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directores de ésta no incurre en las causas de abstención establecidas en Ley 40/2015.

En Santiago de Compostela, 19 de December de 2019
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Summary

One of the significant shift of next-generation computing technologies will certainly be in the
development of Big Data (BD) platforms. This trend results in a wide range of revolutionary
and state-of-the-art enhancements within the data science. Apache Hadoop, the BD landmark,
evolved as a widely deployed large-scale data operating system. In principle, Hadoop is
designed to utilize clusters of commodity machines. Over the years, the model was ported
to be compatible with different types of architecture and paradigms. Its new features include
federation configuration to provide Hadoop with the maturity to serve different markets.

This dissertation focuses on the architectural elements of the BD processing frameworks
and focusing on the scalability aspects to improve its performance and security. We propose a
hybrid BD execution environment (called EME) that keeps spawning a containerized DataN-
odes for the benefit of BD applications. A dynamic provisioning scheduler (called OPERA) is
presented to take advantage of the underutilized on-premise and cloud resources. The results
demonstrate that OPERA has immense potential as it significantly decreases the time of exe-
cution up to 74% for CPU bound jobs (as in the PiEst benchmark), and up to 26% for HDFS
bound jobs (as in the wordcount benchmark) compared with a native Hadoop cluster. Also, the
privacy and security of BD architectures are discussed as a significant concern among prac-
titioners. A BD federation single-sign-on authentication module and a novel access broker
framework are introduced. Experimental results demonstrate the efficiency of the proposed
access broker with only 1% impact on the Hadoop performance compared with a non-secure
one. Finally, a modern secure case of study regarding data streaming of edge nodes to the
clouds in vehicular clouds is explained to validate the thesis findings.

Keywords: Big Data, Cloud Computing, Internet of Things, Resource Management, Se-
curity and Privacy, Access Control, Performance Optimization, Docker Containers.





Resumen

Uno de los cambios significativos de las tecnologı́as de computación de próxima generación
será, sin duda, el desarrollo de las plataformas Big Data (BD). Esta tendencia da como re-
sultado una amplia gama de mejoras revolucionarias y vanguardistas dentro de la ciencia de
datos. Apache Hadoop, punto de referencia de BD, evolucionó como un sistema operativo de
datos a gran escala ampliamente desplegado. Hadoop está diseñado para utilizar clusters de
máquinas de propósito general. A lo largo de los años, el modelo fue adaptado para ser com-
patible con diferentes tipos de arquitectura y paradigmas. Sus nuevas caracterı́sticas incluyen
la configuración de federación para proporcionarle madurez para servir a diferentes mercados.

Esta tesis se centra en los elementos arquitectónicos de las estructuras de procesamiento
de BD y en los aspectos de escalabilidad. Proponemos un entorno hı́brido de ejecución de
BD (llamado EME) que sigue generando un DataNode contenedorizado para el beneficio de
las aplicaciones BD. Se presenta un programador de aprovisionamiento dinámico (llamado
OPERA) para aprovechar los recursos infrautilizados en entorno local y en la nube. Los
resultados demuestran que OPERA tiene un inmenso potencial, ya que reduce significativa-
mente el tiempo de ejecución hasta un 74% para los trabajos vinculados a la CPU (como en el
benchmark PiEst), y hasta un 26% para los trabajos vinculados a HDFS (como en el bench-
mark Wordcount) comparado con un grupo nativo de Hadoop. Además, la privacidad y la
seguridad de las arquitecturas de BD se trata como una preocupación significativa entre los
profesionales. Se introduce un módulo de autenticación de inicio de sesión único de la fed-
eración BD y un nuevo marco de trabajo de broker de acceso. Los resultados experimentales
demuestran la eficiencia del broker de acceso propuesto, con un impacto de sólo el 1% en el
rendimiento de Hadoop en comparación con un broker no seguro. Finalmente, se explica un
caso de estudio moderno y seguro sobre la transmisión de datos de los nodos de borde a las
nubes en nubes vehiculares para validar los resultados de esta tesis.
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Hoy en dı́a, la industria y el mundo académico están impulsados por tecnologı́as como el
Big Data (BD), y entre sus usos se incluye la adaptación de aplicaciones de alta productividad
para superar los desafı́os en múltiples disciplinas. Esta amplia heterogeneidad de aplicaciones
depende de los recursos informáticos para procesar sus trabajos y ofrecer el servicio de forma
eficiente. Apache Hadoop, es un paradigma prominente que combina nodos de computación
a gran escala para construir un entorno analı́tico, por ejemplo, para el procesamiento y alma-
cenamiento BD, tanto en bases de datos locales como en la nube. Este estudio tiene como ob-
jetivo analizar y caracterizar los factores más crı́ticos de la eficiencia de las arquitecturas para
el despliegue de entornos BD sostenibles. Concretamente, hemos puesto nuestra atención en
evaluar las caracterı́sticas de escalabilidad y seguridad de los sistemas BD basados en Hadoop,
ası́ como a diseñar soluciones novedosas para sus limitaciones actuales. Las dos preguntas
clave que se discuten en esta tesis con respecto a la optimización de la infraestructura de BD
(BDI) son (I) Cómo optimizar la escalabilidad de los recursos de BD con el aprovisionamiento
dinámico y elástico de recursos de bajo coste para aumentar la capacidad bajo demanda con
el objetivo de mejorar el rendimiento general, y (II) Cómo mantener los clústeres de BD y
la privacidad de los datos dentro de las arquitecturas de despliegue local y las basadas en la
nube, utilizando un agente de control de acceso ligero y distribuido. La Tabla 1 resume los
desafı́os y problemas que estamos abordando con esta tesis.

Uno de los cambios tecnológicos más importantes de los sistemas informáticos actuales
ha surgido con las plataformas Big Data (BD). Esta tendencia ha dado lugar a una amplia
gama de mejoras revolucionarias y de última generación dentro de la ciencia de datos que han
dado lugar al novedoso concepto de Big Data as a Service (BDaaS). Apache Hadoop, una
de las principales aplicaciones BD, ha evolucionado como un sistema operativo de datos a
gran escala ampliamente desplegado. Las nuevas caracterı́sticas proporcionan a Hadoop 3.x
la madurez y aplicabilidad para servir a diferentes mercados. Sin embargo, el rendimiento y la
seguridad de estos sistemas siguen siendo las principales preocupaciones de los profesionales.
Estos problemas han llamado la atención de los investigadores en ciencias de la información
y de los responsables de la toma de decisiones. En esta propuesta de doctorado, pretende-
mos hacer frente a dos retos crı́ticos abiertos en las actuales arquitecturas de despliegue de
Big Data, que son la escalabilidad y la seguridad del sistema. Para ello, hemos empleado
la tecnologı́a de contenedorización y diseñado un robusto control de acceso dentro de una
arquitectura de recursos hı́brida (dedicada y no dedicada), que soporta la última plataforma
Hadoop 3.x. El estudio también pretende proponer tecnologı́as de integración para producir
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Table 1: Problemas abordados en este trabajo.

Num. Problem Description Type

1 Baja utilización de la mayorı́a de los computadores y clústeres
actuales.

Utilización

2 Particionamiento estático en el espacio fı́sico de una empresa. Flexibilidad
3 Ajuste estático del tamaño del cluster en el pico de utilización e

instalación de nuevos servidores para aumentar la productividad
bajo demanda.

Flexibilidad

4 TIncremento del gap entre las capacidades de computación y de
E/S en estaciones de trabajo para experimentos cientı́ficos.

Rendimiento

5 Dependencia en tenencia múltiple (por ejemplo, cloud com-
puting), lo que provoca muchos problemas como seguridad,
movimiento de datos, pérdida de rendimiento, etc.

Escalabilidad

6 Pérdida importante de ciclos de computación para la compro-
bación de middleware y aplicaciones que no están todavı́a en
producción.

Utilización

7 Necesidad de mejora del rendimiento con un coste mı́nimo de
despliegue.

Rendimiento.

8 Ejecución de un nuevo tipo de experimentos en los mismos re-
cursos con mı́nima configuración, manteniéndola extensible a
cualquier diseño previo.

Flexibilidad

9 Asegurar que usuarios y aplicaciones interactúen de forma se-
gura con funcionalidades principales del sistema y garantizando
el acceso a los datos a través del clúster.

Seguridad

10 Controlar la capacidad de una organización, individuo y sub-
componentes de un sistema sobre qué datos de un sistema BD
pueden ser compartidos con terceras partes.

Privacidad

un entorno hı́brido fiable y de bajo coste, que amplı́e el planificador de tareas de Hadoop, te-
niendo en cuenta los requisitos de calidad de servicio y seguridad. Por último, hemos evaluado
el diseño de la arquitectura propuesta comparandola con el sistema Hadoop actual mediante la
realización de una evaluación exhaustiva de su rendimiento y fiabilidad, tanto en los modelos
de implementación centralizada como en los modelos de despliegue en el borde.

Antecedentes:

El Big Data constituye un extenso conjunto de datos (Terabytes o Petabytes) que ha sido
creado o recopilado de muchas fuentes, incluyendo datos sociales, datos de máquinas y datos
transaccionales (por ejemplo, sensores inteligentes, experimentos cientı́ficos, medios sociales,
etc.). Se han presentado varias propuestas para gestionar, procesar y mantener estos conjun-
tos de datos masivos. Uno de los modelos de programación más importante en lo que se ha
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dado en llamar procesamiento intensivo de datos es el modelo MapReduce. Esta sección pre-
senta información básica sobre computación intensiva en datos, el modelo de programación
MapReduce y los sistemas de computación voluntaria, junto con el trabajo relacionado desar-
rollado en esta tesis.

• Computación intensiva en datos.

La computación intensiva en datos es una subclase del conjunto de aplicaciones de
computación paralela, cuyo objetivo es procesar grandes volúmenes de datos (normal-
mente terabytes o petabytes). Con el fin de gestionar estas tareas, se utiliza un centro
de datos o un sistema distribuido, es decir, un clúster o una red, que utiliza un gestor de
recursos para apoyar la homogeneidad o heterogeneidad del entorno, con una variedad
de recursos informáticos y de almacenamiento dedicados y no dedicados.

• Plataforma Apache Hadoop.

Hadoop es la implementación de código abierto lı́der del paradigma MapReduce. Ha
sido desarrollada bajo el paraguas de la Apache Software Foundation y que ha sido
ampliamente utilizado en la industria en todo el mundo. Se compone de dos subsis-
temas: el de gestión de recursos y ejecución de tareas MapReduce y el sistema de
archivos distribuidos Hadoop (HDFS), que se encarga de la gestión y acceso de los
datos. HDFS utiliza un proceso denominado NameNode que se ejecuta en los nodos
maestros y múltiples procesos DataNode que se ejecutan en los esclavos. Además,
Hadoop sigue el paradigma maestro/esclavo, en el que un gestor recursos (denominado
YARN) se encarga de asignar recursos a los diferentes trabajos mientras que los ge-
stores de tareas (denominado Application Máster) se encarga de iniciar, supervisar y
volver a ejecutar las tareas que provoquen fallos en las máquinas esclavas. Además,
Hadoop implementa sistemas de colas, como el Hadoop Fair Scheduler, para garantizar
un reparto justo de los recursos entre los múltiples usuarios y trabajos.

• Seguridad de Apache Hadoop.

Muchas de las amenazas de seguridad relacionadas con los frameworks de BD se
pueden mitigar utilizando procesos y técnicas de seguridad tradicionales. Sin embargo,
algunas amenazas de seguridad requieren soluciones especı́ficas de BD. Los sistemas
Hadoop tienen diferentes vulnerabilidades de seguridad y pueden estar expuestos a di-
versas amenazas. La abstracción por capas de seguridad del sistema BD Hadoop im-
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plica varias funciones esenciales. Las tres primeras capas, identificación (ID) y control
de acceso, autenticación y autorización se combinan para representar los procesos de
gestión de acceso del clúster Hadoop (un acceso de pasarela). Las otras capas de se-
guridad (gobierno de datos, integridad, confidencialidad y auditorı́a de seguridad) son
requisitos de servicios de seguridad y componentes de la pila de datos de Hadoop.

Objetivos de la investigación.
En este estudio hemos diseñado, construido y evaluado una arquitectura de computación

distribuida hı́brida (recursos dedicados y no dedicados) efectiva y eficiente dentro de un clus-
ter heterogéneo tanto en potencia de computación como en disponibilidad (Computación
Oportunista) para extender el planificador de tareas de Hadoop en una variedad de sistemas
operativos. Además, proporcionaremos información sobre los retos de identificación y gestión
de acceso (IAM) que imponen las próximas versiones de Hadoop 3.x. Esta tesis trata sobre el
control de acceso federado para la pila de BD de Hadoop, que incluye todas las etapas signi-
ficativas y refleja los detalles especı́ficos del control de acceso dentro de los clústeres Hadoop,
tanto de las arquitecturas de despliegue en la nube como de las arquitecturas de despliegue en
las instalaciones. Además, se han llevado a cabo experimentos y simulaciones para evaluar el
sistema propuesto. Del mismo modo, se han caracterizar todas las mejoras introducidas en el
diseño propuesto en base a la escalabilidad y seguridad de Hadoop.

Los objetivos principales de este estudio han sido:

Objetivo 1: Evaluar los actuales entornos de BD y Apache Hadoop mediante un análisis
exhaustivo de los elementos arquitectónicos de los frameworks de BD con información sobre
los retos abiertos y las tendencias de investigación. Asimismo, identificar los inconvenientes
actuales de la plataforma Hadoop en términos de aprovisionamiento elástico de recursos y
privacidad de datos, comparando y contrastando las caracterı́sticas de estos frameworks.

Objetivo 2: Diseñar e implementar una arquitectura hı́brida de recursos de computación
distribuidos para mejorar la planificación de tareas BD dentro de las arquitecturas de imple-
mentación tanto en la nube como en las instalaciones.

Objetivo 3: Examinar uno de los retos más importantes de las plataformas de BD de
próxima generación, es decir, la privacidad de los datos. Además, desarrollar un módulo de
autenticación fiable y enchufable para que los clientes externos de BD puedan iniciar sesión
en la infraestructura de BD (BDI).

Objetivo 4: Evaluar experimentalmente la usabilidad de los sistemas de seguridad de
Apache BD utilizando Hadoop 3.x. El control de acceso a la plataforma (incluyendo Apache
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Knox y Apache Ranger) y el despliegue de seguridad de análisis de datos de borde utilizando
un control de acceso robusto y ligero.

Objetivo 5: Analizar las soluciones y tecnologı́as de BD en beneficio de un flujo de datos
y aplicaciones de vanguardia, como el Sistema de Transporte Inteligente (ITS), proponiendo
un marco de seguridad ITS de varios niveles para validar la usabilidad de la solución.

Objetivo 6: Evaluar exhaustivamente los frameworks propuestos y el rendimiento de los
prototipos y caracterizar las mejoras logradas comparables al modelo nativo de Hadoop y su
impacto en el futuro del BD infraestructura.

Metodologı́a de estudio

El objetivo principal de nuestro estudio ha sido diseñar un sistema de distribución hı́brido
eficiente para mejorar la planificación de tareas Hadoop y la seguridad de borde en un entorno
de clústeres heterogéneos. Además, hemos formalizado el diseño de soluciones BD seguras
dentro de la pila Apache Hadoop, utilizando un gestor de acceso que ayude en la detección
de brechas de seguridad y en las investigaciones forenses digitales. La consecución de estos
objetivos se ha realizado en las siguientes fases:

En primer lugar, revisar y analizar crı́ticamente la literatura de BDI a través de una serie
de análisis teóricos y prácticos de los paradigmas y entornos actuales de la implementación
de soluciones de BD para determinar las lagunas en la investigación, junto con las tenden-
cias futuras. En segundo lugar, identificar la degradación del rendimiento del planificador
de Hadoop en entornos heterogéneos e identificar las deficiencias actuales en la gestión de
recursos para proponer un prototipo de aprovisionamiento de recursos dinámico y elástico
para los frameworks de procesamiento de BD. Esta fase incluye la definición y el examen de
las herramientas y tecnologı́as de software necesarias, incluyendo HTCondor, Apache Yarn,
MapReduce y tecnologı́as de contenedorización (por ejemplo, Docker).

Tercero, caracterizar la limitación actual de la plataforma Hadoop 3.x basándose únicamente
en sus medidas de control de acceso originales para mantener la privacidad de los datos, en
cuanto a la complejidad de la implementación y el consumo de recursos. Esta fase incluye
el diseño e implementación de un agente de acceso ligero y distribuido y el examen de las
herramientas y tecnologı́as necesarias, incluyendo Apache Ranger y Knox.

La cuarta fase incluye la implementación de los sistemas propuestos, tanto en clústeres
en la nube como en clústeres locales, y demostrar su eficacia. Esta validación incluye la
realización de pruebas intensivas de los sistemas propuestos para evaluar su rendimiento y
robustez en la práctica. En la quinta fase, las lecciones aprendidas y los mecanismos de
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verificación han servido para modificar las herramientas seleccionadas, editar el diseño de
la arquitectura y, por defecto, actualizar las fases tres y cuatro. A continuación, se han de-
splegado enfoques de control de acceso y se ha llevado a cabo un análisis exhaustivo de la
seguridad de los nodos de borde a gran escala (basados en data streaming).

Posteriormente, en la sexta fase, llevamos a cabo un caso de uso complejo, mediante la
implementación de un ejemplo de Internet de las cosas (IoT), concretamente una solución
basada en la nube para la gestión de Sistemas Inteligentes de Transporte (ITS), a saber, un
sistema de transporte moderno conectado a la red basado en tecnologı́as BD.

Resultados y publicaciones:

• En nuestro artı́culo, EME: An Automated, Elastic and Efficient Prototype for Provision-
ing Hadoop Clusters On-demand, presentado en la International Conference on Cloud
Computing and Services Science, CLOSER 2017, propusimos una aproximación que
amplı́a las aplicaciones basadas en MapReduce con un aprovisionamiento dinámico y
un aumento de recursos de bajo coste bajo demanda. Este estudio pretende dar soporte
a entornos heterogéneos extendiendo la plataforma Apache Hadoop 2.x a un entorno
oportunista contenedorizado, que mejora la productividad del sistema añadiendo re-
cursos infrautilizados a un clúster local o basado en la nube. El framework propuesto
consta de tres componentes principales. En primer lugar están los usuarios. En se-
gundo lugar, un entorno dedicado, es decir, un clúster tı́pico de Hadoop que sigue el
modelo maestro/esclavo, donde Apache YARN es responsable de programar, moni-
torizar y volver a ejecutar tareas de fallo en máquinas esclavas. En tercer lugar, un
entorno no dedicado, que podrı́a controlarse utilizando un middleware voluntario. En
este sentido, nuestro enfoque adopta un escalado (scaling-out) elástico y horizontal de
recursos en una LAN controlada para ejecutar de forma oportunista tareas MapReduce
bajo demanda en conjuntos de recursos distribuidos e infrautilizados. Este entorno de
procesamiento gestiona y asigna los nodos no dedicados utilizando HTCondor (para
crear una red de equipos de escritorio empresarial dentro de la LAN, es decir, un pool
oportunista). Además, se ha implementado un planificador ligero, que sólo considera
el despliegue de contenedores dentro de la reserva oportunista.

• En nuestro trabajo A Pluggable Authentication Module for Big Data Federation Archi-
tecture presentado en el 24º ACM Symposium on Access Control Models and Tech-
nologies. SACMAT, 2019, proponemos un modelo fiable para autenticar usuarios y
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servicios sobre una arquitectura de despliegue de BD federada. El objetivo principal
de este modelo es proporcionar un enfoque de inicio de sesión único (SSO) para la
última plataforma Hadoop 3.x. Para ello, se propone un modelo conceptual que com-
bina las primitivas de control de acceso de Hadoop y el framework de Apache Knox.
Este estudio presenta los primeros pasos para definir y formalizar una pasarela de ser-
vicio para una arquitectura de despliegue de BD federada (BDF). La pregunta clave
que nos plantearemos para abordar el reto del control de acceso es cómo diseñar un
SSO abstracto que maneje el acceso a datos/servicios en una federación de Hadoop.
Abordamos esta cuestión mediante la definición de una arquitectura de referencia de
inicio de sesión único (SSORA) para el desarrollo seguro de BDF. El trabajo presen-
tado en este documento puede emplearse en un entorno de Hadoop federado en nubes
de tenencia múltiple BDaaS e IaaS, ası́ como en centros de datos locales.

• En el artı́culo Big Data Security Frameworks Meet the Intelligent Transportation Sys-
tems Trust Challenges presentado en el 18th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2019, de-
mostramos cómo muchos casos tecnológicos explotan la ciencia de datos y los frame-
works de BD en los últimos años. Se propuso un trabajo conceptual que integra los
enfoques de seguridad de diferentes disciplinas en una arquitectura de referencia co-
herente, empleando el Sistema Inteligente de Transporte (ITS) como un caso de uso.
Además, se presentó una clasificación de tecnologı́as, productos y servicios de BD para
hacer frente a los retos de confianza de los ITS. En el estudio se proponı́a un nuevo
marco de seguridad de varios niveles para validar la usabilidad del prototipo con el
desarrollo de la inteligencia de negocio en el ámbito empresarial.

• En nuestro artı́culo (en el último estado del proceso de revisión), Next-Generation Big
Data Federation Access Control: A Reference Model, enviado a la revista Future Gen-
eration Computer Systems, ampliamos la discusión sobre la madurez y aplicabilidad
de Hadoop 3.x para servir a diferentes mercados. Además, indicamos ideas sobre el
control de acceso y los retos de acceso externo dentro del concepto de Big Data as a
Service (BDaaS). Este estudio representa el primer paso en el campo académico hacia
el fortalecimiento de las grandes auditorı́as de seguridad y privacidad de datos a nivel
de servicio en arquitecturas federadas de despliegue con un entorno robusto de Gestión
de Identificación y Acceso (IAM) para la detección y prevención del acceso no autor-
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izado. También ofrece una visión y una hoja de ruta completa para propagar el control
de acceso efectivo a través de los modelos de BD de tenencia múltiple, proporcionando
información sobre los últimos desarrollos y los retos abiertos en este campo. Esta inves-
tigación destaca, en primer lugar, la necesidad de un gestor de control de acceso robusto
que maneje las operaciones de autenticación y autorización dentro de una federación.
A continuación, analiza los requisitos actuales de análisis de seguridad y registros de
auditorı́a de acceso dentro de cualquier arquitectura de despliegue. El artı́culo presenta
el modelo FACRM (Federated Access Control Reference Model) que incluye todas las
etapas principales y refleja los detalles del control de acceso dentro de los clusters de
Hadoop, tanto de los modelos en cloud como de los modelos locales. Validamos la
usabilidad de FACRM proponiendo un nuevo gestor BD federado. Nuestros resultados
demuestran tanto la efectividad como la eficiencia de nuestro patrón de arquitectura
para mantener la privacidad de datos y clústeres y permitir un análisis sofisticado de los
registros de acceso. La eficiencia del gestor de acceso propuesto no se ha visto afectada
por sobrecargas en el rendimiento. Nuestros resultados experimentales muestran sólo
un 1% de incremento de tiempo por cada operación de lectura/escritura de 100MB en
un WebHDFS.

• Nuestro artı́culo en revisión, Big Data, Apache Hadoop Stack, Resource Management,
Infrastructure Comparison, enviado a la revista Future Generation Computer Systems
(FGCS), presenta un estudio exhaustivo de los elementos arquitectónicos de los di-
versos entornos de procesamiento de BD y también propone una taxonomı́a novedosa.
Además, se discuten en detalle las caracterı́sticas de los distintos modelos de despliegue
de los frameworks de procesamiento de BD y de gestión de recursos. Por último, se
exponen los retos actuales, ası́ como las orientaciones futuras para mejorar el estado
actual de la infraestructura de los frameworks de BD. En este estudio, nos centramos
en los elementos arquitectónicos de los frameworks de BD que utilizan diferentes en-
tornos y discutimos sus caracterı́sticas más destacadas, centrándonos en los aspectos
de gestión de recursos de BD. Proponemos un criterio sobre cómo comparar la cor-
relación/divergencia de estos entornos de ejecución con respecto a la prestación de ser-
vicios BD.

• Además, este trabajo tiene por objeto identificar y comprender los conceptos que deben
tenerse en cuenta en el desarrollo de los sistemas de DIA (Data-Intensive Application).
La revisión introduce las estrategias de optimización descritas en la literatura reciente y
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discute los temas pendientes y desafı́os que surgen al paralelizar el análisis extensivo de
datos en estos entornos. Adicionalmente, esboza las tendencias futuras para la gestión
de los recursos de DIA y discute a alto nivel los análisis de datos. Presentamos una
taxonomı́a de los requisitos de implementación de los frameworks de procesamiento
de BD, que cubre los diferentes objetivos de optimización utilizando un enfoque de
clasificación multidimensional. Estas dimensiones representan las bases sobre las que
se basan en gran medida el rendimiento de los sistemas de aplicaciones intensivas en
datos (DIA), es decir: a) recursos, b) seguridad, c) tareas y d) gestión de datos. En base
a la taxonomı́a propuesta, discutimos los temas pendientes y los desafı́os planteados
en el análisis de datos utilizando frameworks de procesamiento de BD en diferentes
entornos no tradicionales y esbozamos las soluciones correspondientes en la literatura
con nuevas direcciones para futuras mejoras. Además, discutimos cómo difieren estos
sistemas utilizando dos casos de uso basados en la ubicación del recurso. En particular,
presentamos una clasificación de las implementaciones existentes utilizando entornos
basados en LAN y WAN, centrándonos en la prestación de servicios de alta calidad
(QoS) en cualquier entorno.

Conclusiones
Las arquitecturas Big Data (BD) tienen una larga tradición de aprovechar las tendencias

y tecnologı́as de la comunidad informática en general. En esta tesis, realizamos un análisis
en profundidad de dos componentes principales de la pila de Big Data de Apache Hadoop, a
saber, el gestor y planificador de recursos Apache YARN y el sistema de archivos distribui-
dos Hadoop. Este estudio considera tanto la escalabilidad como la posibilidad de mejorar
el rendimiento y la productividad general, ası́ como la privacidad de los datos almacenados
a gran escala y de los recursos subyacentes como base de su investigación. Esta tesis ha
logrado con éxito sus objetivos declarados al demostrar que es factible escalar de forma opor-
tunista bajo demanda los recursos utilizando contenedores. Además, esta tesis ha defendido
y probado con éxito la hipótesis de la preservación de la privacidad de BD mediante la apli-
cación de sistemas distribuidos de un esquema de control de acceso multiagente. La tesis
investiga y evalua el rendimiento de los componentes propuestos y los compara con los origi-
nales de pila de Apache Hadoop 3.x, optimizándolos sobre clústeres de BD tanto basados en
la nube como en instalaciones locales. En general, la investigación presentada en esta tesis
responde a las preguntas iniciales del trabajo la investigación y allana el camino para una
amplia gama de mejoras revolucionarias y tendencias futuras dentro de la pila Hadoop.
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CHAPTER 1

INTRODUCTION

1.1 Overview: Supporting Concepts and Materials

Nowadays, industry and academia are driven by trends such as BD; their operations include
accommodating high-performance and high-throughput applications to overcome challenges
in multiple disciplines and areas. This wide range of application heterogeneity depends on
computing resources to process tasks and deliver services efficiently.

BD frameworks function over an extensive set of data that have been created or collected
from many sources, including social data, machine data, and transactional data (e.g., smart
sensors, scientific experiments, and social media. There have been several proposals toward
managing, processing, and maintaining these massive datasets in data-intensive processing
with the Apache BD stack. This section presents some background information on data-
intensive computing, the MapReduce programming model, and High Throughput Computing
(HTC) systems alongside containerization technology. These aspects represent the scope and
domain of this thesis.

This dissertation also analyzes and characterizes the most critical factors of efficient and
sustainable BD deployment architectures. We have enrolled in evaluating Apache Hadoop
scalability and security features, as well as novel design solutions for its current limitations.

• Data-Intensive Computing.

Data-intensive computing is a subclass of parallel computing applications, which pro-
cess large volumes of data using a dedicated datacenter or distributed system, i.e., a
cluster that supports a distributed file system. These systems maintain the homogeneity
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or heterogeneity of the environment in a variety of dedicated, non-dedicated computa-
tional and storage capacities aiming to handle the process of the data-intensive task.

• High Throughput Computing and High Performance Computing.

High Performance Computing /High Throughput Computing systems (HPC/HTC) are
research trends that are intended to run parallel-processing codes, visualization, and sci-
entific applications. They represent two very different computational models, both in
implementation as well as in the resources required to run them. In short, HPC brings
enormous amounts of computing power to bear over relatively short periods. Mean-
while, HTC systems employ large amounts of computing power for very long periods.
This fact is critical, as throughput is the primary limiting factor in many scientific and
engineering efforts.

HPC systems enable users to run a single instance of parallel software over many pro-
cessors (a single job with many tasks over many processors). It is considered high-
performance computing when a large number of high-end resources are required to
complete the task in a reasonable amount of time (by high-end resources, we mean
many cores per CPU with dozens or hundreds of gigabytes of RAM for each CPU). A
HPC cluster is optimized for large parallel scientific applications that spread process-
ing across multiple nodes and require efficient communication between the running of
applications.

However, HTC systems are more suited to run multiple independent instances of the
software on multiple processors at the same time (a computational task). An HTC sys-
tem is used when a task is large and requires a significant number of resources, but
those resources can be basic. The developer does not need high-end CPUs. In a way,
the HTC design is more tolerant of managing failures and is based on unreliable com-
ponents. If work is given to every node, the results eventually come back. If some of
the nodes fail, the jobs can be restarted on a different system. The key to HTC is the
effective management and exploitation of all available computing resources (geograph-
ical distance to each other, acting like a grid). Nearly all HTC jobs can be classified as
“embarrassingly parallel,” which means the workload can be divided up into multiple,
autonomous pieces, each of which is capable of being independently executed.

While both HPC and HTC jobs run parallel computations, HTC requires far less com-
munication and synchronization between nodes. In the meantime, HPC workloads are

2



Chapter 1. Introduction

computation and data-intensive in nature. Furthermore, HTC jobs have, by nature, ex-
tremely short runtimes, usually in the millisecond range.

• Volunteer and Opportunistic Computing.

Volunteer Computing (VoC) is a form of network-based distributed computing, which
allows public participants to share their idle computing resources and helps run com-
putationally expensive projects. In general, VoC take advantage of resources donated
by participated among spread computer grid or cluster by following the master-worker
parallel computing model, which makes computing cycles to form a large-scale vir-
tual supercomputer. The low-cost advantage of VC has made this platform attractive to
many research scientists whose projects require considerable computing power, and are
used mainly for loosely coupled (independent) processing tasks and committed jobs.

• Containerization Technology.

Containerization computing, in general, is an OS-level virtualization technique em-
ployed to deploy and run distributed applications without launching an entire virtual
machine (VM) for each service. The basic idea behind it is that it enables multiple
isolated applications to run on a single host and access the same OS kernel with the
perception of its own process tree, users, and filesystem. As such, containers have very
few overheads compared to VMs, with near-instant startup time and resource impact
on the host system. However, unlike VMs, containers are not flexible when it comes to
details such as the kernel version and instruction set and inherits those from the host.

The increase in the popularity of containers can be attributed to their lightweight nature
(the time to start a container is on the order of milliseconds). Moreover, containers also
incur a lower performance overhead when compared to VMs. To virtualize the OS, a
container runtime needs to be able to allocate resources to containers and isolate the
view of the system from within the containers: leverage Linux kernel.

3
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1.1.1 Used Frameworks and Technologies

Apache Hadoop
Apache Hadoop is a leading open-source implementation platform of frameworks that has

evolved to become the BD defacto stack and ecosystem of technologies. Hadoop was founded
and powered by the Apache Software Foundation. It has been widely used in both the industry
and academia to store and process massive data sets. When it was first realized, Hadoop
only ran the MapReduce framework to process the data stored in the Hadoop Distributed
File System (HDFS). This architecture then evolved when Hadoop 2.x came up with a new
framework and resource manager, Yet Another Resource Negotiator (YARN), which provides
the ability to run non-MapReduce jobs such as Spark, Flink, Giraph, Storm, Hive, and HBase
coprocessors.

