111 research outputs found

    MaxPre : An Extended MaxSAT Preprocessor

    Get PDF
    We describe MaxPre, an open-source preprocessor for (weighted partial) maximum satisfiability (MaxSAT). MaxPre implements both SAT-based and MaxSAT-specific preprocessing techniques, and offers solution reconstruction, cardinality constraint encoding, and an API for tight integration into SAT-based MaxSAT solvers.Peer reviewe

    Clause Redundancy and Preprocessing in Maximum Satisfiability

    Get PDF
    The study of clause redundancy in Boolean satisfiability (SAT) has proven significant in various terms, from fundamental insights into preprocessing and inprocessing to the development of practical proof checkers and new types of strong proof systems. We study liftings of the recently-proposed notion of propagation redundancy-based on a semantic implication relationship between formulas-in the context of maximum satisfiability (MaxSAT), where of interest are reasoning techniques that preserve optimal cost (in contrast to preserving satisfiability in the realm of SAT). We establish that the strongest MaxSAT-lifting of propagation redundancy allows for changing in a controlled way the set of minimal correction sets in MaxSAT. This ability is key in succinctly expressing MaxSAT reasoning techniques and allows for obtaining correctness proofs in a uniform way for MaxSAT reasoning techniques very generally. Bridging theory to practice, we also provide a new MaxSAT preprocessor incorporating such extended techniques, and show through experiments its wide applicability in improving the performance of modern MaxSAT solvers.Peer reviewe

    SAT-based approaches for constraint optimization

    Get PDF
    La optimització amb restriccions ha estat utilitzada amb èxit par a resoldre problemes en molts dominis reals (industrials). Aquesta tesi es centra en les aproximacions lògiques, concretament en Màxima Satisfactibilitat (MaxSAT) que és la versió d’optimització del problema de Satisfactibilitat booleana (SAT). A través de MaxSAT, s’han resolt molts problemes de forma eficient. Famílies d’instàncies de la majoria d’aquests problemes han estat sotmeses a la MaxSAT Evaluation (MSE), creant així una col•lecció pública i accessible d’instàncies de referència. En les edicions recents de la MSE, els algorismes SAT-based han estat les aproximacions que han tingut un millor comportament per a les instàncies industrials. Aquesta tesi està centrada en millorar els algorismes SAT-based . El nostre treball ha contribuït a tancar varies instàncies obertes i a reduir dramàticament el temps de resolució en moltes altres. A més, hem trobat sorprenentment que reformular y resoldre el problema MaxSAT a través de programació lineal sencera era especialment adequat per algunes famílies. Finalment, hem desenvolupat el primer portfoli altament eficient par a MaxSAT que ha dominat en totes las categories de la MSE des de 2013.La optimización con restricciones ha sido utilizada con éxito para resolver problemas en muchos dominios reales (industriales). Esta tesis se centra en las aproximaciones lógicas, concretamente en Máxima Satisfacibilidad (MaxSAT) que es la versión de optimización del problema de Satisfacibilidad booleana (SAT). A través de MaxSAT, se han resuelto muchos problemas de forma eficiente. Familias de instancias de la mayoría de ellos han sido sometidas a la MaxSAT Evaluation (MSE), creando así una colección pública y accesible de instancias de referencia. En las ediciones recientes de la MSE, los algoritmos SAT-based han sido las aproximaciones que han tenido un mejor comportamiento para las instancias industriales. Esta tesis está centrada en mejorar los algoritmos SAT-based. Nuestro trabajo ha contribuido a cerrar varias instancias abiertas y a reducir dramáticamente el tiempo de resolución en muchas otras. Además, hemos encontrado sorprendentemente que reformular y resolver el problema MaxSAT a través de programación lineal entera era especialmente adecuado para algunas familias. Finalmente, hemos desarrollado el primer portfolio altamente eficiente para MaxSAT que ha dominado en todas las categorías de la MSE desde 2013.Constraint optimization has been successfully used to solve problems in many real world (industrial) domains. This PhD thesis is focused on logic-based approaches, in particular, on Maximum Satisfiability (MaxSAT) which is the optimization version of Satisfiability (SAT). There have been many problems efficiency solved through MaxSAT. Instance families on the majority of them have been submitted to the international MaxSAT Evaluation (MSE), creating a collection of publicly available benchmark instances. At recent editions of MSE, SAT-based algorithms were the best performing single algorithm approaches for industrial problems. This PhD thesis is focused on the improvement of SAT-based algorithms. All this work has contributed to close up some open instances and to reduce dramatically the solving time in many others. In addition, we have surprisingly found that reformulating and solving the MaxSAT problem through Integer Linear Programming (ILP) was extremely well suited for some families. Finally, we have developed the first highly efficient MaxSAT portfolio that dominated all categories of MSE since 2013

