
Faculty of Computer Science Institute of Systems Architecture, Professorship of Systems Engineering

TOWARDS AUTO-SCALING IN THE
CLOUD: ONLINE RESOURCE
ALLOCATION TECHNIQUES

Lenar Yazdanov
Born on: 25th February 1986 in Brezhnev, USSR

DISSERTATION
to achieve the academic degree

DOCTOR OF PHILOSOPHY (PH.D.)

First referee

Prof. Christof Fetzer, Ph.D.
Technische Universität Dresden, Germany

Second referee

Prof. Rüdiger Kapitza, Ph.D.
Technische Universität Braunschweig, Germany

Submitted on: 30th September 2015
Defended on: 26th September 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236374904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




ABSTRACT





Cloud computing provides an easy access to computing resources. Customers can acquire
and release resources any time. However, it is not trivial to determine when and how many
resources to allocate. Many applications running in the cloud face workload changes that af-
fect their resource demand. The first thought is to plan capacity either for the average load
or for the peak load. In the first case there is less cost incurred, but performance will be af-
fected if the peak load occurs. The second case leads to money wastage, since resources will
remain underutilized most of the time. Therefore there is a need for a more sophisticated re-
source provisioning techniques that can automatically scale the application resources according
to workload demand and performance constrains.

Large cloud providers such as Amazon, Microsoft, RightScale provide auto-scaling services.
However, without the proper configuration and testing such services can do more harm than
good. In this work I investigate application specific online resource allocation techniques that
allow to dynamically adapt to incoming workload, minimize the cost of virtual resources and
meet user-specified performance objectives.



Abstract

ACKNOWLEDGEMENTS

First, I would like to thank Prof. Christof Fetzer for giving me opportunity to join Systems En-
gineering group. I have learned a lot from him. He always motivated me and provided many
ideas. I also want to thank Prof. Rüdiger Kapitza for serving as the thesis external reviewer. He
gave me some valuable hints when I start writing the thesis.

I would like to thank the people with whom I discussed my papers and who have commented
on early versions of the papers: Diogo Behrens, Stefan Weigert, Andre Martin, Do Le Quoc.

My many thanks to Martin Nowack who helped me to setup experimental environment in
the beginning and Stephan Creutz who introduced me to the wonderful world of Linux.

I also want to thank my colleges Robert Krahn and Thomas Knauth for reviewing on early
drafts of the thesis and correcting my English mistakes.

My especial thanks go to my wife Dinara who supported me during my PhD. Without her I
would not have time and strength to write the thesis. And of course, I want to thank my parents
who were helping me and my family over the last five years.

4



CONTENTS

5





Contents

Abstract 3

Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Background 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Scaling types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Horizontal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Vertical scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Cloud trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Auto-scaling system 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Auto-scaling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Auto-scaling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Threshold based scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.4 Queuing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Vertical scaling for prioritized VMs provisioning 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Design rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Controller architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Single VM scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Prioritized VMs scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Autonomic Virtual Machine Scaling 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Parallel learning with assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 VScaler design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 Convergence speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.2 Real world scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Autonomic Multi-tier application Scaling 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7



Contents

6.3 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 CPU usage and performance . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Memory usage and performance . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 Cluster wide correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Controller architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.2 MDP design solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.3 Initializing Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.4 Model learning and exploitation . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

I/O aware elastic MapReduce cluster scaling 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.1 MapReduce slowstart parameter . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2 Anatomy of MapReduce job . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.3 Anatomy of Linux network stack . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.2 Job profile collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.3 Job resource allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.6.1 Bandwidth cap estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.6.2 Runtime cluster resizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Conclusion 109
8.1 Vertical scaling for prioritized VMs provisioning . . . . . . . . . . . . . . . . . . . 111

8.1.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.2 Reinforcement learning based techniques . . . . . . . . . . . . . . . . . . . . . . 112

8.2.1 Autonomic Virtual Machine Scaling . . . . . . . . . . . . . . . . . . . . . . 112
8.2.2 Autonomic Multi-tier application Scaling . . . . . . . . . . . . . . . . . . . 112
8.2.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Elastic mapreduce cluster scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115

Lists of Figures, Tables and Algorithms 131
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8



INTRODUCTION

9





1.1 Motivation

1.1 MOTIVATION

Cloud computing lowered the barrier of entry to an infinite amount of computing resources.
Therefore, nowadays any person in the world can rent computing resources to run an applica-
tion. Usually the resources are delivered in the form of virtual machines (VMs). In comparison
to traditional provisioning techniques that require upfront servers’ deployment, cloud users can
acquire and release resources on-demand. However, it is not easy to answer the question
about when to allocate and how many resources to allocate.

To identify the right amount of resources to lease the user needs to consider a number of
factors: such as application elasticity, workload dynamics, user-defined performance objectives
and conversion of the performance objective to resource allocation. For a non-expert cloud user
that has limited knowledge about the application and its resource demand pattern, it is hard to
make an optimal scaling decision.

Cloud market offers a variety of resource allocation schemes. The user can choose a VM from
the set of predefined templates or specify a VM he needs. Later on, during runtime it is pos-
sible to change the application resource capacity by modifying the number of VMs dedicated
to the application (horizontal scaling) or adapt individual VM resources (vertical scaling). The
number of possible resource allocation strategies becomes too large to be managed by a hu-
man. Therefore there is a need for automating the process of resource allocation. Auto-scaling
services offered by cloud providers simplify the process of acquiring and releasing resources,
but leave a burden of scaling policy design to the user.

The focus of this thesis is techniques and approaches for online scaling policy discov-
ery. To design optimal scaling policy the user has to address a number of challenges. These
challenges motivate our research. In this work we present resource allocation controllers that
perform horizontal and vertical resource scaling. There are two objectives that we target. First,
the amount of assigned resources should be enough to meet the application performance ob-
jectives. Second, the cost of running the application should be minimal.

1.2 THESIS OUTLINE

This thesis divided in to 8 chapters including introduction. The following paragraphs give a short
overview of each chapter.

Chapter 2 gives an overview of resource scaling types, applications and trends in cloud mar-
ket. Over the last decade cloud became a popular computing platform. In contrast to traditional
provisioning approaches it offers flexibility in terms amount computational resources that user
can acquire and the resources rental time. Users can modify the capacity of the application dur-
ing runtime either by scaling it horizontally or vertically. The choice of the method depends on
the application type, expected resource demand and utilization of the application. It is common
today that datacenters host mix of applications. In general there are two types of applications.
The first type consists of latency-sensitive interactive applications. To the second type belong
resource intensive batch applications. Each application type requires an individual provisioning
strategy. Cloud market is not static, it constantly evolves. Economic interests of cloud users
force the providers to shift towards VM customization model and shorter billing cycles. In con-
trast to fixed size VM allocation model, the observed trends in the market require techniques
for dynamic fine-granular resource allocation.

Chapter 3 presents the process of auto-scaling system design and gives an overview of tech-
niques for automating resource allocation. The process of auto-scaling consists of four phases:
monitoring, analysis, planning and execution. Analysis and planning constitute the core of the
system. The analysis phase determines the current state of the application or predicts future
needs. Once the state is known (or predicted) the auto-scaler plans how to perform resource
allocation. The scaling decisions are made by exploiting the application performance model.

11



Introduction

The model describes relationships between a set of parameters such as the application perfor-
mance, incoming workload, assigned amount of virtual resources and service level objectives.
The model can be defined offline by an expert user over the set of system identification exper-
iments. Alternatively a hybrid and an online model discovery approaches can be used. The last
two offer flexibility in terms of the scaling policy adaptation. There is a number of techniques
that are used to describe the model. Generally, they are classified in five groups: threshold
based, reinforcement learning, queuing theory, time series analysis and control theory. In Chap-
ter 3 we present each technique, discuss its advantages and disadvantages, and review related
work.

Chapter 4 describes an approach for collocation of VMs that support vertical scaling. Many
interactive applications have varying resource demand. Running these applications in a fixed
size VM leads to resource wastage. In contrast to fixed size VM model, VM reconfiguration
allows to follow resource demand curve of interactive applications. However, VM collocation
is a challenging task for cloud providers that want to support vertical scaling. It is hard to give
performance guarantees for the applications running in collocation with a VM that can be dy-
namically reconfigured. One would need to maintain a certain resource headroom. However, it
will lead to low utilization of provider’s infrastructure. To solve the problem we propose to col-
locate interactive and batch applications. Batch applications tolerant to performance slowdown
and can make progress even under resource pressure. In Chapter 4 we design time-series
based auto-scaling controller that follows the interactive application resource demand and as-
signs remaining resources to the batch application. From one side the controller delivers a high
performance to the interactive application, from another side it allows the batch application to
harvest the residual resources and improve the provider’s infrastructure utilization.

In Chapter 5 we design autonomic resource scaling controller. The controller exploits re-
inforcement learning approach. Reinforcement learning is a knowledge-free approach for the
application performance model identification. It allows to adapt scaling decisions with respect
to changing resource demand. Cloud user does not need to define particular model for the
application. However, the drawback of RL approaches is a significant learning time. Therefore,
auto-scaling systems that use RL have bad performance in early steps. Chapter 5 describes
a technique that allows significantly improve the learning time. Typically, the reinforcement
learning agent after each action updates only one state-action transition. We observe that in
resource allocation problem the agent can learn more from one taken action. Our results show
that the controller quickly converges to the optimal resource allocation policy and keeps the
application performance within user-specified performance objective.

Chapter 6 presents an extension of approach described in previous chapter. One of the chal-
lenges of RL based approaches is dealing with state-action space complexity. The space size
is determined by the number of parameters that describe resource capacity of the application
VM. For multi-tier application we need to include into the state-space model parameters that
define each tier capacity, which increase the space size. Large state-space RL model is hard
to apply in practice. To address the issue we analyze the impact of individual VM resources on
the application performance. The results of the analysis show that memory can be excluded
from the application performance control knobs. It allows us to create separate RL models for
RAM and CPU. By splitting models we significantly reduce the state-pace complexity.

In Chapter 7 we investigate a batch application cluster sizing problem. MapReduce paradigm
is de-facto standard for large data analytics, which has an open-source implementation called
Hadoop. It offers a simple programming model for parallel computation with fault tolerance
guarantees. Some of big public cloud providers adopted it and deliver Hadoop based cloud ser-
vices for large data processing. To enable elasticity of MapReduce applications cloud providers
split Hadoop cluster into data and compute parts. It allows easily shrink and expand the com-
pute part of the cluster. However, to perform cost-efficient resource allocation the user needs
manually determine optimal cluster size by running MapReduce job with different cluster sizes.

12



1.2 Thesis outline

Chapter 7 presents a technique that finds an optimal cluster size during runtime from the first
wave tasks of the job.

In Chapter 8 we summarize the content presented in previous chapters and provide our per-
spective view on future research directions.

13





BACKGROUND

15





2.1 Introduction

2.1 INTRODUCTION

The number of virtualized datacenters and cloud hosting services is growing. Virtualization
rapidly became popular, because it provides resource isolation, system manageability and re-
duced operational cost through resource consolidation. Some of data centers operate as a pub-
lic cloud services, others are managed as a private enterprise clouds. Cloud computing offers
so called ’pay-as-you-go’ model. Cloud users can acquire and release resources on-demand.
According the model, users pay for resources they use. Cloud market can be described as a
stack consisting of three layers. Users and providers can interact on any of these layers.

Cloud infrastructure level, known as Infrastructure-as-a-Service (IaaS) defines models for
monitoring, access and management of datacenter resources such as processing power, stor-
age and networking services. IaaS eliminates the need to buy real hardware, users lease
resources from a cloud provider. Examples of IaaS are Amazon EC2 [10], Google Cloud En-
gine [58], Microsoft Azure [101].

Platform-as-a-Service (PaaS) delivers environments and tools for management of cloud in-
frastructure. Users can build and deploy their applications, so they don’t need to consider low
level complexities such as configuring and setup of VMs. The examples of PaaS are Amazon
Elastic Beanstalk, Google App Engine [57], Microsoft Azure Services [101].

Software-as-a-Service (SaaS) uses web to deliver application to the end user. SaaS moves
the task of managing and deploying applications to the third party service. Among the examples
of SaaS are Google Apps and storage solutions such as Dropbox.

In this thesis we mostly interested in IaaS level, where the process of virtual resources as-
signment takes a place. We consider a case, where cloud user wants to deploy an application.
There is a need to answer the following questions. How many resources to allocate? When
the user needs to trigger scaling? What performance levels can be achieved with allocated
amount of resources? Can the user minimize the cost of running an application in the cloud?

Traditionally applications were provisioned statically. A company bought servers and ran an
application on the private infrastructure. The resources available for the application did not
change for a long time, until the increased workload reached the limit of the servers’ capacity.
As soon as it is happened, the company bought additional servers. Next time, when the limit
was reached again, the cluster of servers was extended again. So it was a repetitive process.
Cloud computing brought a new philosophy of resource provisioning-elasticity. In the nutshell
the term elasticity means that users are able to stretch and contract resources dynamically
based on resource demand from the applications they are running. Cloud providers charge users
based on the amount of resources they use or reserve. But there is no guarantee with respect
to the application performance that can be achieved with the assigned amount of resources.

It is common today that datacenters host a mix of interactive user-oriented and resource in-
tensive batch applications [41, 143, 124, 119]. Interactive applications are latency sensitive and
should not run under resource pressure. In contrast, batch applications are throughput-oriented
and can tolerate resource pressure during runtime. Many applications running in the cloud en-
vironment have varying workload. Some variations are easy to predict. For example, promotion
campaigns or load during working hours. But there are cases, where it is difficult to make an
accurate prediction, such as unplanned load spikes caused by slash-dotting effects. Moreover,
the application performance depends on the amount of allocated resources. For example, if we
run an application on the server with 2 CPUs, then in ideal case we may expect that our appli-
cation will be two times faster, rather than when it runs on a single CPU server. In other words
there is a mapping between the resources assigned to the application and its performance. To
achieve the desired performance the user has to change resource assignment every time when
the workload changes. To perform accurate resource allocation it is required to take a number
of steps: predict incoming workload, learn impact of workload on the application resource de-
mand and find relationship between application resource assignment and its performance. This

17



Background

Figure 1: Structure of scaling rule

is a challenging task, especially for the average user, who lacks expertise knowledge about the
application.

To simplify resource scaling process cloud providers offer auto-scaling services. The services
provide high level resource management interface, while users are responsible to define scaling
policy. The policy is described in form of scaling rules. An example of the scaling rule structure
presented on figure 1. A rule consists of action, threshold, metric and time delays, which
determine when to trigger resource scaling process and how many resources to allocate. The
user has to find right metric to track and the threshold value that triggers scaling action. In
addition, the rule requires defining the amount of resources to allocate. One or two VMs?
Which one is better? The auto-scaling service hides low level complexities from the user such
as defining the host to run a VM, IP assignment process and etc. But leaves the user with a
set of parameters to determine. It is hard to find a threshold value to achieve desired objective
(e.g. minimize cost, maximize performance) without deep understanding of resource scaling
process. Therefore there is a need to develop an auto-scaling system that is able to predict
workload and perform scaling decisions to maintain desired performance with minimal amount
of resources assigned to the application.

Below we outline the list of objectives that the auto-scaling system should fulfill:

• Performance. Cloud user expects certain quality of service delivery from a cloud provider
hosting the application. To apply the requirements two parts (user and provider) sign con-
tract called Service level agreement (SLA). SLA contains service level objectives (SLO).
SLO describes performance that should be delivered by the cloud provider. For example,
the application response time should not cross 1 second upper bound or a job should be
finished within 10 minutes after the submission.

• Cost. Cloud providers charge users for the time the assigned resource is being used.
Therefore to reduce the cost user either needs to minimize the resource usage time or
maximize utilization of assigned resources. Otherwise, the user will overpay for underuti-
lized resources.

• Utilization. The revenue of a cloud provider depends on the number of customers using
the cloud infrastructure. Expanding datacenter is a costly process. Therefore in order to
accept more users on a fixed size datacenter the cloud provider should focus on improving
utilization of the datacenter computing resources. According to Delimitrou and Kozyrakis
[41] modern dataceters utilization levels are around 10 − 20%. It means that there is a
substantial room for the utilization improvement.

In the following sections we cover different aspects of resource scaling in the cloud. The
background chapter is divided in to three parts. The first part presents resource scaling types.
In the second part we overview cloud applications with respect to resource elasticity. The third
part is dedicated to observation of cloud trends with respect to resource allocation. Finally, we
summarize the topics discussed in the chapter.

2.2 SCALING TYPES

As it was mentioned above the key property of cloud computing is elasticity - ability to allocate
and release resources on demand. The resource allocation in the cloud can be performed in

18



2.2 Scaling types

Figure 2: Summary of the Available Mechanisms for Holistic Application Scalability by Vaquero, Rodero-Merino, and Buyya [138]

different directions and on layers of the cloud stack. Figure 2 gives an overview of mechanisms
available for scaling application in the cloud environment. The scaling actions can be triggered
either on IaaS or PaaS levels. IaaS layer gives control over the cloud infrastructure in the form
of virtual resources, while PaaS scales the application instances.

PaaS level hides management and scaling complexities from the user. The user does not
need to install and configure a full stack of software. PaaS also simplifies the application scaling
process. For example, database instances can be replicated to handle more queries. There is
no need to worry about correct IP-addresses assignment or proper load-balancing. The new
database instance will be added automatically to the database cluster. However, the process
of replica management provides weak consistency [138]. Usually updates are not immediately
done. There is an assumption that they will be ’eventually’ done in the future. It poses some
limitation of how transactions can be treated by developers.

Cloud is a multi-tenant environment, where applications from different users run together.
Therefore there is a threat that users may interfere with each other on security or resource
levels. To enable isolation some cloud providers such as OpenShift host application instances
in the form of containers. The task of the containers is to provide necessary isolation. User
applications are isolated with help of SELinux, CGroups, Linux quota and Linux namespaces.
Number and size of containers can be easily scaled. However, the user is responsible to define
the rules for scaling. The scaling rules are similar to the one presented in figure 1. Hence, the
user faces the same challenges. PaaS level simplifies the process of the application develop-
ment and resource scaling. But one major disadvantage of PaaS is lock-in problem. Users are
locked to a certain platform and it is hard to move to another cloud provider. IaaS level gives
flexibility in terms of changing cloud provider.

On the infrastructure level the resource management process is done via virtual machine. VM
is a primary allocation unit in IaaS. The resource scaling can be implemented in two directions:
horizontally (scaling out/in) or vertically (scaling up/down). The first approach allows to
add a new VM with an application server replica inside to distribute load among all running
application servers. In contrast, vertical scaling allows resizing the application VM on-the-fly.
For example, we can add more virtual CPUs (VCPU) to speed up our application. However,
not every OS supports vertical scaling. Moreover, it is challenging task to collocate VMs that
support vertical scaling. These are the reasons why only a few cloud provides support vertical
scaling. But vertical scaling has a number of advantages over horizontal scaling that will be
discussed further.

19



Background

2.2.1 HORIZONTAL SCALING

Many applications on the cloud run in a distributed fashion. Therefore for these applications it
is common when one of server instances joins or leaves the application cluster. For example,
we can add more servers to the front-end tier of a web application, so it can serve more client
requests. We can keep adding servers if the number of clients continues to increase. In ideal
case we are not limited on horizontal scaling. Horizontal scaling allows expanding an application
cluster even beyond single cloud provider [27]. Later when the load decreases, we can remove
some servers if the remaining ones can provide acceptable performance.

From the first look horizontal scaling is simple. However, there is a number of issues to
address. First of all we need a load-balancer that redirects client requests to the front-end
servers. From resource provisioning perspective we have an overhead of allocating capacity to
the load-balancer. Moreover, we need to run it continuously nevertheless the load is high or
low.

Second, we need to perform IP-address management to inform the load balancer about a
new application instance. Some of cloud providers such as Amazon offer higher customization
level [26] that eliminates the problem. The load balancer is part of cloud provider’s service and
automatically routes traffic to a new VM instance. But it is not for free. The user pays for the
time the load balancer runs and amount of data passing through it.

Third, horizontal scaling provides coarse-grained resource allocation. Most of cloud providers
sell their resources in the form of ’T-shirt’ sized VMs [55], such as small, medium and large. For
example, Amazon EC2 small VM has 1 GB of RAM and 1 CPU, while the medium one has 4 GB
and 2 CPU. Assume that our application requires only 2 GB and 1 CPU. Hence, we cannot run
it on the small instance. We need to add 1 GB of RAM. Therefore we start the medium one.
In this case the application will not utilize 2 remaining GB of RAM and 1 CPU. But the user will
pay for all resources assigned to the VM. It is not what the user needs [4]. Users want to pay
only for what they actually use.

Forth, adding a new VM is not an instant process. It has some overhead. Multiple authors [47,
8] evaluated horizontal scaling overhead. They found that it takes up to 1 minute to get a VM up
and running. Is the value big or small? For the application that has to respond to real client the
value is unacceptable. Probably a few people would like to sit in front of the screen and wait for
1 minute until the application they are working on, will respond to their request. It means that
we have to take into account the resource acquisition time. The time it takes to start a new
VM and get it ready to serve clients request. Large acquisition time requires triggering scaling
process before we reach resource limit of running servers. Probably in example presented in
1 we cannot use CPU utilization threshold value equal to 100%. It should be lower. Alterna-
tively, there are approaches that reduce horizontal scaling overhead with the help of VM cloning
techniques [90, 23, 107] or VM live migration [31, 75, 146, 147]. VM cloning allows to start a
copy of the running VM on another host. In case of live migration a VM is moved to the less
overloaded host with the minimal service interruption. However, VM cloning and live migration
techniques have an overhead in terms of CPU and network I/O that can affect performance of
other VMs.

Some applications do not scale horizontally, because it causes a significant overhead. Rela-
tional databases do not support horizontal scaling out-of-the-box. To enable horizontal scaling
one would need to partition the database by creating shards. It is a tremendous work to change
data scheme of existing database of a company. NoSQL databases natively scale horizontally.
But the scaling requires data transfer. For example, before adding a new instance of NoSQL
database into production we need to run data re-balancing. The time is takes depends on the
size of the data. The need to transfer data puts a limit on applicability of horizontal scaling for
database applications. Alternatively, we can apply vertical scaling.

Cloud environment is a multi-tenant environment, where many users share virtual resources.
Modern hyper-visors focus on providing guaranteed amount of CPU and RAM for VMs. How-

20



2.2 Scaling types

ever, they do not offer similar guarantees to the disk and network layer. As a result, it creates
holes for possible resource stealing attacks [139] due to the lack of isolation for disk and network
I/O. For many applications running in a distributed fashion the network plays substantial role in
the application performance. Often it becomes a bottleneck. There is a number of attempts
to deal with network saturation problems [5] and providing fair network share between user
applications [87]. Baldine et al. [18] proposed the idea of Naas (Network as-a-Service) to offer
capacity guarantees on the network layer. The approach can be implemented via distributed
rate limiting [115], flow control [127] or network slicing techniques [102]. In NaaS the network
bandwidth can be dynamically allocated based on the application demand. It is assumed that
the users will pay for the actual bandwidth consumption. So far none of the well-known public
providers offers performance guarantees for I/O level, either disk or network.

2.2.2 VERTICAL SCALING

Virtualization technology provides an alternative for horizontal scaling. Instead of adding more
VMs, we can expand the size of a VM. Modern hyper-visors support memory, CPU and network
scaling. We mainly focus on memory and CPU, because cloud providers do not offer dynamic
network allocation. Further we describe the technologies used for memory and CPU scaling.

Memory scaling is performed with the help of memory ballooning [145]. The technique is
used by hyper-visor to reclaim memory from a guest VM and share it with other VMs running
on the same host. For example, a VM may allocate 4GB of RAM and use only half of it. In this
case hyper-visor, can provision other VMs with the remaining 2 GB of RAM. The ballooning runs
as follows. A balloon module is loaded into guest OS as a kernel service. To reclaim memory
from the VM the hyper-visor instructs the module to ’inflate’ by allocating physical pages within
the VM. In the same way the balloon ’deflates’ to de-allocate previously reclaimed pages. When
the balloon ’inflates’ it raises memory pressure in the guest OS. As a result it triggers memory
management algorithms of the guest OS to free up memory. If the VM is low on memory,
then some pages may be paged out to the virtual disk. Otherwise, if the guest OS has enough
memory it will return free pages.

A VM CPU capacity can be changed in two different ways: by plugging virtual CPU (VCPU)
and limiting physical CPU cycles available to the VM. CPU plugging is a technique that allows
adding or removing virtual CPU to/from a VM during runtime. Historically CPU hot-plug fea-
ture was used to isolate failing CPUs and later on a number of other use cases appeared [54].
Such as clearing work from CPU, improving energy efficiency and resizing guest OS running
in virtual environments. Unfortunately, not every OS supports the technique. Linux supports
CPU-hotplug starting from version 2.6.5. If CPU-hotplug is supported, then it takes about 150
ms to bring CPU offline and 220 ms to bring it online [110]. It is two orders of magnitude less
than adding a new VM in public cloud. If CPU-hotplug is not supported, then one can use a
hyper-visor’s virtual CPU limit capabilities.

CPU limit does not require the change of the kernel. It can be applied to any OS. Xen [19] and
other hyper-visors offer CPU scaling feature. To describe how the CPU scaling works we use
Xen credit scheduler as an example, since Xen is one of widely applied hyper-visors [29]. Each
VM VCPU is given a credit, which represents share of physical CPU. The scheduler monitors
CPU usage every 10 ms and removes the credits from currently running VCPU. It switches to
another VCPU if the current one has no credits left. The credits are given to a VCPU every 30
ms. Hence, if CPU intensive VM runs out of its credits, then it has to wait for 30 ms. The
scheduler supports work-conserving(wc) and non-work-conserving (nwc) modes. In wc mode
Xen assigns a weight to each VM. For example, in case of resource contention a VM with
weight of 512 will get twice as much CPU as a VM with the weight of 256. However, if one of
the VMs is blocked, then the second one can utilize entire CPU. In wc mode idle CPU cycles
distributed among running VMs. In nwc mode each VMs gets cap value. If cap is zero, then

21



Background

VM does not receive any extra CPU cycles. Cap value above zero expresses amount of CPU
VM gets in nwc mode. Public cloud provides such as Amazon use cap value to fix the power
of VM VCPU [11]. For example, if a host processor runs at 2GHz and a VM cap value is 50%
then the speed of VCPU is 1GHz. nwc mode reduces CPU sharing efficiency, but improves
isolation. CPU limit as well as CPU plugging has sub-second range allocation overhead [126].
Existing auto-scaling systems use either CPU plugging or CPU capping techniques to change
VM computational capacity.

In comparison to horizontal scaling, vertical scaling allows to assign virtual resources in a
fine-granular manner. For example, we can choose between adding 512MB RAM or 1 GB. Fig-
ure 3 shows an example how vertical scaling helps to deal with increasing workload. In [39]
authors compared ElasticVM and StaticVM that run Apache web server. ElasticVM was allowed
get 30% more CPU power than StaticVM. Authors used step function to increase traffic rate
to the VM. Up to 730 seconds both VMs provide same performance for increasing workload.
However, after 730 seconds StaticVM reaches its resource limit, while ElasticVM continues to
expand. On the right hand side graph we see that fully utilized StaticVM dramatically increases
response time, while ElasticVM keeps response time below SLO bound (20ms). The presented
example shows that vertical scaling sustains application performance when the load increases.
As it was mentioned above the overhead of horizontal scaling is about 1 minute. Vertical scaling
can provide necessary time buffer to freshly started VM. In our example we could start hori-
zontal scaling at 730 seconds and continue to scale vertically. For the time ElasticVM reaches
it resource limit on the host the new VM on another host will be ready to serve incoming re-
quests. Combining horizontal and vertical scaling allows scaling beyond capacity of the host
with minimum negative impact on the application performance.

However, vertical scaling is not always possible or it creates challenges when applied in cloud
environment. Many applications are not designed with resource elasticity in mind. For exam-
ple, some applications have static resource limits parameters. Especially it is true for memory.
Java applications have the heap size parameter that limits memory available to JVM. Hence,
extending memory capacity of a VM will not affect the Java application running inside the VM.
We need to update the heap size limit too. Moreover, scaling down below the heap size may
lead to out-of-memory events (OOMs) [143]. Therefore the application should be aware of a
resource elasticity. It raises challenge on developing the applications that adapt for expanding
and contraction of virtual resources. In [68] authors manually instructed Apache web server to
flush used RAM to scale memory down. Salomie et al. [122] addressed the problem of dy-
namic memory allocation for the application with statically configured memory. They extended
ballooning to a database engine and java runtime, so that memory can be efficiently distributed
between virtualized instances. [94] adapted java process heap size based on the execution of
previous tasks of MapReduce job. Another challenge is the complexity of scheduling VMs with
vertical scaling capabilities. The size of the VM can change at any time, so it becomes difficult
to collocate it with other VMs. However, there are approaches [153] that address collocation of
VMs with vertical elasticity. In chapter 4 we present an approach to collocate VMs with vertical
scaling capabilities.

To summarize, the resource scaling on IaaS level can be performed horizontally or verti-
cally. Horizontal scaling uses a VM as resource allocation unit and allows boundlessly scale
the application out. However, it comes with substantial overhead for client interactive applica-
tions. Hence, the scaling process should be started long enough before the incoming workload
reaches the capacity limit of the VM. Some application types such as databases do not support
scaling out or they require significant time and network I/O to add new instance (we need to
transfer data to the replica). Vertical scaling has lower management complexity. There is no
need to assign IP-address or requests redirection. Vertical scaling allows fine-granular tuning of
individual VM resources, so the application can be provisioned with only resource it needs. But
the scaling horizon is limited by capacity of the host. The process of scaling up/down has an

22



2.3 Workloads

Figure 3: StaticVM vs ElasticVM: Throughput and response time comparison reported by Dawoud, Takouna, and Meinel [39]

overhead in sub-second ranges, which makes it attractive to deal with sudden workload spikes.
However, to take full advantage of vertical scaling and achieve the best application performance
the internal parameters of the application should be adapted. The parameters adaptation is out
of the scope this work.

2.3 WORKLOADS

A wide range of applications runs on cloud infrastructure. Web applications, batch applications,
video streaming services are the examples of common cloud workloads. Each application has
its own performance constraints and preferable scaling horizon. Some applications are critical
to resource shortage, because it greatly degrades their performance. Others can tolerate the
shortage and make a progress even under high resource pressure. Moreover, not every ap-
plication can be easily scaled vertically and horizontally. Awareness of the application type, its
performance requirements and resource scaling limits allows the auto-scaling system to make
better scaling decisions. Therefore in this section we present classification of applications in
the cloud.

There are number of works [41, 143, 124, 119] that analyzed modern datacenters workloads.
The datacenters workloads fall into one of the two classes: interactive and batch applications.
The first class of the applications often called as latency-sensitive [143] or user-facing interac-
tive applications [41]. Interactive applications usually serve real clients over http protocol. The
examples are online shops, Google services such Gmail, Google Docs or web search engines.
Since interactive applications communicate with real users, it is important to provide human
acceptable performance. Usually response time for these applications should be in sub-second
range. Violating the requirement can lead to high revenue loss. Amazon reports that every 100
ms of latency can affect the sales by 1%. Another observation from Google [100] states that
increase of page load time from 400 milliseconds to 900 milliseconds results in 25% drop of
the traffic. It means that clients get disappointed and go to another web site.

Interactive applications run indefinitely. The workload of the application has different pat-
terns: daily, weekly, seasonal, bursty. The first three patterns can be easily predicted with high
accuracy. We know that clients are more active during daylight time. So it is expected that the
application has to serve more requests when people at work, rather than at night, when most
of the people sleep. There is also longer period pattern such as difference between working
week and weekends. Some e-commerce applications are affected by higher load during special
seasons. For example, people tend to buy more during Christmas time. All of these patterns
are easy to predict, so one can plan resource provisioning in advance. However, bursty load pre-
diction is a challenging task. It characterized by high fluctuation and short duration. The reasons
for such load could be different. For example, the release of a new product may attract more

23



Background

than the expected number of internet users. Or if the news published on a highly popular web-
site refer to some less popular one. Then a high fraction of the clients get redirected from the
first website and overload the second website. Such situation is called ”slashdotting” effect.
To deal with bursty load one could always keep some headroom of resources. However, it is
obviously leads to resource wastage, since load spikes are rare. As an alternative one could use
reactive scaling. There is no need to allocate resources upfront. But it requires low overhead
resource allocation mechanism, to minimize impact on the application performance. Vertical
scaling is the best candidate for reactive provisioning. It has a sub-second resource allocation
overhead.

Most of interactive web applications have tiered architecture: front-end tier (web server),
application tier (business logic) and back-end tier (database). The incoming requests go from
tier to tier and come back to the clients with results. Each tier of the application can be scaled
separately. But it does not mean that one tier can be scaled in isolation of other tiers. Scaling
mechanism should be aware of cluster wide correlation and possible shift of bottlenecks. Clus-
ter wide correlation happens when one of the tiers has certain resource shortage that affects
resource usage of another tier. For example, CPU saturation of database tier raises memory
utilization of the front-end tier. It happens because the database cannot serve fast enough in-
coming requests. Hence, it cannot accept connections from the web server. As a result the
web server has to enqueue incoming client requests. The bigger queue needs more memory.
Horizontal scaling is one of commonly used resource allocation mechanisms for interactive ap-
plications. However, horizontal scaling of back-end tier is challenging. The back-end tier is a
state-full tier. We cannot just start one additional instance. We need to transfer the data from
a running instance to the replica. Moreover, it is desirable to shrink resources when the load
decreased. Shutting down one of database instances requires special treatment, otherwise
the data will be lost. For this reasons most of existing auto-scaling systems [63, 82] leave it
over-provisioned and don’t scale it. One can argue that there are number of distributed key-
value stores which can be easily scaled out and scaled in. Unfortunately, most of e-commerce
systems use traditional relation databases, which don’t scale horizontally. To enable horizontal
scaling one would need to build sharding logic into relational database, which introduces com-
plexity and limits ability to use the relational features of the database. A good alternative is
vertical scaling. It eliminates the need for data replication. We can easily grow and contract a
VM running database instance.

Batch applications consist of resource intensive jobs, which can start and stop at any point
of time. These applications usually perform data-analytics tasks to solve scientific problems,
crawl internet and create different types of reports. Large body of data analytic platforms use
MapReduce computational model [40]. Hadoop is one of popular implementations of MapRe-
duce paradigm. A number of companies use it in a production [16]. SLO objectives of these
types of applications are described in the form of job execution deadline. Batch job consists
of a number of tasks that can run simultaneously. Therefore resource allocation process of
batch applications is performed in the form of task scheduling. The scheduler decides how
many tasks to launch in parallel to meet the deadline. It means that the scheduler performs
horizontal scaling. The task usually runs in a container, which limits resources such CPU and
RAM available to the task. Batch applications also support vertical scaling. To improve task
runtime Li et al. [94] adapted the container size based on previous tasks execution. Batch jobs
are tolerant to performance slowdown and could run under high resource pressure. Hence, in
contrast to interactive applications batch applications do not require immediate reaction to re-
source under-provisioning. Moreover, in case of resource shortage on the host one could apply
admission control via task termination and relaunch the terminated task later [30, 32]. These
jobs are designed with fault tolerance in mind and termination of one the tasks does not kill the
application.

As we stated earlier batch jobs are resource intensive and can put pressure on any of the

24



2.4 Cloud trends

resources: memory, I/O, CPU. Therefore, a lot of research has been done to deal with various
resource bottlenecks. Over the past decade disk locality was the main focus in resource usage
optimization [156, 14] for batch applications. The motivation for disk locality is based on two
facts [13]. First, disk bandwidth exceeds network performance. Second, disk I/O has substan-
tial contribution to overall task execution time. Nowadays the focus shifts from disk locality to
network. It was observed that network reads performance is comparable to the disk reads [72].
Batch jobs can create a huge traffic across the cloud. It can affect performance of other applica-
tions sharing cloud infrastructure with them. Hence, the auto-scaling system should consider,
not only resources resided on a host, but also pressure on the networking infrastructure [6,
128, 36].

One of the main goals of cloud provider is minimize energy costs related with cloud infras-
tructure. For cloud provider it is difficult to expand infrastructure, because power source with
desired capacity may not be available nearby. Hence, cloud provider needs to push datacenter
to higher utilization levels. Current state of utilization levels far away from ideal. It is about
10 − 20% for the industry [41, 143]. One of the reasons is that datacenter owners sacrifice
utilization for latency sensitive applications. These applications run on dedicated servers in
isolation from batch applications. In isolation latency sensitive applications achieve high perfor-
mance even during peak demands and sudden load spikes. The modern trend is to collocate
both application types and raise utilization of the datacenter [32, 143, 41]. The desired per-
formance of latency intensive application is achieved with help of prioritization [41, 143] and
vertical scaling [153].

To summarize, cloud runs a wide range of workloads. Cloud applications can be classified
in two groups: batch and interactive applications. The first group contains resource intensive
jobs that partitioned into tasks. The jobs can tolerate significant wait time. The scaling of the
applications implemented in the form of scheduling, where the scheduler based on available
cluster capacity decides how many tasks of each job to run. In contrast, the second group
consists of applications that are highly sensitive to performance slowdown, because they serve
real clients. Even a short delay can cause high revenue loss. Interactive applications consist
of tiers. Hence, the auto-scaling system should orchestrate resource scaling across all tiers to
avoid shift of resource bottlenecks.

2.4 CLOUD TRENDS

Most of IaaS cloud providers sell virtual resources in the form of fixed bundles such as VMs. The
bundles have predefined amount of CPU power, memory and storage size. Providers charge
users for the time the resource bundle being used. The users usually charged for VM usage
in a hour granularity. Agmon Ben-Yehuda et al. [4] analyzed development of the cloud market
and observe number of trends that drive cloud market toward fine-granular resource allocation,
seconds range billing cycles, proper resource pricing and service level differentiation.

Billing periods Years before cloud computing has emerged, the time for which physical
server was used counted in years. The appearance of web hosting changed the situation.
Clients were able to rent servers on a monthly basis. In 2006 Amazon introduced elastic com-
pute cloud (EC2), which dropped rental granularity from months to hours. So the cloud users
were allowed to rent servers for hours and shutdown unused ones. Hence, the users paid only
for resources being utilized.

