
MaxSAT Evaluation 2017
Solver and Benchmark Descriptions

Carlos Ansotegui, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins (editors)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/157586807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2017-2

Helsinki 2017

2

PREFACE

The MaxSAT Evaluations are a series of events focusing on the evaluation of current state-
of-the-art systems for solving optimization problems via the Boolean optimization paradigm
of maximum satisfiability (MaxSAT). Organized yearly starting from 2006, the year 2017
brought on the 12th edition of the MaxSAT Evaluations. Some of the central motivations
for the MaxSAT Evaluation series are to provide further incentives for further improving
the empirical performance of the current state of the art in MaxSAT solving, to promote
MaxSAT as a serious alternative approach to solving NP-hard optimization problems from
the real world, and to provide the community at large heterogenous benchmark sets for
solver development and research purposes. In the spirit of a true evaluation—rather than
a competition, unlike e.g. the SAT Competition series—no winners are declared, and no
awards or medals are handed out to overall best-performing solvers.

In 2017, a new team stepped in to organize the MaxSAT Evaluation. Several changes to
the evaluation arrangements were introduced with this change.

The 2017 evaluation consisted of two main tracks, one for solvers focusing on unweighted
and one for solvers focusing on weighted MaxSAT instances. In contrast to the previ-
ous instantiations of MaxSAT Evaluations, no distinction was made between “industrial”
and “crafted” benchmarks. Furthermore, no track for purely randomly generated MaxSAT
instances was organized this year. In addition to the main tracks, a special track for incom-
plete MaxSAT solvers was organized, using two short per-instance time limits (60 and 300
seconds), differentiating from the per-instance time limit of 1 hour imposed in the main
tracks.

In terms of rules, solvers were now required to be open-source, and the source codes of all
participating solvers were made available online on the evaluation webpages after the results
from the evaluation were presented. This new requirement was introduced to promote easier
entrance to the world of MaxSAT solver development and was also motivated by the success
of open-source SAT solvers. A special “no-restrictions” track was arranged to accommodate
developers unable to adhere to the open-source requirements—however, no solvers were
submitted to this special track.

Following the SAT Competitions, a 1-2 page solver description was required, to provide
some details on the search techniques implemented in the solvers. The solvers descrip-
tions together with descriptions of new benchmarks for 2017 are collected together in this
compilation.

Benchmark selection for the 2017 evaluation was refined with the aim of making the 2017
benchmark sets balanced in terms of the number of representative instances included from
different benchmark problem domains.

We would like to thank the previous MaxSAT Evaluation organizers for their noticeably
efforts and hard work on organizing the MaxSAT Evaluations for several consecutive years.
The evaluations have played an important role in bringing MaxSAT to its current position
as a competitive approach to tackling NP-hard optimization problems. We hope that the
success of MaxSAT Evaluations continues also in the forthcoming years.

Finally, we would like to thank everyone who contributed to MaxSAT Evaluation 2017 by
submitting their solvers or new benchmarks. We are also grateful for the computational
resources provided by the StarExec initiative which enabled running the 2017 evaluation
smoothly.

MaxSAT Evaluation 2017 Organizers

3

4

Contents

Preface . 3

Solver Descriptions

MaxHS v3.0 in the 2017 MaxSat Evaluation
Fahiem Bacchus . 8

Maxino
Mario Alviano . 10

MaxRoster: Solver Description
Takayuki Sugawara . 12

Loandra: PMRES Extended with Preprocessing Entering MaxSAT Evaluation 2017
Jeremias Berg, Tuukka Korhonen, and Matti Järvisalo 13

The MSUSorting MaxSAT solver
Eivind Jahren and Roberto As ÌĄí Achaá . 15

LMHS in MaxSAT Evaluation 2017
Paul Saikko, Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo 16

Open-WBO in MaxSAT Evaluation 2017
Ruben Martins, Miguel Terra-Neves, Saurabh Joshi, Mikolas Janota, Vasco
Manquinho, and Ines Lynce . 17

QMaxSAT1702 and QMaxSATuc
Naoki Uemura, Aolong Zha, and Miyuki Koshimura 18

Benchmark Descriptions

MaxSAT Benchmarks: CSS Refactoring
Matthew Hague and Anthony Widjaja Lin . 20

MaxSAT Benchmarks based on Determining Generalized Hypertree-width
Jeremias Berg, Neha Lodha, Matti Järvisalo, and Stefan Szeider 22

Discrete Optimization Problems in Dynamics of Abstract Argumentation: MaxSAT Bench-
marks
Andreas Niskanen, Johannes P. Wallner, and Matti Järvisalo 23

Lisbon Wedding: Seating arrangements using MaxSAT
Ruben Martins and Justine Sherry . 25

ASP to MaxSAT: Metro, ShiftDesign, TimeTabling and BioRepair
Ruben Martins . 27

5

MSE17 Benchmarks: DALculus
Ruben Martins . 28

Solving RNA Alignment with MaxSAT
Ruben Martins . 29

MaxSAT Benchmarks Encoding Optimal Causal Graphs
Antti Hyttinen and Matti Järvisalo . 31

Generalized Ising Model (Cluster Expansion) Benchmark
Wenxuan Huang . 33

MaxSAT Benchmarks from the Minimum Fill-in Problem
Jeremias Berg, Tuukka Korhonen, and Matti Järvisalo 37

MaxSAT Benchmarks from the Minimum-Width Confidence Band Problem
Jeremias Berg, Emilia Oikarinen, Matti Järvisalo, and Kai Puolamäki 38

Solver Index . 39
Benchmark Index . 40
Author Index . 41

6

SOLVER DESCRIPTIONS

MaxHS v3.0 in the 2017 MaxSat Evaluation

Fahiem Bacchus
Department of Computer Science

University of Toronto
Ontario, Canada

Email: fbacchus@cs.toronto.edu

1. MaxHS

MaxHS is a MaxSat solver that originated in the PhD
work of Davies [4]. It was the first MaxSat solver to utilize
the Implicit Hitting Set (IHS) approach, and its core compo-
nents are described in [4], [2], [3], [5]. Other useful insights
into IHS are provided in [6], [7]. IHS solvers utilize both
an integer programming (IP) solver and a SAT solver in a
hybrid approach to MaxSat solving. MaxHS utilizes minisat
v2.2 as its SAT solver and IBM’s CPLEX v12.7 as its IP
solver. Interestingly experiments with more sophisticated
SAT solvers like Glucose http://www.labri.fr/perso/lsimon/
glucose/ and Lingeling http://fmv.jku.at/lingeling/ yielded
inferior performance. This indicates that the SAT problems
being solved are quite simple, too simple for the more so-
phisticated techniques used in these SAT solvers to pay off.
Simpler SAT problems are one of the original motivations
behind MaxHS [2].

The MaxHS v3.0 is essentially the same as the version
that was entered in the 2016 MaxSat evaluation, but with
some clean up of the code, some extensions to the tech-
niques used, and some previously undetected bugs fixed.
These bugs were mainly impediments to performance, but
one bug was found that had not appeared in prior testing on
over 6000 instances!

The main features of v3.0, as compared to the prior
published descriptions of MaxHS are as follows (familiarity
with the basics of the IHS approach is assumed).

1.0.1. Termination based on Bounding. MaxHS v3.0
maintains an upper bound (and best model found so far)
and a lower bound on the cost of an optimal solution (the
IP solver computes valid lower bounds). MaxHS terminates
when the gap between the lower bound and upper bound
is low enough (with integer weights when this gap is less
than 1, the upper bound model is optimal). This means that
MaxHS no longer needs to wait until the IP solver returns an
hitting set whose removal from the set of soft clauses yields
SAT; it can return when the IP solver’s best lower bound is
close enough to show that the best model is optimal.

1.0.2. Early Termination of Cplex. In previous versions
of MaxHS, the IP solver was run to completion forcing it
to find an optimal solution every time it is called. However,

with bounding, optimal solutions are not always needed. In
particular, if the IP solver finds a feasible solution whose
cost is better than the current best model it can return that:
either the IP solution is feasible for the MaxSat problem, in
which case we can lower the upper bound, or it is infeasible
in which case we can obtain additional cores to augment the
IP model (and thus increase the lower bound). Terminating
the IP solver before optimization is complete can yield
significant time savings.

1.0.3. Reduced Cost fixing via the LP-Relaxation. Using
an LP relaxation and the reduced costs associated with the
optimal LP solution, some soft clauses can be hardened or
immediately falsified. See [1] for more details.

1.0.4. Mutually Exclusive Soft Clauses. Sets of soft
clauses of which at most one can be falsified or at most
one can be satisfied are detected. When all of these soft
clauses have the same weight they can all be more compactly
encoded with a single soft clause. This encoding does not
always yield better performance due to some subtle effects.
However, techniques were developed to better exploit such
information, and a fuller description of these techniques is in
preparation. With these techniques performance gains were
achieved.

1.0.5. Other clauses to the IP Solver. Problems with a
small number of variables are given entirely to the IP solver,
so that it directly solves the MaxSat problem. In this case
the SAT solver is used to first compute some additional
clauses and cores, and to find a better initial model for the
IP solver. This additional information from the SAT solver
often makes the IP solver much faster than just running the
IP solver and represents an alternate way of hybridizing SAT
and IP solvers.

1.0.6. Other techniques for finding Cores. MaxHS itera-
tively calls the IP solver to obtain a hitting set of the cores
computed so far. If that hitting set does not yield an optimal
MaxSat solution then more cores must be added to the IP
solver. In some of these iterations very few cores can be
found causing only a slight improvement to the IP solver’s
model. This results in a large number of time consuming
calls to the IP solver. Two method were developed to aid

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

8

this situation (a) we ask the IP solver for more solutions and
generate cores from these as hitting sets as well and (b) if
we have a new upper bound model we try to improve this
model by converting it to a minimal correction set (MCS). In
converting the upper bound model to an MCS we either find
a better model (lowering the upper bound) or we compute
additional conflicts that can be added to the IP solver.

1.0.7. Incomplete MaxSat Solving. The solver maintains
upper bounding models as described above, and in its normal
operation it terminates only when it is able to prove that its
best model is in fact optimal. However, often it is able to find
very good upper bounding models or even optimal models
long before termination (proving a model to be optimal is
generally as hard or even harder than finding it). For the
incomplete track we simply output the best model found so
far at timeout.