Apache Hadoop 3.x is the latest version and offers many new features. These features
include: (i) Advanced HDFS with erasure encoding, which reduces the storage overhead,
maintaining the same level of data recoverability; (ii) support of long-running applications
and an enhanced YARN timeline service; (iii) better integration with container-based envi-
ronments; (iv) the improvement of the horizontal cluster scalability, by natively supporting a
federated architecture; and (v) the use of backfilling techniques, i.e., opportunistic containers
to improve system utilization. Our goal is to utilize these new features to develop a flexible,
dynamic, and adaptive BD runtime environment.

Hadoop abstracts computing resource management, task scheduling, and data manage-
ment, while maintaining a satisfactory level of security and isolation. The Hadoop stack is
typically deployed as part of a large-scale BD platform to support commodity hardware and
accommodate different processing frameworks. It is utilized to handle data management and
access to the Hadoop ecosystem using a master/slave architecture. The large community
behind Hadoop has been working to improve its stack to meet the increasing demands and
requirements of BD. The new features shift proves the maturity and applicability of Hadoop
3.x to serve different markets, thus, making it a prominent paradigm that combines large-scale
computing nodes to build an analytical environment, e.g., BD processing and storage.

Apache Hadoop Architecture
It is a cluster resource-management platform that is responsible for scheduling users’ ap-

plication tasks, implementing security controls, and managing the computing resources, as
well as providing the high availability features of Hadoop. This new architecture removes the
old JobTracker (in Hadoop v 1) from managing resource usage across applications, which

4
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removes the single point of failure and enhances the scalability, thus allowing it to run other
applications apart from MR ones. YARN uses a global Resource Manager to receive and run
applications on the slaves, and a Job History Server to provide information about completed
jobs. On the slave side, the NodeManagers (previously known as Task Tracker in Hadoop
v1) provides information about the node status and capacity; (iii) An execution framework
(e.g., MR), which runs per application ApplicationMaster to manage the different jobs.
The ApplicationMaster asks for resources from the ResourceManager, which, with the
information provided by the NodeManagers, provides the resources in the form of con-
tainers. The ApplicationMaster runs the application in those containers, controlling its
behavior, and re-launching failed tasks as needed.

HTCondor

HTCondor is an open source that has been empowered by the University of Wiscon-
sin–Madison as a high-throughput computing framework for batch services and coarse-grained
distributed parallel computing of intensive tasks. It can be used to manage the workload on a
dedicated cluster of computers or to farm out work to idle desktop computers —so-called cy-
cle scavenging. HTCondor can seamlessly integrate both dedicated resources (rack-mounted
clusters) and non-dedicated desktop machines (cycle scavenging) of opportunistic computing
into one computing environment.

HTCondor supports the standard MPI as well as its master/worker library for extremely
parallel tasks on massive collections of distributively owned heterogeneous computing re-
sources. HTCondor architecture is composed of three main components: (i) a central manager
runs both a Collector and Negotiator daemon; (ii) on the execute nodes, one or more
machine runs a Startd daemon; and (iii) one or more machine runs a Schedd daemon on
the submit nodes.

Docker

Docker is an open platform for developers and sysadmins to build, ship, and run dis-
tributed applications that use OS-level virtualization to deliver software in packages called
containers. In its core, it has evolved into a comprehensive standard for portable services
and applications. Docker relies on core Linux kernel container primitives and abstracts them
into a user-friendly API. It, thus, allows the developer to create an isolated container of any
service that acts like a lightweight virtual machine, which shares the same kernel as the host
operating system (OS). This container can be turned into an image and shared with anyone
running Linux using the Docker hub.

5
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The Docker framework consists of the Docker Engine, a portable, lightweight runtime and
packaging tool with a workflow for building and containerizing applications, and Docker Hub,
a cloud service for sharing applications and automating workflows; Docker enables apps to be
quickly assembled from components and eliminates the friction between development, QA,
and production environments. As a result, IT can ship faster and run the same app, unchanged,
on laptops, on data center VMs, and on any cloud.

Experiment setup
Aiming to implement and validate the thesis proposed frameworks and solutions we en-

rolled in installing and configuring different Hadoop prototypes and clusters over both virtual
and bare-metal infrastructures. The first prototype was a proof-of-concept model over vir-
tual machines, as specified in Table 1.1. The second prototype was a homogeneous cluster
(as shown in Table 3.1), which implemented a comprehensive evaluation and series of ex-
periments over an on-premise infrastructure. In the third prototype, a collaboration with the
University of Texas at San Antonio, TX (UTSA) took place to validate our access broker per-
formance, as explained in Table 1.3. Recently, we were awarded a ten thousand US dollar
grant from Google Cloud to implement a full running cluster to extend our work.

Table 1.1: A homogeneous virtual cluster powered by Oracle VM VirtualBox 5.2 .

Virtual Nodes Hadoop Daemon Hardware & Configuration
1 NameNode CPUs: Intel(R) Core(TM) i7-4770k @

3.50GHz, RAM: 32 GB RAM DDR5 @
2666MHz,

3 DataNode HDD: 2 TB, SSD: 512 GB

Table 1.2: A homogeneous on-premise cluster formed by 5 HP Proliant DL 370 G6 servers.

Node Number Hadoop Daemon Hardware & Configuration
1 NameNode CPUs: 2 x Intel Xeon E5506 @ 2.13GHz,

RAM: 12 GB RAM ECC DDR3 @ 800MHz,
4 DataNode HDD: 2 TB HDD

Common criteria: Hadoop 3.1.1 over 4 x Gigabit Ethernet ports.

Table 1.3: A heterogeneous OpenStack cloud Hadoop cluster over webHDFS.

Node Number Hadoop Daemon Hardware &Configuration
2 NameNode VCPUs: 8, RAM: 16GB, HDD: 160GB
3 DataNode VCPUs: 4 RAM: 8GB HDD: 80GB

Common criteria: 1 gbps network connection, Ubuntu 16.04 LTS OS.

6
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1.2 Motivation: Big Data Scalability and Security

In this study, we are committed to designing, building, and evaluating an effective and effi-
cient hybrid distributed computing (dedicated and non-dedicated resource) architecture within
a heterogeneous cluster in both computing power and availability (opportunistic computing)
environment to extend Hadoop’s Task scheduling applications in a variety of operating sys-
tems. Moreover, we will provide insights into the Identification and Access Management
(IAM) challenges that are imposed by the upcoming releases on Hadoop 3.x. This thesis
discusses the federated access control for the Apache BD stack, which includes all of the sig-
nificant stages and reflects specifics in access control within Hadoop clusters of both cloud
and on-premise deployment architectures. We are also committed to conducting extensive
experiments and simulations to evaluate the proposed system. Similarly, we will characterize
all improvements by the proposed new design in Hadoop’s scalability and security.

The primary objectives of our study are:

• Objective 1: To evaluate the current BD and Apache Hadoop framework deployment
environments by comprehensively surveying the architectural elements of BD process-
ing frameworks by gaining an insight into the open challenges and research trends;
to identify the drawbacks of the current Hadoop platform in terms of elastic resource
provisioning and data privacy by comparing and contrasting the features of these frame-
works.

• Objective 2: To design and implement a hybrid-distributed computing resource ar-
chitecture to improve BD scheduling within both cloud and on-premise deployment
architectures.

• Objective 3: To discuss one of the most significant challenges of next-generation BD
platforms, namely data privacy; to conduct a trustworthy and pluggable authentication
module for BD external clients’ logins to the BD Infrastructure (BDI).

• Objective 4: To experimentally evaluate Apache BD security frameworks’ usability us-
ing Hadoop 3.x. platform access control (including Apache Knox and Ranger) and edge
data analytics security deployment using a robust light-weight access control frame-
work.
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• Objective 5: To analyse and classify BD solutions and technologies for the benefit of
a leading data streaming and edge application, Intelligent Transportation System (ITS)
and propose a multi-tier ITS security framework to validate the usability of the solution.

• Objective 6: To extensively evaluate the proposed frameworks and prototype perfor-
mance and characterize the achieved improvements comparable to the Hadoop native
model and its impact on the future of BD infrastructure.

1.3 Problem Definition

Nowadays, industry and academia are driven by trends such as Big Data (BD), and their op-
erations include accommodating high-performance and high-throughput applications to over-
come challenges in multiple disciplines and areas. This wide range of application heterogene-
ity depends on computing resources to process tasks and deliver efficient services. Apache
Hadoop is a prominent paradigm that combines large-scale computing nodes to build an an-
alytical environment, e.g., BD processing and storage, on both local and cloud bases. This
study aims to analyze and characterize the most critical factors of efficiency sustainable BD-
deployment architectures. Namely, we enrolled in evaluating BD Hadoop-like scalability and
security features, and designed novel solutions for its current limitations.

Table 1.4 summarizes the challenges and issues we addressed through this thesis.

1.3.1 Research Questions

The two key questions that this thesis discusses regarding optimizing BD Infrastructure (BDI)
are: (I) How to optimize BD resource scalability with dynamic and elastic resource provi-
sioning of low-cost capacity uplift on-demand to improve the overall performance; and (II)
how to maintain BD clusters and data privacy within on-premise and cloud-based deployment
architectures using a distributed light-weight access control broker.

Beside the above-mentioned key questions, this thesis discusses the following questions
with various insights into the latest ongoing developments and open challenges within this
domain:

• What are the main deployment architectures of BD frameworks, and what are their
features for improving the state-of-the-art BD processing framework infrastructure?

8
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Table 1.4: The problems we are targeting with this thesis.

Num. Problem Description Type

1 Low utilization of most modern commodity computers and clus-
ters.

Utilization

2 The resources static partitioning within a physical confine of an
enterprise between different resource managers.

Flexibility

3 Statically sizing the cluster on peak utilization and in- stalling
new servers to enhance the throughput when demand.

Flexibility

4 The increasing gap between computation and I/O capacity on
high-end workstations for the scientific experiments and Big
Data Analytics.

Performance

5 The dependency on multi-tenant systems (e.g., cloud comput-
ing), which raises many issues. For instance, security, data
movement cost, and performance degeneration.

Scalability

6 Wasting many computing cycles for testing middleware and ap-
plications that are not yet in production.

Utilization

7 The need to enhance performance with minimal cost of deploy-
ment.

Performance

8 Running a new type of experiment on the same resources with
minimal configuration, keeping it extensible to any prior design.

Flexibility

9 Ensuring users and applications interact securely with system
core functionalities and guaranteeing appropriate access to data
across the cluster.

Security

10 Controlling the ability of an organization, individual, and system
subcomponents to determine which data in a BD system can be
shared with third parties.

Privacy

• How can we utilize current Hadoop implementation with cutting edge technologies to
improve data-intensive computing performance?

• What is the imposed impact of adding security features (i.e., access control) on Hadoop’s
overall performance, and how can we unify the efforts towards a unified access model?

• Can the proposed scalability and security features of this work be exploited to data-
streaming models of IoT-to-Cloud applications, and how?

9
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1.4 Methodology

The main objective of our study is to design an efficient hybrid distributing system to improve
Hadoop task scheduling and edge security in a heterogeneous cluster environment as well
as formalizing the design of secure BD solutions within the Apache Hadoop stack using an
access broker that aids security breach detection and digital forensic investigations. These
goals have been achieved through the following phases.

During the first phase, BDI literature was critically reviewed and analyzed through a series
of theoretical and practical analyses of current paradigms and environments for implementing
BD solutions to draft research gaps, alongside future trends.

For the second phase, the existing Hadoop scheduler performance degradation in het-
erogeneous environments was identified along with the current resource management short-
comings to propose a dynamic and elastic resource provisioning prototype for BD processing
frameworks . This phase included defining and examining the needed software tools and tech-
nologies, including HTCondor, Apache Yarn, MapReduce, and containerization technology
(e.g., Docker).

In the third phase, the current Hadoop 3.x platform limitation was characterized, relying
solely on its primitive access control measurements for maintaining data privacy, the complex-
ity of deployment, and the consummation of resources. This phase included designing and
implementing a light-weight, distributed-access broker, and an examination of the required
software tools and technologies, including Apache Ranger and Knox.

During the fourth phase (the proposed systems and frameworks phase) included the im-
plementing of the proposed systems and frameworks over both cloud and on-premise clusters
and their effectiveness was demonstrated. This validation included intensively testing the
proposed frameworks using a series of evaluations to practically assess their performance and
robustness.

During the fifth phase, learned lessons and checking mechanisms took place to modify the
selected tools, edit the architecture design, and by default, update phases three and four. Next,
access control approaches were deployed, and a thorough security analysis of large-scale edge
nodes (data streaming-based) were conducted.

Afterwards, in the sixth phase, we conducted a more challenging use-case by implement-
ing an Internet of Things (IoT) cloud-based solution for the benefit of Intelligent Transporta-
tion Systems (ITS), namely, a modern connected vehicles approach, based on cutting-edge
BD frameworks and technologies.

10
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During the final phase, we conducted an extensive evaluation of the proposed system and
submitted the final architecture design; we then wrote up our thesis and conclusions.

1.5 Thesis Contribution

This thesis has successfully achieved the targeted objectives listed in section 1.2 and has
achieved the following contributions:

1. The first contribution of this thesis is the enhancement of BD state-of-the-art resource
management by extending the literature review into a comprehensive survey of the ar-
chitectural elements of various deployment architectures of BD-processing frameworks.
A novel taxonomy is proposed to discuss, in detail, the features of the various deploy-
ment models of BD frameworks. The BD solution’s current challenges are presented
along with the future directions for improving future BD-processing frameworks and
implementations by comparing and contrasting different solutions.

2. The second contribution is the development of a running prototype that extends the
Hadoop YARN resource manager with dynamic provisioning and low-cost resource ca-
pacity uplift on-demand. For this, we propose an enhanced MapReduced environment
(EME), which supports a heterogeneous infrastructure. The EME architecture extends
Apache Hadoop to an opportunistically containerized environment. Doing so enhances
the system throughput by adding underused resources to a local or cloud-based cluster.
EME’s scheduler relies on our novel OPERA framework (OPportunistic and Elastic
Resource Allocation), which is a pilot-job paradigm of the Hadoop 3.x framework task
execution.

OPERA continues spawning Hadoop DataNodes, based on Docker containers as worker
nodes. BD applications can then use these workers. OPERA is a standalone pluggable
architecture that does not require making any modifications to the prior Hadoop design.
In OPERA, an opportunistic pool (HTCondor-based pool) and a dedicated YARN clus-
ter can collaborate to improve throughput, with the minimal cost of deployment. In its
core, OPERA launches disposable containers among the idle servers (creating an op-
portunistic container-based cluster) and ensures efficient provisioning for the Hadoop
dedicated cluster on-demand.

11
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3. The third contribution proposes the first (to the best of our knowledge) single-sign-on
(SSO) approach for the latest Hadoop 3.x platform. This achieved goal discusses one
of the most significant challenges of next-generation BD federation platforms, namely
Hadoop privacy, with a cutting edge access-control framework. A conceptual model
is proposed to achieve this by combining Hadoop access control primitives and the
Apache Knox framework. Moreover, we provide a framework called BD Federation
Access Broker (BDFAB), which addresses the eight main security limitations of the
current Hadoop primitive access control.

A Federated Access Control Reference Model (FACRM), which aims to formalize the
design of secure BD solutions within the Hadoop stack, is introduced. BDFAB is a
lightweight framework with minimal performance overheads. Our experiment indicates
that our solution will add only 1% for each 100MB read/write operation in a WebHDFS.
Overall, our findings in this trend pave the way for a wide range of revolutionary and
state-of-the-art enhancements and future trends within the Hadoop stack security.

4. The final contribution of this thesis is the designing of a multi-tier Secure Intelligent
Transportation System (SITS) architecture, which comprises the functional components
and frameworks of the Apache Hadoop security stack. This model aims to facilitate
security pattern design and solution elections by emphasizing the security-by-design
concept when constructing ITS systems. In this dissertation, we map the main security
features (requirements and threats) of data streaming in a connected vehicle environ-
ment to a BD-specific solution domain. Further, we define the security components
responsible for delivering reference modules, basic requirements, and central system
characteristics of an ITS-to-cloud environment. By doing so, we aim to demonstrate
how to use this model in the development of effective BD security solutions and evalu-
ation frameworks of data streaming channels.

1.5.1 Case Studies

In this section, we demonstrate the use-cases and innovative applications of our thesis, which
are designed to face specific challenges when dealing with BD scenarios as follows:

1. Data-Intensive Computing with MapReduce:

MapReduce (MR) has been presented as a programming model that relies on two simple
primitives in functional programming languages (Map and Reduce) to simplify massive
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parallel data processing. In particular, Map tasks receive their input as key-value (k1,
v1) pairs and return the results as intermediate key-value (k2, v2), which are grouped
together by the framework and passed to a Reduce function for each key to generate
the output. All input, intermediate, and returned data are maintained in file systems
of different implementations (mainly HDFS). The architecture of the Apache Hadoop
framework, the original implementation of the MR framework, follows the master-slave
model, in which a single master is run to schedule tasks and monitor their progress. This
master starts several containers on the slave nodes for executing Map or Reduce tasks
(independent chunks in parallel), using large-scale committed nodes (i.e., a dedicated
tightly coupled cluster) and data is centrally available (pre-placed).

In our framework, OPportunistic and Elastic Resource Allocation (OPERA), we re-
lied on MR implementation due to its maturity as a BD model, which emphasizes the
scalability of the system while maintaining high flexibility. Besides, MR provides a
simple model of programming with parallel processing. It further provides dozens of
both built-in and external benchmarking and stress testing performance and evaluation
scenarios, e.g., TeraSort and TestDFSIO over the Hadoop cluster. In general, OPERA
is a pluggable pilot-job abstraction of the Hadoop 3 framework task execution, with a
dynamic resource provisioning on-demand. Its novel design supports an event-driven
architecture using fine-grained resource allocation. It also enables the coexistence of
the YARN cluster and HTCondor, with data nodes running inside the containers.

2. BD Security with Federation Access Control:

This case-study discusses one of the most significant challenges of next-generation BD
federation—the new Hadoop 3.x feature, namely Hadoop access control. This feature
is designed to address the continuous pressure of adding computing nodes to cope with
the increasing data sets. A federation-based approach scales a single YARN cluster to
tens of thousands of nodes, by federating multiple YARN sub-clusters and proposes
the usage of multiple independent NameNodes (in HDFS federation), in which each
NameNode is responsible for managing a subset of the whole namespace.

In this case study, we intend to endow software and system engineers with methods,
best practices, and tools to systematically apply data protection principles. Hence, this
brings the principles of privacy and data protection, alongside security breach detection
and digital forensics investigations, into practice. However, rather than creating a set of
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tools from scratch, herein, we integrate privacy and data protection engineering func-
tionalities into the existent BD security frameworks already in use by the large commu-
nity behind Hadoop, thus, leveraging the efforts and ensuring a seamless adoption of
its results by its intended users (systems and software engineers). More specifically, we
introduce data protection functions into a set of open-source tools that are empowered
by Apache open-source policies, namely, Apache Ranger and Knox.

3. Stream Data Privacy with Internet of Vehicles:

Modern Intelligent Transportation System (ITS) focus on capturing the value from
streaming large-scale data of different objects distributed across the edge of the net-
work. Transferring these BDs towards the cloud has become a preferable computation
model, taking advantage of its scalability and pay-as-you-go service, while maintaining
beneficial data analytics. This integration of the IoT and connected vehicles is known
as the Internet of Vehicles. In this context, security control and level of trust play a
decisive role in the sustainable adoption of this trend.

This thesis studies the feasibility and methodology of integrating Apache BD security
frameworks and approaches of different disciplines into one coherent reference archi-
tecture. The contribution of this work is a reference architecture of state-of-the-art
technologies for ITS security (called SITS). Also, in this case study, a classification
of BD technologies, products, and services to address the ITS trust challenges is pre-
sented. We also propose a novel multi-tier ITS security framework for validating the
usability of SITS with business intelligence development in the enterprise domain.

1.6 Thesis Structure and Outline

In the following chapters, we provide the key articles that encompass the aforementioned
main contributions in the previous section and represent the main body of work for this thesis.
In Section 1.8, a full compendium of the journal and conference publications related to this
thesis is presented. Each section is equipped with its own background, related work, and
extensive summary to cope with the vast spectrum of challenges that this thesis carries and to
facilitate the reading of this dissertation

Chapter 2 continues this introductory chapter with an exhaustive state-of-art review that
covers different BD paradigms from a resource management perspective. This chapter also
proposes a BD taxonomy of BD execution environments with different levels of insights. This
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chapter also recommends a comparison criterion on how to compare and contrast the correla-
tion/divergence of these executive environments, to delivering the Data-intensive applications
of MapReduce-based services.

Chapter 3 describes a BD computational model which, based on practical experiences,
provisioning on-demand technique, and the idea of elastically utilizing Docker container al-
low to improve the Hadoop applications performance and throughput. This chapter introduces
both an Enhanced Mapreduce Environment (EME) and OPportunistic and Elastic Resource
Allocation (OPERA) scheduler for the BD frameworks. Its terminology relies on a container-
based cluster, enables the co-existence of Apache Hadoop and HTCondor on the same physi-
cal infrastructure. By running Hadoop YARN as HTCondor framework, so they can run side-
by-side and dynamically sharing cluster resources. This enabling lightweight environment
and performance isolation, fast and flexible deployment, and fine-grained resource sharing,

Chapter 4 and Chapter 5 represent two different applications developed in the context
of BD security and privacy-preserving in a Hadoop federation scale. Chapter 4 proposes a
trustworthy model for authenticating users and services. The main goal of this model is to
provide a Single-Sign-on (SSO) approach for the latest Hadoop 3.x platform. A conceptual
model is proposed combining Hadoop access control primitives and the Apache Knox frame-
work to achieve this goal. The chapter provides various insights regarding the latest ongoing
developments and open challenges in this domain. In the main time, Chapter 5 provides
an in-depth study and comprehensive experiment on the performance impact and overheads
associated with the proposed BD Federation Access Broker (BDFAB). Implementing the pro-
posed framework in the BD breach and computing forensics is also discussed by employing a
sophisticated audit to the access log management.

In Chapter 6 a secure channel for data streaming of IoT to the cloud case study is de-
scribed. This case study focused on capturing the value from streaming data of different ob-
jects of transport and traffic management in an Intelligent Transportation System (ITS). In this
regard, a reference architecture for vehicular clouds security (called SITS) is defined. More-
over, a classification of BD technologies, products, and services to address the ITS trust chal-
lenges is proposed. This chapter also introduced a novel multi-tier ITS security framework
for validating the usability of SITS with business intelligence development in the enterprise
domain.

Chapter 7 summarizes the main contributions of this PhD dissertation retrospectively and
provides additional insights and reflections, which open several promising future trends and
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research lines in the context of BD deployment architectures.

1.7 Collaborations

Some of the work in this thesis was completed through collaborations with others, as well
as my magnificent two doctoral advisors, José Carlos Cabaleiro and Tomás Fernández Pena.
Here I attempt to attribute these contributions to the correct individuals.

1- Prof. Sherif Sakr, the Head of Data Systems Group at the Institute of Computer Science,
University of Tartu, Estonia. Dr. Sherif’s experiences in BD analytics, combined with his
broad mind, have enabled him to become a first-class data science thinker. He has applied
much of his experience to cutting-edge solutions and he has contributed numerous papers
and books in this field. He provided inspiration and advice regarding the represented BD
framework classifications and taxonomy in Chapter Two.

2- Assoc. Prof. Mamoun Alazab, the College of Engineering, IT & Environment, Charles
Darwin University, Australia. His sharp academic mind and experiences have given him
remarkable authority to deliver inventions on a platter. In particular, we worked closely to
develop the Secure Intelligent Transportation System, a multi-tier architecture and the Hadoop
federation access broker. Our collaboration results are represented in Chapters Four and Six.

3- Assoc. Prof. Maanak Goupta, the Department of Computer Science at Tennessee Tech
University. Dr. Maanak joined the collaboration for a study of the impact of access control
performance over a BD federation cluster of the Apache Hadoop 3.x platform. James Benson
from the University of Texas at San Antonio supported this implementation with Dr. Maanak.
Our novel implementation and practical investigation are presented in Chapter Five.

4- Assoc. Prof. Blesson Varghese Institute of Electronics, Communications & Information
Technology, Queen’s University Belfast, UK. Dr. Blesson has vast knowledge and experience
in edge- and cloud-computing resource management, in particular, the auto-scaling mecha-
nism of the portable containerized environment in the edge/fog models. He has contributed
numerous papers and books in this field. Ongoing work in progress is the application of the
thesis-proposed approaches in real-life applications.

5- Ph.D. candidate Pablo V. Caderno the University of Santiago de Compostela. Pablo and
I shared an interest in the portable, auto-scale, and containerized processing environments of
BD analytics. We both worked in implementing the thesis-proposed OPERA scheduler; many
future collaborations are still ongoing.
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CHAPTER 2

BIG DATA: RESOURCE MANAGEMENT

AND DEPLOYMENT ARCHITECTURES

The MapReduce framework has pioneered the new generation of BD processing frameworks.
It has been presented as a parallel data processing framework, designed to handle the work-
loads of Data-Intensive Applications (DIA). Apache Hadoop, the prominent MapReduce im-
plementation, has been originally designed to run on dedicated, homogeneous local-based
clusters. In the last years, several deployment environments have been introduced and they
become available with various architectures and configurations.

This chapter presents a comprehensive survey, along with a novel taxonomy, for the ar-
chitectural elements of different deployments of BD processing frameworks. In addition, we
discuss in detail and compare these various deployment paradigms.

2.1 Introduction

BD programming models like MapReduce (MR) were initially introduced by Google [5] for
processing large data sets as web search. It has emerged as a significant and widely used
framework for processing massive volumes of data in parallel and distributed systems, due to
its generality, ease of use, scalability, fault tolerance, and flexibility to handle tasks in different
environments. The most well-known open-source implementation of the MapReduce frame-
work is Apache Hadoop [6]. In principle, Hadoop is designed to utilize clusters of commodity
machines. Thus, many organizations have built their dedicated Hadoop cluster to handle their
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BD operations (storage and analysis). Over the years, several approaches have been intro-
duced to improve the efficiency and flexibility of the MR framework. These approaches have
been focusing on three main aspects. First, optimizing the scheduling policies and imple-
menting different scheduling techniques, to meet diverse data-intensive MR application re-
quirements. This includes a large body of research, as for, pipelining [7], join processing and
handling data skew [8], multi-threading systems [9, 10], iterative operations [11] and make
span minimization for both offline and online scheduling [12]. Second, scaling the system
resource capability (i.e., scaling horizontally and vertically), and enhancing data distribution
mechanisms, like Gfarm [13]. Third, searching for new resource providers by adopting spe-
cialized hardware accelerators [14] or trying new environments, which represent the research
scope of this study.

In this survey, we focus on the architectural elements of the BD processing frameworks
using different deployment environments and discuss their salient features by focusing on the
resources aspects. We present a taxonomy of the implementation requirements of BD process-
ing frameworks which covers the different optimization objectives using a multidimensional
classification approach. These dimensions represent the basics on which the performance of
Data Intensive Application (DIA) systems heavily rely, namely: (a) resources, (b) security,
(c) tasks, and (d) data management. Based on the proposed taxonomy, we discuss the open
issues and challenges raised in data analysis using BD processing frameworks in different
non-traditional environments and outline the corresponding solutions in the literature with
new directions for future enhancements. In addition, we discuss how these systems differ by
using two use cases based on the resource location. In particular, we present a classification
of the existing implementations using LAN-based and WAN-based environments, focusing
on delivering high Quality of Services (QoS) in any environment.

The remainder of this section is organized as follows. Section 2.2 provides the background
of this article. Section 2.3 presents a taxonomy of MR operational environments, from both
traditional and non-traditional configurations. A discussion on the convergence of the differ-
ent deployment architecture is presented in Section 2.4. Section 2.5 highlights the emerging
BD architectures and discusses various challenges and future research directions that need to
be addressed within the next-generation BD platforms. We finally conclude in Section 2.6.
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2.2 Background

In this section, we present a brief overview of the MapReduce framework and highlight the
novelty of our survey with respect to other related surveys.

2.2.1 MapReduce framework

MR has been presented as a programming model that relies on two simple primitives in func-
tional programming languages (Map and Reduce) to simplify massive parallel data process-
ing. In particular, Map tasks receive their input as key-value (k1,v1) pairs and return the
results as intermediate key-value (k2,v2) that are grouped together by the framework and
passed to a Reduce function for each key to generate the output. All input, intermediate, and
returned data are maintained in file systems of different implementations. The architecture
of the Apache Hadoop framework, the original implementation of MR framework, follows
the master-slave model, where a single master is run to schedule tasks and to monitor their
progress. This master starts several containers on the slave nodes for executing the map or re-
duce tasks (independent chunks in parallel), using large-scale committed nodes (i.e. dedicated
tightly coupled cluster) and data is centrally available (pre-placed).

Figure 3.4 illustrates the different layers and architectural design of some paradigms
that implement MR services. It also highlights some of the primary abstractions compared
to the native Hadoop deployment architecture. In particular, the Hadoop framework con-
sists of three main components [15]: (i) The Hadoop Distributed File System (HDFS) [16]
that handle data management and access, using a NameNode process running on the mas-
ter and multiple DataNode processes running on the worker. HDFS uses data replication
to achieve high data availability and reliability. (ii) Apache YARN [17], which is a cluster
resource-management platform that is responsible for scheduling user’s application tasks, im-
plementing security controls and managing the computing resources, besides providing the
high availability features of Hadoop. This new architecture removes the old JobTracker
(in Hadoop v 1) from managing resource usage across applications, which removes the sin-
gle point of failure and enhances the scalability, thus allowing it to run other applications
apart from MR ones. YARN uses a global Resource Manager to receive and run applica-
tions on the slaves, and a Job History Server to provide information about completed jobs.
On the slave side, the NodeManagers (used to be known as Task Tracker in Hadoop v1)
provides information about the node status and capacity. (iii) An execution framework (e.g.,
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MR) that runs a per application ApplicationMaster, to manage the different jobs. The
ApplicationMaster asks for resources to the ResourceManager, which, with the
information provided by the NodeManagers, provides the resources in the form of con-
tainers. The ApplicationMaster runs the application in those containers, controlling its
behavior and re-launching failed tasks as needed.

2.2.2 Related work

There is an extensive discussion in the literature of BD processing frameworks. For in-
stance, [18, 19] reviewed the state of the art for big data processing systems. Other stud-
ies [20, 21] analyzed the systems from perspective of the performance requirements for de-
ploying data-intensive applications. Khezr et al. [22] discussed the differences among various
implementations of MR in cloud environments. Moreover, Li et al. [23] illustrated the differ-
ences between MRv1 and MRv2 and addressed the Hadoop 2.0 improvements.

This survey distinguishes itself by providing a comprehensive and thorough coverage for
the prominent BD processing paradigms from the resource management perspective. We
cover various configurations including a variety of items and techniques to compare, due to
the massive difference in the resources type, e.g., dedication, heterogeneity, cost, connectivity,
and scalability that has been adapted to handle specific data analytic verticals. To the best of
our knowledge, no other study has considered this aspect at the same level of detail.

2.3 Taxonomy of MapReduce environments

In this section, we present a taxonomy of MR implementation environments (MRIE) based
on the computing resource types. These deployment environments are from both traditional
and non-traditional configurations and paradigms that aims to deliver MR-based services and
deal with the challenges of volume, velocity, variety, and veracity inherent in DIA.

Figure 3.6 presents our taxonomy by organizing Big Data processing frameworks into six
main categories. These categories are, further, defined and described in Table 1. In our tax-
onomy, we divide the cluster computing into bare-metal (physical) machines, which consist
of either CPU or GPU clusters, and virtual machines (VMs), which in turn are divided into
hypervisor-based and container based clusters (CBC). In addition, we categorize the cloud
computing implementations separately from the local virtual clusters, even though they rely
on the same technology (virtualization). However, by separating the local-based virtual clus-
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Table 2.1: Defining various categories of big data taxonomy.

Cluster
Computing

A set of a commodity computing nodes connected through fast
local area networks as a single system.

Cloud
Computing

A shared pool of computing resources which enable remote ac-
cess and are based on virtualization technologies.

Supercomputing
and HPC

A set of high-end computing nodes connected through high-
speed local or wide area networks to achieve massive computing
power.

Grid
Computing

A pool of computing resources from various locations working
together to achieve a shared goal, and with non-interactive work-
loads.