The renting of VMs for shorter periods is driven by economic incentives, which push users
to perform optimizations in order to reduce resource wastage. For example, if an instance runs
for half an hour, then user has to pay for full hour. It means that the user overpays for half an
hour. However, if half second runtime of a VM was billed as full second, then the user overpays
only half a second. Smaller billing cycles reduce user’s overpay costs.

25



Background

The trend of shrinking billing cycles is already in the cloud market. In 2009 Amazon announced
spot-instances, which price changes every 5 minutes [2]. Later on in 2010 a new cloud provider
CloudSigma [33] announced 5 minute billing cycles. Then in 2012 GridSpot [59] and Profit-
Bricks [113] appeared in the market and offered 3 and 1 minute billing cycles, respectively.
In 2013 Google Cloud Engine started to charge by 1 minute. The trend of shrinking resource
billing cycles runs parallel to telephony billing cycles. In the past telephony billing cycles shrank
to seconds. Therefore, there is an expectation that cloud providers continue to move towards
second billing cycles.

Resource granularity Selling fixed bundles is common for the most of IaaS providers. Cloud
providers have different names for the bundles. For example, Google Compute cloud calls
them ’machines type’, Amazon and RackSpace call ’instance type’, GoGrid calls ’server sizes’.
Cloud providers use fixed bundles to keep a connection between virtual resources and real
hardware. So the user can find virtual machine that is equal to a server running in private infras-
tructure. From 2012 the model of fixed bundles begins to change. In 2012 Amazon announced
Elastic Block Storage service that allows users to modify I/O resources for already running
instances. Freshly started cloud providers such as CloudSigma(2010), ProfitBricks(2012) and
GridSpot(2012) announced flexible bundles model. Users can specify the amount of resources
they need. It is similar to buying server in computer shop, where the customer decides how
much RAM, CPU and hard disks put into a server.

Users are not motivated to buy fixed size VMs. The workload of many applications is not
constant. It changes over the time. Hence, the VMs are not fully utilized every moment of
the time. Moreover, the workload may change from CPU intensive to memory intensive, which
would require changing type of the VM. Hence, the model of flexible bundles enables follow-
ing the workload dynamics and optimizing resource usage. The dynamic fine-granular resource
allocation from one side leaves space for optimization; from another side it increases the com-
plexity of resource management. The user would need automating tools that are able to allo-
cate resources according to the price of the resources, the application workload and the user’s
objectives in terms of cost and performance goals.

Resource pricing Multiple VMs running on the same host with a help of virtulization tech-
nique can successfully share CPU and memory resources. However, the sharing of network
and disk I/O is more challenging. It was observed [17, 139] that performance of VMs can greatly
vary due to interference and bottlenecks created by collocated VMs. It means that there is a
difference between what user rents and what cloud provider delivers. To solve the issue re-
searchers proposed to sell the performance instead of resources [109, 136, 106]. The approach
is easy to implement on the levels such SaaS and PaaS, where application performance can
be well defined and cloud provider has full visibility of the user’s application. However, on IaaS
level cloud provider and the user are separated entities. The provider does not know what kind
of application the user runs and what performance levels are desired. Moreover, the user could
lie to the provider about the application performance to get more resources [3]. In order to as-
sure the application performance cloud provider could offer resources in the form of guaranteed
time of resources. For example, in 2014 Amazon launched burstable T2 instances and general
purpose SSD (GP2). Each VM has certain guaranteed CPU minutes per hour. It means that VM
gets guaranteed baseline CPU speed for these minutes. Moreover, according to the model the
user can earn credits when a VM is idling (1 credit - 1 guaranteed CPU time). Later when the
load burst occurs the VM gets guaranteed CPU cycles. Such model allows users to get VMs
for lower price and make sure, that it will provide the best performance during high load spikes.

Service levels Instant resource demand from the users can exceed cloud provider’s data-
center capacity. However, the users have different performance objectives. Some users have
strict performance requirements, others are more flexible. Therefore, to be able to accept re-
source requests from all users cloud provider later during runtme can preempt or slowdown
applications of flexible users for the sake of strict ones. In 2009 Amazon introduced Reserved

26



2.5 Summary

instances and Spot instances. Reserved instances are high priority level VMs. Spot instances
are low-priority level VMs that usually have significantly lower price in comparison to reserved
instances. By prioritizing VM instances a provider can offer elasticity and availability to high pri-
ority users for the cost of degrading low priority users. However, cloud provider can also offer
spare resources to low-priority users if high-priority users don’t utilize acquired capacity. Both
sides of the cloud market can benefit from the service differentiation. Cloud providers have
opportunity to better utilize the infrastructure by offering residual resources in the form of low-
priority VMs. Cloud users can choose priority level that reflects their budget and the application
performance constrains. For example, users with smaller budget can enter cloud by using low
priority VM.

We gave an overview of trends in the cloud market. There is evidence that cloud providers’ re-
source rental model moves from coarse-grained toward fine-granular resource allocation. More-
over, cloud providers billing periods in the near future are going drop to the seconds range. Till
now the shift from hours to minutes was already observed. Smaller billing periods together
with fine-granular resource allocation increase the complexity of resource allocation in
comparison to fixed size VM assignment. The new model would require development of
auto-scaling systems that are able to find optimal decision with respect to workload dynamics
and flexible resource bundles model offered by the cloud environment. The users of the cloud
are diverse in terms of budget and the application performance constrains. Therefore cloud
providers would benefit if they offer resources under different service levels. Such approach
opens access to the cloud for the users with smaller budget and offer guaranteed performance
for high priority users. In this circumstances the role of vertical scaling increases. Instead of
migrating VM during peak load, it allows with low overhead upscale one user VM by taking
resources from neighboring VM of another user.

2.5 SUMMARY

We started with an overview of cloud market and presented the problem of dynamic resource
allocation. Then we looked into resource scaling types: described horizontal and vertical scaling.
We discussed overheads and applicability of each of the types. We also pointed out that to
achieve the best performance out of allocated amount of resources one needs to adapt the
application parameters too.

Later we analyzed applications running in the cloud environment. Cloud applications can be
classified in two types: interactive and batch applications. Interactive applications are latency
sensitive and require either some resource over-provisioning or low overhead reactive scaling
to keep the latency low. Batch applications usually run resource intensive workloads and can
tolerate performance slowdown. Resource allocation for batch applications is usually defined as
a scheduling. The goal of the scheduling is to meet certain job execution deadline. The workload
of the both application types can change during runtime. It can vary during day, week, etc.
Some of the workload patterns are hard to predict, such as load spikes caused by ’slashdotting’
effects. In this case we can apply vertical scaling that has low resource allocation overhead.
Moreover, the workloads can change from being CPU-intensive to memory-intensive.

Finally we provide survey of cloud market trends. The major outcome is that resource rental
model moves from fixed bundles to flexible bundles, where cloud user can dynamically change
individual resource assignment. However, fine granular resource allocation increases the com-
plexity of capacity management process. Hence, there is a need for auto-scaling systems that
can provide optimal scaling decision from the large number of possible allocation schemes.
Another trend is service differentiation. By offering different service levels cloud providers can
better utilize own infrastructure and lower barrier of entry for small companies.

27





AUTO-SCALING SYSTEM

29





3.1 Introduction

3.1 INTRODUCTION

The goal of auto-scaling system is allocate resources to effectively handle dynamic workload
changes, while providing guaranteed application performance with respect to SLO. Resource
auto-scaling is a complex process that requires taking a set of steps. First, one needs to monitor
workload, application status and resource usage. Second, to make a decision about resource
provisioning it is necessary to analyze monitored data. Third, as soon as decision about re-
source allocation has been made, we need to plan how many resources to allocate. To perform
optimal resource scaling decisions the accurate model of relationships between the application
performance, input workload and the amount of allocated resources should be identified. The
questions are when and how to identify the relationships. The final step of auto-scaling pro-
cess is allocating the estimated amount of resources. In section 3.2 we describe auto-scaling
process phases in details. Then in section 3.3 we present system identification approaches
and discuss pros and cons of each the approaches. The relationships can be described us-
ing a wide range of techniques. Among the literature we review the techniques applied in
auto-scaling systems fall into following categories: threshold based techniques, reinforcement
learning, techniques that use control and queuing theories, and techniques that based on time
series analysis. We present an overview of these techniques and related work in section 3.4.

3.2 AUTO-SCALING PROCESS

The process of auto-scaling has a set of phases and can be described as MAPE loop [49, 77],
where M stands for monitoring, A - analyzing, P - planning and E - execution. The collecting
of information about resource utilization, input workload and the application status is a part of
monitoring phase. Analyzing phase uses monitoring data to determine current state of the appli-
cation and estimate the need to perform scaling action. In planning phase auto-scaling system
decides what action to take. The system needs to find tradeoff between cost of resources and
satisfying user-defined SLO. Finally, in the execution phase via API call of underlying platform
the actual resource allocation action is performed. The auto-scaling system has four compo-
nents (monitor, analyzer, planner, executor) that involved in each of the phases.

The monitoring is essential part of auto-scaling system. It provides measurements about re-
source consumption, the application health status and its performance with regard to objectives
defined in SLA. The list of monitored metrics consists of CPU, memory, network, disk utiliza-
tion, response time, throughput,request rate job progress and etc. Some works [126, 108] use
CPU as the application performance indicator. However, better performance control is achieved
if direct metrics such as response time included into monitored metrics set [85]. The quality
of scaling decision also depends on the delivery of up-to-date monitoring data. To monitor ap-
plications researchers apply sampling intervals from seconds to minutes. Emeakaroha et al.
[49] evaluated the impact of monitoring interval size on the web application SLA violation rate.
They use 0.15$ as a measurement cost and 0.30$ as a cost of missing violation. 5 seconds
measurement interval was set as baseline that detects all SLA violations. Figure 1 presents
results of the evaluation. The graph shows that the cost of missing SLA violation significantly
increases if the monitored data updates delayed. Hence, monitoring component should be in
sync with the application it monitors. Most of cloud providers offer monitoring services on IaaS
level [26, 1]. However, provider services are not always exposing all necessary information. It
is common that the user needs implement own monitoring agents to collect the application
specific data.

The analyzer processes monitoring data to analyze application status and resources utiliza-
tion. It triggers planning phase if the SLA violations or significant changes in workload charac-
teristics are detected or predicted. Auto-scaling system is considered is reactive if it responds
only on the current state of the application. It means that the planner will scale assigned re-

31



Auto-scaling system

Figure 1: Impact of monitoring interval

sources when SLA violation is already happened. Resource allocation is not an instant process.
It has some overhead [52]. For example, adding one VM requires up to 1 minute [47]. Hence,
it is important to trigger the planner with some anticipation. The system that anticipates future
resource demand is called predictive. Predictive scaling provisions the application in advance
to deal with fluctuating workloads. Most of works presented in 3.4 use time series technique
to analyze the monitoring data.

The executor performs actual resource allocation: add/remove VMs, resize capacity of run-
ning VM or even migrate VMs. The allocation actions performed over API offered by cloud
provider. If the application deployment runs on private cloud, then API of cloud management
framework is used. For example, CloudSigma provider offers REST interface to dynamically
resize VM. As we stated earlier in section 2.2 actual resource allocation process has some
overhead. Therefore scaling overhead should be part of the planner’s resource assignment
algorithm to prevent the application performance degradation during resource assignment.

The planner component is a core of auto-scaling system. It contains a system model which
describes relationship between the application performance and its resource demand. The
model can be fixed during design time or the planner can adapt it during runtime. As soon as the
information about current or predicted state of the system is known, the planner has to make a
decision about resource assignment. For example, VM can be removed from application cluster
if the observed application utilization is low. However, the assigned capacity should guarantee
desired application performance. As we stated earlier in section 2.3 the workload of many
applications constantly changes. Therefore the planner should also include input workload into
the system model. In section 3.4 we will cover auto-scaling techniques and algorithms that
compose the core of the planner.

3.3 SYSTEM IDENTIFICATION

The resource scaling policy is applicable only if the model of controlled application is well inves-
tigated. Therefore to develop resource scaling system, first we have to understand the quan-
titative relationships between the application performance and its resource usage. To build
a model (or identify system) we need a profiling environment. The environment can be fully
isolated from the application running in production mode(offline modeling), build on top of pro-
duction environment (sand-boxing) or the application running in production mode can be profiled
during runtime (online modeling). Each of the approaches has strong and weak sides. One can
choose the approach based on optimization goals.

Many auto-scaling systems [43, 108, 67] use fixed models that obtained offline and do not
change during runtime. To discover the model authors of the systems take empirical approach

32



3.4 Auto-scaling techniques

and run set of tests against the application that will be later put into production. The goal of
the tests is find and tune essential application and scaling policy parameters. The approach
provides high accuracy, since it easy to repeat the experiments, compare results with previous
runs and tune the model parameters. However, any changes of the application such as updates
or unseen workloads would require going offline again and running tuning experiments again.
Moreover, in some cases it is difficult replay real workload. There is a need for approach that
builds the system model during runtime.

Sand-boxing [159, 140, 41, 143] eliminates the problem of offline system modeling. The
idea is to build a small clone of the application production environment and redirect live workload
to the sand-box. The overhead of profiling the application and adapting scaling policy can be
greatly improved. Delimitrou and Kozyrakis [41] claim that it requires about 5 minutes to obtain
a new profile. Experiments with the sand-box do not affect performance of the application in
production mode, since the ’sand-box’ isolated from the application running in production mode.
However, the approach has some overhead in terms of infrastructure for the ’sand-box’ and its
management. First, the complexity of building sand-boxing environment is high. One has to
provide application specific implementation to redirect live workload data. Second, it requires
dedicated hardware for testing scaling policy. Applications hosted on the cloud can be very
different by nature. Hence, it is hard to build generic ’sand-box’ for all applications. It can be
only application specific, which also stated by authors in [41] .

In the online system identification approach the application runs on the cloud without main-
tenance delays and the scaling policy immediately adapts to the application resource demand.
Machine learning techniques [118] and statistical analysis [22] among the tools applied in for the
approach. The strong side of the approach is that it does not require upfront knowledge about
the system model. The resource scaling policy is obtained by observing the reactions of the
application on resource assignment actions. However, it requires careful change of resource
entitlements, because the actions applied to the life system. The time to obtain initial policy
can be significant, because one needs to collect enough observations to train the model. But
there are approaches that address the issue [154, 20].

To summarize, we can use different system identification approaches. Testing allocation pol-
icy offline gives the freedom of experiments. However, we cannot catch all real world com-
plexities. Sand-boxing brings the testing environment closer to the real cloud environment. So
we can evaluate scaling policy on a live workload data. But the approach has overhead of build-
ing the sand-box. Moreover, we would need to adapt the sand-box for every application we
want to dynamically provision. Evaluating scaling policy of the application running in production
mode eliminates the drawbacks of two previous approaches. However, it adds the challenges
to the system identification process. Because adapting scaling policy online could impact per-
formance of the application. The process of system identification should be less visible to the
application client. Otherwise, bad experience with application would motivate clients to move
to other services [100].

3.4 AUTO-SCALING TECHNIQUES

The goal of auto-scaling technique is determine the relationships between application perfor-
mance and assigned capacity. The techniques that used to model the relationship can be di-
vided into five categories: threshold based, reinforcement learning, control theory, queuing
theory and time series. Threshold based, control theory and queuing theory are offline system
identification approaches. The model is obtained analytically or empirically over a set of offline
experiments. And the model does not change lifetime of the application. Some control theoret-
ical approaches can perform online system adaptation. But, the initial model is obtained offline.
Auto-scaling systems that exploit reinforcement learning and time series can be used for online
system identification. However, both techniques require significant time to obtain initial policy.

33



Auto-scaling system

1: if x > thUp then
2: add y
3: wait for inUp min.
4: end if

5: if x < thDown then
6: remove y
7: wait for inDown min.
8: end if

Algorithm 1: Scaling up/out and scaling down/in rules

But there are works [56, 126, 116, 154, 20, 152] that address the issue. In this chapter we
describe each technique and present related works.

3.4.1 THRESHOLD BASED SCALING

Many cloud providers offer auto-scaling services that exploit threshold based scaling. The pop-
ularity of the technique is explained by its simplicity. It is easy to understand for average cloud
user. However, to design a good scaling policy the user is required to have deep understanding
of the application, its workloads and experience with provider’s infrastructure.

Threshold based techniques use rules to describe scaling policy. The rules define amount
resources to allocate/de-allocate such as number of VMs, CPU or RAM. The rules can be di-
vided in two sets: scaling up/out or scaling down/in. Algorithm 1 shows examples of the rules
presented in two columns. The left side column describes allocation (scale up/out) rule and the
right side column shows de-allocation (scale down/in) rule.

The rules consist of two parts: condition and action. The lines 1 and 5 are conditions of the
rule. Usually the condition contains the metric x and its threshold thUp. The condition can be
also complex and contain more metrics x1, x2, .., xn and thresholds thUp1, thUp2, .., thUpn. It
is common to use CPU utilization [26, 85, 63, 64] and response time [85, 74] in conditions.
The second part is action. In our example actions presented in lines 2 and 6. For horizontal
scaling the action is defined as a number of VMs to add or remove. In case of vertical scaling
individual resources such as CPU, RAM is described in the action. After the action is triggered
the controlled application requires some time to reach steady state, therefore the rules have
’grace’ period between scaling actions: inUp and inDown. This is the time, when no action is
executed even if the conditions are met.

Usually threshold based rules contain only two rules per metric: one for extension and one for
compaction. Hasan et al. [64] extended the rules. In addition to the upper and lower thresholds
they added intermediate upper ThrbU and the lower ThroL thresholds. The former is slightly
below the upper threshold and the latter slightly above the lower threshold. The authors also
added two duration parameters. The main goal of extending the rule is to catch the trend
of measured metric. However, the question about how to determine ’good’ threshold values
remains open.

The quality of resource scaling algorithm greatly depends on the metric used to trigger scaling
action. In [26, 85] authors compared utilization-based and latency-based rules. For utilization
based rules they applied CPU utilization, while for the second approach average response time
was used to trigger scaling actions. The results from both rules show that applying direct
application performance metrics such response time allows to save resources in comparison to
utilization based rules. The application running under resource pressure still can achieve desired
performance goal.

Most of threshold based auto-scaling systems operate in a reactive way by executing scaling
action after the threshold is met. Casalicchio and Silvestri [26] added one step ahead arrival
rate prediction mechanism to the threshold based scaling. The evaluation results show that the

34



3.4 Auto-scaling techniques

prediction allows significantly improve response time of the web application. Moreover, it gives
cost savings about 15% in comparison to only threshold based policy.

While most of cloud providers offer simple rules, RightScale added voting feature to threshold
based approach [125]. Each VM within a cluster of VMs can vote for grow or shrink action based
on its utilization levels and defined threshold. The threshold is equal across all VMs. The scaling
in the system is triggered as soon as the majority of VMs vote for the scaling action. The value
that defines the majority can be tuned as well. RightScale also defines calm period between the
actions, which prevents the scaling algorithm from instantly booting new VMs. The proposed
algorithm is just an implementation of democratic voting. The task of defining thresholds still
remains on user’s shoulders.

The threshold based scaling was adopted to provide not only horizontal scaling, but also
vertical scaling. Han et al. [63] implemented auto-scaling system to perform response time
control of three-tier web application. The system scales VM resources such as number of
virtual CPUs, RAM and I/O. However, scaling granularity is not very high. RAM is changed
by 1GB, disk bandwidth by 10 MB/sec. To trigger scaling actions the authors use empirically
defined thresholds and no prediction technique is used. The system is tested against static
workload that does not reflect real workload dynamics.

One of the difficult parts of defining the rules is determine the upper thUp and the lower
thDown thresholds for a metric. The higher thUp allows to delay resource assignment and
hence, rent fewer resources and save money. However, it could potentially lead to perfor-
mance degradation of the scaled application [130]. With lower thUp we can achieve good
performance, but then we have higher level of over-provisioning. A large body of research pa-
pers applies predefined thresholds for rule-based scaling policy. Suleiman et al. [130] analyze
the tradeoff between different scaling thresholds for horizontal scaling. In particular they ex-
periment with upper threshold for CPU utilization and response time. The other parameters
such as grace period and provisioning unit are fixed. The evaluation is done on Amazon EC2
infrastructure. Authors observe that higher thresholds reduce server usage cost in comparison
to lower thresholds. Moreover, they found substantial difference in acquisition time between
small and medium VMs. The first one takes about 5 minutes to start and the second only 2
minutes. It means that the thresholds should be tuned not only per application basis, but also
per VM type.

VMs instances of an application can be terminated as soon as lower threshold bound thDown
is met. However, applying the scaling down rule without taking into account a cloud provider
billing model can lead to higher costs and worse application performance under highly fluctu-
ated workload. Casalicchio and Silvestri [26] and Kupferman et al. [89] address the problem of
saving VM usage costs based on how cloud providers charge for virtual resources. Many cloud
providers have one hour billing cycle. Hence, it is better to keep running a VM before billing
hour is over, even if the overall utilization is low. The approach is beneficial in case of highly
fluctuating workload, because there is always some amount under-utilized VM capacity.

Interactive applications are the main focus of rules-based auto-scaling systems. The most
of proposed systems address scaling of single tier interactive applications. In [45, 26, 130,
85] authors target application tier and only a few of the works address scaling of more than
one tier[63, 64]. Scaling more than one tier requires dealing with cluster wide correlation [116]
to make sure that bottleneck resource does shift from one tier to another. For example, CPU
saturation of the database tier leads to higher memory usage of the web server. In [63] authors
do not address cluster wide correlation. The threshold based approach was also applied to
storage tier. Lim, Babu, and Chase [95] developed automated controller for elastic storage
based on Hadoop Distributed File System(HDFS). The controller uses predefined thresholds to
trigger horizontal scaling actions.

In summary, the rule based scaling is the first step towards auto-scaling systems. It provides
easy to understand rule semantics. However, the setting up the rule parameters is a challenging

35



Auto-scaling system

1: Q ←− Q0 . initialization e.g. Q0 = 0
2: s←− SelectState()
3: while not terminate do
4: a←− SelectAction(π, s) . policy π from Q e.g. ε -greedy
5: r’←− Reward(s,a)
6: s’←− NextState(s,a)
7: Q(s, a)←− Q(s, a) + α[r ′ + γ * argmaxa′εAQ(s′, a′) − Q(s, a)]
8: s←− s’
9: end while

Algorithm 2: Q-learning(π)

task. One could design a ’good’ auto-scaling policy by creating a set of rules [64] and dynamic
thresholds [99]. But changes in controlled system such as application updates or modifications
in workload patterns require redesign of the policy. There is a need for more sophisticated
techniques that can adapt to the changes.

3.4.2 REINFORCEMENT LEARNING

Reinforcement learning [81] is the process of learning where a learner actively interacting with
the environment to achieve certain goal. For every taken action the agent receives two types
of information: current state of the environment and reward, which depends on the task and
its goal. The objective of the agent is maximize the reward and determine the set of actions
(or policy) to that achieve the objective. In case of auto-scaling system the agent learns the
target application behavior by taking resource scaling actions and observing response from
the application. The application scaling problem can be described as Markov decision process
(MDP), which is defined by:

• a set of states S, can be infinite

• a start state s0εS

• a set of actions A, can be infinite

• a transition probability Pr [s′|s, a]

• a reward probability Pr [r ′|s, a]

The model is Markovian, because the transition and reward probability is the function of the
current state s and does not depend on the history of states and actions taken before.

Reinforcement learning has a set of learning algorithms, which belong either to the family
of model-free or model-based approaches. The model-free approach consists of learning an
action policy directly, while model-based approach consist of first learning the environment
model, and use that to learn a policy. Most of auto-scaling systems that apply RL approach
use Q-learning and its modification SARSA algorithms. The algorithms belong to the family of
model-free approaches, which makes them applicable for online system identification.

The policy in the algorithms is based on Q(a, s)-value function. Each Q(a,s)-value gives an es-
timation of future cumulative reward when action a in executed in state s. Usually Q(a,s)-values
stored in a lookup table. The table maps every state sεS to it best actions aεA and correspond-
ing Q-value. The popularity of the algorithms is explained by the fact that they estimate Q-value
function in case of unknown model. The Q-learning algorithm pseudo-code presented in 2.

36



3.4 Auto-scaling techniques

The algorithm starts from initialization phase where each Q-value is set to zero. After the ini-
tialization the agent observes first state s. Then from the current state s it selects an action
using policy π derived from Q. Usually the agent follows ε-greedy policy to choose the action.
It means that with low probability ε the agent takes random action and the rest of the time it
takes the action that gives highest expected reward. The random action selection is required
to explore other actions that are not taken so far. After the transition to the new state s’ (lines
5 and 6) the agent obtains reward. Afterward the Q-value is updated based on received reward
and maximum Q-value among all possible actions from the new state s’ (line 7). The update
rule contains two parameters α and γ. Each of them set between 0 and 1. The first parameter
is a learning rate, which defines the learning speed. α can be fixed value or it is a function of
a number visited states. The second parameter is the discount factor. It controls the impact
of future rewards. Usually the value of 0.8 is used. Finally, the new state s’ is assigned as
a current state of the agent (line 8). The SARSA algorithm is similar to Q-learning. The only
difference is that SARSA uses same action selection policy (line 4) to update Q-value (line 7).
In Q-learning the policy is updated based on maximal Q-value (argmaxa′εAQ(s′, a′)).

To apply reinforcement learning approach one has to define a set of actions, state-space and
reward function. The choice of state and actions depends on type of scaling horizon. The state-
space for horizontal scaling is defined by the number of VMs and input workload. The actions
of horizontal scaling are defined as add VM, do nothing, remove VM. Dutreilh et al. [46] extend
the set actions by allowing to add and remove number of VMs instead of only one VM.

The state-action space for vertical scaling considers individual resource assigned to a VM.
Rao et al. [118] and Xu, Rao, and Bu [150] used CPU time, number of virtual CPUs and memory
to define the state. In [116] authors define state as utilization level of each resource. Similar
to horizontal scaling the action space for each resource consists of add, remove, do nothing
actions.

The reward function determines the optimization goal of the auto-scaling system such as cost
of assigned resources, utilization levels and penalty for SLA violation. If SLA is violated then
reward can be negative [118]. It encourages the agent to avoid under-provisioning. In addition
one could also motivate the agent to take cost-effective decisions by giving higher reward for
actions that require to allocate less resources.

As we mentioned earlier, RL offers online model-free learning algorithms that can adapt to
application and input workload changes. However, to apply RL we need to address set of
challenges. There are three main problems: long learning time, large state-space, exploration-
exploitation dilemma.

Long learning time In the beginning of training process decisions provided by auto-scaling
system is far from desired ones. The Q-learning algorithm requires significant time [20], before
it can provide valuable decisions. Hence, during initialization the actions made by the agent
can lead to bad scaling decisions such over-provisioning or even under-provisioning. Therefore
to address the issue different approaches have been proposed. Barrett, Howley, and Duggan
[20] perform horizontal scaling of web application front-end tier and apply parallel learning that
allows multiple agents to exchange learning policy, so Q-learning algorithm converges quicker to
optimal policy. Tesauro et al. [132] used data collected from offline-training to initialize Q-table.
In [118] authors apply neural-network to reduce time to obtain initial policy. In chapter 5 we
present speed up technique for vertical scaling.

Large state-space The grows of state-space dramatically increases a search space for the
agent. Especially it becomes challenging if RL is applied for vertical scaling. From one side ver-
tical scaling provides fine-granular resource allocation; from another side the number of states
significantly increases with greater granularity. For example, if the state is defined by 2 re-
sources (CPU and RAM) and each resource has 4 possible variations ({1, 2, 3, 4} CPUs; {256,
512, 768, 1024} MB of RAM), then total number of states is 4 * 4 = 16. If we increase gran-
ularity of each resource by factor of 2, then the number of states increases by factor of 4 and

37



Auto-scaling system

becomes 8 * 8 = 64. The number of states also increases if we add one more resource with
same number of possible values. In case of 3 resources (to control CPU, RAM and I/O alloca-
tion [116]) the number of states is 4 * 4 * 4 = 64. Moreover, the number of states grows if the
state-space describes resources assigned to more than one VM. In [118] the state is defined
by resources allocated to 2 VMs. To reduce the state-action space authors limited number
of possible states and actions for each resource. However, the reduction of states leads to
coarse-grain resource allocation. In [116] authors propose to use separate state definition for
each VM and apply feedback from reward to resolve resource conflicts. In chapter 6 we present
an approach to build MDP model of individual VM resource in isolation from other resources.

Exploration-exploitation dilemma. Q-learning is a model-free algorithm. The agent needs
to perform exploration actions in order to observe all states of the environment. However, how
the agent can judge whether the obtained policy is optimal in a given environment? Should the
agent explore other states or continue to exploit current policy? Usually to resolve the problem
the following heuristic is exploited. The agent starts exploration and later on the number of
the exploration driven actions diminishes by moving towards exploitation actions. It is also
common to fix the exploration rate ε as small value below 0.1 [118, 20, 116]. One of the
important parts of exploration is to avoid performance degradation of the controlled application.
Usually in the literature the guided exploration is used. For example, in [25] authors during the
exploration phase exclude actions that can impact the performance. For example, if the current
CPU utilization is high, then actions that scale down resources removed from exploration actions
set.

Most of applications are not designed for resource elasticity. Therefore it is necessary to
adapt internal application parameters such as number of threads per session, maximum number
of database connections to gain the advantage of changed resource capacity. The impact of
actual parameters values to the application performance is significant [60]. For example, Apache
web server has MaxClients parameter, which sets the limit on maximum number of requests to
be served simultaneously. The small value leads to low resource utilization, while the high value
can bring the application to the overloaded condition. In [150, 61] authors exploited RL to tune
the parameters. The results presented in the papers show that adapting application parameters
improves the application performance. However, the choice of parameters is done manually.
An application may have a number of parameters that can drive its performance and resource
usage. Dynamic parameter identification might be one of directions for future research.

In conclusion, reinforcement learning is a promising technique for auto-scaling systems. It
provides model-free learning algorithms that can adapt system model online. Hence, cloud user
does not need to define scaling policy parameters upfront. However, it is important to note that
RL has challenges that need to be addressed.

3.4.3 CONTROL THEORY

Control theory provides automation mechanisms for management of complex information sys-
tems. Systems under control of feedback loops can deal with disturbances, uncertainties, un-
predictable changes. In figure 2 presented a standard feedback loop. The system under control
is called target system. It has a number of metrics, which marked as measured output in the
figure. The system has set of control knobs(control input). The task of the controller is to peri-
odically adjust control knobs to insure that measured output meets its desired value (reference
input) specified by the system designer. To provide high level of control the controller algorithm
should consider control error, as well as external disturbance, which can impact measured out-
put of the system.

Control systems can be open or closed. First type does not use feedback to verify whether
the output achieved desired state. It means that system does not monitor the output of the
process it controls. Therefore open loop systems cannot correct control errors and compensate

38



3.4 Auto-scaling techniques

Figure 2: Standard feedback control loop Picture from [160]

disturbances. Usually open control systems used for management of simple processes, where
the feedback it not an issue. Closed systems use feedback. Hence, they observe the output and
correct the output if it deviates from the desired value. For the control systems it is important
not only react to deviation of the output, but also anticipate the errors. Closed systems that
predict errors are called feed-forward. The best quality of control is achieved when feedback and
feed-forward controller work together. We consider only closed loop systems, because they
offer feedback mechanism that informs the auto-scaling system about the application state and
virtual resources utilization. Based on the number of input and output parameters controllers
classified into SISO (single input single output) and MIMO (multiple inputs and multiple outputs)
controllers. For example, to control CPU and RAM resource allocation process the auto-scaling
system requires MIMO controller.

According to Hellerstein, Singhal, and Wang [66] the design of closed loop controller consists
of three main steps. Firstly, one should define the control objective. For example, the objective
of auto-scaling system is control quality of service by adjusting resource allocation to ensure
that performance indicators such as 95% percentile of the response time meets SLO. In this
case the reference input is specified, so the control system solves regulation problem. There
are other examples of the control objectives such, management of resource utilization [108].
The authors target 80% CPU utilization of a web server.

Second step is describing the software system in terms of control theoretic concepts. In
figure 2 presented key elements of feedback control system for regulatory control. Assume we
want to design auto-scaling controller for a VM running a web server. As the reference input
we can use the web server response time. The target system is VM that runs the web server.
The measured output is response time of the server. Virtual CPU speed is control knob for
the response time regulation. The relationship between input and output can be affected by
external disturbance such as the web server clients request rate. The goal of the controller is
adapting the control input to keep the output consistent with the reference input in presence
of external disturbance.

Third step is obtaining the model to describe the relationship between input and output. In
control theory the step is referred as system identification process. The relationship can be
derived with help first-principles [65]. Often the exact form of the relationship is not available.
In this case, black-box approaches are used to construct the generic models with the help of
statistic techniques.

Patikirikorala and Colman [112] provide classification of well-established control schemes.
They classify the schemes in four categories: fixed gain controllers, adaptive controllers, model
predictive controllers and reconfiguring control.

Fixed gain controllers are the simplest types of controllers. The tuning parameters of the
controller are set during system identification experiments. One of the most used controllers
is Proportional Integral Derivative(PID) controller. The following algorithm describes PID the
controller:

uk = Kp * ek + Ki

k∑
j=1

ej + Kd * (ek − ek−1) (1)

39



Auto-scaling system

uk is input value, for example, CPU power of a VM. ek is a control error, which is calculated as
difference between measured output y and input reference r. Kp, Ki , Kd are proportional, inte-
gral and derivative gain parameters. During setup process of the controller the gain parameters
of each component(proportional, integral and derivative) are tuned to achieve desired control
quality. They don’t change during runtime of the system. Therefore the controller is called fixed
gain. This type of controllers is useful for the systems where workload conditions don’t change
or change within nominal range. However, if the workload is characterized by high fluctuations,
then the controlled system will experience performance degradation. In [96, 45, 95, 68] fixed
gain controllers are applied for dynamic resource allocation. Lim et al. [96] build proportional in-
tegral controller to allocate application server VMs based on CPU utilization. The workload was
changed within predefined operational range using step function. In [95] authors apply integral
controller perform horizontal scaling of storage tier (VM running HDFS cluster). The controllers
performs reactive scaling when unpredicted load spikes occur. Heo et al. [68] build CPU and
memory controllers to scale web server VM. The controller periodically adjusts the resources
with respect to changed workload.

Adaptive controllers address some limitations of fixed gain controllers. The controller is
equipped with online estimation techniques such as least square method. With help of the
technique the controller can tune own parameters to meet user provided high-level objectives.
Padala et al. [109] propose adaptive controller for provisioning multi-tier web applications. The
controller adjusts CPU and Disk I/O resources of each tier VMs. Authors apply recursive least
square method to periodically update the controller parameters. In [108] adaptive controller
applied to keep CPU utilization of web application close to 80%. Ferguson et al. [51] use MIMO
adaptive controller to meet job deadline of MapReduce application. Authors consider the case
where job deadline can be modified. To adapt to changed job deadline the controller dynamically
reassigns number of MapReduce tasks running in parallel.

Model predictive controllers. Two previous types of controllers are reactive controllers.
They cannot anticipate future behavior of the system. In contrast, the MPC can predict future
behavior and perform optimization with respect to predicted value. For auto-scaling systems it
is important to have proactive component in order to provide better scaling decisions [17]. Roy,
Dubey, and Gokhale [120] apply ARMA based workload prediction and include the workload
component to the control loop that adjusts the number of running VMs to maintain user-defined
response time. Nathuji, Kansal, and Ghaffarkhah [106] developed MIMO controller to regulate
resource allocation between multiple batch applications and provide performance with respect
to different quality of service levels.

Reconfiguring controllers Adaptive controllers dynamically adapt the parameters of the
controller. However, the control algorithm remains unchanged. Reconfiguring controller is a
form adaptive controller that can change control algorithm during runtime. There have been
attempt [129] to apply the controller in resource allocation process. However, it lacks stability
proofs.

One of the complex parts of applying control theoretic approaches is building the model of
relationship between input and output. Classical PID controllers consider single linear mod-
els. However, most of inter-relationships in computing systems are non-linear. ARMA(X) (auto-
regressive moving average) is able to capture the correlation between current output of the
system and recent control inputs. ARMA-based models can anticipate future output values
and improve quality of control. In [160, 109] use ARMA model to manage resource allocation
of web application. Kalyvianaki, Charalambous, and Hand [83] applied Kalman filters to control
CPU allocation to 3-tier web applications. They build MIMO model that catches resource usage
correlations between the tiers. A number of works[91, 117, 151] employ Fuzzy models. The
fuzzy model consists of a set of rules which connect input variables with output variables. The
model associates workload (input) with resource demand (output). With the help of fuzzy rules
input and output of the controller mapped to a fuzzy set. Basically the rules embed human

40



3.4 Auto-scaling techniques

Figure 3: Queuing model from [93] Figure 4: Queuing network from [53]

expert’s knowledge. Fuzzy rule describes membership function that determines a value in the
range from 0 to 1. Xu et al. [151] developed fuzzy controller to learn relationship between work-
load, application performance and resource usage. Then obtained model is used to estimate
required CPU for the incoming workload. Usually fuzzy model is fixed at design time, therefore
the workload with abrupt changes can lead to control overshooting. To address the issue Rao et
al. [117] designed self-tuning fuzzy controller that can dynamically correct control overshooting.
Authors adjust database VM virtual CPU cap to target desired response time of web application
under the workload with high fluctuations.

In summary, control theory provides feedback control mechanism that adapts to workload
changes and operating conditions. However, the quality of control greatly depends on the ap-
plied model. Many applications have non-linear relationship between performance and resource
consumption. Hence, there is a need to apply non-linear models. Unfortunately the control the-
ory does not provide general methodology to obtain the model. The model usually obtained
empirically, which requires extensive experiments and deep domain knowledge. Moreover, the
accuracy of resource allocation depends on the type of chosen controller. The reactive con-
troller is simple to implement, but it cannot anticipate future needs. Therefore the focus should
be on applying model predictive controllers that can provide better scaling decisions.

3.4.4 QUEUING THEORY

Queuing theory based models are common approach to estimate application performance and
status metrics such as response time, length of queue and requests waiting time. The models
have also been successfully applied for resource allocation and application scaling problems.