References

[1] Bacchus, F., Hyttinen, A., Järvisalo, M., Saikko, P.: Reduced cost fixing
in maxsat. In: Proc. CP. p. in press (2017)

[2] Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence
of simpler SAT instances. In: Proc. CP. Lecture Notes in Computer
Science, vol. 6876, pp. 225–239. Springer (2011)

[3] Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in
MaxSAT. In: Proc. SAT. Lecture Notes in Computer Science, vol.
7962, pp. 166–181. Springer (2013)

[4] Davies, J.: Solving MAXSAT by Decoupling Optimization and Sat-
isfaction. Ph.D. thesis, University of Toronto (2013), http://www.cs.
toronto.edu/∼jdavies/Davies Jessica E 201311 PhD thesis.pdf

[5] Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT
solving. In: Proc. CP. Lecture Notes in Computer Science, vol. 8124,
pp. 247–262. Springer (2013)

[6] Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT
solver. In: Proc. SAT. Lecture Notes in Computer Science, vol. 9710,
pp. 539–546. Springer (2016)

[7] Saikko, P.: Re-implementing and Extending a Hybrid SAT-IP Approach
to Maximum Satisfiability. Master’s thesis, University of Helsinki
(2015), http://hdl.handle.net/10138/159186

9

Maxino
Mario Alviano

Department of Mathematics and Computer Science
University of Calabria

87036 Rende (CS), Italy
Email: alviano@mat.unical.it

Abstract—Maxino is based on the k-ProcessCore algorithm,
a parametric algorithm generalizing OLL, ONE and PMRES.
Parameter k is dynamically determined for each processed
unsatisfiable core by a function taking into account the size of
the core. Roughly, k is in O(logn), where n is the size of the
core. Satisfiability of propositional theories is checked by means
of a pseudo-boolean solver extending Glucose 4.1 (single thread).

A VERY SHORT DESCRIPTION OF THE SOLVER

The solver MAXINO is build on top of the SAT solver
GLUCOSE [7] (version 4.1). MaxSAT instances are normalized
by replacing non-unary soft clauses with fresh variables, a
process known as relaxation. Specifically, the relaxation of
a soft clause φ is the clause φ ∨ ¬x, where x is a variable
not occurring elsewhere; moreover, the weight associated
with clause φ is associated with the soft literal x. Hence,
the normalized input processed by MAXINO comprises hard
clauses and soft literals, so that the computational problem
amounts to maximize a linear function, which is defined by
the soft literals, subject to a set of constraints, which is the
set of hard clauses.

The algorithm implemented by MAXINO to address such a
computational problem is based on unsatisfiable core analysis,
and in particular takes advantage of the following invariant:
A model of the constraints that satisfies all soft literals is an
optimum model. The algorithm then starts by searching such
a model. On the other hand, if an inconsistency arises, the
unsatisfiable core returned by the SAT solver is analyzed. The
analysis of an unsatisfiable core results into new constraints
and new soft literals, which replace the soft literals involved in
the unsatisfiable core. The new constraints are essentially such
that models satisfying all new soft literals actually satisfy all
but one of the replaced soft literals. Since there is no model
that satisfies all replaced soft literals, it turns out that the
invariant is preserved, and the process can be iterated.

Specifically, the algorithm implemented by MAXINO is K,
based on the k-ProcessCore procedure introduced by Alviano
et al. [2]. It is a parametric algorithm generalizing OLL [3],
ONE [2] and PMRES [8]. Intuitively, for an unsatisfiable core
{x0, x1, x2, x3}, ONE introduces the following constraint:

x0 + x1 + x2 + x3 + ¬y1 + ¬y2 + ¬y3 ≥ 3
y1 → y2 y2 → y3

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3). OLL introduces the following con-
straints (the first immediately, the second if a core containing

y1 is subsequently found, and the third if a core containing y2
is subsequently found):

x0 + x1 + x2 + x3 + ¬y1 ≥ 3
x0 + x1 + x2 + x3 + ¬y2 ≥ 2
x0 + x1 + x2 + x3 + ¬y3 ≥ 1

Concerning PMRES, it introduces the following constraints:

x0 ∨ x1 ∨ ¬y1 z1 ↔ x0 ∧ x1
z1 ∨ x2 ∨ ¬y2 z2 ↔ z1 ∧ x2
z2 ∨ x3 ∨ ¬y3

which are essentially equivalent to the following constraints:

x0 + x1 + ¬z1 + ¬y1 ≥ 2 z1 → y1
z1 + x2 + ¬z2 + ¬y2 ≥ 2 z2 → y2
z2 + x3 + ¬y3 ≥ 1

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3), and z1, z2 are fresh auxiliary variables.

Algorithm K, instead, introduces a set of constraints of
bounded size, where the bound is given by the chosen param-
eter k, and is specifically 2 · (k+1). ONE, which is essentially
a smart encoding of OLL, is the special case for k = ∞,
and PMRES is the special case for k = 1. For the example
unsatisfiable core, another possibility is k = 2, which would
results in the following constraints:

x0 + x1 + x2 + ¬z1 + ¬y1 + ¬y2 ≥ 3 z1 → y1 y1 → y2
z1 + x3 + ¬y3 ≥ 1

In this version of MAXINO, the parameter k is dynamically
determined based on the size of the analyzed unsatisfiable
core: k ∈ O(log n), where n is the size of the core.

The analysis of unsatisfiable core is preceded by a shrink
procedure [1]. Specifically, a reiterated progression search
is performed on the unsatisfiable core returned by the SAT
solver. Such a procedure significantly reduce the size of the
unsatisfiable core, even if it does not necessarily returns an
unsatisfiable core of minimal size. Since minimality of the
unsatisfiable cores is not a requirement for the Additionally,
satisfiability checks performed during the shrinking process
are subject to a budget on the number of conflicts, so that the
overhead due to hard checks is limited. Specifically, the budget
is set to the number of conflicts arose in the satisfiability
check that lead to detecting the unsatisfiable core; if such a
number is less than 1000 (one thousand), the budget is raised
to 1000. The budget is divided by 2 every time the progression
is reiterated.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

10

Weighted instances are handled by stratification and in-
troducing remainders [4]–[6]. Specifically, soft literals are
partitioned in strata depending on the associated weight.
Initially, only soft literals of greatest weight are considered,
and soft literals in the next stratum are added only after a
model satisfying all considered soft literals is found. When
an unsatisfiable core is found, the weight of all soft literals
in the core is decreased by the weight associated with last
added stratum. Soft literals whose weight become zero are
not considered soft literals anymore.

Finally, a preprocessing step is performed on unweighted
instances, which essentially iterates on all hard clauses of
the input theory, sorted by length, and checks whether they
already witness some unsatisfiable core. Specifically, an hard
clause witnesses an unsatisfiable core if all literals in the clause
are the complement of a soft literal. If this is the case, the
unsatisfiable core is analyzed immediately. The rationale for
such a preprocessing step is that hard clauses in the input
theory are often small, and the smaller the better for the
unsatisfiable core based algorithms.

REFERENCES

[1] Mario Alviano and Carmine Dodaro. Anytime answer set optimization
via unsatisfiable core shrinking. TPLP, 16(5-6):533–551, 2016.

[2] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A maxsat
algorithm using cardinality constraints of bounded size. In Qiang Yang
and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 2677–2683. AAAI
Press, 2015.

[3] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In 28th International
Conference on Logic Programming, pages 211–221, Budapest, Hungary,
September 2012.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted)
partial maxsat through satisfiability testing. In SAT 2009, pages 427–440,
Swansea, UK, June 2009. Springer.

[5] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artificial Intelligence, 196(0):77–105, March 2013.

[6] Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving
boolean multilevel optimization problems. In 21st International Joint
Conference on Artificial Intelligence, pages 393–398, Pasadena, Califor-
nia, July 2009. IJCAI Organization.

[7] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In 21st International Joint Conference on
Artificial Intelligence, pages 399–404, Pasadena, California, July 2009.
IJCAI Organization.

[8] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using
core-guided MaxSAT resolution. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 2717–2723, Québec City, Canada, July 2014.
AAAI Press.

11

MaxRoster:Solver Description

Takayuki Sugawara

Sugawara Systems

3-24-13 Kitanakayama Izumi-ku Sendai-City,Japan

nurse-support@sugawaras-systems.com

Abstract—In this document, we briefly describe the

techniques employed by the MaxRoster solver participating in
MaxSAT competition 2017.

I. INTRODUCTION

MaxRoster participates in Incomplete Track. MaxRoster
has two engine,one is local search solver Ramp and another is
MapleSAT with CHB. First, Ramp is used 6sec and then
complete maxsat algorithm starts using MapleSAT. Our aim is
to make feasible solution better, though it has ability of getting
optimum solution.

II. IMPLEMENTATION

 Weighted Instances:

 For weighted instances, either incremental version of OLL

algorithm or model-based algorithm is used. Initially,

MaxRoster makes a call to the SAT solver using solely the

hard clauses. If SAT,the cost of this model represents an

initial upper bound on the MaxSAT solution.The ratio of the
cost mainly determines which algorithm should be invoked

later.In model based algorithm, we implemented special clause

counting the inputs with same weight in MapleSAT to

address large and different weights for the instance.

Unweighted Instances:

 For unweighted instances, either incremental version of

MCU3 algorithm or model-based algorithm is used. Initially,

MCU3 algorithm is invoked. If predefined timeout occurs in
the process, then MaxRoster switches to model based

algorithm dynamically.

References

[1] Yi Fan, Zongjie Ma, Kaile Su, Abdul Sattar,Chengqian Li, “Ramp: A

Local Search Solver based on Make-positive Variables “ MaxSAT

Evaluation 2016.

[2] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, Krzysztof Czarnecki:

Exponential Recency Weighted Average Branching Heuristic for SAT
Solvers. AAAI 2016: 3434-3440

[3] A. Morgado, A. Ignatiev, J. Marques-Silva: MSCG: Robust Core-

Guided MaxSAT Solving. Special Issue on SAT 2014 Competitions and
Evaluations. JSAT Volume 9, 2014.

[4] Martins, R., Joshi, S., Manquinho, V.M., Lynce, I.: Incremental

cardinality constraints for MaxSAT. In: CP (2014).