Decentralized
Computing

A distributed architecture where each machine is equally capable
of servicing requests without the need for central coordination.

Hybrid
Computing

An amalgamation of two or more paradigms to exploit the bene-
fits of those paradigms with the aim of better performance or to
lower the total cost.

ters from the distance virtual clusters (Cloud-based), we can differentiate the technologies and
resources that were used, i.e., computer networks, servers, storage, applications, and services.
Thus, we are able to provide the agility required to analyze all MR implementations in this
prominent model comprehensively. Besides, grid computing consists of both dedicated and
non-dedicated (opportunistic resources) infrastructures. Further, the opportunistic solutions
classified into two main categories, namely, Volunteer Computing (VC), also knows as Inter-
net Desktop Grids (IDG), and Enterprise Desktop Grids (EDG). High Performance Computers
(HPC) based deployments have been classified, depending on its resource locality, in local and
distributed data centers. Meanwhile, decentralized approaches that have been presented in the
literature can be categorized into two main pillars: Peer-to-Peer (P2P) computing and mobile
computing-based architectures. Finally, we also consider hybrid approaches, which combine
different environments in the same deployment, e.g., coupling CPU and GPU clusters.
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2.3.1 HPC and Supercomputing

The HPC paradigm is considered an essential environment for scientific Computing Inten-
sive Applications (CIA) and massive-scale distributed tasks systems [24]. Hadoop and HPC
paradigms shares some features and components in their design (see Figure 3.4) and might
seem similar. However, they are adapted to solve very different problems and fulfill different
workloads. Further, the complexity and characteristics of Hadoop framework are reasonably
distinct from HPC applications as well. Consequently, both paradigms are architectured dif-
ferently. In particular, supercomputing platforms typically support separate globally shared
file systems such as NFS, SAN or Lustre1, and do not provide on-node persistent storage.
While, on the other hand, Hadoop employs its own distributed file system and processes tasks
locally to avoid contention for shared storage resources. HPC uses batch queue systems for
the fair sharing of batch resources among different users with parallel distributed file sys-
tem combined with high-performance interconnection for shared storage. Also, they provide
low-level programming APIs that can achieve much higher efficiency. However, they lack
fault-tolerant storage support for large-scale data sets. Hence, using HPC resources directly
for the benefits of big-data applications will result in certain performance degradation.

In principle, Hadoop has been mainly designed to solve DIA problems, with many loosely
coupled tasks, unlike the tightly coupled (usually dependent) tasks that are natural of the
supercomputers. In particular, Hadoop brings computation power to data (to minimize data
transfer and improve data locality), running the HDFS daemons locally within a significant
amount of disk-based space on each node. Thus, data in HDFS is physically distributed and
replicated throughout the cluster. In contrast, many HPC clusters rely on diskless nodes and
use a separate group of hardware as a data storage to provide file-level access. In its core,
Hadoop presents a higher level of abstraction in terms of data management which limits the
high latency in data transfer. In contrast to HPC, the task management in Hadoop consists of
a single master per application, ApplicationMaster (AM), which communicates with
many NodeManagers on the cluster nodes. The AM supervises all MR workloads. Thus,
Hadoop manages failure more efficiently, as if an HDFS node fails, the AM can reassign the
task to another node with a redundant copy of those data. Similarly, the failed tasks (Map or
Reduce process) may restart on a new node, using task reassignment and resource recovery
techniques.

In general, the scale-up capabilities provided by supercomputing platforms attracted atten-

1http://lustre.org/
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tion to optimize the performance and keep the turnaround time to a minimum. This vertical
scaling capabilities for computational power, also, enables using the already installed HPC
infrastructures, rather than creating a new and costly Hadoop cluster. Several attempts and
techniques have been proposed to merge the technical gap and cope with the inherited limita-
tions between the broader HPC infrastructure and the MR framework. These techniques can
be categorized into three main approaches:

1. Running DIA processing frameworks over HPC environments to support applications
with both compute and data requirements and enhance supercomputers utilization.

2. Implementing MR extensions using the Message-Passing Interface (MPI) with inter-
faces and libraries to support key/value communication and in-situ data processing on
supercomputing systems.

3. Besides the previous two on-premise categories, utilizing geo-distributed supercomput-
ers was proposed as well.

In this section, we analyze the characteristics and design decisions of deploying big data
processing frameworks in HPC environment (see Table 2).

MR over traditional HPC

myHadoop [25] has been presented as an MR distribution in traditional HPC resources that
allows configuring Hadoop, on-demand, without the need for root-level access to leverage the
framework. It is a lightweight distribution. However, it showed much slower performance
in executing MR tasks in comparison to the native Hadoop implementation. An extension of
this framework has been adopted in HPCHadoop [26] that has been designed to run Hadoop
on Cray X-series supercomputers. Another example is MARIANE [27] that offers ease of
programming, synchronization and parallelization abstractions but does not support shared-
disk file systems. Supercomputers had also harnessed many-core processors to scale their
computing capacities vertically [28]. Sehrish et al. [29] attempted to address the gap among
HPC data storage systems and data-intensive systems by implementing a data-centric sched-
uler that maintains data locality using the integration of data access semantics with the MR
programming model. PortHadoop [30] proposed a direct data fetching between Hadoop
framework and supercomputers via a parallel file system, and Mrap [31] extends the MapRe-
duce framework to reduce the number of the pre-processing tasks. Apache Slider [32] de-
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ploys long-running distributed applications on a YARN cluster with elastic resource alloca-
tion on-demand. SAGA-Hadoop [33] has been designed to provide a uniform framework for
managing and running a full Hadoop cluster in user space, on top of existing HPC resource
management systems (e.g., Fork, SGE, and PBS/Torque).

MR extension to MPI

This approach aims to accommodate fast communication infrastructure and standard interface
to facilitate the development of parallel and distributed application. Compared with Hadoop
communication primitives, the performance of MPI communication primitives is high [34].
In particular, MR shuffles mechanisms considered as a system bottleneck from the basic com-
munication level of remote interaction. Consequently, several approaches have been proposed
relying on MPI techniques for implementing MR frameworks. For example, SMART [35]
has been designed to process Terabyte-scale data sets on traditional MPI-based supercomput-
ers using a parallel library that contains a lightweight implementation of MR functionality.
Mimir [36] has been presented as a memory-efficient MR library for supercomputing sys-
tems over MPI. Guo et al. [37] presented a study that supports fault tolerance over large HPC
clusters with failure detection and recovery plans. Lin et al. [38] presented an approach for
integrating MPI into the current BD stack with the aim of addressing the metagenome reads
clustering challenge, which holds both data and compute-intensive phases.

Distributed HPC

G-Hadoop [39] represents a prominent example that has been designed to support large-scale
geographically distributed computing across different clusters. Similarly, Wang and Li. [40]
investigated the scheduling of MR jobs over geo-distributed datacenters on heterogeneous net-
works with an adaptive heartbeat. GreenMap [41] introduced an energy-efficient embedding
method as a use-case for MR-based virtual networks over heterogeneous datacenter networks.
ChEsS [42] presented an approach for a dynamic jobs assignment on heterogeneous clusters
by exploiting historical data for predicting the processing times with emphasis on data lo-
cality restrictions and the cluster processing capacities. Employing MR model for loosely
coupled applications (compute-intensive) over distributed cyber-infrastructures using replica
exchange was proposed in [43] to provide task-level parallelization and scalability. Further,
spawning pilot containers to manage Hadoop MR/Spark clusters on HPC infrastructures on
demand was manifested in [44]. In contrast, utilizing parallel storage system (e.g., Lustre)
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Table 2.2: Comparison of key attributes of HPC Models

HPC
Model

Resource
Allocation

Resource
Scalability

Resource
Support

Process
Migration

Security
and
Fault-
Tolerance

Overhead
Complexity

System
Functionality

Traditional
HPC

Centralized Low HomogeneousNo High Low Support high-level
abstractions of MR
application

MPI
extension

Centralized Low HomogeneousNo High Medium Provides basic ser-
vices for modular
deployment of MR
application

Distributed
HPC

DecentralizedHigher HeterogeneousYes lower High Resources are al-
locate on-demand
and supply on
Pre-located bases

for intermediate data has been examined in [45, 46]. In addition, Veiga et al. [47] presented
an in-depth analysis and assessment of various HPC-oriented MR platforms in terms of their
performance and the efficiency of energy consumption.

2.3.2 Cloud Computing

Cloud computing has become a powerful computing service-provider that shares with both
utility computing and grid computing the use of shared virtual machines to deliver computing
as a utility and hold large-scale complex computing on-demand [48]. Traditionally, BD pro-
cessing systems use a shared-nothing architecture, thus, it is considered as costly as it needs
to acquire a dedicated physical Hadoop cluster with high installation and maintenance cost.
The advent of cloud-based clusters provided an effective solution that not only tackles this
challenge but also, enhances the system scalability, provides reduced maintenance cost and
increases the efficiency of resource management. Hence, developers of BD applications be-
came among the first adopters of cloud environments for deploying their systems in an elastic
and on-demand environment. Over the years, cloud service providers have been offering a
wide range of DIA supporting services from storage to process and analyze vast amounts
of datasets. Examples include public service providers (e.g., Amazon EMR [49], Microsoft
Azure HDInsight [50], or Google Cloud Dataproc [51]) and private vendors (e.g., Cloudera,
Hortonworks, or MapR). Table 3 summarizes the reasons that grab much of the attention to
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Table 2.3: MapReduce on Cloud computing

MR System
requirements

Cloud computing features

Verity of
capacities

On-
demand
resources

Data/compute-
intensive

Elastic
provisioning

Pay-per-
use

Trustworthy
and recovery

Auto
management

Load Balanc-
ing

D D D
Task Schedul-
ing

D D D D
Data Place-
ment

D D D
Fault tolerance D D
Cost-benefits D D D D D
Security and
Reliability

D D

cloud capabilities and their linkage with the requirements of the MR environments.
In principle, the underlying motivation and advantages of designing and implementing

cloud solutions that support BD operations within heterogeneous/homogeneous clusters on-
demand lies in the following four criteria:

• Flexibility: This includes the flexibility to use the required instance type (high, medium
or low capacity) on a scale method (elastic provision to scale up/down). This also
includes the capability of handling Petabytes of data on thousands of instances.

• Usability: This is related to the ease of launching a cluster and deleting it after finishing
the job. The system should be developed as a service-oriented architecture with the aim
of allowing users to combine and reuse them on-demand.

• Cost efficiency: By eliminating the need for capital expenditure on large private infras-
tructures and following the pay only for the computational power or data space they use
(pay-per-use).

• Trust: Clouds are considered as reliable environments, using job recovery techniques
and data/task replications (upon policy) to enhance fault tolerance approaches and backup
features. Many computing nodes are available in the cluster in failure mode.

In practice, adopting cloud environment does come with its associated new challenges.
The main issue concerning BD is related to the high latency of data transfer in/out the cloud
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environment. Nowadays, data are collected from various sources that do not necessarily avail-
able a structured form. Preparing and transforming unstructured data is a challenging step,
yet required before storing them in the data warehouse for analysis. On the other hand, the
scalable nature of data processing requires efficient and dynamic scheduling algorithms. Fur-
thermore, due to the shared infrastructure in cloud environments, it inherits some existing
issues from virtualization technology (see section 2.3.4). Besides, data security on such con-
figurations would be considered as the most challenging affairs. Security threats such as
privacy, integrity, confidentiality, and availability of stored data are magnified by the prop-
erties of BD (i.e., volume, velocity, and variety). Therefore, cloud vendors must assess all
service levels against threats at frequent intervals, even though, it is believed that, among
other paradigms, Cloud technology has the highest potentials and is the preferable trend for
Data-rich enterprises and communities. Hashem et al. [52] discussed the relationship between
the cloud architectures and big data processing in general, besides the current challenges and
open issues of this adoption.

Task scheduling in Centralized Cloud

Motivated by the prominent advantages of cloud computing architectures, many small-medium
enterprises, and scientific communities chose it to deploy MR solutions on highly config-
urable and inexpensive resources. For example, Kahuna [53] presented an approach for
addressing the performance problems of MR cloud-based approaches. It has been imple-
mented on top of Yahoo’s M45 Hadoop cluster to simulate a cloud environment under fault-
free conditions. Gunarathne et al. [54] presented the case of creating the Azure MapRe-
duce service (using Microsoft Azure HDInsight). To minimize the incurred cost of cloud re-
source usage, AROMA [55] introduced a two-phase machine learning and optimization frame-
work that enables an automated configuration and allocation of heterogeneous instances.
Cloud-MapReduce [56] implemented the MR programming model over the Amazon cloud
OS. Twister4Azure [57] presented a distributed decentralized iterative MR runtime that
extends MR to Azure Cloud and enables a fault-tolerance execution of broad data intensive
applications.

To capitalize on the pay-per-use in the Cloud, a cost-optimized model, Cura [58], has
been proposed to solve the poor resource utilization and higher cost caused by the complex-
ity of clusters configuration on the cloud. It runs multi-stage interactive jobs workflows and,
in general, achieves this in a cost-effective fashion, with lower job response times. Rao and
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Reddy [59] have considered various possible scheduler improvements to Hadoop in a Cloud
environment. They investigated this issue using a prominent schedules, DELAY [60]. Corre-
spondingly, the resource allocation for MR in the cloud was the main focus of Purlieus [61].
In particular, this work aims for enhancing the performance of MR jobs using placement meth-
ods by optimizing the data placement techniques through both map and reduce phases. This
increases locality, processing the intermediate data locally or by machines that are physically
close-by. CMR [62] suggested two optimizations to their cloud architecture to tackle the batch
data processing and spot instances on Amazon EC2, which are called continuous cloud MR
and spot cloud MR, respectively. Aiming to alleviate the bottleneck caused by data transfer
over WAN network in public clouds, Ehadoop [63] proposed a reduced online job profil-
ing for EMR clusters. Motivated by decreasing the disk usage, an event-driven Hadoop MR
architecture, Flame-MR [64], was proposed and evaluated for both public cloud and HPC
clusters.

Cloud computing naturally fits to the requirement of processing large amounts of data in
parallel. Studying the impact of virtual network topologies on the MR cloud-based frame-
works performance and optimizing these topologies was the main focus of [65] which pro-
posed a mechanism to identify the optimal virtual network topology according to formulating
the data processing and data transmission overheads of the MR cluster. SAMR [66] introduced
a scheduling policy that can precisely identify the straggler tasks and boot their execution.
It identifies the straggler tasks by monitoring the progress of all the active tasks and dynam-
ically tunning the weight of each phase based on historical statistics. Ghoshal et al. [67]
demonstrated the effectiveness of pipeline provisioning with data placement and partitioning
strategies over clouds. The proposed set of strategies does not only improve scalability and
performance, but reliability as well.

Additionally, cloud models have attracted serious attention from broad application plat-
forms. For example, MaMR [68] proposed adding a new merge phase that can efficiently
merge data from the map and reduce modules. It uses an optimized data sharing strategy
that employs a hybrid shared-memory and parallel bridges in the programming language.
Additionally, other approaches considered accelerating the execution of short jobs [69, 70],
hash-partitioning the resource manager [71], and improving the data locality rate [72, 73, 74].
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Decentralized Cloud

The success in adopting new paradigms as distributed data-intensive environments have trig-
gered the investigation toward adapting and optimizing more complex computing frameworks
in many aspects. Many researchers have proposed and investigate decentralized cloud plat-
forms (e.g., multicloud, edge, and fog computing), as a new distributed MR architecture. This
new trend aimed to minimize the data transmission overhead between ubiquitous data-rich
sources and cloud datacenters, by deploying computation closer to the edge of the network.
Also, it addresses the time-constrained issue of data analytics cloud applications, which is
considered as a pressing matter. In addition, the advent of many Internet of Things (IoT)
applications, producing large-scale data from a massive number of geo-distributed objects,
will imply the need to efficiently store, process, and analyze these data. Therefore fog/edge
computing help in fulfilling the computation gap by extending cloud computing to be closer
to the things it supports.

Ad hoc data processing, on the contrary, has shown to be a critical aspect for various
cloud-based applications [75]. Shi et al. [76] proposed an optimized declarative language
for relational databases that targeted the ad hoc data processing. In addition, exploiting ad-
hoc clouds for MR operations had been analyzed in [77], using availability-aware scheduling
that dynamically re-adapts task assignments on-demand. A recent study on cloud computing
directions [78] predicted further approximation of cloud infrastructure toward decentralized
approaches. Thus, new opportunities are found that facilitate processing data-intensive work-
loads before storing it, closer to where they are generated. Medusa [79] has been presented as
an approach for scaling MR applications among multiple distributed clouds and maintaining
fault tolerance. It uses a proxy for replicating each job in more than one cloud and compares
the outputs in two aggregation phases.

Furthermore, splitting the data set and distributing them among multiple federated clouds
(geo-distributed clouds) has been labeled as an acceptable scale-out model using external
resources and storage on the cloud. This model has emerged due to the growing demands
of outsourcing computation to fulfill several users requests, increase the system efficiency
and reduce costs. For instance, FedSCD [80] utilized idle VMs across cloud federation
with a decentralized scheduling algorithm to minimize the cost of MR execution efficiently.
Fed-MR [81] was designed to enable running MR across geo-distributed clusters by employ-
ing two additional phases, proxy-map, and proxy-reduce. Other approaches, like [82, 83],
were designed to take into account the nodes heterogeneity in a hierarchical computing model.
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Resilin [84] allows users to perform MR computations across a broad range of cloud
service providers and automate the cluster provisioning on-demand to the best available re-
sources. A comparison of multi-datacenter with single-datacenter Hadoop deployments in a
geo-distributed clouds has been presented in [85].

2.3.3 Grid Computing

The term Grid Computing has initially been used to describe technologies that allowed con-
sumers to obtain computing power on demand across multiple administrative domains [86].
Correspondingly, Desktop Grids (DGs, also known as Opportunistic Computing, OC) are
considered as a particular case of the Grid. DGs are subdivided into two principal categories,
based on resource location:

• The Internet-based solutions that are mainly based on volunteer resources participants
(e.g. BOINC [87], BitDew [88]).

• The Intranet-based solutions, in which, an organization uses its existing infrastructure
(e.g., clusters or desktop machines) to execute its long-running computing tasks. it is
distinguished in that it is more trusted than volunteer computing and its deployment
is typically automated. Because of technical similarities, it is often known as a cycle-
scavenging or cycle stealing technique (e.g. HTCondor [89]).

In practice, grid computing capacities are designed to support application-oriented ser-
vices, in the form of virtual organization environment. Depending on how to employ these
capacities, we can subdivide them into distributed supercomputing and DG. Therefore, grid
systems can be placed into two categories (see Figure 3.6), as dedicated and opportunistic
(or non-dedicated) computing. The opportunistic are, also, categorized as Internet Desktop
Grids (IDGs, aka Volunteer Computing VC), and Enterprise Desktop Grids (EDGs). Accord-
ing to Lu et al. [98], adapting this model to the desktop grid enables taking benefit from the
large-scale amount of computing resources and distributed storage to perform a new set of
applications that can handle massive sizes of data. Table 4 presents a comparison of different
MR implementations in the Grid environment. In particular, the advantages of using MR in
the Grid can be summarized as follow:

1. Reducing the resources’ Total Cost of Ownership (TCO).

2. The adequacy for running embarrassingly parallel workloads (like MR tasks).

3. Increasing the ability to scale the computational capacity as needed.
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4. Gaining better Return on Investment (ROI) in the case of EDG.

5. Improving the ability to handle failures and reduce system management costs.

Several approaches have been focusing on running DIA (MR-based) on Grid and DG.
For instance, Lee and Figueiredo [90] suggested a data allocation scheme, based on session
uptime of the opportunistic resources, by selecting a subset of the available workers in a vol-
unteer pool of resources that is predicted to be available in the future. A similar approach is
followed by ADAPT [92] which exploits the availability history to assign an estimated avail-
ability rate for each new participant. Then, this rate is used to predict the node future avail-
ability and data is sent based on the participant availability. In contrast, Ji et al. [91] proposed
a new scheduler, called Opportunistic Fair Scheduler (OFS), that extends the Hadoop Fair
Scheduler (HFS) [99]. This approach improves fairness and performance among multiple
concurrent jobs in an opportunistic environment by learning node availability statistics and
interruption handling within Hadoop. However, the free-to-join mechanism that is natural in
the VM environment, causes a significant challenge regarding security to verify that malicious
volunteers do not intervene the results of computations. Therefore, a model that characterizes
the error rate of a MR application using the majority voting method was proposed by Moca
et al. [100]. The proposed system relies on the BitDew-MR middleware [101, 102]. Be-
sides, it intends to be appropriate for large scale and loosely coupled IDG. It had further been
evaluated and compared with Hadoop [98].

In general, the Grid demands resource-aware schedulers (e.g. Fair Scheduler or Capacity
Scheduler) for enhancing its performance. MRA++ [97] proposed an implementation with low
bandwidth networks (such as the Internet) and considers the heterogeneity of nodes during
task scheduling and data distribution to gain a fair balance of tasks. MOON [96, 103] has been
presented as a hybrid configuration in which volunteer computing (non-dedicated) platforms
are augmented with a set of dedicated workers to reduce the implementation cost. The main
focus of this approach is to allocate a small set of dedicated nodes to volunteer computing sys-
tems. MOON adopts the LATE algorithm, a scheduler by Zaharia et al [104]. On the contrary,
VMR [105] proposed an Internet volunteer computing system to execute MR applications as
independent tasks. Another example for implementing MR programming over desktop grid
distributed on the Internet was proposed by Google [106].
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Figure 2.3: Docker layered architecture and hypervisor vs. container virtualization abstrac-
tion.

2.3.4 Virtualization Technology

The main focus of virtualization technology (VT) is to emulate the behavior of many execu-
tion environments into the same physical implementation using a hypervisor (e.g., VMware,
KVM or Xen) [107]. Once a physical machine is virtualized, higher level services can be
deployed as a Hadoop cluster. Virtualization techniques provide many advantages including:
1) Reducing operational costs (a single image of a system can be cloned). 2) Allowing the
user to set up resources that are elastically sized (expanded or contracted) on-demand. 3) Pro-
viding economic cost-benefits by saving power, getting a better return on investments (i.e.,
physical infrastructure can reuse) and reducing capital expenses on infrastructure (especially
in testing cases). 4) Providing an isolated environment for testing MR codes while improving
the system’s reliability. On the other hand, solutions based on virtualization technology suffer
from various performance overhead and limitations [108].

Lightweight virtualization

The use of virtualization technologies has been restricted in HPC and data analytics platforms
because of their inherent performance overhead. However, the advent of advanced virtualiza-
tion solutions, known as container-based virtualization (e.g., Linux Containers, aka LXC), has
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Figure 2.4: Container vs. Virtual machines interest over time.

lead to a growing attention in its ability to hold BD operations [109]. In principle, container
virtualization is a kernel-level approach for deploying and running distributed applications in
a sandbox environment without launching an entire VM for each application and task. This
way, it does not require separate OS instances but multiple isolated environments, called con-
tainers, that are deployed on a single control host and access the shared OS kernel. Thus, by
eliminating the hypervisor layer, container virtualization guarantees the resource share with
higher efficiency and leading to near-native performance [110, 111, 112]. Containers relies
on the cgroups (a Linux kernel feature to isolates the resource usage like CPU, memory, etc.)
and namespaces functionalities, which are more efficient than VMs with very low overheads.
Figure 2.3a shows the architecture of Docker, one of the most popular technologies for con-
tainerization, whereas Figures 2.3b and c plots the differences in the layered architecture of
both container and hypervisor based virtualization.

In practice, containers are proving to be an extremely valuable technology for service sci-
ence in delivering reproducibility and continuous integration. Therefore, there is a trend to-
wards using containers in the form of container-based clusters (based, for example, in Mesos,
Apache Myriad, Docker Swarm, Google Kubernetes or CoreOS Fleet). Fig-
ure 2.4 shows Google’s Web search trends for ’virtual machine’ and ’Docker container’. The
search for virtual machines and containers have started to go side by side shortly by the mid-
dle of 2016 after which Docker containers search trends started to overtake that of virtual
machines. This reveals how container-based technologies, e.g., Docker containers, are getting
more attention from Internet users, compared to the traditional virtualization technologies.

Some research efforts started to adopt this approach as a promising framework for Hadoop.
For example, XConveryer [113] has been presented as a Hadoop implementation based on
kernel-level virtualization facilities to reduce job competition and eliminate the rescheduling
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caused by another virtualization. Xavier et al. [111] and Chung et al. [114] studied the per-
formance impact of the isolation of container-based systems for both computer-intensive and
data-intensive workloads. Rey et al. [115] proposed a simulator for testing and deploying
MR applications using Docker with system fault-tolerance scenarios. In practice, container-
based platforms are gaining momentum and have high potential for leveraging the DIA and
BD operations. Some studies [116, 117] indicated that it is promising that LXC would be
the future cloud and BD analytics further handling increasing memory requirements in data-
intensive parallel programs [118]. However, prior to replace conventional hypervisor-based
virtual machines with containers, it is crucial to address some concerns. For instance, security
characteristics of container implementations that share the OS kernel with a deep level of au-
thorization (usually root access). This could imply much more significant vulnerabilities and
increase the potential propagating of malicious activities. Also, containers are stateless; after
the container exit or die, the internal state is lost, so launching a new container requires it to
be installed from the hub. A solution can be found in implementing a checkpoint mechanism
that stores the persistent state of the container in a file system. Furthermore, other solutions
include implementing a relaxed policy, by holding the container into a predefined time and
waiting time for a process before exiting, in other words, to trigger speculative container.

2.3.5 GPU computing

GPUs (Graphics Processing Unit) have been originally designed for graphics processing with
large data sets and complex computational intensive jobs. It has gained much attention due
to their ability to speed-up response times when compared to traditional CPUs. Thus, there
was increasing interest toward leveraging the General-Purpose GPUs (GPGPU) and GPU-
accelerated systems as a scaling-up mechanism to increase computational efficiency, save
energy, and exploit data parallelism [119]. On the other hand, GPU programming can lead
to unnecessarily highly complex programs that suffer with data-intensive workloads because
of the weak memory transfers (in-disk data movement between CPU’s main memory and the
local memory of the GPU) and the absence of direct access to files on the host OS file system.
Additional challenges include the low level nature of their libraries and the synchronization
problem of managing GPUs and CPUs. To address these issues, several research efforts sug-
gested different solutions that can be categorized as follows:

• Minimizing data transfer through the main memory. Chen and Agrawal [120] proposed
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an approach for optimizing the shared memory by using a small programmable cache
on the GPUs to enhance the system utilization. Other approaches [121, 122] focused
on deploying new protocols to reduce data transfer time in the reduce phase by using
I/O oriented scheduling to minimize idle I/O time.

• Hide the programming complexity. Mars [123] presented an approach for hiding the
programming complexity of the GPU. MR-Graph [124] has been presented as a frame-
work that allows its users to implement their applications more flexibly.

• Using GPU Clusters. GPMR [125], MGMR [126] and GCMR [127] are examples of sys-
tems that have been proposed to process large-scale datasets on GPU clusters. More-
over, D. Loghin [128] proposed to enable the GPU to process multiple ¡key, value¿
pairs in parallel.

• Combining the CPU and GPU in a hybrid system. Chen and Agrawal [129] proposed
two approaches: the first one in which the the map processes are shared out between the
CPU and the GPU, and a second one that executes the map task on one device and the
reduce the other. Jiang, et.al. [130] developed two systems (MGMR++ and PMGMR) to
combine CPU and multi-GPU, where if data size is larger than the aggregate momory
of the GPUs, CPU memory is exploited to continue the execution of MR processing.

2.3.6 Decentralized Environments

The great success of MR framework attracted both data and distributed system engineers to
deploy it in emerging environments such as mobile computing or P2P. In contrast to central-
ized computing, the typical architecture design for Hadoop, both P2P and mobile computing
are decentralized approaches where no single server node is responsible for all data and task
allocation. Thus, adopting such environment is challenging, as well as promising.

Peer-to-Peer (P2P) computing

In principle, the design characteristics of the P2P model conflict with a fundamental assump-
tion of the architectural design of the MR framework, which relies on a central management
of computing resources using a master/worker strategy. In particular, P2P assumes that all
nodes (peers) has equal privilege using a decentralized model. In general, deploying data-
intensive applications in the context of P2P environments can introduce several advantages
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Table 2.5: MapReduce in P2P environment

A typical P2P environment features are: Why MR tasks on P2P environment?

• Non-dedicated (Nodes and connec-
tion).

• Heterogeneous capabilities (Low-
end mostly).

• Mainly used for loosely-coupled CI
workloads.

• Elastic, Auto-scale and fault toler-
ance (Replication) environment.

• Less manageability and system ad-
ministration.

• Low cost (aggregation of peer
nodes).

• Easy to install and scale up on-
demand.

• Natural mechanism for fail recovery
with high loosely-coupled tasks.

for MR-based systems. Table 5 summarizes some advantages and features of using a P2P
environment for MR-based solutions.

Several research efforts have been focusing on achieving a reliable MR-based execution
over the P2P environment. For example, the PER-MARE project [131] proposed to implement
MR over pervasive grids. It relied on porting the MR paradigm over a P2P distributed comput-
ing middleware, CloudFIT [132], by adapting Hadoop to include context-aware elements
to achieve efficient service execution on the target environment. Further, supporting Data-
intensive MR-based clusters on pervasive environments was reported in [133] by employing
ZooKeeper as a light-weight resource collector. In this approach, context-aware scheduling
has been used for dynamically supporting resources availability status in the Hadoop-like sys-
tems. Wang et al. [134] proposed to use a queue structure to buffer tasks on P2P networks.
This approach eliminates centralization by distributing scheduling responsibility among the
participated nodes. Furthermore, it tackles data locality concerns by assigning to local tasks a
higher priority when taking executive decisions.
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Mobile computing

In the last few years, the processing power of smart phones and small devices have advanced
so rapidly. These computing capacities are now more connected than ever. In principle, the
ubiquity of mobile phones demands a decentralized system to exploit their potential and max-
imize its efficiency. In principle, synergising the computing of the massive number of small
computing devices represent an emerging and promising new research domain. In particular,
the deployment of MR implementations on mobile devices is considered as a special scenario
that required the integration between two main technologies, namely, the ubiquitous comput-
ing and ad-hoc networks. However, in practice, mobile-based data analytics is facing many
inherent resource constraints. For instance, the frequency of network disconnection is much
greater than the one in traditional computer networks. In addition, there are still severe power
restrictions that limit the life expectancy of the smart phone batteries. Other issues include
the asymmetric communications costs, size of storage space and privacy. In principle, this
environment can be characterized by the following primary features:

1. The volatility of the components, because participation is non-dedicated (mostly oppor-
tunistic) and device memory status fluctuates, which raises the availability issue.

2. The component’s heterogeneity, whose capabilities can vary on different characteristics
(both software and hardware).

3. The possession of the components where participation is mostly donated (volunteer).
Obviously, protecting the privacy of individuals is also a main concern.

4. Connection status, because devices can change their network connection, switching
from a fixed network connection to a mobile Internet, e.g., wireless to 4G.

Misco [135] has been proposed as a MR polling-based framework for implementing
applications on mobile platforms. It comprises a Misco Server that keeps track of applications
and input/output data and Misco Workers to process the individual map and reduce tasks
returning the results to the server. On the other hand, Hyrax [136] is a Hadoop distribution
that supports cloud computing on Android smart phones. Finally, George et al. [137] proposed
implementing Hadoop MR framework over a mobile distributed file system, while Huang and
Wu [138] proposed using heterogeneous mobile devices and a wireless router.
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2.3.7 Hybrid environments

Hybrid computing system can be described as a set of heterogeneous computing paradigms
that are connected in an amalgamating platform that is, typically (but not necessarily), at-
tached to a unified computational pool of resources. In principle, the main goals of hybrid
architectures are: (i) minimizing the capital expenditure on large private infrastructures, (ii)
avoiding the static partitioning of computing resources and infrastructure silos, and (iii) re-
ducing operational costs.