The general representation of queuing model is drown in 3. Customers arrive to the system
with certain mean arrival rate λ and M processing nodes(application servers) serve them with
a mean rate of µ. The common way to characterize queuing model is to apply Kendall’s nota-
tion [84]. The notation is used to describe and classify queuing model. The model is described
as follows: A/S/c/K/N/D. Below presented the meaning of each value.

• A - inter arrival time distribution

• B - service time distribution

• C - number of servers

• K - system capacity. Maximum number of customers allowed in the system. If the limit is
reached, then further arrivals are not allowed. If the value is not present, then the capacity
is assumed to be unlimited

• N - calling population. The size of the population from which the customers come. If the
value is omitted, then the population is infinite.

41



Auto-scaling system

• D - the Service Discipline or priority order. It defines how jobs are served in the system.
Two most used disciplines are FIFO and LIFO.

The last three values (K, N, D) often are not shown. If they are not present, then K = ∞,
N =∞, D = FIFO. Usually only arrival time (A) and service time (B) distributions are considered.
Ofter they marked as M, D and G. M stands for exponential distribution. D - means deterministic
distribution. If the G is present, then it refers to Gaussian or normal distribution.

The queuing model presented in figure 3 is one of examples of an application that can be
scaled horizontally. The queue of customers can be considered as a loadbalancer, which redis-
tributes requests among M servers running inside VMs. To model n-tier application the model
has to be extended, so it becomes queuing network as it shown on figure 4.

Most of the works apply two queuing models: M/M/1 and G/G/1. The first model assumes
that arrivals λ and service rates µ follow Poisson distribution. In this case the response time
can be calculated as follows R = 1

µ−λ . The second model assumes that normal distribution
governs service rate and arrival rate. In this case arrival rate calculated in a following way:

λ ≥ [s + q2
a +q2

b
2(R−s) ]

−1. For multi-tier applications presented on figure 4 the end-to-end response
time is a sum of response times provided by each tier [158].

Researchers usually evaluate two types of interactive applications: single tier and multi-tier
applications. Ali-Eldin et al. [8] [7] applied G/G/n model to perform horizontal scaling. n - in
the model stands for number of servers of the application. They design adaptive proportional
controller which reacts to changes in the load dynamics and targets the application performance
SLO. The controller has predictive component that anticipates future workload. However, the
evaluation presented in the paper is based on simulation, so it is hard to judge whether the
controller will be able to provide same quality of control for the real application. In [144] authors
analyze actual traces of request arrivals to the application tier. They observe that arrival process
follows Poisson distribution. Based on the observation they build provisioning scheme to scale
application tier of multi-tier web application. Unfortunately both works target only single tier,
while many web applications are multi-tiered.

Zhang, Cherkasova, and Smirni [158] evaluated multi-tier web application. Each tier is con-
sidered as queue. Authors empirically found the correlation between request rate and CPU uti-
lization. They proposed a controller that uses regression to approximate CPU usage based on
request rate. In [62] authors developed auto-scaling system which performs horizontal scaling
of multi-tier web application. The system aims to provide desired response time with minimal
number of VMs. Each tier modeled as G/G/n queue. The approach requires offline service time
profiling of each tier. During runtime the proposed system classifies workload to decide which
tier to scale. For example, ’ordering’ requests put more load on data tier, while ’browsing’
requests utilize front-end tier.

Many web applications characterized by high dynamics of incoming workloads. Urgaonkar et
al. [136][135] combined predictive and reactive methods to provision multi-tier application with
respect to incoming workload. To perform capacity planning and respond to flash crowds or
deviations from expected long-term behavior it is better to use the combination of two methods.
Each server of a tier modeled as G/G/1 queue. The prediction mechanism uses histograms to
anticipate peak loads. However, peak load provisioning leads to high resource wastage. Gandhi
et al. [53] build auto-scaling system based on queuing-theoretic model that dynamically resizes
application tier of a web application to meet user specified performance goal. With help of
Kalman filters the system dynamically learns the model parameters and proactively scales the
application.

All presented above works exploit horizontal scaling to deal with workload changes. Vertical
scaling of front-end tier server was investigated by [38]. One of the issues of e-commerce
applications is scalability of database tier that was discussed in section 2.2. Authors propose
M/M/1 queuing model to simplify scaling of database tier. They show that single large VM

42



3.4 Auto-scaling techniques

delivers lower response time and higher throughput in comparison to multiple small VMs, even
though there is the same total amount of resources (CPU, RAM) in both systems.

It is common to apply queuing model to scale tiered web applications. However, there are
works that address scaling of batch applications. N. Bennani and A. Menasce [105] propose
multi-class queuing network to provision batch applications. Authors implemented horizontal
scaling of batch application servers based on predicted workload. However, the proposed sys-
tem does not consider workload dynamics such as change from CPU-intensive jobs to I/O-
intensive jobs. The parameters of the model are fixed at design time.

The queuing theory usually applied to the systems with stationary characteristics such as con-
stant arrival and service rates, user think time. However, many cloud applications facing work-
load fluctuations [82, 119], so the arrival rate can change dramatically. It means that auto-scaling
system will not be able properly provision the application when one of the parameters changes.
Therefore, the queuing model of the application requires periodical reevaluation, which usually
done offline.

3.4.5 TIME SERIES

Time series is common technique to analyze sequence of data points. One of the examples of
time series is amount of requests issued by clients of a web server per second. With respect
to dynamic resource allocation problem time series analysis is used to find repeating patterns
in workload or in resource usage traces. The result of the analysis is employed to predict future
workload or resource demand. In order to perform prediction one can use moving average(MA),
auto-regression(AR), auto-regressive moving average (ARMA), or machine learning methods
such linear regression or neural networks.

Moving average. The predicted value xt+1 is based on the average of the sum of previous q
values. In general formula for MA looks as follows: xt+1 = xt *a1+xt−1*a2+..+xt−q+1*aq. Values
a1, a2, .., aq are weighed factors. The sum of factors must be 1. In case of moving average all the
factors are equal to the value of 1/ q. For WMA(weighted moving average) the factors values
decay from the most recent measurement to the oldest data. Hence, newly arrived data is
consider as more important than the old one. Shen et al. [126] used WMA to calculate padding
value for virtual CPU cap. In [56] authors show that applying moving average based method to
predict CPU utilization leads to performance degradation of the scaled application, because the
actual workload is smoothed by the method. Therefore they propose to use pattern detection
techniques such FFT(Fast Fourier Transformation). In [111] moving average is applied to smooth
job progress measurement noise.

Auto-regression method has been applied in many works [56, 79, 28] that address resource
and workload prediction. Formula for AR method looks as follows: xt+1 = xt * a1 + xt−1 * a2 +
.. + xt−p+1 * ap + εt , where p is number of previous values and εt is a white noise. The quality of
prediction greatly depends on the coefficients a1, a2, .., ap. Therefore it is important to correctly
estimate the values. There are a couple of approaches to calculate the coefficients such as leas
squares, methods based on calculation of auto-correlation coefficients, Yule-Walker equations.
Jiang et al. [79] track client requests to the web application and predict request rate using AR
method. Then predicted value is fed into queuing model to estimate number of required VMs.
In [56] authors evaluate AR method resource prediction quality. It outperforms moving average
methods. However, the overhead of AR in terms of computation time is high. Similarly Chandra,
Gong, and Shenoy [28] apply first order AR to predict application workload.

Auto-regressive moving average (ARMA) it is a combination of AR and MA methods. AR
part is similar to previously described method. While MA is a sum of mean and errors terms:
xt = µ + εt−1 * a1 + εt−2 * a2 + .. + εt−q * aq. The method is well fit to stationary processes. The
processes characterized by constant mean and variance of the time series, which do not change
over the time. Hence, ARMA should not be applied to the time series that have some trend,

43



Auto-scaling system

such seasonal variations. For non-stationary processes one can use extensions of ARMA, such
as ARIMA and ARMAX. ARMA model was applied by Fang et al. [50] to predict CPU usage of
single tier web application. The predicted value is used to vertically scale VM. Authors scale
RAM and number of VCPU on the VM. For bursty load authors scale number of VMs. Horizontal
scaling is triggered based on fixed upper(80%) and lower(40%) thresholds of CPU utilization.

Some authors employ pattern matching and identification techniques to discover patterns in
resource usage [126, 56] or find similarities between Map-Reduce jobs [92]. Shen et al. [126]
use signal processing techniques such as FFT (Fast Fourier Transformation) to extract burst
patterns in CPU and memory utilization traces and calculate padding value for each resource.
However, for every application they evaluated only one resource was scaled. Nguyen et al. [107]
applied wavelet transform to decompose a signal (CPU usage traces) into a set of wavelets at
increasing scale. Then they synthesized the prediction of the original signal by adding up the
predictions of these decomposed signals. Proposed approach improves prediction quality in
comparison to AR and FFT based prediction techniques.

Neural networks (NN) belong to a family of statistical learning models that were inspired by
biological neural networks. It is common to use NN to approximate functions that depend on
a number of inputs. Neural network consists of group artificial neurons that connected to each
other. The neurons compose a set of layers: input, output and hidden. The number of neurons
in the input and the output layers depend on particular problem. For n-sized history window NN
has n-neurons in the input layer and one neuron in the output layer, which provides predicted
value. In [76] authors apply NN to perform 12 minutes ahead prediction of CPU usage. The size
of the interval is chosen with respect to VM launch time (usually 5-15 min). Some authors apply
NN in combination with other techniques. Rao et al. [118] use NN together with reinforcement
learning. Authors exploit NN to perform approximation of Q-value function. In [88] NN was used
to address VM sizing problem. In particular authors discover non-linear relationships between
the application resource capacity (CPU, memory, disk I/O) and its performance. Neural networks
are efficient modeling and approximation tool. However, to achieve high accuracy one needs to
determine the structure of NN (number of neurons in each layer, activation function). Moreover,
the size of training data also plays integral role in determining the accuracy of NN.

Time series analysis provides wide range of techniques to predict future resource usage or
incoming workload. It is common to apply time series for predictive resource allocation. How-
ever, the quality of prediction depends on the application workload, chosen prediction technique
and its parameters such as history window, prediction interval. Time series techniques can be
combined with other reactive techniques to perform resource and workload anticipation.

3.5 SUMMARY

Auto-scaling process consists of four phases: monitoring, analyzing, planning and execution. In
this chapter we focus on analysis and planing phases. The auto-scaling system uses the analysis
to answer the question when to scale and the planning phase to make decision about how many
resources to allocate. There are different techniques that can be used to implement the analysis
and the planning phases. Generally, they can be classified into five categories: threshold based
techniques, reinforcement learning, control theory, queuing theory and time series analysis.
Threshold based technique allows to perform only reactive scaling. Most of public providers
offer auto-scaling services based on this techniques. The approach became popular due to its
simplicity. However, to design a good scaling policy one needs to determine optimal scaling
rule parameters. In contrast to the previous technique time-series analysis offers wide range
of methods for prediction. The accuracy of predicted value depends on chosen method and
the parameters values of the method. Time-series analysis provides the tools for proactive
scaling that anticipate future resource demand. Hence, we can increase the effectiveness of
resource allocation. Queuing theory and control theory based techniques present two auto-

44



3.5 Summary

scaling methods that rely on modeling the system. Queuing theory usually models relationship
between requests arriving and leaving the system. A main limitation of queuing theory based
auto-scaling systems is that the model is fixed on design time. Therefore any changes either
in the application or in the workload require updating the model. Similarly, to queuing theory,
control theory depends on the application performance model. The theory offers a wide range
of controller design approaches that can be used to implement reactive and proactive auto-
scaling systems. Moreover, some controllers have self-adaptation capabilities. However, the
performance of the controller highly depends on the application model defined during design
time. The last technique is based on reinforcement learning approach. In contrast to queuing
and control theory it does not require a priory knowledge or model of the application. Instead,
it learns to make optimal scaling actions by taking trial-and-error approach. RL seems appealing
technique for auto-scaling systems. However, one needs to address state-space complexity
and long-learning time challenges.

45





VERTICAL SCALING FOR PRIORITIZED
VMS PROVISIONING*

*The contents of this chapter first appeared at CGC’12 [153].

47





4.1 Introduction

4.1 INTRODUCTION

Cloud became a popular computing platform, which offers on demand computing resources and
storage capacity. IaaS providers deliver fixed size virtual resources in the form of VMs. Each
VM has fixed amount RAM and CPU, which do not change over the VM lifetime. Cloud users
can select a VM from the set of offered VM types. For example, Amazon has small, medium
and large VM types. Resource demand of many applications is not static and varies over the
time. To achieve high application performance users are forced to acquire VMs based on the
application peak demand. However, peak load resource allocation leads to resource wastage.
As a result users pay for resources that have not been utilized.

To improve utilization users can acquire smaller VMs with the help of cloud auto-scaling con-
troller. It allocates a VM when the application resource demand is high and de-allocates the VM
when the demand is low. Cloud providers such as Amazon [9], RightScale [125], Scalr [123] offer
threshold based controllers. However, the user needs to define controller parameters, which
significantly impact scaling policy. One of them is scaling threshold, which is used by the con-
troller to decide when to trigger scaling action. For most of the users the process of defining
the threshold is not an easy task. It requires understanding of the application resource usage
and experience with threshold based controllers. Moreover, due coarse-grained resource pro-
visioning model (fixed size VM assignment) it is hard to closely follow the application resource
demand.

Recent works [41, 143, 124, 119] analyzed cloud and data-center workloads and found that
applications running in the cloud can be classified into two groups: latency sensitive interactive
applications and batch applications. The first group consist of web applications such as internet
stores, bookkeeping sites and etc. Low latency performance is an essential requirement for
these applications. None of the application users would like to interact with a slowly respond-
ing web site. For e-commerce applications high latency means potential revenue loss, because
users will eventually move to more responsive web sites. The second group consists of appli-
cations running as back-end tasks such as MapReduce jobs. Batch applications do not require
real time responsiveness and can tolerate performance slowdown.

Exiting cloud provisioning model supports only horizontal scaling (adding and removing VMs).
Alternatively, we propose to enable vertical scaling. In contrast to horizontal scaling, vertical
scaling allows to modify VM size on-the-fly. For example, adding more CPU power to a running
VM or changing RAM size. Vertical scaling is beneficial for both sides of the cloud market. From
one side user running web application can really follow the application resource demand curve
and pay for resources actually used. From another side cloud provider can run on the same
host batch application of other user, which would utilize remaining resources on the host. Such
collocation can potentially improve utilization of the cloud and lower energy costs.

To run different classes of applications on one host cloud provider needs to prioritize VMs. Pri-
oritization allows interactive application to rent capacity from batch application during resource
contention. Moreover, batch application is able to harvest residual resources from high priority
VM. Amazon spot instances is one of the examples of resource harvesting. Users bid for re-
sources left from high priority on-demand and reserved EC2 instances. The lifetime of the spot
instance is not guaranteed. It runs until Amazon has enough unused capacity. The instance can
be terminated any point of time. It means that application running inside spot instance should
be fault tolerant. However, fault tolerance does come for free. It always comes with recovery
overhead. One needs to recover application state from last checkpoint by reading data from
persistent storage.

In this work we develop resource allocation controller that performs vertical scaling of collo-
cated VMs. We build the controller on top of popular Xen hyper-visor. The controller uses VM
CPU usage traces to predict future resource demand and trigger scaling actions. We evaluate
our controller against real world workload traces. The evaluation results show that the controller

49



Vertical scaling for prioritized VMs provisioning

scaling horizon

cap

cpu plug horizontal scaling

time

data center

host

vm 

workload

scaling delay

3-6 min

200 ms<

1 s<

Figure 1: Overhead of different scaling types

provides low latency for interactive application running under highly fluctuated workload. The
controller also resolves resource contention conflicts among collocated VMs. It rents resources
from low priority VM (without termination), if resource demand of high priority VM exceeds its
capacity. As a result, low priority VM makes progress even during resource contention. If high
priority VM has residual resources then controller assigns them to the low priority VM.

4.2 DESIGN RATIONALE

Virtual resources scaling can be performed horizontally or vertically. Horizontal scaling means
adding a new server replicas or load balancers to distribute load. Vertical scaling means chang-
ing on the fly assigned resources to an already running instance. For example, we can modify
virtual CPU power of running VM. Most of cloud platforms exploit only horizontal scaling. For
cloud provider it is easier to schedule fixed size VMs rather than flexible size VMs. However, the
drawback of horizontal scaling is non-ignorable VM instance acquisition time and coarse-grained
resource allocation.

There are different numbers about the instance start-up lag [70, 21], but on average it takes
about 1 minute. It is unacceptable for interactive applications which have latency requirements
in seconds range. In contrast, vertical scaling allows to double VM power in less than a sec-
ond [47, 110], which makes it attractive for interactive applications.

Modern data centers host large number of applications. Resource demand from the appli-
cations varies over the time. Cloud provider use fixed size virtual resources (VMs) to place
users’ applications. User can acquire and release VMs based on application resource demand.
However, if the utilization goes below VM size, then the user has no option to release unused
resources. From side cloud provider simplifies VM scheduling problem, from another side such
approach leads to low datacenter utilization levels [119] and goes against economical motivation
of the user. Users always have to pay for unused resources if the VM is not fully loaded.

Efficient allocation of resources can be achieved with combination of vertical and horizontal
scaling. Figure 1 describes our vision of scaling types in virtualized data center. We define
following scaling levels: VM, host and data center. Each level has certain range of scaling
overhead.

VM level scaling As we mentioned earlier, applications running inside VM might not fully
utilize allocated resources all the time. One of examples is web applications, which utilization
depends on a frequency of accesses by the application clients. For example, to follow utilization

50



4.3 Controller architecture

curve we can tune virtual CPU (VCPU) power. Most of existing hyper-visors support VCPU
capping. Hyper-visor can set limit on the maximum amount physical CPU cycles, which a VM
can consume. In Xen credit scheduler [37] the cap is expressed in percentage of one physical
CPU: 100 is 1 physical CPU, 50 is half a CPU, 400 is 4 CPUs, etc. Gong, Gu, and Wilkes [56]
claim that changing the limit of a virtual machine CPU takes about 120 ± 0.55 ms. Hence,
capping reallocates CPU resources with small overhead. However, VM cannot get more than
its maximum allocated resources even if a host has spare cycles on other cores. If the VM has
2 cores, then the highest cap value is 200. To get more CPU power, we need to add virtual CPU
to the VM.

Host level scaling If the VM level scaling reaches its maximum, then CPU-hotplug allows to
extend the VM capacity further until it hits the host limit. Modern operating systems support
CPU hot plug, i.e. a CPU could be plugged or unplugged to and from an already running VM.
Recently, Joyent [80] cloud provider announced support of on-the-fly CPU plugging. The feature
improves performance of CPU intensive applications. According to the presented benchmarks,
CPU burstable VM (CPU is plugged-in to a running VM) essentially outperforms VM provided
by EC2. Plugging CPU means that a VM can get remaining CPU of the host. However, if the
remaining CPUs dedicated to another VM, then we need to unplug CPU from collocated VM.
To enable such action we need to prioritize VMs inside a host.

Data center level scaling Vertical scaling is bounded by the capacity of the host. Hence,
we need to trigger horizontal scaling, if resource conflict is impossible to solve inside the host.
Horizontal scaling has significant overhead. In best case it is about 1 minute. To decide when to
trigger horizontal scaling action one can use long term resource usage prediction. Data center
level scaling we leave for future research.

In this work we mainly focus on vertical scaling. We aim to provision interactive application
running in collocation with batch application VM. To efficiently perform vertical scaling of the
applications we need to answer two questions. The first question is when to perform VM
scaling. The second question is how to resolve resource conflicts on the host.

One of the well-known auto-scaling mechanisms is threshold based scaling. The threshold
defines upper and lower limits on target metrics. The scaling action triggers when the limit
is crossed. Cloud providers such as Amazon [9], RightScale [125], Scalr [123] offer threshold
based controllers. In many controllers users have to define the upper and the lower thresholds
as well as low level metrics such as CPU or RAM usage. The quality of resource allocation is
highly depends on the chosen threshold values. For most of the users the process of defining
the threshold is not an easy task. Hence, users need auto-scaling controller which would offload
burden of defining resource allocation policy parameters. To determine the parameters the user
has to tune the controller offline. Instead of offline tuning, we propose to track VM CPU usage
traces and perform one step ahead prediction. In the next section we present the controller
architecture.

The conflicts between collocated VMs usually resolved based on VM priority. There are two
common solutions. The first is migrating low priority VM to the less loaded host [126]. However,
such approach leads to network transfer and possible service slowdown or even non-zero down
time. The second approach is shutdown low priority VM. Since 2009 Amazon launched spot
instances. Users can bid for spot instances. However, the instance can be terminated at any
point of time. It means, that internally Amazon creates resource room for high priority VMs
by switching off spot instances. In this work we also consider, prioritized VMs. However, we
propose to place two different classes of application on the host and resolve conflicts by scaling
collocated VMs vertically. Such approach allows to keep running both VMs.

51



Vertical scaling for prioritized VMs provisioning

VM

Xen hypervisor

dom 0

prediction module

scaling module

scaling controller

app stats

cap, cpu_plug

HOST

error correction module

Figure 2: Elasticity controller

4.3 CONTROLLER ARCHITECTURE

To perform resource allocation to the application running inside VM we design scaling controller,
which exploits vertical scaling. The controller monitors resource usage of the application and
predicts future resource demand to make decisions about VM resource scaling. The architec-
ture of the controller presented in figure 2. The controller runs inside dom0 of Xen hyper-visor
and consists of three modules: prediction, error correction and scaling. We use xentop re-
source usage monitor to obtain VM CPU utilization data. Monitoring is implemented with 1
second sampling period. It allows the controller quickly detect changes in the VM resource de-
mand and perform reactive scaling. To perform virtual CPU scaling we use Xen credit-scheduler
API which adjusts VCPU cap value. CPU plug is implemented using Xens vcpu-set API. Unfor-
tunately, CPU hot unplug is not implemented in the current version (4.1) of Xen. In particular it
does not remove CPU from OS running inside VM. Therefore we wrote small daemon which
implements CPU ejection inside the VM.

The work-flow of the controller runs as follows. Every sampling interval CPU usage values
sent to the prediction module. The module uses CPU usage history data to perform forecasting
of CPU demand value for the next t +1 step. The error correction module adds an extra padding
to the predicted value. It is done to avoid under-provisioning when the predicted value is below
actual CPU demand. Finally, scaling module sets virtual CPU limit to the VM. If the predicted
resource usage value exceeds current VM CPU power, then CPU plug action is triggered. Virtual
core is unplugged when predicted value indicates that one of the CPUs will not be utilized.

Prediction module To predict CPU usage we apply one of time series analysis techniques
- auto-regression(AR) model. The model specifies that output variable linearly depends on its
previous values and stochastic term. Dinda and O’Hallaron [42] analyzed CPU usage prediction
quality of AR models. Authors found that AR model order of 16 is the best linear prediction
model for CPU usage traces. It can predict CPU usage from 1 to 30 seconds in the future.
Another important aspect for us is computational overhead. The evaluated AR model has low
CPU cost - less than 10 ms to analyze 2000 samples. In our controller we implement one step
ahead CPU usage prediction. Therefore we need less data to feed in to AR model. We use only
100 samples history window to perform prediction.

Error correction module The controller uses Xen credit-scheduler cap value to limit virtual
CPU power of VM. It means that CPU demand above the value is seen as 100% CPU utiliza-
tion of the VM. Such situation is called resource under-provisioning. During resource under-
provisioning the predictor gets only virtual CPU limit value. Actual CPU demand is not known.
Hence, wrong values are used for prediction. To deal with the situation we added to our AR
model prediction error correction and under-provisioning error correction mechanisms. The first

52



4.4 Evaluation

mechanism performs active error correction and the second one proactive error correction.
Prediction error correction The goal of error correction is actively correct prediction errors

by adding small extra value to the predicted CPU demand. Let e1, .., ek denote as a set of
prediction errors. We compute ei as xpred

i − xmes
i , where xpred

i is predicted value and xmes
i is

actual measured CPU usage value. We only consider under-estimations. Therefore if ek > 0,
then we set ek = 0. We use the set of underestimation errors e1, .., ek to calculate WMA
(weighted moving average). WMA gives higher weight to the most recent values. The error
correction module takes |W MA(e1, .., ek )| and adds it to the predicted resource usage value.

Under-provisioning error correction The prediction error correction is possible only if xmes
i be-

low assigned virtual CPU cap value. It means that real resource demand is unknown during
under-provisioning. We have only lower bound, which is assigned cap value. Hence, the pre-
dictor cannot properly estimate future resource demand. To deal with under-provisioning we
need to immediately raise CPU cap value. We increase the cap value by α > 1 until the under-
estimation exists. Fir example, if correct cap value is x and under-estimation occurs. Then cap
value for next step is X * a. It is true that such scheme can cause over-provisioning. However,
the controller prediction model will eventually catch up real resource demand and cap value will
be corrected.

The value of α > 1 it is a tradeoff between error correction speed and resource wastage.
To avoid high resource wastage cloud provider can limit range of possible α > 1 values. The
under-provisioning error correction triggers when relative resource utilization r (0 < r < 1)
crosses predefined threshold rthr The relative resource utilization r computed as follows:

r =
v
u

(1)

Where v is VM CPU usage and u is CPU allocation value, which is dynamically changed by the
controller. We use equation 2 to calculate α > 1 coefficient.

α = 1 +
r − rthr

1 − rthr
(2)

Choosing appropriate threshold allows to provide high performance and avoid wasting of
resources. The threshold value is very much dependent on the type of workload. For example,
highly interactive and bursty workloads require greater over-provisioning value in comparison
to less fluctuate workloads. Hence, for bursty workloads the threshold should be lower than
for workloads with small fluctuations. Currently our scaling controller uses static predefined
threshold rthr = 90% . Automated detection of the threshold is beyond the scope of this paper
and will be part of future research.

Scaling module communicates with Xen provided APIs to perform VM resource assignment.
The module takes calculated CPU cap value from the error correction module. The cap value
fixes the maximum amount of physical CPU a VM is able to consume. Moreover, the module
uses calculated cap value CPUcap to decide whether CPU plugging action is necessary. It
applies equation 3 to make appropriate decision about CPU plugging. VCPUScurr is a number
of virtual CPUs currently assigned to the VM. Maximum cap value for one virtual CPU is 100.

action =

{
plug, if CPUcap > VCPUScurr * 100

unplug, if CPUcap > (VCPUScurr − 1) * 100
(3)

4.4 EVALUATION

To evaluate our controller we build test bed which consists of one host machine running VMs
and web workload generator that composed of client emulator machines. The host machine has
quad-core Xeon 2.66GHz, 16 GB memory, 100 Mbps network connection with client machines.

53



Vertical scaling for prioritized VMs provisioning

All machines run Ubuntu 11.10. Xen version 4.1 is installed on the host machine. The hosting
machine has 3 guest VMs running CentOS 6.0 64 bit. One VM has 3 cores and runs DB server.
Another 2 VMs running web server (Apache HTTP 2.2) are batch application are managed by
our online scaling controller. Dom0 domain of Xen is pinned to one core and does not share it
with other VMs. The web server VM and batch VM share 2 CPUs.

We use RUBiS online auction benchmark [121] to build our web application. It consists of
web and database servers. The business logic of the auction is hosted on the web server.
Therefore CPU load of the web server is much higher than database server and has large CPU
usage fluctuations. The load of database is fairly low. Therefore in our evaluation we scale only
web server VM since it has significant CPU load variations. We over-provisioned database VM
to make sure that it does not cause resource bottlenecks.

The workload generator of the benchmark consists of 10 machines with 100Mbps network
connection that run RUBiS benchmark client emulators. We used web traces of WorldCup
98 [134] to evaluate scaling controller with real workload variation. We apply these traces to
RUBiS benchmark client emulator. To evaluate the controller we constructed 15 minutes long
trace.

Our evaluation primarily consists of two parts. In the first part we evaluate the controller with
configurations and analyze the quality of single VM scaling. In second part of the evaluation we
collocate the web application VM with the batch application VM. The controller resolves CPU
contention between the VMs.

4.4.1 SINGLE VM SCALING

In this part of the evaluation the controller scales web server VM VCPU. The goal is to compare
the controller against static resource allocation scheme and find best parameters for the con-
troller. In the experiments we use following configurations: 1) Mean alloc: static CPU allocation
which is calculated as mean CPU demand over the full workload trace. We assign 1 VCPU to
the VM because the mean value below 100%; 2) Peak alloc: static peak load CPU allocation
which is maximum CPU demand from the trace. Therefore we assigned 2 VCPUs to the VM;
3) OnlinePad we run the controller in fixed padding mode, where it adds constant extra value
to the prediction to correct under-estimation error. The extra value is percentage value of the
prediction; 4) OnlineCorr Controller implements CPU allocation with under-provisioning error
correction.

In figure 3 is presented CPU demand trace of RUBiS web server. CPU utilization fluctuates
over the time and has bursty load spikes. For example, there is a sudden load spike at 600
seconds. CPU utilization jumps from 100% to 125%. At that point of time request rate jumps
from 200 to 400 requests per second. The graph also shows, that workload requires more than
1 virtual CPU, because CPU usage some periods of time higher than 100%. It means that in
the cloud environment the user has to acquire a VM with 2 virtual cores. However, from the
graph it is clear that 2 cores are never fully utilized. Hence, under exiting cloud pay-as-you-go
model user would need to allocate VM with 2 CPUs to meet workload demand. And pay for
resources that not used most of the time.

We also analyzed the prediction quality of the AR model on the CPU usage trace. Figure
4 presents cumulative distribution of CPU utilization error prediction. The results show that
applied model has less than 10% of predicted values with under-estimation error above 3%.

In figure 5 we draw 95% response time of the server. For better representation we exclude
from the graph Mean alloc configuration, because it has 2000 ms response time. It is signifi-
cantly larger than response time provided by other configurations. Peak CPU allocation has the
lowest response time 14 ms. Hence, a user that assigned VM according mean CPU demand
would get two order of magnitude worse performance. Response time of web server under
dynamic allocation configurations at most has only 3 times difference in comparison to the peak

54



4.4 Evaluation

50

100

150

0 100 200 300 400 500 600 700 800

Time (minutes)

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Figure 3: CPU demand of the RUBiS web server

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0

CPU prediction error (%)

C
u
m

u
la

ti
ve

 d
it
ri

b
u
ti
o
n

Figure 4: AR model prediction error(ek )

14

24

36
33

25

0

10

20

30

9
5
th

 p
e
rc

e
n
ti
le

 r
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Peak alloc(2 cpu)

OnlineCorr

OnlinePad 10%

OnlinePad 20%

OnlinePad 30%

Figure 5: Web server response time

1.27

2.57

1 1.05 1.12 1.18

0

1

2

3

N
o
rm

a
liz

e
d
 t
o
ta

l 
C

P
U

 a
llo

c
a
ti
o
n

Mean alloc(1 cpu)

Peak alloc(2 cpu)

OnlineCorr

OnlinePad 10%

OnlinePad 20%

OnlinePad 30%

Figure 6: Total resource usage

allocation. Response time achieved by fixed padding schemes increases as the padding value
decreases. To obtain the lowest response time one needs manually tune the padding values.
The error correction configuration does not require adjustment of the padding value. It uses
misprediction value to dynamically compute desired padding value. Among dynamic resource
allocation schemes OnlineCorr has lowest 95% response time.

Another important aspect of resource scaling is minimizing the cost of acquired resources. In
figure 6 shown normalized total CPU allocation for each configuration. We calculated total CPU
allocation as a sum of CPU cap values over the run time. We assume pure pay-as-you-go model
with 1 second billing cycle instead of commonly used 1 hour cycle. The total CPU time give an
estimation of the costs paid by the user in pure as-you-go-model. The controller in OnlineCorr
mode saves 27% and 157% of CPU time in comparison to static VM configurations with 1 CPU
and 2 CPU respectively. The difference between OnlineCorr and fixed padding modes varies in
range from 5% to 18%. Among the evaluated configurations the controller in OnlineCorr mode
provides better results in terms of application performance and resource allocation costs. The
results of Mean alloc configuration show the importance of dynamic resource scaling. Cost and
performance of Mean alloc configuration is higher than cost and performance of the controller
under different configurations.

55



Vertical scaling for prioritized VMs provisioning

4.4.2 PRIORITIZED VMS SCALING

In the second part we perform VM collocation on the host. We assume that cloud provider
places interactive and batch VMs on the host. The goal of placement is to avoid expensive VM
migration if resource contention is detected. Instead, the provider takes resources from low
priority batch VM, when interactive application VM exceeds it capacity. In low priority VM we run
Apache Hadoop jobs. Hadoop is an open source implementation of MapReduce paradigm [40].
We deploy Hadoop in single node mode and execute Wordcount application. In the experiments
the VMs share 2 physical CPUs.

Xen scheduler can run in two modes: work-conserving (wc-mode) and non work-conserving
(nwc-mode). In wc-mode each VM is assigned a weight. In this mode share (weight) is guar-
anteed. Hence, CPU is idle, only if there is no active VM. For example, if two VMs run on the
host and one of them gets blocked, then second one can consume entire CPU. Hence, in Xen’s
wc-mode batch application should get residual CPU cycles of interactive application. In nwc-
mode shares are capped. It means that, in case of two VMs with equal shares, each of them
gets 50% CPU, even if second half of CPU is idle. Our controller uses nwc-mode and it decides
when to rent or give back resources of low priority VM. Generally we test four configurations:
1) Standalone VM : Web server VM runs alone, we do not run Hadoop job; 2) Xen scheduler
default : VMs have equal weights: ; 3) Xen wc-mode : CPU allocation is implemented by Xen
credit scheduler running in wc-mode, where we give highest weight to high priority VM and
lowest to the batch VM; 4) Controller : we run our controller in resource error correction mode,
because it showed best results among the evaluated controller modes.

Figure 7 shows response time variation of the web application server. Running collocated
VMs with equal weights Xen scheduler default leads to high fluctuations of response time.
Interactive application VM needs to wait until, batch VM finishes its time slice on CPUs. As a
result responses are delayed. Changing weight of interactive application to higher value reduces
fluctuations. However, it is still higher than response time provided by our controller. By default,
credit scheduler uses 30 ms time slice for CPU assignment. Hence, VCPU of each VM gets 30
ms before being preempted. It means that in worse case high priority VM VCPU has to wait
for 30 ms before being scheduled. In case of nwc-mode, low priority VM is not scheduled if
it runs out of credits. One can notice that during first 100 seconds the response time jitter of
interactive application managed by our controller is higher. During the first 100 seconds the
controller collects CPU traces for prediction and does not perform scaling. VMs have equal
weights. To provide better performance during first 100 seconds, we can use Xen wc-mode.
After 100 seconds the controller has response time between configurations running two VMs.

Figure 8 shows web server 95% response time of all evaluated configurations. To make fair
comparison we took values from 100 seconds to 500 seconds when applications in all config-
urations competing for CPU resources. The controller runs batch application for 100 seconds
(see figure 9). Our controller provides response time which is closest to the single VM mode.
The response time provided by Xen credit scheduler in weighted mode is higher by almost 20
ms.

On figure 9 presented the execution time of batch job. CPU allocation implemented by Xen
credit scheduler in non-weighted and weighted mode provides close execution time value. If
we apply our controller then Wordcount application runs 2 times longer, than when we use Xen
scheduler. However, if run time is not critical for low priority VM, then it is a small price paid to
achieve stable response time of high priority VM. The graph shows that, wc-mode is better for
computationally-intensive workloads, rather than for interactive applications. To provide higher
performance for latter ones in wc-mode we need to lower the length of credit scheduler’s time
slice. However, it can increase the overhead of context switching and reduce effectiveness of
CPU cache. Alternatively, the higher performance can be achieved in nwc-mode.

56



4.5 Discussion

10
0.5

10
1

10
1.5

10
2

10
2.5

10
3

0 100 200 300 400 500

Time (sec)

R
e
s
p
o
n
c
e
 t
im

e
(m

s
)

Standalone VM Controller Xen wc−mode Xen default

Figure 7: Web server response time

124

91

230

0

100

200

9
5
th

 p
e
rc

e
n
ti
le

 r
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Standalone VM

Controller

Xen wc−mode

Xen default

Figure 8: Web server response time from 100 to 500 seconds

511

1092

535

0

250

500

750

1000

1250

E
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Xen default

Xen wc−mode

Controller

Figure 9: Hadoop execution time

4.5 DISCUSSION

Amazon EC2 Spot Instances provides access to virtual resources for a lower price. The provider
some periods of time has spare resources, which are not subscribed by normal on-demand and
reserved instances. To utilize these resources it offers them in the form of spot instance. Spot
Instances have lower price in comparison to on-demand instances, because execution time
of spot instance is not guaranteed. The provider needs to shut them down to leave room for
on-demand and reserved instances. However, such approach forces spot instance users to run
only fault tolerant applications, otherwise the application state will be lost.

We think that vertical scaling can relax fault tolerance requirements to applications running
inside low priority VMs. Cloud provider can scale down low priority VM and scale up high
priority VM. There is no need to shutdown low priority VM. We assume that users choose VM
priority upfront during deployment process. However, the question is how to account allocated
resources. The resources of a VM in this model can change at any point of time. Therefore
to account resources allocated to the VM during run time, provider needs to shift billing cycle
from hour granularity to a second granularity. Then the cost of resources assigned to a flexible

57



Vertical scaling for prioritized VMs provisioning

size VM can be calculated as follows:

Ptotal = C *
T∑
i=

ri (4)

Where C is the cost of one hour of full CPU time of the VM and ri is CPU capacity assigned
to the VM during i-th second of the VM execution time.

Applying presented cost model creates following service. Suppose a high priority VM which
costs 0.3$ per hour and a low priority VM with price of 0.05$ per hour. VMs run for 2 hours and
share 2 CPU of the host. The high priority VM during the period uses 66% of VMs aggregated
CPU resources. Hence, the low priority VM gets the rest 34%. The total cost for the high priority
VM is 2hours*0.66*0.3$ = 0.396$ and for the low priority VM is 2hours*0.34*0.05$ = 0.034$.
Hence, in total cloud provider gets 0.396 + 0.034 = 0.43$

Let’s take a look on the current pricing model. Standard on-demand VM with one CPU costs
0.1$ per hour. Customer, who wants to run web application and avoid under provisioning,
selects VM with 2 CPUs. Hence, total price of running the VM for 2 hours is 0.1$ * 2CPUs *
2hours = 0.4$. In comparison to our model user overpays 0.4 − 0.396 = 0.004$, even if the
cost of on-demand instance 3 times lower than the cost of flexible size VM. Assume that cloud
provider knows that during first hour on-demand VM utilizes only 1 CPU. Hence, the provider
allows to launch spot instance. Suppose that it costs 0.05$ per hour and it was terminated after
one hour. Then the user of the instance is going to pay 0.05$ * 1CPUs * 1hour = 0.05$. The
cost is 0.05 − 0.04 = 0.01 higher, than the cost of flexible low priority VM in our model. Hence,
user of fixed size VM model pays more.

