , k ∈ K. (3.22)

3.6.2 Modeling Capacity Constraint

In this section, we discuss how capacity constraint is modeled in an environment where
resources are shared among multiple service providers. Given a set of resources (e.g. CPU,
memory and disk) R, define Cr = [C1

r , C
2
r , ...C

L
r ] ∈ RL

+ as a vector that captures the
capacity of resource type r ∈ R, in each data center l ∈ L. Define C = [C1, ...,CR]>,
we capture the capacity requirement using a convex penalty function πi(·). The benefit
of using the penalty function πi(·) is that it supports a variety of ways in which capacity
constraints are modeled in practice:

• The capacity constraint is exact if the resources in each data center can be optimally
allocated to servers without wastage. This is a valid assumption if all VMs have
the same size. Even though in many practical situations where this assumption may
not hold in general, there is strong incentive for InPs to do so. In practice, InPs
typically design VM sizes to match physical machine capacities to reduce resource
wastage. An example is the GoGrid public cloud service, which offers VMs in 6
different types. Arranged from the smallest to the largest, each type of VMs has
exactly twice the size of previous type in terms of CPU, memory and disk capacity.
When VM sizes are multiples of each other, bin-packing can be solved optimally
using First-Fit-Decrease (FFD) policy, and no resource is wasted during the process.
In this case, our model can be applied exactly to the case of GoGrid. We can specify
a hard capacity constraint ∑

i∈N

sixik � C, 0 ≤ k ≤ K. (3.23)
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which can be modeled as

πi(
∑
i∈N

sixik) =ζ(
∑
i∈N

sixik −C)+

where ζ is a very large constant that severely penalizes the violation of capacity
constraints. In practice, the CP will inform the service provider about the num-
ber of launcheable VMs, allowing the service provider to make informed placement
decisions.

• In contrast, in many private cloud systems where launching a new server implies
scheduling a new VM, the resource capacity constraints are hardly exact, as deter-
mining whether a VM scheduled requires solving a vector bin-packing problem. In
this context, we can measure the penalty for approaching the data center capac-
ity in terms of VM scheduling delay, which is the time it takes the request to be
scheduled. Scheduling delay is an important penalty cost as it directly affects the
availability of the VM. Even though the detailed analysis of scheduling delay will be
presented in Chapter 4, in this chapter, we use the property that scheduling delay
is a convex function of the utilization of bottleneck resource, as reported in recent
work [127,128,131]. In this case, we can model the scheduling delay of a data center
l as a convex function of resource utilization T (·)

ql = T (max
r∈R

(

∑
i∈N

∑
i∈N s

irxil

C lr
))

where the exact form of T can be obtained either through formal models or exper-
iments [127, 128]. Therefore, we can model π(

∑
i∈N sixik) = [q1, q2, ..., qL] · υi where

υi represents the unit penalty cost for scheduling delay. Notice that π(·) is a convex
function of

∑
i∈N sixik. In practice, the CP will inform the service provider about the

expected scheduling delay, allowing the service provider to make informed placement
decisions. Such a service is already available, e.g. in Google Data Centers.

To summarize, we assume each data center has finite resource capacity for hosting services,
which can be model as a penalty function of resource demand (i.e.

∑
i∈N sixik) and resource

available in each data center (i.e. C). Thus, the multi-service provider service placement
problem can be modelled as resource competition game, where service providers compete
for resources in their prefered data centers. This raises the question of whether such
competition will lead to an efficient outcome (i.e. the outcome where the total cost of all
the service providers is minimized), and if not, whether there exist an mechanism that
can be implemented to incentivize desired behaviour from service providers to achieve an
efficient outcome.
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3.6.3 Game Analysis

In Game theory, the outcome of a game is captured by the concept of Nash equilibrium
(NE), which is an equilibrium state where no player can selfishly improve its cost without
violating constraints. We now characterize the Nash equilibrium (NE) of the resource
competition game. The NE refers to the stable outcome of the competition, where no
service provider can improve its cost by unilaterally changing its server allocation over
time. Formally, the resource competition game can be represented as a N -player dynamic
non-cooperative game Ξ. Notice that as our controller relies on the MPC framework for
dynamic resource allocation, we need to introduce a new version of NE for control strategies
using the MPC framework. We first start with the following general definitions:

Definition 1 (η-Nash Equilibrium [27]). Let I ik be the information set of a service provider
i at time k under a given information structure ηi, and Γi is the set of all admissible policies
of service provider i under ηi. The policy {γi∗, i ∈ N} is an η−Nash equilibrium of the
game Ξ, where ui = γi∗(I ik) and η = {ηi, i ∈ N} if J i(γi∗, γ−i∗) ≤ J i(γi, γ−i∗), for all
admissible policies γi ∈ Γi and for all i ∈ N , where γ−i∗ = {γj : j 6= i, j ∈ N}.

Definition 1 provides a general description of NE under a given information structure
(IS) ηi. The dynamic game Ξ can admit different NEs under different information struc-
tures η. Typical information structures are, for example, open-loop IS, where the policy
is only dependent on the initial conditions, and the perfect-state feedback IS, where the
policy depends on the perfect measurement of the system state. The IS under MPC algo-
rithms in Algorithm 1 can be deemed a special mixture between open-loop IS and feedback
IS since at each stage each service provider computes within a window in an open-loop
manner but the initial condition of the computation is the current state known to service
providers. With this special IS, we can define NE under MPC-type computations for our
resource competition game.

Definition 2 (W-MPC Nash Equilibrium). Let W i be the prediction window of service
provider i and every service provider adopts MPC as outlined in Algorithm 1. The dynamic
non-cooperative game Ξ admits W−MPC Nash Equilibrium, W = {W i, i ∈ N}, if the
sequences ui∗ := {ui∗k , 0 ≤ k ≤ K} obtained under MPC algorithms satisfy J i(ui∗,u−i∗) ≤
J i(ui,u−i∗), for all admissible sequences ui ∈ U i and for all i ∈ N , where U i is the set of
admissible control sequences under MPC algorithms, and u−i∗ = {uj, j 6= i, j ∈ N}.

Note that NE solutions may not be unique, and hence we let U∗ to denote the set of
NE solutions u∗ := {ui,u−i} that satisfy Definition 2. The W−MPC Nash equilibrium
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{ui∗, i ∈ N} can be used to compare with the optimal MPC solution {ui◦, i ∈ N} to the
solution of the following Social Welfare Problem (SWP):

min
{u1,...,uN}

∑
i∈N

J i(u1, ...,uN)

subject to equation (3.21) and (3.22). The NE is defined as:

J i(u∗) = min
ui∈RLV

J i(ui,u−i∗) ∀i ∈ N

The price of anarchy (PoA) ρMPC and the price of stability (PoS) ξMPC of the dynamic
non-cooperative game Ξ under centralized MPC Algorithm 1 are defined by

ρMPC = sup
u∗∈U∗

∑
i∈N

∑
v∈V J

i
v(u

i∗)∑
i∈N

∑
v∈V J

i
v(u

i◦)

ξMPC = inf
u∗∈U∗

∑
i∈N

∑
v∈V J

i
v(u

i∗)∑
i∈N

∑
v∈V J

i
v(u

i◦)
,

where {ui◦, i ∈ N} is the optimal solution to (SWP) obtained by the MPC algorithm 2,
and {ui∗, i ∈ N} is the W−MPC Nash equilibrium of the game Ξ. The metrics ξMPC and
ρMPC are measures of the best-case and worse-case efficiency loss of the game, respectively.
It is easy to observe that both ρMPC and ξMPC are always greater or equal to 1.

Theorem 1. Assume that the prediction horizon of each service provider i, i ∈ N , is the
same, i.e., W i = W and W is also the prediction window used for (SWP). Then, the price
of stability ξMPC of the game Ξ is equal to 1, i.e., there exists a NE solution that yields no
efficiency loss under the common knowledge of the capacity constraint.

Proof. Since each service provider uses window size W in the MPC algorithm, at time k
each service provider i solves the following problem:

min
{u0,..,uW−1}

J iW =
W∑
k=0

p>k xik + R>gk(Buik) +P i
k(akx

i
k −Di

k) + πi(
∑
i∈N

sixik)

s.t xik+1 = xik + uik ∀0 ≤ k ≤ W

xk � 0 ∀0 ≤ k ≤ W
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Since xik = xi0 +
∑k−1

k′=0 uik′ for k > 0, we can rewrite the optimization problem as:

min
{u0,..,uW−1}

J iW =
W∑
k=1

k−1∑
k′=0

p>k uik′ +
W−1∑
k=0

R>gk(Buik)+

W∑
k=1

P i
k(akx0 + ak

k−1∑
k′=0

uk′ −Dk) + πi(
∑
i∈N

si(xi0 +
k−1∑
k′=0

uik′))

s.t. xi0 +
k−1∑
k′=0

uik′ � 0, ∀0 ≤ k ≤ W

Each service provider faces an internal constraint shown above. We can associate each
internal constraint with Lagrange multipliers µi, i ∈ N and the coupled constraint with ν.
The Lagrangian of service provider i is given by

Li = J i − µi(x0 +
k−1∑
k′=0

uk′) (3.24)

On the other hand, the SWP problem can be captured by the following problem at every
time k:

min
{u1,...,uN}

∑
i∈N J

i
W (3.25)

x0 +
∑k−1

k′=0 uk′ � 0 (3.26)

By associating Lagrangian multipliers µ̃i, i ∈ N and with constraints (3.26), we have the
Lagrangian of the social welfare problem

L =
∑
i∈N

J iW −
∑
i∈N

µ̃i(x0 +

k−1∑
k′=0

uk′) (3.27)

By letting µi = µ̃i, and ν = ν̃, we can further decompose L into L =
∑

i∈N Li.Since it is
strictly convex and separable in i, the W−horizon social welfare problem admits a unique
solution, which also corresponds to the solution of each convex subproblem associated with
Li. Hence, the social optimal solution is a NE at every k and the result follows.

Theorem 2. The price of anarchy ρMPC of the game Ξ is unbounded.
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Figure 3.4: Example illustrating the PoA of the game

Proof. We provide an example to illustrate that the price of anarchy is unbounded even
when demand of each service provider remains static over time. Consider the scenario
illustrated by Figure 3.4: there are two data centers serving demand from a single location
v. The data centers have capacities C1 = 100 and C2 = 200

ε
respectively. The distance to

each data center are d1v = εc, d2v = c
ε

respectively, where c and ε are constants. Both data
centers lease resources at the same unit price p, i.e., p1

k = p2
k = p ∀k ≥ 0. Furthermore,

There are two service providers in the game. Their SLAs are d̄1 = (1 + ε + 1
ε
)c and

d̄2 = (K + 1 + ε+ 1
ε
)c, respectively, where K ≥ 1 is a constant. For both service providers,

a single server can process requests at rate µ = 1
c
. The demand from location v for both

service providers are D1 = 100
c(1+ε)

, D2 = 100
c(1+ 1

Kε+1
)
. More over, assume all servers have

identical size and πi(
∑

i∈N sixik) = ζ(
∑

i∈N sixik −C)+ , where ζ ∈ R+ is a large constant.
Now, consider the following allocation for both service providers: service provider 2 serves
all its demands using capacities in DC 1, and service provider 1 serves all its demands from
DC2. It is easy to see this is a NE, as there is no free capacity in DC 1 for service provider
1. The total cost of this NE is JNE1 =

∑
i∈N J

i = (1 + 1
ε
)100p. Now consider another NE,

where service provider 1 uses all the capacities in DC 1, and service provider 2 serves all

its demands from DC 2. The total cost of this NE is JNE2 = 100(1 +
1+ 1

K+ε

1+ 1
Kε+1

)p. As ε→ 0,

we have ρMPC ≥ limε→0
JNE1

JNE2
= limε→0

1+ 1
ε

1+
1+ 1

K
2

=∞.
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3.6.4 Mechanism Design for a Single Infrastructure Provider

The result provided in the previous section is rather discouraging: If each service provider
behave selfishly in an uncoordinated manner, then the outcome can be severely unfair:
certain service providers will experience much higher cost than others due to insufficient
resource capacities in their preferred locations. This also hurts the efficiency of the resulting
NE. In this case, a natural question to be asked is whether it is possible to address the
inefficiency with proper mechanism design. In this section, we answer this question by
analyzing the outcome with the participation of the InP.

Similar to existing work on cloud resource pricing (e.g. [86]), we consider a market
where there is a single CP who wishes to maximize the social welfare of all the participants,
including both the service providers and the CP itself. For the CP, the selfish objective is
to maximize the total revenue from selling resources:

UCP (p,u1, ..uN) =
∑
i∈N

K∑
k=0

(pk − ek)s
ixik

where ek represents the production cost of resources. Typically, ek includes the cost of elec-
tricity, server and land cost amortized over time. For each service provider, the objective
function, as described in the previous section, is to minimize:

J i(p,u1, ..uN) =
∑
i∈N

K∑
k=0

p>k xik + Ri>gik(u
i
k) + P i

k(a
i
kx

i
k −Di

k)−
K∑
k=1

πi(
∑
i∈N

∑
v∈V

sixivk )

The goal of the cloud provider is to maximize the total social welfare, which is to maximize
JSW = UCP −

∑
i∈N J

i. This is a reasonable objective because a CP typically wants to
(1) maximize the revenue from selling resources, while (2) improving service satisfaction,
which translates into minimizing the performance penalties incurred by individual service
providers. The problem of maximizing social welfare can be written as minimizing

JSW (p,u1, ..uN) =
∑
i∈N

K∑
k=0

e>k sixik + Ri>gik(u
i
k) + P i

k(a
i
kx

i
k −Di

k)−
K∑
k=1

πi(
∑
i∈N

∑
v∈V

sixivk )

subject to constraints (3.21) and (3.22).
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To solve this problem, we design a mechanism using dual decomposition technique. To
facilitate the decomposition, we can introduce an ancillary variable vk =

∑
i∈N

∑
v∈V sixik.