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

12

Loandra: PMRES Extended with Preprocessing
Entering MaxSAT Evaluation 2017

Jeremias Berg, Tuukka Korhonen, and Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

I. PRELIMINARIES

We briefly overview the Loandra MaxSAT solver as it
participated in the 2017 MaxSAT evaluation. We assume
familiarity with conjunctive normal form (CNF) formulas and
weighted partial maximum satisfiability (MaxSAT). Treating a
CNF formula as a set of clauses a MaxSAT instance consists
of two CNF formulas, the hard clauses Fh and the soft clauses
Fs, as well a weight function w : Fs → N.

Loandra makes extensive use of SAT-based preprocessing
using labels [3], [4]. In order to enable sound application of
most SAT-based preprocessing techniques for MaxSAT, each
soft clause C is first extended with a fresh label variable
lC . Afterwards the preprocessor is invoked on the clauses in
Fh∪{C ∨ lC | C ∈ Fs}. During execution the preprocessor is
forbidden from resolving on the added labels. Afterwards, the
preprocessed instance is converted back to standard MaxSAT
by treating all clauses in the preprocessor as hard and intro-
ducing a soft clause (¬lC) with weight w(C) for each added
label.

II. STRUCTURE AND EXECUTION OF LOANDRA

The architecture of Loandra consists of two closely inter-
leaved parts; the solver and the preprocessor. The solver is
a reimplementation of the PMRES MaxSAT algorithm [15]
extended with weight-aware core extraction (WCE) as de-
scribed in [6]. The preprocessor is the recently proposed tool
MaxPre [11], modified to support addition of clauses.

In more detail, whenever invoked on an MaxSAT instance
(Fh, Fs, w) Loandra first preprocesses the input instance as
described in [11]. Afterwards the preprocessed instance is
extracted from the preprocessor and given to the solver. When
initializing the solver, we follow [5] and do not introduce the
soft clauses of form (¬lC), but instead reuse the literals as
assumption variables to be used in core extraction. Then the
solver is invoked on the preprocessed instance. Except for
the base algorithm, Loandra also uses stratification and clause
hardening [1] as well as clause cloning through assumptions
and reusing assumption variables as relaxation variables [6].
This guarantees that the working formula is only modified
by adding clauses to it, making it possible to keep the state
of the internal SAT solver throughout the solving process.
During execution, all cardinality constraints added due to core
relaxation are also added to the preprocessor as well. When
the working formula is sufficiently modified, the the execution
is switched back to the preprocessor which attempts to further
simplify the modified formula, i.e. the original clauses with

some clauses hardened and the new cardinality constraints.
If the preprocessor is successful, the solver is reinitialized on
the modified formula. Loandra terminates whenever the solver
terminates. At this point the optimal model for the original
formula can be reconstructed from the preprocessor.

III. DETAILS ON THE COMPETITION BUILDS

There are three version of Loandra competing in the 2017
MaxSAT evaluation.

• LOANDRAI , which follows the description given above.
• LOANDRAP , which only invokes its preprocessor once

and then runs the solver on the preprocessed instance.
• LOANDRAS , which only uses its solver, not invoking the

preprocessor at all.
These solvers are built on top of the open source Open-WBO
system [13], [14] and use Glucose 3.0 [2] as the internal SAT
solver. All preprocessing calls are done with label matching
turned off, with the SKIPTECHNIQUE parameter set to 20, and
using a technique loop with blocked clause elimination [10],
unit propagation, bounded variable elimination [8], subsump-
tion elimination, self-subsuming resolution [8], [9], [12] as
well as group-subsumed label elimination [7], [11] and binary
core removal [11]. See [11] for more details on the settings
of MaxPre. The additional preprocessing step is attempted
whenever more than 500 clauses have been hardened since
the preprocessing attempt.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. A statically linked version of Loandra in release
mode can be built from the code by first running MAKE LIB
in the maxpre subfolder and then MAKE RS in the base folder.
One significant difference to Open-WBO is the need of C++11
features for building Loandra.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments; the flag “-inpr” enables execution
following LOANDRAI , the flag “-pre” enables execution fol-
lowing LOANDRAP and the flag “-printM” prints out the
optimal model of the instance, and not only its cost. The rest
of the flags resemble the flags accepted by Open-WBO; invoke
./loandra static –help-verb for more information.

REFERENCES

[1] C. Ansótegui, M. L. Bonet, J. Gabàs, and J. Levy, “Improving SAT-
based weighted MaxSAT solvers,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 7514. Springer, 2012, pp. 86–101.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

13

[2] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving Glucose
for incremental SAT solving with assumptions: Application to MUS
extraction,” in Proc. SAT, ser. Lecture Notes in Computer Science, vol.
7962. Springer, 2013, pp. 309–317.

[3] A. Belov, M. Järvisalo, and J. Marques-Silva, “Formula preprocessing
in MUS extraction,” in Proc. TACAS, ser. Lecture Notes in Computer
Science, vol. 7795. Springer, 2013, pp. 108–123.

[4] A. Belov, A. Morgado, and J. Marques-Silva, “SAT-based preprocessing
for MaxSAT,” in Proc. LPAR-19, ser. Lecture Notes in Computer
Science, vol. 8312. Springer, 2013, pp. 96–111.

[5] J. Berg, P. Saikko, and M. Järvisalo, “Improving the effectiveness of
SAT-based preprocessing for MaxSAT,” in Proc. IJCAI. AAAI Press,
2015, pp. 239–245.

[6] J. Berg and M. Järvisalo, “Weight-aware core extraction in SAT-based
MaxSAT solving,” in Proc. CP, ser. Lecture Notes in Computer Science,
2017, to appear.

[7] J. Berg, P. Saikko, and M. Järvisalo, “Subsumed label elimination
for maximum satisfiability,” in Proc. ECAI, ser. Frontiers in Artificial
Intelligence and Applications, vol. 285. IOS Press, 2016, pp. 630–638.

[8] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Proc. SAT, ser. Lecture Notes in Computer
Science, vol. 3569. Springer, 2005, pp. 61–75.

[9] J. Groote and J. Warners, “The propositional formula checker Heer-
Hugo,” Journal of Automated Reasoning, vol. 24, no. 1/2, pp. 101–125,
2000.

[10] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proc. TACAS, ser. Lecture Notes in Computer Science, vol. 6015.
Springer, 2010, pp. 129–144.

[11] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “MaxPre: An extended
MaxSAT preprocessor,” in Proc. SAT, ser. Lecture Notes in Computer
Science, S. Gaspers and T. Walsh, Eds., 2017, to appear.

[12] K. Korovin, “iProver – an instantiation-based theorem prover for first-
order logic,” in Proc. IJCAR, ser. Lecture Notes in Computer Science,
vol. 5195. Springer, 2008, pp. 292–298.

[13] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental car-
dinality constraints for MaxSAT,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 531–548.

[14] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: A modular
MaxSAT solver,” in Proc. SAT, ser. Lecture Notes in Computer Science,
vol. 8561. Springer, 2014, pp. 438–445.

[15] N. Narodytska and F. Bacchus, “Maximum satisfiability using core-
guided MaxSAT resolution,” in Proc. AAAI. AAAI Press, 2014, pp.
2717–2723.

14

1

The MSUSorting MaxSAT solver
Eivind Jahren, Roberto Ası́n Achá

F

1 SOLVER DESCRIPTION

The MSUSorting solver builds on the work by Mar-
tins et al. [1] of leveraging incremental SAT solvers for
the MSU3 algorithm [2], and the Totalizer encoding. The
MSUSorting solver extends this work to the the mixed
encoding by Abio et al. [3] and the MSU4 algorithm [4],
using the glucose-syrup SAT solver [5].

2 INCREMENTAL MSU3 AND MSU4 ALGORITHMS

The MSU3 algorithm is an unsatisfiable core based algo-
rithm, akin to the Fu-Malik algorithm [6], [7], which uses
a cardinality encoding to bound the number of unsatisfied
clauses. The main difference for the incremental version of
the algorithm is enabling the cardinality encoding to be
updated. Martins et al. [1] uses the totalizer encoding [8]
for this purpose.

We extend this work with new updatable cardinality
encodings based on cardinality networks [9] and paramet-
ric cardinality networks [3]. We also use these updatable
cardinality encodings to make the MSU4 algorithm [4] in-
cremental. See [10] for details.

3 UPDATABLE CARDINALITY ENCODINGS

We use a generic framework for making updatable cardi-
nality encodings which we call delayed variables [10]. This
framework enables us to make updatable versions of the to-
talizer, cardinality network, and mixed encoding. A delayed
variable is one which is not yet introduced to the SAT solver,
so any clause it occurs in is not given to the SAT solver until
the variable is undelayed. This allows delayed variables to
be substituted without changing the formula given to the
SAT solver.

4 SELECTING STRATEGIES

The solver has two tweakable parameters: whether to
choose MSU3 or MSU4, and whether to choose the car-
dinality networks or the totalizer encoding in the mixed
encoding [3]. We found that many benchmarks can quickly
be solved with either MSU3 or MSU4 but not by both. Since
MSU3 and MSU4 share internal state, we simply switch
to MSU4 once a time limit (500s) has been reached. This
ensures that some time is spent solving the problem with
both algorithms, and progress made with MSU3 is reused
for MSU4.

The mixed encoding combines the totalizer and cardinal-
ity network encoding. Using the totalizer encoding encod-
ing means fewer variables, while the cardinality network
encoding has fewer clauses. We found that when using the
mixed encoding with the MSU3 & MSU4 algorithms, the
encoding should favor the totalizer encoding heavily. The
solver is given a limit on the of number of extra clauses
beyond the minimal amount, and uses totalizer as long
as the budget is not exceeded. If the limit is exceeded,
cardinality network is used where it saves the most clauses
per additional variable until the limit is satisfied. The limit
is quite generous: eight times the number of clauses in the
input formula.

REFERENCES

[1] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental
cardinality constraints for maxsat,” in Principles and Practice of
Constraint Programming, B. O’Sullivan, Ed. Springer, 2014, pp.
531–548.

[2] J. Marques-Silva and J. Planes, “On using unsatisfiability for solv-
ing maximum satisfiability,” arXiv preprint arXiv:0712.1097, 2007.