Scaling Hadoop MR using cloud bursting by coupling internal cloud to external cloud was
the aim of BStream [139]. In its approach, BStream integrates stream-processing (using
Apache Storm) with batch processing to realize inter-cloud MR by enabling the execution of
the reduce operation in the external cloud using pipelined uploading. MOON [140] has been
presented as a hybrid resource architecture implementation, in which a set of volunteer (non-
dedicated) computing nodes supplements dedicated MR systems on-demand. Kijsipongse
et al. [103] discussed the challenges of allocating a small set of dedicated nodes to BOINC
volunteer computing system. Aries [141] has been presented as an approach for coupling the
features of both low-power servers and high-performance ones in order to provide competitive
performance and energy efficiency as well. The main target of this approach is to maximize
the use of idle CPU, memory and network resources in microservers, using a fine/coarse
granularity of resource management abstraction.

In contrast, Nebula [142] is a distributed edge cloud infrastructure that has been de-
signed to efficiently exploit the edge resources from both dedicated and non-dedicated servers.
G-MR [143] has been presented as an optimized framework that executes MR jobs in a hy-
brid Grid (as arising in cloud-of-clouds scenarios) using geo-distributed clusters. It uses data
transformation graphs to find the optimal execution paths among edge nodes. The work by
Tang, B., et al., in [144] proposed a hybrid environment that combines EDG and cloud in-
stances. Their system HybridMR, employed a hybrid distributed file system and an adaptive
scheduler that takes into account the performance differences between the system nodes.

Table 6 presents a comparison of different hybrid architectures and their key attributes. In
principle, the key advantage for designing platforms that support resources management in
hybrid environments can be summarized as follows:

1. The flexibility to adjust the computation capabilities on-demand and elastically.

2. Self-service functionality to meet the increasing demand for computing environments.

43



FERAS MAHMOUD NAJI AWAYSHEH

Table 2.6: Comparison of key attributes of Hybrid architecture

Hybrid
Technique

Ease of
deployment

Flexibility/
Self-
service

Scalability Security Fault
tolerance

Data
transition

Cost
efficiency

Startup
latency

On-premise
with Cloud

Moderate Static Scalable Moderate High High Efficient High

Centralized
cloud with
edge-cloud

Complex Dynamic High
scalability

low High High Efficient High

On-premise
with EDG

Moderate Static Limited Trustworthy Moderate Moderate Efficient Low

Private with
public cloud

Simple Dynamic High
scalability

Moderate High High Efficient Moderate

Cloud/local
with IDG

Complex Static upon par-
ticipation

Low,
vulnerable

Low Very High Efficient High

3. Economic savings for meeting peak demands without increasing the TCO.

4. Improving the overall performance by minimizing the job queuing, enhancing the through-
put to the available resource amount and reducing the turn-around time.

5. Strengthening the system scalability by executing beyond the cluster capability with an
auto-scale approach.

The main concerns are the high concurrent access to massive data sizes and several secu-
rity threats. Some of the bottlenecks are due to the limited network connection, processing
across different administrative domains, and the variety of computing resources. Also, the
high startup latencies, force to wait for the entire system to be allocated in the resource pool.

2.4 Convergence of the paradigms

To analyze and evaluate these paradigms, we grouped them into two use cases, based on the
resource location, namely, LAN-based (Intranet) and WAN-based (Internet) target networks.
First, LAN-based implementations include: (i) computing clusters (Actual and Virtual), (ii)
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Supercomputers (HPC), (iii) General-purpose computing on GPGPUs, and (iv) Enterprise
Desktop Grids (EDG). Second, WAN-based target network implementations that include: (i)
Cloud Computing, (ii) Peer-to-Peer computing (P2P), (iii) Grid Computing (volunteer DG
and dedicated Grids), (iv) distributed High-Performance Computing (HPC) and (v) Mobile
devices.

2.4.1 LAN-based Environment

Table 7 compares five different models: Hadoop in actual cluster (HA), Hadoop in virtual
cluster (HVi), Hadoop in supercomputers (HS), Hadoop in GPGPUs (HG), and Hadoop in
EDG (HE). This table summarizes the differences among these environments.

• Resource capacity: Both Hadoop HA and HS are built from high-end computing ca-
pabilities nodes (usually HS employ more powerful computing capabilities than HA).
Hadoop was built to process large volumes of data, with higher level abstractions of data
management (HDFS against MPI). HPC, in contrast, is aimed toward high-end comput-
ing capabilities for a wide range of computationally intensive tasks, with fewer volumes
of data. Meanwhile, GPU clusters share the aim of processing compute-intensive tasks
with the HPC, but for graphics processing with large data sets and weak in-desk data
transfers (unlike the Hadoop storing file system). On the other hand, HE utilizes low-
end desktop machines as a resource pool (e.g., a university laboratory or organization
PC’s) and HVi (depends on the physical capacity) had the lowest computing capacity.
Notice that we considered an average VM that mainly deployed on a common server.

• Connection strength and dedication: HA, HS, and HG take advantage of high dedicated
connection. HVi simulates a communication by providing many modes, e.g., bridge
connection, network address translation, and internal networking among VMs. HE uses
an opportunistic connection, in particular, when the network is idle or lightly used, that
usually came with an average (intermediate) bandwidth.

• Resource dedication patterns: HA, HS, and HG intend to be dedicated devices (com-
mitted nodes), whereas HVi can be deployed and deleted on-demand and HE is not
dedicated at all (opportunistic).
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• Heterogeneity: All the models seem to be homogeneous (software and hardware), and
many optimizations can include heterogeneous capabilities (in both computing and stor-
age capacity). However, HE is heterogeneous by nature.

• Security and reliability: HA, HS, and HG are trustworthy environments (with HA is the
highest) with reliable outputs. HVi seemed to be less reliable due to isolation problems
with the original OS, which increases the failure ratio in some cases. In contrast, HE
presents the lowest reliability.

• Model: Here we compare both the computing model (High-Performance, High-Throughput,
and Many-task Computing) and application model (Data-intensive or Computing-intensive)
that the environments originally represent. All HA, HVi, HS and HG are HPC, while
HE is a HTC environment. HG shares with HE the application model as a CIA, the rest
LAN-based paradigms are DIC environments.

• Scalability: The system’s ability to scale and increase its capacities, originally HA is
built to be easy to add new nodes (tens to hundreds). Yet it is not considered as a
dynamic (elastic resources) on-demand technology. Also, it is difficult to scale both HS
and HG; they are non-elastic as well. The HVi is easy to scale (cloning technique), but
it is also not elastic to be scaled on-demand. As such, HE seems to excel since it is
auto-scale and elastic but it is done opportunistically (non-dedicated).

• Deploying and scaling cost: HVi has the lowest cost of deploying a framework, and it
keeps it in the same way when it is being scaled, i.e., very low cost with almost no HW
cost. HE also is a cost-effective solution to deploy and scale. The most expensive solu-
tions are the HS and HG due to hardware installation cost. However, HA is considered
as being an intermediate solution.

2.4.2 WAN-based Environment

Table 8 compares six different WAN-based models: Cloud computing (HC), P2P (HP), Vol-
unteer computing (HVo), Dedicated Grids (HG), distributed supercomputers (aka, Distributed
Data Centers (HDS)) and Mobile devices (HM). Using the same comparison criteria and items
in the previous section, some remarks can be made as follows:
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• Resource capacity: Both HP and HVo contain low-end nodes mainly from desktop ma-
chines with moderate capabilities. HDS intend to own the highest computing capacity
followed by HG with intermediate up to high-end nodes (i.e., that it may include aver-
age workstations or high-end nodes and clusters) as a virtual organization. Meanwhile,
HC is the most flexible resource provider, which provide configurable resources based
on the user’s requirements and jobs demands, while, HM claimed to be the lowest-end
nodes.

• Connection strength and connectivity dedication: In general, all of these approaches
shared their connection via the Internet (HM uses mobile and ad hoc networks), which
is much slower compared to the LAN-based networks. This connectivity results in
an intermediate bandwidth upon which most of these approaches depend. In contrast,
connection dedication is notably different, where HVo, HM, and HP do not seem to have
a constant one. The remaining technologies have more dedicated (stable) connections
with better connectivity.

• Resource dedication patterns: HDS is a dedicated system, likewise HG. Whereas HVo,
HM, and HP intend to have a non-dedicated behavior (e.g., HVo is opportunistic), HC
is, again, a flexible solution where resources are dynamically allocated and re-allocated
based on user demand.

• Heterogeneity: Heterogeneous architectures are designed to reduce overheads among
various devices that allow for the integration of these devices in a unified hybrid sys-
tem. By categorizing the systems into two types: homogeneous and heterogeneous;
based on single node and cluster architectures, HP, HVo, and HM are high-level het-
erogeneous paradigms. On the other hand, HG and HDS are designed, in most cases, by
homogeneous model. HC, however, can handle both models on-demand.

• Security and reliability: Among all of them (even the LAN-based implementation) HVo
and HM systems pose unique challenges from a computer security perspective (high
malicious participation risk), and service reliability. The HP is similar in this aspect,
but with better manners than the HVo. Other approaches like HC, HG, and HDS have
better behavior and more trustworthy environments with failure recovery techniques
and security services that prevent serious vulnerabilities. Though, in comparison, HC
clusters and HDS are less reliable than the LAN-passed HA and HS, where HG is more
reliable than HE.
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• System scalability: The WAN-based approaches are mainly elastic, except HDS. While
HP, HM, and HVo are dynamic to be auto-scaled whenever a new resource is available,
HC provides elasticity by relying on a dynamic provisioning mechanism for allocating
computing resources on a fine-grained basis. This feature provides the ability to be
scaled up and down depending of the demand of resources. All WAN-based are scale-
out approaches, however, HC and HDS are considered to be a scale-up approach as well.

• Deploying and scaling cost: WAN-based implementations, in general, are economical
cost solutions (compared to the LAN-based approaches), and achieves economy of scale
by reducing operational costs. Also, they represent a low cost of ownership, where
scaling is cost-effective as well. However, HDS employ high-end servers, which indeed
increase the capital expenditure on infrastructure capital, and is not considered as a
dynamically auto-scale approach.

2.5 challenges and Directions

Although existing literature addresses many aspects of BD resource management and cluster-
ing, there are still some significant requirements and perspectives that need to be considered.
This section focuses on how BD deployment architectures have changed over the last decade.
In this section, we lay out a roadmap of challenges that would arise when implementing a
data-intensive solution within any computing architecture. Also, we discuss the changing BD
processing environments and consider the use of emergent paradigms from multiple infras-
tructures. For this purpose, Figure 2.5 charts out a variety of current challenges, emerging data
analytics environments, and BD computing trends that will be offered by future platforms.

2.5.1 Challenges

Herein, we set out several challenges and research gaps that will need to be addressed for
developing a BD solution.

Adapting the original paradigm design

To fully benefit from a new BD execution environment, one should adapt its prior design to
meet the workloads requirements, as they may have been designed to accommodate another
computing model (eg., high-performance, high-throughput, or many-task computing), with a
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diversity of underlying resources (hardware, network, etc.). An implementer should consider
the abstraction layers contributing to the Big Data stack to facilitate the adaptation of resources
(network, storage, servers), data (file systems and databases), runtimes (frameworks), and
applications. Changes could be required all over the layers in some scenarios, for instance, in
IDG where nodes are highly heterogeneous and non-dedicated over geo-distributed locations
using low bandwidth networks. Another example can be found in the distributed paradigms,
e.g., P2P and mobile computing with decentralized management and low-end nodes.

Resource brokering and start-up latency

Resource brokering refers to dynamic relocation of available resources within the environ-
ment to optimize the cost and performance of an application at any time. This challenge also
includes managing the underlying physical resources and monitor the resource (compute and
storage) utilization and availability. In volatile and resource shared configurations, predict-
ing the node availability for task allocation can be challenging since it requires sophisticated
provisioning mechanisms of both static and dynamic techniques. On the other hand, start-up
delay may happen due to two factors. First is data materialization, where the input data must
be placed on the computing node before starting the process. This assumption could result
in high latency due to the limited capacity of the network link in some architectures. Sec-
ond, resource materialization, by registering all computing nodes in a single resource pool
within a hierarchical clustering. So, the scheduler maps the available computation to applica-
tions/task desire to consume them and delay may occur by resource provisioning or processes
deployment.

Handling the platform security

Having and maintaining a highly controlled management of the data, nodes, and processes de-
ployed on all the machines is critical in designing a BD system. The fundamental abstraction
of traditional BD architectures is directed to on-premise clusters. In such scenarios, faults are
less harmful because most of the nodes are trustworthy and can run flawlessly for extended pe-
riods. Still, having high-reliability results to avoid potential misuse and malicious corruption
is required for other configurations and paradigms as they seem to be more vulnerable. Result
verification, as for result certificate, random sampling and majority voting techniques may
seem unnecessary in a native Hadoop cluster. However, deploying an MR implementation in
an unreliable environment (e.g., volunteer or Edge/Fog mobile computing), demands valida-
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tion schemes for the results due to these environments vulnerability and volatility [145, 146].
Also, processing results can be secured via encryption.

Fault tolerance and failure detection

Traditionally, in Hadoop, detecting failures in machines and processes is based on heartbeats.
Each slave node sends a static heartbeat every 3 seconds (this parameter can be configured).
The master node performs checks on the expiry time report (timeout) of heartbeats every
200 seconds by default. When no heartbeat is delivered from a slave node for ten minutes
(three timeouts), such node gets identified as a failed machine, and the master node triggers
the failure handling and recovery processes. However, detecting the failure of sensitive tasks
using this mechanism can return with a delay. Replacing heartbeat with an instant messaging
mechanism to speed up task scheduling was proposed in [147]. Moreover, checkpointing may
be considered an active failure handling technique in which the system is to restart from an
early state point in case of failure [148]. Yet system-level checkpointing is considered as a
heavy-weight approach for MR applications [37].

Mitigating the system complexity

In theory, enterprises make the choice on how and what resources to use for certain job de-
mands. They may trade-off between using existing infrastructure (adapting a supercomputer
for instance) or picking from a new best-in-class solution. However, this raises a compatibility
issue, especially across the datacenter. This concern makes it challenging to pick and config-
ure environment components and leverage all its features. Unfortunately, the complexity is
not only due to the issue of compatibility, but also other challenges include navigating through
logistics behind the system connectivity like long-term maintenance and management. One
step towards addressing environment complexity is auto-managed architectures by the orches-
tration of its component which lowers system administration cost. Another solution would be
utilizing containers to provide a compatible runtime environment across any platform.

Trade-off resource location

In the comparison of the two previous cases in section 2.4, LAN-based approaches meet the
MR prime assumptions on the characteristics of the environment like dedication, homogene-
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ity, and high connectivity. Meanwhile, WAN-based approaches are more dynamic, scalable
and yield cost benefits, with variety in the environmental trust and reliability.

2.5.2 Emerging environments

In practice, BD computing infrastructure is expected to continue growing and evolving to
meet the requirements of large-scale data systems and applications. In this section, we provide
some suggestions on some computing environments that can play a significant role in future
architectures.

Embedded systems and Microservers

The concept of fusing multiple embedded processors environments, including sensors into
BD infrastructure, will emerge to accommodate the tightly coupled (usually dependent) data-
intensive tasks. This trend is driven by the advent of microservers architectures, which have
become increasingly pervasive. Modern microserver technologies, e.g., ARM2 and Intel
Atom3, continue to improve their computational capabilities steadily, and are gaining mo-
mentum on being adopted in BD architectures [141]. Due to this, it is claimed that the next
wave in the computing era will go beyond the realm of the conventional servers and desk-
top computers, gearing towards the use of more collaborative low-end servers, near-user edge
devices, which will be responsible for a significant amount of storage and processing [149].
Many recent works have investigated this context over embedded low power processors such
as [150]. Hashem and Ibrahim [151] concluded that BD solutions in such deployment archi-
tectures are in its infancy, but is becoming a practical field. Still its reduced memory, low I/O
and memory bandwidth, and software immaturity may cancel the lower-power advantage of
microservers. These are open challenges that needs to be addressed with future implementa-
tions.

Edge data analytics

In the last years, the use of computing nodes located at the edge of the networks has acceler-
ated (e.g., fog and mobile edge computing), leading to new forms of heterogeneous computing
models. Two factors have influenced this trend. First, the significantly increased number of

2https://www.arm.com/
3https://www.intel.com/content/www/us/en/products/processors/atom.html
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end-users whom attach their devices to the cloud. Second, data processing is becoming more
delegated from the clouds to the edge. These claims are evident with the advent of smart
environments that are equipped with distributed sensors, which gather heterogeneous data
at the edges of the networks. Exploring data runtime at the edge of the network, near the
source of the data, hold a lot of potential. First, decreasing the volumes of data that must
be transferred (confine traffic), and, hence, reducing the high latency in transmission costs.
Second, enabling the optimization of a wide range of technologies to provide high-level ab-
stractions for BD processing. Third, enhancing the interactive cloud applications that appeal
to the end user’s devices for closer execution, especially in wireless and mobile ad-hoc net-
work connectivity that tends to be latency-sensitive. However, decentralized cloud models are
not appropriate for widely stateless services with limited data transmission, such as the Web.
It is also challenging to analyze batch data that originates in the cloud. These issues can be
labeled as open challenges to address with future implementations.

Container-based mobile-fog architectures

It is anticipated that running BD tasks using containers on the mobile base stations is an in-
teresting and promising trend. This is especially true for those who are still hesitating to
distribute sensitive data over the mobile ad-hoc environment to enable achieving the IoT/BD
vision. Also, using decentralized fog computing to work in conjunction with centralized
architectures would facilitate more use of distributed computing. There are some general dis-
cussions on combining Docker and Android applications since they already run as containers
on top of Linux. [152] describes how to run Docker on ARMv7 (the most widely used archi-
tecture in mobile devices) based devices. In addition, a recent study, investigated the effects
of OS-level virtualization solutions on HPC performance [153]. Besides, aiming at acceler-
ating and securing data exchange among nodes in this environment, specific data exchange
channels that established by the nodes wishing to complete their data sets can be created on-
demand privately. These private channels can be launched on an end-to-end for massive data
transformation as an adapted application socket.

2.6 Summary

Growing interest in applying MapReduce-based implementations in various paradigms and
configurations have given rise to numerous adoptions of large-scale data processing environ-
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ments. These environments include but are not limited to Cloud Computing, Supercomputing,
Decentralized Computing and Grid Computing. Thus, they must be considered based on their
impact on performance, cost-effectiveness, scalability, resource utilization, overheads and,
finally, heterogeneity in both the application and infrastructure. Herein, we have answered
three fundamental questions related to the success of porting MapReduce implementations to
the broad scope of deploying architectures. First, what are these paradigms and what are the
challenges/potentials of their adoption? Second, given the dramatic differences among these
environments, what are their essential characteristics and how can we compare and classify
them? Finally, what are the current challenges and future directions of BD deployment archi-
tectures?

Our contributions are, therefore, three-fold: Firstly, introducing a novel classification tax-
onomy that groups data processing frameworks based on their environments, with empha-
sis on the resource perspective. The challenges, central issues, potential effects of adopting
these environments, alongside the solutions are then proposed. Secondly, this work has ex-
haustively analyzed and compared the targeted platforms with Apache Hadoop, which is the
leading open source MapReduce implementation. A significant part of this effort is due to
missing standards in comparison to large-scale data processing environments, and the wide
variety of different technologies of BD domain. The needed tables, figures, terminologies,
and factors upon which/how to analyze and compare these paradigms, also, presented with
a high-level discussion. Finally, based on the study observations, the current BD computing
challenges with several potential future research directions have been suggested. We hope that
this article help on guiding further researches to intersect and integrate BD and data-intensive
operations with non-traditional solutions. A key goal is to create a convergence of abstrac-
tions of different approaches to promote better optimization of resource selection in different
environments with reliable, low-cost services. Further, providing guidance on choosing the
best platform to optimize the performance of various data-intensive applications in various
environments.
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CHAPTER 3

BIG DATA SCALABILITY AND

PERFORMANCE IMPROVEMENTS

Aiming at enhancing the MapReduce-based application’s Quality of Service (QoS), many
frameworks suggest a scale-out approach, statically adding new nodes to the cluster. Such
frameworks are still expensive to acquire and does not consider the optimal usage of available
resources dynamically.

This chapter introduces a novel framework to address this issue by extending Hadoop
YARN resource manager with dynamic provisioning and low-cost resources capacity uplift
on-demand. We propose an Enhanced Mapreduce Environment (EME), and OPERA sched-
uler to support heterogeneous environments by extending Apache Hadoop to an opportunis-
tically containerized environment, which enhances system throughput by adding underused
resources to a local or cloud-based cluster.

3.1 Introduction

In recent years, under the explosive increase of global data, there has been an increasing em-
phasis on Big Data, business analytics, and smart living and work environments. Despite the
success of large-scale commodity clusters like Apache Hadoop, this continuous data stacks
require computational power far beyond the capability of the cluster workstations [154] in the
high season intervals (i.e. when massive amount of jobs are submitted to the cluster). Naı̈ve
solutions may propose to add new computing nodes and scaling-out the tasks to distributed
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systems, like in hybrid cloud computing. Hence, two major concerns need to be addressed.
First, it could be necessary additional investments on infrastructure (increasing the Total re-
sources Cost of Ownership (TCO)), or paying to rent cloud instances. Second, the cost of
data movement to and from the cloud over the Internet, which can be expensive and time-
consuming.

As a comprehensive BD analytics platform, Hadoop has become the de-facto technology
for storing and processing data-intensive applications (DIA) [52] and large-scale data analyt-
ics. These processes mainly use parallel data tasks operating, based in the MapReduce (MR)
paradigm [5]. Thus, many frameworks aim at proposing scalable methods to support existent
MR-based applications by enhancing the throughput using different techniques, while keeping
in mind the QoS and the cost-benefit ratio. For instance, scaling Hadoop capacity horizon-
tally and vertically (scale-up/out techniques), as in [155, 156] or adopting special hardware
accelerators, as in [157] and [129].

Opportunistic Computing e.g., Enterprise Desktop Grids (EDG) could provide free com-
pute cycles by harnessing idle CPUs in what is known as cycle scavenging technique [87],
enabling the use of all available resources within the enterprise. Using this underused re-
sources to extend the Hadoop cluster with low-cost, efficient and elastic desktop machines
will improve throughput, making the most of the IT infrastructure. In exchange, such use
would indeed increase the system complexity, so a powerful scheduler and resource man-
ager would be required. Though, we argue that using cutting edge technologies like Linux
containers can tackle that issue.

In this chapter of the thesis, we present the EME prototype, short for Enhanced Mapre-
duce Environment and its novel dynamic and hybrid scheduler, ie., OPERA. EME extends
Hadoop with an adaptive hybrid (dedicated and non-dedicated) heterogeneous task allocation
and provisioning on-demand. Its architecture combines High Throughput Computing (HTC)
and Docker containers with large-scale dedicated clusters, leveraging all available resources.
This project aims for a new hybrid environment that can elastically tune the resources partici-
pation, optimizing the cluster throughput without the need to add new and costly machines or
rent external cloud services.

As a main component of the EME vision, OPERA takes advantage of leveraging the avail-
able and unutilized (ideal or lightly-used) capabilities within a physical confine of an enter-
prise. By scavenging these resources, OPERA keeps spawning Hadoop DataNodes, based on
Docker containers as worker nodes. BD applications can then use these workers. OPERA is a
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standalone pluggable architecture that does not require making any modification of the prior
Hadoop design. In OPERA, an opportunistic pool (HTCondor based) and a dedicated Yarn
cluster can collaborate to improve throughput, with minimal cost of deployment. OPERA
will launch disposable containers among the idle servers (creating an opportunistic container-
based cluster) and ensure efficient provisioning for the Hadoop dedicated cluster on-demand.
OPERA, hence, provides a seamless bridge from the pool of resources available in HTCondor
to the YARN tasks that want those resources. By deploying a pilot (disposable) Container-
based Cluster (CBC), i.e., a temporary lightweight layer on tops of HTCondor.

3.2 Background

There have been some proposals going towards managing, processing and maintaining mas-
sive datasets in what is called data-intensive processing with MapReduce Applications (MRA).
This section presents a brief background on MR programming model and the Volunteer Com-
puting systems alongside with related work and our main motivation to start this project.

1. MapReduce model.

Ever since its introduction, MR framework has grabbed much attention in its ability
to cope with parallel computing applications using a parallel data approach to process
large volumes of data (terabytes or petabytes in size), which are typically referred to
as Big Data. Apache Hadoop, the MR open source implementation, was naturally de-
signed to be easily scalable, but it was not designed to be auto-scale or elastic. Many
studies have proposed a resizable compute capacity in both local clusters [158] and the
cloud [62].

2. Volunteer and Opportunistic Computing. Volunteer Computing (VC) is a form of
network-based distributed computing, which allows public participants to donate their
idle workstations and help to run computationally expensive projects [159]. Oppor-
tunistic Computing (OC) is a computer technique that make use not only of the re-
sources available in the local machine or cluster, but can also opportunistically scale-out
on other resources of the environment, including those on underused desktop comput-
ers, in a reliable and secure way [160]. Two major characters differ these paradigms.
First, the resource ownership, i.e., VC take advantage of volunteer resources donated
by participants while OC make use of untapped internal resources. Second, geographi-
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cal topology, where OC follows an intranet (LAN) topology, while VC mainly follows
Internet protocols (WAN). Correspondingly, HTCondor [161] is an open-source cluster
resource manager aimed at Distributed High Throughput Computing (HTC) on collec-
tions of owned resources (EDG).

3.2.1 Related work

Many related studies in the literature classify the performance of MR data intensive computing
into dedicated and non-dedicated resources. For instance, MRA++ [97] is a heterogeneous-
dedicated methodology example that proposed a solution by grouping the machines according
to their computational capabilities, calculating the execution time, and distributing Map task
according to these capabilities. This proposal holds some drawbacks. First, it is not applicable
for opportunistic environments, and volatility of data is ignored. Second, it does not take
into account data placement (locality). Further examples include homogeneous-non-dedicated
methodology [91] and heterogeneous-non-dedicated methodology [92]. Apache Myriad [162]
is a case for multi-tenant shared services clusters. Myriad is an open source framework for
scaling the YARN cluster into Mesos, which allows to expand or shrink the capacity of the
cluster managed by YARN in response to events, as per configured rules and policies. Though,
it differs from our proposal in that it works only on dedicated resources, like on a typical Data
Center.

Correspondingly, some research using hybrid resource architecture has been carried out,
where volunteer computing systems are supplemented by a set of dedicated nodes to reduce
the cost. Such research includes MOON [163], which discussed the problem of how to al-
locate a small set of dedicated nodes to volunteer computing systems to offer reliable MR
services on hybrid resource architectures, adopting the LATE algorithm [164]. However,
MOON focused on a single job and worked on homogeneous environments only. Also, their
solution needs a third part to manage the resource availability. By comparison, our study will
follow hybrid resource architecture by adding some dedicated nodes to non-dedicated cluster
in not only heterogeneous computing environment but heterogeneous operating systems as
well. This will be achieved by using Docker based containers, which will allow us to build
and distribute applications on heterogeneous nodes, thereby clearly differentiating our work
from others.
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Figure 3.1: EME Proposed Framework Architecture

3.2.2 Motivation

Nowadays, Hadoop resource elasticity and on-demand provisioning have not yet fully ex-
ploited by the present state-of-the-art MR execution architecture. We note a lack of studies
that examine, from a resource perspective, the effect of resizable compute capacity (i.e., elas-
tic resource provisioning) on MR applications performance. However, in this project we
are committed to design, build and evaluate a hybrid distributed computing (dedicated and
non-dedicated resources) architecture. We will use heterogeneous clusters, with differences
in both computing power and availability (opportunistic computing), to extend Hadoop’s MR
task scheduling in a variety of environments and operating systems, using containerized based
clusters on-demand.

The key challenges we are addressing in our work can be summarized as the following:

• Defining the Hadoop cluster threshold where resources are stretched to the limit (big
data workloads start queuing).

• Efficiently execute MR operations on non-dedicated resources (isolated in containers).

• Opportunistically use resources that may be lightly loaded for long periods of time
within an enterprise

• Elastically provisioning Hadoop’s Yarn on-demand with low-cost nodes.
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Figure 3.2: OPERA architecture

• Enabling the two environments work harmoniously for the benefit of business and
academia

• Making this framework automated (auto-scale), fast and extensible to the prior Hadoop
Yarn architecture.

3.3 Methodology

To take advantage of underutilized resources, we deploy YARN containers on top of the HT-
Condor pool system. When a job comes to YARN, it places it at a set of dedicated slaves.
Under continue job submission, tasks start queuing at the job pool, waiting for a slot. The
adapted YARN asks for an offer via the OPERA scheduler (second level scheduler, see Fig-
ure 3.3). OPERA will match the request to incoming HTCondor resource offers. HTCondor,
in turn, will launch pilot Docker containers among the underutilized nodes. The HTCondor
machines will then communicate the request to OPERA executor, which is running DataNode
containers. Next, YARN can consume resources as it sees fit.

To enable a universal block storage layer, Hadoop performs a separation of namespace
and block storage in a federation configuration of the cluster. A federated BD environment
improves the scalability and isolation of Hadoop operations. In our approach, we scale the
NameNode horizontally over the HDFS federation using two different data pools (names-
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paces), one for the dedicated Hadoop cluster and another for the HTCondor containers (see
Figure 3.2). This approach enables the aggregation of a hybrid BD infrastructure (dedicated
and non-dedicated). This shared environment facilitates data placement among the containers
while supporting pilot job abstraction. When Hadoop YARN reaches a peak utilization, the
AplicationMaster asks OPERA to launch a new container over the idle HTCondor resources.

3.4 EME and OPERA: Framework architecture

Prototyping a distributed application like MR is considered a hard and time-consuming task.
In this section, we will introduce EME’s design, goals and architecture overview.

To define the Hadoop cluster threshold and whether the dedicated DataNodes are sat-
urated, OPERA used Algorithm 1. OPERA thus monitors the I/O bandwidth and utilized
capacities at each dedicated DataNode and sends this information to the NameNode. The HT-
Condor manager, in return, deploys a DataNodes using its Docker universe over any idle or
lightly used nodes in its pool. These opportunistic DataNodes assigned under the control of
the NameNode (the ApplicationMaster) to meet the peak utilization intervals. The container
is deleted once the job is finished (reported by the ApplicationMaster). The container is also
deleted once the resource is needed again by the HTCondor tasks.

Figure 3.3: OPERA resource allocation demonstration.
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Algorithm 1: Defining dedicated DataNodes threshold

1 Let φ̂i, be the volatile DataNodes in the cluster.
2 Let Tsh, be the defined threshold of the system.
3 Let Jz be the measured job size at time-step q.
4 Input: current dedicated cluster size Czi
5 Output: setting throttling state of the dedicated node

6 avg Jz =
(∑i−1

j=i−w Czi)

φ̂i

7 if Czi > avg Jz then
8 if (state == unthrottled) and (Czi < avg Jz∗ (1+Tsh)) then
9 state = throttled

10 end
11 end
12 if Czi < avg Jz then
13 if (state == unthrottled) and (Czi < avg Jz∗ (1−Tsh)) then
14 state = throttled
15 end
16 end

3.4.1 Design overview

The proposed framework presented in Figure 3.1 consists of three major components. First
are the users, EME’s framework targeting a composite (multi-users/multi-jobs) architecture.
Second, a dedicated environment, i.e., a typical Hadoop cluster that follows master/slave tech-
nique, where Yarn is responsible for scheduling, monitoring and re-executing failure tasks on
slave machines. Third, a non-dedicated environment, which could be controlled using VC
middleware like BOINC [165]. However, our approach adopts an elastically and horizon-
tally scaling (scaling-out) of resources in a controlled LAN to opportunistically execute MR
tasks on collections of distributed, underused and owned resources on-demand. So, to man-
age and allocate the non-dedicated nodes, HTCondor (to create an EDG within LAN, i.e.,
an HTCondor pool) can be used in EME. Thus, the proposed integrated architecture will re-
duce the system complexity and avoid system degeneration due to overloaded Hadoop master.
Anyway, a lightweight scheduler has to be implemented in HTCondor, which only consider
container deployment inside the opportunistic pool.

Figure 3.4 presents a layered architecture and abstractions of both environments. For
the opportunistic environment, an operating system-level virtualization environment (Docker
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Figure 3.4: EME architecture layers and abstractions

containers) will be implemented, with HTCondor as its execution engine. This will provide
not only an efficient use of the opportunistic resources, but also an isolated fault tolerance
environment with high scalability potentials.