The problem can be rewritten as

JSW (p,v,u1, ..uN) =
∑
i∈N

K∑
k=0

e>k sixik + Ri>gik(u
i
k) + P i

k(a
i
kx

i
k −Di

k)− πi(vk)

s.t.vk =
∑
i∈N

∑
v∈V

sixik

xk � 0

subject to the constraint that vk =
∑

i∈N
∑

v∈V sixivk , as well as constraints (3.21) and
(3.22). The lagrangian dual problem can be stated as:

max
λk

( infuik,vk

∑
i∈N

K∑
k=0

e>k sixik + Ri>gik(u
i
k) + P i

k(a
i
kx

i
k −Di

k)

−πi(vk) + λk(
∑
i∈N

∑
v∈V

sixik − vk))

which is separable. Therefore, our dual decomposition mechanism is described by Algo-
rithm 2. At time k, the InP announces the future resource prices for a window 1 ≤ t ≤ W ,
and each provider i ∈ N submits the demand xivk+t|k∀v ∈ V . At each step, the service
provider solves the problem

min
ui
k+t|k

W∑
t=0

∑
v∈V

(e>k+t|ks
i + λk+t|ks

i)xivk+t|k + Ri>gik(u
i
k+t|k) + P i

k(a
i
k+tx

i
k+t|k −Di

k+t|k)

subject to constraints (3.21) and (3.22). The cloud provider will first solve the following
problem:

min
vk+t|k∈RV

W∑
t=0

π(vk+t|k)− λk+t|k(vk+t|k),

then updates the λk+t|k according to the following equation, where α ∈ R+ is the step size:

λk+t|k := (λk+t|k + α(
∑
i∈N

∑
v∈V

sixik+t|k − vk+t|k))+
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Algorithm 3 Iterative Algorithm for Achieving the best NEMPC Algorithm for DSPP

1: At beginning of time k, provide initial state x0, k ← 0, Initialize Ci ∈ RL
+, x̄ik ← 0,

∀k ∈ K J̄(u1, ...,uN)←∞,converged←false
2: pk+t|k ← siek∀0 ≤ t ≤ W − 1
3: while converged 6=true do
4: for all i = {1, ..., N} do
5: ui ← solution of DSPPi with price pk+t|k,∀0 ≤ t ≤ W − 1
6: end for
7: J(u1, ...,uN) =

∑
i∈N J

i(u1, ...,uN)
8: if |J(u1, ...,uN)− J̄(u1, ...,uN)| ≤ 0.01× J̄(u1, ...,uN) then
9: |J(u1, ...,uN)− J̄(u1, ...,uN)| ≤ ε× J̄(u1, ...,uN)converged←true

10: end if
11: if converged 6=true then
12: λk+t|k := (λk+t|k + α(

∑
i∈N

∑
v∈V sixik+t|k − vk+t|k))+

13: pk+t|k = e>k si + λks
i

14: end if
15: end while

Finally, the cloud provider announces a new price pk+t|k = e>k si + λks
i. This process

repeats until the solution converges to a local optimal solution. Finally, even though
convergence rate can be a practical concern for gradient-based algorithms, our mechanism
can simultaneously adjust prices many steps into the future, which gives more time for
prices to converge. The convergence rate of Algorithm 2 is analyzed in Section 3.7.

Remark 3. In this work we assume a monopolized market where the goal of the InP is to
maximize social welfare rather than purely optimizing revenue. This is a reasonable model
as the social welfare, in some sense, is a measure of service quality. An InP that maximizes
social welfare is likely to attract more businesses in the future. Secondly, to prevent the
InP from setting unfair prices, governments are likely to impose a fair return price [76].
One limitation of setting fair return price is the possibility of lower income of the InP.
However, it is straightforward to consider the case where the fair return price considers the
revenue gain of the InP.

In summary, the lesson we learned in the theoretical analysis is that simply rejecting
requests when capacity is reached can lead to inefficient outcomes where certain service
providers may be treated unfairly. A dynamic congestion-pricing mechanism can be helpful
for mitigating this problem.
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3.7 Simulations

We have implemented our solutions and conducted several simulation studies. In our
simulations, we have used a real Internet topology graph from the Rocketfuel project [103],
which contains link latency information. However, as the data set only contains topologies
for several tier-1 Internet Service Providers (ISPs), we have augmented the topology graph
by introducing regional and local ISPs, similar to the procedure for generating transit-stub
networks in the GT-ITM network topology generator [13]. We specify the communication
latency at intra-transit, stub-transit and intra-stub domain links to be 20ms, 5ms and 2ms,
respectively [96]. Based on our experience with Google’s data centers, in our experiment, we
have created 3 large data centers located in Mountain View, CA, Houston, and TX, Atlanta,
GA. To generate realistic service requests, we have decided to use the Worldcup 98 dataset
[19] which contains HTTP requests for a total duration of 92 days. This dataset contains
several occurrences of demand spikes, which is useful for demonstrating the performance
of our algorithm. However, as the dataset does not contain location information of access
networks, we use the request regions provided in the dataset to approximate the source
of requests. In our simulation, we assume there is one access network responsible for
generating requests from a single region. Figure 3.5 illustrates the service demand for the
week between June 13 and June 20 for 4 different regions. In our experiment, the price
of resources in each data center is set to the electricity price per VM according to the
VM size. Figure 3.11 shows the electricity price during different times of the day. For
comparison purpose, we assume the price in Atlanta is constant (i.e., not market-driven).

3.7.1 The Case of a Single Service Provider

In this subsection, we report our experiment results for the single service provider case.
We first evaluate the quality of demand prediction model (ARIMA in our case), which
plays an important role in determining the quality of the solution. In our evaluation, we
divided the workload into two data sets. The first set is used to estimate the parameters
of the ARIMA model. The second set is used to assess the accuracy of the prediction. The
prediction error is measured by the Relative Squared Error (RSE) [128].When the RSE
is less than 1, the prediction model is considered better than the Mean model, where the
mean of the data is used as the predicted value. Typically, the smaller is the RSE, the
better is the prediction. Figure 3.6 shows the prediction error as a function of the number
of lags (previous samples) used as inputs for the ARIMA model. It can be seen that the
prediction using 6 lags achieves the lowest RSE. Figure 3.7 shows the predicted demand
compared to the actual demand for region 2, which has the highest demand fluctuation
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Figure 3.5: HTTP requests in the Worldcup 98 dataset
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among all the regions. It is clear that ARIMA model can achieve an accurate prediction
of service demand (RSE≈ 0.01245).

To demonstrate how our controller adjusts resource allocation to handle demand fluc-
tuation, we consider the case where there is a single data center responsible for requests
from two regions. Figure 3.8 shows that the controller always tries to adjust the resource
allocation to match the demand. We also analyzed the effect of the prediction horizon
W on the outcome of dynamic resource allocation. Figure 3.9 shows that the change in
the number of servers decreases as W increases. The controller with a long window size
is less aggressive than a controller that only looks few steps into the future. But at the
same time, it can cause higher cost due to poor prediction of future demand (Figure 3.10).
To demonstrate controller’s reaction to price change, we have simulated a scenario where
2 data centers (Mountain View and Atlanta) are used to serve demand from region 2.
Our experiment result is shown in Figure 3.12. Accordingly, Figure 3.12 shows that our
controller allocates fewer servers in the Mountain View DC in the afternoon, since price in
Atlanta is cheaper. This confirms our algorithm can balance load according to price change.
Finally, we demonstrate the importance of reconfiguration cost. We have implemented a
greedy algorithm that ignores reconfiguration cost. The output of the algorithm is shown
in Figure 3.13. It can be seen that, since the price in Atlanta is cheaper in the afternoon
the greedy algorithm performs a massive migration of servers in the afternoon. Similarly,
once the price in Mountain View becomes cheaper, the greedy algorithm performs another
massive migration to send them back to Mountain View. It is evident that reconfiguration
cost plays a crucial role in avoiding massive migrations in this scenario. We also found the
prediction window produces a similar effect as reconfiguration cost (Figure 3.9 and Figure
3.14). However, since the prediction window is used to capture trend in system inputs, and
its effect is highly dependent on the prediction accuracy, it should not be used to control
the aggressiveness of dynamic adaptation. Finally, we have also evaluated the running
time using all 4 DC locations and 24 access networks with synthetic workloads, and found
Algorithm 1 usually runs in less than 1 second.

3.7.2 The Case of Multiple Service Providers

To analyze the outcome of the resource competition game, we generate the input param-
eters (µi, Di

k, s
i, cil,d̄i) for each service provider i ∈ N randomly. We first simulated the

standard game by allowing every service provider to move in a sequential order, until no
service provider can further reduce its cost without violating the capacity constraint. We
also implemented our coordination algorithm described by Algorithm 2. We set the step
size α = 0.5, and define π(v) = v>Iv · P , where P = 10. We plotted the average cost
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Figure 3.13: Output of the greedy algorithm
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Figure 3.14: Output with no reconfiguration
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Figure 3.16: Number of players vs. conver-
gence rate
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Figure 3.17: Capacity of the Bottleneck DC
vs. convergence rate
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of uncoordinated NEs and the cost produced by Algorithm 2 for the duration of 24 hours
in Figure 3.15. For comparison purpose, we also plotted the optimal offline solution in
Figure 3.15. Clearly, Algorithm 2 improves the social welfare by 10 − 20% compared to
uncoordinated NEs.

We then analyze the scalability of the algorithm in terms of convergence rate. To
produce a competition scenario, we set the number of servers in the data center with the
cheapest cost (i.e., Data center in Houston, TX) to 500 respectively, and record the number
of iterations required to produce an approximately stable outcome. In our experiment, we
call an outcome approximately stable if |J̄(u1, ...,uN)−J(u1, ...,uN)| ≤ 0.01·J̄(u1, ...,uN)),
where J̄(u1, ...,uN) is the cost of the solution in the previous iteration. Figure 3.16 shows
the number of iterations to obtain a stable outcome grows with the number of players.
However, as mentioned before, the convergence process can start W − 1 steps ahead, thus
the convergence rate is still acceptable. Finally, even though dynamic conditions such as
machine failures, service providers joining and leaving the system can hurt the convergence
rate, by correctly modeling the penalty caused by dynamic conditions (e.g. using penalty
function π(·)) and using short time intervals, it is possible to bring the impact of dynamic
conditions to a minimum. Finally, we also conducted experiments to examine the impact of
prediction horizon W on the solution optimality and convergence rate. Figure 3.18 suggests
that longer prediction horizon can improve convergence rate. However, the selecting the
right window size should also consider the solution quality. Similar to Figure 3.9, we found
setting window size to W = 3 archives the best outcome.

3.8 Conclusion

In this chapter, we present a framework for the dynamic service placement problem based
on control- and game-theoretic models. In particular, we provided a solution that opti-
mizes the hosting cost dynamically over time according to both demand and resource price
fluctuations. We also considered the case where multiple service providers compete for
revenue dynamically. Our analysis showed that in an uncoordinated scenario where service
providers behave in a selfish manner, the resulting NE can be significantly worse than the
optimal NE in terms of social welfare. Based on this observation, we proposed a mecha-
nism that can be adopted by the InP to maximize the social welfare of the system. Our
simulations not only confirm the theoretical findings, but also demonstrate the benefits of
the proposed approach.
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Chapter 4

Harmony: Dynamic
Heterogeneity-Aware Resource
Provisioning in Clouds

4.1 Introduction

Data centers have recently gained significant popularity as a cost-effective platform for
hosting large-scale service applications. While large data centers enjoy economies of scale
by amortizing long-term capital investments over a large number of machines, they also
incur tremendous energy costs in terms of power distribution and cooling. For instance,
it has been reported that energy-related costs account for approximately 12% percent of
overall data center expenditures [18]. For large companies like Google, a 3% reduction
in energy cost can translate to over a million dollars in cost savings [93]. On the other
hand, governmental agencies continue to implement standards and regulations to promote
energy-efficient computing [9]. As a result, reducing energy consumption has become a
primary concern for today’s data center operators.

In recent years, there has been extensive research on improving data center energy
efficiency [99,128]. One promising technique that received significant attention is Dynamic
Capacity Provisioning (DCP). The goal of this technique is to dynamically adjust the
number of active machines in a data center in order to reduce energy consumption while
meeting the Service Level Objectives (SLOs) of workloads. In the context of workload
scheduling in data centers, a metric of particular importance is scheduling delay [82, 97,
100,127], which is the time a request waits in the scheduling queue before it is scheduled on a
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machine. Task scheduling delay is a primary concern in data center environments for several
reasons: (1) A user may need to immediately scale up an application to accommodate a
surge in demand and hence requires the resource request to be satisfied as soon as possible.
(2) Even for lower-priority requests (e.g., background applications), long scheduling delay
can lead to starvation, which can significantly hurt the performance of these applications.
In practice, however, there is often a trade-off between energy savings and scheduling delay.
Even though turning off a large number of machines can achieve high energy savings, at
the same time, it reduces service capacity and hence leads to high scheduling delay.

However, despite the fact that a large number of DCP schemes have been proposed in
the literature in recent years, a key challenge that often has been overlooked or considered
difficult to address is heterogeneity, which is prevalent in production cloud data centers [97].
We summarize the types of heterogeneity found in production environments as follows:

• Machine Heterogeneity. Production data centers often comprise several types
of machines from multiple generations [100]. They have heterogeneous processing
capacities and capabilities, different hardware features, processor architectures, pro-
cessor speeds, memory and disk sizes. Consequently, they also have different energy
consumption rates at run-time.

• Workload Heterogeneity. Production data centers receive a vast number of het-
erogeneous resource requests with diverse resource demand, durations, priorities
and performance objectives [82, 100, 127]. In particular, it has been reported that
the differences in resource demand and duration can span several orders of magni-
tude [33,100,127].

The heterogeneous nature of both machine and workload in production cloud environments
has profound implications on the design of DCP schemes. In particular, given a rise of
workload requests, a heterogeneous-oblivious DCP scheme can turn on wrong types of
machines which are not capable of handling these requests (e.g., due to insufficient capac-
ity), resulting in both resource wastage and high scheduling delays. However, designing a
heterogeneity-aware DCP scheme can be difficult, because it requires an accurate character-
ization of both workload and machine heterogeneities. At the same time, it also requires a
heterogeneity-aware performance model that balances the trade-off between energy savings
and scheduling delay at run-time. Finally, the heterogeneity-aware DCP scheme should
also take into account the reconfiguration costs associated with switching on and off in-
dividual machines. This is because frequently turning on and off a machine can cause
the so-called ”wear-and-tear” effect that can reduce the machine lifetime. Therefore, the
reconfiguration cost due to server switching should be considered as well.
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This chapter presents Harmony, a Heterogeneity-Aware Resource MON-itoring and
management sYstem that addresses the aforementioned challenges. Specifically, we first
present a characterization of the heterogeneity found in one of Google’s production compute
clusters. Using standard K-means clustering, we show that the heterogeneous workload
can be divided into multiple task classes with similar characteristics in terms of resource
and performance objectives. We then formulate the DCP as an optimization problem
that considers machine and workload heterogeneity as well as reconfiguration costs. We
then devise online control algorithms based on the Model Predictive Control framework
that solves the optimization problem at run-time. Through extensive experiments using
traces from Google’s production compute clusters, we found Harmony is able to achieve
lower scheduling delay and energy consumption compared to heterogeneity-oblivious DCP
solutions.

The remainder of the chapter is organized as follows. Section 4.2 surveys related work
in the literature. Section 4.3 provides an analysis of a publicly available workload traces
from Google to motivate our approach. Section 4.4 provides an overview of Harmony. In
Section 4.5, we describe the way Harmony captures the run-time workload composition.
We present the mathematical formulation of the heterogeneity-aware DCP in Section 4.6,
and provide two technical solutions in Section 4.7. Section 4.8 discusses the deployment
of Harmony in practice. Finally, we evaluate our proposed system using Google workload
traces in Section 4.9, and draw our conclusions in Section 4.10.