We present here sample numbers. But in general the example shows the advantage of
applying vertical scaling to prioritized VMs provisioning. Applying the proposed model can be
beneficial for both participants of cloud market. Provider gets an opportunity to acquire more
users and better utilize datacenter capacity. From another side users pay for resources that
actually being used by the VM.

4.6 RELATED WORK

Most of cloud providers offer semi-automatic scaling systems that scale applications based on
resource demand. However, one needs to find optimal parameters for scaling policy. Many
research works addressed the problem of dynamic resource allocation. The approaches taken
in the works can be classified based on the technique applied in resource allocation system. The
most common techniques are feedback controllers [83, 108], regression analysis [44, 126] and
queuing theory based analytical models [137, 158]. Our work is complimentary to the previous
research. We present dynamic resource scaling controller which driven by AR based prediction
model. In comparison to the related work, the controller can handle prediction error to provide
high application performance and resolve resource conflicts among collocated VMs.

The problem of conflict resolving addressed by Shen et al. [126] and Lin and Dinda [97] .
In [126] authors present dynamic resource provisioning system, which performs vertical scaling
of collocated VMs. The system performs resource demand prediction of collocated interactive
VMs. As soon as predicted aggregated demand of the VMs exceeds host capacity the system
triggers resource conflict resolving mechanism. To resolve the conflict authors set priority to
each VM and migrate low priority VM to leave room for high priority VM. Such approach keeps
high priority application performance on desired level. But, migration is not an instant process.
It means that low priority VM may experience non-zero down time and performance slowdown.
In our work we propose to collocate VMs based on application type. Batch application is less
sensitive to performance slowdown. Therefore we can avoid expensive VM migration and in-
stead rent resources from batch application to interactive application.

58



4.7 Conclusion

The work closest to ours is done by Lin and Dinda [97]. Authors developed Linux based
scheduler to run mix of batch and interactive applications on the host. The scheduler executes
each VM VCPU for certain time slice within scheduling period. To prioritize VMs authors give
smaller time slice to the batch application and bigger time slice to the interactive application. It
means that, the batch VM cannot get spare CPU cycles from interactive VM. Basically authors
statically fixed VCPU cap value for each VM to insure performance isolation. In contrast, our
controller can dynamically change VCPU cap value to lease utilized CPU resources to low priority
VM.

4.7 CONCLUSION

Many application have varying resource demand, therefore the model of fixed size resource
allocation, which is supported my most of cloud providers leads to under-utilization. As a result
cloud users pay for resources that have not been used. From another side when the number
of subscribed VMs reaches datacenter limit cloud provider cannot acquire more users, even if
actual datacenter utilization is lower. To improve utilization of the cloud we propose to enable
vertical resource scaling and collocate interactive and batch applications which have orthogonal
temporal characteristics.

In this chapter we presented resource scaling controller for web applications. The controller
dynamically scales VM VCPU power based on the application demand. We apply AR-model to
prediction the application CPU usage. We believe that vertical resource scaling reflects interests
of cloud users. Since, the application gets resource which it actually uses. The evaluation shows
that controller outperforms mean based resource allocation. Moreover provides 2.5 times lower
cost and only 10 ms longer 95% response time in comparison to peak based allocation.

The controller also supports collocated VM scaling. At first it tries to satisfy resource demand
of interactive application and remaining resources it assigns to low priority VM. The evaluation
results show that in comparison to Xen based prioritization mechanism the controller provides
higher performance for interactive application.

59





AUTONOMIC VIRTUAL MACHINE
SCALING*

*The contents of this chapter first appeared at CLOUD’13 [154].

61





5.1 Introduction

5.1 INTRODUCTION

Recent observations by Agmon Ben-Yehuda et al. [4] of IaaS trends state, that the model of fixed
bundles, so called ”instance types” will eventually change to flexible bundles. The change is
mostly economically driven. The reason is that cloud users do not want to rent 6 CPU cores
if it is required only 5 of them. Moreover, model of fixed bundles forces cloud users to pro-
vision applications with time varying resource demand for peak load. This strategy leads to
high resource under-utilization, because average resource demand far below assigned capac-
ity. Hence, users have to pay for resources which are not actually used. Second observation
is a size of cloud billing cycles. Most of cloud providers have 1 hour billing period. It means
that user has to pay for the whole hour, even if VM was running only for 10 minutes. Existing
model does not reflect users’ economical expectation of pay-as-you-go model. Authors con-
clude that IaaS providers will eventually shrink billing periods and allow users to build VM they
want to run. The presented trends already exist in the cloud market. Cloud providers such as
CloudSigma [33], ProfitBricks [113] and GridSpot [59] deliver virtual resources in the form of
flexible bundles.

Many cloud application have varying resource demand. The model of flexible bundles facili-
tates more efficient resource provisioning for such applications. Users can dynamically resize
VMs based on current resource demand. However, to perform efficient resource provision-
ing(reduce under-utilization and meet application performance goals) one has to design good
scaling policy. There is a need for dynamic VM configuration technique.

Most of cloud providers offer auto-scaling services at the IaaS level. The services exploit
threshold based scaling approach. The approach tends to focus on scaling at the machine or
VM level. But it does not facilitate the definition of higher business function, such as user spec-
ified QoS. Using threshold based scaling it is hard to convert a VM capacity to the application
performance.

Alternatively researchers proposed set of techniques for dynamic VM reconfigurations. Padala
et al. [108] applied control theory based technique. Authors use proportional controller to per-
form CPU allocation of VM running web application. However, it is difficult to apply proposed
technique to control multiple VM resources (such CPU and RAM). One has to identify sys-
tem model that captures relationship between multiple control inputs and system outputs. To
overcome the problem Rao et al. [118] proposed to exploit reinforcement learning. The key
characteristic of RL is ability to dynamically learn environment and make decisions under uncer-
tainty based on the environmental observations. The behavior of applications running in a cloud
can be affected due to modifications or change in the workload request model. RL based model
can detect the changes and catch up desired application resource demand. However, due to
large state-space RL requires substantial time to learn and adapt to environmental changes.
To deal with problem, RL based approaches either reduce number of observable environment
states [118] or apply offline learning [116]. But state-space reduction leads to coarse granular
resource allocation.

In this chapter we present VScaler controller. The core of VScaler is reinforcement learning.
Our controller performs fine-granular allocation of individual VM resources to meet user pro-
vided performance goal. We overcome one of problems of RL approach by applying parallel
learning with assumption. It allows to speed up the learning process. Moreover, in comparison
to other RL based approaches VScaler does not require offline learning. It dynamically obtains
scaling policy.

5.2 MOTIVATION

Most of cloud providers offer virtual resources as fixed size VM and use 1 hour billing period
to charge users. However, not every application uses maximum VM capacity during execution

63



Autonomic Virtual Machine Scaling

time and runs for a fixed amount hours. Usually average utilization of user VM is below its ca-
pacity limit. Moreover, user can launch a VM for 20 minutes to keep up with increased workload
and then shutdown the VM. For many users existing pricing model is far from ideal, because it
leads to resource wastage. However, the situation is changing. There are IaaS providers such
as CloudSigma [33] that offers infrastructure with 5 minute billing cycle. Moreover, user is free
to construct own VM type by selecting required amount of RAM, CPU or I/O. Flexible bundles
model enables cost-efficient VM reconfiguration. For example a user wants to run interactive
application inside flexible VM. For the first 10 minutes VM needs 1 GB RAM. After 10 minutes
workload increases and the application requires 2 GB of RAM to provide same performance
on changed workload. Therefore user adds 1 GB RAM. In the fixed bundles model, to provide
same performance user would need to assign upfront VM with 2 GB of RAM. And then pay for
1 GB of RAM which was not utilized during the first 10 minutes.

The example presented above shows that resource usage of the application is not static. It
dynamically changes. Many web applications running in a cloud environment such as social
networks, online-shops, auctions have fluctuating workload. They belong to the class of inter-
active applications. The demand of the applications is driven by requests rate of client accesses
and characteristics of requests. For example, workload may change from being CPU intensive
to memory intensive. It means that scaling policy have to treat individual VM resources. To
efficiently provision interactive applications we have to properly design scaling policy, which
captures relationship between workload, individual VM resources (such CPU and RAM) and
application performance.

Resource provisioning techniques can be classified into two main categories: threshold based
and model based. In threshold based technique each application capacity changes based on
user defined lower and upper bounds. If resource demand of the application crosses the lower
bound then scaling in action is triggered. The scaling out action triggers if the resource uti-
lization goes above the upper bound. The technique is simple and easy to understand. But it
fails for control application performance under frequently changing workload. Performance vi-
olations occur when the application resource demand crosses the upper bound and resources
are wasted if the demand below lower limit. Moreover, there is no way to keep application
performance within user-specified constrains.

Model based techniques adapt to workload variation and perform fine granular application
performance control. In chapter 3 we present auto-scaling system analysis and an overview of
applied model based techniques. Generally the techniques use control theory, queuing theory,
time series analysis and machine learning. The first two techniques require domain and appli-
cation knowledge to build optimal model. Moreover, the model has to be designed offline. It
means that any application and workload changes that were not evaluated in the design phase
would require rebuilding the model. To dynamically adapt to the changes we can apply two
last techniques. However, the time series approach can by applied for workload or resource
usage prediction. It does not provide mechanisms to build complex model that can map work-
load, resource demand and application performance. Alternatively, to design model online we
can use machine learning techniques. One of them is reinforcement learning. In contrast to
other techniques RL does not require a priory knowledge. It is able to perform online model
learning and adapt to environmental changes. RL has been successfully applied for dynamic
resource allocation [118, 116, 20, 46]. Most of the works apply Q-learning algorithm to explore
state-action space. Q-learning is one of commonly used RL algorithms. However, RL has well
know problem: state-action space explosion that affects learning time. Therefore number of
states and actions is limited. Usually action set consists of three variables: add, do nothing,
remove and fixed amount of resources x is assigned at each step of Q-algorithm. For example,
VM memory changes by the value of 256 MB [116]. The number of states is defined by the
number resource assignment values x that can fit in maximum VM capacity.

Our motivation is to build autonomic VM reconfiguration controller that takes advantage of RL

64



5.3 Parallel learning with assumption

and can handle fine-granular resource scaling. The controller should perform resource allocation
decision based on application resource demand, input workload and user-defined performance
goal.

5.3 PARALLEL LEARNING WITH ASSUMPTION

To learn an environment agent in RL takes actions and observes new states. For every action
it obtains reward. Therefore the time is takes to activate every action and visit all states of the
environment depends on the size of state-action space. Consider VM reconfiguration problem.
If we have a VM with n configurable parameters (CPU and RAM), assuming k different settings
for each parameter and m actions available from each state. Then minimum number of inter-
actions required to observe rewards for all state-action pairs will be nk * m. Hence, if we want
to control two VM resources (CPU and RAM) and each resource has 10 different setting and
each state available 3 actions (add, nop, remove). Then total number of iterations required to
activate each state-action pair will be 210 * 3 = 3072.

Statically fixing action is simple. However, it may be not efficient to scale. Consider, following
motivating example. VM is assigned CPU cap value 20. Suddenly VM workload increases and
it needs more resources. We add cap value of 10. It means that capacity of the VM increases
by 50%. But going from cap value 80 to 90 increases capacity by 12.5%. The effect of adding
fixed-size resource is not constant. Therefore, using static action values may not be appropriate.
Dutta et al. [47] analyzed workloads of cloud based datacenter and found that most of workloads
require scaling actions below factor of 2. It means that we need to allow to change VM capacity
from any state at maximum by 100%. Assume that minimal action step is 10%. Then we have
10 actions for each state and in total number iterations will be 210 * 10 = 10240. In comparison
to fixed-size resource allocation the number of iterations increased more than 3 times. We
need to reduce learning time.

One of the approaches to speed up agent’s learning process of approximated model is to
learn in parallel [86]. The idea is to run multiple RL agents. Each agent learns by working on
individual task and periodically shares own observations with other agents. It means that agent
does not need to visit every state-action pair in a given environment. Instead the agent can
take the Q-value of state-action pairs that it did not visit from other agents. The approach al-
lows greatly reduce environment approximation time. Parallel learning in RL has been already
applied to cloud resource management. In previous work [20] this technique is used to imple-
ment autonomic horizontal scaling. The authors defined the environment as a number of VMs
divided in to groups. Each group is a observable environment for one agent. Agents periodically
share their observations with each other. The work results show that this technique allows sig-
nificantly speed up the learning process. But approach presented in the paper cannot be simply
transferred to vertical scaling. Because it requires run more than one VM to parallelize learning
process. Consequently, it increases the cost.

Our solution is based on the idea that there is more to learn from a single transition. Every
time when action is taken the agent observes amount of resources consumed by the application
and obtains reward for the taken action. However, if there are states where VM capacity is
higher than observed resource demand, then we can update transitions that connect initial
state with these states.

Consider the following simple example presented on figure 1. Each state represents a as-
signed VM capacity. First value is memory size in MB and second is virtual CPU capacity
expressed in Xen Credit Scheduler [37] cap value. In state 1 the VM has 768 MB of memory
and cap value is 40. The agent takes action 1 and the VM capacity changes by cap value of 15.
In state 2 the VM has 768 MB RAM and CPU cap value equal 15. After a fixed time interval the
agent observes application performance and resources utilization over this period. The perfor-
mance of the application is within user-specified range. Memory utilization is 83%, virtual CPU

65



Autonomic Virtual Machine Scaling

State 1

[768:40]

State 2

[768:55]

State 3

[768:45]

State 4

[768:50]

Action1:

(keep, add 15)

Action3:

(keep, add 10)

Action2:

(keep, add 5)

State 5

[768:35]

Action4:

(keep, remove 5)

Figure 1: Markov Decision Process with 5 states and 4 actions

utilization is 78%. We could assume, that ideal VM capacity requires 768 * 0.78 = 638MB of
memory and CPU cap value 55 * 0.78 = 43. Therefore we can update all transitions connecting
state 1 with states that have RAM and CPU values higher than 638 and 43 respectively. In
the presented example we update transitions from state1 to state3 and from state1 to state4.
The transition from state1 to state5 is not updated, because VM virtual CPU capacity in state5
below 43. Following approach allows to speed up the learning process, because after each
agent’s action more than one state-action pair is updated.

5.4 VSCALER DESIGN

In this section we provide an overview of VScaler’s architecture and work flow. We describe
MDP state definition for VM reconfiguration problem, discuss details of each phase of RL and
provide description of the algorithm used by VScaler.

We implemented VScaler to perform resource assignment to the interactive application run-
ning inside VM. VScaler does not have a priory knowledge of the application resource usage
behavior. Vscaler adapts scaling policy online. Figure 2 shows overall architecture of VScaler
controller and its interactions with external components. VScaler uses a proxy monitoring ca-
pabilities to get incoming request rate and an application performance feedback. The host
daemon collects the VM resource usage statistics and implements host’s resources allocation
to the VM. The predictor inside VScaler tracks incoming request rate and predicts workload for
the next reconfiguration interval. In order to implement automatic VM capacity management
VScaler makes decisions based on the VM resource consumption, the application performance
feedback and predicted workload.

The management process runs in a following way. VScaler submits resource allocation
scheme to the host daemon. The host daemon assigns resources to the VM. After the fixed
interval of time VScaler requests resource usage statistics from the host daemon and the appli-
cation performance feedback from the proxy. The data is used to calculate reward and update
capacity management policy of RL model. Then VScaler takes workload prediction and feeds
RL model to calculate the best resource allocation scheme for the next reconfiguration interval.

State description
To apply RL to VM reconfiguration problem we have to create state-action space definition.

A model of the environment and interactions with the environment in RL described as Markov
Decision Process (MDP). We defined MDP for VM reconfiguration problem as S = 〈m, c, w, g〉,
where:

• m ∈ N is memory in MB allocated to the VM;

• c ∈ N is CPU allocated to the VM, expressed in a Xen Credit Scheduler [37] cap value;

66



5.4 VScaler design

VScaler

VM
host daemon

HOST(dom0)

Proxy

incoming requests

workload and 

performance 

stats

requestsstats

stats

control 

commands

allocation 

commands

Figure 2: Architecture of VScaler

• w ∈ N is a total number of user requests observed per time period and which was served
within SLA. This value changes between time steps.

• g ∈ N is guess about total number of user requests which can be served in this state
without violatinf user-defined SLA. The value is updated using update alternatives algo-
rithm.

The agent’s action space consists of all allowed actions within current state. The agent can
choose to add, remove or keep the CPU and memory allocation. For each resource we assign
an action set, which is A = {a ∈ Z, Amin < a < Amax}. Actions are discretized by setting step ast

on each resource. In our experiments memory allocation is bounded between Amin = 512MB
and Amax = 1536MB, for CPU we have Amin = 10 and Amax = 50.

VScaler uses workload predictor which takes request history as input and applies AR model
to predict expected number of requests for the next reconfiguration interval. We do not need
to define all possible request rate numbers for each state as it is implemented in [20, 46].
Therefore state-action space size in VScaler depends only on allocation step size for CPU and
memory. The last two variables (w and g) do not affect state space size. This design solution
reduces agent’s environment size and Q-learning lookup table size.

Reward calculation
We use application performance feedback and VM resource usage statistics to calculate re-

ward. Reward function is defined as ratio between perfFeedback and resUtil. It guides the
agent towards the state that has enough resource capacity to keep the application performance
within user-defined range and gives higher utilization of the VM capacity:

reward =
perfFeedback

resUtil
(1)

perfFeedback =

{
1, if respT ime < SLA

e−p| respT ime−SLA
SLA | − 1, otherwise

(2)

resUtil =
∑n

i=1(1 − Ui )
n

(3)

resUtil is a resource usage efficiency, where Ui is a utilization status of each resource. We
consider two resources: CPU and memory. With increase of resource usage resUtil value
decreases, it allows to encourage the agent to take actions which give higher resource utiliza-
tion. We also include SLA penalty in reward calculation. The penalty prevents situations where
the application performance degrades, because the agent moves to the states with lowest
over-provisioning. To achieve this we set the reward as negative value when SLA is violated.

67



Autonomic Virtual Machine Scaling

1: repeat
2: st ← getCurrentState()
3: at ← chooseNextAction(st , Q)
4: Ut+1 ← getResourceUsage()
5: respT imet+1 ← getAppPerformance()
6: wt+1 ← getObservedRequests()
7: rt+1 ← calculateReward(Ut+1, respT imet+1)
8: updateModel(st , at , rt+1, wt+1 Q)
9: if respT imet+1 < SLA then

10: updateAlternatives(st , at , wt+1, Q, Ut+1)
11: end if
12: updateRequests(st+1, wt+1)
13: t ← t + 1
14: until Agent is terminated

Algorithm 3: Agent learning algorithm

Initializing Q learning
Q-learning is a model-free RL algorithm, where agent learns an environment online. In order

to apply control operations during the learning process one has to follow some policy from
which decision will be chosen and resource management operations will be taken on controlled
system. Defining such policy is complicated, because it requires some knowledge about the
application resource usage behavior. In cloud computing context such information may not be
available, when an application is deployed for the first time. Therefore only standard policy
can be applied. According to [47] we assume that for the next reconfiguration interval the
application resource demand can double. Hence, during initialization phase VScaler assigns
VM capacity as double amount of currently utilized resources. It allows to avoid application
performance degradation during initialization phase. Such approach leads to over-provisioning,
but from other side we can update alternative state-action pairs using parallel learning with
assumption. VScaler starts to exploit obtained policy, as soon as predictor is ready to forecast
workload. In VScaler we use 100 samples of recent observed user requests number to predict
the workload for the next reconfiguration interval.

Model learning and exploitation
The agent learning algorithm presented in figure 3. Each reconfiguration interval agent ob-

tains current state then chooses next action. The next action is selected by algorithm presented
on figure 4. During initialization phase the agent selects action that increases VM capacity two
times in comparison observed utilization from previous reconfiguration interval. If initial policy
already obtained, then the agent uses predicted workload value to select next action. To se-
lect the action the algorithm takes the state that has guessed requests number g higher than
predicted value. Then using list of selected states function getBestAction finds transition that
have highest Q-value and returns corresponding action. Then the agent takes selected action
and observes reward that calculated based on monitored resource usage and application perfor-
mance. The agent uses reward to update the model. Next achieved performance is analyzed. If
SLA was not violated, then the algorithm updates alternative transitions and guessed requests
number of alternative states. Finally, at the end of each iteration observed requests number w
for the state st+1 is overwritten by wt+1, if w < wt+1. However, If SLA was violated then g is
overwritten by w , because guess was wrong and amount of resources allocated in state st+1

are not enough to serve observer requests number without violating SLA.
Environment exploration
It is known that RL agents cooperate with managed environment by applying two types of

68



5.5 Evaluation

1: if initPhase then
2: action = DoubleResources()
3: else
4: predValue← predictWorkload()
5: for each state snext connected to st do
6: g ←getRequests(snext )
7: if g > predValue then
8: selectedStates.append(snext )
9: end if

10: end for
11: action = getBestAction(st , selectedStates)
12: end if
13: return action

Algorithm 4: Choose next action

interaction: exploration and exploitation. Exploitation is to follow optimal policy, while explo-
ration is the selection random actions to capture system dynamics and refine the existing policy.
Q-learning algorithm uses ε - greedy policy to select an action, where agent makes random ac-
tion selection with a probability ε. Applying RL in cloud computing context creates additional
requirement to the exploration process. One has to ensure that exploration action does not
hurt application performance. To prevent performance degradation during exploration phase
VScaler selects actions that allocate enough resources to serve predicted workload and then
among these actions chooses the one which was executed less frequently. In all our experi-
ments VScaler implements exploration with a probability ε = 0.05

5.5 EVALUATION

In the evaluation we want to answer following questions. First, what is the impact of parallel
learning with assumption on the learning speed? Second, how does VScaler perform resource
assignment under dynamic workload? To answer these questions we divided the evaluation in
two parts. Each part addresses corresponding question.

For the evaluation we build a test bed. The testbed for our experiments is hosted on quad-
core Xeon 2.66GHz with 16 GB memory, 100 Mbps network and Ubuntu 12.04 running Xen
4.1. We use RUBiS [121] benchmark to evaluate VScaler. RUBiS is widely adopted interactive
application benchmark. In the experiments PHP version of the benchmark is applied. It consists
of web front-end and database back-end. We run Apache 2.2 as a web server and MySQL as
a database server. The web-server and the database run inside VMs with 64-bit CentOS 6.3.
Throughout all experiments only web server is scaled. The database VM is over-provisioned.
We present multi-tier application provisioning in chapter 6.

5.5.1 CONVERGENCE SPEEDUP

To show learning speed-up provided by VScaler we evaluated two Q-learning algorithms. The
first algorithm uses parallel learning with assumption. The second one is a standard Q-learning
approach, where the agent after each observation updates only one state-action pair. To make
clear comparison we used the same state-action formalism in parallel learning with assumption
as for standard Q-learning approach. Therefore we exclude prediction mechanism. Instead
each state was assigned fixed workload value. We also did not use special initialization policy.

69



Autonomic Virtual Machine Scaling

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10

Time (min)

T
ra

n
s
it
io

n
s
 l
e

a
rn

e
d

VScaler RL Standard RL

Figure 3: Transitions learned

11

4

0

5

10

9
5
th

 p
e
rc

e
n
ti
le

 r
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

VScaler RL

Standard RL

Figure 4: Application 95% re-
sponse time

In each approach the agent learns the environment using a standard policy. It means that with
a probability of ε = 0.05 the agent takes a random action. In the exploitation phase the agent
takes an action that gives a higher utility. In the experiment we run a constant workload. 1000
clients were emulated using the RUBiS benchmark. Reconfiguration is performed every 10
seconds.

In figure3 we show the number of transitions learned. During the first 3 minutes VScaler
RL learns 300 transitions, while Standard RL only 2 * 60/ 10 = 12 transitions. VScaler RL has
a higher learning rate, but the most important part is the quality of resource allocation policy
obtained by each approach. In figure 4 presented response time delivered by the web server
under the control of the evaluated learning models. We ran experiment for 40 minutes. For the
experiment we set desired response time to be below 20 ms. Both learning approaches keep
95% of the response time below 20 ms.

The standard RL model has only information about actually visited transitions, while VScaler
RL in addition to visited transitions knows about the impact of alternative transitions. The
additional information allows VScaler RL to quickly converge to the state with minimal amount
of required resources. In figure 5 we present the cost of resources in each state. We assume
that in a flexible bundles resource model that allows to dynamically modify individual resource
assigned to the VM. For the experiment we took prices from CloudSigma. The figure shows
that VScaler RL needs 3 minutes to find the optimal VM size.

VScaler RL quickly adapts to the workload, while Standard RL needs more time to learn the
environment. One has to notice that both approaches do not violate the SLA, but VScaler RL
in comparison to Standard RL achieves the performance goal for the lower cost.

5.5.2 REAL WORLD SCENARIO

To evaluate VScaler performance in real cloud environment with dynamic resource demands
variations we instrumented RUBiS client emulator to modulate request rate of RUBiS bench-
mark. The RUBiS client emulator reads clients request rate from trace file. The trace consists

70



5.5 Evaluation

0.04

0.06

0.08

0.10

0 5 10 15 20 25 30 35 40
Time (min)

C
o
s
t 
($

)

VScaler RL Standard RL

Figure 5: Average costs: Standard RL vs VScaler RL. The greater size of VM in terms of CPU and memory, the greater the cost

of per-minute workload intensity observed during WorldCup 98 [134]. We used 6 hour trace
starting at 1998-05-10:03.00.

The goal of this experiment is to measure performance and resource utilization between
peak and dynamic resource allocation schemes. Below we present description for each of the
schemes. The peak one represents fixed bundle model. We configured VM template for the
peak allocation scheme with 1536 MB of memory and 1 virtual CPU with cap value of 50. The
template represents Amazon EC2 m1.small instance. To evaluate dynamic schemes we run
VScaler in 4 different configurations. In the first two configurations we use fixed step allocation.
From each state of the model only 3 action is allowed (add, nop and remove). Hence, CPU and
RAM of the VM can be modified only by fixed value. For fixed step allocation we defined
small and big step. The other two configurations modify resource with respect to current state
capacity. We consider dynamic allocation scheme, because it is not trivial task to find right step
size for resource allocation, when an application resource demand changes dynamically. Too
big step size leads to over-provisioning, while small step causes resource saturation and leads
to SLA violation. In our experiment we set SLA to 20 ms.

• peak allocation

• dynamic allocation

– fixed step allocation

* small step (CPU step 2, memory step 64 MB)

* big step (CPU step 5, memory step 128 MB)

– flexible step allocation

* scale up 100%, scale down 100%

* scale up 100%, scale down 20%

Figures 6 and 7 present the total amount CPU and RAM allocated to web server VM for
the workload trace. Peak allocation has highest CPU and memory allocation. It demonstrates
how many resources are wasted if web application runs in fixed instance type. The dynamic
scheme configurations have significantly lower CPU and memory allocation. Configurations
with fixed step allocate slightly less resources than configurations with flexible step. The reason

71



Autonomic Virtual Machine Scaling

1

0.28 0.29 0.320.29

0.00

0.25

0.50

0.75

1.00

N
o

rm
a

liz
e

d
 C

P
U

 u
s
a

g
e

EC2 small instance

VScaler dyn (100, 20)

VScaler big step

VScaler small step

VScaler dyn (100, 100)

Figure 6: Amount of allocated CPU power

1

0.36 0.39 0.42
0.38

0.00

0.25

0.50

0.75

1.00

N
o

rm
a

liz
e

d
 R

A
M

 u
s
a

g
e

EC2 small instance

VScaler dyn (100, 20)

VScaler big step

VScaler small step

VScaler dyn (100, 100)

Figure 7: Amount of allocated memory

is that flexible step allocation has more options in scaling. Flexible step configuration with
smaller scaling down factor has largest amount of allocated resources among dynamic scheme
configuration. It is more conservative on releasing resources.

Figure 8 shows 95% response time. Two configurations violate SLA requirements. As we
can see fixed step scaling with smaller CPU allocation size violated SLA, while scheme with
bigger CPU allocation step satisfied SLA. The result shows that it is difficult to find ’right’ step
size when there is no knowledge about application running inside the VM. Another interesting
observation is that one of dynamic step allocation schemes also violates SLA. Scheme with
100% scaling down performs aggressive capacity management. In exploration phase it can
sharply drop VM capacity by removing a half of assigned resource. However, if after recon-
figuration workload increases, then the application cannot provide desired response time. To
improve quality of the model one can limit scale down action as we did for other configuration
with flexible step. Alternatively, aggressive de-allocation actions during exploration phase can
be prohibited.

The evaluation results show that fixed step allocation achieves good performance, but only
if allocation step has a proper size. However, one needs to find ’right’ one. Configuration with
flexible step allocation can dynamically decide how many resources to assign.

5.6 RELATED WORK

Cloud computing industry moves towards pure pay-as-you-go model. More and more IaaS
providers shift from fixed bundles to flexible bundles. It means that users have freedom to
choose what amount of each resource to allocate. Moreover, minute and second range billing
cycles allow to dynamically resize VM, without waiting for the end of an hour. However, one
needs to find optimal scaling policy for vertical resource scaling that would perform dynamic
resource allocation. A number of attempts have been made to automate the process of VM
capacity management. Most of previous work applies control theoretical approaches, machine
learning techniques and time series analysis.

A lot of work on dynamic resource provisioning applies control theory. Heo et al. [68] propose
controller for CPU and memory allocation. The controller tracks web application response time
and adjust VM capacity to keep the application performance within specified range. [109] build
auto-scaling system that uses MIMO controller to perform resource scaling of two tier web
applications. The controller adapts CPU and disk I/O to achieve user-specified performance

72



5.7 Conclusion

3

145

285

16 16

0

100

200

300

9
5

th
 p

e
rc

e
n

ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

EC2 small instance

VScaler dyn (100, 20)

VScaler big step

VScaler small step

VScaler dyn (100, 100)

Figure 8: 95th percentile response time

goal. Systems that use control theoretical approaches can provide good performance. However,
the design of the system is a complex process. It requires significant time and effort to obtain
optimal model.

Rao et al. [116] also apply RL in VM resource management. Authors perform resource allo-
cation of multi-tier web-application. The system presented in the paper uses fixed step scaling.
Our evaluation shows that performance of such models greatly depend on the size of the step.
Authors do not provide details about the choice of action size. In our work we show that better
results can be achieved with dynamic step allocation.

The work by Shen et al. [126] presents CloudScale system. The system uses time series
analysis to perform resource usage predictions. In particular authors analyze CPU and memory
usage traces to discover repeating pattern and predict future resource demand. CloudScale
implements fine granular CPU and memory allocation. However, only one individual resource is
modified on evaluated applications. Presented approach is hard to extend for multiple resource
management. In contrast, VScaler scales both resources of VM.

SmartScale [47] uses a combination of horizontal and vertical scaling. In each reconfiguration
phase authors propose to consider trade-off between these two types of scaling. SmartScale
chooses the one that allows better utilize resources and fits SLA requirements. The frame-
work implements reconfiguration with 1 hour period. The chosen period fits to billing cycles of
most of cloud providers. But SmartScale would require model adaptation in order to achieve
high resource usage efficiency in new conditions. For example, if IaaS providers shrink billing
periods.

5.7 CONCLUSION

Cloud computing allows dynamic and fine-granular capacity management of virtual resources.
Designing auto-scaling auto-scaling is one of the challenges users face. Reinforcement learning
is promising approach in the direction of autonomic capacity management. It allows adapt
to dynamic changes of application resource demand. However, adaptation is not an instant
process. It requires significant learning time to find optimal scaling policy.

In this chapter we present novel approach to RL that speed ups the learning process and
design VScaler controller. The results show that parallel learning with assumption can quickly
find optimal resource allocation policy. Moreover, proposed approach keeps application per-
formance within specified service level objectives. We evaluated VScaler against real world

73



Autonomic Virtual Machine Scaling

scenario. The evaluation shows that VScaler can efficiently perform VM capacity management.
In this chapter we present single VM scaling that can be applied to a number of applications

running in one VM. To provide multi-tier application resource assignment we need to increase
state-action space. As we was mentioned size of state-space increases learning time and size
of look up time. In next chapter we present RL based approach that reduces complexity RL
model.

74



AUTONOMIC MULTI-TIER APPLICATION
SCALING*

*The contents of this chapter first appeared at CLOUD’14 [152].

75





6.1 Introduction

6.1 INTRODUCTION

It is common today to use public or private clouds. Many users prefer to rent virtual machines
instead of using private infrastructure. Typically cloud users allocate predefined VM templates
and pay for time the VM have been running. Often VMs run underutilized. Resource demand
of many applications is rarely static. It varies over the time. In order to deal with changing load
users can allocate resources according to peak demand. However, the peak load provisioning
leads to under-utilization and users pay not only for used, but also for wasted resources. Hence,
it is desirable for users to have an opportunity to re-size a VM on-the-fly to meet actual resource
demand and pay only for resource that have been consumed.

Economic interests of cloud users already affect pricing models of some cloud providers.
For example, CloudSigma [33] allow to specify desired VM template and change it later during
the runtime. Moreover, the provider has 5 minutes billing cycle. It means that a user can
modify VM every 5 minutes. We see that pricing model offered by CloudSigma makes possible
cost-effective scaling. Users can dynamically acquire and release individual VM resources to
provision own applications. But what is the appropriate policy to control resource allocation
without affecting the application performance?

Traditionally resource allocation process addresses only the application resource demand.
Most of cloud providers assign VM capacity based on resource usage threshold. However, for
cloud user the most important objective is performance of the application hosted on the cloud.
Especially, if the application belongs to the class of interactive applications. For e-commerce
website low latency is crucial requirement. No one wants to interact with slow responding ap-
plication. Hence, scaling policy should provide resource assignment based user-defined appli-
cation performance goal. Moreover, many web applications are multi-tier component systems.
Resource provisioning of one tier does not necessary lead to overall application performance
improvement. In [116] authors show that changing capacity of one tier can lead to utilization in-
crease of another tier. The complexity of task increases if we can tune individual VM resources.
Therefore, scaling policy model needs to address cluster wide correlation effects.

Resource scaling policy design is a complex process. It requires running controlled experi-
ments. Existing data collected from production systems is hard apply for the application per-
formance modeling. It often lacks sufficient information about all relevant correlations between
input-outputs of the system. Moreover, due to hardware heterogeneity the model obtained for
the same type of VM can vary greatly [157]. Hence, we need a technique that can learn and
adapt scaling policy online.

Researchers propose techniques to enable online policy learning. The techniques can be
divided in two groups. The first group [159, 140] applies so called ’sand-box’ approach. How-
ever, it requires setup of ’sand-box’ that requires specific implementation for each application.
Moreover, for the ’sand-box’ cloud operators have to assign dedicated hardware. The second
group [133, 118, 117] uses reinforcement learning (RL) approach. It is model free technique
that does not require a priori knowledge about the application and virtual environment. It learns
the application resource usage behavior online. However, in section 3.4.2 we mentioned that
RL based approaches suffer from what is known as the curse of dimensionality: an exponential
explosion in the total number of states as a function of the number of state variables.

In this chapter, we describe our self-adaptable resource scaling controller, called VscalerLight.
It automatically generates the required scaling actions and triggers them to guarantee SLA
requirements. The core of VscalerLight is RL approach. Our design is based on analysis of a
web application behavior under different resource allocation configurations. With the help of
the analysis we propose to split memory and CPU controller models instead of tightening them
together. The use of individual controller per each resource reduces the state-space complexity
and eliminates well-known problem of RL based controllers. To orchestrate resource allocation
across all application tiers, we add workload parameter to each tier model. VscalerLight does

77



Autonomic Multi-tier application Scaling

not require offline initialization. Alternatively, it uses knowledge base exploration.

6.2 MOTIVATION

Dynamic application scaling is non-trivial task. There are number of challenges to address. The
following questions arise during the process of the scaling policy implementation.

First, conversion of SLA to resource allocation. User that deploys an application in cloud
environment expects certain performance from the application. To control the application per-
formance the user can change capacity of a VM. However, It is difficult to determine the ’right’
amount of CPU and RAM that needs to be allocated to achieve desired performance. Hence,
we need to obtain correlation between the resources allocated to the VM and the application
performance.

Second, time-varying resource demand. Many web applications have highly fluctuating work-
loads. It means that resource demand of the application also varies of the time. Static resource
allocation for these applications can lead to either over-provisioning or under-provisioning. Both
cases are not desirable. If an application provisioned according to the average load, then perfor-
mance of the application degrades. From another side peak load provisioning leads to resource
wastage. The application does not utilize allocated capacity, because peaks load are rare. To
deal with resource usage fluctuations we have modify VM capacity with respect to current de-
mand. Therefore prediction mechanism is required to anticipate the fluctuations. Some of the
demands can be predicted. For example, if they have daily, monthly or seasonal patterns. How-
ever, there are cases when it is hard to provide high prediction accuracy. Unexpected raise of
popularity of a website cannot be predicted. In such case we need to perform reactive scaling.
Therefore dynamic scaling policy should predict future demand and perform reactive scaling if
unexpected load spike occurs.

Third, multi-tier applications scaling. Multi-tier applications require appropriate resource allo-
cation across all tiers to provide performance specified in SLA. Changing capacity of one tier
can lead to the shift of load to another tier [116]. Therefore it is necessary to create a model
that captures relationships between individual tiers of the application.

Forth, dependencies between individual resources. Application needs to access multiple
system-level resources to provide desired performance. Hence, it is necessary to perform
multi-resource provisioning.