With this additional nodes, the throughput will be significantly improved. So, with a mini-
mal cost of deployment, EME will improve scalability and optimize idle resources utilization,
which would imply, as another direct impact, a greater return on infrastructure investments.

The proposed framework, presented in Figure 3.2, consists of three components. At first,
an HTCondor manager, which is responsible for monitoring and re-executing failure tasks on
slave machines. It also contains a container launcher that keeps spawns YARN Node Man-
agers (using local repository Docker containers) among the dedicated or non-dedicated nodes
(see Figure 3.3). Second, an adapted HTCondor machines, coupled with OPERA executor
that launches the containers on the HTCondor pool, and ensures running the YARN tasks in a
sandbox environment. Finally, a typical YARN cluster with an integrated OPERA scheduler
at the master workstation that runs as a second level scheduling service. OPERA scheduler
keeps contact with the process status on the HTCondor pool —an example of how the OPERA
workflow run is illustrated in Figure 3.5.

3.4.2 Fault tolerance

The basic abstraction of Hadoop architecture is directed to cluster and supercomputing paradigms.
In these environments, faults are less harming as most nodes are reliable and will operate
flawlessly for an extended period. Though, the failure of a node is still a concern. Some tech-
niques like task replication, speculative execution of tasks, and heartbeats may limit the threat
on most scenarios. However, the enterprise grid (non-dedicated) environment may seem more
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Figure 3.5: OPERA workflow example.

vulnerable. Accordingly, an advanced technique that supports fault-tolerance, while minimiz-
ing its impact on performance is a must.

In our work, we will concentrate on the enhancement of fault-tolerance on the opportunis-
tic pool. Keeping in mind that no single point of failure is predicted at that environment, we
propose two approaches for solve this problem. On the one hand, tuning the heartbeat may
enable the NodeManager in the opportunistic resources to register dynamically on the dedi-
cated ResourceManager (see Figure 3.6). Additionally, the nodes history (availability) will be
added as an additional policy to determine the global resources availability.

On the other hand, the results obtained in the non-dedicated environment will be checked
using the majority voting technique [100]. This will add two main advantages to this scenario.
At first, majority voting will require a minimum of three containers task replication to be
implemented, which directly impact the fault tolerance by enhancing the task failure recovery.
Second, leaving the result submission (the work done flag) until we collect two out of three
results for each work from different workers, will provide high reliable results.
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Figure 3.6: Framework sequence diagram

3.5 Experiment Results

Docker provides a systematic way to automate the faster deployment of variety applications
and libraries inside portable containers (isolated environment in operating systems kernel).
Also, Container as a Service (CaaS) is considered as a particular case of IaaS without the
hypervisor layer for better performance. Hence, EME proposes idle nodes as a viable way to
deploy an opportunistic environment using disposable containers (deleted after executing the
task) for provisioning the Hadoop cluster.

On the other hand, HTCondor will provide a consistent environment that continuously
schedules new containers when it is possible and quickly gives resources back to the user
when required. In our proposed architecture, Docker will provide a runtime service that en-
sures three aspects. First, isolation between the MR-tasks and other resources operations with
minimal configuration on the HTCondor pool. Second, secure containers deployment with
lightweight virtualization that runs on near bare-metal performance. Finally, an extensible
interface that copes with Hadoop Yarn, where no rewrite for the MR applications is required.

For evaluating OPERA performance enhancement and overall throughput growth, we
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Figure 3.7: OPERA performance against native Apache Hadoop.

Table 3.1: Hadoop cluster with two dedicated DataNodes and two opportunistic DataNodes

Node Number Hadoop Daemon Hardware & Configuration
1 NameNode CPUs: 2 x Intel Xeon E5506 @ 2.13GHz,

RAM: 12 GB RAM ECC DDR3 @ 800MHz,
4 DataNode HDD: 2 TB HDD

Common criteria: Hadoop 3.1.1 over 4 x Gigabit Ethernet ports.

compared the performance of MapReduce benchmarks on native Hadoop environments against
the proposed one. In Figure 3.7, the X-axis represents the benchmark and stress testing of dif-
ferent tools. Y-axis represents the execution time (job completion time) over 40GB of data.
The testbed was deployed over a physical cluster, as shown in Table 3.1 of Hadoop 3.1.1
platform.

We can observe that OPERA achieved definite improvement with up to 74% for CPU
bound jobs, as in the PiEst and up to 26% (with an average of 26%) regarding HDFS bound
jobs, as in the Wordcount. The improvement varies within different benchmarks like Grep,
Sort, Terasort, Randomwrite, and Teragen. We also observe that the performance gap widens
positive linearly with the increase of the tested data set.

To investigate this behavior, we benchmark the performance in terms of read and write
I/O throughput on the OPERA environment normalized to the corresponding native Hadoop
dedicated cluster. We use the Hadoop TestDFSIO benchmark, and the results are shown in
Figure 3.8. The evaluation shows a performance improvement with an overall average of 22%
(26% in the best scenario and 20% in the worse scenario). Moreover, for all benchmarks, as
the size of input data increases, the performance gap widens in favor of OPERA.
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Figure 3.8: OPERA Result.

3.6 Discussion

As Figure 3.1 illustrate, the framework can be divided into four main phases that can be
classified as follows:

1. Job submission: The job/jobs are submitted to the Hadoop master by the users via a job
submission manager. The job manager at the master will place these jobs into a global
job pool (task queue), where tasks wait to be batched.

2. Task allocation: Yarn manages task allocation, status monitoring, and reallocation fail-
ure tasks at the dedicated environment. Each dedicated slave shall run a NodeManager
and a DataNode daemon. Yarn will start an ApplicationMaster per job, which asks
the master (ResourceManager) for resources. The ResourceManager will contact the
NodeManagers, and will provide the required resources in the form of containers. The
ApplicationMaster will run the jobs in the allocated containers till the cluster reaches
a predefined threshold where resources are fully utilized, and no more tasks can be
processes.

3. Cluster saturation: Under this circumstance, tasks start queuing at the job pool. The
Yarn decision maker will use the global ResourceManager and will ask for an offer
from the available (registered) resources at the opportunistic environment (i.e., in a pull
approach).
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4. Opportunistic resources Provisioning: At this point, the ResourceManager asks a spe-
cial daemon (ContainerLauncher) to start containers (Docker) at the available oppor-
tunistic resources. These containers will run a NodeManager daemon. The new con-
tainers will refresh the ResourceManager offering these resources for the Application-
Master, which only exist in the dedicated environment.

Hence, the container launcher will create several Docker containers on the idle nodes for
executing the independent task chunks in parallel. The ApplicationMaster will run these jobs
in the allocated opportunistic containers, and the results will be sent back to the dedicated
cluster via a result manager, which is in charge of result checking. Figure 3.6 shows a se-
quence diagram that explains the task execution phases in a sequence action timeline.

OPERA is thus a second-level scheduler by separating concerns of resource allocation and
task placement by employing a pilot-job abstraction. In definition, pilot-job is the concept of
multi-level scheduling as manifested in the decoupling of workload assignment from resource
management using the concept of intermediate container jobs. In this context, a pilot-job is the
ability to utilize a client’s job as a container for a dynamically determined set of computing
tasks. In particular, Figures 3.7 and 3.8 demonstrates its usability over data-intensive job
execution with up to 74% performance enhancement compared to a native Hadoop cluster.

3.7 Summary

Deploying a variety of computing frameworks and clusters on the same resources infrastruc-
ture was the main objective of many paradigms. Virtualization technology, computer utility,
and cloud computing, to mention some. Those paradigms aimed at maximizing the efficient
use of resources and minimize the associated deploying and operational costs. Sharing re-
sources between deferent resource managers and service provisioning on-demand approaches
was the subject of many other studies in the literature. So doing was motivated by improving
the overall cluster utilization and avoiding statically partitioning resources and infrastructure
silos among separate clusters and resource schedulers.

Big Data analytics and data-intensive applications industry witness many enhancements
regarding large-scale processing. Apache Hadoop, with its ecosystem, is the dominant plat-
form and become a comprehensive OS-like platform. However, current implementations and
resource managers are unable to employ lightly loaded resources within their controlled net-
work, which is not yet fully exploited in the MapReduce state-of-the-art architectures. The
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research work described in this chapter fills a vital gap in understanding statically partitioning
the infrastructures among different resource managers.

Here we introduced the OPERA and EME, which aims at filling the increasing gap be-
tween computation and I/O capacity on high-end workstations. OPERA will help developers,
resources providers, e-infrastructures, and scientific communities to overcome current chal-
lenges in the large-scale data analytics from both PaaS and IaaS levels. OPERA allows the
coexistence of different resource managers and sharing computation among different resource
managers. Also, it enables automatically adapting the cluster size to the resources demand.
This hybrid architecture intends to (i) minimize the capital expenditure on large private in-
frastructures, (ii) removing the statically partitioning of computing resources (iii) improving
DIA performance and (iv) to reduce operational costs.

On the other hand, EME, the prototype blueprint, aims at improving data-intensive com-
puting performance in both local and cloud-based clusters. EME offers a hybrid resource
architecture (dedicated and non-dedicated) that supports heterogeneous capabilities by ex-
tending Hadoop’s cluster beyond its dedicated nodes, with elastic and low-cost resources on-
demand. In particular, employing an opportunistically container-based cluster with auto-scale
capabilities. EME will allow to automatically adapting the cluster size to the resources de-
mand. This hybrid architecture aims to minimize the capital expenditure on large private
infrastructures and to reduce operational costs. Additionally, it improves the MapReduce
infrastructure throughput, performance, and QoS, helping to meet job deadlines.

Even that our work is being developed with Hadoop Yarn as the supporting resource man-
ager, but we believe that the ideas presented in this research can easily be adapted to other
resource management frameworks, for instance, Apache Mesos and Docker Swarm. As it is
usual in the literature, we will start prototyping EME in a virtualized cluster, and next, we test
it in a bare-metal environment.

The work presented in this chapter contributes to the state-of-art practice of Hadoop by
guiding the decision on the enormous technological advancements of Hadoop federation use
cases. We believe that both the findings and the approach presented in this chapter will appeal
to BD practitioners and researchers from different disciplines. Besides, it will act as a catalyst
in the initial study for all those researchers who are implementing BD solutions within any
runtime environment.
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CHAPTER 4

BIG DATA FEDERATION AUTHENTICATION

AND AUTHORIZATION

Privacy and security in a federation scale remain a significant concern among practitioners.
Current Hadoop’s primitive access control has security concerns and limitations, such as the
complexity of deployment and the consummation of resources. This significant challenge can
be tackled using Access Control techniques.

This chapter intends to propose a trustworthy model for authenticating users and services
over a Big Data Federation deployment architecture. The main goal of this model is to provide
a Single-Sign-on (SSO) approach for the latest Hadoop 3.x platform. To achieve this, a con-
ceptual model is proposed combining Hadoop access control primitives and the Apache Knox
framework. The paper provides various insights regarding the latest ongoing developments
and open challenges in this domain.

4.1 Introduction

Apache Hadoop, the prominent Big Data (BD) paradigm, has become a large-scale data ana-
lytic operating system. The large community behind Hadoop have been working to improve
its ecosystem to meet the security increasing demands and requirements. The new features
shift proves the Hadoop 3.x maturity and applicability to serve different markets. Enterprises
across all major industries have adopted Hadoop for its capability to store and process an
abundance of new types of data and leverage modern data architecture. With a broad spec-
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trum of both structured and unstructured workloads, Hadoop abstracts the computing resource
management, task scheduling, and data management, while maintaining a satisfying level of
security and isolation.

The Hadoop Distributed File System (HDFS) is typically deployed as part of a large-
scale Hadoop platform, to supports low-cost commodity hardware and accommodate different
processing frameworks. It is utilized to handle data management and access to the Apache
Hadoop ecosystem, using a master/slave architecture. The latest advancement in BD plat-
forms leads to support of a clear separation of data management and its physical storage.
Using multi namespaces in the form of federation architecture, Hadoop improves its scalabil-
ity and isolation.

In this section, we propose a mechanism to integrate Hadoop 3.x authentication schemes
into Apache Knox [166] in a high-level abstraction. This presents a first work to define and
formalize a service gateway for a BD federation (BDF) deployment architecture. The key
question we will be asking for addressing the access control challenge is “How to design SSO
abstract that handles Data/Service access in a Hadoop federation?” We address this question
by defining a SSO reference architecture (SSORA) for the secure development of BDF. The
work presented in this section may employ in a Hadoop federation environment across multi-
tenant BDaaS and IaaS clouds, as well as on-premises datacenters.

4.2 HDFS federation

HDFS [167] is composed of two primary daemons, (i) a single NameNode (NN) that is de-
ployed at the cluster master node, and (ii) several DataNodes (DNs) running at the cluster
slaves (usually one per-node). The NN runs the namespace process, which manages the file
system information and regulates access to files using a traditional hierarchical organization.

To enable universal block storage layer, Hadoop performed separation of namespace and
blocked storage [168]. A federation BD environment, through multi-independent namespaces
for block management and a shared block pool for data storage, improves scalability and iso-
lation of Hadoop operations. So, by losing the tightly-coupled block storage and namespace,
each DN registers with all the NNs in the cluster (raises authentication requirement). This
allows to scale the NN horizontally and enable the aggregation of geo-distributed Hadoop
clusters. This feature directly enhances throughput by adding more access enforcers (typi-
cally NNs in HDFS architecture), which improve read/write operations.
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4.3 SSORA access pattern

There is a necessity to create a common language tailored to build an efficient, elastic and au-
tonomous access control reference model for BDF. This reference model will not only define
patterns that can result in the dynamic optimization of accelerating access enforcement, but it
will keep access discussions to a minimum as well. Here, we present a HDFS federation SSO
Reference Architecture (SSORA), a sequential pattern-based access control for a federated
SSO model. This will aid in clarifying the required tools/mechanisms to implement a SSO
architecture for Hadoop 3.x clusters.

SSORA affords a binding among the external clients and the Hadoop services in a feder-
ated Hadoop platform. It enables the internal entities (e.g., NN and DN daemons) to verify
these bindings through the use of a central policy authorization and several distributed policy
agents. We will now discuss the formal definitions of SSORA model as shown in Figure 5.6
and specified in Table 1.

SSORA Pluggable Module enables fast integration with architecture (i.e., allows to
plug functionality without modification), it does not require making any modification of the
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Figure 4.1: SSO Reference Architecture (SSORA) and federation access pattern.

prior cluster design. Before addressing the SSORA and federation access pattern, there are
few definitions to guide and facilitate the discussion:

• Apache Knox service is utilized as a unified access point of the federation service.

• Hadoop daemons and services (internal communication) are authenticated using Hadoop
core capabilities, i.e., Kerberos principals and their access granularity is managed using
POSIX ACLs.

• Knox authenticates clients (admins may set an LDAP group), and Apache Ranger [169]
applies their access granularity.

In a federation environment, it is often the case that a client of a particular HDFS cluster
(e.g., NN1) wishes to utilize services offered by another administrative domain (e.g., NN2).
In such cases, the user needs to be authorized by the central policy authority (CPA) to reach
the remote domain. The necessary steps required for a given BDF to access the provided SSO
federation are described subsequently (see Figure 5.6):

1. The Client asks to access the Hadoop cluster, interface with the cluster gateway (Knox)
using his identity. If the external client wish to upload new data to the Hadoop data
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lake, the gateway may ask to secure the connection via SSL/TLS communications over
the public network.

2. If Knox cannot find a valid session for the access request (for first-time registration) it
start a secure session with the CPA (ACL in Hadoop) on clients’ behalf.

3. The CPA validates the proof of authentication and issues a new security certificate to ini-
tialize his permissions (get the authorization level access). The certificate is forwarded
to the gateway interface and performs a login if needed.

4. Access certificate containing the ClientID is issued for valid users and is signed with
the CPA private key. The client receives the certificate and adds it as an embedded
proof of access. This certificate provides an abstraction for combining any number of
authentication and authorization systems. Also, it accelerates authentication to a vast
number of participants (under the federation umbrella).

5. The policy repository is updated, and the authorization level is stored. The CPA can
always issue new security session without the need for storing the client identities,
permissions, and logs locally. Policy agent will keep listening to the new authorization
session.

6. For auditing purposes and security analysis, the CPA manage user activities (at the
service level) by writing audit logs in a common repository.

7. The CPA centralizes the access control and shares the allowed user/calls via a push
mechanism to the Authorization Enforcer (AE), which is, typically, the NN in the ar-
chitecture.

8. The trust relationship between the client and AE is established, and his requests are
authorized to proceed. Other security layers may apply (e.g., an internal TLS and files
encryption).

Figure 4.2 shows a sub-method of the admin permission in SSORA as an XML fragment
policy that performs two operations (delete and intra-node balancing) over BDF.
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Figure 4.2: A representative SSORA XML example.

Figure 4.3: SSO Reference Architecture (SSORA) and federation access pattern.

4.4 Implementations and use cases

BD federation, in general, provides a systematic way for dynamically provisioning the user
demands with elastic resources and services over shared data blocks. Implementing a fed-
erated authorization and delegation to enhance BD client access decisions is vital for the
success of adopting these Hadoop 3.x new features. This aim translates the IAM within the
Hadoop core mechanisms and the Apache BD security-oriented frameworks. Here in, we ar-
gue that FACRM is essential for the concept of unifying the IAM regarding BD federation
infrastructures and the data that they stock. We demonstrate how the proposed components of
BD federation deployments can be brought to a centralized SSO-based fabric and Multi-tier
Hadoop architectures.
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4.4.1 BDF SSO access model

As it should be clear by the previous discussion, there is a necessity to create a common lan-
guage that is tailored to build efficient, elastic and autonomous access control RM for BDF
platforms. This RM will not only define patterns that can result in the dynamic optimiza-
tion of accelerating access enforcement, but it keeps the IAM discussions to a minimum as
well. Next, we present HDFS federation SSO Reference Architecture (SSORA), a sequential
pattern-based access control for a federated SSO model. This will aid in clarifying the RM
and drop the reader’s attention to the required tools/mechanisms to implement a SSO archi-
tecture for Hadoop 3.x clusters. The SSORA is derived from the core concept of cutting-edge
access control frameworks and Hadoop best practices.

SSORA affords a binding among the external clients and the Hadoop services in a feder-
ation Hadoop platform. It enables the internal entities (e.g., NN and DN daemons) to verify
these bindings through the use of a central policy authorization and several distributed pol-
icy agents. The proposed architecture arrangement will enable users of distributed clusters
(represented by various NNs) to be authenticated to interact with each other in a secure mode.

Before addressing the SSORA and federation access pattern in Figure 5.6, there are few
definitions to guide and facilitate the discussion:

• Apache Knox is utilized as a unified access point of the federation service.

• Hadoop daemons and services (internal communication) are authenticated using Hadoop
core capabilities, i.e., Kerberos principals and their access granularity is managed using
the POSIX ACL. For simplicity sake, these two processes shall be called tickets now
on in the discussion.

• Knox authenticates clients (admins may set an LDAP group), and Apache Ranger ap-
plies their access granularity (alternatively may employ Apache Sentry). WebClient
secure service calls and data access will be called sessions. Finally, the granted access
control (authentication and authorization permissions) shall be called certificates.

In a federation environment, it is often the case that a client of a particular HDFS cluster
(e.g., NN1) wishes to utilize services offered by another administrative domain (e.g., NN2).
In such cases, the user needs to be authorized by the CPA to reach the remote domain. The
necessary steps required for a given BDI to access the provided SSO federation are described
subsequently (see 5.6):
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1. The Client asks to access the Hadoop cluster, interface with the cluster gateway (Knox)
using his identity, i.e., username/password (which initialized by the admin). If the
external client (WebClient as in a cloud model) wish to upload new data to the Hadoop
data lake, the gateway may ask to secure the connection via TLS communications over
the public network.

2. Knox cannot find a valid session for the access request (for first time registration) and
start establishing a secure session with Ranger server as the Central Policy Authority
CPA (could be an ACL in a simple Hadoop architecture within the NN daemon) on
clients behalf, thus it requests the CPA to authorize based on the chosen identity.

3. The CPA validates the proof of authentication and issues a new security certificate to ini-
tialize his permissions (get the authorization level access). The certificate is forwarded
to the gateway interface and performs a login if needed.

4. Access certificate containing the ClientID is issued for valid users and is signed with
the CPA private key. The client receives the certificate and adds it to his job/operation
submissions as an embedded proof of access. This certificate provides an abstraction for
combining any number of authentication and authorization systems. Also, it accelerates
scaling the IAM to a vast number of participants running on different clusters (under
the federation umbrella) with various Hadoop services.

5. The policy repository is updated after starting the new session, and the authorization
level access is stored. Thus, the CPA can always issue new security session without the
need for storing the client identities, permissions, and logs locally. Policy agent will
keep listening to new authorization session.

6. For auditing purposes and security analysis, the CPA manage user activities (at the
service level) by writing audit logs in a common repository. These log information files
are monitor based on either users and group activities or based on timeline structure
(for each entity) via TimelineClient on the timeline server.

7. The CPA centralizes the access control and shares the allowed user/calls via a push
mechanism to the Authorization Enforecore (AE), which is, typically, the NN in the
HDFS architecture. Hence, eliminating the need for policy creation via SLA and ACL
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on each AE that could be dozens (even hundreds) in a federation infrastructure. This ap-
proach, indeed, minimizes the access discussion and communications to the minimum
within a large Hadoop 3.x environments and Multi-tenant BDaaS clouds.

8. The trust relationship between the client and AE is established, and his requests are
authorized to proceed. Other security layers may apply (e.g., an internal TLS and files
encryption).

9. The AE forwards the client request to the framework endpoint (DNs), embedding the
security certificate obtained from the CPA. The policy agent periodically caches each
user authorization level of access and permissions to the common blocks storage at the
DNs local disks. Even that data is stored within a unified data storage, this approach
enforces access discussion for each BD pool ( represented by NNs), before accessing
the data.

Steps from 10 to 12 refer to Hadoop local entities (daemons and processes) access control.
This process includes registering DN by forwarding access tickets, and internal communica-
tions among containers (as for task status and heartbeats). DNs required proof of authen-
tication using Kerberos principal and keytab file location. Meanwhile, authorization access
enforced using Hadoop core access control, i.e., ACL. Fault tolerance is managed using era-
sure coding, and other security layers may implement (e.g., an internal TLS and encrypted
files) as well. The policy agent caches each DN ticket information to the unified repository to
update the NN cluster status.

4.4.2 Multi-tier access model

The multi-tier BD federation is a four-tier architecture as illustrated in Figure 4.4. However,
access hierarchy in general has at least three access layers. A first-tier; system gateway with a
plurality of HDFS clusters (represented by NNs) that connected to a central HDFS federation
setting. Second-tier; access logic that connects the clients’ requests to the DNs. It acts as
a policy enforcer that handle the allow/denial discussions and establishing the sessions. The
data access is bound to the third-tier (low-level data access) via data buses involving the
predefined access policies.

A high-level data access layer may be connected to the tertiary data layer in which clients
calls requires authorized session. This session connected to a particular policy agent that pro-
vided access control with means for detecting unauthorized operations. The data and calls
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Figure 4.4: Multi-tier BD federation architecture component diagram.

traffic may remain behind a firewall in the fourth-tier. This way connects the DNs to several
NNs buss as a transceiver that provides an additional layer of control security. This hierarchi-
cal access model, indeed, acts as a multi-tier authorization approach that assists in applying
role-based access control [170] mechanisms within both BD federations and multi-tenant de-
ployment environments. In particular:

Tier-One, gateway access: external client identification and cluster access;

Tier-Two, access logic discussion (assign authorization): ClientID passed to the CPA for
validating to contact NNs and session issued. If successful, the CPA responds with a certificate
for the NN server and establish a session. This certificate contains the clientID and a copy of
the session key, which used to communicate with the authorized cluster entities.

Tier-Three, low-level data access specifies clients (could be all clients that pass the gate-
way) authorization level access and permissions for each NN within this layer (defined by the
admin) and reaching the specific stored data in the DNs which belongs to that NN. This layer
includes submitting jobs and querying status, etc., upon receiving certifications;

Tier-Four, high-level data access: designate the authorized clients (could be a private
list of the previous tier) for the NNs within this layer and establish the session to enable the
certified client calls.

In the component diagram in Fig. 6, the gateway is normalizing the authentication process
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by abstracting the ticket exchange of different frameworks. This capability is resulting in a
universal authentication platform that scales the access control process in a multi-tier architec-
ture. Both Ranger and Knox daemons may represent the IAM. The gateway contacts CPA to
validate the client session tasks and to set up his level access. A different access level may be
attached to different users. In the previous example, client A has access at the low-level data
access tier only while client 2 yield high-level data access. This BDI imposes fine-grained
data access among the clients. In the earlier example in section 2.1, a client could have access
to the archival data that allocated in NS1 (tier-3).

Meanwhile, the current data manage its metadata at NS3 in tier-4, which required high-
level data access session. Without the access certificates, each entity would need to authenti-
cate and authorize with other entities on its own. On the contrary, by employing the FACRM
components, it only needs to combine a central authority that issues an access certificate
(based on admin policies) that applies to every entity within variant access tiers.

4.5 Authorization Level Classification

HDFS has supported a permission model that control distinct user classes with a restricted list
of control roles in the ecosystem services. This way, security is sufficient with different levels
of authorization access for each user-class that allow/deny the service-call based on the prede-
fined levels of access. HDFS, therefore, enforces permissions during user connection to DNs
(e.g., access file system) by the user class and then assign roles to secure files and directories.
Additionally, HDFS operations rely on checking the user permission of all components of a
path, which requires traversal access. Each user service-call that reaches HDFS has a two-part
identity the user name and groups list.

To allow a service-call, it demands that the owner has the required permissions, which
granted by file/job ownership, group membership or other authorities (e.g., ACL). For in-
stance, a file owner (creator by default) service-call will grant an inclusive authorization level
of access (read, write, execute) if his UserID matches the owner permissions. Else if the user
is not the owner but a member of the groups’ list, HDFS checks the authorities of that group
as a non-owner class with a limited level of access (could be read-only). If a permissions
check fails, the client operation fails as well.

As missioned earlier, authorization control applies at the whole path components. Hadoop
checks permissions hierarchically in HDFS files-level. Further, the path components can
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describe as (i) Parent: the parent directory of the requested path. (ii) Ancestor: the last existing
element of the inquired path. (iii) Final: the final component of the requested path [171].
Meanwhile, directories paths are defined as sub-tree (directory and child sub-directories) path
recursively. Changing the data owner requires administration authorization level access. This
process can also set to a superuser upon a policy. However, a user may change the group and,
still, be the owner of the data, if he is a member of the specified group.

Next, we Define the different user-classes and their roles in a Hadoop cluster:

• User: Regular system client with limited access level, only submit jobs and query
results of his data access over a predefined availability zone (NN). The user may belong
to one or more groups.

• Superuser/owner: The user who creates the file (upload data) in the cluster and
user with an authorization level of access to these files. The superuser may act on be-
half of another user by impersonating (based on Kerberos credentials) their ID [172].
In general, many scenarios can be applied in this category. First, Hadoop cluster with
a simple authentication policy (without secure mode), in this case, any user logs as a
superuser (no IAM required) with a complete access level of authorization. Second, the
user registers with the Kerberos authentication protocol in a secure mode. Data owners
(the user who submitted the job) hold superuser privileges over their tasks within the
cluster (e.g., he may cancel the job). However, the system admins may implement ACL
at the authorization level to mitigate the security risks using the POSIX ACL model
over both the files and directory using a single API gateway-access for all ecosystem
components [171]. Even though, superuser does not control the underlying infrastruc-
ture but has limited control (based on the SLA policy) of select networking components
(e.g., virtual networks) and configurations.

• Administrator: The one who sets the policy for other users of the system. With
administrative privileges, the admin has absolute power over the use of the services and
components. The Hadoop administrator daily tasks include correctly setting the config-
uration files, implementing secure ACL and SLA policies, and managing the underlying
resources. These underlying capabilities include hardware, network, and runtime envi-
ronment with arbitrary software that includes operating systems (OS), virtual machines
(VM) and containers. Delegations allow the administrator to give another user the abil-
ity to perform actions on their behalf.
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Table 4.1: Examples of authorization level classification.

Role Example

READ
HDFS fs -ls <args>
HDFS fs -cat/-get <file>
HDFS dfs -count [-q] <paths>

WRITE
HDFS fs -put <dir>
dfs -copyFromLocal <localsrc>
intra-node disk balancing

EDIT
hadoop namenode -format
Chmod/Chmown <file>, setPermission <path>
delete <Path>, removeDefaultAcl.

CONFIG
Start/stop-dfs.sh
hdfs dfs -setReplication [-R] [-w]
setAcl, <numReplicas> <path>

INTERNAL
Heart beat, ApplicationMaster to
NodeManager, NM to container.
Data pipelining with Hive, HBase, etc.

UNDERLY
administrative commands
edit etc/hosts, directory foo
machines on/off, etc.

• Daemon: The processes that started under Hadoop and run in the background to be
functional. The main Hadoop Yarn and HDFS daemons are ResourceManager (RM),
NodeManager (NM), NameNode (NN), and DataNode (DN). Besides, there can be
secondary NameNode, standby NameNode, Job HistoryServer, etc.

Each Hadoop command (operation) can belong to one role of the authorization levels
listed in Table 4.1. For instance, when a user runs hadoop job -list it authorizes the
connection requests at the READ authorization level. Meanwhile, an attempt with an unau-
thorized access level, e.g., hadoop job -kill jobid that does not belong to job owner
(nor he is an admin) will be denied. A complete list of HDFS methods that may categorized
based on our classification can be found in [173]. Besides, the relation between different
levels of access and user-class in Apache BD cluster is illustrated in Table 4.2. It worth to
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mention that those roles are not alternatives for the general Hadoop file permission values
(read, write, execute). On the contrary, those roles represent a categorization of the HDFS
operations by aggregating them based on their role. This categorization aims at setting each
operation/command to proper access level state. In an operational HDFS environment, any
command may categorize to:

• READ; permission is required to read or list the contents of DN, querying information,
and check job status and results.

• WRITE: permission is required to add data or append it to DN, submitting jobs to NN,
and updating information in HDFS.

• EDIT: permission is required to access data blocks, delete data, cancel a job, formate
the NN, and perform data balance.

• CONFIGURATION (CONFIG): permission is required to access runtime variables,
paths, add/remove Hadoop features, change the scheduler (e.g., Fair), etc.

• INTERNAL COMMUNICATION (INTERNAL): permission is required to access
daemon to daemon communication, as for task updates and cluster resource status, etc.

• UNDERLYING Capabilities: permission is required to access infrastructure variables,
add nodes, OS, VM, Network, Hardware.

We characterize the conceptual classes of Hadoop Yarn cluster users and the HDFS oper-
ation roles in a federation architecture. From these specifications, we try to characterize each
service-call with constraints into five main classes to refer as authorization level classifica-
tion. This categorization deliberates, indeed, as the foundation for future secure API design
and standardization work. It also worth to mention that Hadoop 3.x advanced with intra-
queue preemption that priorities applications and users limits on a queue (within the capacity
scheduler [174]).

4.6 Related work

Security of BD deployment architectures and Hadoop service trust have always labeled as
a research concern. Several research papers discuss the Hadoop ecosystem privacy and ac-
cess management [175, 176, 177, 178]. Although the access control requirements and privacy
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Table 4.2: The relation between levels of access and user-class

Read Write Edit Configuration Internal Underlying

User
√ √

Superuser/Owner
√ √ √

Administrator
√ √ √ √ √

Daemon
√ √ √

analysis of Hadoop frameworks have addressed in the literature [179, 180]. In [175] and [176]
the authors formalize the access control features of Hadoop core capabilities, as well as other
associated frameworks. They extend their work with HeAC [177], a multi-layer access con-
trol model that represents a role-based abstraction of both Apache Ranger and Sentry access
control. A framework for data-intensive application fine-grained policy enforcement proposed
in [181].

Standardizing the security development schema of secure systems was first reported in [182].
This unifies practices and languages for modeling security and access control among different
implementers. A reference model for developing cloud applications was reported [183], be-
sides, a survey that supports federated access control [184]. Barker, S. propose a meta-model
and best-practices of access control modeling [185]. Both Barkers’ work and this research
aim at unifying access control models by drafting a reference model. However, herein we
address the modern Hadoop 3.x status given the broad diversity of existent access control
uniformity associated with a federation environment. Also, this work is distinguished by ad-
dressing the HDFS federation access control challenges and maps cutting-edge frameworks
to that problem domain.