[3] I. Abı́o, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“A parametric approach for smaller and better encodings of
cardinality constraints,” in Principles and Practice of Constraint
Programming, C. Schulte, Ed. Springer, 2013, pp. 80–96.

[4] J. Marques-Sila and J. Planes, “Algorithms for maximum satisfi-
ability using unsatisfiable cores,” in Advanced Techniques in Logic
Synthesis, Optimizations and Applications, K. Gulati, Ed. Springer,
2011, pp. 171–182.

[5] G. Audemard and L. Simon, “Predicting learnt clauses quality in
modern sat solvers.” in Proceedings of the Twenty-First International
Joint Conference On Artificial Intelligence, vol. 3. IJCAI, 2009, pp.
399–404.

[6] Z. Fu and S. Malik, “On solving the partial max-sat problem,”
in International Conference on Theory and Applications of Satisfiability
Testing. Springer, 2006, pp. 252–265.

[7] Z. Fu, Extending the power of Boolean satisfiability solvers: Techniques
and applications. Princeton University, 2007.

[8] O. Bailleux and Y. Boufkhad, “Efficient cnf encoding of boolean
cardinality constraints,” in Principles and Practice of Constraint
Programming, F. Rossi, Ed. Springer, 2003, pp. 108–122.

[9] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Cardinality networks: a theoretical and empirical study,” Con-
straints, vol. 16, no. 2, pp. 195–221, 2011.

[10] E. Jahren and R. Ası́n Achá, “Resizing cardinality constraints for
maxsat,” Manuscript submitted for publication, 2017.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

15

LMHS in MaxSAT Evaluation 2017
Paul Saikko and Tuukka Korhonen and Jeremias Berg and Matti Järvisalo

HIIT, Department of Computer Science
University of Helsinki, Finland

Abstract—We describe recent updates to the LMHS MaxSAT
solver, submitted to the 2017 MaxSAT Evaluation.

I. INTRODUCTION

An updated version of the LMHS MaxSAT solver [1] is sub-
mitted to the 2017 MaxSAT evaluation. This version includes
many incremental updates and bugfixes. Major improvements
include the addition of a purpose–built MaxSAT preprocessor
MaxPre, and LP-based reduced–cost fixing for forcing soft
clauses during search.

II. IMPLICIT HITTING SET ALGORITHM

Input

MaxPre
preprocess

Fh ∪ Fs

c : Fs → N

MiniSat
Fh ∪ (Fs \H)

CPLEX
MCHS(K, c)

H

K ← K ∪ {k}

UNSAT

SAT

MaxPre
recontruct

Output

τ,
∑

C∈H c(C)

LMHS implements the implicit hitting set algorithm [2]
for MaxSAT [3], [4]. We apply MaxSAT preprocessing to
simplify the problem before solving. After preprocessing, the
MaxSAT cost function c is input to the optimizer and the
CNF formula (hard clauses Fh and soft clauses Fs) is given
to the satisfiability checker. MiniSat 2.2 [5] is used as the
satisfiability checker, and CPLEX 12.7 [6] as the optimizer.

In short, the implicit hitting set loop alternates between
checking the satisfiability of the formula (excluding a hitting
set H) to find an unsatisfiable core k. Unsatisfiable cores
are accumulated in a set K, for which the optimizer finds
a minimum–cost hitting set wrt. the cost function c.

Upper bounds on the optimal solution cost (feasible so-
lutions) are found during search LMHS’s core minimization
proceduce and non–optimal hitting set phase (not pictured).
Lower bounds are proved by the optimizer.

III. LCNF PREPROCESSING

LMHS has been updated with a new MaxSAT preproces-
sor, MaxPre [7]. MaxPre implements a range of well-known
and recent SAT-based preprocessing techniques as well as
MaxSAT-specific techniques that make use of weights of soft
clauses. MaxSAT specific techniques include group detec-
tion, label matching, group-subsumed label elimination, and
binary core removal. Tight integration with MaxPre’s C++
API eliminates unnecessary I/O overhead. LMHS solves the
preprocessed instance directly as a labelled CNF formula [8],
which avoids the addition of new auxiliary variables to soft
clauses.

IV. REDUCED-COST FIXING

We implement recent reduced–cost fixing techniques for
MaxSAT [9]. LP-based reduced-cost fixing together with
bounds allow for some soft clauses to be hardened or relaxed
during search, simplifying the problem. This inexpensive tech-
nique requires only that the LP relaxation of the hitting set IP
is solved once per iteration.

V. INCOMPLETE TRACK

New for 2017 we also submit LMHS to the incomplete
track. The large number of feasible solutions found during
search means that LMHS can provide a solution at any point
during the search, after verifying that one exists.

VI. AVAILABILITY

LMHS is open source and available at https://www.cs.
helsinki.fi/group/coreo/lmhs/. MaxPre is available as a stan-
dalone preprocessor at https://www.cs.helsinki.fi/group/coreo/
maxpre/.

REFERENCES

[1] P. Saikko, J. Berg, and M. Järvisalo, “LMHS: A SAT-IP hybrid MaxSAT
solver,” in Proc. SAT, ser. LNCS, vol. 9710. Springer, 2016, pp. 539–546.

[2] R. M. Karp, “Implicit hitting set problems and multi-genome alignment,”
in Proc. CPM, ser. LNCS, vol. 6129. Springer, 2010, p. 151.

[3] J. Davies and F. Bacchus, “Solving MAXSAT by solving a sequence of
simpler SAT instances,” in Proc. CP, ser. LNCS, vol. 6876. Springer,
2011, pp. 225–239.

[4] ——, “Postponing optimization to speed up MAXSAT solving,” in
Proc. CP, ser. LNCS, vol. 8124. Springer, 2013, pp. 247–262.

[5] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. SAT, ser.
LNCS, vol. 2919. Springer, 2003, pp. 502–518.

[6] IBM, “CPLEX Optimizer,” 2017, http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/.

[7] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “MaxPre: An extended
MaxSAT preprocessor,” in Proc. SAT, ser. LNCS. Springer, 2017, To
appear.

[8] J. Berg, P. Saikko, and M. Järvisalo, “Improving the effectiveness of sat-
based preprocessing for MaxSAT,” in Proc. IJCAI, 2015, pp. 239–245.

[9] F. Bacchus, M. Järvisalo, P. Saikko, and A. Hyttinen, “Reduced cost fixing
in MaxSAT,” in Proc. CP, ser. LNCS. Springer, 2017, To appear.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

16

Open-WBO in MaxSAT Evaluation 2017
Ruben Martins†, Miguel Terra-Neves?, Saurabh Joshi‡, Mikoláš Janota?, Vasco Manquinho?, Inês Lynce?

†University of Texas at Austin / Carnegie Mellon University, USA
?INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

†Indian Institute of Technology, Hyderabad, India

I. INTRODUCTION

Open-WBO is an open source MaxSAT solver that started
as a spin-off of WBO [1]. Open-WBO implements a variety of
algorithms for solving Maximum Satisfiability (MaxSAT) and
Pseudo-Boolean (PB) formulas. The algorithms used in Open-
WBO are based on a sequence of calls to a SAT solver. Even
though Open-WBO can use any MiniSAT-like solver [2], for
the purpose of this evaluation we are currently using Glucose
4.1 [3]. The key novelties of Open-WBO are: (i) incremen-
tal MaxSAT solving [4] and (ii) partitioning-based MaxSAT
solving [5], [6], [7]. Open-WBO is particularly efficient for
partial MaxSAT and has been one of the best solvers in the
MaxSAT Evaluations of 2014, 2015 and 2016. Two versions of
Open-WBO were submitted to the MaxSAT Evaluation 2017:
LSU and RES. The remainder of this document describes the
algorithms and encodings used in each version.

II. OPEN-WBO 2017: LSU VERSION

The LSU version is based on a linear search algorithm SAT-
UNSAT [8] with lexicographical optimization for weighted
problems [9]. This algorithm works by performing a sequence
of calls to a SAT solver and refining an upper bound µ on
the number of unsatisfied soft clauses. To restrict µ at each
iteration, we need to encode a cardinality constraint (pseudo-
Boolean constraint) for unweighted (weighted) problems into
CNF. The LSU version versions uses the Modulo Totalizer
encoding [10] for cardinality constraints and the Generalized
Totalizer encoding (GTE) [11] for pseudo-Boolean constraints.

III. OPEN-WBO 2017: RES VERSION

The RES version is based on the unsatisfiability-based
algorithms MSU3 [12] and OLL [13]. These algorithms work
by iteratively refining a lower bound λ on the number of un-
satisfied soft clauses until an optimum solution is found. Both
MSU3 and OLL use the Totalizer encoding for incremental
MaxSAT solving [4]. For unweighted MaxSAT, we extended
the incremental MSU3 algorithm [4] with resolution-based
partitioning techniques [7]. We represent a MaxSAT formula
using a resolution-based graph representation and iteratively
join partitions by using a proximity measure extracted from
the graph representation of the formula. The algorithm ends
when only one partition remains and the optimal solution is
found. Since the partitioning of some MaxSAT formulas may
be unfeasible or not significant, we heuristically choose to run
MSU3 with or without partitions. In particular, we do not use
partition-based techniques when one of the following criteria

is met: (i) the formula is too large (> 1,000,000 clauses), (ii)
the ratio between the number of partitions and soft clauses is
too high (> 0.8), or (iii) the sparsity of the graph is too small
(< 0.04). Currently, Open-WBO only supports partition-based
techniques for unweighted problems. For weighted MaxSAT,
we use the OLL MaxSAT algorithm [13].

IV. AVAILABILITY

The first release of Open-WBO is available under a MIT
license at http:// sat.inesc-id.pt/open-wbo/ . The second release
of Open-WBO is available under a MIT license in Github at
https://github.com/sat-group/open-wbo. This version includes
the partitioning techniques that made Open-WBO one of the
best solvers for partial MaxSAT in the MaxSAT Evaluations
of 2015 and 2016. To contact the authors please send an email
to: open-wbo@sat.inesc-id.pt.

ACKNOWLEDGMENTS

We would like to thank Laurent Simon and Gilles Audemard
for allowing us to use Glucose in the MaxSAT Evaluation.

REFERENCES

[1] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms for
Weighted Boolean Optimization,” in SAT. Springer, 2009, pp. 495–
508.