4.2 Related work

In this section we provide a survey of existing work on (1) understanding workload and
machine characteristics in production clouds, and (2) dynamic capacity provisioning for
balancing the trade-off between energy savings and application performance objectives.

4.2.1 Machine and workload characterization

Characterizing workload in production clouds has received much attention in recent years,
as both scheduler design and capacity upgrade require a careful understanding of the
workload characteristics in terms of arrival rate, requirements, and duration [82]. For
example, Mishra et. al. have analyzed the workload of a Google compute cluster, and
proposed an approach to task classification using k-means clustering [82]. Following the
same line of research, Chen et. al. provided a characterization of Google cluster workload at
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job-level applying the k-means algorithm [41]. Sharma et. al. [100] and Zhang et. al. [127]
studied the problem of finding accurate workload characterizations through benchmark
generation and validation. Recently, Reiss et. al. [97] provided a comprehensive analysis
of the heterogeneity and dynamism found in Google cluster traces, and found that both
machine configurations and workload composition are highly heterogeneous and dynamic
over time. They also pointed out the importance of considering workload heterogeneity for
designing adaptive schedulers. However, the goal of these studies was to understand the
workload composition in production clouds, rather than using workload characterization
for resource allocation and capacity provisioning.

4.2.2 Energy-aware capacity provisioning

There is a large body of literature on energy-aware dynamic capacity provisioning in data
centers. For example, pMapper [109] is a migration-aware workload placement framework
for optimizing application performance and power consumption in data centers. However,
it does not consider the cost of turning on and off machines. Similarly, Mistral [67] is
a framework that dynamically adjusts VM placement to find a trade-off between power
consumption, application performance, and reconfiguration costs. However, it does not
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consider the arrival rate of task requests in its formulation. More recently, Ren et. al.
[99] studied the problem of scheduling heterogenous batch workload across geographically
distributed data centers. Different from our work, they assume workload has already
been divided into distinct types. They further assume every task can be scheduled on
any machine, which is not always the case as we shall demonstrate in Section 4.3. To
the best of our knowledge, no previous work has applied task classification to dynamic
capacity provisioning problem in heterogenous data centers. Thus, we design Harmony as
a workload-aware DCP framework that can achieve both higher application performance
and efficiency in terms of energy savings.

4.3 Workload analysis

To understand the heterogeneity in production cloud data centers, we have conducted
an analysis of workload traces from one of Google’s production compute clusters [12]1

consisting of approximately 12, 000 machines. The workload traces contain scheduling
events, resource demand and usage records for a total of 672, 003 jobs and 25, 462, 157
tasks over a time span of 29 days. Specifically, a job is an application that consists of
one or more tasks. Each task is scheduled on a single physical machine. When a job is
submitted, the user can specify the maximum allowed resource demand for each task in
terms of required CPU and memory size. The values of the demand for each resource type
were normalized between 0 and 1. Even though the dataset does not provide task size for
other resource types such as disk, it is straightforward to extend our approach to consider
additional resource types.

In addition to resource demand, the user can also specify a scheduling class, a priority
and placement constraints for each task. The scheduling class captures the type of the
task. Its value ranges from 0 to 3, with 0 corresponding to least latency-sensitive tasks
(e.g., batch processing tasks) and 3, the most latency-sensitive tasks (e.g., web servers).
The scheduling class is used by every machine to determine the local resource allocation
policy that should be applied to each task. The priority reflects the importance of each
task. There are 12 priorities that are divided into three priority groups : gratis(0 − 1),
other(2 − 8), production(9 − 11) [97]. Generally speaking, task priorities can be used for
specifying the Quality of Service (QoS) in terms of desired task scheduling delay. During
busy periods when demand approaches cluster capacity, task priorities can ensure that high
priority tasks are scheduled earlier than low priority tasks, resulting in lower scheduling

1It should be mentioned that the same dataset has been analyzed by Reiss et. al. [97]. However, our
analysis extends, and largely complements the results in [97].
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Figure 4.7: Task Size Analysis

delay. In this work, we primarily analyze task characteristics at the priority group-level,
because priority groups already provide a coarse-grained classification of tasks. In addition,
they also have strong correlation with task scheduling classes [12, 97]. Nevertheless, our
technical approach can be extended to handle any combination of task priority groups and
task scheduling classes.

4.3.1 Machine and Workload Dynamicity

In our analysis, we first plot the total demand for both CPU and memory over time. The
results are shown in Figure 4.1 and 4.2, respectively. The total demand at a given time is
determined by total resource requirements by all tasks in the system, including the tasks
that are waiting to be scheduled. From both figures, it can be observed that the demand
for each resource type can fluctuate significantly over time. Figure 4.3 shows the number of
machines available and used in the cluster. Specifically, a machine is available if it can be
turned on to execute tasks, and is used if there is at least one task running on it. Figure 4.3
also suggests that the capacity of the cluster is not adjusted according to resource demand,
as the number of used machines is almost equal to the number of available machines. These
observations suggest that a large number of machines can be turned off to save energy.

4.3.2 Analysis of Task Scheduling Delay

While turning off active machines can reduce total energy consumption, turning off too
many machines can also hurt task performance in terms of scheduling delay. Figure 4.4
shows the Cumulative Distribution Function (CDF) of the scheduling delay for tasks with
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respect to their priority groups. It is apparent that tasks with production priority have
better scheduling delay than the gratis ones. Indeed, more than 50% and 30% of the
tasks in production and other priority groups respectively are scheduled immediately. On
the other hand, some of the tasks were delayed significantly. During our analysis, we
have also noticed that some tasks even with production priority were delayed for up to
21 days. Since the cluster is not constantly overloaded, the only possible explanation is
that the task is difficult to schedule due to unrealistic resource requirement or there is a
placement constraint that is difficult to satisfy. These results suggests that more efficient
provisioning and scheduling methods are needed to reduce the scheduling delay for these
difficult-to-schedule tasks.

4.3.3 Understanding Machine Heterogeneity

The traces also provide information about the types of machines used in the cluster. A
machine is characterized by its capacity in terms of CPU, memory and disk size as well as a
platform ID, which identifies the micro-architecture (e.g., vendor name and chipset version)
and memory technology (e.g., DDR or DDR2) of the machine. Similar to tasks, machine
capacities are normalized such that the largest machine has a capacity equal to 1. Figure
4.5 shows the different types of machines and their characteristics (capacity and platform
ID (PFID)). We found 10 types of machines where more than 50% and 30% of the machines
belong to machine types 1 and 2, respectively. On the other hand, machine types 3 and 4
have around 1000 machines each. The remaining machine types (5 to 10) constitute less
than 100 machines. Unfortunately, the traces do not provide detailed information about
hardware specifications, however, it is clear that such a heterogeneity will translate into
different energy consumption models.

4.3.4 Understanding Task Heterogeneity

In order to analyze the workload heterogeneity, we plotted tasks requirements and their
durations for the three priority groups. Figure 4.7 shows the CPU and memory size of
tasks belonging to each priority group. The coordinates of each point in these figures
correspond to a combination of CPU and memory requirements. Radius of each circle
is logarithmic in number of tasks within its proximity. It can be seen that most of the
tasks have low resource requirements. In particular, we found that 43% of gratis tasks
have the same CPU and memory requirements equal to 0.0125 and 0.0159, respectively.
Furthermore, most of the large tasks are either CPU-intensive or memory-intensive. There
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is usually no correlation between CPU requirement and memory requirements. Another
key observation is that the difference in task size can span several orders of magnitude.
For example, Figure 4.7a shows that the largest task in the gratis priority group is almost
1000× bigger than the smallest task in the same group for both CPU and memory. Similar
characteristics can also be found in Figure 4.7b and 4.7c. Finally, by comparing Figure 4.5
and Figure 4.7, it is easy to see that not every task (e.g., CPU size ≈ 1) can be scheduled
on every type of machine (e.g., CPU capacity= 0.5).

Another important parameter that shows the heterogeneity of the tasks is the task
duration. Figure 4.6 shows the CDF of task durations for tasks within different priority
groups. From Figure 4.6, it can be seen that production tasks (9-11) have long durations
that can reach up to 17 days, whereas 90% of the remaining tasks (i.e., gratis and other)
have shorter durations that range between 0 and 10 hours. The same observation can be
made for production-priority tasks when compared to other priority groups (Figure 4.6).
Furthermore, it is worth noting that more than 50% of the tasks are short (less than 100
seconds). This concurs with the previous workload analysis studies [127], which showed
that tasks are either short or long.

4.3.5 Summary

The above analysis suggests that while the benefit of dynamic capacity provisioning is
apparent for production data center environments, designing an effective and dynamic ca-
pacity provisioning scheme is challenging, as it involves finding a satisfactory compromise
between energy savings and scheduling delay with consideration to the heterogeneous char-
acteristics of both machines and workload. In particular, we have found the heterogeneity
in task size can span several orders of magnitude, and not every type of machine can sched-
ule every task. Similar characteristics have also been recently reported in Microsoft and
Facebook data centers [33]. Thus, it is a critical issue to design heterogeneity-aware DCP
schemes for production data centers, as failing to consider these heterogeneous character-
istics will result in sub-optimal performance for DCP.

4.4 System Overview

As discussed previously, we design Harmony as a DCP framework that considers both task
and machine heterogeneity. This requires (1) an accurate characterization of both work-
load and machines, (2) effectively capture the dynamic workload composition at run time,
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and (3) using the captured information to control the number of machines in the compute
cluster to achieve a balance between energy savings and scheduling delay. In practice, large
cloud infrastructures such as Google compute clusters execute millions of tasks per day.
Capturing heterogeneity at fine-grained (i.e., per-task) level is not a viable option due to
the high overhead for monitoring and computation. Thus, a medium-grained characteri-
zation of the workload is necessary. To this end, we present a workload characterization of
Google traces by dividing tasks into task classes using the K-means algorithm. However,
different from previous work [41,82] whose main objective is to understand workload char-
acteristics, our goal is to find accurate workoad characterization, while supporting task
classification (e.g., labeling) at run time. It should be mentioned that machines are natu-
rally characterized (i.e., there are 10 types of machines in the cluster). Thus, our solution
will mainly focus on task characterization.

Once the workload characterization has been obtained, we introduce a monitoring mech-
anism that allows Harmony to capture the run-time workload composition in terms of
arrival rate for each task class. To make provisioning decisions, we define a container as
a logical allocation of resources to a task that belongs to a task class. In our approach,
the task containers serve as reservations for helping the controller to make machine allo-
cation decisions (to be described in Section 4.7.2). It is also possible to directly use task
containers for scheduling (to be described in Section 4.7.3). Finally, a heterogeneity-aware
DCP controller is designed to adjust the number of active machines, based on the current
machine availability and workload composition.

The architecture of Harmony is shown in Figure 4.8. It consists of the following compo-
nents. The task analysis module is responsible for monitoring the arrival of every task class
in order to identify the type to which it belongs. The scheduler is responsible for assigning
incoming tasks to active machines in the cluster. The prediction module receives statistics
of the arrival rate for each task class, and forecasts its future arrival rates. The container
manager evaluates the number of containers required to schedule the current workload.
These parameters are evaluated based on two factors: (1) the predicted arrival rate, and
(2) the required average scheduling delay for each type of tasks. The container manager
periodically notifies the capacity provisioning module about the number of required con-
tainers for each type of task. The capacity provisioning module decides which machine in
particular should be switched on or off. Obviously, the goal is to select the right combina-
tion of machines that can host the containers and, at the same time, minimizes the energy
consumption. Finally, The monitoring module is responsible for collecting diverse statistics
about tasks and machines, including CPU and memory usage, free resources and current
task durations. It also reports any failures and anomalies to the management framework.
In the following sections, we describe the design of Harmony in details.
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Figure 4.8: System architecture

4.5 Workload Analysis and Modeling

4.5.1 Task Classification

The goals of task classification is to divide tasks into classes with similar resource demand
and performance characteristics. For the purpose of resource provisioning, it is necessary
to consider task priority group, task size (CPU, memory) as well as task running time as
the features for clustering. Specifically, the size of a task i can be modeled as a vector
si = (si1, ..., siF ), where F denotes the set of features used for clustering. Let Nk denote
the tasks that belong to cluster k. Then, the centroid of each cluster can be defined as a
vector µ̄k = (µ̄k1, ..., µ̄kF ), where µ̄kr = 1

|Nk|
∑

si∈Nk s
ir. The K-means clustering algorithm

essentially tries to minimize the following similarity score:

score =
K∑
i=1

∑
i∈Nk

||si − µ̄k||2 (4.1)

where ||a − b|| denotes the Euclidian distance between two points a and b in the feature
space. Even though Harmony does not restrict the type of clustering algorithm used for
clustering, in practice we found K-means is simple and sufficient to serve our purpose.

A key issue associated with the use of K-means clustering is to determine the value of
K, which is the number of clusters to be produced by the algorithm. A small value of K will
lead to low-quality workload characterizations, which reduces the benefit of heterogeneity-
aware DCP. On the other hand, a large value of K will lead to high monitoring and
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management complexity. In our scheme, we adopt a common approach which is to pick
the value K such that adding another cluster does not achieve much better gain in terms
of minimizing equation 4.1. We shall report the result of running the K-means clustering
algorithm in Section 4.9.1.

Once a characterization of the workload has been made, the next challenge that must
be addressed by Harmony is run-time task classification. This means when a task arrives,
Harmony needs to determine which task class (i.e. one of the K clusters) it belongs to. An
easy solution to achieve this objective is to compute the Euclidean distance between the
task and each of the centroids, and assign the task to the class that has shortest Euclidean
distance. However, this cannot be done directly at run-time. This is because even though
the resource requirements (e.g., CPU, memory, disk size) are known, the task running
time is generally unknown to the system until the task finishes. In Harmony, this issue is
addressed by realizing the fact that tasks are either short or long, and the majority of the
tasks are short tasks. Thus, we can initially label all tasks as short tasks, and gradually
update the labels to the correct ones as time passes. Since only a small fraction of tasks
are long, the error caused by the incorrect labeling is both small and short-lived.

We now describe our task clustering and run-time task labeling procedure in details.
Specifically, we adopt a two-step approach for workload clustering. In the first step, tasks
are classified based on static characteristics (e.g., priority, CPU and memory size specified
in the job request) using the K-means algorithm. In the second step, each task class
is further divided into sub-classes based on task running time. At run-time, each task
is initially assumed to be short. The initial task label is determined by computing the
Euclidean distance between the task feature vector and the centroids produced by the
K-means algorithm. Later on if the task running time exceeds the partitioning threshold
between short and long tasks, the task will be relabelled and assigned to the right task
class. The advantage of this clustering procedure is that it not only simplifies the relabeling
process, but also reduces the error introduced by the relabeling process.

4.5.2 Demand Prediction

Once the incoming tasks can be classified, the prediction module is responsible for monitor-
ing forecasting the arrival rate of each task class. Currently, we have implemented a time
series-based predictor using the ARIMA [36] model, which has been shown to be effective
for predicting workload arrival rate [128]. However, Harmony can adopt other demand
prediction models as well.