4.7 Summary and Open challenges

In this section, we present a BD Federation-oriented reference model for the secure develop-
ment of access control solutions within Hadoop clusters. The proposed model is a generic
high-level conceptual metamodel (called FACRM ), which aims at formalizing Hadoop 3.x
core access controls capabilities and highlighting some of Hadoop’s top-level security projects.
It, also, aims to successfully implementing a unified and secure BD solution over on-premises
and cloud-based deployment architectures in favor of BD applications and frameworks. The
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FACRM supports myriad access control options across a variety of policies, users, and frame-
works in pursuit of modern BD infrastructure. This study also represents an in-depth analysis
of Hadoop IAM ecosystem and draft current access control limitations within a federation
deployment architecture. We validate the use of our proposed RM using two use cases; SSO
federation architecture and multi-tier access control architecture for the security of BD de-
ployment. Finally, it categorizes the authorization levels that afford comprehensive coverage
of Apache BD IAM and related manipulation languages.

Leverage recent proposed independent management mechanisms of policies enforcement [186]
to combine cloud and edge federations with role-based access control could label as future re-
search. It is, also, expected to adopt the FACRM use cases to be implemented within our BD
opportunistic and elastic resource allocation (BigOPERA) platform. BigOPERA architecture
(its prototype proposed at [3]) combines the computing power of available (non-dedicated)
high-throughput resources to Hadoop 3 dedicated cluster using Docker containers as worker
nodes. Those non-dedicated containers tend to be more vulnerable, which require robust IAM
approach to maintain security threats to a minimum.

This work also, intends to propose a trustworthy and Federation-oriented model for au-
thenticating users and services over a Hadoop 3.x. platform. The main goal of this model is
to provide a SSO gateway based on Hadoop access control primitives and Apache Knox. A
SSO architecture can be managed using Kerberos with Lightweight Directory Access Protocol
(LDAP), which is enabled by setting Hadoop.security.group.mapping.ldap.url
to true. Alternatively, implementing a single gateway that handles client access management
behind a firewall can be achieved by employing Apache Knox. Knox will allow/deny users to
access the ecosystem services before interacting with the Hadoop cluster. Following to user
verification using Knox gateway, Knox will use its Kerberos principals to confirm, securely,
with other Hadoop services and daemons.

It is expected to adopt the SSORA within our BD opportunistic and elastic resource alloca-
tion (BigOPERA) platform. BigOPERA architecture (its prototype proposed at [3]) combines
the computing power of available (non-dedicated) high-throughput resources to Hadoop 3.x
dedicated cluster using Docker containers as worker nodes.

Examples of different open challenges and research directions include:

Scalable Authorization Despite the availability of several adapted security mechanisms
and techniques that have been developed for BD security, more research activities are still
needed to establish scalable security models and paradigms that must be driven by BD specifi-
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cations and requirements. Also, new security abstractions for BDF are still needed to simplify
the task of identifying the unimproved gaps. Also, leverage recent mechanisms of policies
enforcement [186] to combine BDF with ABAC [177] could label as future research.

Fine-grained Authentication Management The need to develop active and dynamic
models (policies and standards) for BDF is inevitable. The challenge here is to extend the
previous approaches with new policy editing and presentation tools for flexible and exten-
sible data access, i.e., policies that extend ABAC with stateful access sessions and mutable
attributes (i.e., characteristics that change dynamically during the session). This extension
is mainly invaluable to advance the authorization mechanisms of the multi-tenant data lake
architecture as well as the latest BDF model. Tackling this issue can be achieved by de-
ploying policy templates that extend the primary ACL (or any access decision enforcer) as a
specialization of the XACML V3.0 standard.

Data-centric security This requires restricting the BDF access to only those authorized
by succinct gateway. However, the current state-of-the-art BD-based encryption technologies
are around transparent data encryption. This takes place at the file-level (for data at rest) and
does not protect data-in-transit or data-in-process (not even the metadata). Attribute-based
Encryption (ABE) in conjunction with usage control approach and ABAC can be labeled
as a future direction for this issue. It could provide a complete end to end encryption, i.e.,
including data traffic between the store and application.

Providing new solutions in all those research directions will promote innovative BDF
solutions with advanced security features.
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CHAPTER 5

A UNIFIED BIG DATA FEDERATION

ACCESS CONTROL AND AUDITING

[5]

5.1 Introduction

Apache Hadoop [6], the BD landmark, has become a large-scale data analytics operating sys-
tem. The large community behind Hadoop has been working to improve its stack to meet
the increasing demands and requirements of BD. Enterprises across all major industries have
adopted Hadoop due to its capability to store and process an abundance of new types of data
and leverage modern data architecture. With a broad spectrum of both structured and unstruc-
tured workloads, Hadoop abstracts the computing resource management, task scheduling, and
data management, while maintaining a satisfactory level of security and isolation.

The Hadoop distributed file system (HDFS) [187] is typically deployed as part of a large-
scale Hadoop platform to support commodity hardware and accommodate different process-
ing frameworks. It is utilized to handle data management and access to the Hadoop ecosys-
tem using a master/slave architecture. It is also successfully employed by several distributed
systems and can be used by different resource schedulers as a data storage system, e.g., HT-
Condor [188] and Spark [189]. IAM in the HDFS ecosystem can be defined as the set of
tools and mechanisms that enables end users and applications to interact securely with system
core functionalities, thus ensuring appropriate access to data across the cluster. This security
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discipline can be separated into three abstraction layers: identification and access control,
authentication, and authorization.

As more services and users have joined the Hadoop federation portfolio in pursuit of a
scalable BD hub, access control has become increasingly critical. One of the main obstacles
in the development of an adaptive access control solution for BD platforms is the lack of a
standard model to which access control rules and the associated enforcement monitor can be
bound. A recent study [179] indicates that BD, as an emerging research trend, lacks standard-
ized models for unifying user/application access to resources, services, and data. Moreover,
Hadoop’s primitive configuration lacks any classification mechanism that improves metadata
governance or facilitates auditing procedures. Therefore, formalizing the IAM features of
Hadoop 3.x, in addition to emphasizing the complexity of securely utilizing their core func-
tionality, is becoming a research interest. This trend serves as a form of knowledge capture
by mapping current technologies of concern and formulating the latest Hadoop capabilities
related to access control frameworks and audit log management.

This paper highlights the need for robust access control that handles the authentication and
authorization operations within a federation scale. The paper defines the associated require-
ments of secure BD runtime and management of the Hadoop HDFS federation. It therefore
proposes a reference model (RM) that provides a basis for building an interoperable data fed-
eration scheme that includes all of the major stages and reflects specifics in access control
within Hadoop clusters using modern open-source technologies. Furthermore, this paper ex-
plains how the proposed models can be implemented using modern BD infrastructure (BDI)
to meet the increasing demand for scalable access controls and digital forensics (using access
log analysis). The key question we will be asking to address the IAM challenge is as follows:
“How can we create a dynamic reference model that is compatible with the foreseen BDI
scenarios in a federated setting?” We address this question by employing the proposed RM in
a novel access broker that provides a single sign-on environment. The proposed BD Federa-
tion (BDF) broker is an access control logic component to securely connect the external users
with the Hadoop cluster gateway. The work presented in this paper may be employed in a
Hadoop federation environment across multi-tenant BD clouds, as well as within on-premise
data centres.

An essential application of the proposed solution deals with security auditing and analysis
of audit logs of BD operations. These log files contain detailed information about all access
call activities regarding BD processes and infrastructure to be protected by centralizing the
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access control of the data lake, BD services, and underlying resources in a unified access
broker pattern. This broker abstracts the identification, authentication, and authorization dis-
cussion within large-scale data analytics. This layer may also afford granular insights into
pieces of information by performing security and risk assessment, tracking data pipeline audit
logs, and examining behavioural analytics to meet their compliance and governance demands
within the Hadoop 3.x platform.

The rest of this paper is organized as follows. Section 5.2 provides an overview of the
Hadoop federation and its role in supporting BD operations. It also highlights complementary
security measurements for BD frameworks and discusses the related work. The HDFS access
control primitives and federation access provisioning limitations on which this study is based
are investigated in Section 5.3. Section 5.4 describes the logic language for defining the RM,
while we implement the proposed model in a novel access broker proof-of-concept framework
in Section 5.5. Section 5.6 demonstrates the advantages of the proposed centralized audit log
management, and we ultimately provide the conclusion in Section 5.7.

5.2 Hadoop Federation

As the size of a Hadoop cluster increases, the pressure on the NameNode and the Resource-
Manager increases. To alleviate this problem, Hadoop has introduced both HDFS Federa-
tion [190] and YARN Federation [191]. HDFS Federation consists of the usage of multiple
independent NameNodes, where each NameNode is responsible for managing a subset of the
whole namespace. To understand how this federated architecture works, we need to explain
how the single HDFS is designed. HDFS is composed of two main layers:

• The namespace layer, which runs in the NameNode and is in charge of storing all infor-
mation related to directories, files, and blocks (creation, deletion, modification, listing).

• The block storage service, which supports low level block-related operations and con-
tains two parts:

– Block management, which runs in the NameNode and is responsible for block
creation, deletion, modification, replication, and location.

– Physical storage, which runs in the DataNodes and is responsible for storing the
data blocks and providing read/write access to them.

93



FERAS MAHMOUD NAJI AWAYSHEH

Figure 5.1: HDFS Federation Architecture with n NameNodes (NN) and Namespaces (NS)
and m DataNodes (DN)

Whereas physical storage can be easily scaled horizontally, simply by adding more DataN-
odes, previous versions of HDFS only allowed the namespace layer to be scaled vertically, as
it runs on a single NameNode. The HDFS federation removes that limitation, allowing the
namespace layer to be scaled horizontally. It uses a federation of multiple NameNodes that
are independent; i.e., they do not require coordination with each other. Each NameNode is
assigned a set of blocks, which is called a block pool. Different blocks in a Block Pool can
live in any DataNode, and so each DataNode must register with all NameNodes in the cluster,
sending them periodic heartbeats and reports about block status. A schema of this architecture
is shown in Figure 6.1.

However, on Jan 16, 2019, Apache Hadoop released its 3.2.0 stable platform, while the
first stable 3.x line was released on Apr 6, 2018. This release incorporates several signifi-
cant enhancements over the previous primary release line. A federated architecture has also
been proposed for Apache YARN. This approach allows YARN to scale to tens of thousands
of nodes. In this architecture, a large YARN cluster is split into a set of sub-clusters. Each
sub-cluster has its own ResourceManager and compute nodes. From the point of view of
applications, the federated cluster is still seen as a single huge YARN cluster, and tasks can
be scheduled on any node of the cluster. The federation system is responsible for negotiating
with the resource managers of the sub-clusters and providing resources to each application.
YARN Federation functionality relies on reliable connectivity across sub-clusters to deploy
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atop the HDFS Federation. A federation architecture across data centres among several phys-
ical confines requires further investigation.

5.2.1 HDFS federation

In this section, we present a brief overview of HDFS federation architecture and highlight the
Apache Hadoop security features.

HDFS architecture

HDFS [167] is a distributed and open-source file system designed to meet the rapidly growing
demands of large-scale data management and access. The HDFS is composed of two primary
daemons: (i) a single NameNode (NN) that is deployed at the cluster master node and (ii)
several DataNodes (DNs) running at the cluster slaves (usually one per node). The NN runs
the namespace process, which manages the file system information and regulates access to
files using a conventional hierarchical organization. In addition, it tracks block locations and
numbers and writes log information files for auditing purposes. Internally, a file is partitioned
into multiple data blocks that are placed into various DNs to be stored in local disks (block
storage). These blocks are replicated for fault tolerance over several DNs from different racks
(if possible). The NN makes all decisions regarding replicas and periodically receives a static
heartbeat; the default period is every 3 seconds. The NN checks the expiry time report of a
heartbeat every 200 seconds (as a default timeout). When a new file is updated, the NN places
replicas of the file blocks in different nodes and racks (if available).

Conventionally, the Hadoop cluster runs several DNs, but it has only one NN (and one
namespace) for all DNs (HDFS High-Availability allows running two NNs when working in
active/standby mode). The DNs can be scaled both vertically (by adding more resources to
the nodes) or horizontally (by adding more nodes to the cluster). The NN, however, may
only scale vertically, which means that one needs to add more resources (CPUs and RAM) to
that NN server to serve more DN metadata. Notice that metadata are preserved in memory
for minimizing latency and enabling faster retrieval. This approach causes a single point of
failure and, hence, limits the number of blocks, files, and directories maintained on the file
system. The HDFS Federation has been introduced to cope with this issue.

To enable a universal block storage layer, Hadoop performed separation of namespace and
blocked storage [168]. A federation BD environment, through multi-independent namespaces
for block management and a common block pool for data storage, improves scalability and
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isolation of Hadoop operations. Therefore, by loosening the tightly coupled block storage and
namespace, each DN registers with all the NNs in the cluster (this increases the authentica-
tion requirement). These DNs send periodic heartbeats, block reports and handle commands
from the NNs. This allows horizontal scaling of the NN and enables the aggregation of geo-
distributed Hadoop clusters. This feature directly enhances throughput by adding more access
enforcers (typically, NNs in HDFS architecture), which improves read/write operations.

Moreover, the HDFS federation services high-intensity BD applications that block vast
resources on the NN by distributing them among different namespaces. However, this imposes
authentication and authorization challenges, as well as security concerns, which we address
in the next section. For instance, a federation cluster may improve the query performance in
a Hive framework – as Apache Hive manages data in partitions within different tables and
locations. This setting can store various tables in separate namespaces, or even save the table
partitions in different namespaces. In principle, this optimizes load balancing across multiple
namespaces (e.g., one for archival data and another for current data), which reduces each
namespace load and improves the application isolation.

5.2.2 Complementary security measures for HDFS federation

Figure 6.2 presents a security layered abstraction of the engineering BD system, which in-
volves several essential functions. The first three layers, identification (ID) and access con-
trol, authentication, and authorization, are combined, representing the IAM processes of the
Apache Hadoop cluster and the objective of this paper. The other security layers (data gover-
nance, integrity, confidentiality, and security auditing) are briefly presented in this section to
perform a comprehensive security discussion of a BD environment.

• Access control is a service gateway to securely and efficiently communicate with the
BD federation. This layer verifies the external client’s access to the system using the
user identification (ID) and passwords. Every client username and IP address must
be in the host file or in a DNS table, and must match the client-given password. This
process may also include Apache Knox [192], a unified gateway framework for Hadoop
services and ecosystem that can be utilized as a single-sign-on (SSO) gateway.

• Authentication is the act of confirming authentication access to the Hadoop services
and HDFS data (after user log-on to the cluster), i.e., the process of actually determin-
ing the client identity. In a non-secure Hadoop mode, this layer is disabled and internal

96



Chapter 5. A Unified Big Data Federation Access Control and Auditing

Figure 5.2: Apache Hadoop security layer abstraction.

entities, i.e., clients (confirmed by the host OS), application, and ecosystem, interact
directly with the Hadoop services. However, Hadoop secure mode [193] enables an
authentication mechanism to verify that an entity is what it claims to be using the Ker-
beros protocol (authentication based on tokens). Each Hadoop service and user must be
authenticated by the Kerberos keytab file (binary containing the information needed to
log) using Hadoop tokens to initialize trust between a client/application and the HDFS
(more details in Section 5.3.3). Authentication for access to the Hadoop services web
console requires enabling the HTTP SPNEGO protocol as a backend for Kerberos cre-
dentials [194]. Thus, preventing the stored data in HDFS from unauthorized access is
applied both to all clients accessing the cluster and to any service claimed to be part of
the cluster.

• Authorization is the process of defining access rights which an entity (service, daemon,
or client) can perform to the given service. It manages access in the context of a spe-
cific service, resource, and data functionality provided by the cluster. Hadoop service
level authorization (SLA) manages the fundamental set of permissions, such as defin-
ing the users and groups who are authorized to make service calls (e.g., data access)
to that service. The call will pass the authorization check only if the user making the
call belongs to an authorized service entity. It also provides fine-grain access control
(table, column, and file levels) by enforcing the access control list (ACL), i.e., consis-

97



FERAS MAHMOUD NAJI AWAYSHEH

tent policy administration across all Hadoop ecosystems [195]. ACL combines three
elements: effect (allow or deny), action (e.g., data access or execution), and resources
(e.g., NameNode1, Hive table). In principle, authorization is considered to be the final
IAM layer in a Hadoop security abstraction, which means that no additional security
mechanism is required as an IAM intention for an authorized client. Nevertheless, data
encryption both at rest and in transition is still required, in addition to security analysis,
auditing, and metadata governance, which represent high-level security services when
combined as in Figure 6.2.

• Data Governance is a capability that ensures adequate manageability of data through
the complete lifecycle (i.e., data at rest, movement, and processing). This layer includes
several dimensions, including classification (labeling and description), source tracking,
and quality across data sources. Providing a typical store for exchanging metadata
tags and attributes among the Hadoop stack can be achieved using Apache Atlas [196]
and Apache Solr [197] for defining data types and fields using full-text indexing and
querying techniques.

• Data Integrity and Confidentiality is a capability to ensure adequate consistency and
accuracy of data-at-rest as well as in-transit. This security layer includes validity and
recoverability approaches, as Hadoop 3.x utilizes erasure coding for fault tolerance [?].
However, aiming for confidentiality, HDFS implements end-to-end encryption with so-
called transparent data encryption [198]. This HDFS encryption occurs at the file level
of on-disk data and is stored as NN metadata. On the other hand, Hadoop wire-security
(such as for data transfer between Web-console and client) is managed via SSL/TLS for
HTTP communications.

• Security auditing and analysis: The aggregation of log files and reports provides a ro-
bust audit capability within different components of the Hadoop ecosystem. This layer
may also afford granular insights into pieces of information by performing security and
risk assessment, tracking data pipeline audit logs, and examining behavioural analytics
to meet their compliance demands within Hadoop.

5.2.3 Related work

The security of BD deployment architectures and Hadoop service trust have always been la-
belled as research concerns. Several research papers have discussed the Hadoop ecosystem
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privacy and access management [175, 176, 177, 178, 199, 200, 201, 202, 203, 204]. The ac-
cess control requirements and privacy analysis of Hadoop frameworks have been addressed
in the literature [179, 180]. Recently, Gupta et al. [175] and [176] formalized the access
control features of Hadoop core capabilities, as well as other security associated frameworks
including Apache Ranger and Sentry. They extend their work with the HeABAC [177] model,
a multi-layer attribute-based access control model [205, 206] that provides fine-grained au-
thorization policies for Hadoop. Ulusoy et al. proposed an approach for fine-grained access
control authorization for MapReduce systems in [181, 207]. Big data privacy issues are also
well addressed, and novel solutions have been proposed in [180, 208, 209, 210], in addition
to an SSO framework for Hadoop services in [1]. Colombo et al. conducted a comprehen-
sive study of big data technologies, including access control requirements, state-of-the-art and
future trends, in [211, 179, 178]. One of the earliest works by Kulkarni [212] targets wide-
column NoSQL databases which support content and context-based access control policies
at different levels of the data model, such as row or column. Another work on Cassandra
datastore [213] presents a cryptographic enforcement of RBAC policies. Predicate [214] and
second level encryption [215] have been used for defining an efficient RBAC enforcement
scheme operating within the Cassandra distributed architecture.

Research has also been presented in the field of Data Stream Management Systems (DSMSs)
[216, 217, 218], wherein a framework, called FENCE, has been proposed in [216], which
supports continuous access control enforcement. Complex event processing (CEP) systems
represent the evolution of DSMSs [219, 167], and have been used in contemporary applica-
tions including IoT and Smart Cyber-physical systems [220]. Researchers from the National
Institute of Standards and Technology (NIST) [221] have presented a general access control
model for BD processing frameworks which introduces the novel notion of chain of trust
among entities to authorize access requests.

Access control of data and resources from multiple sources within centralized computing
systems has been a subject of intensive studies in the literature. Context-awareness using
fuzzy logic conditions as access control approach has been proposed in [222] to address
the dynamic outsourcing environment on the edge of the network. Aiming to protect the
redundant data stored over the cloud, an approach by Zhou, Yukun et al. [223] supported
flexible access control with revocation. Adopting a proxy re-encryption policy to update the
process to the outsourced cloud was reported for BD deployments [224] to support ciphertext
re-encryption. Controlling access to sensitive BD, e.g., healthcare records, using the quantum

99



FERAS MAHMOUD NAJI AWAYSHEH

mechanical equivalent of digital signature was introduced [225], along with an unaddressed
challenge of the data transfer process. Other than the implementations mentioned above, the
BDs of time series (e.g., time-series databases) are required to be associated with an encrypted
timestamp, and Noury, Amir, and Morteza Amini in [226] proposed an access and inference
control model to enforce time and value-based constraints over the hierarchical time series
data.

Standardizing the security development schema of secure systems was first reported in [182].
This standardization unifies practices and languages for modelling security and access con-
trol among different implementers. A reference model for developing cloud applications was
reported [183], along with a survey that supports federated access control [184]. Barker, S.
proposed meta-model and best-practices of access control modelling [185]. Both the work of
Barker and this research aim at unifying access control models by drafting a reference model.
However, herein, we address the modern Hadoop 3.x status given the broad diversity of ex-
istent access control uniformity associated with a federation environment. Additionally, this
paper distinguishes itself by addressing the HDFS federation access control challenges and
maps cutting-edge frameworks to that problem domain.

5.3 Access control in HDFS

A client needs to perform tasks through the NN as a central policy enforcer for the HDFS. The
NN receives the client call and allows it to reach data files which are stored in local disks via
the DN pool. HDFS applications need a write-once-read-many access model for files. Once a
file is created and written, it cannot be modified without an authorization access level policy.
A secure IAM model must ensure that entities (clients, processes, and daemons) are who they
claim to be (authentication) and that they have permissions to perform the requested operation
(authorization).

5.3.1 HDFS replica selection

It is important to direct the reader’s attention to “how it works” before presenting the access
challenges within the federation settings.

The HDFS cluster responds to client calls via the closest block replica to the reader node,
aiming to keep data movement and read latency to a minimum. Thus, the preferred replica
is the one stored locally (if available) to the reader node or the replicas of the same rack to
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Table 5.1: HDFS data access priority scheme.

Cluster Rack Node Path Priority
Number Number Number

Cluster 1 Rack 1 Node 1 Local First
Node 2 Node 2>Rack 1 Second

Rack 2 Node 3 Node 3>Rack 2>Cluster 1 Third

reduce bandwidth consumption (see Table 5.1). If the HDFS spans multiple rack clusters,
then a replica placed in the local rack is preferred over any remote replica [227]. The NN
manages this fault tolerance operation by implementing a rack-aware policy (e.g., the first
replica is placed on the local node, the second is located in a different rack, and the third one
is stored on another node within the local rack). By analysing the DN length to the parent,
the NN selects the replica placement path. Consider the example in Table 5.1 that assists in
the further discussion concerning HDFS access control and HDFS Federation (section 5). A
Hadoop application will use blocks locally within its current node. However, if the block has
to be copied from a remote DN, it will calculate and pass the block to the clients in the order
of proximity.

Figure 5.3 demonstrates the HDFS authorization model pattern with an HDFS service
call scenario. At first, Apache Yarn client make an HDFS call through the NN cluster as the
service level access control. The NN checks the ACL, which had been set by the administrator,
and the service call is either granted authorization to proceed with the operation or to deny
it. Finally, the NN writes audit log information to a local file. System administrators must
set this security mechanism for each Hadoop component and execution engine (Spark, Hive,
HBase, etc.). Every ACL has one NN (and only one), while the NN could or could not have an
ACL. In the last case, any service call made by the user that reaches the NN will gain access
to DNs (the user still needs the ID and password for the external log).

5.3.2 Apache Hadoop federation access management

A cluster with high-level data analysis, i.e., sequel operations, and different execution en-
gines will contact its security module (local policy authority or access enforcer) to validate
access control rules. Figure 5.4 illustrates a Hadoop Yarn cluster with several data access
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Figure 5.3: Authorization access pattern in a
native Hadoop Yarn cluster.

Figure 5.4: Access pattern in a multi
execution-engine Hadoop cluster with no cen-
tral policy service.

requests managed by different BD execution frameworks. The cluster administrators need to
separately create the ACLs by specifying authorization access based on the local policy au-
thority (e.g., HDFS ACL, Hive ACL, etc.) for each framework [195]. The NN will perform
a permission check before issuing any operation; those ACLs are located and defined in the
$HADOOP CONF DIR/hadoop-policy.xml file. In this case, the request will reach the
local authorization module that allows/denies the operation and writes its own logs to a local
file. These individual access enforcers (see Figure 5.4), coupled to file permissions and differ-
ent Hadoop framework orchestration, make it challenging and time-consuming to set a secure
BD environment, not to mention the new BD federation features and multi-tenant BDaaS
cloud deployment architecture. A solution relies on a cross-service authorization framework
that provides a centralized policy authority to store and manage security policies for multiple
ecosystem components.

5.3.3 Limitations of BD Federation access control

The broad participation nature of both clients and execution frameworks that are associated
with the Hadoop federation warns against security concerns. In addition to the complexity of
settings, dynamically and elastically scaling client authorization and policy provisioning are
challenging tasks. A central policy enforcer to manage the access discussions seems manda-
tory. This section outlines the inherited limitations of implementing HDFS access control in
a federation setting.
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Restricting access to the data stored in HDFS requires ensuring an accurate level of ac-
cess by both clients and applications to the ecosystem components. In this way, by enabling
Hadoop secure mode, every client, service, daemon, and process (which we refer to as en-
tities) running within Hadoop must authenticate its membership of the cluster. The Hadoop
underlying authentication service is based on Kerberos encapsulation, a leading local area
network certificate-based protocol. Kerberos is a three-way protocol that requires every task
to be authenticated before accessing the data. Therefore, only verified HDFS DN could reg-
ister with the NN, and every task must be authenticated via the three-way handshake process
before resource acquisition. This approach can cause performance degeneration in distributed
clusters (e.g., think of a MapReduce application with thousands of tasks).

One solution to this problem is to complement Kerberos with Delegation Tokens (DT), a
lightweight authentication process. With DT, a client or application is first authenticated with
Kerberos, and DT is then applied for subsequent and iterative service calls. Thus, the cluster
services and daemons are only authenticated with Kerberos, while the client’s subsequent
service calls and job tasks will use the DT credentials to interact with the HDFS. The use of
Kerberos and DT in secure HDFS federation authentication is described in Figure 5.5:

1. Clients (and every entity) are initially confirmed to contact the NN using Kerberos
authentication, and each client receives a DT certificate from the NN server to access
the HDFS DNs using block tokens (access tickets) for every block with which they
must communicate.

2. The client uses the access ticket for subsequent service calls, instead of using Kerberos.
Furthermore, the distributed tasks use that DT certificate on behalf of clients to securely
reach the NN at runtime.

3. The client and the distributed tasks can access the HDFS DN using the granted access
tickets, which declare that the caller has the stated access rights to the data blocks within
the job submission.

A single-sign on (SSO) architecture can be managed using Kerberos with the lightweight
directory access protocol (LDAP), which is enabled by setting Hadoop.security.group.mapping.ldap.url
to true. Alternatively, implementing a single gateway that handles client access management
behind a firewall can be achieved by employing Apache Knox. Knox will allow/deny users
to access the ecosystem services before interacting with the Hadoop cluster. Following user
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Figure 5.5: A simplified diagram of the HDFS federation authentication mechanisms.

verification using the Knox gateway, Knox will use its Kerberos principals to securely confirm
access with other Hadoop services and daemons.

5.3.4 Problem definition

The previous example demonstrates a single client contacting the NN, while several authen-
tication mechanisms must be sequentially acquired for each Hadoop entity (daemon, client,
and task). The DT ticketing process considerably decreases the amount of authentication re-
quests; however, we argue that a federation Hadoop cluster can process the login requests of
thousands of entities within a short period. A federation operation may require authorization
checks for different components of the path: not only the final entity (as for a multi-tier feder-
ation architecture) This serialization of authentication before issuing the task will degenerate
the system throughput in a large-scale data cluster and promptly become a bottleneck. This
bottleneck may involuntarily cause a distributed denial of service attack within a federation
environment. In addition, information logs are stored and managed locally (by NNs) without
any classification mechanism that improves metadata governance or facilitation of auditing
procedures.

Relying on Hadoop IAM as demonstrated in figures 5.4 and 5.5 could present the follow-
ing underlying limitations:

1. Access control complexity: Hadoop core IAM requires a client to go through multi-
permission stages for each service that it is willing to contact. This results in additional
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time and bandwidth consumption in a federation setting. Additionally, the fact that
Kerberos/DT tickets are time-limited means that we need to re-authenticate the entities
based on the given maximum lifetime. A client must request a new DT and pass it to
the running process.

2. Long-running services: Due to token expiration time, supporting long-running jobs
beyond the token maximum lifetime is a difficult task (e.g., aggregating logs) [228].
This involves a continual reauthentication process that requires cancelling all running
tasks in order to start a new session. The new features of Hadoop 3.x need to include an
adaptive mechanism for each expired token to continue to support the long-lived YARN
applications service [229].

3. Communication orchestration: There could be thousands of node-to-node communica-
tions for a job, resulting in the same magnitude traffic without a centralized (third-part)
orchestration service that enforces authorization policies in a fine-grain model to guar-
antee data security across the Hadoop cluster.

4. Data integrity: The communication channels between services still need to be secure;
there is no end-to-end data encryption. This issue indicates that tokens need to be
encrypted over the network (SSL/TLS may be utilized). Sniffing (sniffing attack) to-
kens are sufficient to incorporate an authorized entity, thus prompting a vulnerability to
threaten the HDFS data.

5. Node orchestration: Time needs to be roughly uniform across cluster nodes; else, the
time-limited tokens will not work. Additionally, any compromised entity may manipu-
late the local time to infinitely extend the ticket lifetime.

6. Audit log management: It is difficult to analyse or test against the security configura-
tions of each entity within a federation cluster. Different NNs separate log categories
from regular processing logs and store them in separate locations with varying policies
of persistence.

7. Security auditing: It fails to cope with modern auditing demands of large-scale dis-
tributed clusters, as in a federation. Any secure IAM model should not only secure the
access control but should be able to perform security auditing at the service level: for
instance, incident reporting, behavioural analytics, and regular risk assessment of the
cluster entities.
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8. Access control scalability: Adding new security features, cluster entities or clients, as
well as updating policies, could require a complicated (and time-consuming) process
that must be configured carefully. This model might be acceptable for a relatively small
setup, but not for a federation infrastructure.

5.4 Federation access control reference model

A service-oriented metamodel for access control support in BD federation platforms is pre-
sented in Figure 5.6. The Federated Access Control Reference Model (FACRM) is a set of
architecture components that are associated with the security development of BD environ-
ments. FACRM also addresses many technical aspects that optimize context-specific design,
which need to be clarified at different granularity levels. The FACRM is characterized by
(i) ease of distributing secure access at scale, (ii) accelerated policy spawning and provision-
ing, (iii) providing ease-of-use horizontal scalability, and (v) flexibility for adapting to the
service provider requirements and demands. Some highlighted elements will be discussed in
Section 5.7.