[2] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT.
Springer, 2003, pp. 502–518.

[3] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[4] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Cardi-
nality Constraints for MaxSAT,” in CP. Springer, 2014, pp. 531–548.

[5] R. Martins, V. Manquinho, and I. Lynce, “On Partitioning for Maximum
Satisfiability,” in ECAI. IOS Press, 2012, pp. 913–914.

[6] R. Martins, V. M. Manquinho, and I. Lynce, “Community-based parti-
tioning for maxsat solving,” in SAT. Springer, 2013, pp. 182–191.

[7] M. Neves, R. Martins, M. Janota, I. Lynce, and V. M. Manquinho,
“Exploiting Resolution-Based Representations for MaxSAT Solving,” in
SAT. Springer, 2015, pp. 272–286.

[8] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, no. 2-3, pp.
59–6, 2010.

[9] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

[10] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to
MaxSAT Solvers,” in ICTAI. IEEE, 2013, pp. 9 – 17.

[11] S. Joshi, R. Martins, and V. M. Manquinho, “Generalized Totalizer
Encoding for Pseudo-Boolean Constraints,” in CP. Springer, 2015,
pp. 200–209.

[12] J. Marques-Silva and J. Planes, “On Using Unsatisfiability for Solving
Maximum Satisfiability,” CoRR, 2007.

[13] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-Guided MaxSAT
with Soft Cardinality Constraints,” in CP. Springer, 2014, pp. 564–573.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

17

QMaxSAT1702 and QMaxSATuc

Naoki Uemura, Aolong Zha, and Miyuki Koshimura
Graduate School/Faculty of Information Science and Electrical Engineering, Kyushu University

744 Motooka, Nishi-ku, Fukuoka, Japan

QMaxSAT is a SAT-based MaxSAT solver which uses
CNF encoding of Pseudo-Boolean (PB) constraints [1]. The
current version is obtained by adapting a CDCL based SAT
solver Glucose 3.0 [2], [3]. There are two main types among
SAT-based MaxSAT algorithms: core-guided and model-
guided. QMaxSAT follows the model-guided approach.

Let ϕ = {(C1, w1), . . . , (Cm, wm), Cm+1, . . . , Cm+m′}
be a MaxSAT instance where Ci is a soft clause having a
weight wi (i = 1, . . . ,m) and Cm+j is a hard clause (j =
1, . . . , m′). A new blocking variable bi is added to each soft
clause Ci(i = 1, . . . , m). Solving the MaxSAT problem for
ϕ is reduced to find a SAT model of ϕ′ = {C1∨b1, . . . , Cm∨
bm, Cm+1, . . . , Cm+m′} which minimizes

∑m
i=1 wi · bi.

QMaxSAT leaves the manipulation of PB constraints∑m
i=1 wi · bi < k to Glucose by encoding them into SAT.

Several encodings have been proposed so far. We adopt
Totalizer [4], Binary Adder [5], Modulo Totalizer [6], and
Weighted Totalizer [7] for encodings PB constraints. The
last one is essentially the same as Generalized Totalizer [8].
Which encoding is used depends on the total

∑m
i=1 wi of

weights of all soft clauses and k.

We introduce a new SAT encoding for PB con-
strains, called Mixed Radix Weighted Totalizer [9] into
QMaxSAT1702. This encoding is an extension of Weighted
Totalizer, incorporating the idea of mixed radix base [10].

QMaxSATuc is a hybrid solver between core-guided
and model-guided while it mainly follows model-guided
approach. QMaxSATuc runs in two modes: core-guided
and model-guided. QMaxSATuc alternates these modes.
QMaxSATuc performs core-guided mode with a set B of
blocking variables. B is initialized to {b1, . . . , bm}, i.e. the
set of all blocking variables.

In core-guided mode, all blocking variables in B are
negated. These negated variables are passed to Glucose as
assumptions. Glucose treats each literal in assumptions as
an unit clause. Glucose returns a subset of assumptions
used in the UNSAT proof. Each soft clause corresponding
to a blocking variable in the subset can be regarded as an
element in the unsat-core of ϕ′. We make a clause having
all blocking variables in the subet as literals, and add it to
the clause database in order to eliminate the core. Thus, we
minic the core-guided approach. We also subtract all the
blocking variables in the subet from B. In model-guided
mode, nothing is passed to Glucose as assumptions. This is
the normal mode of QMaxSAT .

References

[1] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “Qmaxsat: A
partial max-sat solver,” JSAT, vol. 8, no. 1/2, pp. 95–100, 2012.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in
modern SAT solvers,” in IJCAI 2009, Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–
404.

[3] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference,
SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia
and A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518.

[4] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of boolean
cardinality constraints,” in Principles and Practice of Constraint
Programming - CP 2003, 9th International Conference, CP 2003,
Kinsale, Ireland, September 29 - October 3, 2003, Proceedings,
ser. Lecture Notes in Computer Science, F. Rossi, Ed., vol. 2833.
Springer, 2003, pp. 108–122.

[5] J. P. Warners, “A linear-time transformation of linear inequalities into
conjunctive normal form,” Inf. Process. Lett., vol. 68, no. 2, pp. 63–
69, 1998.

[6] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Mod-
ulo based CNF encoding of cardinality constraints and its application
to maxsat solvers,” in 2013 IEEE 25th International Conference on
Tools with Artificial Intelligence, Herndon, VA, USA, November 4-6,
2013. IEEE Computer Society, 2013, pp. 9–17.

[7] S. Hayata and R. Hasegawa, “Improvement in CNF encoding of
cardinal constraints for weighted partial maxsat,” in SIG-FPAI-B404.
Japan Society for Artificial Intelligence, March 2015, pp. 80–84, in
Japanese.

[8] S. Joshi, R. Martins, and V. M. Manquinho, “Generalized totalizer
encoding for pseudo-boolean constraints,” in Principles and Practice
of Constraint Programming - 21st International Conference, CP
2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings,
ser. Lecture Notes in Computer Science, G. Pesant, Ed., vol. 9255.
Springer, 2015, pp. 200–209.

[9] N. Uemura, H. Fujita, M. Koshimura, and A. Zha, “A SAT encoding
of pseudo-Boolean constraints based on mixed radix,” in SIG-FPAI-
B506. Japan Society for Artificial Intelligence, March 2017, pp.
12–17, in Japanese.

[10] M. Codish, Y. Fekete, C. Fuhs, and P. Schneider-Kamp, “Optimal base
encodings for pseudo-boolean constraints,” in Tools and Algorithms
for the Construction and Analysis of Systems - 17th International
Conference, TACAS 2011, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings, ser. Lecture Notes
in Computer Science, P. A. Abdulla and K. R. M. Leino, Eds., vol.
6605. Springer, 2011, pp. 189–204.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

18

BENCHMARK DESCRIPTIONS

MaxSAT Benchmarks: CSS Refactoring
Matthew Hague

Royal Holloway University of London
Egham, UK

Email: matthew.hague@rhul.ac.uk

Anthony Widjaja Lin
University of Oxford

Oxford, UK
Email: Anthony.Lin@cs.ox.ac.uk

Abstract—We identify CSS refactorings that can minimize
the size of a given CSS file by inserting new rules that override
parts of existing rules in the file. These overridden parts can
then be removed, leading to an overall reduction in the size.
Care must be taken when rules are combined to avoid altering
the semantics of the styling document. Identifying a refactoring
which leads to the greatest reduction is a MaxSAT problem.
The submitted benchmarks are generated from CSS files from
several popular websites.

I. Description
CSS files are routinely minimized before deployment,

using simple minimization techniques such as removing
comments and spaces and replacing strings with shorter
equivalents (e.g. #ff0000 vs. red) [1], [2], [3], [4]. . Recent
work has attempted to provide more complex minimiza-
tions that act on the file globally rather than locally [5],
[6], [7], [8], [9].

We have focussed on CSS refactoring, which, as well
as minimizing a CSS file, can be used to aid website
development. The goal is to identify a new CSS rule that
can be inserted into a CSS file. This new rule will combine
the effect of parts of several other rules in the file. After
the new rule has been inserted, the remaining file can
be trimmed, leading to a reduction in size. As a simple
example, consider the following CSS file.

.a { color: red }

.b { color: red }

We can refactor this file by introducing a new rule at the
end of the file.

.a { color: red }

.b { color: red }

.a, .b { color: red }

This new rule overrides the behaviour of the previous two
rules, which can then be removed. This leads to the smaller
and more maintainable file shown below.

.a, .b { color: red }

Identifying refactorings which provide the maximum
file size reduction is a NP-complete problem, and can
be reduced to an instance of MaxSAT. We are currently
developing a tool which minimizes CSS files based
upon this reduction. We have included a number of
WCNF benchmarks derived from our experiments with

encodings of the refactoring problem into MaxSAT. These
experiments have used CSS files from a number of popular
websites.

II. Included Benchmarks

The included benchmarks are derived from CSS files
used on a number of popular websites. These are briefly
described below.

• amazon.dimacs – a refactoring problem derived from
a CSS file taken from the Amazon website.

• archlinux.dimacs – a refactoring problem derived from
the CSS file used on the Arch Linux homepage.

• arxiv.dimacs – a refactoring problem derived from the
CSS file used on arXiv.org.

• dblp.dimacs – a refactoring problem derived from the
CSS file used on the DBLP website.

• ebay.dimacs – a refactoring problem derived from a
CSS file used on the eBay website.

• facebook.dimacs – a refactoring problem derived from
a CSS file used on Facebook’s website.

• github.dimacs – a refactoring problem derived from
a CSS file used on the Github website.

• guardian.dimacs – a refactoring problem derived from
the Guardian news website CSS file.

• openstreetmap.dimacs – a refactoring problem
derived from a CSS file used on the Open Street Map
website.

• wikipedia.dimacs – a refactoring problem derived
from the CSS file used on Wikipedia.

• w3schools.dimacs – a refactoring problem derived
from a CSS file used on the W3 Schools website.

References

[1] N. C. Zakas and N. Sullivan, “Csslint,” http://csslint.net/, 2011,
referred in April 2017.

[2] F. Schmitz and Contributors, “Csstidy,” http://csstidy.
sourceforge.net/, 2005, referred in April 2017.

[3] G. Martino and Contributors, “Uncss,” https://github.com/
giakki/uncss, 2013, referred April 2017.