Cloud provider does not have not knowledge about the user’s application. For example, if the
application is deployed for the first time. It makes difficult to provide correct resource allocation
policy for the application. Therefore most of cloud providers offer easy and lightweight auto-
scaling service based on thresholds. The idea of the approach is to assign or release certain
resource according to user-predefined threshold. For example, when CPU utilization reaches
ThUp = 60% a new VM is allocated and the VM is deallocated if CPU utilization drops below
ThDown = 30%. The service user has to set these thresholds. It means that the user has to
have expertise knowledge or evaluate the application offline in order to define the ’right’ thresh-
olds. Moreover, as we mentioned above, the ultimate goal of resource allocation is to guarantee
application performance under different workload conditions. Threshold based scaling does not
provide mechanisms that can be used to specify application performance goal. Alternatively,
cloud provider could offer auto-scaling service that takes as input application quality of service
requirements and generates scaling policy online.

The problem described above inspires us to look for an approach that allows to adapt scaling
policy during runtime. One of common approaches is applying adaptive control [82, 53, 83,
108]. However, to use adaptive control we need to obtain the model of the system and the
environment dynamics. In contrast, reinforcement learning(RL) can find optimal system model
online. RL generates scaling decisions from observation of the system during runtime. How-
ever, there is a still need to address some challenges, such state-space complexity. We aim to

78



6.3 System identification

design controller that performs vertical scaling of multi-tier application. It means that each VM
has at least 2 configurable parameters (CPU and RAM). To achieve fine-granular allocation the
number of available values for each of the parameters should be large enough. But the increase
of the parameters values can make use of RL approach impractical. The size state-action will
affect learning time. Therefore we have to simplify RL based model. In the next section we
describe how the complexity of the model can be reduced.

6.3 SYSTEM IDENTIFICATION

Designing the formal system model is complicated and time consuming process. It has to be
repeated each time when the workload pattern changed or and application is updated. The
goal of our identification experiments is to understand how different control knobs affect the
application performance. During application lifetime the quantitative relationships between re-
source capacity available for the application and its performance can change due to workload
dynamics or application updates. However, the fundamental impact of each resource to the
application performance remains the same. We aim to design controller that controls CPU and
RAM assignment to VM running components of interactive application. Therefore we run set
of experiments to understand the impact of each of control knobs on application performance
and its components (tiers).

For the experiments we created a Xen-based test-bed that consists of representative multi-
tier web application benchmark - RUBiS [121] (PHP version). RUBiS is a free, open source
auction site prototype which simulates real users’ behavior of a popular auction eBay.com. The
front-end tier is a Apache http web-server (WS), the back-end is MySQL database (DB). Each tier
runs on VM with centOS6. Client requests are issued by dedicated group of machines running
RUBiS client emulator. With certain probability clients access different pages of the application.
The clients can browse or bid. Browsing does not utilize database tier, while bidding causes
significant load on DB. We run mixed workload that has mixed types client accesses. The
experiments consist of two parts.

6.3.1 CPU USAGE AND PERFORMANCE

In first part we analyze impact of virtual CPU power on the application response time and re-
source demand. Therefore we periodically changed the CPU entitlement and monitor applica-
tion performance. We use Xen credit scheduler [37] to assign virtual CPU capacity to the VM.
CPU allocation cap value varied from 8 to 100. To understand the effect of workload fluctuation
we also modified number of clients sending requests. The number of clients changes from
400 to 1600 by step 400. CPU allocation experiment was conducted for each VM running the
application tiers.

Figure 1 shows the mean response time (MRT) as function of front-end tier CPU entitlement.
If we increase CPU cap value, then for each request rate there is a maximum CPU entitlement
value that affects MRT. Above the value MRT does not change any more. The graph 2 gives
alternative view on CPU and response time correlation. It represents relationship between
CPU utilization and MRT. Each data point is an average from 20 samples. The presented mea-
surements show that changing CPU entitlement provides smooth control of MRT when CPU
utilization above 80%. The same correlation we found between DB CPU entitlement and the
application response time. Lower utilization levels do not allow to control CPU. It means that
we need to keep CPU utilization above certain threshold to control the application response
time.

The change of CPU entitlement also affects web server memory consumption. It is shown in
figure 3. Memory utilization increases with increase of CPU utilization. The reason is that higher
CPU utilization leads to increase of MRT (see figure 2). Therefore incoming requests instead

79



Autonomic Multi-tier application Scaling

10
0

10
1

10
2

10
3

25 50 75 100

CPU entitlement (Xen Cap)

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of clients

400

800

1200

1600

2000

Figure 1: MRT vs CPU entitlement

10
0

10
1

10
2

10
3

0.7 0.8 0.9 1.0

CPU utilization

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of clients

400

800

1200

1600

2000

Figure 2: MRT vs CPU utilization

0.2

0.3

0.4

0.5

0.6

25 50 75 100

CPU entitlement (Xen Cap)

M
e

m
o

ry
 u

ti
liz

a
ti
o

n

Number of clients

400

800

1200

1600

2000

Figure 3: WS memory utilization vs CPU entitlement

0.61

0.62

0.63

0.64

25 50 75 100

CPU entitlement (Xen Cap)

D
B

 m
e

m
o

ry
 u

ti
liz

a
ti
o

n
Number of clients

400

800

1200

1600

2000

Figure 4: DB memory usage vs WS CPU entitlement

of being served immediately go to the application queue. As a result the queue size increases
and it needs additional memory space. The same effect has web server CPU entitlement on
database memory usage (see figure 4). Web server cannot process responses of DB tier and
DB has to keep them in memory. Reduction the power WS VCPU leads to decrease of DB CPU
usage. Figure 5 shows the effect. Basically low power web server CPU needs more time to
process incoming requests.

6.3.2 MEMORY USAGE AND PERFORMANCE

In the second group of experiments we evaluated the effect of VM memory capacity on the
application performance. The memory allocation varied from 240 MB to 896 MB. The experi-
ment was repeated for different workload intensity of 400, 800, 1200, 1600 clients. We limit
minimal VM memory capacity to 240 MB. This is a minimal RAM size required by underlying
OS. We cannot go below the value, even if actual memory usage is lower.

Figure 6 presents the relationship between response time and memory utilization. MRT
sharply increases when memory utilization reaches 90% threshold. Memory pressure (ratio

80



6.3 System identification

0.050

0.075

0.100

0.125

25 50 75 100

CPU entitlement (Xen Cap)

D
B

 C
P

U
 u

ti
liz

a
ti
o

n
Number of clients

400

800

1200

1600

2000

Figure 5: DB CPU utilization vs WS CPU entitlement

10
0

10
1

10
2

10
3

0.6 0.7 0.8 0.9

Memory utilization

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of clients

400

800

1200

1600

2000

Figure 6: MRT vs memory utilization

between VM capacity and actual memory consumption) does not affect response time below
the threshold. The reason is swapping activity that is shown in figure 7. During swapping
process OS tries to free up memory by saving memory pages to a disk. The speed of the disk
orders of magnitude slower than memory, therefore the application performance is affected
dramatically. We conclude that memory cannot be used for smooth MRT control. Memory
is non-compressible resource that cannot be reclaimed without severely affecting application
performance. In some case it can lead OOM (out of memory) events, when OS start to kill
tasks to free up memory.

6.3.3 CLUSTER WIDE CORRELATION

Resource provisioning of multi-tier applications should provide fair resource allocation across
all tiers to avoid shift of resource bottlenecks. Therefore it is important to understand how the
change of resource allocation on one of tiers affects the resource consumption of another tier.
Based on our previous experiments we analyze cluster wide correlation effects. In figure 8
presented the correlation between DB CPU entitlement and WS memory utilization. The graph
shows that the memory usage increases if the CPU entitlement is reduced. Higher request rate
leads to higher memory utilization levels. The reason is that request service rate µ provided
by available CPU capacity of DB tier is less than incoming request rate λ. DB cannot accept
connections from WS and WS stores incoming requests in the queue instead of sending them
down to the DB tier. In figures 4 and 5 we show that different web server CPU entitlement
changes memory and CPU usage of database tier. The knowledge of cluster wide correlation
is important when one of the tiers runs under resource pressure. In such situations the second
tier is over-provisioned. If scaling policy does not consider this effect, then it would add more
resources to the first tier and reclaim resources from the second tier. As a result it brings the
second tier to saturated state and the first tier to over-provisioned state. Finally, the policy
would not be able to solve instability problem. To avoid described scenario we can use simple
approach: increase allocation of all tiers if one of them is close to saturation. After the application
performance stabilizes go back to normal scaling policy.

The following can be concluded from the experiments results. CPU and RAM belong to
different groups of resources. CPU is compressible resource (as well as network and disk
I/O bandwidth) and it can be reclaimed from the application by decreasing it performance. In
contrast memory is non-compressible resource (as well as disk space) and we cannot reclaim
memory if it is already used by the application. Only free VM memory can be reclaimed. Hence,

81



Autonomic Multi-tier application Scaling

0.0

0.1

0.2

0.4 0.5 0.6 0.7 0.8 0.9

Memory utilization

S
w

a
p

 r
a

te
 M

B
/s

e
c

Number of clients

400

800

1200

1600

2000

Figure 7: Swap rate vs memory utilization

0.2

0.3

0.4

0.5

0.6

25 50 75 100

DB CPU entitlement (Xen Cap)

W
S

 M
e

m
o

ry
 u

ti
liz

a
ti
o

n

Number of clients

400

800

1200

1600

2000

Figure 8: Effect DB CPU entitlement on WS memory usage

it is important to keep memory utilization below the value that triggers swapping process. To
regulate the application response time we need to change CPU entitlement.

6.4 CONTROLLER ARCHITECTURE

6.4.1 OVERVIEW

We designed and implemented online resource scaling controller for multi-tier application. The
controller does not require a priory knowledge of the application performance model. With the
help of reinforcement learning approach VscalerLight learns scaling policy online. Our controller
has predictive and reactive mechanisms. Reactive mechanism allows to quickly scale up the
VM resource assignment in response to unexpected load spikes, while predictive component
assigns resources in advance.

Our controller runs on top of Xen hypervisor. It consists of five main components: moni-
tor, predictor, CPU module, memory module and capacity manager. The monitor collects the
application performance and resource usage statistics. VscalerLight has dedicated CPU and
memory modules for each VM. Modules contain RL models and output the resource allocation
scheme. The capacity manager performs resource allocations by communicating with underly-
ing hyper-visor. Predictor tracks incoming request rate and issues the value of the workload for
the next reconfiguration interval.

On figure 9 presented the implementation of VscalerLight. The resource management is
organized in a following way. The monitor tracks the application performance and resource
consumption metrics UCPU , URAM . The load balancer (LB) presented in the picture provides
the monitor with performance metrics. Resource consumption is collected via API provided by
the hypervisor. The predictor forecasts the request rate value for next reconfiguration interval.
VscalerLight runs reconfiguration every 10 seconds. Each resource controller takes predicted
value and outputs resources entitlement values ACPU , ARAM for each tier. Then capacity man-
ager performs VMs reconfiguration. After the fixed time interval the summary statistics are
collected and the models inside CPU and memory modules are updated. If performance of
the application violates the value specified in SLA, then VscalerLight immediately recalculates
resource allocation values and reconfigures VMs.

VscalerLight prediction module uses auto-regressive (AR) model to anticipate future work-
load. The prediction value for the next reconfiguration interval is calculated based on previous

82



6.4 Controller architecture

VMM

VM

(Tier 1)

VMM

VM

(Tier 2)

VscalerLight

LBrequests

measured performance

URAM, UCPU 

URAM, UCPU 

ACPU
ACPU

ARAMACPU

requestsrequests

Figure 9: VscalerLight implementation

100 samples. VscalerLight has also an option to react quickly before the end of the reconfigu-
ration interval if the unpredicted load spike occurs and response time crosses value specified
in SLA. In this case VscalerLight takes the current request rate value and asks CPU and mem-
ory modules for appropriate resources entitlement. If the entitlement found, then VscalerLight
performs resource allocation. If the ’right’ resource entitlement value is not found, then Vs-
calerLight shifts to the exploration phase.

6.4.2 MDP DESIGN SOLUTIONS

Out experiments in the section 6.3 show that resource consumption has a positive correlation
with incoming workload. Both CPU and memory usage increases with the increase of the load.
Therefore we have to include workload dynamics component into RL model. We also observe
that changing memory entitlement does allow to regulate the application response time. There-
fore we can exclude memory from the response time control model. However, we still need to
control memory allocation and avoid memory swapping. Therefore we create separate model
for memory. The workload parameter value included in each model will orchestrate CPU and
memory models.

CPU model state definition We define MDP which models our approach to VM CPU alloca-
tion problem as S = {(c, w )|0 ≤ c ≤ Cmax}, where:

• c ∈ N is CPU allocated to the VM; this value is expressed in Xen credit scheduler cap
value. Cmax = 100

• w ∈ N is observed request rate which was served without violating SLA. This value can
change over time. Initially it is set to 0.

Memory model state definition We define memory model state-space as following S =
{(m, w )|Mmin ≤ m ≤Mmax}, where:

• m ∈ N is memory allocated to the VM. Mmin = 256 MB and Mmax = 1536 MB.

• w ∈ N is observed request rate which was served without violating SLA. This value can
change over time. Initially it is set to 0.

The action set for CPU and memory models is defined as following A = {a ∈ Z|Amin ≤ a ≤
Amax}. The actions is bounded between Amin = −50% and Amax = 50%. It means that the
entitlement values c or m can change within these bounds. The following idea lies behind our
actions-space definition. We think that is more efficient to change the VM resource capacity by
certain percentage rather than add or remove fixed capacity value. Adding fixed value may be
not efficient to scale. For example, a VM is assigned CPU cap value 20 and workload increases.
Then VM needs more resources. If we add cap value of 10, then capacity of the VM increases
by 50%. But going from cap value 80 to 90 increases capacity by 12.5%. Hence, effect of
adding fixed-size resource is not constant. Therefore, using static action values may not be
appropriate. In chapter 5 we present evaluation of fixed size and flexible size capacity allocation

83



Autonomic Multi-tier application Scaling

policies. The results show performance of fixed size capacity allocation policy greatly depends
on resource allocation unit size, while flexible size policy dynamically determines optimal action.

Reward function facilitates the conversion of SLA to VM resource assignment. We use ap-
plication performance feedback and VM resources usage statistics to calculate the reward. It
is designed in such a way that it guides the RL agent towards the state that gives higher utility:

reward =
perfFeedback

resUtil
(1)

In section 6.3 we found that CPU provides smooth response time control. Hence, we defined
perfFeedback as following:{

perfFeedback = 1, if respT ime < SLA

e−p| respT ime−SLA
SLA | − 1, other wise

(2)

The agent gets negative reward if SLA violation happens, otherwise the reward value depends
on CPU utilization. Our analysis in section 6.3 states that memory utilization should be bellow
hUtil = 90%. We have to make sure that memory capacity under particular workload does
not trigger swapping process. Therefore memory model reward depends on the value. It is
possible to dynamically determine the threshold. But for simplicity we leave it fixed.{

perfFeedback = 1, ifmemUtil < hUtil

e−p| memUtil−hUtil
hUtil | − 1, other wise

(3)

The resource utilization of each model is defined as following.

resUtil =
(1 − Ur )

n
(4)

where, Ur is observed resource utilization from the last reconfiguration interval.
The controller performs resource allocation across all tiers. As we found in section 6.3 re-

source modules for each tier can work independently as soon as there is no SLA violation. If the
violation occurs, then it is hard to determine ’right’ control knob that can bring the system to a
stable state. Therefore in case of SLA violation we shift all resource modules from exploitation
to initialization phase.

6.4.3 INITIALIZING Q-LEARNING

To perform the environment exploration we apply Q-learning algorithm. Q-learning is a model
free RL algorithm. The scaling policy is learned by taking actions and observing a system feed-
back. Initially there is no policy available. To initialize RL model we can either learn based on
statistical data [116] or apply guided exploration [24]. Our assumption is that no statistical data
is available upfront. Hence, we apply knowledge based exploration. The idea is simply keep
resource utilization within desired bounds. For CPU and memory these bounds are 50% and
80%. During the exploration phase the agent takes actions that keep the resource utilization
inside the interval. The initialization runs until the predictor collects enough data to perform
prediction.

6.4.4 MODEL LEARNING AND EXPLOITATION

Initially the w parameter of the state description of each model is set to 0. This value changes
during the exploration phase. The main loop of Q-learning algorithm is presented on figure 5.
The algorithm is the same for both CPU and memory models. Each reconfiguration interval the
agent chooses an action from the policy learned so far and after fixed interval of time collects

84



6.5 Evaluation

1: repeat
2: st ← getCurrentState()
3: at ← chooseNextAction(st , Q)
4: Ut+1 ← getResourceUsage()
5: rt+1 ← calculateReward(Ut+1)
6: wt+1 ← getObservedRequests()
7: updateRequests(st+1, wt+1)
8: updateModel(st , at , rt+1, wt+1 Q)
9: t ← t + 1

10: until Agent is terminated

Algorithm 5: Agent learning algorithm

1: predValue← predictWorkload()
2: for each state snext connected to st do
3: g ←getRequests(snext )
4: if g > predValue then
5: selectedStates.append(snext )
6: end if
7: end for
8: return getBestAction(st , selectedStates)

Algorithm 6: Choose next action

resource usage and the application performance statistics. Then it updates states that satisfy
observed load and finally updates the policy.

CPU model state update After the action at has been taken w is updated by wt+1 for each
state where CPU entitlement value c provides lower or equal CPU utilization than observed
utilization Ut+1 . This update rule guarantees that all updated states can serve request rate w
with the same MRT. See figure 2.

Memory model state update The state request rate value w is updated by wt+1 if memory
entitlement value m in the state is higher than observed memory consumption.

The exploitation phase algorithm is presented in figure 6. The algorithm takes workload pre-
diction value and selects states that have w higher than predicted value and connected with
current state st . Then from the list of selected states it takes the one that has higher Q-value
and gets action that moves the agent to the selected state.

6.5 EVALUATION

In our evaluation we compare VscalerLight against threshold scaling policy and two static alloca-
tion schemes. Cloud user can use auto-scaling service offered by provider to perform dynamic
resource assignment. However, it is necessary to find optimal threshold values for the applica-
tion. Therefore users often use default thresholds ThDown = 30% and ThUp = 60%. These
thresholds minimize the probability of under-provisioning. Capacity reclaimed when utilization
is fairly low and allocated when there is a still large enough room for additional load. However,
such policy can lead to high resource wastage. For our evaluation we created two additional
policies. First policy tries to minimize level of over-provisioning. The thresholds for policy are
ThDown = 70% - ThUp = 80%. The second one aims to minimize SLA violation events. The

85



Autonomic Multi-tier application Scaling

98

14

64

10

0

30

60

90

9
5

th
 p

e
rc

e
n

ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

ThresholdP 2

ThresholdP 1

ThresholdP 2 w/feedback

ThresholdP 1 w/feedback

Figure 10: Threshold based policy: with and w/o performance
feedback

DB CPU DB memory WS CPU WS memory

74

65

81

61

70

61

71

59

75

66

75

61

70

63

71

60

0

20

40

60

80

R
e

s
o

u
rc

e
 u

ti
liz

a
ti
o

n
 %

ThresholdP 2

ThresholdP 1

ThresholdP 2 w/feedback

ThresholdP 1 w/feedback

Figure 11: Threshold based policy: average resource utilization

thresholds for policy are ThDown = 50% - ThUp = 80%. We evaluate only vertical scaling,
therefore we defined scaling unit for each policy in terms of memory and CPU entitlements
values assigned to a VM. Usually threshold polices operate with VMs. Policy 1 is allowed to
add CPU entitlement by value of 2 and memory entitlement by value of 8 MB. The second
policy can add 5 and 16 respectively. Resource de-allocation unit for both policies is fixed. We
don’t allow to reduce VM resource capacity more than 10%. For static allocation schemes we
assume, that a user knows expected resource demand and assigns VM resources according
peak demands. For the first scheme user takes fixed size VM (1536 MB, CPU cap 60), which
is equal to Amazon EC2 small instance [11]. For the second one user specifies VM resources.

For the evaluation we use the test bed presented in section 6.3. The testbed for our exper-
iments is hosted on quad-core Xeon 2.66GHz with 16 GB memory, 100 Mbps network and
Ubuntu 12.04 running on top of Xen 4.1. VscalerLight is evaluated against real world scenario.
We apply workload trace from the World Cup 98 [134]. It consists of HTTP requests made
during the 1998 World Cup Web site. For our experiments we use 6 hour trace starting at
1998-05-10:03:00. The trace has high fluctuations. The ratio between min and peak loads is
12. We define desired application response time to be no greater than 20 milliseconds.

Threshold based policy does not have application performance feedback, while VscalerLight
obtains application performance metric. To improve it we extend threshold based policies with
performance feedback. Whenever the application performance crosses target response time
each policy allocates additional capacity. In figure 10 we plot response time provided by the
threshold policies. Figure shows that adding performance feedback reduces the application
response time. Cumulative distribution line of both policies moves to the left after adding per-
formance feedback. Moreover, performance feedback improves resource usage. Figure 11
presents resource utilization for each tier. CPU utilization of database tier under control of the
policy 2 increases by 7%. If the policy is aware of the application performance, then it does not
trigger allocation action even if the threshold is crossed. Performance feedback reduces false
positive allocations. In contrast, CPU utilization of DB under control of the policy 1 decreases.
The policy lower bound threshold 20% higher and it less sensitive than the policy 2. After we
added performance feedback it triggers allocation earlier, because it is aware that response time
of the application already affected.

In figure 12 we show the application response time and resource assignment trace over 8
minutes. CPU allocation of web server and database is expressed in Xen cap values. The
policy 1 has high level instability. CPU entitlements of DB and WS jump up and down. The

86



6.6 Related work

5.0

7.5

10.0

12.5

15.0

25

30

35

40

45

0

50

100

150

200

D
B

 C
P

U
W

S
 C

P
U

R
T

 (m
s
)

252 254 256 258 260

Time (min)

M
e
tr

ic
 v

a
lu

e

VscalerLight ThresholdP 2 perf feedback ThresholdP 1 perf feedback

Figure 12: Response time

DB VM mostly affected. The policy 2 provides better control. It does not create fluctuations.
However, in comparison to VscalerLight it allocates more resources. Moreover, response time
trace shown in the bottom of the graph shows that VscalerLight and the policy 2 provides similar
performance.

Figures 13 and 14 show the performance and resource usage provided by evaluated schemes.
The policy 2 violates SLA, while the rest schemes keep the application response time below
specified value (20 ms). If we look on figure 14, then see the efficiency of each allocation
scheme. The higher the value, the better resource usage efficiency. Fixed size VM allocation
leads high resource wastage. Resource utilization of both VMs is below 26%. It means that
in cloud market user overpays for about 74% of allocated resources. If user can customize
VM resources, then VMs utilization can be improved by factor of 2 in comparison to fixed size
VM. However, one needs to know workload upfront. Dynamic resource scaling improves re-
source utilization even further. In all dynamic schemes the utilization above 59%. However,
only two of them (VscalerLight and policy 1) meet user specified performance objective. But
VscalerLight achieves 10% higher utilization in comparison with threshold policy 1 and does not
require tuning of the thresholds upfront.

6.6 RELATED WORK

There are many works in the direction of dynamic resource allocation that address the problem
multi-tier application scaling. They use a wide range of techniques. Researchers apply con-
trol theory approach [108, 68, 83], queuing models [136, 158], time series analysis [126, 56],
machine learning [118, 47, 88].

Padala et al. [109] design MIMO adaptive controller. The controller adjusts CPU and disk I/O
of multi-tier application VMs to meet user defined performance objectives. Presented controller
can adapt to different operating regimes and workload conditions. Kalyvianaki, Charalambous,
and Hand [83] also implemented MIMO controller for multi-tier web applications. Authors in-
tegrate Kalman filter into feedback controller to dynamically allocate CPU resources to the ap-
plication VMs. Kalman filter is well known technique to remove noise from data. Presented
approach can follows workload change without creating transition fluctuations. The controllers
implemented in the paper can dynamically adapt to workload changes. However, to obtain the

87



Autonomic Multi-tier application Scaling

2 4

15

64

10

0

20

40

60

9
5
th

 p
e
rc

e
n
ti
le

 r
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Fixed VM

Customized VM

VscalerLight

ThresholdP 2 w/feedback

ThresholdP 1 w/feedback

Figure 13: 95% response time

DB CPU DB memory WS CPU WS memory

7

28

71

81

61

16

40

75
71

59

26

42

7675

61

16

48

74
71

60

0

20

40

60

80

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 %

Fixed VM

Customized VM

VscalerLight

ThresholdP 2 w/feedback

ThresholdP 1 w/feedback

Figure 14: Average resource utilization

application performance model one needs to run offline system identification process. In our
work we designed online self-adaptive controller that does not require initial application perfor-
mance model.

Urgaonkar et al. [136] and Zhang, Cherkasova, and Smirni [158] use the classical queuing
theory to model application multi-tier application. The queuing theory is used for the system
with stationary nature. Therefore in case of scenarios with changing conditions the parameters
of the queuing model have to be reconfigured. In the presented paper authors addressed the
problem of scaling multi-tier application using queuing network. The provisioning of the appli-
cation is performed based on the peak load. As we show in evaluation peak load provisioning
leads to high resource under-utilization. Hence, a user overpays for resources that have not
been consumed.

Shen et al. [126] proposed a framework which analyzes repeating patterns in resource usage
traces to automatically scale application VM capacity. The framework performs CPU and mem-
ory scaling, but it scales application tier in isolation from other tiers. In the evaluation authors
do not apply the framework to scale multiple tiers of web application. Moreover, pattern match-
ing algorithm has number of parameters that need to be tuned. In the paper these parameters
were obtained empirically.

In [88] authors present machine learning based techniques to model the performance of VM-
hosted applications. In particular they apply neural networks and support vector machines.
Applied techniques trained on collected application performance data. The techniques demon-
strate low rate of prediction errors. But, one needs to obtain the performance data. Authors
assume ’sand-box’ approach where user can deploy the application and run sample workload.

Our work is closely related to RL based resource allocation approaches. Rao et al. [118]
implemented VM capacity management system to perform resource assignment of multi-tier
application. The core of the system is Q-learning algorithm that is used to discover the appli-
cation performance model. Authors include each tier VM parameters into a single RL model.
Applied RL model design increases state-space size. In order to improve learning time authors
use two approaches. First, they reduce resource scaling granularity. Second, they apply neu-
ral network (NN) approximation. However, NN brings training overhead. Authors report that
the training takes about 10 minutes and it has to be periodically repeated. In our work we de-
signed small per resource model that has N-size state-space complexity. It enables us to assign
resources with small granularity.

88



6.7 Conclusion

6.7 CONCLUSION

Cloud resource selling model shifts towards flexible bundles model. In contrast to fixed size
bundles users can specify amount of resources they need. Moreover, VMs can be reconfig-
ured during runtime. It means that the user can follow the application resource demand by
performing fine-granular VM scaling. However, without understanding the application perfor-
mance model and workload dynamics it is difficult to make proper scaling decisions.

In this chapter we presented VscalerLight, autonomic resource scaling controller for multi-tier
applications. VscalerLight does not require a priory knowledge. It dynamically learns applica-
tion performance model. The core of the controller is RL approach. In contrast to existing RL
based systems, we use simplified RL model. Hence, we are not limited on resource allocation
granularity. Presented evaluation results show that VscalerLight efficiently allocates resources
across all tiers of the web application and meets user-defined performance objective.

VM reconfiguration together with small billing cycles improves virtual resource usage. How-
ever, the maximal size of VM is limited by capacity of host machine. There is need to enable
horizontal scaling for workloads which resource demand is beyond the host capacity. For the
future we plan to extend VscalerLight to provide combination of vertical and horizontal scaling.

89





I/O AWARE ELASTIC MAPREDUCE
CLUSTER SCALING*

*It is an extended version of the paper that first appeared at CLOUD’15 [155].

91





7.1 Introduction

7.1 INTRODUCTION

Today timely and cost-effective analytics on ’big data’ are a key requirements for business and
science. Web search engines and social networks store in logs users activity information. Peri-
odically the logs are analyzed to find user behavior patterns and provide personalized advertising
or detect suspicious actions. There is also growing demand for data processing from scientific
fields such as biology, astronomy and economics.

Large-scale data processing frameworks are the tool to work with ”big data”. Running these
frameworks on a private infrastructure requires high upfront expenses and also leads to com-
plementary maintenance costs. Therefore there is increasing interest in running such data
processing frameworks in cloud environment. Cloud provides access to unlimited amount of
virtual resources that average user can rent and pay for allocated resources with respect to
well-known pay-as-you-go model.

To simplify the process of cluster provisioning large cloud providers such as Amazon and
Microsoft deliver data processing services that exploit MapReduce computational model [40].
For example, Amazon offers Elastic MapReduce (EMR) [12] a Hadoop based web service for
”Big data” data processing. A user can run variety of jobs such as web indexing, data mining,
log file analysis, machine learning, scientific simulation, and data warehousing. In contrast to
Hadoop, where each node of the cluster works as data storage and compute unit, EMR has
dedicated storage and compute nodes that divide the cluster into data and compute parts. The
separation enables elasticity properties which is hard to provide in traditional Hadoop architec-
ture. The node containing data cannot be simply removed from the cluster. The removal of
the data node either leads to data loss or degradation of fault tolerance properties in case of
replicated data. But the compute part scaling does not cause such effects. A compute node
can be easily added or removed to/from the cluster to speed up computation or improve uti-
lization of the cluster. However, the architecture of EMR cluster creates traffic between data
and compute nodes that scales together with the compute part [87]. It raises a cluster sizing
problem, because the network throughput and the data part capacity remains fixed.

Cloud users can scale number of VMs dedicated to the application, but for the best of our
knowledge none of public IaaS providers scales network capacity together with increased num-
ber of user’s VMs. Hence, if the network cannot sustain increased traffic, then it becomes a
bottleneck. There is also growing interest to run data processing jobs across multiple clouds [48,
73]. Iordache et al. [73] proposed framework that allows to run MapReduce applications across
number of clouds. Cross-cloud computation requires to transfer data over WAN that has even
weaker performance properties [148] in comparison to inter datacenter networks.

The data nodes of EMR store and serve persistent data which imposes additional constraints
on elasticity properties of the data storage. Adding a new data node does not give immediate
performance improvements to the storage, because the nodes do not have any persistent data.
The new node must wait until data rebalancing procedure is complete. Hence, there is no
incentive to resize the data storage at job runtime.

In presence of aforementioned bottlenecks the incorrect choice of the compute part size can
significantly stretch the task completion time of MapReduce job. It increases the total task
completion time that impacts the final resource rental cost in the cloud. Pay-as-you-go model
and elastic nature of the platform allows the user to change the size of data processing cluster
almost instantaneously. Agmon Ben-Yehuda et al. [4] observe that IaaS providers shift from hour
range to seconds range billing cycles. It allows users to remove exceeding virtual resources
at any point of time, without waiting for the end of billing cycle [89, 26]. However, to achieve
cost efficiency the user has to scale compute nodes with respect to the data part capacity
and available network throughput. Average user does not have knowledge about performance
delivered by these resources. Moreover, each MapReduce job has own data traffic model.
Hence, there is a need for system that can resize compute cluster of EMR to minimize the cost

93



I/O aware elastic MapReduce cluster scaling

of job execution in the cloud.
In this chapter we propose online resource scaling technique that allows to find appropriate

cluster size for each MapReduce job. The presented approach does not require multiple runs
of a job, which is common for cluster sizing techniques [149, 69]. ElasticYARN determines the
size from the single wave of a job execution and adapts number of containers running in parallel
with respect to bandwidth provided by the data storage and the network.

7.2 MOTIVATION

The workload of data processing clusters dynamically changes due to size of data that needs to
be processed or job type [119]. During day hours the load increases and drops in the evening.
Some jobs are CPU intensive, others I/O intensive. The fluctuation of the workload results in
different cluster resource usage. Therefore, running fixed size cluster is not cost-efficient. If the
cluster runs in the cloud environment then user is going to overpay for resources that are not
used all the time. To take advantage of pay-as-you-go model and adapt to workload variations
we need to scale data processing cluster.

Traditionally [40] nodes of data processing cluster works as data storage and computing unit.
The goal of such design is providing data locality. Accessing data from local hard disk gives
higher performance in comparison to remote execution, since there is no need to transfer data
over network. However, such cluster cannot be easily scaled in and out. One can add more
nodes, but removing of exceeding computing power is not trivial. Each of the nodes contains
data and removing it from the cluster means that we lose part of the data. To avoid this we
have to move the data to the remaining nodes of the cluster. However, there are two obstacles
to consider. First, the remaining nodes should have enough capacity to store the data. Second,
the overhead of data transfer can be large. Every time when we resize the cluster we would
need to transfer the data back and forth. Therefore, it is better to decouple the data from the
computation. The resulting cluster consists of two types of nodes: data nodes and compute
nodes. The data nodes compose data storage and have limited scalability. We can add and
remove data nodes, but it requires to trigger load-balancing that may require substantial time
to complete [95] before increased the data storage capacity takes an effect. It is more practical
to scale almost stateless compute part. Amazon implemented model of separated data and
computation in EMR cluster. Users can provision compute cluster to perform processing of
data stored in Amazon S3 storage. EMR cluster allows to scale the computing part with respect
to resource demand of particular MapReduce job. From another side it creates significant traffic
between data and compute nodes that scales with the compute part.

Over last few years a number of cluster management frameworks such Mesos [71], YARN [141],
Quasar [41] were developed. The frameworks perform resource management of data-processing
job to ensure resource allocation fairness among tasks running in the cluster. Each task of the
job runs inside a container that exploits Linux Groups for resource isolation. Containers can
isolate wide range of resources dedicated to a certain task. However, the frameworks per-
form only CPU and RAM isolation, while leaving I/O resources consumed by the task without
attention. Therefore, containers are scheduled based on available cluster capacity in terms of
CPU and RAM. EMR uses Hadoop framework to perform resource management. It means that
scheduling tasks in EMR cluster would not properly treat traffic between the data storage and
the compute nodes.

For example, a job with 64 map tasks arrives to the cluster with available capacity equal to
70 containers. Each map task requires 10 MB/sec bandwidth. Then the scheduler will run all
64 maps in parallel that would require total throughput of 640 MB/sec. However, if the data
storage has only 3 nodes equipped with one disk each, then at maximum they can provide 360
MB/sec performance (assume disk throughput 120 MB/sec). In figure 1 we show the impact of
increased parallelism (number of containers launched in parallel) on the job completion time and

94



7.2 Motivation

1000

2000

3000

5 10 15 20 25 30 35 40 45
Number of containers

Jo
b 

co
m

pl
et

io
n 

tim
e 

(s
ec

)

310

320

330

To
ta

l c
on

ta
in

er
 ti

m
e 

(m
in

)
Figure 1: Impact of increased parallelism: Job completion

time (solid line) and Total container time(dashed line)

|

||

|
||

||

|

||

|

|

|

|

|

|

|

|

|
||

| |
||

|
||

|

|

||
|

|
||

|

||
|

|
|

|

|

|

|

|

|

||
|

|

||||

|

|

||

|

|

|

|

||
|
||
|
|

|
||

|

|

|

|
|

||

|||||||| |

||

|
||

||

|

| |

|

|

|

|

|

|

|

|

|
||

||
||

|
||
|

|

| |
|

|
||

|

||
|

|
|

|

|

|

|

|

|

||
|

|

||||

|

|

||

|

|

|

|

||
|
| |

|
|

|
| |

|

|

|

|
|

||

||| |
| || |

||

||
||

||
|

|||
|

|
|

||| |
|||
|

|
|

0

25

50

75

0

25

50

75

45 containers
5

containers

0 25 50 75 100
Time (sec)

Ta
sk

s

task stretching

Figure 2: Job execution waves

the total container time. The total container time is sum of all containers (tasks) runtime. Tasks
running in parallel compose a wave (see figure 2). Allocating larger waves allows to reduce job
completion time. If the data storage cannot sustain increased throughput demand, then the
total container time increases with the size of the wave as it is shown in figure 2. In presence
of the bottleneck the task completion time stretches. Higher total container time means higher
cost for cloud user.

However, the non-scalable storage is not only the bottleneck for EMR cluster. For MapRe-
duce applications it is intuitive to increase resource N times to complete a job N times faster.
This simple model can be applied to CPU and RAM. However, in case of network it is more
complicated [87]. We are not aware of large public cloud providers that scale network band-
width together with increased number VMs. Hence, if the total bandwidth demand from the
compute nodes is higher than throughput provided by the network, then the nodes will end up
competing for the network bandwidth. Hence, the total container will increase.

We also observe a trend towards cross-cloud data processing [35, 48, 73] and use of Micro-
clouds [131, 98]. The competition between cloud providers gets tougher. Therefore, the prices
of cloud providers constantly change. Some of them may offer resources even free of charge.
Hence, for the user it would be beneficial to have freedom to move from one cloud to another.
In case of large data processing clusters moving all the data is costly and time consuming. But
if the cluster has separated the data and the compute parts, then the user can run the compute
part on the cheaper cloud. For example, Microsoft offers its own service for ’big data’ analytics,
called HDInsight [15]. Users are free to choose the data storage either from Microsoft or other
provider. It is possible to use existing Amazon S3 service. In case of Micro-clouds it is impos-
sible to deploy the whole data processing cluster in one cloud. Usually Micro-clouds consist
only of few servers, for example, 10 or even less, and have restricted resources. Therefore, the
cluster has to be distributed across number of Micro-clouds. Running data processing in cross-
cloud fashion incurs over WAN data transfer. It is known that WAN has weaker performance
properties [148] in comparison to inter data-center networks. Authors of the paper report that
the maximum bandwidth between two data-centers located in Illinois and Texas is 465Mb/ sec
and average latency is 27 ms. According to the well-known pay-as-you-go model cloud users
pay based on the time they occupy virtual resources (e.g. VMs). If the network is slow then
they end up paying for the network traffic, even if the data transfer itself is free.