Next, we describe the FACRM components as listed below:
IdentificationAccessManagement(IAM) Maintains the access control status of system

entities within three layers of defense: ID gateway (allowed to reach the cluster), authenti-
cation (identify verification; allowed to contact the underlying services), and authorization
(which access rights and permissions are held).

a- GatewayManager: a registration authority for external login and all REST APIs. It rep-
resents the first IAM stage for verifying client service calls. It could employ either simple user
name/password or a third-party framework, namely Apache Knox. By leveraging Knox as the
cluster access point and URL gateway, it enforces access discussions behind the infrastructure
firewall. Hence, failed requests neither reach the Hadoop daemon nor operate on its entities
(e.g., NN and DN). In this scenario, Knox is composed of three main components to validate
the access of several connections:

i- UserID: client identification obtained via profile (name/password) and Hadoop can set
the group mapping service [230]. However, resolving URL access via groups is managed via
LDAP with simple password authentication using JNDI API.
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ii- SupportComponentUI: Knox provides WebSSO capabilities to the Hadoop cluster. It
is therefore essential to support different system component UIs and to link them to the end
user. Examples include Apache Ambari UI for cluster development and orchestration and the
Ranger admin console for setting/modifying policies.

iii- TokensExchange: maintains a secure interaction among different frameworks and
clients by providing a universal authentication platform that abstracts token exchange within
federated Hadoop clients.

b- Authentication: the second stage of access control, which uses the client identifica-
tion to authenticate the job service calls (after validating the client access to the cluster in
the previous stage). The process takes place by specifying the core-site.xml in the Hadoop
configuration files through enabling the hadoop.security.authentication feature. This config-
uration can be either simple or Kerberos authentication. In a multi NNs environment, like a
federation environment, Kerberos manages the DNs authentications by defining the entities
which are allowed to communicate with the HDFS manager.

c- Authorization: the final stage of access control that sets each client permissions within
the cluster entities. By default, this service is disabled; admins, however, can enable it using
the Hadoop core capability in hadoop.security.authorization within the core-site.xml file. This
includes the basic set of entity permissions using the SLA. An additional level of access con-
trol granularity can be acquired using HDFS POSIX ACL. For instance, ACL supports entity
authorizations such as file-permission (read, write, execute). When the client creates a new
file or sub-directory, it will automatically inherit the ACL permissions of the parent directory.
However, clients are asked to gain separate authorization for each service. Correspondingly,
client authorization (fine-grain access control) may be managed separately via different access
control vendors, such as Apache Ranger and Sentry. Ranger provides dynamic data masking
(in movement) for several frameworks of the Hadoop stack (e.g., HBase, Storm, Knox, Solr,
Kafka, and YARN), while Sentry supports the Impala SQL query engine. The next section
will demonstrate how ACL and Ranger/Sentry roles may be used interchangeably in a Hadoop
cluster.

WebConnection: every client log has only one gateway, while the gateway manages
several log connections.

CentralPolicyAuthority (CPA): a policy-based authority that keeps spawning access cer-
tification (tickets) for IAM and monitoring user access. It represents the central process of
the IAM that releases access tickets and auditing functionalities. These tickets map each
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user/group with its granted permission and enforce service access discussions. It also sets the
maximum lifetime and the start date of each policy, as well as the user class authorization in-
tervals. The CPA validates the client login and creates an access certificate by checking both
the Kerberos authentication list and Ranger authorization level access. Hadoop administrators
may manage repository policies by setting up both Ranger and ACL policies (optional). In
this case, Ranger will verify the fine-grain client access control, i.e., which HBase/Hive DB
and table columns they have access to, Kafka queues, and HDFS level of access. Meanwhile,
the ACL will verify the access control of remaining entities. However, Ranger policies will
take priority over those of ACL. If a Ranger policy does not exist, then local ACL will take
effect. Hadoop daemon authentications and internal communication (such as task status) will
primarily rely on using the Kerberos principal and keytab file locations and are enforced using
Hadoop core access control, i.e., ACL.
i- Policy: as a unique name for every policy, a policyID ensures that policies are not duplicated
in the cluster.

ii- Operation: defines the operation type (its authorization level value) and passes a Boolean
that enables/disables the authorization level for every user/group for each service. Policies are
enabled by default unless the admin restricts them.

iii- ClientClass: assigns individual user permissions or sets group permissions for each
policy, and defines each client class according to that policy.

v- CertificateLifetime: a validation interval of the certificate for the client session on the
system.

PolicyRepository: a file or DB that stores the certifications, as well as the auditing logs
information. The repository functions may regularly include cache policies and track ticket
updates (status saving). Numerous AuthorizationEnforcer daemons will write auditing logs to
the PolicyRepository (as a unified auditing store). These policies can be classification-based,
prohibition-based, time-based, and location-based.

AuthorizationEnforcer: a process that enforces access decisions based on the CPA poli-
cies before allowing communication with its underlying services. It represents the NN dae-
mon (see Figure 5.3) in a native HDFS access control pattern. To generalize the IAM pro-
cesses within different methodologies (i.e., only utilizing the Hadoop core capabilities or
employing a third party), the presented metamodel separates this functionality. Every service
call thus must pass through a predefined AuthorizationEnforcer before reaching the service.

AuthorizationAgents: a distributed representative component that belongs to the Autho-
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rizationEnforcer. Each service daemon (DN, HBase table) has an AuthorizationAgent that
approves the access call. The AuthorizationAgent could be an ACL or a Ranger policy agent.

Service: the system processing framework, execution engines, and HDFS DNs. These
services may include, but are not limited to: MapReduce for batch querying, Apache Spark
for micro-batches, and Apache Storm for real-time processing. A comprehensive security
ecosystem will require performing auditing measurements at the service level of BD applica-
tions and frameworks.

SecurityAuditing: tracks the service calls and status of requests, in addition to monitoring
client activities. This service may include identifying security and performance issues within
the local log files or employing the Apache Eagle framework. These services require security
auditing to improve the overall security measurements.

SecurityAnalysis: carrying out a security assessment based on client behavioural analy-
sis, incident reports, and audit pieces of information.

Admin: the one who sets the policy for other users of the system. The admin depends on
the SecurityAnalysis and client demands to define the IAM policies. Admin is also respon-
sible for securely installing/configuring the cluster entities, maintaining a secure operational
environment, performing security patching policy, and scaling computing resources based on
peak utilization.

5.5 Implementation and Validation

In general, BDF provides a systematic way to dynamically provision the user demands with
elastic resources and services over shared data blocks. Implementing federated authoriza-
tion and delegation to enhance BD client access decisions is vital for the success of adopting
these new features of Hadoop 3.x. In this paper, we argue that the FACRM is essential for
the concept of unifying the IAM in a BDF infrastructure and the data that they stock. We
demonstrate how the proposed components of BDF deployments can be brought to a secure
access broker architectural pattern. This BDF access broker abstracts the identification, au-
thentication, and authorization discussion within the large-scale data analytics of the Hadoop
3.x platform. Furthermore, we explain the required steps to utilize the FACRM as a multi-tier
Hadoop architecture within any deployment architecture.
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Figure 5.7: A high-level abstraction of general access broker pattern vs. the proposed BDF
access broker

5.5.1 Federation Access Broker

Conventionally, system architectures employ an intermediate layer, i.e., intermediate brokers
that orchestrate the underlying service’s communications with external entities. The most
common implementation of such architectures relies on forwarding all of the client’s traffic
into a proxy server or gateway for authentication. Such applications are called access brokers,
which provide perimeter security by adding an authorization layer based on policies. An
access security broker is thus an on-premise or cloud-based security policy enforcement point.
It is placed between the external client and the underlying services provided by the system.

In general, the broker architectural pattern can be used to structure distributed systems
with decoupled components that interact through remote service invocations. In this study,
we present and demonstrate a pattern for this type of system, and we highlight its importance
on the federation scale. Figure 5.7 shows a conventional access broker (on the left) and an
abstracted architecture of the proposed BDF access broker. The proposed BDF access broker
aims to abstract the management of the remote access calls to Hadoop federation services and
data without user intervention. Thus, it is responsible for coordinating security policies (au-
thentication and authorization) as BDF assets are accessed (data, services, and infrastructure).
It also enables centralized control through the utilization of a unified pattern, which facilitates
auditing and analysis.

The proposed architecture broker pattern in Figure 5.8 is composed of (i) authentication
(credentials and passwords) using Apache Knox, (ii) authorization policy enforcement us-
ing Apache Ranger, and (iii) security analysis/auditing capabilities using a centralized access
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Figure 5.8: BDF access broker architecture pattern

audit log repository and Apache Hadoop 3.x. In particular:

1. Knox gateway access: employed for external client identification and cluster access.

2. Ranger authorization assignment: the clientID is passed to Ranger to validate the access
call to contact NNs, and a secure session is established. If successful, Ranger responds
with a certificate for authorization level access and assigns the permissions of each NN
(defined by the admin) to reach the stored data in the DNs which belong to that specific
NN.

3. Security log: access audit logs are created with each attempt to reach the data and are
stored in unified HDFS storage (see Section 5.6).
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Table 5.2: Federation Supported Hadoop Access Control Model

Basic Sets and Functions
– U, G and S (finite set of users, groups and subjects, respectively)
– HS, OPHS (finite set of Hadoop services and operations, respectively)
– directUG : U→ 2G, mapping each user to a set of groups, equivalently UGA ⊆U×G
– HS-PRMS = 2HS×OPHS , set of Hadoop service permissions

Permission Assignments
– PAHS ⊆ (U∪G)×HS-PRMS, mapping entities to Hadoop service permissions.
Alternatively,
hsprms : (x)→ 2HS-PRMS, defined as hsprms(x) = {p | (x,p) ∈ PAHS, x ∈ (U ∪ G)}

Effective User Permissions
• effectiveHSprms : U→ 2HS-PRMS, defined as

effectiveHSprms(u) = hsprms(u) ∪
⋃

g ∈ {directUG(u)}
hsprms(g)

User Subject
• userSub : S→ U, mapping each subject to its creator user, where the subject

acquires some or all of the permissions of the creator user.

Hadoop Service Access Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OPHS on a service hs ∈ HS
if the effective permissions of userSub(s) include permission assignments for hs ∈ HS.
Formally, (hs,op) ∈ effectiveHSprms (userSub(s))

5.5.2 Formal Access Control Model Components

We have formally defined the federation supported access control model in Table 5.2. This
model has been adapted from the object tagged RBAC model [176] for Hadoop, and intro-
duces required components to demonstrate the federation.

The basic components for the model include a finite set of Users (U), Groups (U), and
subjects (S), which are created by the user and run on its behalf. A user can belong to groups,
and permission can be assigned to groups which trickle to the member users. Hadoop Ser-
vices (HS) are the required daemon background processes, including NameNode, DataNode,
YARN ResourceManager, etc., to which the user must be allowed access. In the case of fed-
erated Hadoop 3.0, because we have multiple NNs in the system, the user must have access to
only specific ones. OPHS are the actions of Hadoop services. ACLs have been used in native
Hadoop service authorization capabilities to restrict access to users.
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Table 5.3: BDF access Broker proof of concept validating environment.

Node Number Hadoop Daemon Hardware &Configuration
2 NameNode VCPUs: 8, RAM: 16GB, HDD: 160GB
3 DataNode VCPUs: 4 RAM: 8GB HDD: 80GB

Common criteria: 1 Gbps network connection, Ubuntu 16.04 LTS OS.

As shown in the table, the Hadoop service permissions (HS-PRMS) are the power set of
the cross products of HS and OPHS. A many to many relation PAHS specifies the assignment
of Hadoop service permissions to the users or groups. In this way, a user can be assigned
permission to access Namenodes in the system, either directly or through group membership
(using the sufficient permissions effectiveHSprms). For example, a user u1 may only be al-
lowed to access NameNode1, and then the permission assignment must be only for that tuple
(u1,NameNode1) in the PAHS relation.

A user creates a subject stated by the userSubfunction. The subject obtains either some or
all of the permissions of its creator user. A subject is allowed to access a Hadoop service if its
creator user has the permissions assigned to it by the security administrator.

5.5.3 Experiment and results

Aiming to validate the BDF access broker, we implement an OpenStack [231] based Hadoop
cluster that is configured as one rack of five nodes using two different node types, as detailed in
Table 5.3. The bar chart in Figure 5.9 illustrates a performance comparison of the WebHDFS
read operation in two use cases: the first without utilizing any security measurements (native
WebHDFS access), and the second by employing the proposed BDF access broker architec-
ture pattern. The prime motivation for this performance evaluation is to gain an understanding
of how the performance will be impacted with respect to Knox and Ranger. Overall, it can be
observed that the performance effect, i.e., the time needed to process different file sizes, seems
to be minimal. A more specific study on performance degradation is eventually needed, but
for this proof-of-concept, it is correct to state that the performance has not been significantly
impacted.

To define the relationship between the basic WebHDFS configuration and secure Web-
HDFS configuration with the proposed broker, we compare the speeds of the two methods.
We fitted two linear regression models (see Appendix A) that can be found in Table 5.4 and
5.5. In the first case, the slope is approximately 0.24, and 0.25 in the second. These results
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show that the time increases by only 1% for each MB using the secure approach. Figure 5.9
also shows the time needed to perform WebHDFS calls (read/write) over different data points
(data chunks between 100 MB and 500 MB).

Table 5.4: Access Control impact on Read performance with Sample Standard Deviation
(SSD) and Transfer Speed (TS)

100MB 200MB 300MB 400MB 500MB TS Mean Median SSD*
Native WebHDFS 23.64 47.45 69.63 94.23 120.62 25 MB/s 71.11 69.63 38.08
BDF Access Broker 25.07 49.36 72.05 98.1 127.85 26 MB/s 74.49 72.05 40.26

Table 5.5: Access Control impact on Write performance with Sample Standard Deviation
(SSD) and Transfer Speed (TS)

100MB 200MB 300MB 400MB 500MB TS Mean Median SSD*
Native WebHDFS 16.55 33.9 48.7 65.9 84.43 42 MB/s 49.9 48.7 26.54
BDF Access Broker 21 43 61.8 83.69 107.2 - 63.34 61.8 33.71

A box and whisker chart in Figure 5.10 shows the distribution of data into quartiles,
highlighting the mean and outliers. Our experiment shows the box and whisker plot medi-
ans, interquartile ranges, and ranges of the secure and non-secure approaches. This exper-
iment aimed to identify covariates that could influence the length of time taken to perform
a read/write call by using the box and whisker plots to allow visual comparison of the me-
dian and spread. Areas of potential interest are highlighted for future prospective work. The
whiskers extend from the box to the highest and lowest values, and our experiment shows that
no outliers exist. Also, Figure 5.11, shows that the relationship between the two variables is
positive linear.

5.6 Access Audit Log Management and Analysis

NN, as a data lake gateway, writes access audit log information to local files after each suc-
cessful/failed access call. These access log files generally contain information regarding the
user and the data the user accessed. Typically, Hadoop creates logs after each user read/write
call using Apache Log4j files [232], i.e., a Java library. This detailed log information is
managed locally by each Hadoop component and provides a useful accounting process (e.g.,
timestamp and IP address) that logs all operations. The log files may serve multiple purposes,
such as debugging operational issues and regulatory compliance. They also provide security
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((a)) WebHDFS Read ((b)) WebHDFS Write

Figure 5.9: Performance analysis of WebHDFS operation within different file sizes

((a)) WebHDFS Read) ((b)) WebHDFS Write

Figure 5.10: A box and whisker plot displays a performance comparison of BDF broker
against native (non-secure) Hadoop implementation

((a)) WebHDFS Read ((b)) WebHDFS Write

Figure 5.11: Graph of the relationship between secure and non-secure WebHDFS rates
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capabilities to execute forensics from an access audit perspective (e.g., user logs over HTTP).
In particular, access audit logs are valuable pieces of information for conducting security au-
diting and analysis of the Hadoop cluster with high operational resolution.

However, analysing the collected YARN and HDFS logs generated by applications of
many distributed components (locally at each daemon) is a difficult and insufficient task.
Each Hadoop daemon creates its own output log messages and manages them in a local di-
rectory (on the node on which it is running). Hadoop Archives may be employed to reduce
the number of small files and thus the stress on the NN [233]. However, it is still difficult to
perform security analysis or digital forensics over a large-scale Hadoop federation model that
could include dozens of NNs and hundreds of DNs with broad user participation. Another
way to reduce the complexity of the distributed log file analysis is by utilizing log aggrega-
tion: for instance, YARN log aggregation, a management process that fuses different log files
from various sources in a centralized repository to facilitate the analysis of the collected logs.
This feature is disabled by default; by enabling it, the log files of different daemons will be
allocated to a centralized directory (e.g., HDFS). However, even using this feature, the large
amount of aggregated data in Hadoop federation architecture will lack governance require-
ments, like file tagging, labeling, and classification. It will be stressful for investigators to
examine such pieces of information, and it can easily frustrate them.

The proposed access broker not only provides fine-grained access control but also a cen-
tralized auditing approach (see Figure 5.12). By employing the Ranger Audit Server, the BDF
access broker will aggregate all access logs into a centralized repository (RDBMS, HDFS, or
Log4j). The log aggregation service will regularly check the running tasks and start to aggre-
gate and transfer the logs to a centralized repository (typically HDFS). Subsequently, access
audit logs can be allocated by other digital forensics tools for any visualization or search tool
for further investigation. Moreover, server audit logs provide valuable information to identify
and repair system vulnerabilities.

Consider the following scenario that illustrates how to investigate a security breach using
the access audit logs by storing and analysing the access log data.

A Hadoop system administrator notices a tenfold spike in the number of support tickets.
Because the system utilization is high, due to the unusual ticket requests, clients start facing
problems logging into the VPN. The admin must analyse the log data, since he suspects that
he may be experiencing a distributed denial of service (DDoS) attack. The questions that
he must answer are: “how many connection requests have been delivered in the past few
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Figure 5.12: A conceptual BDF access broker log management model

hours?”, “where are the requests coming from?”, and “what types of connections are they
(authorized or not)?” The analysis includes investigating how and when the network traffic
changed. Doing so requires engaging in three steps to transform the logs into useful figures,
namely, loading, refining, and visualizing the data, in the search for useful information, as
follows:

• Loading log data: Utilizes Apache Flume [234] to stream large amounts of log data
from the VPN server into the HDFS. The log records contain a timestamp, IP address,
country, and indicator about whether the connection was successful or not.

• Refining log data: A storage management layer must be employed to enable a relational
view of data without affecting the data format. This layer aids in browsing the log data
(making sure it has been loaded correctly). Apache HCatalog, i.e., Hadoop catalogue,
may be utilized to provide a metadata layer and rest interface for Hadoop data. Next, the
admin needs to write them onto any data analytics framework for review (visualization
tool). An Apache Pig script may be used to push the latest log data to the visualization
tool.

• Visualizing log data: The admin interfaces the visualization tools, like ElasticSearch (a
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real-time search engine and analytics tool), and Microsoft Excel (using open database
connectivity). ElasticSearch provides high-level visualization to identify the moment
when the network traffic increased, where it came from, and whether or not it was
authorized in order to confirm his hypothesis about the DDoS attack. More detailed
maps may be created using the Excel Power View functionality by linking the Apache
Hive (the base of HCatalog) and Excel to determine whether there is cause for concern.

The forensic report and the process output data are used to update the firewall to deny
requests from the unauthorized IP addresses. To automate this update, the admin can use
Apache Ozzie to schedule a job to automatically update his firewall every hour. This report can
also be used for other forensics to respond to different security threats, prepare for compliance
audits, and prepare behavioural analytics (for security patching).

5.7 Summary and Future directions

Next-generation access control systems aim to become more scalable with even finer-grained
authentication and authorization management [1]. However, given the emerging trends of
the distributed, heterogeneous, and federated infrastructure associated with Hadoop 3.x ar-
chitectures, the need for a lightweight security framework is inevitable. In this paper, we
present a BD Federation-oriented reference model for the secure development of access con-
trol solutions within Hadoop clusters. The proposed model is a generic high-level conceptual
metamodel (called the FACRM) that aims to formalize Hadoop 3.x core access control capa-
bilities and highlight some of Hadoop’s top-level security projects. It also aims to successfully
implement a unified and secure BD solution over on-premise and cloud-based deployment
architectures in favour of BD applications and frameworks. The FACRM supports myriad ac-
cess control options across a variety of policies, users, and frameworks in pursuit of modern
BD infrastructure. Furthermore, this study presents an in-depth investigation of the Hadoop
IAM ecosystem and draft current access control limitations within a federation deployment
architecture. We validate the utilization of our proposed RM by implementing a proof-of-
concept architecture for the security and privacy of BDF deployment. Our test conclusively
confirms the effectiveness of the proposed access pattern performance and security.

The general aim of this study is to develop an RM using open-source frameworks (e.g.,
Knox, Ranger) to promote the adoption of reliable access control mechanisms within the BD
deployment architectures. It also aims to facilitate the security design of all clients, resources,
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applications, and networks in Hadoop-based BD processing environments. In this context, the
proposed federation BD access control meta-model is a service-oriented architecture (SOA)
that conforms to the best practices of independent vendors, products, and technologies. This
SOA makes FACRM frameworks (a framework design based on FACRM) into SOA frame-
works. However, FACRM frameworks are not necessary for BD frameworks only; it could
be any framework or application that runs over the HDFS system, which is a large-scale
distributed environment (platform). This environment is, thus, characterized by horizontal
scalability, rapid provisioning of access control, ease of access, and security. Additionally,
Our BDF access broker provides an attractive solution to the audit log problem that effec-
tively addresses compliance requirements. To map the current Hadoop limitations (presented
in Section 5.3.3) to the solution domain of this study, Table 5.6 represents these limitations as
threats and links them with solutions.
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Table 5.6: Linking current Hadoop federation limitations to the proposed solutions

Current
limitations

Proposed solution Description

Access control
complexity

FACRM propose that
policies are written once
and applied many times.

In Figure 6, the CentralPolicyAuthority (in green) allows the admin to
set up a policy and distribute it to all nodes (using the Ranger agents),
which are represented by the AuthorizationAgent (in light blue) at-
tached to all of the services.

Long-running ser-
vices

FACRM propose flexible
time-based policies.

The CertificateLifetime in the proposed reference model corresponds
to the long-running services. These certificates are associated with the
CentralPolicyAuthority and saved at the PolicyRepository to be updated
automatically upon demand.

Communication
orchestration

FACRM propose a third-
party centralized access
control.

Security verification for all of the entities (users, nodes, and daemons)
inside the Hadoop cluster and external clients. In Figures 7 and 8, it can
be observed that the broker transfers the access discussion responsibility
from the NN to the broker.

Data integrity access control at the file
level and service level
(access call).

A federation configuration requires authorization verification of the en-
tire file path to create secure multi-tier federation architecture. Addi-
tionally, multi-layer control (authentication and authorization) occur at
the beginning of operation (reading and writing to HDFS).

Node
orchestration

FACRM provide access
control using any ap-
proach.

FACRM and BDF broker provide the base to support the multipart ac-
cess control framework and technologies, e.g., RBAC, ABAC, etc.

Audit log
management

utilization log aggrega-
tion using centralized au-
diting approach.

Figure 12 illustrates how to employ the proposed broker with Ranger
Audit Server for accessing broker log management.

Security
auditing

proposal of an architec-
ture pattern for BD gov-
ernance.

In Section 7, we proposed a scenario that transforms the logs into useful
figures by loading, refining, and visualizing the data into incident and
forensic reports using open-source frameworks. This section shows how
to investigate a security breach using Apache Flume, Apache HCatalog,
and ElasticSearch, among other tools.

Access control scala-
bility

proposal of a novel BDF
access broker.

The main components of our proposed broker provide high scalability.
In particular, Ranger provides centralized Hadoop security administra-
tion and management, while Knox streamlines security for services and
users who access the cluster data and execute jobs.
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Overall, the primary benefits of the BDF broker architectural pattern can be summarized
in four different categories:

Enhanced security: A method to ensure that data is stored securely in BDF and BDaaS
clouds using a robust access control mechanism. This involves using (i) Knox to expose
REST and HTTP services without revealing the details of the underlying Hadoop cluster, and
(ii) Ranger for fine-grain authorization over federation NNs.

Centralized control: Using a single gateway with a distributed agent to prevent unau-
thorized access to the modern data lake. This also allows IT departments to set and enforce
security policies regarding data usage, access calls, and resource utilization over secure chan-
nels.

Facilitated auditing and analysis: A centralized repository for all access logs with a
sophisticated governance and accountability approach (reporting and regulatory compliance).
This approach enables threat prevention methods, e.g., behavioural analytics and threat intel-
ligence.

Consolidated governance pattern: A way to ensure and prove compliance with granular
visibility and control to meet regulatory requirements, and to guide the efforts of admins
to ensure that the system complies with all relevant regulations and standards (such as data
residency) when using Hadoop 3.x.

Blockchain technology can serve as a revolutionary solution, addressing current BD pri-
vacy concerns such as wire (end-to-end) encryption and decentralization data-driven cryptog-
raphy. As an enabling technology, blockchain provides a sequence of block cryptography that
stores all transactions, which has been established as a solution for the large-scale distributed
agents of Bitcoin system security [235]. The core functionality of blockchain technology re-
lies on providing robust cryptographic (each agent is assigned a private key, whereas a public
key is shared with all other agents) proof for data authentication and integrity by providing
a list of all transactions and a hash to the previous block. This list is verified by majority
agreement of nodes (P2P network where the sender broadcasts it to all of the other nodes) that
are actively involved in verifying and validating transactions [236].

The current Hadoop setup does not enforce access control by the DN to access its data
blocks. Another issue remains in that both NN and DN generate a block access token using
the same key. If an attacker leaked the key, he could generate a token and access any data
blocks in the HDFS. Also, the leaked DT can be used to steal a large amount of data from
HDFS, since it has the privilege to behave as the Hadoop client and to access all content
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which he is allowed to access. Any future BD Hadoop solution should consider the previ-
ous limitations on a federation scale. To this end, FACRM addresses all concerns mentioned
above by defining a reference model for Hadoop federation; more particularly, it presents a
meta-model that includes the main access control vocabulary and design elements, the set of
configuration rules, and the semantic interpretation. Leveraging recently published manage-
ment mechanisms of policy enforcement, e.g. [186], to combine cloud and edge federations
with role-based and attribute-based access control [175, 177] could be considered in future
research. Examples of different research directions include:

• Hybrid access control solutions: The development in usage control for data privacy
and security leads to integrating conventional access control approaches, e.g., ABAC,
with other context-based encryption technologies. This integration could include func-
tional encryption or other generalizations of identity-based encryption and attribute-
based encryption for protecting big data in the presence of mutable attributes, which
may lead to general advancement in other fields, such as IoT.

• Fine-grained Access Control: The need to develop active and fine-grained approaches
(policies and standards) for BDF is inevitable. The challenge here is to extend the pre-
vious approaches with new policy editing and presentation tools (classification-based,
prohibition-based, time-based, and location-based policies) for flexible and extensible
data access. In particular, this includes policies that extend ABAC with stateful access
sessions and mutable attributes (i.e., characteristics that dynamically change during the
session). This extension is invaluable to advance the authorization mechanisms of the
multi-tenant data lake architecture, as well as the latest BDF model. Tackling this issue
can be achieved by deploying policy templates that extend the primary ACL (or any
access decision enforcer) as a specialization of the XACML V3.0 standard.

• Dynamic Access Control: More than ever, scalability and dynamicity of the BD de-
ployment architecture in terms of user and node participation are vital for the secure
delivery of security provisioning in a federation environment. There have been differ-
ent adapted security mechanisms and techniques proposed to cope with this concern.
However, more research activities are still needed to establish scalable security mod-
els and paradigms that must be driven by BD specifications and requirements. Also,
new security abstractions for BDF are still needed to simplify the task of identifying
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the unimproved gaps. For instance, leveraging new mechanisms of policy enforce-
ment [186] to combine BDF with ABAC [177] could be pursued in future research.

• Stateful Access Sessions: This requires restricting the BDF access to only those au-
thorized by the succinct gateway. However, the current state-of-the-art BD-based en-
cryption technologies involve transparent data encryption. Federation environments
track the participation states and characteristics of the clients and networks traversing
them with mutable attributes (i.e., the values of the attributes change over time dur-
ing an access session). This operation requires formulating policy templates on top of
standards such as XACML V3.0 for dynamic authorization with stateful access ses-
sions. This takes place at the service level (e.g., data access calls) and does not protect
data-in-transit or data-in-process (not even the metadata). Attribute-based encryption
in conjunction with the usage control approach and ABAC can be labeled as a future
direction for this issue.

Providing new solutions for all of these research directions will promote innovative BDF
solutions with advanced security features. It is also expected that adoption of the FACRM
use cases will be implemented within our BD opportunistic and elastic resource allocation
(OPERA) platform. OPERA architecture (prototype proposed in [3]) combines the comput-
ing power of high-throughput resources available (non-dedicated) to the Hadoop 3 dedicated
cluster using Docker containers as worker nodes. Those non-dedicated containers tend to be
more vulnerable, which requires a robust IAM approach to minimize security threats.
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CHAPTER 6

USE CASE: A SECURE VEHICULAR DATA

STREAMING TO THE CLOUD

Many technological cases exploiting data science have been realized in recent years; machine
learning, Internet of Things, and stream data processing are examples of this trend. Other
advanced applications have focused on capturing the value from streaming data of different
objects of transport and traffic management in an Intelligent Transportation System (ITS). In
this context, security control and trust level play a decisive role in the sustainable adoption of
this trend.

This chapter contribute in a conceptual methodology that integrats the security approaches
of different disciplines into one coherent reference architecture. In addition, a classification of
BD technologies, products, and services to address the ITS trust challenges is presented. We
also proposed a novel multi-tier ITS security framework for validating the usability of SITS
with business intelligence development in the enterprise domain.

6.1 Introduction

Recently, we have been observing significant advancements in the scale of generated and
collected data using multiple technologies, real-time analytics, commodity sensors, and em-
bedded systems to refer as the Internet of Things (IoT) paradigm. The ability to employ
these modern technologies to process, analyze, and understand data and services securely is
vital to advance in the use of transport networks. The intersection of these trends is what is,
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nowadays, called the Intelligent Transportation System (ITS). ITS, however, requires secure
architectures for advancing traffic management with an adequate level of trust. In context,
the ITS trust indicates that the system components meet the security requirements, —hence,
clients satisfaction of availability, reliability, and governance mechanisms of the security mea-
surements.

Advanced with a large community of open-source frameworks, the Big Data (BD) security
stack (i.e., platforms and technologies) represents a practical and cost-effective solution for
supporting this trend. In this work, we analyze the large body of work related to data science
security frameworks and technologies. More specifically, the building blocks of the security
stack for supporting IoT as a secure service for ITS scientists. Doing so aims to demystify the
unique security challenges introduced in ITS environment and clarify issues from a security
perspective. Also, we investigate the state-of-the-art of BD security, most of them developed
under the umbrella of the Apache Software Foundation.

A secure ITS (SITS) reference architecture for facilitating security pattern design and
solution election when constructing ITS systems is presented in this work. The proposed
multi-tier security solution leverages Apache Hadoop frameworks from the security burden.
We also present various insights into the latest ongoing developments and open challenges in
this domain. The research methodology adopted towards achieving this goal uses software
engineering and information systems design approaches. The necessary steps for designing
the system architecture include the collection of requirements and the analysis of abstract
functional specifications.

The rest of this part is organized as follows. Section 6.2 provides an overview of ITS se-
curity characteristics and discusses the main requirements of deploying ITS trusted solutions.
Section 6.3 analyzes the state-of-the-art of Big Data systems based on their security supported
service model. Design and construction of the multi-tier reference architecture are presented
in Section 6.4. Classification of big data technologies and commercial products/services are
highlighted in Section 6.5. Finally, we draw our conclusions in Section 6.6.

6.2 ITS main security requirements

It has been well-recognized that IoT effectively supports a predominant phenomenon in every
sphere of smart life. This vision including vehicular connection to computation, as for vehic-
ular clouds [237, 238], and vehicular IoT [239, 240]. The connection involves data exchange
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between vehicles, traffic components, and other subsystems, which impose security concerns.
In general, the security of ITS may be characterized by:

• Ease of distribution of secure access;

• Accelerate authentication spawning and provisioning;

• Provide easy-of-use mechanisms at scale;

• Flexible for adapting to client requirements and demands.

To achieve the goals mentioned above, we envision a list of main requirements that should
be met by ITS security solutions. In particular, from the infrastructure point of view, the
following requirements should be met:

• Standardized Access Management: The framework architecture should expose its re-
sources using standard technologies (e.g., Web services, service-oriented architectures,
microservices, etc.) making them usable as building blocks, e.g., directed acyclic graph
for real-time computation and services. This also includes identification and access
management, as in robust authentication of these resources.

• Efficient Distributed Mechanisms: The framework architecture should be able to cope
with very large and broad nodes participation that are geographically distributed across
many sites.

• Scalability: The framework infrastructure should be able to handle elastically growing
participation (deriving from vast sensors and end-nodes) by dynamically allocating the
needed resources (processors, storage, network). Moreover, as soon as the resources
are allocated, the security architecture should implement the required security manage-
ment, but with minimal permission stages (to improve the overall performance).

• Efficiency: The framework architecture should minimize the security discussion for a
given task execution (process and all related communications). In the case of large-
scale distributed and parallel execution, efficient allocation of security measurements
should be assured.