[4] B. Briggs and Contributors, “cssnano,” http://cssnano.co, 2015,
referred in January 2017.

[5] A. Mesbah and S. Mirshokraie, “Automated analysis of CSS
rules to support style maintenance,” in 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, 2012, pp. 408–418. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2012.6227174

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

20

[6] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering
refactoring opportunities in cascading style sheets,” in Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong,
China, November 16 - 22, 2014, 2014, pp. 496–506. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635879

[7] M. Hague, A. W. Lin, and C. L. Ong, “Detecting
redundant CSS rules in HTML5 applications: a tree
rewriting approach,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
2015, part of SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015, 2015, pp. 1–19. [Online]. Available:
http://doi.acm.org/10.1145/2814270.2814288

[8] P. Genevès, N. Layaïda, and V. Quint, “On the analysis
of cascading style sheets,” in Proceedings of the 21st World
Wide Web Conference 2012, WWW 2012, Lyon, France,
April 16-20, 2012, 2012, pp. 809–818. [Online]. Available:
http://doi.acm.org/10.1145/2187836.2187946

[9] M. Bosch, P. Genevès, and N. Layaïda, “Reasoning with
style,” in Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 2015, pp. 2227–2233. [Online].
Available: http://ijcai.org/Abstract/15/315

21

MaxSAT Benchmarks based on
Determining Generalized Hypertree-width

Jeremias Berg∗, Neha Lodha†, Matti Järvisalo∗
and, Stefan Szeider †

∗HIIT, Department of Computer Science, University of Helsinki, Finland
†Institute of Information Systems, Vienna University of Technology, Austria

I. PROBLEM OVERVIEW

This benchmark set contains MaxSAT instances for deter-
mining the generalized hypertree-width [2], [3] (GHTW) of
specific undirected graphs. GHTW is an important measure
within graph theory: similarly as Treewidth, GHTW can be
used to identify tractable instances of several different NP-hard
problems. Specifically, whenever an NP-hard problem can be
modeled using a hypergraph, the instances of that problem for
which the underlying hypergraph has bounded GHTW, can be
solved in polynomial time. As such computing GHTW has
received interest in domains in which instances can be easily
modeled using hypergraphs, for example, in the analysis of
finite-domain constraint satisfaction problems [3], [2].

Following [2], given a hypergraph H = (V, E), a general-
ized hypertree-decomposition for H is a triple (T, χ, λ) s.t.
T = (N,E) is a tree, and χ and λ are two labeling functions,
associating a set of nodes χ(p) and edges λ(p) of H to each
node p (bag) of T . Furthermore, we require that λ and χ satisfy
the following conditions.

1) For each node b of H, there is a node p of T s.t. b ∈
χ(p).

2) For each pair of nodes a and b included in some edge
h of H, there exists a node p s.t. {a, b} ⊂ χ(p).

3) For each node b of H the set {p ∈ N | b ∈ χ(p)}
induces a connected subtree of T .

4) For each node p of T χ(p) ⊆ ∪λ(p).
Notice that the first three requirements imply that (T, χ) form
a tree decomposition of the primal graph of H [2]. The
width of (T, χ, λ) is the size of the largest edge-labeling set:
maxp∈N{λ(p)}. The GHTW of H is the minimum width
of all generalized hypertree-decompositions of H. Computing
GHTW of a graph is known to be NP-hard, and even deter-
mining if if a graph as GHTW less than k is NP-complete for
any fixed k > 2 [4].

II. MAXSAT ENCODING

The MaxSAT encoding for GHTW used in these bench-
marks is extended from the MaxSAT encoding for computing
the treewidth of a graph first proposed in [6] and further
developed in [1]. Given a graph G as input, the treewidth en-
coding includes hard clauses that describe a perfect elimination
ordering of G and soft clauses that enforce minimization of the
maximum clique size. The encoding for GHTW is extended

by including extra variables to capture λ and soft clauses that
minimize the number of edges assigned to any one bag,

III. DATASETS IN THE BENCHMARK SET

The benchmark set consists of 42 MaxSAT instances gen-
erated based on standard graph benchmarks from [5]; The
filename convention of the WCNF files in the benchmark set
is

GenHyperTW graphname.wcnf

where “graphname” gives the name of the graph. For each
instance, optimal cost equals the generalized hypertree-width
of the underlying graph.

REFERENCES

[1] J. Berg and M. Järvisalo, “SAT-based approaches to treewidth computa-
tion: An evaluation,” in Proc. ICTAI. IEEE Computer Society, 2014, pp.
328–335.

[2] G. Gottlob, G. Greco, and F. Scarcello, “Treewidth and hypertree width,”
in Tractability: Practical Approaches to Hard Problems, L. Bordeaux,
Y. Hamadi, and P. Kohli, Eds. Cambridge University Press, 2014, pp.
3–38.

[3] G. Gottlob, N. Leone, and F. Scarcello, “Hypertree decompositions: A
survey,” in Proc. MFCS, ser. Lecture Notes in Computer Science, vol.
2136. Springer, 2001, pp. 37–57.

[4] G. Gottlob, Z. Miklós, and T. Schwentick, “Generalized hypertree decom-
positions: NP-hardness and tractable variants,” in Proc. PODS. ACM,
2007, pp. 13–22.

[5] G. Gottlob and M. Samer, “A backtracking-based algorithm for hypertree
decomposition,” ACM Journal of Experimental Algorithmics, vol. 13,
2008.

[6] M. Samer and H. Veith, “Encoding treewidth into SAT,” in Proc. SAT,
ser. Lecture Notes in Computer Science, vol. 5584. Springer, 2009, pp.
45–50.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

22

Discrete Optimization Problems in Dynamics of
Abstract Argumentation: MaxSAT Benchmarks

Andreas Niskanen
Helsinki Institute for

Information Technology HIIT,
Department of Computer Science,

University of Helsinki, Finland
Email: andreas.niskanen@helsinki.fi

Johannes P. Wallner
Institute of Information Systems

TU Vienna, Austria
Email: wallner@dbai.tuwien.ac.at

Matti Järvisalo
Helsinki Institute for

Information Technology HIIT,
Department of Computer Science,

University of Helsinki, Finland
Email: matti.jarvisalo@helsinki.fi

Abstract—Argumentation is an active area of modern ar-
tifical intelligence (AI) research. Abstract argumentation, with
argumentation frameworks (AFs) modelling conflicts between
arguments, is the core knowledge representation formalism of
argumentation in AI. Different argumentation semantics pro-
vide a way to determine sets of non-conflicting arguments,
i.e., extensions, from the AF, represented as a directed graph.
Recently, there has been a strong focus on the dynamic aspects
of AFs, and on computational problems which arise from
them, which are often NP-hard optimization problems. These
have been successfully tackled via constraint-based declarative
approaches, most notably encodings in maximum satisfiability
(MaxSAT). Here we present a benchmark description for two
such optimization problems, namely, extension enforcement and
AF synthesis, including preliminaries on abstract argumentation,
problem definitions, instance generation and naming conventions.

I. PRELIMINARIES

We begin by formally defining argumentation frame-
works [1] (see also [2]) and the argumentation semantics
considered in this work.

Definition 1. An argumentation framework (AF) is a pair F =
(A,R), where A is a finite non-empty set of arguments and
R ⊆ A×A is the attack relation. The pair (a, b) ∈ R indicates
that a attacks b, i.e., a is a counterargument for b. An argument
a ∈ A is defended (in F) by a set S ⊆ A if, for each b ∈ A
such that (b, a) ∈ R, there is a c ∈ S such that (c, b) ∈ R.

Semantics for AFs are defined through functions σ which
assign to each AF F = (A,R) a set σ(F) ⊆ 2A of extensions.
We consider for σ the functions adm , com , and stb, which
stand for admissible, complete, and stable, respectively.

Definition 2. Given an AF F = (A,R), the characteristic
function FF : 2A → 2A of F is FF (S) = {x ∈ A |
x is defended by S}. Moreover, for a set S ⊆ A, the range
of S is S+

R = S ∪ {x ∈ A | (y, x) ∈ R, y ∈ S}.
Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is
conflict-free (in F) if there are no a, b ∈ S such that (a, b) ∈
R. We denote the collection of conflict-free sets of F by cf (F).
For a conflict-free set S ∈ cf (F) it holds that
• S ∈ stb(F) iff S+

R = A;

• S ∈ adm(F) iff S ⊆ FF (S);
• S ∈ com(F) iff S = FF (S).

If E ∈ σ(F) for semantics σ, we call E a σ-extension, or an
extension under semantics σ.

II. PROBLEM DEFINITIONS

A. Extension Enforcement

The task of argument-fixed extension enforcement [3], [4]
is to modify the attack structure R of an AF F = (A,R) in
a way that a given set T becomes (a subset of) an extension
under a given semantics σ. Strict enforcement requires that
the given set of arguments has to be exactly a σ-extension,
while in non-strict enforcement it is required to be a subset
of a σ-extension. We denote strict by s and non-strict by ns.

Formally, denote by

enf (F, T, s, σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)},
the set of attack structures that strictly enforce T under σ for
an AF F , and by

enf (F, T, ns, σ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇ T}
for non-strict enforcement.

The Hamming distance between two attack structures R and
R′ is |R∆R′| = |R\R′|+|R′\R|, i.e., the number of changes
(additions or removals of attacks) of an enforcement. We
consider extension enforcement as an optimization problem,
where the number of changes is minimized.

Extension Enforcement (M ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf (F,T,M,σ)

|R∆R′|.

B. AF Synthesis

Let A be a given non-empty finite set of arguments. In AF
synthesis [5], we are given two sets of weighted examples of
subset of A, representing semantical information with weights
intuitively expressing the relative trust. The computational task

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

23

is to synthesize, or construct, an AF that optimally represents
the examples as extensions and non-extensions. That is, an
example e = (S,w) is a pair with S ⊆ A a subset of the set
of arguments, and a positive integer w > 0 representing the
example’s weight. Denote the set of arguments of an example
e = (S,w) by Se = S and the weight by we = w.