Once the predicted task arrival rates have been obtained, the next step is to deter-
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mine the combination of machines that need to be provisioned in next control period. In
Harmony, the container manager is responsible for computing the number of containers
required to support the workload of each task class. Specifically, let ci denote the number
of containers for tasks type i such that the average scheduling delay is equal to d̄i. We
can model the queue of tasks of type i and its corresponding N i

t containers at time t by
M/G/N i

t queue since a single container can process one task at a time. Based on queuing
theory, the average waiting time di for type i tasks is given by [57]:

di ≈
πN i

t

1− ρi
· 1 + CV 2

i

2
· 1

N i
tµi

(4.2)

where µi is the execution rate of task type i, ρi = λi
N i
tµi

is the traffic intensity of tasks

type i, CV 2
i is the squared coefficient of variation of the average duration, and πN i

t
is the

probability that a task has to wait in the queue. It is expressed as:

πN i
t

=
(N i

tρ)N
i
t

N i
t !(1− ρi)

N i
t−1∑
k=0

(N i
tρi)

k

k!
+

(N i
tρi)

N i
t

N i
t !(1− ρi)

−1

(4.3)

Given an average scheduling delay and using Eq. (4.2), it is easy to estimate N i
t to ensure

di ≤ d̄i and ρi < 1.

In our experiments, we have found this queuing model generally works well for esti-
mating task resource requirements except for long-running tasks, for which queuing theory
makes inaccurate resource predictions. We found a simple solution to deal with this limi-
tation is to estimate the number of long running tasks using the ARIMA model. As each
task runs for very long time, the number of required containers is practically the number
of long running tasks. As a result, we use the ARIMA model to predict the number of long
running tasks, which translates into the number of required containers.

4.6 The Capacity Provisioning Problem

We now provide a formal model for DCP in heterogenous environments. In our model, time
is divided into intervals of equal duration, and control decision is made at the beginning of
each time interval. The cluster consists of M types of machines. Let Nm

t denote the set of
type m machines available (either active or not) at time interval t. Denote by Cmr ∈ R+
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Table 4.1: Table of Notations

Symbol Meaning

di Average scheduling delay for task class i

R Resource types

skr Size of task i for resource type r

ckr Size of a container of type i for resource type r

Cmr Capacity of a type m machine resource type r

Eidle,m Energy consumption of a type m machine when idle

αm̄r Energy efficiency ratio of a type m machine for type r

uirt Util. of machine i for resource type r at time t

yit Boolean var. indicating machine i is active at time t

υit Change in machine i’s state at time t

aikt Num. of type k containers in machine i at time t

γikt Change in aikt at time t

zikt Number of type m machines active at time t

δmt Change in the num. of type m machines at time t

xmkt Num. of type n containers in machine m at time t

σmkt Change in xmkt at t

the capacity of a single machine of type m ∈ M for resource type r ∈ R. Similarly, there
are K types of containers to be scheduled at time t, the number of containers of type k is
Nk
t . Let ckr ∈ R+ denote the size of a type k container for resource type r ∈ R.

Let yit ∈ {0, 1} denote whether machine i is active at time t. Furthermore, define
υit ∈ {−1, 0, 1} as an integer variable that indicates whether the machine is turned on
(uit = 1) or off (uit = −1), or unchanged (uit = 0). We also define aikt ∈ N ∪ {0} as an
integer variable that indicates the number of type n containers on machine i at time t, and
γikt as the change in zikt at time t. We thus have the following state equations:

yit+1 = yit + υit (4.4)

aikt+1 = aikt + γikt (4.5)

The utilization of type r resource on machine i at time t can be computed as:

uirt =
1

Cmr

∑
n∈N

zikt c
kr. (4.6)

As total energy usage of a physical machine can be estimated by a linear function of
resource utilization [128], the energy consumption of all the active machines at time t can
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be computed as:

Et = pt
∑
m∈M

∑
i∈Nm

t

yit

(
Eidle,m +

∑
r∈R

αmruirt

)
(4.7)

where Eidle,m ∈ R+ is the energy consumption of a type m machine when it is idle,
and αmr ∈ R+ is the slope of the energy consumption function. We can define Eidle

t =
pt
∑

m∈M
∑

i∈Nm
t
yitE

idle,m, Eutil
t = pt

∑
m∈M

∑
i∈Nm

t

∑
r∈R α

mruirt and rewrite Et as Et =

Eidle
t + Eutil

t .

To model task scheduling delay, since it is not possible for all containers to be scheduled
when demand exceeds data center capacity, we assume there is a utility function fk(·) that
models the monetary gain for scheduling containers. fk(·) is assumed to be a concave
function that can be derived from SLO objectives. For example, fk(ak) can model the gain
in monetary cost when ak containers are scheduled for task class k. The total revenue can
now be written as:

Uperf
t =

∑
k∈K

fk(
∑
m∈M

∑
i∈Nm

t

aikt ) (4.8)

.

The machine switching cost can be described by:

Csw
t (υit) =

∑
m∈M

∑
i∈Nm

t

qon,m(υit)
+ + qoff,m(υit)

− (4.9)

where qon,m ∈ R+ and qoff,m ∈ R+ denotes the cost for turning on and off of a single type
m machine, respectively. Finally, equation (4.10) ensures that containers scheduled on the
same machine do not exceed the resource capacity of the machine.∑

k∈K

aikt c
kr ≤ yitC

mr ∀m ∈M, i ∈ Nm
t , t ∈ T (4.10)

Thus, the overall objective of DCP is to control the number of active machines and to
adjust container placement in a way that maximizes the total performance gain in terms
of scheduling delay, while minimizes the energy consumption and machine switching cost
over a time horizon T = {1, 2, ..., T}:

max
aikt ,υ

i
t,y

i
t,γ

ik
t

RT =
T∑
t=1

Upref
t − Et − Csw

t (DCP)
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subjects to constraints (4.4), (4.5), and (4.10).

DCP is NP-hard to solve as it generalizes the vector bin-packing problem [39]. Fur-
thermore, linear programming based solutions cannot be applied to DCP due to the large
number of variables involved. For example, given 10 task classes and over 10K machines,
DCP contains at least 100K variables, making it difficult to solve in online settings. Fi-
nally, traditional bin-packing heuristics (e.g., First-Fit) do not apply directly to DCP as
they do not consider machine switching costs.

4.7 Solution Techniques

Realizing that directly solving DCP is not a viable option, in this section we present two
fast heuristics for solving DCP. Both techniques rely on solving the integer-relaxation of
DCP (i.e., relaxing the constraints that variables must take integer values) called DCP −
RELAX, which is much easier to solve than DCP. Once the solution for DCP −RELAX
is obtained, one of our solution techniques called Container-Based Provisioning (CBP)
directly rounds the numbers of machines to the nearest integer values and use these val-
ues for capacity provisioning. On the other hand, another solution technique called the
Container-Based Scheduling (CBS) attempts to find a feasible placement of containers in
physical machines, and use containers for run-time scheduling. In this section, we shall
first present the formulation DCP − RELAX, followed by describing CBP and CBS in
details. The benefits and limitations of each approach will be discussed in Section 4.8.

4.7.1 The Relaxation of DCP

In DCP −RELAX, we relax the integer constraints so that the number of machines (i.e.,
yit) and container assignment (i.e., zikt ) no longer take integer values. This relaxation yields
a simpler formulation, as we only need to solve the total number of containers for each
type of machines, rather than solving the number of containers per machine. Specifically,
we denote by zmt ∈ R+ the number of type m machines that are active at time t, and
δmt ∈ R the change in the number of active machines at time t. Similarly, define xmkt ∈ R+

as the number of type k containers assigned to machines of type m that is capable of
hosting containers of type k, and σmkt ∈ R+ the change in xmkt at time t. We thus have the
following state equations:

zmt+1 = zmt + δmt (4.11)

xmkt+1 = xmkt + σmnt (4.12)
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Furthermore, as xmkt can take fractional values, we need to ensure that each type of contain-
ers can only be assigned to machines that are capable of hosting them. This is achieved by
introducing a predefined boolean variable ψmk that indicates whether a container of type
n can be scheduled on a machine of type m. We thus have the following schedulability
constraint:

ckrx
mn
t ≤ zmt ψ

mkCmr ∀m ∈M,k ∈ K, r ∈ R, t ∈ T (4.13)

DCP −RELAX can now be stated as:

max
δmt ,σ

mk
t

T∑
t=0

∑
m∈M

−pt

(
zmt E

idle,m +
∑
r∈R

∑
k∈K

αmrckr

cmr
· xmkt

)

+
T∑
t=0

∑
k∈K

fk(
∑
m∈M

xmkt )−
∑
m∈M

Csw
t (δmt ) (DCP-RELAX)

subject to zmt ≤ Nm
t ∀m ∈M, t ∈ T (4.14)

xmkt , zmt ∈ R+ ∀k ∈ K,m ∈M, t ∈ T

along with constraints (4.11), (4.12) and (4.13). This problem is a convex optimization
problem that can be solved using standard methods [37].

4.7.2 Container-Based Provisioning (CBP) for DCP

Container-Based Provisioning (CBP) is a simple heuristic for solving DCP. After DCP −
RELAX is solved, CBP simply rounds up the fractional values of (xmkt , zmt ) to obtain
an integer solution for DCP, which gives the number of machines to be provisioned (i.e.,
dzmt e) and the number of type n tasks that should be scheduled on type m machines (i.e.,⌈
xmkt

⌉
). However, at run time, the scheduler needs to ensure that the number of type n

tasks assigned to type m machines must respect the provisioned capacity
⌈
xmkt

⌉
. A simple

strategy is to ensure the number of type k tasks assigned to m (denoted by Assignmkt ) is
proportional to the number of containers:

Assignmkt =
xmkt∑
j∈M xjkt
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This can be achieved easily by using a weighted round-robin scheduling policy. Further-
more, it can be easily integrated with existing scheduling algorithms. For example, vari-
ants of first-fit and best-fit algorithms (which are used in production clouds such as Mi-
crosoft [75], Google [100] and Open source platforms such as Eucalyptus [11]) can adopt
this mechanism by changing the scheduling policy to weight round-robin first fit and weight
round-robin best fit, respectively.

A key drawback of the above rounding scheme is that it often under-estimates the
required capacity. The reason is that the fractional solution of DCP − RELAX assumes
that each container can be arbitrarily divided and placed on multiple machines. However,
in practice, this is not realizable because each container must be scheduled on a single
machine. To account for the fact that DCP − RELAX under-estimates the required
machine capacities, we define an over-provisioning factor ωk ∈ R+ for each container type
k. ωk essentially captures how much extra resource is required to fully pack a given set of
type n containers. To account for ωk, it suffices to replace constraint 4.13 by the following
constraint: ∑

k∈K

ωkckrxmkt ≤ zmt C
mr ∀m ∈M, r ∈ R, t ∈ T (4.15)

The value of ωn can be obtained through experiments. For example, we have found setting
ωk = 1.2 for all n ∈ N to be a reasonable value in practice.

The main benefit of CBP is its simplicity and practicality for deployment in existing
systems. However, the main drawback of CBP is that it still relies on bin-packing algo-
rithms for scheduling. At run-time, tasks of different classes can still compete for resources
in each type of machine. As a result, CBP does not provide high performance guarantee
in terms of task scheduling delay.

4.7.3 Container-Based Scheduling (CBS) for DCP

In this section, we present an alternative solution to CBP called Container-Based Schedul-
ing (CBS). Unlike CBP that uses bin-packing algorithms for scheduling, CBS allocates
containers in each physical machine and use them for run-time task scheduling. Specifi-
cally, a type k container represents a resource reservation for tasks of type k. The number
of type k containers on a machine i indicates the number of type k tasks that can be
scheduled on machine i. At run-time, CBS adopts the following simple scheduling policy:
each task is scheduled in the first available container such that scheduling the task on the
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machine does not cause machine capacity violation. If none of the machines can sched-
ule the task without violating machine capacity constraint, the task will be kept in the
scheduling queue.

The main benefit of CBS is that it provides low scheduling delay due to resource
reservations on each physical machine. However, it also introduces several challenges which
we shall discuss in the following subsections.

Modeling Container Size

One of the main challenges for container-based scheduling is to select appropriate container
size. Unlike in CBP where we can simply use the centroid to determine the container
size, in CBS we need to set the container size large enough to ensure that with high
probability, each task can be scheduled without exceeding the capacity of the physical
machine. Specifically, setting the container size equal to the maximum possible container
size can cause resource wastage due to over-estimation of true task resource demand. On
the other hand, setting the container size equal to the average task size will lead to under-
estimation of task resource consumption, resulting in tasks unschedulable in machines with
available containers.

To address this issue, we rely on the statistical multiplexing of task resource demand to
ensure the probability of machine capacity violation to be low. Specifically, the result of the
K-means clustering algorithm divides the feature space intoK partitions, where every point
in the space belongs to exactly one partition (i.e. the partition whose centroid has shortest
distance to the point). We assume the tasks in each partition 1 ≤ k ≤ K are independently
distributed according to a common distribution Dk (which can be an arbitrary distribution)
with mean µk = (µk1, ..., µkR). and standard deviation σk = (σk1, ..., σkR). Our goal is to
select the container size ck = (ck1, ..., ciR) for each task class 1 ≤ k ≤ K to ensure that
given a task j of type k to be scheduled, the probability a task cannot be scheduled on
any of the machines that have available type k containers is less than a small value ε .
Mathematically, given Mk machines with available type k containers, let Nn denote the
tasks scheduled on each machine n ∈ Mk. Given a task i to be scheduled, we want to
ensure that ∏

m∈Mk

Pr(∃r :
∑
j∈N

sjr + sir > Cmr|
∑
j∈N

cjr + cir ≤ Cmr) ≤ ε (4.16)

Theorem 4. Assume each task skr in each class k is independently and identically dis-
tributed with mean µkr and standard deviation σkr for each resource type r. Also, let Mk
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denote the minimum number of machines on which a type k task can be scheduled. We can
set container size of task type k to

ckr = µkr +

√
|R| − ε

1

Mk

ε
1

Mk

σkr

for each r ∈ R to ensure equation (4.16) holds.

Proof. The proof is provided in the Appendix.

Theorem 4 provides a bound on selecting container size for CBS. For instance, if we
want to achieve ε = 0.01 for Mk = 100, |R| = 2, then Theorem 4 states that we can
set container size of task type k to µkr + 1.1σkr, which is typically much smaller than
the maximum possible size for task type k. In practice, we can use the sample mean and
standard deviation to approximate the values of µkr and σkr for each 1 ≤ k ≤ K. This is
reasonable because there is usually a large number of samples per task class. Assume each
sample is drawn independently, the sample mean and sample standard deviation will be
close to the true mean and the true standard deviation. Finally, if a task still cannot be
scheduled immediately, Harmony will keep the task in the front of scheduling queue until
it finds a machine with sufficient resources to schedule the task. This simple policy can
achieve low scheduling delay as we shall demonstrate in Section 4.9.2.