Existing cloud provider-based data-analytic frameworks such Amazon EMR, Microsoft Azure

95



I/O aware elastic MapReduce cluster scaling

1

0.84

1

0.72

1

0.7

0.0

0.3

0.6

0.9

pagerank sort wordcount

N
o

rm
a

liz
e

d
 t

o
ta

l 
c
o

n
ta

in
e

r 
ti
m

e

Mapred slowstart 0.05 1

Figure 3: Total container time

1

0.72

1

0.37

1

0.27

0.0

0.3

0.6

0.9

pagerank sort wordcount

A
v
e

ra
g

e
 r

e
d

u
c
e

 t
a

s
k
 c

o
m

p
e

le
ti
o

n
 t

im
e

Mapred slowstart 0.05 1

Figure 4: Reduce phase total container
time

1
0.93

1

0.83

1

0.8

0.0

0.3

0.6

0.9

pagerank sort wordcount

N
o

rm
a

liz
e

d
 j
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

Mapred slowstart 0.05 1

Figure 5: Job completion time

HDInsigh do not scale automatically. Services only provide monitoring tool and control knobs
that users can use to make decision about cluster scaling. Moreover, existing resource man-
agement frameworks do not include I/O resource into scheduling decisions. Therefore, users
have to manually determinate right number of compute nodes. To find optimal cluster size that
minimizes the cost of MapReduce job execution users would need to a run each job with dif-
ferent number of containers. For the jobs that appear one time only there is no way to find
optimal cluster size with described approach. It motivates us to look for technique that allows
to determine optimal number of containers during the job runtime.

7.3 BACKGROUND

ElasticYARN designed and implemented on top of YARN [141] framework. YARN is the second
generation of Hadoop platform. Hadoop is one of well-known open source implementations
of MapReduce computational model. Hadoop has two types of nodes: the master and the
worker. The master node performs job scheduling by assigning tasks to the worker nodes.
Every worker node has fixed number of map and reduce slots. The worker nodes periodically
report their status and amount of free slots to the master. The master uses the reports to decide
where to assign new tasks. All submitted jobs in Hadoop are managed by single master. In large
deployments number of worker nodes can grow up to 4000 [103]. Due to high management
overhead the master becomes a bottleneck.

YARN was designed to overcome the limitation of initial Hadoop implementation. The de-
sign of YARN decouples computational programming model from the resource management.
YARN consists of three entities: resource manager (RM), node manager (NM) and application
master (AM). In YARN each submitted job has dedicated application master that performs appli-
cation specific scheduling. The capacity management is done by RM. YARN employs container
technology to perform cluster wide resource scheduling. A container is a scheduling unit that
isolates memory and virtual CPUs available for the task. For MapReduce applications there are
no more reduce and map slots. Each phase task gets a container. AM specifies the number
of containers that it needs and sends a request to RM. RM estimates available resources and
sends back response, which contains NM location information and the number of containers
that AM can launch for the job.

7.3.1 MAPREDUCE SLOWSTART PARAMETER

In the first generation of Hadoop framework each worker node had a fixed number of map
and reduce slots. During the map phase all reduce slots were idle and waited for completion

96



7.3 Background

of the map phase. It resulted in low utilization of worker nodes. To improve it the slowstart
parameter was introduced. The slowstart parameter defines a fraction of the number of maps
in the job that should be complete before reduces are launched. The start of reduce task earlier
reduces a job completion time, because the map phase execution overlaps with the reduce
phase. However, in YARN the parameter has different effect.

In YARN each task runs inside a container. There are no special containers for each phase
task. Hence, all available containers can be first dedicated to the map tasks to fully utilize avail-
able NMs. The overlapping of the map and the reduce phases in YARN also allows to shrink
job completion time. However, starting the reduce phase during the map phase execution
increases the reduce phase completion time. YARN does not limit the number of reduce con-
tainers. Hence, freshly started reduce tasks would occupy all available capacity of the cluster
and map tasks that have not been launched yet would have to wait for completion of running
tasks. In some cases it may cause deadlocks, because a reduce task can finish only after all
map tasks are complete. Starting the reduce phase earlier also leads to increase of the total
container time. As a result, the cost of job execution in the cloud increases too.

Default slowstart value in YARN is 0.05, so the reduce phase starts as soon as 5% of map
tasks are complete. To show the impact of slowstart parameter in YARN we run small bench-
marks. We set slowstart to 0.05 and 1. Figure 3 presents the total container time. The graph
gives an estimation of resource usage time. Running MapReduce jobs with slowstart=1 gives
from 15% to 30% cost reduction in comparison with slowstart=0.05. In the case of slow-
start=0.05 the reduce phase tasks start earlier, but they run longer, since there is a need to
wait for completion of map tasks. Figure 4 shows that reduce task completion time decreases
significantly if slowstart is set to 1. Moreover, from figure 5 we can see that slowstart=1 al-
lows to reduce the job completion time. Our primary goal in this work is to reduce total task
completion container, therefore for rest of paper we set slowstart to 1. It means that the map
and the reduce phases do not overlap.

7.3.2 ANATOMY OF MAPREDUCE JOB

A MapReduce job consists of two phases: map and reduce. At the beginning of the job the
data is read from data storage and then processed by the map phase. Then the result of the
map phase it shuffled across all reduces. Finally, the reduce phase pushes results back to data
storage. In this work we aim to optimize the map and the reduce tasks runtime. Therefore, we
look into details of each task type execution.

A map task has 5-6 stages: read, compute, collect, sort, spill, combine and merge. In com-
pute stage, the map task reads data split from the storage and applies a map function to each
key-value pair. In collect stage it stores output of the map function in the buffer. If there is
more data to process, then the map task repeats previous stages. The sort stage sorts output
key-value pairs before spill occurs. The spill starts as soon as data buffer reaches user specified
threshold. By spilling map output to a local disk the map task empties the buffer. The execution
of the task is blocked during data spill. The combine stage is optional, user may not specify
it. If the stage is specified, then the map task performs local combine. Finally, the map task
executes the merge stage, which writes data to local file system. The combine, the merge,
the spill stages are disk I/O intensive, while read is network I/O intensive.

A reduce task consists of 3 stages:shuffle, merge, reduce. In shuffle stage reduce task
fetches the map phase outputs from NM. Then in merge stage it merges the outputs and writes
the result to the local disk. Finally the reduce stage invokes the user-defined reduce function
and writes the result to the data storage. In the reduce task the shuffle and the reduce stages
are network intensive, while merge stage performs communications with the local disk.

Figure 6 shows data flow in EMR cluster. In the map phase data is read from distributed
storage (data part). The maximum read throughput is equal to min(L * D, Lnet ), where L is read

97



I/O aware elastic MapReduce cluster scaling

ComputePart

D
a
ta

Pa
rt

D
a
ta

Pa
rt

MAP REDUCEInput Output

min(L*D,Lnet) min(L*D/R,Lnet) 

S
ca

lin
g

LAN/
WAN

LAN/
WAN

Figure 6: EMR cluster data transfer bottlenecks

performance provided by each of D data nodes and Lnet is available network throughput be-
tween the data and compute nodes. In the reduce phase final output of MapReduce job is
written back to the storage. The write performance is determined by min(Lnet , L * D/ R). It
is similar to the map phase, excluding R parameter, which is replication factor(usually R > 1).
Data reads and writes over the network also occur during the shuffle stage of the reduce phase.
However, the communication model during the shuffle stage is different. Amount of data trans-
ferred during the shuffle stage does not increase with increased number of reduce tasks in the
wave [87]. Moreover, in the shuffle stage the data is transferred inside local network, which
we consider as non-bottleneck resource.

7.3.3 ANATOMY OF LINUX NETWORK STACK

To understand the effects of the data transfer on resource usage we briefly look in to Linux
network stack. On the way to destination the data passes four layers of the stack: session
(sockets and files), transport (TCP), network (IPv4) and link (Ethernet). Below we describe data
flow and control flow of data transmission and receive operations.

Time(sec)

C
P
U
 u
ti
lz
a
ti
o
n
(%

)

T
h
ro
u
g
h
p
u
t(M

B
/s
e
c
)

0

50

100

20 40 60

0

1

2

3

4

with contention

0

50

100

0

1

2

3

4

without contention

CPU(%)
Disk writes(MB/sec)
Network writes(MB/sec)

Figure 7: Sort: reduce task resource usage

Time(sec)

C
P
U
 u
ti
lz
a
ti
o
n
(%

)

T
h
ro
u
g
h
p
u
t(M

B
/s
e
c
)

0

20

40

60

80

100

10 20 30 40

0

5

10

15

with contention

0

20

40

60

80

100

0

5

10

15

without contention

CPU(%)
Disk writes(MB/sec)
Network reads(MB/sec)

Figure 8: Sort: map task resource usage

DATA TRANSMISSION

When the application wants to transmit the data, it calls write(fd, buf, len) function. The required
connection socket is identified by the file descriptor - fd. POSIX - operating systems expose
the socket to the application in the form of file descriptor. After the call of write function the
data is copied from the user space to the kernel memory and added to the send socket buffer
sk buff. The buffer space pre-allocated for each socket. If the buffer runs out of space, then
communication stops. The data remains in the user space, until the buffer becomes available

98



7.4 Approach

again. In case of non-blocking call write returns an error. After the data successfully copied to
the kernel, TCP layer is called. If the current TCP state allows data transmission, then a new
TCP packet is created. However, if the data transmission is impossible, due to flow control,
then the system call stops at this point and control returns to the application. After the TCP
packet is created and all IP-routing procedures are performed the device driver requests data
transmission. Finally, Network Interface Card (NIC) copies data from the main memory to its
memory and sends the packets to the network.

The description of data transmission path shows that the application, which data send rate
is higher than throughput provided by underlying layers, will end up waiting for the network
layer to become available. The slowdown occurs either because of overflowing buffer in kernel
space or TCP flow control mechanisms. From resource usage perspective it means that the
application will not use CPU cycles, since the application first needs to send the data to continue
execution. Such effect we see in reduce task execution. Figure 7 shows resource usage of
the container running sort job’s reduce task with and without contention on the path to remote
storage. The contention means that the total send rate of reduce tasks in the wave higher than
min(Lnet , L * D/ R). If there is no contention during communication with remote storage, then
CPU utilization is stable. However, in case of contention the CPU utilization drops. We can
see that after the merge stage is complete (disk write activity drops to 0), reduce task starts
to send data. The send rate is significantly lower, if we compare against the upper graph. The
reduce task running with contention completes in 80 seconds, while the task in the upper graph
completes in 50 seconds.

DATA RECEIVING

Data receiving is procedure that handles incoming packets. To receive the data a network device
pre-allocates a number of sk buff. The number is configured per device. At the time of a packet
arrival NIC generates an interrupt for one of the server’s CPUs. Then the CPU executes kernel
interrupt (irq) handler. The interrupt handler takes the sk buff and processes it further to the
network layer. Based on the type of the received packet (ARP or IPv4) it will be handled by
different functions. We are interested in IP4v packets. Later on the header of IPv4 packet is
parsed and the packet is checked for validity. On successful check it is sent to TCP layer. The
processing of incoming packets on TCP layer is done as follows. If user process already waiting
for data to arrive, then data will be immediately copied to user space. Otherwise, the sk buff is
appended to one of the socket’s queues and will be copied later. Finally, at this layer the receive
function signals that data is available and wakes up the process. On the session layer the data
is copied from the socket or the application needs to wait for data to arrive.

Similar to data transmission path, the low data receive rate (due to network contention or
slow send rate from the data part) will block the application execution. Hence, the application
that needs to read data is idling. Figure 8 shows two cases of map task execution: without and
with contention. In the first case the total read rate of map tasks running in parallel is lower than
throughput provided by network and the data part. In the second case it is higher. If we look
at the bottom graph, we see that due to contention CPU utilization drops during data receive
procedure, while in the upper graph CPU utilization is stable along the task execution. From the
figure we see that map task in lower graph at the beginning gets only 5 MB/sec of bandwidth,
while it needs about 15 MB/sec. Therefore, it takes about 6 seconds more to complete in
comparison to the map task in the upper graph.

7.4 APPROACH

To find optimal number of containers we need to quantify the impact of the bottlenecks on
the map and the reduce task completion time. In previous section we show that execution of

99



I/O aware elastic MapReduce cluster scaling

MapReduce job’s tasks stretches during data transfer between the data and the compute parts.
Slow communication leads to low CPU utilization when the task reads and writes data from/to
the remote storage. However, CPU usage is not affected during local disk write operations. As
we have seen from map and reduce tasks execution models, network and disk write activities
do not happen at the same time. Therefore, we divide the runtime of the map and the reduce
tasks in two components. First component is the time spent for communication with remote
storage, we call it communication time. Second component is the time spent on the disk writes,
we call it disk time. To identify the communication time we look at the disk write activity of the
task (see figures 7 and 8). The write performance drops almost to 0 during communication
with the data storage. The pink line in the figures shows the disk writes during each of the
phases.

After the communication time is discovered, we need to calculate the maximum number of
tasks that we can launch in parallel without stretching them. Assume two cases of tasks exe-
cution: with and without contention. In both cases a task needs to process S bytes. However,
without contention the task gets B0 bandwidth and needs T0 seconds to process the data. In
case of contention it gets B1 bandwidth and takes T1 seconds to complete. Since the amount
the data that needs to be processed in both cases is the same, then:

T0 * B0 = T1 * B1 (1)

The total amount of CPU cycles spent by the task during the communication time is equal
too. Therefore, following condition holds:

T0 * CPU0 = T1 * CPU1 (2)

where C0 and C1 is CPU utilization with and without resource contention during communica-
tion time. If we take equations 1 and 2, then

B0 = B1 *
CPU0

CPU1
(3)

In section 7.3.3 we show that without contention among the tasks running in a wave CPU
utilization CPUcomm during the communication time is equal to CPU utilization CPUdisk dur-
ing disk writes. Therefore in equation 3 we can replace CPU0 with CPUdisk

1 and CPU1 with
CPUcomm

1 . Finally, required bandwidth calculated as follows:

B0 = B1 *
CPUcomm

1

CPUdisk
1

(4)

To determine whether the task was running under contention we need to calculate α param-
eter:

α1 =
CPUcomm

1

CPUdisk
1

(5)

Value of α < 1 indicates that there is resource contention and we need to reduce size of the
wave.

Maximum throughput that can be achieved between the data and the compute parts is de-
termined by the minimum throughput delivered by the data storage and network. In the map
phase it is min(L * D, Lnet ) and in the reduce phase min(L * D/ R, Lnet ) as is shown in figure 6.
Usually the user does not know these values upfront. Alternatively, we can apply following
idea. The maximum throughput available when tasks run with and without contention is equal:

N0 * B0 = N1 * B1 (6)

100



7.5 System architecture

scheduler

Compute
partclie

n
t

RM

HDFS

database

resource allocator

ElasticYARN

NM

profiler

job

job watcher

NM

profiler

NM

profiler

Data part

Figure 9: ElasticYARN architecture

where N0 and N1 is the number of tasks in each case. Finally, by combining equations 6, 4
and 5 we calculate the maximum number of tasks that we can run without hitting limits of the
data part and the network.

N0 =
N1

α
(7)

7.5 SYSTEM ARCHITECTURE

To demonstrate the effectiveness of presented approach, we have developed a system for
EMR, called ElasticYARN that determines optimal number of tasks during the job execution.

7.5.1 OVERVIEW

Figure 9 presents ElasticYARN architecture. ElasticYARN runs on top of YARN and consists of
four components: profiler, scheduler, database and job watcher. The profiler runs as a daemon
on each NM and monitors network traffic of containers running inside NM. The data collected by
the profiler is stored in the database. We use Redis key-value store to save jobs profiles. For the
interested readers we refer to our previous paper [114], which gives more details about Redis
and the profiler communication. The scheduler runs algorithm 1 and communicates with YARN
to change the number containers running in parallel. The job watcher tracks jobs submission,
theirs progress and notifies the scheduler.

7.5.2 JOB PROFILE COLLECTION

To apply our approach we have to collect YARN containers resource usage statics. The task
in performed by the profiler. The profiler is implemented as python module, which monitors
network traffic and CPU usage of YARN containers running MapReduce tasks. To monitor the
traffic we look for communication between NM containers and the nodes that belong to the
data part of the cluster. As input the profiler gets list of data nodes IPs and counts sizes of the
packets received and transmitted by particular container from/to data nodes. Every second the
profiler reports to the database the resource usage statistics.

101



I/O aware elastic MapReduce cluster scaling

7.5.3 JOB RESOURCE ALLOCATION

To control bandwidth consumption we have to explicitly specify the number of containers we
launch in a wave. In YARN there are two main types of resource schedulers: capacity and fair
scheduler. The schedulers are responsible for allocating resources to the various running appli-
cations subject to familiar constraints of capacities, queues etc. Capacity scheduler is default
YARN scheduler. It was designed to allow different departments within an organization to share
the cluster. It uses queue to provide capacity guarantees. The queue shares are specified in the
form of % of the cluster capacity. Moreover capacity scheduler provides elasticity properties
to the queues. The unused capacity of a queue can be harnessed by overloaded queues that
have a lot of temporal demand. However, the scheduler does not allow to set the capacity of
the queue in the form of exact amount of cluster resources, so that the application can get
guaranteed amount of containers.

The second available scheduler is Fair scheduler. The scheduler organizes applications into
queues and share fairly resources between these queues. By default, all users share a single
queue, named as ”default”. If an application specifically lists a queue in a container resource
request, then the request is submitted to that queue. In addition to providing fair sharing, the
Fair Scheduler allows assigning guaranteed minimum and maximum shares to queues. The
shares are expressed as a number of virtual CPUs and RAM. Using this mechanism we can
control number of containers assigned to the application. For example, if a container size is
1024 MB and 1 vcore (virtual CPU) and maximum shares parameter is 4096 MB 6, 4 vcore.
Then YARN can run up to 4 containers of an application in a wave.

The algorithm. On the job submission actual limit is not known, so we need to find it at
job runtime. The Algorithm 1 shows the work-flow of ElasticYARN scheduler that perform the
search and adapt the wave size. As soon as a client submits a job, the job watcher periodically
notifies the scheduler and provides information about the job size and its progress (line 1). In
lines 4 and 6 we calculate the number of containers to launch in the first wave of particular
phase. For evaluation we set p = 0.05. If tasks in the first wave hit the limit, then only 5% of
tasks will be affected. When the wave is complete we check if the limit is reached (lines 8-9)
and calculate α. If the value of α indicates that we reach the limit, then we compute next wave
size using equation 7. If the limit is not reached then increase the wave size (line 15)

7.6 EVALUATION

The goal of our evaluation is twofold. First, we want to estimate the quality of bandwidth cap
estimation using our approach. Current version of YARN does not support container isolation for
network I/O. Hence, network I/O is not a part of the scheduling algorithm. To enable the isolation
we have to determine per container bandwidth cap that does not stretch the task running inside
the container. Second, we want to apply ElasticYARN in two scenarios: inter-cloud deployment
and cross-cloud deployment. The former assumes data storage is bottleneck, while in latter
scenario network is bottleneck.

To evaluate ElasticYARN we implemented a testbed in our cluster consisting of 50 nodes
connected via 1GB Ethernet link. Each of the nodes has 8 GB of RAM and 8 Intel Xeon E5405
CPUs. We configured NM of YARN to run up to 6 containers with the size of 1GB and 1 vcore.
Other resources left to NM. From to 2 to 4 machines we dedicated for HDFS storage. For all
experiments we set HDFS replication factor R = 2. One of the machines runs RM of YARN.

For the evaluation we took several types of MapReduce jobs, including Sort, Wordcount, Hive
aggregation, Hive Join. The jobs have been used as main benchmarks in recent datacenter
studies ([34, 71, 104, 156]). The size of the jobs presented in table 1.

102



7.6 Evaluation

1: Input: (Job = < M, R >, phase, progress)
2: if progress == 0 then
3: if phase == ’map’ then
4: N = M * p
5: else
6: N = R * p
7: end if
8: else
9: if LimitFound == False then

10: if IsWaveComplete() then
11: α = getAlpha()
12: if α < 1 then
13: N = getLimit()
14: else
15: N = updateWave()
16: LimitFound = True
17: end if
18: end if
19: end if
20: end if

Algorithm 7: Job containers scaling

Job Dataset Size Maps Reducers
WordCount 42 GB 240 180
Hive Join 25 GB 97 96
Hive Aggre 25 GB 97 96
Sort 42 GB 240 180

Table 1: MapReduce jobs used in the evaluation

103



I/O aware elastic MapReduce cluster scaling

2.5

5.0

7.5

10 20 30 40 50
Containers

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

measured bandwidth no−elongation bandwidth

map reduce

Figure 10: Sort

2

3

4

20 40 60
Containers

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

measured bandwidth no−elongation bandwidth

map reduce

Figure 11: Hive aggregation

0.0

0.5

1.0

100 150 200
Containers

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

measured bandwidth no−elongation bandwidth

map reduce

Figure 12: Wordcount

7.6.1 BANDWIDTH CAP ESTIMATION

We start our evaluation by varying number of containers running in a wave. The number of
containers changes by 5. For this part of the evaluation we assigned only two nodes for the
data storage. From each measurement we take the resource usage statistics of tasks that
belong to the first wave of job execution and calculate no-elongation bandwidth cap. The cap
is an upper limit that guarantees that task will not elongate due to saturation of non-scalable
parts of EMR (data storage and network).

Graphs presented in figures 10, 11, 12, 16 show the measured and the no-elongation band-
width of evaluated jobs. Starting from 20 containers map tasks (figure 10) of Sort job saturate
the data storage. The measured bandwidth of tasks running in larger waves decreases. How-
ever, using our approach we can estimate the no-elongation bandwidth for each data point. We
use equation 3 to estimate the value, which is about 8.5 MB/sec. The reduce tasks of Sort
job reach the limit when the wave size goes above 30 containers. Similarly, we calculate the
no-elongation bandwidth for the reduce task.

Figures 11, 16, 12 show the measured and the no-elongation bandwidth for other jobs. We
can run up to 25 map tasks of Hive aggregation job, 120 map tasks of Wordcount job and 30
map tasks of Hive join job. Assume we use fixed size compute cluster with the capacity of 30
containers. Then the map phase of Wordcount needs 240/ 30 = 8 waves to finish, while it is
possible to run 240/ 120 = 2 waves without elongation. Hence, we can finish the job earlier.
The reduce phases of wordcount and hive join jobs do not hit the limit of the data storage.
Therefore, in figures lines for the measured and the no-elongation bandwidth overlap.

The presented evaluation shows that we can calculate the no-elongation bandwidth for dif-
ferent MapReduce jobs using resource data from only one wave of the job execution.

7.6.2 RUNTIME CLUSTER RESIZING

In the second part of our evaluation we compare ElasticYARN with default YARN. We consider
two scenarios. User can deploy EMR cluster either in a single cloud or run it in a cross-cloud
fashion. We assume that in single cloud deployment the network is not a bottleneck, while the
data storage is fixed at runtime. Hence, it can be saturated. We vary the data part capacity
from 2 to 4 nodes. In the second scenario the data storage runs in one cloud and compute
nodes on another cloud. For cross-cloud deployment we created two subnets in our 50-node
cluster. The network is considered as bottleneck. We control the network bandwidth with tc
command. tc is traffic control program for the Linux kernel.

First, we evaluate ElasticYARN in inter-cloud deployment. We compare ElasticYARN with
default YARN equipped with 20, 40 and 60 compute nodes. ElasticYARN we run in two modes
that update the wave size differently. In the first mode if the limit not found we increase the

104



7.6 Evaluation

1250

1300

1350

2 3 4
Data storage size (nodes)

To
ta

l c
on

ta
in

er
 ti

m
e 

(m
in

)
default YARN   20

default YARN   40

default YARN   60

ElasticYARN   fast search

ElasticYARN   slow search

Figure 13: Total container time

2000

3000

4000

2 3 4
Data storage size (nodes)

Jo
b 

co
m

pl
et

io
n 

tim
e 

(s
ec

)

default YARN   20

default YARN   40

default YARN   60

ElasticYARN   fast search

ElasticYARN   slow search

Figure 14: Total job time

300

400

500

600

700

800

2 3 4
Data part size (nodes)

Jo
b 

co
m

pl
et

io
n 

tim
e 

(s
ec

)

default YARN   20

default YARN   40

default YARN   60

EHadoop   fast search

EHadoop   slow search

Figure 15: Wordcount completion time

1

2

3

4

20 40 60 80
Containers

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

measured bandwidth no−elongation bandwidth

map reduce

Figure 16: Hive join

2000

3000

4000

200 400 600 800
Network bandwidth (Mbps)

To
ta

l c
on

ta
in

er
 ti

m
e 

(m
in

)

default YARN   20

default YARN   40

default YARN   60

ElasticYARN   fast search

ElasticYARN   slow search

(a) total container time

2000

4000

6000

8000

200 400 600 800
Network bandwidth (Mbps)

Jo
b 

co
m

pl
et

io
n 

tim
e 

(s
ec

)

default YARN   20

default YARN   40

default YARN   60

ElasticYARN   fast search

ElasticYARN   slow search

(b) total job time

Figure 17: Cross-cloud deployment

size of the wave by 5% of job size. For example, a job has 100 map tasks, then we start 5
tasks and in the next wave we run 10 tasks, if the limit is not found. However, if the limit is 40
tasks, then ElasticYARN will take up to 8 waves to find the limit, which is obviously increases
a job completion time. Therefore we have another mode, where the wave size is increased by
factor of two if the limit is not found. The first mode we call slow search and the second one
fast search.

Figures 13, 14 present the total container time and the total job time. We summed up execu-
tion time of all benchmarks. ElasticYARN in both modes has the smallest total containers time
in comparison to default YARN with 40 and 60 nodes. However, ElasticYARN in fast search
mode running with the data storage that consists of 2 and 3 nodes has a bit higher than 20
nodes YARN the total container time. In this mode ElasticYARN doubles the wave size. Hence,
in of the waves tasks saturate the data storage, before ElasticYARN resizes the wave according
to the limit.

If we look at figure 14, then we see that ElasticYARN in both modes has almost 2 times
shorter the total job time in comparison to YARN running with 20 nodes. With 3 and 4 nodes
data storage ElasticYARN has same the total job completion time as YARN with 60 nodes. How-
ever, it incurs less costs (see figure 13). For some jobs such as wordcount the job completion
time improvement in comparison to YARN with 20 nodes can be almost 2 times, which is show
in figure 15.

In case of cross-cloud deployment the data between the storage and the compute nodes is
transferred over the WAN. In figures 17a, 17b we present impact of evaluated deployments on
the total container time and the job completion time. ElasticYARN has lowest the total container

105



I/O aware elastic MapReduce cluster scaling

85

90

95

100

2 3 4
Data storage size (nodes)

C
P

U
 u

til
iz

at
io

n 
%

default YARN   20

default YARN   40

default YARN   60

ElasticYARN   fast search

ElasticYARN   slow search

Figure 18: Inter-cloud deployment: container CPU utilization

40

60

80

100

500
Network bandwidth (Mbps)

C
P

U
 u

til
iz

at
io

n 
%

default YARN   20

default YARN   40

default YARN   60

ElasticYARN   fast search

ElasticYARN   slow search

Figure 19: Cross-cloud deployment: container CPU utilization

time. However, the job completion time of the jobs running under control of ElasticYARN is
longer than with 40, 60 nodes YARN. Since the network capacity is limited ElasticYARN shrinks
size of waves. For example, with 200 Mbps network ElasticYARN runs only 1 map task of Sort
job. ElasticYARN in slow search mode outperforms 20 nodes YARN.

ElasticYARN improves not only the total container time. It is also improves utilization of the
containers. The utilization does not change, if we vary the data storage capacity. Figure 18
shows that in both modes ElasticYARN keeps the utilization above 95%. ElasticYARN adapts
the number of containers running in parallel with respect to maximal performance provided
by the storage. Without ElasticYARN the utilization can drop by 15% if we run YARN with 60
containers. In cross-cloud deployment the utilization of containers running with ElasticYARN is
also about 95%. Only with 200 Mbps network it is about 80%. The utilization is lower, because
the first wave already saturates the network.

7.7 RELATED WORK

Cluster sizing is not new problem. There have been a number of attempts to find optimal cluster
size. Some works address scaling traditional data processing cluster, others only storage layer.
In this work we focus on dynamic scaling support for ERM cluster.

The work by Jalaparti et al. [78] is mostly close to ours. The authors design Bazaar, a cloud
framework offering a job-centric interface for data analytics applications. The job centric inter-
face means that user specifies high-level goal, such as desired job completion time and Bazaar
makes a decision about how many resources to allocate in order to achieve user’s goal. The
framework is focusing on two specific resources, compute instances and network bandwidth.
Bazaar performs offline job profiling on dedicated node. Then the job profile is used for resource
allocation decision. In our work we perform online job profiling on a life system. It allows us to
reduce the job profiling time and avoid overhead associated with the setup of dedicated nodes
and providing sample data, which is not always possible if the job appears for the first time.

Lim, Babu, and Chase [95] designed automated control for Elastic Storage. The scaling of
the storage layer requires rebalancing persistent data across the nodes. The authors designed
and implemented integral controller for HDFS. The controller targets 20% CPU utilization. The
reference utilization allows to achieve average response time of 3 seconds. We see our work

106



7.8 Conclusion

as complimentary, since we provide dynamic scaling work compute layer of EMR.
Verma, Cherkasova, and Campbell [142] propose framework, called ARIA, to address the

problem of resource allocation. Authors aim meet desired MapReduce job completion time.
The system performs map-reduce slot allocation in heterogeneous environment. Similar to [78]
ARIA requires offline job profiling to estimate required amount of slots for next execution of the
job. Authors do not include the network bandwidth in scaling decisions. However, we observe,
that the network can impact the task completion time.

Herodotou, Dong, and Babu [69] designed Elastisizer, a system to which users can express
cluster sizing problems as queries in a declarative fashion. The system needs at least one run
of the job to answer the user’s query. In ElasticYARN we can make scaling decision from single
wave of job execution.

Xie et al. [149] address the problem of shared datacenter network utilization. Authors ana-
lyzed traffic patterns of different Mapreduce jobs. And propose Proteus system that improves
the network utilization. Similar to ElasticYARN, it detects the no-elongation bandwidth. How-
ever, it needs multiple job runs, before the bandwidth can be discovered.

7.8 CONCLUSION

Scaling the compute part of EMR cluster increases the traffic between compute and data
nodes. If the number of compute nodes exceeds certain limit, then the MapReduce task com-
pletion stretches. As a result it incurs higher costs for the user. The elongation occurs, because
the data nodes and/or the network cannot keep up with the increased demand. To solve the
problem we presented ElasticYARN network I/O aware system for EMR cluster. ElasticYARN
discovers the limit at the job runtime and calculates the number of tasks that can run in parallel
without hitting the limit. We evaluate a ElasticYARN against set of MapReduce jobs. The eval-
uation shows that ElasticYARN provides minimal cost in case of varying capacity of the data
storage and the network.

Current version of YARN does not support per container network I/O isolation. In the future
we plan to integrate presented approach in YARN and include network I/O into RM scheduling
decisions.

107





CONCLUSION

109





8.1 Vertical scaling for prioritized VMs provisioning

Capacity planning and dynamic resource scaling will be main topic of cloud computing in the
near future. Both sides of cloud market interested in further improvement of existing resource
allocation techniques. Provider revenue directly depends on the number of customers using
cloud infrastructure. Hence, to accept more users IaaS providers either need to increase the
number of datacenters or implement services that allocate resources with the minimal level of
over-provisioning. Expanding datacenters is costly. It requires large upfront investment. There
is also a need for nearby power station that has enough capacity to supply a datacenter. As a
result, it limits cloud provider’s options on locations of new datacenter.

Recent research states that utilization of modern datacenters is around 15 − 25%. It means
that existing resource allocation techniques leave significant amount of resources under-utilized.
There are two main reasons. The first reason is popular fixed size VM model. Capacity as-
signed to a VM does not change during runtime, while the application capacity demand can
fluctuate. Moreover, VM templates usually defined on cloud provider’s side. Hence, in order to
avoid under-provisioning users are forced to allocate bigger VMs. It leads to resource wastage.
Such inefficiency is covered by cloud users payment bills. The second reason is the lack of
techniques for efficient model-free resource scaling. Cloud providers offer threshold based
auto-scaling services. The services simplify virtual resource management process. But the
task of scaling policy design is the user’s responsibility. For a non-expert user it is a challenging
task to implement an efficient scaling-policy. The user needs deep application knowledge and
experience with underlying cloud infrastructure.

Economic interests of cloud users already resulted in changes on cloud market. There are
public cloud providers that addressed the users expectations and shifted to flexible VM model.
The users are free to specify a VM they need and can change it during runtime. Moreover,
the providers start to move from hour billing cycles to second billing cycles. However, there
is not much improvement regarding to scaling services. The focus of this thesis is to make
one step forward to address cloud market changes and propose auto-scaling techniques for the
users. In this work we design controllers that automatically perform scaling decisions to meet
the application performance objectives and minimize the cost of virtual resources.

We start with an overview of the auto-scaling system design. Highlight the key phases of
the auto-scaling process and each phase’s role in the process. The quality of resource scaling
decisions depends on the application performance model used in the auto-scaling system. The
model describes quantitative relationships between the application virtual resource capacity,
its performance and incoming workload. Design of the model requires expert knowledge and
system identification experiments to catch the strength of correlation between aforementioned
parameters. There is a set of techniques that is used in auto-scaling systems to describe the
model. They are classified in five categories: threshold based, queuing theory, control theory,
reinforcement learning and time series analysis. There is no silver bullet solution. Each of them
has pros and cons. High resource allocation quality can be achieved with the combination of
presented techniques.

In the following sections we summarize topics discussed in the chapters from 4 to 7. We also
give our view on future research work that could be done with respect to approach presented
in corresponding chapters.

8.1 VERTICAL SCALING FOR PRIORITIZED VMS PROVISIONING

In Chapter 4 we presented time series based resource allocation controller. The controller
exploits the idea of service differentiation. There are two types of applications running in mod-
ern data centers. The first type is latency-sensitive interactive applications. The examples are
e-commerce web-sites, web-search engines, a web-based software office suite such Google
Docs and etc. The second type of applications consists of resource intensive batch applications.
Large body of these applications is presented by data analytic frameworks that use MapReduce

111



Conclusion

paradigm.
Interactive and batch applications react differently on resource under-provisioning. For inter-

active application it is important to have enough resources each moment of time, otherwise the
latency goes up. In contrast, batch application can tolerate performance slowdown caused by
resource shortage. To provide low latency we would need to over-provision interactive applica-
tion, which leads to resource wastage. Therefore, we propose to collocate VMs running these
applications on a host and resolve resource conflicts by scaling VMs vertically. The presented
controller at first satisfies resource demand of the latency sensitive application and assigns
residual resources to the batch application. Such service differentiation allows us to perform
resource assignment with minimal over-provisioning and offers simple technique for the host
utilization improvement.

8.1.1 FUTURE WORK

The controller provides performance guarantees only for interactive application. The assumption
is that batch application user obtains compute resources for a lower price and aware of possible
performance slowdown. One potential direction for future research is providing job completion
time guarantees for low priority batch applications. Usually batch applications run across a num-
ber of machines. Hence, we can select hosts which cumulative amount of expected available
resources is enough to finish a job within user-specified deadline.

8.2 REINFORCEMENT LEARNING BASED TECHNIQUES

8.2.1 AUTONOMIC VIRTUAL MACHINE SCALING

In Chapter 5 and Chapter 6 we exploit reinforcement learning approach to describe application
performance model and time series to anticipate incoming workload. Reinforcement learning
offers knowledge-free learning algorithms. It eliminates the need for offline application model
design. The scaling policy evolves online with the help of trial-and-error approach. However, the
learning process can take significant amount of time. Therefore early stage scaling decisions
of RL based auto-scaling systems are non-optimal.

To improve the learning process time in Chapter 5 we propose a speedup technique. The
learning agent after each scaling action updates only one state-action transition. However, we
observe that for resource allocation problem there is more data learn. Usually during initializa-
tion phase resource allocation is performed with some level of over-provisioning. It enables a
number of alternative states that can be visited by the learning agent. Transitions that lead to
the alternative states can be also updated. Hence, more than one transition can be updated af-
ter each resource allocation action. Our evaluation shows that presented technique significantly
improves learning time without affecting the quality of scaling decisions.

8.2.2 AUTONOMIC MULTI-TIER APPLICATION SCALING

The second well-known problem of reinforcement learning approaches is the curse of dimen-
sionality. The state-space dramatically grows with increased number of parameters that de-
scribe the model of the application. It is common to reduce state-space and actions-space
to address the issue. However, it leads to coarse-granular resource allocation. One of the
goals of resource allocation is providing performance of the application with respect to user-
specified objective. In Chapter 6 we analyzed impact of individual VM resources on multi-tier
web-application performance. We found that only CPU smoothly regulates the application re-
sponse time. We created two separate models of each tier of the application. The approach
reduces the state-space complexity. To orchestrate the models of the web application tiers

112



8.3 Elastic mapreduce cluster scaling

we added workload description parameter. The evaluation presented in Chapter 6 shows that
applied approach allows to efficiently allocate resources to the application and satisfy user’s
SLO.

8.2.3 FUTURE WORK

The presented RL based controllers use vertical scaling, which is limited by a host capacity.
For larger workloads we would need to expand beyond single host. In the future we want
to combine vertical and horizontal scaling to serve the workloads. Such combination creates a
large number of options for possible resource assignment. For example, we can allocate 4 VMs
with 1 GB RAM or 2 VMs with 2 GB RAM, or even 1 VM with 4 GB of RAM. This is only for one
of resources. We can also control memory, disk I/O and network I/O. To address the problem,
we could think about two level controller. The first level estimates the impact of vertical scaling
on the application performance. The second level makes decision about optimal combination
of vertical and horizontal scaling.

8.3 ELASTIC MAPREDUCE CLUSTER SCALING

In contrast to interactive applications the resource allocation of batch application denoted as
scheduling. Batch application usually runs as a set of tasks on a number of machines that com-
pose a cluster. One of the problems is to determine the size of the cluster to meet job comple-
tion deadline. For these applications it is intuitive to map resource allocation to performance.
For example, to reduce job completion time by factor of two one would increase the cluster
size also by factor of two. It is true for resources such as CPU and memory, because existing
cluster management frameworks run a task of batch application inside a container that isolates
only these resources. However, in case of network I/O resources it is more complicated.

We show that increasing number of compute nodes in elastic MapReduce cluster increases
a total container time as well. The total container time is the time that accounts as resource
usage time in the cloud environment. In the cloud users pay for the time a resource being used.
Hence, we need to determine the cluster size that in given conditions provides the minimal total
container time.