An instance of the AF synthesis problem is a quadruple
P = (A,E+, E−, σ), with a non-empty set A of arguments,
two sets of examples, E+ and E−, that we call positive and
negative examples, respectively, and semantics σ. An AF F
satisfies a positive example e if Se ∈ σ(F); similarly, F
satisfies a negative example if Se /∈ σ(F). For a given AF
F , the associated cost w.r.t. P , denoted by cost(P, F), is the
sum of weights of examples not satisfied by F . Formally,
cost(P, F) is

∑

e∈E+

we · I(Se /∈ σ(F)) +
∑

e∈E−
we · I(Se ∈ σ(F)),

where I(·) is the indicator function. The task in AF synthesis
is to find an AF of minimum cost over all AFs.

AF Synthesis
INPUT: P = (A,E+, E−, σ)
TASK: Find an AF F ∗ with

F ∗ ∈ arg min
F=(A,R)

(cost(P, F)).

III. INSTANCE GENERATION

For both optimization problems, we first generated a large
set of instances using the random models described in the
following subsections. From this set, we picked a represen-
tative set of benchmarks using the results of the correspond-
ing MaxSAT solver comparisons. This resulted in 20 partial
MaxSAT instances for strict extension enforcement under the
complete semantics, 20 partial MaxSAT instances for non-
strict extension enforcement under the stable semantics, and
40 weighted partial MaxSAT instances for AF synthesis under
the stable semantics.

A. Extension Enforcement

The (partial) MaxSAT encodings for NP-fragments of ex-
tension enforcement are presented in [4]. To generate the
benchmark instances, given a number of arguments and an
edge probability p, we formed an AF based on the Erdős-Rényi
random digraph model, where each attack is included inde-
pendently with probability p. Given an AF and a number of
enforced arguments, we constructed a corresponding enforce-
ment instance by sampling the enforced arguments uniformly
at random from the set of arguments, without replacement. For
each number of arguments |A| ∈ {25, 50, . . . } and each edge
probability p ∈ {0.05, 0.1, 0.2, 0.3}, we generated five AFs.
For each AF, we generated five enforcement instances with |T |
enforced arguments, for each |T |/|A| ∈ {0.05, 0.1, 0.2, 0.3}.

B. AF Synthesis

The (weighted partial) MaxSAT encodings for NP-
fragments of AF synthesis are presented in [5]. We picked
5, 10, . . . , 80 positive examples from a fixed set of 100 argu-
ments uniformly at random with probability p+arg = 0.25. Then
|E−| = 20, 40, . . . , 200 negative examples were sampled from
the set A =

⋃
SE+ , and each argument was included with

probability p−arg =
∑

e∈E+ |Se|/|E+|
|⋃ SE+ | . Again, each example was

assigned as weight a random integer from the interval [1, 10].
For each choice of parameters, this procedure was repeated 10
times to obtain a representative set of benchmarks.

IV. NAMING CONVENTIONS

A. Extension Enforcement

The instances for extension enforcement are named by
extension-enforcement_<mode>_<sem>_<args>
<prob><af_id>_<enfs>_<enf_id>.wcnf

where <mode> is the type (non-strict or strict) of enforce-
ment, <sem> is the AF semantics, <args> is the number
of arguments, <prob> is the attack probability, <enfs>
is the number of enforced arguments, and <af_id> and
<enf_id> are IDs assigned to each instance.

B. AF Synthesis

The instances for AF synthesis are named by
af-synthesis_<sem>_<n_pos>_<n_neg>_<id>.wcnf

where <mode> is the AF semantics, <n_pos> is the number
of positive examples, <n_neg> is the number of negative
examples, and <id> is an ID assigned to each instance.

V. BENCHMARK INSTANCES

All instances used in the MaxSAT evaluation 2017 are found
online at https://www.cs.helsinki.fi/group/coreo/benchmarks/.

ACKNOWLEDGMENTS

This work is supported by Academy of Finland, grants
#251170 (COIN Centre of Excellence in Computational In-
ference Research), #276412, and #284591; Doctoral School
in Computer Science DOCS and Research Funds of the
University of Helsinki; and Austrian Science Fund (FWF):
I2854 and P30168-N31.

REFERENCES

[1] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial Intelligence, vol. 77, no. 2, pp. 321–358, 1995.

[2] P. Baroni, M. Caminada, and M. Giacomin, “An introduction to argu-
mentation semantics,” Knowledge Engineering Review, vol. 26, no. 4,
pp. 365–410, 2011.

[3] S. Coste-Marquis, S. Konieczny, J. Mailly, and P. Marquis, “Extension
enforcement in abstract argumentation as an optimization problem,” in
Proc. IJCAI. AAAI Press, 2015, pp. 2876–2882.

[4] J. P. Wallner, A. Niskanen, and M. Järvisalo, “Complexity results and
algorithms for extension enforcement in abstract argumentation,” in
Proc. AAAI. AAAI Press, 2016, pp. 1088–1094.

[5] A. Niskanen, J. P. Wallner, and M. Järvisalo, “Synthesizing argumentation
frameworks from examples,” in Proc. ECAI, ser. Frontiers in Artificial
Intelligence and Applications, vol. 285. IOS Press, 2016, pp. 551–559.

24

Lisbon Wedding:
Seating arrangements using MaxSAT

Ruben Martins
Carnegie Mellon University

rubenm@cs.cmu.edu

Justine Sherry
Carnegie Mellon University

sherry@cs.cmu.edu

Abstract—Having a perfect seating arrangement for weddings
is not an easy task. Can Alice sit next to Bob? Can we
ensure that Charles and his ex-girlfriend Eve not be seated
together? Meeting such constraints is classically one of the
most difficult tasks in planning a wedding – and guests will
not accept ‘it’s NP-complete!’ as an excuse for poor seating
arrangements. We discuss how MaxSAT can provide the optimal
seating arrangement for a perfect wedding, saving brides and
grooms (including the authors) from hours of struggle.

I. INTRODUCTION

This benchmark description describes the encoding used for
the wedding seating arrangement for our wedding in Lisbon.
We needed to seat our guests according to a long list of
constraints. For example, members of the same family should
sit together; friends who went to school together should sit
together; individuals with a history of conflict should be seated
apart; etc. We wanted to maximize the happiness of our guests
and what better way to do that than to encode the problem
into MaxSAT! MaxSAT was an ideal solution for our own
wedding: i) it saved us tens of hours, ii) it was stress free, and
iii) in the rare case that a guest complained about their seating
arrangement, we just blamed the algorithm!1

II. MAXSAT ENCODING

When making a seating arrangement, we first need to define
the size of each table and how many guest we have. Assume
that our guests are defined by the set P and the tables are
defined by the set T . Each table has at least l guests and at
most u guests.

Variables. We define our variables as being pt, meaning that
guest p is seated at table t. For simplicity, we do not consider
where each person is seated at each table but only if a given
person p is seated or not at table t. To characterize our guests,
we use a set of auxiliary variables S that denotes characteris-
tics of each person, namely spt denotes the characteristics of
person p, seated at table t.

Hard constraints. The hard constraints define the shape of
each table and guarantee that each guest will be seated in
exactly one place.
• Each guest will be seated at exactly one table:

1While we were convinced that the algorithm’s output was optimal, our
guests were not all so enlightened.

∀p∈P
∑

t∈T
pt = 1

• Each table will have at most u guests:

∀t∈T
∑

p∈P
pt ≤ u

• Each table will have at least l guests:

∀t∈T
∑

p∈P
pt ≥ l

Since some guests may have disagreements with each other,
we also included some exclusion constraints that guarantee
that guests which have conflicts with each other are not seated
in the same table. For every pair of guests p and p′ that have
a conflict with each other we include the following constraints
that guarantee that they will not seat together:

∀t∈T (pt + p′t ≤ 1)

To enforce that if a person p is seated at table t then t
will contain all labels belonging to p we add additional hard
constraints that enforce that table t will contain all the labels
from guests that are seated there:

∀t∈T∀p∈P∀s∈Sp
(pt =⇒ spt)

Soft constraints. The soft constraints describe the common-
alities between guests that share a table. We attach a set of
labels to each person that describes her. Example of labels
are: spoken languages, university they attended or family last
name. Our goal is to minimize the number of labels in each
table, i.e. we want to maximize what guests have in common
at each table. Let St be the set of labels that can occur in table
t.
• Minimize the number of labels in each table:

min :
∑

t∈T

∑

s∈St

s

Since some labels may be more important than other (e.g.
spoken language), we may associate a different weight to each
label.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

25

III. GENERATOR

We iteratively generated our constraints, adding additional
labels or marking guests as in conflict and feeding them to the
MaxSAT solver until we arrived at a solution we were happy
with. We generated 30 versions of our seating arrangements
based on these iterative versions. The generator takes as input:
i) the number of tables, ii) the minimum number of guests per
table, iii) the maximum number of guests per table, iv) a .csv
file with the list of guests and the labels associated with each
guest, v) a .txt file with weights for each label, and vi) a .txt
file with a set of conflicting labels so that those guests are not
seated together.

The problem was encoded using a pseudo-Boolean for-
malism and translated to MaxSAT using the Open-WBO
framework [1]. The following encodings are used by Open-

WBO to convert a pseudo-Boolean formula to MaxSAT: i)
Ladder encoding [2], [3] (at-most-one constraints), ii) Modulo
Totalizer encoding [4] (cardinality constraints) and iii) Gener-
alized Totalizer encoding [5] (pseudo-Boolean constraints).

REFERENCES

[1] Ruben Martins, Vasco Manquinho, Ines Lynce: Open-WBO: A Modular
MaxSAT Solver. SAT 2014: 438-445

[2] Carlos Ansotegui, Felip Manya: Mapping problems with finite-domain
variables into problems with boolean variables. SAT 2004: 115

[3] Ian Gent, Peter Nightingale: A new encoding of All Different into SAT.
ModRef 2004

[4] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hi-
roshi Fujita: Modulo Based CNF Encoding of Cardinality Constraints and
Its Application to MaxSAT Solvers. ICTAI 2013: 9-17

[5] Saurabh Joshi, Ruben Martins, Vasco Manquinho: Generalized Totalizer
Encoding for Pseudo-Boolean Constraints. CP 2015: 200-209

26

ASP to MaxSAT:
Metro, ShiftDesign, TimeTabling and BioRepair

Ruben Martins
Carnegie Mellon University

rubenm@cs.cmu.edu

I. INTRODUCTION

This benchmark description describes the origin of the
Metro, ShiftDesign, TimeTabling and BioRepair
benchmarks which can be tracked back to their first encoding
in Answer Set Programming (ASP). ASP is a form of declar-
ative programming and has been successfully applied to many
practical applications. These benchmarks are a few examples
of real-world instances where ASP has been used. Metro
benchmarks describe problems related to transport systems
(e.g. [1]). ShiftDesign [2] targets a scheduling problem
where the goal is to minimize the number of shifts such
that it reduces understaffing. TimeTabling [3] describes
scheduling problems related to educational timetabling and
BioRepair [4] addresses the problem of repairing large-
scale biological networks.