Solution Algorithm

In order to leverage containers for task scheduling, we present an alternative way to round
the fractional solution of DCP −RELAX. The idea is to leverage the following property
of the first-fit (FF ) algorithm:

Lemma 5. Given a fractional solution of DCP −RELAX with zm∗t type m machines and

xmn
∗

t type n containers, the first-fit (FF) algorithm can place at least
⌊
xmkt
2|R|

⌋
of each type of

container n in zm∗t + 1 machines.

Proof. The proof is provided in the Appendix.

Lemma 5 essentially states that, given a fractional solution of DCP − RELAX that

uses zm∗t type m machines and xmk
∗

t type n containers, FF can ensure that at least
⌊
xmkt
2|R|

⌋
containers can be placed in zm∗t + 1 machines. Using this result, we devise our CBS
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Algorithm 4 Controller Algorithm for CBS

1: Provide initial state zm0 , xmk0 , t← 0
2: loop
3: At beginning of control period t:
4: Predict Nk

t+i|t, pt+i|t for horizons t = 1, · · · ,W using a demand prediction model

5: Solve DCP −RELAX to obtain δmt+i|t,σ
mk
t+i|t for i = 0, · · · ,W − 1

6: Sort new containers based on their utilities
7: for m ∈M do
8: Select zmt|t machines of type m as active machines
9: end for

10: Compute a re-packing configuration for all selected active machines
11: Turn on selected machines, perform re-packing using FF , turn off other machines
12: t← t+ 1
13: end loop

algorithm (Algorithm 4) as follows: When the control interval t starts, the controller uses
the predicted values Nk

t+i|t∀k ∈ K, 1 ≤ i ≤ W 2 to solve DCP −RELAX, which gives zm∗t|t ,
the number of active type m machines to be made available at time t. Then the controller
computes an integer solution by first reducing the number of type n containers to at most⌊
xmkt
2|R|

⌋
and then adding containers using FF to ensure the number of type k containers is at

least
⌊
xmk∗t

2|R|

⌋
for all 1 ≤ k ≤ K. Container reassignment (i.e., migration) is then performed

to ensure there are at most zm∗t|t + 1 machines to be active. In our formulation, container
reassignment cost is modeled as part of the machine switching cost, as it is only used to
allow machines to be turned off. The average switching cost can be obtained through
experiments. Once the container reassignment is completed and there is still room for
more containers, the controller is free to schedule additional containers as long as the total
number of type k containers is at most xmkt . Finally, the controller will realize the new
configuration by actually turning off unused machines and making container allocations.

Theorem 6. The integer solution produced by Algorithm 4 ensures Upref
t − Et − Csw

t ≥
( 1

2|R| − ε)U
pref∗
t − (1 + ε)(E∗t − Csw∗

t ) when zmt is sufficiently large for all m ∈M , t ∈ T .

Proof. The proof is provided in the Appendix.

Theorem 6 provides a bound on the worst case performance of CBS. In experiments,
we have observed Algorithm 4 typically performs much better than the worst case bound.

2We use (t+ i|t) to denote future value for time t+ i either predicted or computed at time t
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Furthermore, realizing the bin-packing solutions often cannot fully utilize the machine
capacities, similar to CBP, we can use a provisioning factor ωk ∈ R+ to account for the
bin-packing inefficiencies. To account for ωk, it suffices to replace constraint (4.13) by
constraint (4.15). and run Algorithm 1 to find a suitable container placement. However,
using ωk does not lead to a better performance guarantee. To see this, consider an example
where Nm

t of type m machines are selected by DCP − RELAX to be active. All other
machines are inactive and have Eidle ≈∞. In this case, no matter how we adjust the value
of ωk, the number of containers scheduled by the algorithm will not improve.

4.8 Discussion

In this section we discuss considerations related to the deployment of Harmony in practice.

4.8.1 Task Classification and Prediction

It should be mentioned that many public cloud providers today (e.g., Amazon EC2 [6])
already offer VMs in distinct types. In such a case, our DCP algorithms can be applied
directly to these public clouds. However, we argue that predefined VM sizes may not
match the actual need of each customer in all cases. This is reflected by the fact that
workload heterogeneity is prevalent in private clouds such as Google’s compute clusters,
where customers are given the flexibility to choose desired VM size. In these cases, our ap-
proach is more flexible and can provide highly efficient DCP solution for arbitrary workload
compositions.

Another important issue concerns the accuracy of the demand prediction. our previous
work [128] suggests that the ARIMA can forecast future demand with high accuracy when
the trend of resource demand is stable. However, it is still insufficient when an unexpected
demand spike occurs. In this case, we can minimize the risk of under-provisioning using the
over-provisioning factor ωk. Even though exact value of over-provisioning factor can be set
based on experience, in Section 4.9.2 we shall evaluate the impact of the over-provisioning
factor on the performance of CBS and CBP using the Google Traces.

4.8.2 Comparing CBS and CBP

Although CBS provides a theoretically-sound solution for DCP, it requires the scheduler
to adopt a container-based scheduling algorithm, which is not always available in practice.
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As many production cloud systems (e.g., Google’s compute cluster) have also developed
sophisticated schedulering algorithms, implementing CBS requires major change to the
design of the scheduler. On the other hand, CBP does not suffer from this limitation.
However, due to lack of control of the scheduler, we have found CBP often produce worse
task scheduling delay compared to CBS in our experiments. In the next section we will
present our evaluation of both methods and quantitatively analyze the benefits and limi-
tations of both designs.

4.9 Simulation Studies

We simulate a heterogeneous cluster composed of a mixture of servers from multiple man-
ufacturers and models. The 4 types of servers correspond to the 4 most popular types of
machines (type 1-4) found in the Google cluster traces. Table 4.10 provides the character-
istics of the simulated servers. We normalized the CPU core count and memory capacity
to the largest machine size. Hence, HP DLG585 G7 has a capacity 1 CPU unit and
1 memory unit, which corresponds to 48 cores and 64GB, respectively. To demonstrate
the effectiveness of Harmony, we also adjusted he number of machines according to Table
4.10.

In our experiments, the energy consumption of the different machines is modeled ac-
cording to equation 4.7. The parameters Eidle,m and αmr for each type of servers were
estimated using energy measurements available in [9]. Figure 4.9 shows the energy con-
sumption as function of CPU usage. Indeed, this figure demonstrates the importance of
considering the machine heterogeneity when scheduling tasks in order to reduce energy
consumption. For instance, a container requiring 0.2 CPU unit should be placed in a HP
DL385 G7 since the PowerEdge R210 does not have enough CPU capacity, whereas the
other types of servers are able to host it but will consume much more energy. Select-
ing the “right” machines to switch on becomes even more challenging when millions of
heterogeneous tasks have to be scheduled in the cluster.

4.9.1 Results for Task Classification

We performed task classification as described in Section 4.5.1. For each priority group,
we varied the value of k and evaluated the quality of the resulting clusters produced by
the K-means algorithm. The best value of k for each priority group is selected as the one
for which no significant benefit can be achieved by increasing the value of k. The results
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Figure 4.9: Energy Efficency

Model Num. Memory Num.
of Cores Memory of Machines

Dell PowerEdge R210 4 4 GB 7000
Dell PowerEdge R515 6 32 GB 1500

HP DL385 G7 12 16 GB 1000
HP DL585 G7 12 64 GB 500

Figure 4.10: Machine Configurations
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Figure 4.11: Class
size (Gratis)
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Figure 4.12: Task du-
ration (Gratis)
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Figure 4.13: Tasks
Count (Gratis)
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Figure 4.14: Con-
tainer size (Gratis)
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Figure 4.15: Class
size (Other)
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Figure 4.16: Task du-
ration (Other)
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Figure 4.17: Tasks
Count (Other)
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Figure 4.18: Con-
tainer size (Other)
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Figure 4.19: Class
size (Production)
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Figure 4.20: Task du-
ration (Production)
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Figure 4.21: Tasks
Count (Production)
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Figure 4.22: Con-
tainer size (Prod.)
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after the first step of our characterization for each priority group are shown in Figure
4.11, 4.15, and 4.19, respectively. These diagrams show the clustering algorithm captures
the differences in task sizes and identifies cpu-intensive tasks and memory-intensive tasks.
Furthermore, the standard deviation is much less than the mean value for both CPU and
memory, which confirms the accuracy of the characterization. The number of tasks in each
task class is shown in Figure 4.13, 4.17 and 4.21, respectively. It is clear that the number of
tasks within each cluster can vary significantly. Most of the classes have between 104 and
106 tasks except cluster 4 for Gratis priority group, which has only 100 tasks. Lastly, we
run the k-means algorithm with k = 2 to categorize tasks of each task class as either short
or long. The results are shown in Figure 4.12, 4.16 and 4.20, respectively. These diagrams
confirm that long tasks typically run several orders of magnitude longer than short tasks.
Finally, we also computed the container size as described in Section 4.7.3, with ε = 0.001,
|R| = 2 and Mk = 100. The results are shown in Figure 4.14, 4.18 and 4.22, respectively.
Clearly, the the container size is typically smaller than the maximum task size within the
cluster for a majority of the clusters.

4.9.2 Controller Performance

We have evaluated the performance of CBS and CBP algorithms using Google workload
traces. In our experiments, the sum of arrival rate of tasks belonging to each priority
group is shown in Figure 4.23. Figure 4.24 shows the sum of the total number of containers
belonging to each priority group computed by Harmony.

For comparison purpose, we have also implemented a baseline (heterogeneity-oblivious)
algorithm that tries to find a balance between energy savings and scheduling by maintaining
an 80% utilization of the bottleneck resource. Essentially, given the total resource demand,
the baseline algorithm provisions machines in a “greedy” fashion by turning them on in
decreasing order of energy efficiency (e.g., always turning on HP-DL585-G7 machines first).
We picked the value of 80% because we have observed that a utilization higher than 80%
can cause a significant increase in task scheduling delay. As the Google workload contains
many long running tasks that were scheduled before the start of the traces, in our current
simulation, we mainly focus on simulating the arrival of new tasks.

In our first experiment, we use an over-provisioning factor of 1.2 to demonstrate the
behavior of our algorithms. The number of active servers provisioned by the baseline
algorithm, CBS and CBP are shown in Figure 4.25, Figure 4.26 respectively. Note that
both CBS and CBP provision the same number of machines as indicated by the MPC
algorithm. It can be seen that the number of machines provisioned by CBS and CBP is
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Figure 4.23: Aggre-
gated Task Arrival
Rates
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Figure 4.24: Number
of required
containers
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Figure 4.25: Num. of
machines used by the
baseline
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Figure 4.26: Number
of machines used by
CBS/CBP
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Figure 4.27: CDF of
scheduling delay for
baseline
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Figure 4.28: CDF of
scheduling delay for
CBP
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Figure 4.29: CDF of
scheduling delay for
CBS
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Figure 4.31: CPU
utilization in the data
center
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Figure 4.32: Memory
utilization in the data
center
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Figure 4.33: Energy
vs. Scheduling Delay
for CBP
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vs. Scheduling Delay
for CBS
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much less than the number of machines selected by the baseline algorithm. Furthermore,
It can be seen that they are able to make intelligent decisions regarding what type of
machines to turn on and off.

The CDF of task scheduling delays are shown in Figure 4.27, 4.28 and 4.29, respec-
tively. It can be seen that CBS and CBP can substantially reduce the scheduling delay
compared to the baseline algorithm. The CPU and memory utilizations of the baseline,
CBS and CBP are compared in Figure 4.31 and Figure 4.32, respectively. It can be seen
from the diagrams that the baseline achieves low utilization for both CPU and memory.
This is because the baseline only ensures the total provisioned capacity is 1

80%
times the

required capacity, and does not consider the type of machines provisioned. As soon as the
most energy efficient (i.e., HP DL585 G7) machines were all turned on, it began to make
wrong decisions regarding the type of machines to be turned on. As a result, many tasks
can not be scheduled in the newly provisioned machines, resulting in low utilization and
high scheduling delay. In contrast, both CBS and CBP can significantly outperform the
baseline algorithm in terms of both resource utilization and scheduling delay. Furthermore,
CBS generally outperforms CBP in our experiments. This is because CBS uses dedicated
containers for scheduling, thus ensures large tasks can be scheduled quickly. In contrast,
CBP does not provide guaranteed resources for scheduling large tasks, making them more
difficult to schedule.

To better understand the difference between CBS and CBP, we also varied the value of
the over-provisioning factor to produce different trade-offs between energy and the average
scheduling delay. The results are shown in Figure 4.33 and Figure 4.34, respectively. We
found CBS generally produces a better trade-off between scheduling delay and energy
savings. This observation can be explained as follows: As CBS pre-allocates containers for
scheduling, the variability in task scheduling delay is much smaller. This variability has
strong impact on the average scheduling delay, because most of the scheduling delays in
our experiments are causes by a small fraction of “difficult-to-schedule” tasks, as suggested
in Figure 4.27, 4.28 and 4.29. Furthermore, Figure 4.33 shows that CBP incurs large
scheduling delay for production tasks. This is because these production tasks are typically
very large. As CBP still relies on the first-fit algorithm to schedule tasks, it does not ensure
large production tasks can be scheduled immediately, unless the over-provisioning factor
is set to a large value. Based on these observations, we conclude that CBS can slightly
outperform CBP especially when energy consumption must be minimized. However, CBS is
more restrictive in terms of scheduling policy, making it less adaptive to different scheduling
requirements found in practice. Thus, the cloud provider must carefully analyze these
trade-offs in order to decide whether CBS or CBP should be used in a given scenario.
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4.10 Conclusion

Dynamic capacity provisioning has become a promising solution for reducing energy con-
sumption in data centers in recent years. However, existing work on this topic has not
addressed a key challenge, which is the heterogeneity of both workloads and physical ma-
chines. In this chapter, we first provide a characterization of both workload and machine
heterogeneity found in one of Google’s production compute clusters. Then we present Har-
mony, a heterogeneity-aware framework that dynamically adjusts the number of machines
to strike a balance between energy savings and scheduling delay, while considering the re-
configuration cost. Through experiments using Google workload traces, we found Harmony
can yield large energy savings while significantly improving task scheduling delay.
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Chapter 5

PRISM: Fine-Grained
Resource-Aware Scheduling for
MapReduce

5.1 Introduction

Businesses today are increasingly reliant on large-scale data analytics to make critical day-
to-day business decisions. This shift towards data-driven decision making has fueled the
development of MapReduce [46], a parallel programming model that has become synony-
mous with large-scale, data-intensive computation. In MapReduce, a job is a collection of
Map and Reduce tasks that can be scheduled concurrently on multiple machines, resulting
in significant reduction in job running time. Many large companies, such as Google, Face-
book, Amazon, and Yahoo!, routinely use MapReduce to process large volumes of data
on a daily basis. Consequently, the performance and efficiency of MapReduce frameworks
have become critical to the success of today’s Internet companies.