• Data Availability: The framework architecture should achieve high availability with
robust fault tolerance and recoverability techniques. In practice, IoT-based ITS lives and
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dies by the shared data. It is crucially required to maintain the availability of massive
datasets, i.e., the more data that are available, the more productive discussion and results
that ITS can produce. Hence, any solution attempted to incorporate strong security has
to consider recoverability and fault tolerance approaches to deliver data availability on
a real-time standard.

• System Interoperability: The framework infrastructure should be designed as a set of
network-enabled security components (services) implementing the different stages of
the overall security (e.g., integrity, confidentiality, governance, etc.) to facilitate their
effective reuse, composition, and interoperability. Standardization can enable interop-
erability and ease interaction among the various security frameworks and mechanisms.
A service-oriented model can present a vital role in supporting the integration of various
components of different security layers.

• Model Usability: The framework process should be usable by any ITS system teams of
both experts and non-security experts. The design should easily apply security to their
problems, achieve a high-trust environment, and deploy solutions that can be used in
the modern ITS applications.

Among the requirements at the architectural level, the main two are:

– Service Performance: In the realm of ITS, applications deliver their services in
a continuous data stream pattern within a small throughput time (from receiving
the data to process it). The applications detection period varies from a few mil-
liseconds to seconds. As so, security must deliver its functionalities in a real-time
fashion.

– Openness and Extensibility: ITS security architecture should be open to the inte-
gration of new frameworks and mechanisms (with even already installed services).
Moreover, existing services should be open for extension but closed for modifica-
tion. By which means easiness of extending new approaches to tackle new threats
and vulnerabilities while reserving its core functionalities maintained.

6.3 Big Data Security Frameworks

In the realm of intelligent life of broad applications and services, the explosive growth of data
traffic will drive a variety of domains including IoT-based systems and ITS. This phenomenon
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Figure 6.1: Intelligent Transportation Systems Trust layers abstraction.

has created ever-increasing pressure for large-scale data analytics security solutions. Several
data security management systems have been recently implemented. In particular, they are
addressing the CIA triad, i.e., Confidentiality, Integrity, and Availability.

The increasing data security requirements of almost all application domains have also
created a crucial need for designing and building a new generation of service-oriented frame-
works. These frameworks can efficiently and effectively secure data at its three main status,
i.e., data-at-rest, data-at-transit, and data-at-process. Data life cycle security within ITS en-
vironment is illustrated in Figure 6.1. This abstraction summarizes the basic trust criteria for
security evaluation and selection based on BD frameworks as a service for ITS scientists. In
the following sub-sections, we survey the Apache BD security stack according to these layers.

6.3.1 Access Control

An ITS infrastructure could represent a virtual net of various independent domains. In such
infrastructure, the relationship between edge nodes is more ad hoc and dynamic; resources are
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not in the same security domain. Sensors and edge IT may be identified by their characteristics
or attributes, besides predefined identities. The traditional access control models fail to cope
with these modern requirements. Attribute certificates can address this issue by assigning a
value pair and the principal to whom it applies. This contains an attribute to make access
decisions based on the attributes of requestors, resources, and the environment. Attribute
authorities sign them, which provide the needed flexibility and scalability that are essential to
large-scale distributed systems such as the IoT.

Here in, we subdivided the access control into three primitive layers. Namely, a service
gateway, authentication, and authorization. They are discussed further as follow:

Service Gateway connects ITS different components securely and efficiently. This layer
verifies the edge access to the system using their ID and security domain. The scope of a
gateway within an ITS is to provide scalable security services based on standards across dif-
ferent domains and geographical areas. Introducing a trusted gateway can specifically address
the loss of the traditional security boundary by producing trusted security domains and en-
abling cooperation between these. This process may include Apache Knox [192], a unified
gateway framework for big data services and ecosystems that can be utilized as a SSO gate-
way. Its architecture is formed as a reverse proxy that can be configured to enforce SSL/TLS
communication.

Authentication is the act of confirming authentication access to the network, i.e., the pro-
cess of actually determining the identity. Any secure model should enable an authentication
mechanism to verify that an entity is what it claims to be, e.g., using the Kerberos protocol
(authentication based on tokens). In this case each service and user must be authenticated
by Kerberos keytab file (binary containing the information needed to log) to initialize trust
between ITS edge and applications. This prevents an attacker from compromising an identity
and hence, send malicious traffic to victim endpoints or other internal services (edge IT or
cloud resources). Besides, it also prevents from unauthorized access to any object inside the
cluster and any service claimed to be part of the cluster. Apache Sentry [241] provide a role
engineering approach that enforce fine-grained levels of authentication discussion to data and
metadata. Its architecture covers variety of data pipelines, task execution, and storage systems
(including Apache Hive, Solr, Impala, HDFS, etc).

Authorization is the process of defining access rights (privileges) that an entity (service,
daemon, or device) can perform to the given service. It manages access in the context of
a specific service, resource, and data functionality provided by the cluster. Service level
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authorization deals with the fundamental set of permissions; like defining the users and groups
who are authorized to make service calls (e.g., data access) to that service. Only if the object
making a call belongs to an authorized service entity, the call will pass the authorization
check. Apache Ranger [?] is a centralized administration that enables write-once-apply-many
policies (using distributed agents across the infrastructure). Ranger affords to monitor and
manage comprehensive data security over large-scale data analytics. It also provides fine-
grained access control (table, column, and file levels) by enforcing an access control list, i.e.,
consistent policy administration across all ecosystem. Access control list, in return, combines
three elements: Effect (allow or deny), action (e.g., data access or execute), and resources
(e.g., datacenter, IaaS cloud, cloud storage). In principle, authorization is the final access
control layer in a security abstraction, which means that no additional security mechanism is
required as an identity access management intention for an authorized entity. Nevertheless,
data encryption both at rest and in transit is still required, besides security analysis, auditing,
and metadata governance, which combined came as high-level security services.

6.3.2 Integrity

ITS applications deliver their service by transferring data (structured and unstructured) through
several communication technologies (Bluetooth, WiFi, etc.). Assuring that their assets can be
modified only by authorized agents or in authorized ways is critical. In this context, data
integrity refers to protecting data from unauthorized manipulation or abuse, including altered
by an attacker. In other words, maintaining the accuracy and consistency of data over their
entire life-cycle. By implementing end-to-end security and blockchain technology [242], ITS
applications can achieve sufficient confidence in system overall integrity.

However, a breach can occur due to faults in the edge nodes, network faults, or buggy
software, besides abuse or attack. Several approaches are implemented to tackle this issue,
as implementing checksum checking on the transit data. Wire encryption, as for data transfer
between the edge and datacenter/cloud may be managed via IPSec or Transport Layer Security
(TLS) [243] (and its predecessor Secure Sockets Layer, SSL) cryptographic protocols over
HTTP communications. So that all communication between every component of the system,
as well as with the client traffic is encrypted.
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6.3.3 Governance

Data governance is a capability that ensures efficient manageability and data quality through-
out the complete life-cycle. This feature is leveraging information to help the implementers
gain insight and build confidence in business decisions and operations. Also, it delivers de-
tailed information regarding data objects, location, characteristics, usage, and many other
properties. With governance capabilities, the system can achieve higher accountabilities and
data quality, for the benefits of ITS analysts and practitioners.

This layer includes several dimensions including classification (labeling and description),
source tracking, and quality across data sources. Providing a typical store for exchanging
metadata tags and attributes can be achieved using Apache Atlas [196] and Apache Solr [197]
for defining data types and fields using full-text indexing and querying techniques. Atlas, in
return, associate attribute values with resources in the ecosystem based on predefined poli-
cies (e.g., content, expiration time, or sensitivity of resources). This data tagging (metadata
information) can be employed as a tag-based access policy by utilizing Ranger service [175].
This combination delivers deep audit visibility with an examination of the information cap-
tured within different components of ITS. The aggregated audit information also enhances the
productivity of data life-cycle security administrators with granular insights through reporting
capability.

6.3.4 Life cycle management and Availability

The IoT-based ITS distributed nature poses unique security challenges of different levels. ITS
trust practitioners need to guarantee that data transition and processing stages are available to
applications on-demand. In general, availability refers to the quality of service being accessi-
ble and functional upon demand by the ecosystem components. This feature includes systems
ability to carry on operations even under system failures, entities misbehave, and security
breach. Here in, we will address the data availability concerns by highlighting specific system
requirements. So goal aims at designing a solution that assures these necessities.

In particular, the data and metadata pipelines, queuing, and life-cycle management —as
ITS demands to generate a heavy reliance on the ubiquitous network’s availability. Apache
Falcon [244] simplifies the development of data processing solution by providing data life-
cycle management and back up data services. Falcon is meant to enable administrators to
facilitate data replication for fault tolerance and disaster recovery retention. Finally, Apache
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NiFi [245] provides an integrated data logistics system for connecting edge data source and
devices in an IoT use case. It provides real-time control and offers security using TLS en-
cryption. Its features include the ability to operate within centralized clusters, as well as
decentralized clouds (IoT-based).

6.3.5 Confidentiality

Encryption technologies mainly protect the confidentiality of data. Employing a mixture of
symmetric and asymmetric cryptography can offer the efficiency of symmetric cryptography
while maintaining the security of asymmetric cryptography. Traditionally, BD platforms usu-
ally utilize Transparent Data Encryption (TDE) [198]. This encryption technology sets at the
file-level (data-at-rest) and does not provide the needed data masking. Analyzing how other
encryption technologies such as functional encryption or other implementation of Identity-
based and attribute-based encryption and signature can address the previous issue [246]. It
is also recommended to integrate it with attribute-based access control, including how they
perform for protecting big data and in the presence of multidimensional data attributes.

The analysis of identity-based encryption and attribute-based encryption can lead to ro-
bust end-to-end security. This ambitious goal can be achieved by integrating with attribute-
based access control. Also, attribute-based encryption for stream data protection, including
network functions, virtualization infrastructures, and mobile 5G [247], can be labeled as a
future direction. Additionally, secure key management is considered as a critical technique
for heterogeneous network security, and dynamic blockchain approaches may apply [248].

6.3.6 Auditing and Analysis

Any secure model should not only secure its entities but should be able to perform secu-
rity auditing and structural analytic regularly at the service level. ITS has unique attributes
that require risk assessment in areas such as physical and network security, access manage-
ment, usage monitoring, and behavioral analysis among many more. This layer performs the
aggregation of log files and reports to provide a robust audit capability within different com-
ponents. This layer may also afford granular insights into pieces of information by tracking
data pipeline audit logs and examining behavioral analytics to meet their compliance demands
within IoT. Usually, such environments generate a massive amount of operational logs in real-
time. The need for an analytics solution that analyzes data activities and identifying security
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Figure 6.2: A Secure Intelligent Transportation Systems (SITS) Reference Architecture.

issues is imperative. Apache Eagle [249] normalizes and evaluates the stream log activities
(including but not limited to audit logs) and alerting immediately even under huge traffic. Its
agile engine allows comprehensive policies including filter and pattern matching.

6.3.7 Orchestration and Testing

Coordination and management of different security frameworks/technologies among several
layers required an ecosystem orchestration. This process brought together various technolo-
gies, so they work in harmony for the benefit of ITS. It is crucially required standardizing and
modeling security to enable interoperability among the various security subcomponents and
products —this aids in supporting the heterogeneity of security deployment over ITS using
various security layers and tools. By bringing together security components consistency, it
improves efficiency and effectiveness of security management and the processes surrounding
them.

Apache Ranger can effectively orchestrate classification-based security policies and al-
lows administrators to define these policies (Geo-based, Time-based, Prohibition-based, etc.)
using Apache Atlas metadata tags and attributes. It then applies this policy in a real-time
approach to the entire hierarchy of the infrastructure. Also, Ranger affords central manage-
ment on access audit history, including the capability to filter based on different parameters.
Furthermore, Apache BigTop [250] is a unified initiative for testing various levels of data
systems configuration and components (packaging, platform, runtime, etc.). Its architecture
aims to provide the needed interfaces for continuous interoperability testing of integration of
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individual components.

6.4 Multi-tier access model

The multi-tier ITS is a five-tiered security reference architecture to improve overall trust,
as illustrated in Figure 6.2, where data flow from left to right of the tiered spectrum. In
general, a typical data hierarchy workflow within ITS has at least four access layers, namely,
networked things layer (i) that are comprised of embedded systems, sensors and actuators.
Data acquisition layer (ii) manages data load and aggregation from the network things. Edge
IT layer (iii) processes the enormous amount of information prepared on the previous stage.
The Edge IT also provides some pre-processing features as data cleaning, tagging, and carry
data to the cloud. Finally, the cloud layer where data are materialized in the system to execute
a more in-depth analysis (iv).

SITS came from the need to addresses the trust concern within the ITS platform architec-
ture. As so, its components are specifically designed to achieve high security, availability, and
reliability. The first two tiers of SITS architecture comprises the availability zones, that con-
sist of smart and less smart things. ITS regions are geographically separated, where each area
has multiple, isolated locations known as availability zones. The availability zones are struc-
tured through a set of correlated domains abstracted from the IoT scenario, but independent
of any particular technology or implementation. In terms of the security level of abstraction,
the zones are classified into several domains realizing a hierarchical structure. A network
segmented with a different security domain meant to keep separation (using encryption and
access control) of functionalities. This separation improves the isolation of edge operations,
maintain integrity, confidentiality, and governance as well. Besides, helping with advanced
audibility capabilities. The network tier function includes providing secure paths to transmit
data between multiple security domains (sub-networks) and edge IT. Next to that is the low-
level data access tier, which is located at the edge of the core network. After establishing the
primary security features, it is time to allocate fine-grained authorizations.

The system administrators can enforce security discussions by employing a distributed
policy agent. These security representative entities (like access control lists and service level
authorization) apply several policies. For instance, classification-based policy, time-based
policy, location-based policy and so on. Lastly, a centralized computation and storage capac-
ities take place at the high-level data access tier. A single-sign-on may be implemented for
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high authorization and data confidentiality measurement. The function of this tier includes
hosting ITS applications that are critical in providing end-to-end services. It is essential that
security services in the datacenter/cloud internal communication are significant in ensuring
that the ITS security as a whole has been hardened to protect against threats. In particular:

Tier-One. Gateway access deals with the basic set of external entities (physical smart
devices like sensors) identification and network access. These devices can communicate with
each other and to other devices using various communication technologies, e.g., Bluetooth or
WiFi.

Tier-Two. Access logic discussion (assign authorization): The entitytID is passed to the
policy authentication, exposes policies and validates to contact internal services, and issue a
session. If successful, it responds with a certificate and establishes a session. This certificate
contains the entityID and a copy of the session key, which is then used to communicate with
the authorized cluster components.
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Tier-Three. Trust relationship is the core of security establishment. This requires a robust
model that unifies the security mechanism of different dimensions, i.e., the security trio of
integrity, confidentiality, and governance. A high-level data access layer may be connected to
that trio, in which access calls require an authorized session. This session is connected to a
particular policy agent that provides access control with a means for detecting unauthorized
operations. The data and call traffic may remain behind a firewall in the fifth-tier. This way
allows the edge to connect to several buses as a transceiver that provides an additional layer
of security.

Tier-Four. Low-level data access specifies roles for each entity within this tier (it is
associated with the previous stage). This phase includes granting access (e.g., submitting
jobs or querying status) with fine grain control, i.e., which database, columns, queues, etc.,
over the specific data blocks within the shared data repository. In the building of an IoT
architecture, the location of edge IT systems is close to the sensors and actuators, end-to-end
wire encryption is crucial.

Tier-Five. High-level data access gives the final level of granularity by designating the
authorized entity (could be a private list of the previous tier) to contact the cloud services and
cloud storage. This tier establishes the session to enable private services or classified data.

In the component diagram in Figure 6.2, the gateway is normalizing the authentication
process by abstracting the ticket (access certification) exchange of different components. This
capability results in a universal authentication platform that scales the access control process
in a multi-tier architecture. Both Ranger and Knox daemons may represent access control.
The gateway contacts the Central Policy Authentication (CPA) to validate the session and set
up their level of access. A different access level may attached to different data pipelines.

Meanwhile, the metadata manage their data in tier-4, which requires a high-level data
access session. Without the access certificates, each entity would need to authenticate and
authorize with other entities on its own. In contrast, by employing the SITS components, it
only needs to combine a central authority that issues an access certificate (based on admin
policies) that applies to every entity within variant access tiers.

6.5 Discussion

The security of IoT deployment architectures and ITS service trusts have always been la-
beled as a research concern. Several research papers discuss the privacy issues of the IoT-
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based cloud systems and ITS [251, 177, 178, 252]. A multi-tier fog computing model was
reported [253], along with a traveling plan-aware scheduling scheme that support electric ve-
hicles [254]. However, herein we address the current ITS security status given the broad diver-
sity of existing solutions uniformity associated with the trust concern. This work distinguishes
itself by addressing the ITS security challenges and maps cutting-edge BD frameworks to that
particular problem domain. Next, we identify a set of main security requirements for effec-
tively achieving the vision of providing a secure ITS service. The security threats concerning
each stage are defined accordingly.

To complete our discussion and offer a look of comparison, Table 1 summarizes the main
features of ITS mapped to the related frameworks we presented in Section 6.3. Vendors have
been categorized in terms of security abstraction, supported ITS operation, security require-
ments and threats, and their availability type. At first, general ITS stages (levels of service and
architectural layers) are represented to refer as one of (i) the sensors and embedded actuators
network, (ii) data acquisition systems, (iii) edge IT and processing, (iv) data analytics (cloud
and on-premise), and finally (v) data storage representative stage (as it could be implemented
within the previous stage). As shown in the table, the data flow from the embedded systems,
sensors and actuators to the storage stage through edge IT and datacenter/cloud environment.

Second is the ITS related operation, where transfer load and data preparation, stream
processing, data analysis, in-depth analysis, and storage and archive operations take place.
The capability of embedded and distributed intelligence in the network is a core architectural
component of the IoT-based ITS. So, we aggregate the domain concepts based on grouping
the related functionalities into requirements. This in returns, facilitates the design of security
solution by addressing the security requirement and threats. The security role that assures
the authenticity of the data life-cycle within each stage (the most relevant) is presented as a
security abstraction. Finally, we map the BD security frameworks or technology respectively
to their security abstraction.

6.6 Summary

Currently, from various considerations, the vendors of ITS appliances prefer to develop pro-
prietary security that reflects their interests. Various communication protocols and standards
are typically deployed within each platform. Hence, interconnecting heterogeneous security
services provided by different vendors, and providing seamless interactions/interoperations
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across the available platforms remain a challenging task. A high-level discussion has been
proposed to address this issue and solve better the heterogeneity in the security layered. Also,
it aids to provide the interoperability for intelligent transportation devices and services from
different vendors of technology independent reference architecture.

This study concentrated on security classifications for modern ITS development based
on analysis of published big data frameworks and use cases. The work aims to facilitate
architecture design and technology selection in the construction of secure ITS applications.
As so, a reference architecture was proposed, which consists of functional components of
the Apache Hadoop security stack. Also, we implement a mapping between the specification
domain requirements and the related frameworks and use cases. Finally, an adapted model
that presents a horizontal level of multi-layer security service that realizes a security mesh
through ITS was presented.
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CHAPTER 7

CONCLUSIONS

One of the significant shifts of next-generation computing technologies will certainly be in
the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD land-
mark, evolved as a widely deployed BD operating system. Its new features include federation
structure and its many associated frameworks, which provide Hadoop 3.x with the maturity
to serve different markets. This dissertation addresses two leading issues involved in exploit-
ing BD and the large-scale data analytics realm, using the Hadoop platform: (i) Scalability
that directly affects the system performance and overall throughput using portable Docker
containers; and (ii) Security that spreads the adoption of data protection practices among
practitioners using access controls. An Enhanced MapReduce Environment (EME), OPpor-
tunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker
(BD-FAB), and a Secure Intelligent Transportation System (SITS) of multi-tier architecture
for data streaming to cloud computing are the main contribution of this thesis study.

This PhD dissertation has resulted in improving the BD processing environment from two
different perspectives.

• First, from a theoretical perspective, by providing insights into different BD deploy-
ment architectures and potential relationships among them, and by covering a potential
data streaming reference model for a revolutionary and trustworthy edge data analytics
architecture.

Chapter Two provides a solid background regarding BD resource management, and how
we can compare and contrast different BD environments. A significant part of this effort is
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due to missing standards in comparison to large-scale data processing environments and the
wide variety of different technologies of the BD domain.

Chapter Five studies the feasibility and methodology of employing state-of-the-art Hadoop
frameworks for the edge data-intensive community, i.e., IoT-to-cloud models. Hence, devel-
oping practical applications that make use of BD techniques and deliver trustworthy solutions
for the broader data community, such as vehicle clouds.

• Second, from a practical perspective, two applied frameworks address the scalability
on the base of elastic resource provisioning of containerized resources and security
based on access management was conceived during the scope of this PhD thesis.

Chapter Three introduced the OPERA project, which aimed to fill the increasing gap be-
tween computation and I/O capacity on high-end workstations. OPERA allows the coexis-
tence of different resource managers (i.e., HTCondor and Hadoop YARN) and shares com-
putation over the same infrastructure. It also enables the automatic adaptation of the cluster
size to the resource demand. This hybrid architecture intends to: (i) minimize the capital
expenditure on large private infrastructures; (ii) remove the statical partitioning of computing
resources; (iii) improve BD performance; and (iv) reduce operational costs.

Chapter Four presents the first study of the data preservation approach on a BD federation
scale using a novel access broker for external Hadoop clients. The proposed access broker not
only provides fine-grained access control, but also a centralized auditing facility. This feature
also provides BD practitioners with an approach toward security breach detection and digital
forensic investigations.

7.1 Future Work

Herein, we present a list of different future research directions that can be carried out to
continue the work started in this thesis, including:

• Hybrid access control solutions: Development in usage control for data privacy and
security leads to integrating traditional access control approaches, e.g., ABAC to other
context-based encryption technologies. This integration could include functional en-
cryption or other generalizations of identity-based encryption and attribute-based en-
cryption to protect BD in the presence of mutable attributes, which may lead to general
advancement in other fields such as IoT.
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• Fine-grained Access Control: The need to develop active and fine-grained approaches
(policies and standards) for BDF is inevitable. The challenge here is to extend previ-
ous approaches with new policy editing and presentation tools (classification-based,
prohibition-based, time-based, and location-based policies) for flexible and extensible
data access. In particular, policies that extend ABAC with stateful access sessions and
mutable attributes (i.e., characteristics that change dynamically during the session).
This extension is mainly invaluable to advance the authorization mechanisms of the
multi-tenant data lake architecture as well as the latest BDF model. Tackling this issue
can be achieved by deploying policy templates that extend the primary ACL (or any
access decision enforcer) as a specialization of the XACML V3.0 standard.

• Dynamic Access Control: More than ever, the scalability and dynamicity of the BD
deployment architecture in terms of user and nodes participation are vital for the se-
cure delivery of security provisioning in a federation environment. Different adapted
security mechanisms and techniques have been proposed to cope with this concern.
However, more research activities are still needed to establish scalable security models
and paradigms that must be driven by BD specifications and requirements. Also, new
security abstractions for BDF are still required to simplify the task of identifying un-
filled gaps. For instance, leveraging new mechanisms of policy enforcement [186] to
combine BDF with ABAC [177] could be labeled as future research.

• Stateful Access Sessions: This requires restricting BD federation access to those autho-
rized by the succinct gateway. However, current state-of-the-art BD-based encryption
technologies are around transparent data encryption. A federation environment tracks
the participation state and characteristics of clients and networks, traversing them with
mutable attributes (i.e., the values of the attributes change overtime during an access
session). This operation requires formulating policy templates on top of standards,
such as XACML V3.0 for dynamic authorization with stateful access sessions. This
takes place at service level (e.g., data access calls) and does not protect data-in-transit
or data-in-process (not even metadata). Attribute-based encryption, in conjunction with
the usage control approach and ABAC can be labeled as a future direction for this issue.

Providing new solutions within all of these research directions will promote innovative
BDF solutions with advanced security features. It is also expected that the adoption of
FACRM use cases will be implemented within our BD opportunistic and elastic resource
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allocation (OPERA) platform. OPERA architecture (its prototype proposed in [3]) combines
the computing power of available (non-dedicated) high-throughput resources to the Hadoop 3
dedicated cluster using Docker containers as worker nodes. Those non-dedicated containers
tend to be more vulnerable and requires a robust IAM approach to minimize security threats.

7.2 Broader Impact

Although clear contributions are given in this dissertation regarding BD optimization, this
PhD thesis is, by no means, conclusive per se, as its findings pave the way for a wide range
of revolutionary and state-of-the-art enhancements and future trends within the Hadoop stack
and, in a more general scope, the BD realm. Nevertheless, besides the above-mentioned future
work, other future trends and research directions that need to be tackled to improve state-of-
the-art BD deployment architectures include:

• Continue expanding the BD paradigms landscape

BD platforms are evolving rapidly and require new computing models to satisfy large-
scale data applications. BD architectures will continue leveraging current trends and
technologies from the broader computing community. This trend not only yields more
significant computational power to accommodate the massive volumes of generated
data, but also achieve a financial cut in infrastructure expenditure. Hence, expressing
distributed data analytics over new computing models will continue to be an important
research direction.

• Enabling shared infrastructures

In prevailing data centers, it is common to create infrastructures silos to accommodate
different clusters and afford various frameworks. This approach includes statically par-
titioning the resources among different resource managers within the physical confines
of an enterprise. Modern platforms should overcome this fragmentation by supporting
the dynamic sharing of computation and removing these barriers. Therefore, pilot job
abstractions and bridge platforms can be employed to enable the co-existence of sev-
eral schedulers on the same physical infrastructure. This direction provides a unified
data center (distributed model) for an enterprise that serves various frameworks over
the same bare-metal hardware.
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• Acquiring bursting architectures

The search for a cost-effective way to manage the increasing complexity of large-
scale data processing could lead, during peak utilization, to the lease of temporary
off-premise resources to boost the overall capacity. This trend is particularly promising
within cloud implementations (in both centralized and decentralized forms) offering
both computing and storage of highly reliable, scalable, and flexible resources. This
mainstream approach has gained momentum in data-intensive computing [255, 256].

• Achieving data-aware dynamic resource provisioning

Future platforms should address the requirements to efficiently attend to the fluctuating
peak demands of BD workloads and tasks. Dynamic provisioning (aka, provisioning
on-demand (POD), defines the ability of the cluster to automatically allocate the needed
resources to the processes (dynamically and elastically) at runtime. It also describes the
capability to deploy a solution by optimizing the infrastructure in responding to the
rapid change in job conditions. POD is considered as a remarkable trend in current
solutions with many potentials for future enhancements. Thus, dynamic resource pro-
visioning should be the determinant for scheduler responsivity, variability, resilience,
and reliability. The provisioning decisions should also consider the data-locality and
prevent over-provisioning. In this regard, serverless computing platforms may be la-
beled as a potential execution model for future BD architectures.

• Improving the ability to handle failures and security

The ability to work under unfavorable conditions and handle such situations is criti-
cal for future data-intensive platforms. Hadoop MR failures are traditionally handled
through the re-execution (reassignment) of failed tasks . Many additional measure-
ments can be integrated to ensure a reliable QoS in other deployment architectures. For
instance, the use of supernodes [257] in decentralized environments, or optimized spec-
ulation mechanisms [258] for short turnaround jobs. Further work includes leveraging
the checkpoint to start speculative task execution [259]. Besides, aiming to accelerate
and secure data exchange among nodes in these environments, a specific data-exchange
channel that is established by nodes wishing to complete their data sets can be created
on-demand privately. These private channels can be launched end-to-end for massive

145



FERAS MAHMOUD NAJI AWAYSHEH

data transformation as an adapted application socket 1. To illustrate, Oracle defines
application sockets1 as ”one endpoint of a two-way communication link between two
programs running on the network.” As sockets are bound to a port number, the commu-
nication protocols (mainly TCP/IP) can identify the direction of the sent data and secure
it (e.g., encryption). Thus, application sockets enhance data privacy in a secure channel
and speed up data transfer, without interfacing to the primary service messaging (traffic)
of the local host.

• Event-driven manageable configurations

Deploying a BD cluster includes setting up and tuning autoscaling policies and com-
puting nodes by application developers and infrastructure operators. However, there
can be large variations among the implemented BD frameworks/workloads, requiring
the continuous effort of configuring and managing runtime of the the application’s run-
time. Sizing, provi- sioning, and scaling the resources, besidesas well as, managing
the updates, security patches, and monitoring the whole infrastructure performance and
availability, are all a downstream effect. Addressing these issues by abstracting away
the cluster management will beis essential in when implementing novel platforms. This
direction, mainly, aims to shrink the amount of time it takes to provision provide compu-
tation. Utilizing functions as a service and service-oriented architectures by launching
servers that work almost identically with predictable configurations, could be the key
in to spinning up configurable instances.

1https://docs.oracle.com/javase/tutorial/networking/sockets/definition.
html
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APPENDIX A

APPENDIX

Algorithm 2: Two methods performance relationship of read benchmark with R tool

1 initialization;
2 while
3 m1= c(23.64,47.45,69.63,94.23,120.62)

4 m2= c(25.07,49.36,72.05,98.1,127.85)

5 m= c(m1,m2)

6 do
7 x= seq(100,500,100) x1= c(x,x) grupo= as.factor(c(rep(”A”,5),rep(”B”,5)))

grupo= relevel(grupo,ref=”A”)
8 postscript(”graficoferas.eps”) plot(x,m1,col=”red”,ylim= c(0,130),xlim=

c(100,500),xlab= ”Size of the file (in MB)”, ylab= ”Operation Time (in
Seconds)”,pch=15) points(x,m2,col=”blue”,pch=17)

9 legend(”topleft”,legend= c(”Native WebHDFS”,”BDF Access
Broker”),col=c(”Red”,”Blue”),lwd=1, lty=c(0,0), pch=c(15,17),cex = 0.75)

10 abline(lm(m2 -1+x)) abline(lm(m1 -1+x))
11 dev.off()
12 mod1= lm(m1 -1+x) mod2= lm(m2 -1+x)
13 mod= lm(m -1+x1+grupo)

14 end
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A.0.1 Appendix B

Algorithm 3: Two methods performance relationship of write benchmark with R
tool

1 initialization;
2 while
3 m1= c(16.55, 33.9, 48.7, 65.9, 84.43)

4 m2= c(21, 43, 61.8, 83.69, 107.2)

5 m= c(m1,m2)

6 do
7 x= seq(100,500,100) x1= c(x,x) grupo= as.factor(c(rep(”A”,5),rep(”B”,5)))

grupo= relevel(grupo,ref=”A”)
8 postscript(”graficoferas.eps”) plot(x,m1,col=”red”,ylim= c(0,130),xlim=

c(100,500),xlab= ”Size of the file (in MB)”, ylab= ”Operation Time (in
Seconds)”,pch=15) points(x,m2,col=”blue”,pch=17)

9 legend(”topleft”,legend= c(”Native WebHDFS”,”BDF Access
Broker”),col=c(”Red”,”Blue”),lwd=1, lty=c(0,0), pch=c(15,17),cex = 0.75)

10 abline(lm(m2 -1+x)) abline(lm(m1 -1+x))
11 dev.off()
12 mod1= lm(m1 -1+x) mod2= lm(m2 -1+x)
13 mod= lm(m -1+x1+grupo)

14 end

A.0.2 Appendix C

148



Appendix A. Appendix

Algorithm 4: Multidecision approach for weighting security criteria in the VC
framework
1 Require: Criterion functions f (y)i

2 Determine best φ ∗i and worst φ̂i values ∀ f (y)i;
3 if ith function represents a benefit then
4 φ ∗ = max(φ j), φ̂ = min(φ j)
5 else
6 φ ∗ = min(φ j), φ̂ = max(φ j)
7 end
8 Compute both values S j and R j.
9 Calculate the comprehensive sorting index I j

10 Rank the fuzzy values R, S and I in ascending order.
11 Select the min(I j) that represent the best ranked; the alternative A(1) is proposed as a

compromise solution.
12 if C1 is Acceptable advantage then
13 I(A(2)–I(A(1))≥ 1

m−1 , where A(2) is the alternative with the second position in the
ranking list by I.

14 end
15 if C2 is Acceptable stability in decision making then
16 The alternative A(1) must also be the best ranked by T or/and S.
17 end
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