    Extensions and Experimental Evaluation of SAT-based solvers for the UAQ problem

    Get PDF
    Nowadays, most of the health organizations make use of Health Information Systems (HIS) to support the staff to provide patients with proper care service. In this context, security and privacy are key to establish trust between the actors involved in the healthcare process, including the patient. However, patients' privacy cannot jeopardize their safety: as a consequence, a compromise between the two must eventually be found. Privilege management and access control are necessary elements to provide security and privacy. In this thesis, we first present the main features that make the Role Based Access Control suitable for permissions management and access control in HIS. We then address the User Authorization Query (UAQ) problem for RBAC, namely the problem of determining the optimum set of roles to activate to provide the user with the requested permissions (if the user is authorized) while satisfying a set of Dynamic Mutually Exclusive Roles (DMER) constraints and achieving some optimization objective (least privilege versus availability). As a first contribution, we show how DMER can be used to support the enforcement of SoD. The UAQ problem is known to be NP-hard. Most of the techniques proposed in the literature to solve it have been experimentally evaluated by running them against different benchmark problems. However, the adequacy of the latter is seldom discussed. In this thesis, we propose a methodology for evaluating existing benchmarks or designing new ones: the methodology leverages the asymptotic complexity analysis of the solving procedures provided in other works to forsee the benchmarks complexity given the values of the most significant RBAC dimensions. First, we use our methodology to demonstrate that the state-of-the-art benchmarks are unsatisfactory. We then introduce UAQ-Solve, a tool that works both as generator of benchmarks and as UAQ solver leveraging existing PMAXSAT complete solvers. By using UAQ-Solve, we apply our methodology to generate a novel suite of parametric benchmarks that allows for the systematic assessment of UAQ solvers over a number of relevant dimensions. These include problems for which no polynomial-time algorithm is known as well as problems for which polynomial-time algorithms do exist. We then execute UAQ-Solve over our benchmarks to compare the performance of different complete and incomplete PMAXSAT solvers

    Preprocessing and Stochastic Local Search in Maximum Satisfiability

    Get PDF
    Problems which ask to compute an optimal solution to its instances are called optimization problems. The maximum satisfiability (MaxSAT) problem is a well-studied combinatorial optimization problem with many applications in domains such as cancer therapy design, electronic markets, hardware debugging and routing. Many problems, including the aforementioned ones, can be encoded in MaxSAT. Thus MaxSAT serves as a general optimization paradigm and therefore advances in MaxSAT algorithms translate to advances in solving other problems. In this thesis, we analyze the effects of MaxSAT preprocessing, the process of reformulating the input instance prior to solving, on the perceived costs of solutions during search. We show that after preprocessing most MaxSAT solvers may misinterpret the costs of non-optimal solutions. Many MaxSAT algorithms use the found non-optimal solutions in guiding the search for solutions and so the misinterpretation of costs may misguide the search. Towards remedying this issue, we introduce and study the concept of locally minimal solutions. We show that for some of the central preprocessing techniques for MaxSAT, the perceived cost of a locally minimal solution to a preprocessed instance equals the cost of the corresponding reconstructed solution to the original instance. We develop a stochastic local search algorithm for MaxSAT, called LMS-SLS, that is prepended with a preprocessor and that searches over locally minimal solutions. We implement LMS-SLS and analyze the performance of its different components, particularly the effects of preprocessing and computing locally minimal solutions, and also compare LMS-SLS with the state-of-the-art SLS solver SATLike for MaxSAT.

    Solving Optimization Problems via Maximum Satisfiability : Encodings and Re-Encodings