To find optimal cluster size in case of network I/O bottlenecks one needs to run a job mul-
tiple times. In Chapter 7 we analyzed MapReduce application execution model and discover
resource usage patterns that we can use to quantify the impact of network I/O related bot-
tlenecks on different MapReduce jobs. We implemented controller called ElasticYARN that
finds optimal cluster size at job runtime. Our evaluation shows that the controller provides the
minimal total container time in inter-cloud and cross-cloud scenarios.

8.3.1 FUTURE WORK

YARN framework uses containers to isolate CPU and memory resources assigned to a task.
However, the container technology also supports I/O resources isolation. In Chapter 7 we
show that ElasticYARN determines MapReduce job’s task bandwidth requirements at runtime.
In future we want apply our approach in YARN scheduler to make it network I/O aware.

113





BIBLIOGRAPHY

115





Bibliography

[1] Giuseppe Aceto et al. “Survey Cloud Monitoring: A Survey”. In: Comput. Netw. 57.9
(June 2013), pp. 2093–2115. ISSN: 1389-1286. DOI: 10.1016/j.comnet.2013.04.001.
URL: http://dx.doi.org/10.1016/j.comnet.2013.04.001 (cit. on p. 31).

[2] O. Agmon Ben-Yehuda et al. “Deconstructing Amazon EC2 Spot Instance Pricing”. In:
Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International
Conference on. 2011, pp. 304–311. DOI: 10.1109/CloudCom.2011.48 (cit. on p. 26).

[3] Orna Agmon Ben-Yehuda et al. “Ginseng: Market-driven Memory Allocation”. In: SIG-
PLAN Not. 49.7 (Mar. 2014), pp. 41–52. ISSN: 0362-1340. DOI: 10 . 1145 / 2674025 .
2576197. URL: http://doi.acm.org/10.1145/2674025.2576197 (cit. on p. 26).

[4] Orna Agmon Ben-Yehuda et al. “The Rise of RaaS: The Resource-as-a-service Cloud”. In:
Commun. ACM 57.7 (July 2014), pp. 76–84. ISSN: 0001-0782. DOI: 10.1145/2627422.
URL: http://doi.acm.org/10.1145/2627422 (cit. on pp. 20, 25, 63, 93).

[5] Faraz Ahmad et al. “ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant MapRe-
duce Clusters”. In: 2014 USENIX Annual Technical Conference (USENIX ATC 14). Philadel-
phia, PA: USENIX Association, June 2014, pp. 1–13. ISBN: 978-1-931971-10-2. URL:
https://www.usenix.org/conference/atc14/technical-sessions/presentation/
ahmad (cit. on p. 21).

[6] Faraz Ahmad et al. “ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant MapRe-
duce Clusters”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association, 2014,
pp. 1–12. ISBN: 978-1-931971-10-2. URL: http://dl.acm.org/citation.cfm?id=
2643634.2643636 (cit. on p. 25).

[7] A. Ali-Eldin, J. Tordsson, and E. Elmroth. “An adaptive hybrid elasticity controller for cloud
infrastructures”. In: Network Operations and Management Symposium (NOMS), 2012
IEEE. 2012, pp. 204–212. DOI: 10.1109/NOMS.2012.6211900 (cit. on p. 42).

[8] Ahmed Ali-Eldin et al. “Efficient Provisioning of Bursty Scientific Workloads on the Cloud
Using Adaptive Elasticity Control”. In: Proceedings of the 3rd Workshop on Scientific
Cloud Computing Date. ScienceCloud ’12. Delft, The Netherlands: ACM, 2012, pp. 31–
40. ISBN: 978-1-4503-1340-7. DOI: 10.1145/2287036.2287044. URL: http://doi.acm.
org/10.1145/2287036.2287044 (cit. on pp. 20, 42).

[9] Amazon auto scaling service. URL: http://aws.amazon.com/autoscaling (visited on
07/18/2013) (cit. on pp. 49, 51).

[10] Amazon EC2. URL: https://cloud.google.com/compute (visited on 05/10/2014) (cit.
on p. 17).

[11] Amazon EC2 compute unit. URL: https://huanliu.wordpress.com/2010/06/14/
amazons-physical-hardware-and-ec2-compute-unit (visited on 07/30/2015) (cit. on
pp. 22, 86).

[12] Amazon Elastic MapReduce. URL: http://aws.amazon.com/elasticmapreduce (visited
on 08/10/2013) (cit. on p. 93).

[13] Ganesh Ananthanarayanan et al. “Disk-locality in Datacenter Computing Considered Ir-
relevant”. In: Proceedings of the 13th USENIX Conference on Hot Topics in Operating
Systems. HotOS’13. Napa, California: USENIX Association, 2011, pp. 12–12. URL: http:
//dl.acm.org/citation.cfm?id=1991596.1991613 (cit. on p. 25).

[14] Ganesh Ananthanarayanan et al. “Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters”. In: Proceedings of the Sixth Conference on Computer Systems.
EuroSys ’11. Salzburg, Austria: ACM, 2011, pp. 287–300. ISBN: 978-1-4503-0634-8. DOI:
10.1145/1966445.1966472. URL: http://doi.acm.org/10.1145/1966445.1966472
(cit. on p. 25).

117

https://doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/10.1109/CloudCom.2011.48
https://doi.org/10.1145/2674025.2576197
https://doi.org/10.1145/2674025.2576197
http://doi.acm.org/10.1145/2674025.2576197
https://doi.org/10.1145/2627422
http://doi.acm.org/10.1145/2627422
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ahmad
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ahmad
http://dl.acm.org/citation.cfm?id=2643634.2643636
http://dl.acm.org/citation.cfm?id=2643634.2643636
https://doi.org/10.1109/NOMS.2012.6211900
https://doi.org/10.1145/2287036.2287044
http://doi.acm.org/10.1145/2287036.2287044
http://doi.acm.org/10.1145/2287036.2287044
http://aws.amazon.com/autoscaling
https://cloud.google.com/compute
https://huanliu.wordpress.com/2010/06/14/amazons-physical-hardware-and-ec2-compute-unit
https://huanliu.wordpress.com/2010/06/14/amazons-physical-hardware-and-ec2-compute-unit
http://aws.amazon.com/elasticmapreduce
http://dl.acm.org/citation.cfm?id=1991596.1991613
http://dl.acm.org/citation.cfm?id=1991596.1991613
https://doi.org/10.1145/1966445.1966472
http://doi.acm.org/10.1145/1966445.1966472


Bibliography

[15] Apache Hadoop-based service in the cloud from Microsoft Azure. URL: https://azure.
microsoft.com/en-us/services/hdinsight (visited on 05/10/2015) (cit. on p. 95).

[16] Applications and Organizations using Hadoop. URL: http://wiki.apache.org/hadoop/
PoweredBy (visited on 06/20/2015) (cit. on p. 24).

[17] Michael Armbrust et al. “A View of Cloud Computing”. In: Commun. ACM 53.4 (Apr.
2010), pp. 50–58. ISSN: 0001-0782. DOI: 10.1145/1721654.1721672. URL: http://doi.
acm.org/10.1145/1721654.1721672 (cit. on pp. 26, 40).

[18] Ilia Baldine et al. “The missing link: Putting the network in networked cloud computing”.
In: in ICVCI09: International Conference on the Virtual Computing Initiative. 2009 (cit. on
p. 21).

[19] Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles. SOSP ’03. Bolton Landing, NY, USA:
ACM, 2003, pp. 164–177. ISBN: 1-58113-757-5. DOI: 10.1145/945445.945462. URL:
http://doi.acm.org/10.1145/945445.945462 (cit. on p. 21).

[20] Enda Barrett, Enda Howley, and Jim Duggan. “Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud”. In: Concurrency
and Computation: Practice and Experience 25.12 (2013), pp. 1656–1674 (cit. on pp. 33,
34, 37, 38, 64, 65, 67).

[21] Dominique Bellenger et al. “Scaling in cloud environments”. In: Proceedings of the 15th
WSEAS international conference on Computers. Corfu Island, Greece: World Scientific,
Engineering Academy, and Society (WSEAS), 2011, pp. 145–150. ISBN: 978-1-61804-
019-0. URL: http://dl.acm.org/citation.cfm?id=2028299.2028329 (cit. on p. 50).

[22] Peter Bodik et al. “Automatic Exploration of Datacenter Performance Regimes”. In: Pro-
ceedings of the 1st Workshop on Automated Control for Datacenters and Clouds. ACDC
’09. Barcelona, Spain: ACM, 2009, pp. 1–6. ISBN: 978-1-60558-585-7. DOI: 10.1145/
1555271.1555273. URL: http://doi.acm.org/10.1145/1555271.1555273 (cit. on
p. 33).

[23] Roy Bryant et al. “Kaleidoscope: Cloud Micro-elasticity via VM State Coloring”. In: Pro-
ceedings of the Sixth Conference on Computer Systems. EuroSys ’11. Salzburg, Austria:
ACM, 2011, pp. 273–286. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966471.
URL: http://doi.acm.org/10.1145/1966445.1966471 (cit. on p. 20).

[24] Xiangping Bu, Jia Rao, and Cheng zhong Xu. “Coordinated Self-Configuration of Virtual
Machines and Appliances Using a Model-Free Learning Approach”. In: Parallel and Dis-
tributed Systems, IEEE Transactions on 24.4 (2013), pp. 681–690. ISSN: 1045-9219. DOI:
10.1109/TPDS.2012.174 (cit. on p. 84).

[25] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. “CoTuner: A Framework for Coordinated
Auto-configuration of Virtualized Resources and Appliances”. In: Proceedings of the 7th
International Conference on Autonomic Computing. ICAC ’10. Washington, DC, USA:
ACM, 2010, pp. 75–76. ISBN: 978-1-4503-0074-2. DOI: 10.1145/1809049.1809062. URL:
http://doi.acm.org/10.1145/1809049.1809062 (cit. on p. 38).

[26] Emiliano Casalicchio and Luca Silvestri. “Mechanisms for {SLA} provisioning in cloud-
based service providers”. In: Computer Networks 57.3 (2013), pp. 795 –810. ISSN: 1389-
1286. DOI: http : / / dx . doi . org / 10 . 1016 / j . comnet . 2012 . 10 . 020. URL: http :
//www.sciencedirect.com/science/article/pii/S1389128612003763 (cit. on pp. 20,
31, 34, 35, 93).

[27] A. Celesti et al. “How to Enhance Cloud Architectures to Enable Cross-Federation”. In:
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on. 2010, pp. 337–
345. DOI: 10.1109/CLOUD.2010.46 (cit. on p. 20).

118

https://azure.microsoft.com/en-us/services/hdinsight
https://azure.microsoft.com/en-us/services/hdinsight
http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
https://doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://dl.acm.org/citation.cfm?id=2028299.2028329
https://doi.org/10.1145/1555271.1555273
https://doi.org/10.1145/1555271.1555273
http://doi.acm.org/10.1145/1555271.1555273
https://doi.org/10.1145/1966445.1966471
http://doi.acm.org/10.1145/1966445.1966471
https://doi.org/10.1109/TPDS.2012.174
https://doi.org/10.1145/1809049.1809062
http://doi.acm.org/10.1145/1809049.1809062
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2012.10.020
http://www.sciencedirect.com/science/article/pii/S1389128612003763
http://www.sciencedirect.com/science/article/pii/S1389128612003763
https://doi.org/10.1109/CLOUD.2010.46


Bibliography

[28] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. “Dynamic Resource Allocation
for Shared Data Centers Using Online Measurements”. In: Proceedings of the 2003
ACM SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems. SIGMETRICS ’03. San Diego, CA, USA: ACM, 2003, pp. 300–301. ISBN:
1-58113-664-1. DOI: 10.1145/781027.781067. URL: http://doi.acm.org/10.1145/
781027.781067 (cit. on p. 43).

[29] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. “Comparison of the Three CPU
Schedulers in Xen”. In: SIGMETRICS Perform. Eval. Rev. 35.2 (Sept. 2007), pp. 42–51.
ISSN: 0163-5999. DOI: 10.1145/1330555.1330556. URL: http://doi.acm.org/10.
1145/1330555.1330556 (cit. on p. 21).

[30] Brian Cho et al. “Natjam: Design and Evaluation of Eviction Policies for Supporting Pri-
orities and Deadlines in Mapreduce Clusters”. In: Proceedings of the 4th Annual Sym-
posium on Cloud Computing. SOCC ’13. Santa Clara, California: ACM, 2013, 6:1–6:17.
ISBN: 978-1-4503-2428-1. DOI: 10.1145/2523616.2523624. URL: http://doi.acm.org/
10.1145/2523616.2523624 (cit. on p. 24).

[31] Christopher Clark et al. “Live Migration of Virtual Machines”. In: Proceedings of the 2Nd
Conference on Symposium on Networked Systems Design & Implementation - Volume
2. NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 273–286. URL: http:
//dl.acm.org/citation.cfm?id=1251203.1251223 (cit. on p. 20).

[32] R. Benjamin Clay, Zhiming Shen, and Xiaosong Ma. “Accelerating Batch Analytics with
Residual Resources from Interactive Clouds”. In: Proceedings of the 2013 IEEE 21st In-
ternational Symposium on Modelling, Analysis & Simulation of Computer and Telecom-
munication Systems. MASCOTS ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 414–423. ISBN: 978-0-7695-5102-9. DOI: 10.1109/MASCOTS.2013.63. URL:
http://dx.doi.org/10.1109/MASCOTS.2013.63 (cit. on pp. 24, 25).

[33] CloudSigma IaaS provider. URL: http://www.cloudsigma.com (visited on 01/10/2013)
(cit. on pp. 26, 63, 64, 77).

[34] Tyson Condie et al. “Online Aggregation and Continuous Query Support in MapReduce”.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 1115–1118. ISBN:
978-1-4503-0032-2. DOI: 10.1145/1807167.1807295. URL: http://doi.acm.org/10.
1145/1807167.1807295 (cit. on p. 102).

[35] James C. Corbett et al. “Spanner: Google&Rsquo;s Globally Distributed Database”. In:
ACM Trans. Comput. Syst. 31.3 (Aug. 2013), 8:1–8:22. ISSN: 0734-2071. DOI: 10.1145/
2491245. URL: http://doi.acm.org/10.1145/2491245 (cit. on p. 95).

[36] Paolo Costa et al. “Camdoop: Exploiting In-network Aggregation for Big Data Applica-
tions”. In: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation. NSDI’12. San Jose, CA: USENIX Association, 2012, pp. 3–3. URL:
http://dl.acm.org/citation.cfm?id=2228298.2228302 (cit. on p. 25).

[37] Credit-Based CPU Scheduler. URL: http://wiki.xen.org (visited on 03/17/2012) (cit.
on pp. 51, 65, 66, 79).

[38] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. “Elastic virtual machine for
fine-grained cloud resource provisioning”. In: Global Trends in Computing and Commu-
nication Systems. Springer, 2012, pp. 11–25 (cit. on p. 42).

119

https://doi.org/10.1145/781027.781067
http://doi.acm.org/10.1145/781027.781067
http://doi.acm.org/10.1145/781027.781067
https://doi.org/10.1145/1330555.1330556
http://doi.acm.org/10.1145/1330555.1330556
http://doi.acm.org/10.1145/1330555.1330556
https://doi.org/10.1145/2523616.2523624
http://doi.acm.org/10.1145/2523616.2523624
http://doi.acm.org/10.1145/2523616.2523624
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dl.acm.org/citation.cfm?id=1251203.1251223
https://doi.org/10.1109/MASCOTS.2013.63
http://dx.doi.org/10.1109/MASCOTS.2013.63
http://www.cloudsigma.com
https://doi.org/10.1145/1807167.1807295
http://doi.acm.org/10.1145/1807167.1807295
http://doi.acm.org/10.1145/1807167.1807295
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
http://doi.acm.org/10.1145/2491245
http://dl.acm.org/citation.cfm?id=2228298.2228302
http://wiki.xen.org


Bibliography

[39] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. “Elastic VM for Cloud Re-
sources Provisioning Optimization”. In: Advances in Computing and Communications -
First International Conference, ACC 2011, Kochi, India, July 22-24, 2011. Proceedings,
Part I. Ed. by Ajith Abraham et al. Vol. 190. Communications in Computer and Information
Science. Springer, 2011, pp. 431–445. ISBN: 978-3-642-22708-0. DOI: 10.1007/978-3-
642-22709-7_43. URL: http://dx.doi.org/10.1007/978-3-642-22709-7_43 (cit. on
pp. 22, 23).

[40] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6. OSDI’04. San Francisco, CA: USENIX Association,
2004, pp. 10–10. URL: http://dl.acm.org/citation.cfm?id=1251254.1251264 (cit.
on pp. 24, 56, 93, 94).

[41] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-efficient and QoS-aware
Cluster Management”. In: Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASPLOS ’14. Salt
Lake City, Utah, USA: ACM, 2014, pp. 127–144. ISBN: 978-1-4503-2305-5. DOI: 10.1145/
2541940.2541941. URL: http://doi.acm.org/10.1145/2541940.2541941 (cit. on
pp. 17, 18, 23, 25, 33, 49, 94).

[42] Peter A. Dinda and David R. O’Hallaron. “Host load prediction using linear models”.
In: Cluster Computing 3 (4 2000), pp. 265–280. ISSN: 1386-7857. DOI: 10 . 1023 / A :
1019048724544. URL: http://dl.acm.org/citation.cfm?id=592893.592958 (cit. on
p. 52).

[43] Ronald P. Doyle et al. “Model-based Resource Provisioning in a Web Service Utility”.
In: Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4. USITS’03. Seattle, WA: USENIX Association, 2003, pp. 5–5.
URL: http://dl.acm.org/citation.cfm?id=1251460.1251465 (cit. on p. 32).

[44] Abhishek Dubey et al. “Performance Modeling of Distributed Multi-tier Enterprise Sys-
tems”. In: SIGMETRICS Perform. Eval. Rev. 37.2 (Oct. 2009), pp. 9–11. ISSN: 0163-5999.
DOI: 10.1145/1639562.1639566. URL: http://doi.acm.org/10.1145/1639562.
1639566 (cit. on p. 58).

[45] X. Dutreilh et al. “From Data Center Resource Allocation to Control Theory and Back”. In:
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on. 2010, pp. 410–
417. DOI: 10.1109/CLOUD.2010.55 (cit. on pp. 35, 40).

[46] Xavier Dutreilh et al. “Using reinforcement learning for autonomic resource allocation in
clouds: Towards a fully automated workflow”. In: ICAS 2011, The Seventh International
Conference on Autonomic and Autonomous Systems. 2011, pp. 67–74 (cit. on pp. 37,
64, 67).

[47] Sourav Dutta et al. “SmartScale: Automatic Application Scaling in Enterprise Clouds”.
In: Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing.
CLOUD ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 221–228. ISBN:
978-0-7695-4755-8. DOI: 10.1109/CLOUD.2012.12. URL: http://dx.doi.org/10.1109/
CLOUD.2012.12 (cit. on pp. 20, 32, 50, 65, 68, 73, 87).

[48] Andy Edmonds et al. “FluidCloud: An Open Framework for Relocation of Cloud Ser-
vices”. In: Presented as part of the 5th USENIX Workshop on Hot Topics in Cloud Com-
puting. San Jose, CA: USENIX, 2013. URL: https://www.usenix.org/conference/
hotcloud13/workshop-program/presentations/Edmonds (cit. on pp. 93, 95).

120

https://doi.org/10.1007/978-3-642-22709-7_43
https://doi.org/10.1007/978-3-642-22709-7_43
http://dx.doi.org/10.1007/978-3-642-22709-7_43
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
http://doi.acm.org/10.1145/2541940.2541941
https://doi.org/10.1023/A:1019048724544
https://doi.org/10.1023/A:1019048724544
http://dl.acm.org/citation.cfm?id=592893.592958
http://dl.acm.org/citation.cfm?id=1251460.1251465
https://doi.org/10.1145/1639562.1639566
http://doi.acm.org/10.1145/1639562.1639566
http://doi.acm.org/10.1145/1639562.1639566
https://doi.org/10.1109/CLOUD.2010.55
https://doi.org/10.1109/CLOUD.2012.12
http://dx.doi.org/10.1109/CLOUD.2012.12
http://dx.doi.org/10.1109/CLOUD.2012.12
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Edmonds
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Edmonds


Bibliography

[49] Vincent C. Emeakaroha et al. “Towards Autonomic Detection of SLA Violations in Cloud
Infrastructures”. In: Future Gener. Comput. Syst. 28.7 (July 2012), pp. 1017–1029. ISSN:
0167-739X. DOI: 10.1016/j.future.2011.08.018. URL: http://dx.doi.org/10.
1016/j.future.2011.08.018 (cit. on p. 31).

[50] Wei Fang et al. “RPPS: A Novel Resource Prediction and Provisioning Scheme in Cloud
Data Center”. In: Services Computing (SCC), 2012 IEEE Ninth International Conference
on. 2012, pp. 609–616. DOI: 10.1109/SCC.2012.47 (cit. on p. 44).

[51] Andrew D. Ferguson et al. “Jockey: Guaranteed Job Latency in Data Parallel Clusters”.
In: Proceedings of the 7th ACM European Conference on Computer Systems. EuroSys
’12. Bern, Switzerland: ACM, 2012, pp. 99–112. ISBN: 978-1-4503-1223-3. DOI: 10.1145/
2168836.2168847. URL: http://doi.acm.org/10.1145/2168836.2168847 (cit. on
p. 40).

[52] Alessio Gambi et al. “On Estimating Actuation Delays in Elastic Computing Systems”. In:
Proceedings of the 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. SEAMS ’13. San Francisco, CA, USA: IEEE Press, 2013,
pp. 33–42. ISBN: 978-1-4673-4401-2. URL: http://dl.acm.org/citation.cfm?id=
2487336.2487345 (cit. on p. 32).

[53] Anshul Gandhi et al. “Adaptive, Model-driven Autoscaling for Cloud Applications”. In:
11th International Conference on Autonomic Computing (ICAC 14). Philadelphia, PA:
USENIX Association, June 2014, pp. 57–64. ISBN: 978-1-931971-11-9. URL: https://
www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
(cit. on pp. 41, 42, 78).

[54] Thomas Gleixner, Paul E. McKenney, and Vincent Guittot. “Cleaning Up Linux’s CPU
Hotplug for Real Time and Energy Management”. In: SIGBED Rev. 9.4 (Nov. 2012),
pp. 49–52. ISSN: 1551-3688. DOI: 10.1145/2452537.2452547. URL: http://doi.acm.
org/10.1145/2452537.2452547 (cit. on p. 21).

[55] Daniel Gmach, Jerry Rolia, and Ludmila Cherkasova. “Selling T-shirts and Time Shares
in the Cloud”. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (Ccgrid 2012). CCGRID ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 539–546. ISBN: 978-0-7695-4691-9. DOI: 10.1109/
CCGrid.2012.68. URL: http://dx.doi.org/10.1109/CCGrid.2012.68 (cit. on p. 20).

[56] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. “PRESS: PRedictive Elastic ReSource Scal-
ing for cloud systems”. In: Network and Service Management (CNSM), 2010 Interna-
tional Conference on. 2010, pp. 9–16. DOI: 10.1109/CNSM.2010.5691343 (cit. on pp. 34,
43, 44, 51, 87).

[57] Google App Engine. URL: http://code.google.com/appengine (visited on 12/23/2014)
(cit. on p. 17).

[58] Google cloud platform. URL: https://cloud.google.com/compute (visited on 05/14/2014)
(cit. on p. 17).

[59] GridSpot IaaS provider. URL: http://www.gridspot.com (visited on 02/10/2013) (cit. on
pp. 26, 63).

[60] Yanfei Guo, P. Lama, and Xiaobo Zhou. “Automated and Agile Server Parameter Tun-
ing with Learning and Control”. In: Parallel Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International. 2012, pp. 656–667. DOI: 10.1109/IPDPS.2012.66 (cit. on
p. 38).

121

https://doi.org/10.1016/j.future.2011.08.018
http://dx.doi.org/10.1016/j.future.2011.08.018
http://dx.doi.org/10.1016/j.future.2011.08.018
https://doi.org/10.1109/SCC.2012.47
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
http://doi.acm.org/10.1145/2168836.2168847
http://dl.acm.org/citation.cfm?id=2487336.2487345
http://dl.acm.org/citation.cfm?id=2487336.2487345
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://doi.org/10.1145/2452537.2452547
http://doi.acm.org/10.1145/2452537.2452547
http://doi.acm.org/10.1145/2452537.2452547
https://doi.org/10.1109/CCGrid.2012.68
https://doi.org/10.1109/CCGrid.2012.68
http://dx.doi.org/10.1109/CCGrid.2012.68
https://doi.org/10.1109/CNSM.2010.5691343
http://code.google.com/appengine
https://cloud.google.com/compute
http://www.gridspot.com
https://doi.org/10.1109/IPDPS.2012.66


Bibliography

[61] Yanfei Guo and Xiaobo Zhou. “Coordinated VM Resizing and Server Tuning: Throughput,
Power Efficiency and Scalability”. In: Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012 IEEE 20th International Symposium on.
2012, pp. 289–297. DOI: 10.1109/MASCOTS.2012.41 (cit. on p. 38).

[62] Rui Han et al. “Enabling Cost-aware and Adaptive Elasticity of Multi-tier Cloud Applica-
tions”. In: Future Gener. Comput. Syst. 32 (Mar. 2014), pp. 82–98. ISSN: 0167-739X. DOI:
10.1016/j.future.2012.05.018. URL: http://dx.doi.org/10.1016/j.future.
2012.05.018 (cit. on p. 42).

[63] Rui Han et al. “Lightweight Resource Scaling for Cloud Applications”. In: Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (Ccgrid 2012). CCGRID ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 644–651. ISBN: 978-0-7695-4691-9. DOI: 10.1109/CCGrid.2012.52. URL: http:
//dx.doi.org/10.1109/CCGrid.2012.52 (cit. on pp. 24, 34, 35).

[64] M.Z. Hasan et al. “Integrated and autonomic cloud resource scaling”. In: Network Op-
erations and Management Symposium (NOMS), 2012 IEEE. 2012, pp. 1327–1334. DOI:
10.1109/NOMS.2012.6212070 (cit. on pp. 34–36).

[65] J.L. Hellerstein, Yixin Diao, and S. Parekh. “A first-principles approach to constructing
transfer functions for admission control in computing systems”. In: Decision and Con-
trol, 2002, Proceedings of the 41st IEEE Conference on. Vol. 3. 2002, 2906–2912 vol.3.
DOI: 10.1109/CDC.2002.1184291 (cit. on p. 39).

[66] J.L. Hellerstein, S. Singhal, and Qian Wang. “Research challenges in control engineering
of computing systems”. In: Network and Service Management, IEEE Transactions on
6.4 (2009), pp. 206–211. ISSN: 1932-4537. DOI: 10.1109/TNSM.2009.04.090401 (cit. on
p. 39).

[67] J. Heo et al. “Memory overbooking and dynamic control of Xen virtual machines in con-
solidated environments”. In: Integrated Network Management, 2009. IM ’09. IFIP/IEEE
International Symposium on. 2009, pp. 630–637. DOI: 10.1109/INM.2009.5188871 (cit.
on p. 32).

[68] Jin Heo et al. “Memory Overbooking and Dynamic Control of Xen Virtual Machines in
Consolidated Environments”. In: Proceedings of the 11th IFIP/IEEE International Confer-
ence on Symposium on Integrated Network Management. IM’09. New York, NY, USA:
IEEE Press, 2009, pp. 630–637. ISBN: 978-1-4244-3486-2. URL: http://dl.acm.org/
citation.cfm?id=1688933.1689025 (cit. on pp. 22, 40, 72, 87).

[69] Herodotos Herodotou, Fei Dong, and Shivnath Babu. “No One (Cluster) Size Fits All:
Automatic Cluster Sizing for Data-intensive Analytics”. In: Proceedings of the 2Nd ACM
Symposium on Cloud Computing. SOCC ’11. Cascais, Portugal: ACM, 2011, 18:1–18:14.
ISBN: 978-1-4503-0976-9. DOI: 10.1145/2038916.2038934. URL: http://doi.acm.org/
10.1145/2038916.2038934 (cit. on pp. 94, 107).

[70] Zach Hill et al. “Early observations on the performance of Windows Azure”. In: Pro-
ceedings of the 19th ACM International Symposium on High Performance Distributed
Computing. HPDC ’10. Chicago, Illinois: ACM, 2010, pp. 367–376. ISBN: 978-1-60558-
942-8. DOI: 10.1145/1851476.1851532. URL: http://doi.acm.org/10.1145/1851476.
1851532 (cit. on p. 50).

[71] Benjamin Hindman et al. “Mesos: A Platform for Fine-grained Resource Sharing in the
Data Center”. In: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation. NSDI’11. Boston, MA: USENIX Association, 2011, pp. 295–
308. URL: http://dl.acm.org/citation.cfm?id=1972457.1972488 (cit. on pp. 94,
102).

122

https://doi.org/10.1109/MASCOTS.2012.41
https://doi.org/10.1016/j.future.2012.05.018
http://dx.doi.org/10.1016/j.future.2012.05.018
http://dx.doi.org/10.1016/j.future.2012.05.018
https://doi.org/10.1109/CCGrid.2012.52
http://dx.doi.org/10.1109/CCGrid.2012.52
http://dx.doi.org/10.1109/CCGrid.2012.52
https://doi.org/10.1109/NOMS.2012.6212070
https://doi.org/10.1109/CDC.2002.1184291
https://doi.org/10.1109/TNSM.2009.04.090401
https://doi.org/10.1109/INM.2009.5188871
http://dl.acm.org/citation.cfm?id=1688933.1689025
http://dl.acm.org/citation.cfm?id=1688933.1689025
https://doi.org/10.1145/2038916.2038934
http://doi.acm.org/10.1145/2038916.2038934
http://doi.acm.org/10.1145/2038916.2038934
https://doi.org/10.1145/1851476.1851532
http://doi.acm.org/10.1145/1851476.1851532
http://doi.acm.org/10.1145/1851476.1851532
http://dl.acm.org/citation.cfm?id=1972457.1972488


Bibliography

[72] Urs Hoelzle and Luiz Andre Barroso. The Datacenter As a Computer: An Introduction to
the Design of Warehouse-Scale Machines. 1st. Morgan and Claypool Publishers, 2009.
ISBN: 159829556X, 9781598295566 (cit. on p. 25).

[73] Anca Iordache et al. “Resilin: Elastic MapReduce over Multiple Clouds”. In: 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 0 (2013),
pp. 261–268. DOI: http://doi.ieeecomputersociety.org/10.1109/CCGrid.2013.48
(cit. on pp. 93, 95).

[74] Waheed Iqbal, Matthew Dailey, and David Carrera. “SLA-Driven Adaptive Resource Man-
agement for Web Applications on a Heterogeneous Compute Cloud”. In: Proceedings
of the 1st International Conference on Cloud Computing. CloudCom ’09. Beijing, China:
Springer-Verlag, 2009, pp. 243–253. ISBN: 978-3-642-10664-4. DOI: 10.1007/978- 3-
642-10665-1_22. URL: http://dx.doi.org/10.1007/978-3-642-10665-1_22 (cit. on
p. 34).

[75] C. Isci et al. “Improving server utilization using fast virtual machine migration”. In: IBM
Journal of Research and Development 55.6 (2011), 4:1–4:12. ISSN: 0018-8646. DOI: 10.
1147/JRD.2011.2167775 (cit. on p. 20).

[76] Sadeka Islam et al. “Empirical Prediction Models for Adaptive Resource Provisioning in
the Cloud”. In: Future Gener. Comput. Syst. 28.1 (Jan. 2012), pp. 155–162. ISSN: 0167-
739X. DOI: 10.1016/j.future.2011.05.027. URL: http://dx.doi.org/10.1016/j.
future.2011.05.027 (cit. on p. 44).

[77] Bart Jacob et al. A practical guide to the IBM autonomic computing toolkit. 2004 (cit. on
p. 31).

[78] Virajith Jalaparti et al. “Bridging the Tenant-provider Gap in Cloud Services”. In: Proceed-
ings of the Third ACM Symposium on Cloud Computing. SoCC ’12. San Jose, California:
ACM, 2012, 10:1–10:14. ISBN: 978-1-4503-1761-0. DOI: 10.1145/2391229.2391239.
URL: http://doi.acm.org/10.1145/2391229.2391239 (cit. on pp. 106, 107).

[79] Jing Jiang et al. “Optimal Cloud Resource Auto-Scaling for Web Applications”. In: Clus-
ter, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium
on. 2013, pp. 58–65. DOI: 10.1109/CCGrid.2013.73 (cit. on p. 43).

[80] Joyent Cloud. URL: http://www.joyentcloud.com (visited on 03/17/2013) (cit. on p. 51).

[81] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Reinforcement Learn-
ing: A Survey”. In: J. Artif. Int. Res. 4.1 (May 1996), pp. 237–285. ISSN: 1076-9757. URL:
http://dl.acm.org/citation.cfm?id=1622737.1622748 (cit. on p. 36).

[82] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. “Adaptive Resource
Provisioning for Virtualized Servers Using Kalman Filters”. In: ACM Trans. Auton. Adapt.
Syst. 9.2 (July 2014), 10:1–10:35. ISSN: 1556-4665. DOI: 10.1145/2626290. URL: http:
//doi.acm.org/10.1145/2626290 (cit. on pp. 24, 43, 78).

[83] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. “Self-adaptive and
Self-configured CPU Resource Provisioning for Virtualized Servers Using Kalman Fil-
ters”. In: Proceedings of the 6th International Conference on Autonomic Computing.
ICAC ’09. Barcelona, Spain: ACM, 2009, pp. 117–126. ISBN: 978-1-60558-564-2. DOI:
10.1145/1555228.1555261. URL: http://doi.acm.org/10.1145/1555228.1555261
(cit. on pp. 40, 58, 78, 87).

[84] David G Kendall. “Stochastic processes occurring in the theory of queues and their anal-
ysis by the method of the imbedded Markov chain”. In: The Annals of Mathematical
Statistics (1953), pp. 338–354 (cit. on p. 41).

123

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/CCGrid.2013.48
https://doi.org/10.1007/978-3-642-10665-1_22
https://doi.org/10.1007/978-3-642-10665-1_22
http://dx.doi.org/10.1007/978-3-642-10665-1_22
https://doi.org/10.1147/JRD.2011.2167775
https://doi.org/10.1147/JRD.2011.2167775
https://doi.org/10.1016/j.future.2011.05.027
http://dx.doi.org/10.1016/j.future.2011.05.027
http://dx.doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.1145/2391229.2391239
http://doi.acm.org/10.1145/2391229.2391239
https://doi.org/10.1109/CCGrid.2013.73
http://www.joyentcloud.com
http://dl.acm.org/citation.cfm?id=1622737.1622748
https://doi.org/10.1145/2626290
http://doi.acm.org/10.1145/2626290
http://doi.acm.org/10.1145/2626290
https://doi.org/10.1145/1555228.1555261
http://doi.acm.org/10.1145/1555228.1555261


Bibliography

[85] Pawel Koperek and Wlodzimierz Funika. “Dynamic Business Metrics-driven Resource
Provisioning in Cloud Environments”. In: Parallel Processing and Applied Mathemat-
ics - 9th International Conference, PPAM 2011, Torun, Poland, September 11-14, 2011.
Revised Selected Papers, Part II. Ed. by Roman Wyrzykowski et al. Vol. 7204. Lecture
Notes in Computer Science. Springer, 2011, pp. 171–180. ISBN: 978-3-642-31499-5. DOI:
10.1007/978-3-642-31500-8_18. URL: http://dx.doi.org/10.1007/978-3-642-
31500-8_18 (cit. on pp. 31, 34, 35).

[86] R. Matthew Kretchmar. “Parallel Reinforcement Learning”. In: In The 6th World Confer-
ence on Systemics, Cybernetics, and Informatics. 2002 (cit. on p. 65).

[87] Gautam Kumar et al. “A Case for Performance-centric Network Allocation”. In: Proceed-
ings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing. HotCloud’12.
Boston, MA: USENIX Association, 2012, pp. 9–9. URL: http://dl.acm.org/citation.
cfm?id=2342763.2342772 (cit. on pp. 21, 93, 95, 98).

[88] Sajib Kundu et al. “Modeling Virtualized Applications Using Machine Learning Tech-
niques”. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Exe-
cution Environments. VEE ’12. London, England, UK: ACM, 2012, pp. 3–14. ISBN: 978-
1-4503-1176-2. DOI: 10.1145/2151024.2151028. URL: http://doi.acm.org/10.1145/
2151024.2151028 (cit. on pp. 44, 87, 88).

[89] J Kupferman et al. “Scaling into the cloud,(2009)”. In: URL http://cs. ucsb. edu/˜ jkupfer-
man/docs/ScalingIntoTheClouds. pdf (available online accessed 29.01. 12) () (cit. on pp. 35,
93).

[90] Horacio Andrés Lagar-Cavilla et al. “SnowFlock: Rapid Virtual Machine Cloning for Cloud
Computing”. In: Proceedings of the 4th ACM European Conference on Computer Sys-
tems. EuroSys ’09. Nuremberg, Germany: ACM, 2009, pp. 1–12. ISBN: 978-1-60558-
482-9. DOI: 10.1145/1519065.1519067. URL: http://doi.acm.org/10.1145/1519065.
1519067 (cit. on p. 20).

[91] P. Lama and Xiaobo Zhou. “Autonomic Provisioning with Self-Adaptive Neural Fuzzy Con-
trol for End-to-end Delay Guarantee”. In: Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on.
2010, pp. 151–160. DOI: 10.1109/MASCOTS.2010.24 (cit. on p. 40).

[92] Palden Lama and Xiaobo Zhou. “AROMA: Automated Resource Allocation and Config-
uration of Mapreduce Environment in the Cloud”. In: Proceedings of the 9th Interna-
tional Conference on Autonomic Computing. ICAC ’12. San Jose, California, USA: ACM,
2012, pp. 63–72. ISBN: 978-1-4503-1520-3. DOI: 10.1145/2371536.2371547. URL: http:
//doi.acm.org/10.1145/2371536.2371547 (cit. on p. 44).

[93] Jingshan Li and Semyon M Meerkov. Production systems engineering. Springer Science
& Business Media, 2008 (cit. on p. 41).