A central component to a MapReduce system is its job scheduler. Its role is to cre-
ate a schedule of Map and Reduce tasks spanning one or more jobs, that minimizes job
completion time and maximizes resource utilization. A schedule with too many concur-
rently running tasks will result in heavy resource contention and long job completion time.
Conversely, a schedule with too few concurrently running tasks will have poor resource
utilization.

The job scheduling problem becomes significantly easier to solve if we can assume all
map tasks (and similarly, all reduce tasks) have homogenous resource requirements in terms
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of CPU, memory, disk and network bandwidth. Indeed, current MapReduce systems, such
as Hadoop MapReduce Version 1, make this assumption to simplify the scheduling problem.
These systems use a simple slot-based resource allocation scheme, where physical resources
on each machine are captured by the number of identical slots that can be assigned to tasks.
Unfortunately, in practice, run-time resource consumption varies from task to task and from
job to job. Several recent studies [63, 123] have reported that production workloads often
have diverse utilization profiles and performance requirements [34]. Failing to consider
these resource properties and job usage characteristics can potentially lead to inefficient
run-time job schedules with low resource utilization and long job execution time.

Motivated by this observation, several recent proposals, such as Resource-Aware Adap-
tive Scheduling (RAS) [90] and Hadoop MapReduce Version 2 (also known as Hadoop
NextGen and Hadoop Yarn) [16], have introduced resource-aware job schedulers to the
MapReduce framework. These schedulers specify a fixed size for each task in terms of re-
quired resources (e. g. CPU and memory), thus assuming the run-time resource consump-
tion of the task is stable over its life time. However, this is not true for many MapReduce
jobs. In particular, it has been reported that the execution of each MapReduce task can be
divided into multiple phases of data transfer, processing and storage [61]. A phase is a sub-
procedure in the task that has a distinct purpose and can be characterized by the uniform
resource consumption over its duration. As we shall demonstrate in Section 5.2, the phases
involved in the same task can have different resource demand in terms of CPU, memory,
disk and network usage. Therefore, scheduling tasks based on fixed resource requirements
over their durations will often cause either excessive resource contention by scheduling too
many simultaneous tasks on a single machine, or significant resource under-utilization by
scheduling too few.

In this chapter, we present PRISM, a Phase and Resource Information-aware Sche-
duler for MapReduce clusters that performs resource-aware scheduling at the level of task
phases. Specifically, we show that for most MapReduce applications, the run-time task
resource consumption can vary significantly from phase to phase. Therefore, by considering
the resource demand at the phase level, it is possible for the scheduler to achieve higher
degrees of parallelism while avoiding resource contention. To this end, we have developed
a phase-level scheduling algorithm with the aim of achieving high job performance and
resource utilization. Through experiments using a real MapReduce cluster running a wide-
range of workloads, we show PRISM delivers up to 18% improvement in resource utilization
while allowing jobs to complete up to 1.3× faster than current Hadoop schedulers.

The rest of this chapter is organized as follows. Section 5.2 provides an overview of
phases involved in MapReduce job execution. We describe the phase-level task usage
characteristics and our motivation in Section 5.3. Section 5.4 introduces PRISM and
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Figure 5.1: Phases involved in the Execution of a Typical MapReduce Job

describes its architecture. The phase-level scheduling algorithm is presented in details in
Section 5.5. Our experimental evaluation of PRISM is provided in Section 5.6. Finally, we
conclude this chapter in Section 5.7.

5.2 Background

The current MapReduce frameworks such as Apache Hadoop MapReduce [1] adopt a cen-
tralized scheduling scheme. A MapReduce cluster consists of a large number of commodity
machines with one node serving as the master and the others acting as slaves. The master
node runs a resource manager (also known as a job tracker) that is responsible for schedul-
ing tasks on slave nodes. Each slave node runs a local node manager (also known as a task
tracker) that is responsible for launching and allocating resources for each task. To do so,
the task tracker launches a Java Virtual Machine (JVM) that executes the corresponding
map or reduce task.

Current Hadoop job schedulers perform task-level scheduling, where tasks are consid-
ered as the finest granularity for scheduling. However, if we examine the execution of each
task, we can find that a task consists of multiple phases, as illustrated in Figure 5.1. In
particular, a map task can be divided into 2 main phases: map and merge. In the map
phase, the mapper fetches the input data block from the Hadoop Distributed File System
(HDFS) [2] and applies the user-defined map function on each record. The map function
generates records that are serialized and collected into a buffer. When the buffer becomes
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full (i.e., content size exceeds a pre-specified threshold), the content of the buffer will be
written to the local disk in the background. Finally, the mapper executes a merge phase
to group the output records based on the intermediary keys, so that the records can be
easily fetched by the reducers.

Similarly, the execution of a reduce task can be divided into 3 phases: shuffle, sort, and
reduce. In the shuffle phase, the reducer fetches the output records from the local storage
of each map task and then places it in a storage buffer that can be either in memory or
on disk depending on the size of the content. At the same time, the reducer also launches
one or more threads to perform local merge sort in order to reduce the running time of the
subsequent sort phase. Once all the map output records have been collected, the sort phase
will perform one final sorting procedure to ensure all collected records are in order. Finally,
in the reduce phase, records are processed according the user-defined reduce function in
the sorted order, and the output is written to the HDFS.

Different phases can have different resource consumption characteristics. For instance,
the shuffle phase often consumes significant network I/O resources as it requires collecting
outputs from all completed map tasks. In contrast, the map and reduce phases mainly
process the records on local machines, thus they typically demand greater CPU resources
than network bandwidth. In the next section, we provide empirical evidence to show that
the run-time task resource consumption can change significantly across phase boundaries.

5.3 Phase-Level Resource Requirements

In this section we experimentally analyze the run-time task resource requirements in each
phase for various Hadoop jobs. We deployed Apache Hadoop 0.20.2 on a 16 node cluster,
with one node acting as the master managing the other 15 slave nodes. Each machine has
a Quad-core Xeon CPU with 12GB of memory and 1TB local disk storage. We modified
the default task tracker in Hadoop 0.20.2 to monitor the execution of phases inside each
task.

In our experiments, we evaluate the phase-level resource requirements across various
jobs, including the standard examples provided by the Hadoop MapReduce distribution
Gridmix2 [3] and the PUMA Benchmarks [4]. We found that task resource usage can
change significantly from phase to phase for a large variety of jobs in both benchmarks.
For example, Figure 5.2 shows the resource consumption over time of a single map and
reduce task for the sort job. Figure 5.2a and Figure 5.2b show that even though the
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(a) MAP CPU and memory usage (b) MAP IO Usage

(c) REDUCE CPU and memory
usage

(d) REDUCE IO Usage

Figure 5.2: Job Profile for sort

CPU usage of the map task remains reasonably stable over time,(around 15% on average)
the I/O usage increases significantly as the task progresses from the map phase to the
merge phase. The low I/O usage is the result of the map phase incrementally reading the
input key-value pairs from the HDFS system. In contrast, the merge phase has high I/O
usage because it is responsible for grouping all intermediary key-values pairs within a short
period of time.

Similarly, Figure 5.2c and Figure 5.2d show that the run-time resource consumption of
the reduce task changes from the shuffle phase to the reduce phase. The reason is that the
shuffle phase fetches the intermediary key-values pairs from the map tasks, and performs
partial merge on the fetched key-value pairs. As a result, it consumes both CPU and
network I/O resources. However, once the reduce phase begins, the reducer only needs to
focus on applying the reduce function to each key-value pair to produce the final output.
Because the reduce function of the sort job is just a simple pass-through function, the
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(a) Map CPU and mem. usage (b) MAP IO Usage

(c) REDUCE CPU and memory
usage

(d) REDUCE IO Usage

Figure 5.3: Job Profile for InvertedIndex

CPU usage of the reduce phase is lower than that of the shuffle phase.

We also analyze the InvertedIndex job in the PUMA benchmark. Figure 5.3 shows
that the map tasks and reduce tasks of the InvertedIndex job have different running
times compared to the sort job. Furthermore, unlike in the sort job, the map tasks of
the InvertedIndex job consume almost 8× less I/O resources during map phase than the
merge phase.These observations suggest that the run-time task resource consumption is
dependent on the phase in which the task is currently executing. Therefore, ignoring the
phase-level resource characteristics will lead to inaccurate job usage profiles, which in turn
will cause the job scheduler to make inefficient job scheduling decisions.
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Figure 5.4: System Architecture

5.4 System Overview

Motivated by the observation that task usage is phase-dependent, we present PRISM, a
new fine-grained resource-aware scheduler that performs scheduling at phase-level. Unlike
existing MapReduce schedulers that only allow job owners to specify resource requirements
at task-level, PRISM allows the job owners to specify phase-level resource requirements.

An overview of the PRISM architecture is shown in Figure 5.4. PRISM consists of three
main components: a resource-aware scheduler at the master node, local node managers
that coordinate phase transitions with the scheduler, and a job progress monitor to capture
phase-level progress information. In PRISM, once a task has finished executing a particular
phase, it must request the local node manager for permission to start the next phase. The
local node manager forwards the permission request to the scheduler through the regular
heartbeat message. Given a job’s phase-level resource requirements and its current progress
information, the scheduler decides whether to start a new task, or allow a paused task to
begin its next phase.

In order to perform phase-level scheduling, PRISM requires phase-level resource infor-
mation for each job. Existing state-of-the-art resource profilers, such as Starfish [61], can
already provide accurate phase-level resource information for PRISM. In the absence of
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phase-level resource information, PRISM can fall back to use task-level resource informa-
tion specified for Hadoop Yarn to schedule phases for that job.

Finally, even though the flexibility of phase-based scheduling should allow the scheduler
to improve both resource utilization and job performance over existing MapReduce sched-
ulers, realizing such a potential is still a challenging problem. This is because pausing the
task execution at run-time may delay the completion of the current and subsequent tasks,
which may increase the job completion time (these delayed tasks are commonly referred to
as stragglers [46]). Thus, the scheduler must avoid introducing stragglers when switching
between phases. In the following sections, we will describe how PRISM overcomes this
challenge.

5.5 Scheduler Design

In this section, we describe in detail the design of PRISM’s phase-based scheduling algo-
rithm. We first describe the design rationale of the scheduling algorithm in Section 5.5.1,
and then provide the details of our algorithm in Section 5.5.2.

5.5.1 Design Rationale

The responsibility of a MapReduce job scheduler is to assign tasks to machines with con-
sideration for both efficiency and fairness [34, 117]. To achieve efficiency, job schedulers
must maintain high resource utilization in the cluster. Job running time is another possible
measure for efficiency [117], as a lower job running time implies that resources are more
efficiently utilized for job execution. In contrast, fairness ensures that resources are fairly
divided among jobs such that no job will experience starvation due to unfair resources al-
location. However, simultaneously achieving both fairness and efficiency in the context of
multi-resource scheduling has been shown to be challenging, as there is usually a trade-off
between these properties [66,117].

Fair scheduling algorithms generally run an iterative procedure by identifying users that
experience the highest degree of unfairness (i.e. deficit) in each iteration, and schedule tasks
that belong to those users to improve the overall fairness of the system. As described in
Section 2.2.2, there are many possible fairness criteria. For instance, Isard et. al. [63] aims
at ensuring that when multiple jobs share the same cluster, each job should experience
similar performance gain or performance loss in terms of running time. In this context,
considering a cluster that currently has J jobs running, and each job is executing nj tasks
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concurrently. Suppose each job j can execute Nj tasks simultaneously when it is given
exclusive access to the cluster, then the fair share of each job j is defined as

FSj =
nj
Nj

(5.1)

we refer to this type of fairness as running-time fairness, as it tries to equalize the perfor-
mance gain (or loss) of individual jobs. This fairness criterion is also supported by original
Hadoop fair scheduler, as the scheduler tries to equalize the number of slots that each job
receives. In this case, each job will experience similar speed up (or slow down) because it
gets similar share of resources in terms of the number of slots.

Similarly, Ghodsi et. al. defined the dominant resource fairness (DRF) which aims
at equalizing share of each individual’s most highly demanded (i.e., dominant) resource.
Specifically, considering a cluster of R types of resources whose capacity for each type of
resources r ∈ R is Cr. Assuming for each individual j, the resource consumption of type r
resource is cjr, the dominant share of individual j can be computed as

FSj = max
r∈R

{
cjr
Cr

}
(5.2)

Regardless of the fairness criterion used, at run-time the objectives of a fair scheduler
is to equalize FSj by scheduling tasks belonging to the job with the minimum share.

However, directly applying a fair scheduling algorithm for phase-level scheduling re-
quires additional considerations. In particular, given a set of phases that can be scheduled
on a machine, the scheduling algorithm must consider the resource requirements of the
different phases and the dependency between phases to determine a valid schedule that
minimizes job running time. For example, the scheduler needs to consider possible cas-
cading delays, due to the sequential ordering of phases in a task, when making scheduling
decisions. In many cases, such delays can also propagate to subsequent phases in the same
job, causing them to be delayed as well. For example, even though the execution of a
shuffle phase of a reduce task can overlap with the execution of a merge phase of a map
task, the shuffle phase cannot finish unless all merge phases of the map tasks have finished.
Thus, when choosing between scheduling merge phases and shuffle phases, it is preferable
to give sufficient resources to merge phases to allow all of them to finish faster, instead of
allocating most of the resources to the shuffle phase and delaying the completion of merge
phases.

To address the issue of limited concurrency as a result of phase dependencies, we ensure
there is a high degree of task-level concurrency by deploying a sufficient number of running
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map and reduce tasks. While a task is running, we also want to ensure each phase within
the task is not severely delayed in order to avoid creating stragglers. To achieve both
objectives, given a set of phases that can be scheduled on a machine, the scheduler assigns
a utility value to each phase which indicates the benefit of scheduling the phase. The
scheduler will then schedule the phases in decreasing value of their utility. The utility
value is phase-dependent, because phases have different dependencies. If a phase is map or
shuffle, scheduling the phase implies scheduling a new map or reduce task. In this case, the
utility of the phase is determined by the increase in parallelism from running an additional
task. For other phases, the utility is determined by the urgency to complete the phase. A
simple metric for measuring urgency is the number of seconds that a task has been paused
due to phase-level scheduling. If the task has been paused for a long time, it becomes more
urgent to schedule its remaining phases in order to avoid creating a straggler.

5.5.2 Algorithm Description

We formally introduce our scheduling algorithm in this section. Specifically, each job
j in the system consists of two types of tasks: map tasks M and reduce task R. Let
τ(t) ∈ {M,R} denote the type of a task t. Given a phase i belonging to a task t that can
be scheduled on a machine n, we can define the utility function of assigning a phase i to
machine n as:

U(i, n) = Ufairness(i, n) + α · Uperf (i, n) (5.3)

where Ufairness and Uperf represent the utilities for improving fairness and job performance,
respectively, and α is an adjustable weight factor. If we set α to a value close to zero, then
the algorithm will greedily schedule phases according to the improvement in fairness. No-
tice that considering job performance objectives will not severely hurt fairness. When a
user is severely below its fair share, scheduling any phase with non-zero resource require-
ment will only improve her fairness. The exact value of α can be determined based on
experience.