    Get PDF
    NP-hard combinatorial optimization problems are commonly encountered in numerous different domains. As such efficient methods for solving instances of such problems can save time, money, and other resources in several different applications. This thesis investigates exact declarative approaches to combinatorial optimization within the maximum satisfiability (MaxSAT) paradigm, using propositional logic as the constraint language of choice. Specifically we contribute to both MaxSAT solving and encoding techniques. In the first part of the thesis we contribute to MaxSAT solving technology by developing solver independent MaxSAT preprocessing techniques that re-encode MaxSAT instances into other instances. In order for preprocessing to be effective, the total time spent re-encoding the original instance and solving the new instance should be lower than the time required to directly solve the original instance. We show how the recently proposed label-based framework for MaxSAT preprocessing can be efficiently integrated with state-of-art MaxSAT solvers in a way that improves the empirical performance of those solvers. We also investigate the theoretical effect that label-based preprocessing has on the number of iterations needed by MaxSAT solvers in order to solve instances. We show that preprocessing does not improve best-case performance (in the number of iterations) of MaxSAT solvers, but can improve the worst-case performance. Going beyond previously proposed preprocessing rules we also propose and evaluate a MaxSAT-specific preprocessing technique called subsumed label elimination (SLE). We show that SLE is theoretically different from previously proposed MaxSAT preprocessing rules and that using SLE in conjunction with other preprocessing rules improves empirical performance of several MaxSAT solvers. In the second part of the thesis we propose and evaluate new MaxSAT encodings to two important data analysis tasks: correlation clustering and bounded treewidth Bayesian network learning. For both problems we empirically evaluate the resulting MaxSAT-based solution approach with other exact algorithms for the problems. We show that, on many benchmarks, the MaxSAT-based approach is faster and more memory efficient than other exact approaches. For correlation clustering, we also show that the quality of solutions obtained using MaxSAT is often significantly higher than the quality of solutions obtained by approximative (inexact) algorithms. We end the thesis with a discussion highlighting possible further research directions.Kombinatorinen optimointi on laajasti tutkittu matematiikan ja tietojenkäsittelytieteen osa-alue. Kombinatorisissa optimointiongelmissa diskreetin ratkaisujen joukon yli määritelty kustannusfunktio määrittää kunkin ratkaisun hyvyyden. Tehtävänä on löytää sallittujen ratkaisujen joukosta kustannusfunktion mukaan paras mahdollinen. Esimerkiksi niin sanotussa kauppamatkustajan ongelmassa annettuna joukko kaupunkeja tavoitteena on löytää lyhin mahdollinen reitti, jota kulkemalla voidaan käydä kaikissa kaupungeissa. Kauppamatkustajan ongelma sekä monet muut kombinatoriset optimointiongelmat ovat laskennallisesti haastavia, tarkemmin ilmaistuna NP-vaikeita. Haastavia kombinatorisia optimointiongelmia esiintyy monilla eri tieteen ja teollisuuden aloilla; esimerkiksi useat koneoppimiseen liittyvät ongelmat voidaan esittää kombinatorisina optimointiongelmina. Kombinatoristen optimointiongelmien moninaisuus motivoi tehokkaiden ratkaisualgoritmien kehitystä. Väitöskirjassa kehitetään deklaratiivisia ratkaisumenetelmiä NP-vaikeille optimointiongelmille. Deklaratiivinen ratkaisumenetelmä olettaa, että ratkaistavalle ongelmalle on olemassa jonkin matemaattisen rajoitekielen rajoitemalli, joka kuvaa kunkin ongelman instanssin joukkona matemaattisia rajoitteita siten, että kunkin rajoiteinstanssin optimaalinen ratkaisu voidaan tulkita alkuperäisen ongelman optimaalisena ratkaisuna. Deklaratiivisessa ratkaisumenetelmässä ratkaistavan optimointiongelman instanssi ratkaistaan kuvaamalla ensin instanssi rajoitemallilla joukoksi rajoitteita ja ratkaisemalla sitten rajoiteinstanssi rajoitekielen ratkaisualgoritmilla. Työssä käytetään lauselogiikkaa rajoitekielenä ja keskitytään lauselogiikan toteutuvuusongelman (SAT) laajennukseen optimointiongelmille. Tätä ongelmaa kutsutaan nimellä MaxSAT. Työssä kehitetään sekä sekä yleisiä MaxSAT-ratkaisumenetelmiä että MaxSAT-malleja tietyille koneoppimiseen liittyville optimointiongelmille. Väitöskirjan keskeiset kontribuutiot esitellään kahdessa osassa. Ensimmäisessä osassa kehitetään MaxSAT-ratkaisumenetelmiä, tarkemmin sanottuna MaxSAT-esikäsittelymenetelmiä. Esikäsittelymenetelmät ovat tehokkaasti laskettavissa olevia päättelysääntöjä (esikäsittelysääntöjä), joita käyttämällä annettuja MaxSAT-instansseja voidaan yksinkertaistaa. Esikäsittelyn tavoitteena on tehdä MaxSAT-instansseista helpommin ratkaistavia käytännössä. Väitöstyössä: i) esitellään tapa integroida keskeiset lauselogiikan toteutuvuusongelman esikäsittelysäännöt nykyaikaisiin MaxSAT-ratkaisualgoritmeihin ii) analysoidaan esikäsittelyn vaikutusta ratkaisualgoritmien käyttäytymiseen ja iii) esitellään uusi MaxSAT-esikäsittelysääntö. Kaikkia kontribuutioita MaxSAT-esikäsittelyyn analysoidaan sekä teoreettisella että kokeellisella tasolla. Kirjan toisessa osassa kehitetään MaxSAT-malleja kahdelle koneoppimiseen liittyvälle optimointiongelmalle: korrelaatioklusteroinnille ja Bayes-verkkojen rakenteenoppimisongelmalle. Kehitettäviä malleja analysoidaan sekä teoreettisesti, että kokeellisesti. Teoreettisella tasolla mallit todistetaan oikeellisiksi. Kokeellisella tasolla osoitetaan, että mallit mahdollistavat alkuperäisten ongelmien instanssien tehokkaan ratkaisemisen aiemmin näille ongelmille esiteltyihin eksakteihin ratkaisualgoritmeihin verrattuna

    MaxSAT Evaluation 2017 : Solver and Benchmark Descriptions

    Get PDF
    Peer reviewe

    MaxSAT Evaluation 2022 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    MaxSAT Evaluation 2017 : Solver and Benchmark Descriptions

    Get PDF
    corecore