[94] Min Li et al. “MRONLINE: MapReduce Online Performance Tuning”. In: Proceedings of
the 23rd International Symposium on High-performance Parallel and Distributed Com-
puting. HPDC ’14. Vancouver, BC, Canada: ACM, 2014, pp. 165–176. ISBN: 978-1-4503-
2749-7. DOI: 10 . 1145 / 2600212 . 2600229. URL: http : / / doi . acm . org / 10 . 1145 /
2600212.2600229 (cit. on pp. 22, 24).

[95] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. “Automated Control for Elastic
Storage”. In: Proceedings of the 7th International Conference on Autonomic Computing.
ICAC ’10. Washington, DC, USA: ACM, 2010, pp. 1–10. ISBN: 978-1-4503-0074-2. DOI:
10.1145/1809049.1809051. URL: http://doi.acm.org/10.1145/1809049.1809051
(cit. on pp. 35, 40, 94, 106).

124

https://doi.org/10.1007/978-3-642-31500-8_18
http://dx.doi.org/10.1007/978-3-642-31500-8_18
http://dx.doi.org/10.1007/978-3-642-31500-8_18
http://dl.acm.org/citation.cfm?id=2342763.2342772
http://dl.acm.org/citation.cfm?id=2342763.2342772
https://doi.org/10.1145/2151024.2151028
http://doi.acm.org/10.1145/2151024.2151028
http://doi.acm.org/10.1145/2151024.2151028
https://doi.org/10.1145/1519065.1519067
http://doi.acm.org/10.1145/1519065.1519067
http://doi.acm.org/10.1145/1519065.1519067
https://doi.org/10.1109/MASCOTS.2010.24
https://doi.org/10.1145/2371536.2371547
http://doi.acm.org/10.1145/2371536.2371547
http://doi.acm.org/10.1145/2371536.2371547
https://doi.org/10.1145/2600212.2600229
http://doi.acm.org/10.1145/2600212.2600229
http://doi.acm.org/10.1145/2600212.2600229
https://doi.org/10.1145/1809049.1809051
http://doi.acm.org/10.1145/1809049.1809051


Bibliography

[96] Harold C. Lim et al. “Automated Control in Cloud Computing: Challenges and Opportu-
nities”. In: Proceedings of the 1st Workshop on Automated Control for Datacenters and
Clouds. ACDC ’09. Barcelona, Spain: ACM, 2009, pp. 13–18. ISBN: 978-1-60558-585-7.
DOI: 10.1145/1555271.1555275. URL: http://doi.acm.org/10.1145/1555271.
1555275 (cit. on p. 40).

[97] Bin Lin and Peter A. Dinda. “VSched: Mixing Batch And Interactive Virtual Machines
Using Periodic Real-time Scheduling”. In: Proceedings of the 2005 ACM/IEEE Confer-
ence on Supercomputing. SC ’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 8–. ISBN: 1-59593-061-2. DOI: 10.1109/SC.2005.80. URL: http://dx.doi.org/10.
1109/SC.2005.80 (cit. on pp. 58, 59).

[98] Jie Liu et al. “The Data Furnace: Heating Up with Cloud Computing”. In: Proceedings of
the 3rd USENIX Conference on Hot Topics in Cloud Computing. HotCloud’11. Portland,
OR: USENIX Association, 2011, pp. 15–15. URL: http://dl.acm.org/citation.cfm?
id=2170444.2170459 (cit. on p. 95).

[99] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano. “Comparison of
Auto-scaling Techniques for Cloud Environments”. In: Actas de las XXIV Jornadas de
Paralelismo. Ed. by Guillermo Botella y Alberto A. Del Barrio. Servicio de Publicaciones.
Universidad Complutense de Madrid, 2013. ISBN: 978-84-695-8330-2 (cit. on p. 36).

[100] Marissa Mayer. “In search of a better, faster, stronger web”. In: Proc. Velocity (2009)
(cit. on pp. 23, 33).

[101] Microsoft Azure Services. URL: http://azure.microsoft.com (visited on 02/14/2015)
(cit. on p. 17).

[102] Murtaza Motiwala et al. “Path Splicing”. In: Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication. SIGCOMM ’08. Seattle, WA, USA: ACM, 2008,
pp. 27–38. ISBN: 978-1-60558-175-0. DOI: 10.1145/1402958.1402963. URL: http://
doi.acm.org/10.1145/1402958.1402963 (cit. on p. 21).

[103] Moving ahead with Hadoop YARN. URL: http : / / www . ibm . com / developerworks /
library/bd-hadoopyarn/ (visited on 01/30/2015) (cit. on p. 96).

[104] Derek G. Murray et al. “CIEL: A Universal Execution Engine for Distributed Data-flow
Computing”. In: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation. NSDI’11. Boston, MA: USENIX Association, 2011, pp. 113–
126. URL: http://dl.acm.org/citation.cfm?id=1972457.1972470 (cit. on p. 102).

[105] Mohamed N. Bennani and Daniel A. Menasce. “Resource Allocation for Autonomic Data
Centers Using Analytic Performance Models”. In: Proceedings of the Second Interna-
tional Conference on Automatic Computing. ICAC ’05. Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 229–240. ISBN: 0-7965-2276-9. DOI: 10.1109/ICAC.2005.50.
URL: http://dx.doi.org/10.1109/ICAC.2005.50 (cit. on p. 43).

[106] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. “Q-clouds: Managing Performance
Interference Effects for QoS-aware Clouds”. In: Proceedings of the 5th European Con-
ference on Computer Systems. EuroSys ’10. Paris, France: ACM, 2010, pp. 237–250.
ISBN: 978-1-60558-577-2. DOI: 10.1145/1755913.1755938. URL: http://doi.acm.org/
10.1145/1755913.1755938 (cit. on pp. 26, 40).

[107] Hiep Nguyen et al. “AGILE: Elastic Distributed Resource Scaling for Infrastructure-as-
a-Service”. In: Proceedings of the 10th International Conference on Autonomic Com-
puting (ICAC 13). San Jose, CA: USENIX, 2013, pp. 69–82. ISBN: 978-1-931971-02-
7. URL: https : / / www . usenix . org / conference / icac13 / technical - sessions /
presentation/nguyen (cit. on pp. 20, 44).

125

https://doi.org/10.1145/1555271.1555275
http://doi.acm.org/10.1145/1555271.1555275
http://doi.acm.org/10.1145/1555271.1555275
https://doi.org/10.1109/SC.2005.80
http://dx.doi.org/10.1109/SC.2005.80
http://dx.doi.org/10.1109/SC.2005.80
http://dl.acm.org/citation.cfm?id=2170444.2170459
http://dl.acm.org/citation.cfm?id=2170444.2170459
http://azure.microsoft.com
https://doi.org/10.1145/1402958.1402963
http://doi.acm.org/10.1145/1402958.1402963
http://doi.acm.org/10.1145/1402958.1402963
http://www.ibm.com/developerworks/library/bd-hadoopyarn/
http://www.ibm.com/developerworks/library/bd-hadoopyarn/
http://dl.acm.org/citation.cfm?id=1972457.1972470
https://doi.org/10.1109/ICAC.2005.50
http://dx.doi.org/10.1109/ICAC.2005.50
https://doi.org/10.1145/1755913.1755938
http://doi.acm.org/10.1145/1755913.1755938
http://doi.acm.org/10.1145/1755913.1755938
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen


Bibliography

[108] Pradeep Padala et al. “Adaptive Control of Virtualized Resources in Utility Computing En-
vironments”. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007. EuroSys ’07. Lisbon, Portugal: ACM, 2007, pp. 289–302.
ISBN: 978-1-59593-636-3. DOI: 10.1145/1272996.1273026. URL: http://doi.acm.org/
10.1145/1272996.1273026 (cit. on pp. 31, 32, 39, 40, 58, 63, 78, 87).

[109] Pradeep Padala et al. “Automated Control of Multiple Virtualized Resources”. In: Pro-
ceedings of the 4th ACM European Conference on Computer Systems. EuroSys ’09.
Nuremberg, Germany: ACM, 2009, pp. 13–26. ISBN: 978-1-60558-482-9. DOI: 10.1145/
1519065.1519068. URL: http://doi.acm.org/10.1145/1519065.1519068 (cit. on
pp. 26, 40, 72, 87).

[110] Sankaralingam Panneerselvam and Michael M. Swift. “Chameleon: Operating System
Support for Dynamic Processors”. In: Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming Languages and Operating Systems.
ASPLOS XVII. London, England, UK: ACM, 2012, pp. 99–110. ISBN: 978-1-4503-0759-8.
DOI: 10.1145/2150976.2150988. URL: http://doi.acm.org/10.1145/2150976.
2150988 (cit. on pp. 21, 50).

[111] Sang-Min Park and Marty Humphrey. “Self-Tuning Virtual Machines for Predictable eScience”.
In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid. CCGRID ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 356–363. ISBN: 978-0-7695-3622-4. DOI: 10.1109/CCGRID.2009.84. URL: http:
//dx.doi.org/10.1109/CCGRID.2009.84 (cit. on p. 43).

[112] Tharindu Patikirikorala and Alan Colman. “Feedback controllers in the cloud”. In: Pro-
ceedings of APSEC. 2010 (cit. on p. 39).

[113] Profitbricks IaaS provider. URL: http://www.profitbricks.com (visited on 03/22/2013)
(cit. on pp. 26, 63).

[114] Do Le Quoc, Lenar Yazdanov, and Christof Fetzer. “DoLen: User-Side Multi-cloud Ap-
plication Monitoring”. In: Proceedings of the 2014 International Conference on Future
Internet of Things and Cloud. FICLOUD ’14. Washington, DC, USA: IEEE Computer So-
ciety, 2014, pp. 76–81. ISBN: 978-1-4799-4357-9. DOI: 10.1109/FiCloud.2014.22. URL:
http://dx.doi.org/10.1109/FiCloud.2014.22 (cit. on p. 101).

[115] Barath Raghavan et al. “Cloud Control with Distributed Rate Limiting”. In: Proceedings
of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. SIGCOMM ’07. Kyoto, Japan: ACM, 2007, pp. 337–348.
ISBN: 978-1-59593-713-1. DOI: 10.1145/1282380.1282419. URL: http://doi.acm.org/
10.1145/1282380.1282419 (cit. on p. 21).

[116] Jia Rao et al. “A Distributed Self-Learning Approach for Elastic Provisioning of Virtualized
Cloud Resources”. In: Modeling, Analysis Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2011 IEEE 19th International Symposium on. 2011, pp. 45–
54. DOI: 10.1109/MASCOTS.2011.47 (cit. on pp. 34, 35, 37, 38, 63, 64, 73, 77, 78, 84).

[117] Jia Rao et al. “DynaQoS: Model-free self-tuning fuzzy control of virtualized resources for
QoS provisioning”. In: Quality of Service (IWQoS), 2011 IEEE 19th International Work-
shop on. 2011, pp. 1–9. DOI: 10.1109/IWQOS.2011.5931341 (cit. on pp. 40, 41, 77).

[118] Jia Rao et al. “VCONF: A Reinforcement Learning Approach to Virtual Machines Auto-
configuration”. In: Proceedings of the 6th International Conference on Autonomic Com-
puting. ICAC ’09. Barcelona, Spain: ACM, 2009, pp. 137–146. ISBN: 978-1-60558-564-2.
DOI: 10.1145/1555228.1555263. URL: http://doi.acm.org/10.1145/1555228.
1555263 (cit. on pp. 33, 37, 38, 44, 63, 64, 77, 87, 88).

126

https://doi.org/10.1145/1272996.1273026
http://doi.acm.org/10.1145/1272996.1273026
http://doi.acm.org/10.1145/1272996.1273026
https://doi.org/10.1145/1519065.1519068
https://doi.org/10.1145/1519065.1519068
http://doi.acm.org/10.1145/1519065.1519068
https://doi.org/10.1145/2150976.2150988
http://doi.acm.org/10.1145/2150976.2150988
http://doi.acm.org/10.1145/2150976.2150988
https://doi.org/10.1109/CCGRID.2009.84
http://dx.doi.org/10.1109/CCGRID.2009.84
http://dx.doi.org/10.1109/CCGRID.2009.84
http://www.profitbricks.com
https://doi.org/10.1109/FiCloud.2014.22
http://dx.doi.org/10.1109/FiCloud.2014.22
https://doi.org/10.1145/1282380.1282419
http://doi.acm.org/10.1145/1282380.1282419
http://doi.acm.org/10.1145/1282380.1282419
https://doi.org/10.1109/MASCOTS.2011.47
https://doi.org/10.1109/IWQOS.2011.5931341
https://doi.org/10.1145/1555228.1555263
http://doi.acm.org/10.1145/1555228.1555263
http://doi.acm.org/10.1145/1555228.1555263


Bibliography

[119] Charles Reiss et al. “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis”. In: Proceedings of the Third ACM Symposium on Cloud Computing. SoCC
’12. San Jose, California: ACM, 2012, 7:1–7:13. ISBN: 978-1-4503-1761-0. DOI: 10.1145/
2391229.2391236. URL: http://doi.acm.org/10.1145/2391229.2391236 (cit. on
pp. 17, 23, 43, 49, 50, 94).

[120] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. “Efficient Autoscaling in the Cloud
Using Predictive Models for Workload Forecasting”. In: Proceedings of the 2011 IEEE
4th International Conference on Cloud Computing. CLOUD ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 500–507. ISBN: 978-0-7695-4460-1. DOI: 10.1109/
CLOUD.2011.42. URL: http://dx.doi.org/10.1109/CLOUD.2011.42 (cit. on p. 40).

[121] RUBiS Online Auction System. URL: http://rubis.ow2.org (visited on 09/17/2011)
(cit. on pp. 54, 69, 79).

[122] Tudor-Ioan Salomie et al. “Application Level Ballooning for Efficient Server Consolida-
tion”. In: Proceedings of the 8th ACM European Conference on Computer Systems.
EuroSys ’13. Prague, Czech Republic: ACM, 2013, pp. 337–350. ISBN: 978-1-4503-1994-
2. DOI: 10.1145/2465351.2465384. URL: http://doi.acm.org/10.1145/2465351.
2465384 (cit. on p. 22).

[123] Scalr cloud management. URL: http://www.scalr.com/ (visited on 09/23/2014) (cit. on
pp. 49, 51).

[124] Malte Schwarzkopf et al. “Omega: Flexible, Scalable Schedulers for Large Compute
Clusters”. In: Proceedings of the 8th ACM European Conference on Computer Systems.
EuroSys ’13. Prague, Czech Republic: ACM, 2013, pp. 351–364. ISBN: 978-1-4503-1994-
2. DOI: 10.1145/2465351.2465386. URL: http://doi.acm.org/10.1145/2465351.
2465386 (cit. on pp. 17, 23, 49).

[125] Set up Autoscaling using Voting Tags. URL: http://support.rightscale.com/12-
Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_
using_Voting_Tags/index.html (visited on 04/12/2015) (cit. on pp. 35, 49, 51).

[126] Zhiming Shen et al. “CloudScale: Elastic Resource Scaling for Multi-tenant Cloud Sys-
tems”. In: Proceedings of the 2Nd ACM Symposium on Cloud Computing. SOCC ’11.
Cascais, Portugal: ACM, 2011, 5:1–5:14. ISBN: 978-1-4503-0976-9. DOI: 10.1145/2038916.
2038921. URL: http://doi.acm.org/10.1145/2038916.2038921 (cit. on pp. 22, 31, 34,
43, 44, 51, 58, 73, 87, 88).

[127] Rob Sherwood et al. “Carving Research Slices out of Your Production Networks with
OpenFlow”. In: SIGCOMM Comput. Commun. Rev. 40.1 (Jan. 2010), pp. 129–130. ISSN:
0146-4833. DOI: 10.1145/1672308.1672333. URL: http://doi.acm.org/10.1145/
1672308.1672333 (cit. on p. 21).

[128] Alan Shieh et al. “Sharing the Data Center Network”. In: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation. NSDI’11. Boston, MA:
USENIX Association, 2011, pp. 309–322. URL: http://dl.acm.org/citation.cfm?id=
1972457.1972489 (cit. on p. 25).

[129] Bogdan Solomon et al. “A Real-time Adaptive Control of Autonomic Computing Environ-
ments”. In: Proceedings of the 2007 Conference of the Center for Advanced Studies on
Collaborative Research. CASCON ’07. Richmond Hill, Ontario, Canada: IBM Corp., 2007,
pp. 124–136. DOI: 10.1145/1321211.1321225. URL: http://dx.doi.org/10.1145/
1321211.1321225 (cit. on p. 40).

127

https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
http://doi.acm.org/10.1145/2391229.2391236
https://doi.org/10.1109/CLOUD.2011.42
https://doi.org/10.1109/CLOUD.2011.42
http://dx.doi.org/10.1109/CLOUD.2011.42
http://rubis.ow2.org
https://doi.org/10.1145/2465351.2465384
http://doi.acm.org/10.1145/2465351.2465384
http://doi.acm.org/10.1145/2465351.2465384
http://www.scalr.com/
https://doi.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1145/2038916.2038921
http://doi.acm.org/10.1145/2038916.2038921
https://doi.org/10.1145/1672308.1672333
http://doi.acm.org/10.1145/1672308.1672333
http://doi.acm.org/10.1145/1672308.1672333
http://dl.acm.org/citation.cfm?id=1972457.1972489
http://dl.acm.org/citation.cfm?id=1972457.1972489
https://doi.org/10.1145/1321211.1321225
http://dx.doi.org/10.1145/1321211.1321225
http://dx.doi.org/10.1145/1321211.1321225


Bibliography

[130] Basem Suleiman et al. “Trade-Off Analysis of Elasticity Approaches for Cloud-Based
Business Applications”. In: Web Information Systems Engineering - WISE 2012 - 13th
International Conference, Paphos, Cyprus, November 28-30, 2012. Proceedings. Ed. by
Xiaoyang Sean Wang et al. Vol. 7651. Lecture Notes in Computer Science. Springer,
2012, pp. 468–482. ISBN: 978-3-642-35062-7. DOI: 10.1007/978-3-642-35063-4_34.
URL: http://dx.doi.org/10.1007/978-3-642-35063-4_34 (cit. on p. 35).

[131] Frezewd Lemma Tena, Thomas Knauth, and Christof Fetzer. “PowerCass: Energy Ef-
ficient, Consistent Hashing Based Storage for Micro Clouds Based Infrastructure”. In:
Proceedings of the 2014 IEEE International Conference on Cloud Computing. CLOUD
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 48–55. ISBN: 978-1-4799-
5063-8. DOI: 10.1109/CLOUD.2014.17. URL: http://dx.doi.org/10.1109/CLOUD.
2014.17 (cit. on p. 95).

[132] G. Tesauro et al. “A Hybrid Reinforcement Learning Approach to Autonomic Resource
Allocation”. In: Autonomic Computing, 2006. ICAC ’06. IEEE International Conference
on. 2006, pp. 65–73. DOI: 10.1109/ICAC.2006.1662383 (cit. on p. 37).

[133] Gerald Tesauro et al. “On the use of hybrid reinforcement learning for autonomic re-
source allocation”. In: Cluster Computing 10.3 (Sept. 2007), pp. 287–299. ISSN: 1386-
7857. DOI: 10.1007/s10586-007-0035-6. URL: http://dx.doi.org/10.1007/s10586-
007-0035-6 (cit. on p. 77).

[134] The IRCache Project. URL: http://www.ircache.net (visited on 09/17/2011) (cit. on
pp. 54, 71, 86).

[135] B. Urgaonkar et al. “Dynamic Provisioning of Multi-tier Internet Applications”. In: Auto-
nomic Computing, 2005. ICAC 2005. Proceedings. Second International Conference on.
2005, pp. 217–228. DOI: 10.1109/ICAC.2005.27 (cit. on p. 42).

[136] Bhuvan Urgaonkar et al. “Agile Dynamic Provisioning of Multi-tier Internet Applications”.
In: ACM Trans. Auton. Adapt. Syst. 3.1 (Mar. 2008), 1:1–1:39. ISSN: 1556-4665. DOI:
10.1145/1342171.1342172. URL: http://doi.acm.org/10.1145/1342171.1342172
(cit. on pp. 26, 42, 87, 88).

[137] Bhuvan Urgaonkar et al. “An analytical model for multi-tier internet services and its ap-
plications”. In: SIGMETRICS Perform. Eval. Rev. 33.1 (June 2005), pp. 291–302. ISSN:
0163-5999. DOI: 10.1145/1071690.1064252. URL: http://doi.acm.org/10.1145/
1071690.1064252 (cit. on p. 58).

[138] Luis Miguel Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. “Dynamically scaling
applications in the cloud”. In: Computer Communication Review 41.1 (2011), pp. 45–
52. DOI: 10.1145/1925861.1925869. URL: http://doi.acm.org/10.1145/1925861.
1925869 (cit. on p. 19).

[139] Venkatanathan Varadarajan et al. “Resource-freeing Attacks: Improve Your Cloud Perfor-
mance (at Your Neighbor’s Expense)”. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security. CCS ’12. Raleigh, North Carolina, USA: ACM,
2012, pp. 281–292. ISBN: 978-1-4503-1651-4. DOI: 10.1145/2382196.2382228. URL:
http://doi.acm.org/10.1145/2382196.2382228 (cit. on pp. 21, 26).

[140] Nedeljko Vasić et al. “DejaVu: Accelerating Resource Allocation in Virtualized Environ-
ments”. In: Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS XVII. London,
England, UK: ACM, 2012, pp. 423–436. ISBN: 978-1-4503-0759-8. DOI: 10.1145/2150976.
2151021. URL: http://doi.acm.org/10.1145/2150976.2151021 (cit. on pp. 33, 77).

128

https://doi.org/10.1007/978-3-642-35063-4_34
http://dx.doi.org/10.1007/978-3-642-35063-4_34
https://doi.org/10.1109/CLOUD.2014.17
http://dx.doi.org/10.1109/CLOUD.2014.17
http://dx.doi.org/10.1109/CLOUD.2014.17
https://doi.org/10.1109/ICAC.2006.1662383
https://doi.org/10.1007/s10586-007-0035-6
http://dx.doi.org/10.1007/s10586-007-0035-6
http://dx.doi.org/10.1007/s10586-007-0035-6
http://www.ircache.net
https://doi.org/10.1109/ICAC.2005.27
https://doi.org/10.1145/1342171.1342172
http://doi.acm.org/10.1145/1342171.1342172
https://doi.org/10.1145/1071690.1064252
http://doi.acm.org/10.1145/1071690.1064252
http://doi.acm.org/10.1145/1071690.1064252
https://doi.org/10.1145/1925861.1925869
http://doi.acm.org/10.1145/1925861.1925869
http://doi.acm.org/10.1145/1925861.1925869
https://doi.org/10.1145/2382196.2382228
http://doi.acm.org/10.1145/2382196.2382228
https://doi.org/10.1145/2150976.2151021
https://doi.org/10.1145/2150976.2151021
http://doi.acm.org/10.1145/2150976.2151021


Bibliography

[141] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: Yet Another Resource Negotia-
tor”. In: Proceedings of the 4th Annual Symposium on Cloud Computing. SOCC ’13.
Santa Clara, California: ACM, 2013, 5:1–5:16. ISBN: 978-1-4503-2428-1. DOI: 10.1145/
2523616.2523633. URL: http://doi.acm.org/10.1145/2523616.2523633 (cit. on
pp. 94, 96).

[142] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. “ARIA: Automatic Re-
source Inference and Allocation for Mapreduce Environments”. In: Proceedings of the
8th ACM International Conference on Autonomic Computing. ICAC ’11. Karlsruhe, Ger-
many: ACM, 2011, pp. 235–244. ISBN: 978-1-4503-0607-2. DOI: 10 . 1145 / 1998582 .
1998637. URL: http://doi.acm.org/10.1145/1998582.1998637 (cit. on p. 107).

[143] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In: Pro-
ceedings of the European Conference on Computer Systems (EuroSys). Bordeaux, France,
2015 (cit. on pp. 17, 22, 23, 25, 33, 49).

[144] Daniel Villela, Prashant Pradhan, and Dan Rubenstein. “Provisioning Servers in the Appli-
cation Tier for e-Commerce Systems”. In: ACM Trans. Internet Technol. 7.1 (Feb. 2007).
ISSN: 1533-5399. DOI: 10.1145/1189740.1189747. URL: http://doi.acm.org/10.
1145/1189740.1189747 (cit. on p. 42).

[145] Carl A. Waldspurger. “Memory Resource Management in VMware ESX Server”. In:
SIGOPS Oper. Syst. Rev. 36.SI (Dec. 2002), pp. 181–194. ISSN: 0163-5980. DOI: 10.
1145/844128.844146. URL: http://doi.acm.org/10.1145/844128.844146 (cit. on
p. 21).

[146] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. “The Xen-Blanket: Virtualize
Once, Run Everywhere”. In: Proceedings of the 7th ACM European Conference on
Computer Systems. EuroSys ’12. Bern, Switzerland: ACM, 2012, pp. 113–126. ISBN:
978-1-4503-1223-3. DOI: 10.1145/2168836.2168849. URL: http://doi.acm.org/10.
1145/2168836.2168849 (cit. on p. 20).

[147] Timothy Wood et al. “Black-box and Gray-box Strategies for Virtual Machine Migration”.
In: Proceedings of the 4th USENIX Conference on Networked Systems Design and Im-
plementation. NSDI’07. Cambridge, MA: USENIX Association, 2007, pp. 17–17. URL:
http://dl.acm.org/citation.cfm?id=1973430.1973447 (cit. on p. 20).

[148] Timothy Wood et al. “CloudNet: Dynamic Pooling of Cloud Resources by Live WAN Mi-
gration of Virtual Machines”. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments. VEE ’11. Newport Beach, Califor-
nia, USA: ACM, 2011, pp. 121–132. ISBN: 978-1-4503-0687-4. DOI: 10.1145/1952682.
1952699. URL: http://doi.acm.org/10.1145/1952682.1952699 (cit. on pp. 93, 95).

[149] Di Xie et al. “The Only Constant is Change: Incorporating Time-varying Network Reser-
vations in Data Centers”. In: Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication.
SIGCOMM ’12. Helsinki, Finland: ACM, 2012, pp. 199–210. ISBN: 978-1-4503-1419-0.
DOI: 10.1145/2342356.2342397. URL: http://doi.acm.org/10.1145/2342356.
2342397 (cit. on pp. 94, 107).

[150] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. “URL: A Unified Reinforcement Learning
Approach for Autonomic Cloud Management”. In: J. Parallel Distrib. Comput. 72.2 (Feb.
2012), pp. 95–105. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2011.10.003. URL: http:
//dx.doi.org/10.1016/j.jpdc.2011.10.003 (cit. on pp. 37, 38).

[151] Jing Xu et al. “On the Use of Fuzzy Modeling in Virtualized Data Center Management”.
In: Autonomic Computing, 2007. ICAC ’07. Fourth International Conference on. 2007,
pp. 25–25. DOI: 10.1109/ICAC.2007.28 (cit. on pp. 40, 41).

129

https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633
https://doi.org/10.1145/1998582.1998637
https://doi.org/10.1145/1998582.1998637
http://doi.acm.org/10.1145/1998582.1998637
https://doi.org/10.1145/1189740.1189747
http://doi.acm.org/10.1145/1189740.1189747
http://doi.acm.org/10.1145/1189740.1189747
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
http://doi.acm.org/10.1145/844128.844146
https://doi.org/10.1145/2168836.2168849
http://doi.acm.org/10.1145/2168836.2168849
http://doi.acm.org/10.1145/2168836.2168849
http://dl.acm.org/citation.cfm?id=1973430.1973447
https://doi.org/10.1145/1952682.1952699
https://doi.org/10.1145/1952682.1952699
http://doi.acm.org/10.1145/1952682.1952699
https://doi.org/10.1145/2342356.2342397
http://doi.acm.org/10.1145/2342356.2342397
http://doi.acm.org/10.1145/2342356.2342397
https://doi.org/10.1016/j.jpdc.2011.10.003
http://dx.doi.org/10.1016/j.jpdc.2011.10.003
http://dx.doi.org/10.1016/j.jpdc.2011.10.003
https://doi.org/10.1109/ICAC.2007.28


Bibliography

[152] Lenar Yazdanov and Christof Fetzer. “Lightweight Automatic Resource Scaling for Multi-
tier Web Applications”. In: Proceedings of the 2014 IEEE International Conference on
Cloud Computing. CLOUD ’14. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 466–473. ISBN: 978-1-4799-5063-8. DOI: 10 . 1109 / CLOUD . 2014 . 69. URL: http :
//dx.doi.org/10.1109/CLOUD.2014.69 (cit. on pp. 34, 75).

[153] Lenar Yazdanov and Christof Fetzer. “Vertical Scaling for Prioritized VMs Provisioning”.
In: Proceedings of the 2012 Second International Conference on Cloud and Green Com-
puting. CGC ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 118–125.
ISBN: 978-0-7695-4864-7. DOI: 10.1109/CGC.2012.108. URL: http://dx.doi.org/10.
1109/CGC.2012.108 (cit. on pp. 22, 25, 47).

[154] Lenar Yazdanov and Christof Fetzer. “VScaler: Autonomic Virtual Machine Scaling”. In:
Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing.
CLOUD ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 212–219. ISBN:
978-0-7695-5028-2. DOI: 10.1109/CLOUD.2013.142. URL: http://dx.doi.org/10.
1109/CLOUD.2013.142 (cit. on pp. 33, 34, 61).

[155] Lenar Yazdanov, Maxim Gorbunov, and Christof Fetzer. “EHadoop: Network I/O Aware
Scheduler for Elastic MapReduce Cluster”. In: Cloud Computing (CLOUD), 2015 IEEE
8th International Conference on. 2015, pp. 821–828. DOI: 10.1109/CLOUD.2015.113
(cit. on p. 91).

[156] Matei Zaharia et al. “Delay Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling”. In: Proceedings of the 5th European Conference on
Computer Systems. EuroSys ’10. Paris, France: ACM, 2010, pp. 265–278. ISBN: 978-1-
60558-577-2. DOI: 10.1145/1755913.1755940. URL: http://doi.acm.org/10.1145/
1755913.1755940 (cit. on pp. 25, 102).

[157] Matei Zaharia et al. “Improving MapReduce Performance in Heterogeneous Environ-
ments”. In: Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation. OSDI’08. San Diego, California: USENIX Association, 2008, pp. 29–
42. URL: http://dl.acm.org/citation.cfm?id=1855741.1855744 (cit. on p. 77).

[158] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. “A Regression-Based Analytic Model
for Dynamic Resource Provisioning of Multi-Tier Applications”. In: Proceedings of the
Fourth International Conference on Autonomic Computing. ICAC ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 27–. ISBN: 0-7695-2779-5. DOI: 10.1109/ICAC.
2007.1. URL: http://dx.doi.org/10.1109/ICAC.2007.1 (cit. on pp. 42, 58, 87, 88).

[159] Wei Zheng et al. “JustRunIt: Experiment-based Management of Virtualized Data Cen-
ters”. In: Proceedings of the 2009 Conference on USENIX Annual Technical Conference.
USENIX’09. San Diego, California: USENIX Association, 2009, pp. 18–18. URL: http:
//dl.acm.org/citation.cfm?id=1855807.1855825 (cit. on pp. 33, 77).

[160] Xiaoyun Zhu et al. “What Does Control Theory Bring to Systems Research?” In: SIGOPS
Oper. Syst. Rev. 43.1 (Jan. 2009), pp. 62–69. ISSN: 0163-5980. DOI: 10.1145/1496909.
1496922. URL: http://doi.acm.org/10.1145/1496909.1496922 (cit. on pp. 39, 40).

130

https://doi.org/10.1109/CLOUD.2014.69
http://dx.doi.org/10.1109/CLOUD.2014.69
http://dx.doi.org/10.1109/CLOUD.2014.69
https://doi.org/10.1109/CGC.2012.108
http://dx.doi.org/10.1109/CGC.2012.108
http://dx.doi.org/10.1109/CGC.2012.108
https://doi.org/10.1109/CLOUD.2013.142
http://dx.doi.org/10.1109/CLOUD.2013.142
http://dx.doi.org/10.1109/CLOUD.2013.142
https://doi.org/10.1109/CLOUD.2015.113
https://doi.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=1855741.1855744
https://doi.org/10.1109/ICAC.2007.1
https://doi.org/10.1109/ICAC.2007.1
http://dx.doi.org/10.1109/ICAC.2007.1
http://dl.acm.org/citation.cfm?id=1855807.1855825
http://dl.acm.org/citation.cfm?id=1855807.1855825
https://doi.org/10.1145/1496909.1496922
https://doi.org/10.1145/1496909.1496922
http://doi.acm.org/10.1145/1496909.1496922


LISTS OF FIGURES, TABLES AND
ALGORITHMS

131





List of Figures

LIST OF FIGURES

1 Structure of scaling rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Summary of the Available Mechanisms for Holistic Application Scalability by Va-

quero, Rodero-Merino, and Buyya [138] . . . . . . . . . . . . . . . . . . . . . . . 19
3 StaticVM vs ElasticVM: Throughput and response time comparison reported by

Dawoud, Takouna, and Meinel [39] . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1 Impact of monitoring interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Standard feedback control loop Picture from [160] . . . . . . . . . . . . . . . . . 39
3 Queuing model from [93] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Queuing network from [53] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1 Overhead of different scaling types . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2 Elasticity controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 CPU demand of the RUBiS web server . . . . . . . . . . . . . . . . . . . . . . . 55
4 AR model prediction error(ek ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Web server response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 Total resource usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7 Web server response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8 Web server response time from 100 to 500 seconds . . . . . . . . . . . . . . . . 57
9 Hadoop execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1 Markov Decision Process with 5 states and 4 actions . . . . . . . . . . . . . . . 66
2 Architecture of VScaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3 Transitions learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Application 95% response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 Average costs: Standard RL vs VScaler RL. The greater size of VM in terms of

CPU and memory, the greater the cost . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Amount of allocated CPU power . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7 Amount of allocated memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8 95th percentile response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1 MRT vs CPU entitlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2 MRT vs CPU utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3 WS memory utilization vs CPU entitlement . . . . . . . . . . . . . . . . . . . . . 80
4 DB memory usage vs WS CPU entitlement . . . . . . . . . . . . . . . . . . . . . 80
5 DB CPU utilization vs WS CPU entitlement . . . . . . . . . . . . . . . . . . . . . 81
6 MRT vs memory utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7 Swap rate vs memory utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8 Effect DB CPU entitlement on WS memory usage . . . . . . . . . . . . . . . . . 82
9 VscalerLight implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10 Threshold based policy: with and w/o performance feedback . . . . . . . . . . . 86
11 Threshold based policy: average resource utilization . . . . . . . . . . . . . . . . 86
12 Response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
13 95% response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
14 Average resource utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1 Impact of increased parallelism: Job completion time (solid line) and Total con-
tainer time(dashed line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2 Job execution waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Total container time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 Reduce phase total container time . . . . . . . . . . . . . . . . . . . . . . . . . . 96

133



Lists of Figures, Tables and Algorithms

5 Job completion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6 EMR cluster data transfer bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . 98
7 Sort: reduce task resource usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8 Sort: map task resource usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9 ElasticYARN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10 Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11 Hive aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12 Wordcount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
13 Total container time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
14 Total job time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
15 Wordcount completion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
16 Hive join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
17 Cross-cloud deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
18 Inter-cloud deployment: container CPU utilization . . . . . . . . . . . . . . . . . . 106
19 Cross-cloud deployment: container CPU utilization . . . . . . . . . . . . . . . . . 106

134



List of Algorithms

LIST OF ALGORITHMS

1 Scaling up/out and scaling down/in rules . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Q-learning(π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Agent learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Choose next action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Agent learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6 Choose next action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Job containers scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

135




	Title page
	Abstract
	Contents
	Introduction
	1.1 Motivation
	1.2 Thesis outline

	Background
	2.1 Introduction
	2.2 Scaling types
	2.2.1 Horizontal scaling
	2.2.2 Vertical scaling

	2.3 Workloads
	2.4 Cloud trends
	2.5 Summary

	Auto-scaling system
	3.1 Introduction
	3.2 Auto-scaling process
	3.3 System identification
	3.4 Auto-scaling techniques
	3.4.1 Threshold based scaling
	3.4.2 Reinforcement learning
	3.4.3 Control theory
	3.4.4 Queuing theory
	3.4.5 Time series

	3.5 Summary

	Vertical scaling for prioritized VMs provisioning
	4.1 Introduction
	4.2 Design rationale
	4.3 Controller architecture
	4.4 Evaluation
	4.4.1 Single VM scaling
	4.4.2 Prioritized VMs scaling

	4.5 Discussion
	4.6 Related work
	4.7 Conclusion

	Autonomic Virtual Machine Scaling
	5.1 Introduction
	5.2 Motivation
	5.3 Parallel learning with assumption
	5.4 VScaler design
	5.5 Evaluation
	5.5.1 Convergence speedup
	5.5.2 Real world scenario

	5.6 Related work
	5.7 Conclusion

	Autonomic Multi-tier application Scaling
	6.1 Introduction
	6.2 Motivation
	6.3 System identification
	6.3.1 CPU usage and performance
	6.3.2 Memory usage and performance
	6.3.3 Cluster wide correlation

	6.4 Controller architecture
	6.4.1 Overview
	6.4.2 MDP design solutions
	6.4.3 Initializing Q-learning
	6.4.4 Model learning and exploitation

	6.5 Evaluation
	6.6 Related work
	6.7 Conclusion

	I/O aware elastic MapReduce cluster scaling
	7.1 Introduction
	7.2 Motivation
	7.3 Background
	7.3.1 MapReduce slowstart parameter
	7.3.2 Anatomy of MapReduce job
	7.3.3 Anatomy of Linux network stack

	7.4 Approach
	7.5 System architecture
	7.5.1 Overview
	7.5.2 Job profile collection
	7.5.3 Job resource allocation

	7.6 Evaluation
	7.6.1 Bandwidth cap estimation
	7.6.2 Runtime cluster resizing

	7.7 Related work
	7.8 Conclusion

	Conclusion
	8.1 Vertical scaling for prioritized VMs provisioning
	8.1.1 Future work

	8.2 Reinforcement learning based techniques
	8.2.1 Autonomic Virtual Machine Scaling
	8.2.2 Autonomic Multi-tier application Scaling
	8.2.3 Future work

	8.3 Elastic mapreduce cluster scaling
	8.3.1 Future work


	Bibliography
	Lists of Figures, Tables and Algorithms
	List of Figures
	List of Algorithms