Now we describe each of the terms in equation (5.3) in detail. We define

Ufairness(i, n) = U before
fairness(i, n)− Uafter

fairness(i, n) (5.4)

where U before
fairness(i, n) denotes the fairness measure of the user before scheduling i on n and

Uafter
fairness(i, n) is the new fairness measure of the user after scheduling i on n. For example,
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we can define

U before
fairness(i, n) =

J∑
j=1

∣∣∣FSbeforej − FSbefore∗j

∣∣∣ (5.5)

Uafter
fairness(i, n) =

J∑
j=1

∣∣∣FSafterj − FSafter∗j

∣∣∣ (5.6)

where J denotes the job that are currently running, FSbeforej and FSafterj denote the fair
share of job j before and after i is scheduled, and FS∗j is the average fair share, (i.e.

FSbefore∗j = 1
J

∑J
j=1 FS

before
j and FSafter∗j = 1

J

∑J
j=1 FS

after
j ).

On the other hand, Uperf (i, n) is more difficult to compute. As mentioned previously,
if i is the first phase of a map (or reduce) task t, then Uperf (i, n) measures the gain in
parallelism in terms of the number of running map tasks (or reduce tasks). Otherwise,
if i is a subsequent phase of task t, then Uperf (i, n) measures the gain in shortening the
running time of task t. Formally, we define

Uperf (i, n) =

{
Utask(i, n) iis the first phase of a task

Uphase(i, n) Otherwise
(5.7)

Even though PRISM does not specify the function for computing the utility of a phase, in
our current implementation, we have chosen Utask(i, n) to be

Utask(i, n) =
Nremaining

max{Ncurrent, ε}
− Nremaining

Ncurrent + 1
(5.8)

where Nremaining denotes the number of remaining tasks of type τ(t) (i.e. the number of
remaining tasks of the same type as t), and Ncurrent denotes the number of tasks of type
τ(t) that are running. The variable ε is used to prevent dividing by 0. Intuitively, Utask(i, n)
measures the gain in parallelism if the number of running tasks is increased from Ncurrent

to Ncurrent + 1.

On the other hand, let T twait denote the number of seconds that task t has been paused
due to phase-based scheduling. The utility for scheduling a non-leading phase i of task t
can be expressed as a function p(·) of T twait:

Uphase(i, n) = p(T twait) (5.9)

There are many possible choices for p(·). For example, we can define p(·) as a linear
function (i.e. p(T twait) = a · T twait + b for constants a and b), which would increase the
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Algorithm 5 Phase-Level Scheduling Algorithm

1: Upon receiving a status message from a task tracker on machine n
2: Compute the resource utilization of machine n
3: PhaseSelected← {∅}
4: CandidatePhases← {∅}
5: for each job j in the system do
6: for each scheduable phase i ∈ j do
7: CandidatePhases← CandidatePhases ∪ {i}
8: end for
9: end for

10: while CandidatePhases 6= ∅ do
11: for i ∈ CandidatePhases do
12: if i is not schedulable on n given current utilization then
13: CandidatePhases← CandidatePhases\{i}
14: continue;
15: end if
16: Compute the utility U(i, n) as in equation (5.3)
17: if U(i, n) ≤ 0 then
18: CandidatePhases← CandidatePhases\{i}
19: end if
20: end for
21: if CandidatePhases 6= ∅ then
22: i← task with highest U(i, n) in the CandidatePhases
23: PhaseSelected← PhaseSelected ∪ {i}
24: CandidatePhases← CandidatePhases\{i}
25: Update the resource utilization of machine n
26: end if
27: end while
28: return PhaseSelected

utility of scheduling i to increase linearly with the number of seconds that the task has
been paused. However, in our implementation, we have chosen p(·) to be a quadratic
function p(T twait) = a · p(T twait)2 + b. The intuition to using a quadratic function is to
increase the urgency for scheduling i more rapidly if i has been paused for a long time.
However, PRISM can adopt any type of utility function p(·) as long as it is a monotonically
increasing function.

Finally, the scheduling algorithm used by our phase-based scheduler is illustrated by
Algorithm 1. Specifically, upon receiving the status message from a node manager running
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on machine n, we first compute the utilization u of the machine using job’s phase-level
profile (Line 2). We then compute a set of schedulable candidate phases (Line 4− 9), and
select phases in an iterative manner. In each iteration for each schedulable phase i ∈ P (j)
of each job j, we compute the utility function U(i, n) according to equation (5.3) (Line
16). Then we select the phase with the highest utility for scheduling (Line 22 − 23), and
update the resource utilization of the machine (Line 25). Then the algorithm repeats by
recomputing the utility of all the phases in the candidate set, and select the next best
phase to schedule. The algorithm ends when the candidate set is empty, which means
there is no suitable phase to be scheduled. As for the running time, assuming there are N
tasks in the system1 and each machine can schedule at most k tasks, the running time of
the algorithm is O(Nk).

5.6 Experiments

We have implemented PRISM in Hadoop 0.20.2. Implementing this architecture requires
minimal change to the existing Hadoop architecture (around 700 lines of code). Even
though there are several fairness criteria we can implement in PRISM, currently we im-
plemented the running-time fairness proposed by Isard et. al. [63], where the fair share of
each job is computed according to equation (5.1).

We deployed PRISM in a compute cluster which consists of 16 compute nodes. Each
compute node has 4-core 2.13GHz Intel Xeon E5606 processors, 12G RAM, 1TB of local
high speed hard drive, and runs 64-bit Ubuntu 11.10 OS. The network interface card (NIC)
installed on each node is capable of handling up to 1Gb/s of network traffic. Each node is
connected to a top-of-rack switch and can communicate with others via a 1Gb/s link.

We have chosen two benchmarks to evaluate the performance of PRISM: Gridmix 2
and PUMA. Gridmix 2 [3] a standard benchmark included in the Hadoop distribution.
For Gridmix 2 we have chosen 3 jobs for performance evaluation: MonsterQuery (MQ),
WebDataScan (WDS) and Combiner (CM). Similarly, PUMA [4] is a MapReduce bench-
mark developed at Purdue University. We have selected 4 jobs for performance evalua-
tion: sort (SRT), self-join (SJ), inverted-index (II) and classification (CL).
We chose these jobs because they contain a variety of resource usage characteristics. For ex-
ample, sort and MonsterQuery are I/O intensive jobs, whereas Combiner and self-join

are more CPU intensive. A mixture of jobs with different resource requirements allows us
to better evaluate the performance of PRISM.

1As each task can provide at most one candidate phase, N tasks in the system imply there can be at
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Job: sorter
Input size: 5GB, Map Count: 40, Reduce Count: 56
Map stage completion: 63s
Reduce stage completion: 147s
Phase Map Merge Shuffle Sort Reduce

ti (s) 7.43 1.25 9.07 0.64 9.69

CPU(%) 17.42 14.35 21.58 7.5 8.21

Mem (%) 1.35 1.40 2.11 2.37 2.33

LFS(MB/s) 3.98 34.31 5.71 11.17 5.29

HDFS(MB/s) 7.17 0 0 0 5.30

Shuffle(MB/s) 0 0 7.16 0 0

Figure 5.7: A Job Profile for Sort Job

In order to evaluate the benefit brought by phase-level scheduling, it is necessary to com-
pare PRISM to existing task-level resource-aware schedulers. In our experiments, we have
chosen Hadoop Yarn 2.0.4 as a competitive task-level resource-aware scheduler. Hadoop
Yarn 2.0.4 is a recent version of Hadoop NextGen that allows the users to specify both CPU
requirement (i.e. number of virtual cores) and memory requirement (i.e. GB of RAM) of
each task. Like the previous version of Hadoop MapReduce, The current Hadoop Yarn

most N candidate phases.
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supports both capacity scheduler and fair scheduler. However, only the capacity scheduler
supports resource-aware scheduling using both CPU and memory resource requirements.
As a state-of-the-art resource-aware scheduler, in our experiments we compare PRISM with
Hadoop Yarn using capacity scheduler. As the capacity scheduler is not fair scheduler. Fi-
nally, we use Hadoop 0.20.2 with fair scheduler as a (slot-based) baseline for comparing
scheduler performance. This also allows us to evaluate the fairness of PRISM because both
PRISM and the fair scheduler aim at achieving running-time fairness. In our experiments,
we set α = 1 to given equal importance to both performance and fairness in PRISM.

5.6.1 Capturing Job Performance Requirements

For analysis purposes, we have implemented a simple job profiler that captures the CPU,
memory and I/O usage of both tasks and compute nodes. Writing our own profiler allows
us to better analyze the fine-grained resource characteristics of individual phases. In our
implementation, we monitor the execution of each task and record the start and end time
of every phase. As for monitoring run-time resource usage, we rely on linux top command
to record CPU and memory usage once per second. Network I/O is more difficult to profile.
In our current implementation, we modified the Hadoop source code to print the values
of I/O counters. The actual disk and network I/O usage over-time can be obtained from
Linux utilities such as iotop and nethogs.

Similar to existing work in [90], we adopt a simple strategy for profiling jobs as follows:
given the input parameters (e.g. input data size, number of reduce tasks) of each job, we
vary the resource allocation of both map and reduce tasks in the job profile by adjusting the
number of slots allocated to map and reduce tasks. Specifically, we first vary the number of
map slots to find an optimal number of map slots that minimizes the map completion time.
Using this number, we then vary the number of reduce slots to find an optimal number
of reduce slots that minimizes the overall job completion time. Figure 5.5 and Figure 5.6
shows the result for adjusting the number of maps slots and reduces for the sort job,
respectively. Both figures show that the job running time has a non-linear relationship
with the number of slots used. When the number of slots is small (e.g. 2 slots) the job
running time becomes long due to the low degree of task-level parallelism imposed by the
slot allocation. On the other hand, when the number of slots is large (e.g. 12 slots) the
running time again becomes high due to multiple tasks competing for bottleneck resources.
For the sort job, we found setting the number of map slots and reduce slots to 8 and 6
respectively achieves the optimal running time. The profile for the sort job is shown in
Figure 5.7. The same process is repeated to create the profiles for all other jobs.
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Figure 5.8: Sorting 5GB data with Fair-Scheduler
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Figure 5.9: Sorting 5GB data with Yarn
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Figure 5.10: Sorting 5GB data with PRISM

To provide fair comparison among all 3 schedulers (i.e., PRISM, Fair Scheduler and
Yarn) In our experiments, we repeated the above procedure to find the optimal number
of map and reduce slots used by the fair scheduler for each of the workloads (job or
benchmarks). For Hadoop Yarn, we set the task container size according to the job profiles.
Specifically, the task size is set to the average resource usage across phases weighted by the
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duration of each phase. The default configuration of Yarn specifies 16 virtual cores (vCores)
per machine. Yarn also requires that the number of vCores per task must take integer
values in the job request. In our experiments, we have found the default configuration of
Yarn produces lower performance compared to both the Fair Scheduler and PRISM. This
is due to the large rounding errors for converting the number of vCores to integer values.
Therefore, we modified the default configuration so that each machine provides 128 vCores.
This significantly reduces round errors, allowing Yarn to produce comparable performance
against both the fair scheduler and PRISM.

5.6.2 Performance Evaluation using Individual Jobs

In our first set of experiments, our goal is to demonstrate the benefit of phase-level schedul-
ing. For this purpose, we run a single sort job in a small cluster consisting of only 3 nodes
using Fair Scheduler, Yarn and PRISM 2. The input size is set to 5GB in all 3 runs.The
number of map and reduce slots used by the Fair Scheduler is set to 8 and 6 as discussed
in previous section.

The experiment results for Hadoop fair scheduler, Yarn and PRISM are shown in Figure
5.8, 5.9 and 5.10, respectively. In particular, the fair scheduler is able to complete the job
execution in 149 seconds, whereas Yarn finishes the job in 152 seconds. In contrast, PRISM
can achieve the same in just 125 seconds (as shown in Figure 5.10a), resulting in a 19%
reduction in job running time. To understand the reason behind the performance gain,
we first plotted the CPU/Memory usage as well as disk/network I/O usage in Figure 5.8b
and 5.8c for Fair Scheduler, in Figure 5.9b and 5.9c for Yarn, and in Figure 5.10b and
5.10c for PRISM. We found Yarn achieves highest utilization while performing slightly
worse than the fair scheduler. The main reason is that Yarn has an additional scheduling
overhead. Specifically, in order to run a new MapReduce job, Yarn first needs to schedule
a job controller called Application Master [16], which will be responsible for monitoring
and managing the job execution. This Application Master also consumes cluster resources
at run-time, which reduce the resource capacity available for task scheduling. In contrast,
PRISM is able to deliver higher utilization for all resource types. The CPU utilization of
PRISM is always better than that of Fair scheduler except near the end of the execution.

We also plotted Figure 5.8d, 5.9d and Figure 5.10d to show the number of phases
scheduled over time by each scheduler. For clarity of presentation, we only show the
plot for the 3 major phases: map, shuffle and reduce. It can be seen that PRISM and

2We choose 3 nodes in this experiment mainly to allow us to visualize the execution of the job, as well
as to demonstrate the scenarios where PRISM outperforms the fair scheduler
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Figure 5.11: Running time of individual jobs

Yarn are able to achieve higher degree of parallelism during the map stage (7 and 6 map
tasks running concurrently on average) than the Fair Scheduler. During the reduce stage,
as shuffle phases consumes more resources than reduce phases, PRISM recognizes the
potential resource bottleneck, and thus delays the start of the reduce phases, allowing
more shuffle phases to be scheduled. This makes the shuffle phases to run faster than
the Fair scheduler and Yarn (81 seconds for PRISM, 86 seconds for Yarn and 89 seconds
for the Fair Scheduler). As reduce phases consume less resources, they can be scheduled
in large quantity without causing resource contention. Given the flexibility to separate
shuffle phases from reduce phases, PRISM is able to find better schedule for both shuffle
and reduce phases without cause resource contention, resulting in significant improvement
in job running time.

We have also performed the same experiment for the remaining jobs in the Gridmix
2 and the PUMA benchmark. The results are shown in Figure 5.11. It can be seen that
PRISM outperforms both the fair scheduler and Yarn for all the jobs. The reduction
in job running time ranges between 5%-38%. Furthermore, we have found that PRISM
generally achieves higher reduction in job running time for reduce intensive jobs (e.g.
sort and self-join, where reducers consume more resources than mappers). The main
reason behind this observation is that for reduce-intensive jobs, both shuffle and reduce
phases take longer time to run and often have drastically different resource consumption
characteristics. As a result, PRISM is able to find better schedules compared to both Yarn
and fair scheduler, and therefore the gain becomes higher.
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Figure 5.12: Experiment results with the PUMA Benchmark

5.6.3 Performance Evaluation using Benchmarks

We now present our evaluation result using both PUMA and Gridmix 2 benchmarks. In
the PUMA benchmark, we vary the number of jobs of each type by 2 × −10× to create
batch workload of different size, and run each of the batch workload using Fair scheduler,
Yarn and PRISM. The results for job completion time is shown in Figure 5.12a. It can be
seen that PRISM outperforms both Fair scheduler and Yarn in all scenarios. Furthermore,
Yarn generally outperforms the Fair scheduler for large workloads, because it is more
resource-aware. Figure 5.12b, 5.12c and 5.12d shows the resource utilization of the cluster
during the execution of each batch for each scheduler respectively. It can be seen from
the diagrams that Yarn achieves the highest utilization, while PRISM generally provider
higher resource utilization than the Fair Scheduler. On average, PRISM is able to achieve
to up to 24% reduction in job running time The benefit of PRISM for PUMA benchmark
mainly comes from the fact that PRISM is able to achieve higher degree of parallelism
through better scheduling of phases, resulting in shorter job running time.

Similarly, for the Gridmix 2 benchmark, we vary the number of jobs of each type by 2 ×
−10× to create multiple batches of Gridmix 2 workload. Each batch is then executed on the
16 node cluster using the Fair scheduler Yarn and PRISM. The results for job running time
and resource utilizations for both schedulers are shown in Figure 5.13a, 5.13b, 5.13c and
5.13d, respectively. The results are similar to that of the PUMA workload. These results
suggest that PRISM is able to achieve shorter job running time while maintaining high
resource utilization for large workloads containing a mixture of jobs, which is commonly
seen in production MapReduce clusters.
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Figure 5.13: Experimental results with the GridMix 2 Benchmark

So far we have only analyzed the aggregate workload running time and resource uti-
lization. However, these objectives should be achieved at the cost of introducing poor
job fairness. Therefore, we have also measured the Application Normalized Performance
(ANP) and the unfairness as introduced by Isard et. al. in Quincy [63]. The ANP of a job
is the ratio between the ideal job running time (when the job is given sufficient capacity
to run at full speed) to actual job running time. Thus, the higher the ANP value is, the
better the scheduler performs in terms of improving job running time. The unfairness, on
the other hand, is the coefficient of variation (CV) of the ANP values across all jobs in
the batch. The intuition is that a fair scheduler should ensure all jobs experience similar
amount of delay regardless of the current utilization of the cluster. Therefore, a small CV
of ANP values indicates a high level of fairness achieved by the scheduler. The results of
ANP and unfairness for both PUMA and Gridmix workload are shown in Figure 5.14a,
5.14b, 5.15a and 5.15b respectively. Specifically, Figure 5.14a and 5.14b show that PRISM
is able to achieve high ANP values compared to both Fair Scheduler and Yarn. However,
it delivers slightly higher unfairness values than the Fair Scheduler, as shown in Figure
5.15a and 5.15b. We believe this is due to the fact that PRISM tries to find a balance
between performance and resource-awareness, thus due to resource constraints it is not
possible to achieve ideal fairness values. However, as the difference is relatively small be-
tween these two schedulers, we believe sacrificing small fairness for the sake of improving
resource utilization and job running time is beneficial to the overall performance of the
cluster. Finally, we found that Yarn achieves the worst unfairness values. This is because
it uses the capacity scheduler, which does not take fairness into consideration when making
scheduling decisions.
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Figure 5.14: ANP Result for PUMA and Gridmix Benchmarks
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Figure 5.15: Fairness Result for PUMA and Gridmix Benchmarks

5.7 Conclusion

MapReduce is a popular programming model for data intensive computing. However,
despite recent efforts toward designing resource-efficient MapReduce schedulers, existing
work mainly focuses on designing task-level schedulers, and is oblivious to the fact that
the execution of each task can be divided into phases with drastically different resource
consumption characteristics.

To address this limitation, in this chapter we present PRISM, a fine-grained resource-
aware MapReduce that coordinates task execution at the level of phases. We first demon-
strate the run-time resource usage can vary significantly over time for a variety of MapRe-
duce jobs. We then present a phase-level job scheduling algorithm that improves job
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execution without introducing stragglers. In a 16-node Hadoop cluster running standard
benchmarks, we demonstrated that PRISM offers high resource utilization and provides
1.3× improvement in job running time compared to the current Hadoop schedulers.
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Chapter 6

Conclusion

With the rapid development of hardware and software virtualization technologies, the past
few years have witnessed the rise of cloud computing, a paradigm that harnesses massive
resource capacity of data centers to support Internet services and applications in a scalable,
flexible, reliable and cost-efficient manner. However, despite its recent success, devising
efficient resource allocation schemes for cloud data centers still remains a major challenge,
as it requires carefully addressing the operational concerns of both the service providers
and the cloud providers, while taking into consideration the heterogeneous characteristics
of data centers in terms of their locations, physical data center architectures (e.g. data
center network topologies and machine configurations) as well as the heterogenous workload
characteristics in terms of resource requirement, resource usage, performance objectives and
importance level (e.g. priority).

This thesis tackles three key challenges in resource management for cloud computing
problems. The first contribution of this dissertation is a solution to the service placement
problem in geographically distributed clouds. Given a variety of data center locations and
time-varying service demand from Internet users, we have devised a scheme based on Model
Predictive Control (MPC) that dynamically adjust the placement of service applications
in order to minimize total resource consumption while satisfying service provider’s SLA
requirement. We also analyzed the problem in a multi-service provider scenario, where
service providers compete for resources in preferred data centers. We analyzed the outcome
of the resulting competition using game theory, and devised a mechanism to help achieve
near-optimal social welfare among the service providers. Experiments show our control
algorithms can significantly outperform the baseline solutions in both single service provider
(20% reduction in cost) and multi-service provider scenarios (15% improvement in social
welfare).
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The second contribution of dissertation deals with the energy management problem
in data centers. Specifically, dynamic capacity provisioning is a promising approach for
reducing energy consumption by dynamically adjusting the number of active machines
to match resource demands. However, despite extensive studies of the problem, existing
solutions often assume that servers and resource demands are homogeneous. Through
analysis using traces from a production cloud cluster at Google, we found that both resource
demands and machine configurations are highly heterogenous. This arises the problem of
determining not only the number of machines, but also types of machines, to be turned
on and off in order to save energy in the presence of heterogeneous resource demands.
To this end, we designed Harmony, a heterogeneity-aware resource management system
for dynamic capacity provisioning in cloud computing environments. We use clustering
algorithms to divide the workload into distinct task classes with similar characteristics in
terms of resource demand, running time and performance requirements. Then we present
a control-theoretic solution for dynamically adjusting the number of machines of each type
in order to minimize total energy consumption in the data center while achieving the
desired Service Level Objectives (SLO) in terms of scheduling delay. Experiments show
the proposed approach can reduce energy consumption by up to 28% while achieving low
average scheduling delay for individual task classes.

Finally, this dissertation presents PRISM, a novel MapReduce scheduler that is capable
of scheduling task executions at the level of phases. The design of PRISM is motivated by
the fact that the execution of MapReduce tasks can be divided into multiple phases with
different resource characteristics. However, none of the existing schedulers has leveraged
phase-level resource demand information for task scheduling. In PRISM, we have designed
a phase-level scheduling algorithm that finds a good tradeoff between job performance and
cluster resource utilization, taking into consideration the change in resource usage across
phases. Through experiments we found PRISM can achieve up to 30% improvement for
I/O intensive MapReduce workloads compared to existing schedulers (e.g. Hadoop Fair
Scheduler and Hadoop NextGen).

In this dissertation, we have proposed solutions to the above three problems. Through
experiments and simulations using real data traces, we have demonstrated their superior
performance. However, there are limitations pertaining to each of the solutions that require
further investigation:

Dynamic Service Placement

The work presented in this dissertation has only considered the placement of services in a
cloud environment where a single cloud provider is present. In reality, today’s cloud market
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typically consists of multiple cloud providers that may compete or collaborate [38] in order
to gain higher revenue from service providers. Thus, it remains a challenge to generalize
the service placement framework to consider complex relationships between multiple cloud
providers. Furthermore, It would be interesting to the extend the framework to consider
more general service topologies (e.g. general graphs) and analyze optimal control policies
for such topologies in realistic scenarios. Furthermore, it would also be interesting to
investigate alternative pricing models, such as auction based pricing schemes, for providing
efficient resource allocation in geographically distributed clouds.

Heterogeneity-Aware Dynamic Capacity Provisioning

So far in Harmony we have only considered dynamic capacity provisioning of compute
resources (e.g. VMs) and ignored other types of resources, such as the file storage system.
While this is reasonable for traditional VM-based cloud environments, many modern data
centers today employ distributed file system (e.g. Hadoop Distributed File System [2])
that distribute file blocks across a large number of machines. In this case, if a machine is
turned off, the files stored on the machine can become unavailable. Thus, finding a solution
to the dynamic capacity provisioning problem that considers both compute resources and
storage resources is still an open challenge. Furthermore, in Harmony we assumed that
each task has identical running time on two different types of machines, if same amount of
resources is allocated on each machine. In reality this may not be true since certain types
of machines may execute certain types of tasks faster than others [74]. Leveraging such
fine-grained information for dynamic capacity provisioning is still an unsolved problem.

Phase-Level Scheduling for MapReduce

Even though PRISM clearly demonstrates the benefit of phase-level resource scheduling for
MapReduce systems, there are many issues to be addressed in order to make phase-level
scheduling effective in practical settings. First, the resource usage of the shuffle phase is
dependent on the shuffle scheduler used. PRISM can gain benefit from a resource-aware
shuffle scheduler that can optimize the CPU, memory and disk usage in the shuffle phase.
However, Despite existing work on designing efficient shuffle schedulers (e.g. Orchestra
[44]), none of the existing schedulers has considered the CPU and memory usage while
making scheduling decisions. Secondly, the task run-time usage is sensitive to the job
configuration parameters. In PRISM we assumed that job configuration is given by the
user. Thus, designing a framework that dynamically controls job configuration parameters
at run-time still poses interesting questions for future research.
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Appendix

This section contains the proofs of Lemma 5 and Theorem 4 and 6 in Chapter 4.

Proof of Theorem 4. : Define N̄ = N ∪ {sjr}. Since

Pr(∃r :
∑
j∈N

sjr + sir > Cmr|
∑
j∈N

cjr + cir ≤ Cmr)

= Pr(∃r :
∑
j∈N̄

sjr > Cmr|
∑
j∈N̄

cjr ≤ Cmr)

≤ Pr(∃r :
∑
j∈N̄

sjr >
∑
j∈N̄

cjr),

given Mk machines that have containers available, if we can ensure that the probability of

violating machine capacity constraint is less than ε
1

Mk (i.e., Pr(∃r :
∑

j∈N̄ s
jr >

∑
j∈N̄ c

jr) ≤
ε

1

Mk , then the inequality will hold. Furthermore, since

Pr(∃r :
∑
j∈N̄

sjr >
∑
j∈N̄

cjr) ≤
∑
r∈R

Pr(
∑
j∈N̄

sjr >
∑
j∈N̄

cjr)

holds regardless of the resource correlations, if we can ensure that

Pr(
∑
i∈N̄

sir ≥
∑
i∈N̄

cir) ≤ 1

|R|
ε

1

Mk

for all r ∈ R, then the bound will hold. Define εr = 1
|R|ε

1

Mk . To achieve this objective,

we use concentration inequalities [47]. Define cir = µir + βir, where βir is a variable to be
determined for each i ∈ N̄ . We can rewrite our objective as to ensure

Pr(
∑
i∈N̄

(sir − µir) ≥
∑
i∈N̄

βir) ≤ εr
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The one-sided Chebyshev’s inequality [47] states that

Pr(
∑
i∈N̄

(sir − µir) ≥
∑
i∈N̄

βir) ≤
∑

i∈N̄(σir)2∑
i∈N̄(σir)2 + (

∑
i∈N̄ β

ir)2

Thus it suffices to ensure the following inequality holds:∑
i∈N̄(σir)2∑

i∈N̄(σir)2 + (
∑

i∈N̄ β
ir)2

≤ εr

Rearranging the equation and using the fact that
∑

i∈N̄(σir)2 ≤ (
∑

i∈N̄ σ
ir)2, we obtain

∑
i∈N̄

βir ≥
√

1− εr
εr

∑
i∈N̄

σir

Thus equation (4.16) holds by setting βir =
√

1−εr
εr
σir for each task i ∈ N̄ . The result

follows.

Proof of Lemma 5. . We rely on the property that the First-Fit (FF ) algorithm produces a
solution in which at most one machine i is less than “half-full” (i.e., utilization uirt ≤ 1

2
∀r ∈

R). To see this, suppose this statement is false, i.e., there are two non-empty i, j ∈ Nm
t

that are less than “half-full” and i is filled before j. In this case, when FF tries to pack
a container that belongs to j in the solution, it would pack it in i instead. As a result,
machine j should hold no containers, which contradicts our assumption. Therefore, given
a machine i with utilization uirt for resource type r ∈ R, define the effective utilization of i
as 1
|R|
∑

r∈R u
ir
t . Based on this “half-full” property, FF ensures every machine has effective

utilization at least 1
2|R| except the last non-empty machine.

Given xmk
∗

t type n containers for each n ∈ N that can be scheduled on zm∗t type m
machines, the sum of the total effective utilization must be less than zm∗t as it is the
maximum possible utilization for zm∗t machines. Now, suppose we scale down the number

of type n containers to
⌊
xmk∗t

2|R|

⌋
for each n ∈ N , the total utilization of machines is thus at

most
zm∗t
2|R| . Suppose there are still containers waiting to be scheduled after using zm∗t + 1

machines. As FF ensures every machine has effective utilization at least 1
2|R| except the

last one, the total utilization of the zm∗t + 1 machines is at least
zm
∗

t

2|R| , which contradicts

that the total utilization is at most
zm
∗

t

2|R| .
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Proof of Theorem 6. . Since the number of machines used is determined by DCP −
RELAX, it is clear that the Csw

t = Csw∗
t and Eidle

t = Eidle∗
t . As the number of type n

containers scheduled on type m machines is upper-bounded by xmk∗t , we have Eutil
t ≤ Eutil∗

t .

Finally, by Lemma 1, it is easy to show that
⌊
xmk∗t

2|R| ·
zm∗t −1

zm∗t

⌋
containers of each type

n ∈ N can be packed in zm∗t machines. As f(·) is a convex function, it must hold that

Upref
t ≥ (maxm{ z

m∗
t −1

zm∗t
} − ε′) · 1

2|R|U
pref∗
t ·, where ε′ = maxm{x

mk∗
t

2|R| ·
zmt −1

zmt
−
⌊
xmk∗t

2|R| ·
zmt −1

zmt

⌋
} is

the rounding error. The theorem is proven by defining ε = maxm{ 1
zmt
} + ε′ and summing

the above equations.
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