These benchmarks have also been recently translated to
pseudo-Boolean (PB) with the tool ACYC2SOLVER [7], [8]
and submitted to the pseudo-Boolean Evaluation 2015 [5]. The
benchmarks in PB format are available at [6].

II. MAXSAT EVALUATION 2017

Each benchmark set (Metro, ShiftDesign,
TimeTabling, BioRepair) consists of 30 instances and
these were translated from pseudo-Boolean to MaxSAT using
the OPEN-WBO framework [9]. The following encodings are
used by OPEN-WBO to convert a pseudo-Boolean formula
to MaxSAT: i) Ladder encoding [10], [11] (at-most-one
constraints), ii) Modulo Totalizer encoding [12] (cardinality
constraints) and iii) Generalized Totalizer encoding [13]
(pseudo-Boolean constraints).

ACKNOWLEDGMENTS

We thank the original creators of these benchmarks that en-
coded them into ASP and the organizers of the PB Evaluation
2015 for translating them to PB format.

REFERENCES

[1] Gerhard Brewka, Martin Diller, Georg Heissenberger, Thomas Linsbich-
ler, Stefan Woltran: Solving Advanced Argumentation Problems with
Answer-Set Programming. AAAI 2017: 1077-1083

[2] Michael Abseher, Martin Gebser, Nysret Musliu, Torsten Schaub, Stefan
Woltran: Shift Design with Answer Set Programming. LPNMR 2015:
32-39

[3] Mutsunori Banbara, Takehide Soh, Naoyuki Tamura, Katsumi Inoue,
Torsten Schaub: Answer set programming as a modeling language for
course timetabling. TPLP 13(4-5): 783-798 (2013)

[4] Martin Gebser, Carito Guziolowski, Mihail Ivanchev, Torsten Schaub,
Anne Siegel, Sven Thiele, Philippe Veber: Repair and Prediction (under
Inconsistency) in Large Biological Networks with Answer Set Program-
ming. KR 2010

[5] Pseudo-Boolean Evaluation 2015. http://pbeva.computational-logic.org/
[6] ASP Instances from the Application Track. http://pbeva.

computational-logic.org/benchmarks/ASP.tar.gz
[7] Martin Gebser, Tomi Janhunen, Jussi Rintanen: Answer Set Programming

as SAT modulo Acyclicity. ECAI 2014: 351-356
[8] Martin Gebser, Tomi Janhunen, Jussi Rintanen: SAT Modulo Graphs:

Acyclicity. JELIA 2014: 137-151
[9] Ruben Martins, Vasco Manquinho, Ines Lynce: Open-WBO: A Modular

MaxSAT Solver. SAT 2014: 438-445
[10] Carlos Ansotegui, Felip Manya: Mapping problems with finite-domain

variables into problems with boolean variables. SAT 2004: 115
[11] Ian Gent, Peter Nightingale: A new encoding of All Different into SAT.

ModRef 2004
[12] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura,

Hiroshi Fujita: Modulo Based CNF Encoding of Cardinality Constraints
and Its Application to MaxSAT Solvers. ICTAI 2013: 9-17

[13] Saurabh Joshi, Ruben Martins, Vasco Manquinho: Generalized Totalizer
Encoding for Pseudo-Boolean Constraints. CP 2015: 200-209

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

27

MSE17 Benchmarks: DALculus
Ruben Martins

Carnegie Mellon University
rubenm@cs.cmu.edu

I. INTRODUCTION

The Development Assurance Level (DAL) indicates the
level of rigor of the development of a software or hardware
function of an aircraft. This problem can be encoded into a
multi-objective pseudo-Boolean (PB) formula [1] and solved
using a Boolean optimizer. The origin of these benchmarks
can be tracked back to the optimization challenge at the LION
9 conference [3], [4]. Since most pseudo-Boolean solvers do
not support multi-objective optimization, only SAT4J [2] and
OPEN-WBO [6] participated in this challenge.

II. MAXSAT EVALUATION 2017

A multi-objective function f1, . . . fn with lexicographical
ordering can be encoded into MaxSAT by assigning weights
to each objective function fi such that unsatisfying any
soft clause in fi will have a higher cost than unsatisfying
any soft clause in fi+1, . . . , fn. The multi-objective function
was encoded into MaxSAT using the Boolean Lexicographic
Optimization scheme described in [5]. The remainder PB
formula was translated into MaxSAT using the OPEN-WBO
framework [6]. The following encodings are used by OPEN-
WBO to convert a pseudo-Boolean formula to MaxSAT: i)
Ladder encoding [7], [8] (at-most-one constraints), ii) Modulo
Totalizer encoding [9] (cardinality constraints) and iii) Gen-
eralized Totalizer encoding [10] (pseudo-Boolean constraints).
The benchmark set submitted to the MaxSAT Evaluation 2017
consists of 96 benchmarks (48 “easy” and 48 “hard”). The
original benchmarks are available at [3].

ACKNOWLEDGMENTS

We thank Pierre Bieber, Rémi Delmas and Christel Seguin
from the French Aerospace Lab ONERA for creating the
original multi-objective pseudo-Boolean encoding for the
“Dalculus” benchmarks [1] and for submitting them to the
optimization challenge at the LION 9 conference [3].

REFERENCES

[1] Pierre Bieber, Remi Delmas, Christel Seguin: DALculus - Theory and
Tool for Development Assurance Level Allocation. SAFECOMP 2011:
43-56

[2] Daniel Le Berre, Anne Parrain: The Sat4j library, release 2.2. JSAT 7(2-
3): 59-6 (2010)

[3] Challenge LION9. http://www.lifl.fr/LION9/challenge.php
[4] Challenge LION9: Results. http://www.cril.univ-artois.fr/

ChallengeLion9/results/results.php?idev=75
[5] Joao Marques-Silva, Josep Argelich, Ana Graça, Inês Lynce: Boolean

lexicographic optimization: algorithms & applications. Ann. Math. Artif.
Intell. 62(3-4): 317-343 (2011)

[6] Ruben Martins, Vasco Manquinho, Ines Lynce: Open-WBO: A Modular
MaxSAT Solver. SAT 2014: 438-445

[7] Carlos Ansotegui, Felip Manya: Mapping problems with finite-domain
variables into problems with boolean variables. SAT 2004: 115

[8] Ian Gent, Peter Nightingale: A new encoding of All Different into SAT.
ModRef 2004

[9] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hi-
roshi Fujita: Modulo Based CNF Encoding of Cardinality Constraints and
Its Application to MaxSAT Solvers. ICTAI 2013: 9-17

[10] Saurabh Joshi, Ruben Martins, Vasco Manquinho: Generalized Totalizer
Encoding for Pseudo-Boolean Constraints. CP 2015: 200-209

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

28

Solving RNA Alignment with MaxSAT
Ruben Martins

Carnegie Mellon University
rubenm@cs.cmu.edu

I. INTRODUCTION

The similarity between RNA sequences can be used to
study the evolutionary or functional similarity between two
sequences. One way to measure this similarity is to compute
a pairwise sequence alignment based on the longest common
subsequence (LCS) algorithm [1]. RNA sequences can be rep-
resented by arc-annotated sequences where an arc correspond
to a bond. Sequence alignment based on the LCS algorithm
do not consider pseudoknots which correspond to crossing
arcs. Indeed, when considering the problem of finding the
maximal common subsequence with arcs and pseudoknots, the
alignment problem for RNA becomes NP-Complete [2].

II. FINDING COMMON SUBSEQUENCES
WITH ARCS AND PSEUDOKNOTS

Consider the RNA sequences s1 (above) and s2 (below)
shown in Figure 1. An alignment between s1 and s2 obeys
the following properties: i) it is an one-to-one mapping that
preserves the order of the subsequence, ii) the arcs induced by
the mapping are preserved, and iii) the mapping produces a
common subsequence. We refer the reader to [2] for a formal
definition of the arc-preserving longest common subsequence
problem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. Example of RNA sequences s1 (above) and s2 (below)

Table I describes the maximal alignment A between s1 and
s2. An alignment is maximal if it maps the maximal number
of arcs between s1 and s2. Each arc c ∈ s1 in A is aligned to
an arc c ∈ s2. An arc c is denoted by a pair of nodes (ni, nj)
where ni and nj corresponds to the nodes that form c.

This problem can be encoded into Maximum Satisfiabil-
ity (MaxSAT) or pseudo-Boolean (PB) formulas and solved
using a Boolean optimizer. However, this encoding leads to

TABLE I
MAXIMAL ALIGNMENT BETWEEN s1 AND s2

s1 s2
(4,10) ⇔ (4,8)
(3,11) ⇔ (3,9)
(9,12) ⇔ (7,10)
(8,13) ⇔ (6,11)
(7,14) ⇔ (5,12)
(2,15) ⇔ (2,13)
(1,16) ⇔ (1,15)

challenging benchmarks that are beyond the reach of Boolean
optimizers. 1

III. PREPROCESSING USING SUPER-ARCS

To simplify the alignment problem, we consider a prepro-
cessing step using the notion of super-arcs. We call s a super-
arc if multiple arcs c1, . . . , ck can be merged into a new arc
s with weight k. This merge operation is only possible if
c1, . . . , ck are not pseudoknots (i.e., there are no crossing arcs
between c1, . . . , ck). For example, the arcs (1,16) and (2,15) in
s1 can be merged into a new super-arc with weight 2. Figure 2
shows the preprocessed structure of s1 and s2 after applying
the super-arc preprocessing, respectively denoted by s′1 and
s′2. As can be seen in Figure 2, the preprocessing significantly
reduces the size of the graph representation.

2 4 5 6 9 10 12 15

2

3

2
1

1 2 4 7 8 10 13 14 15 16

1

1
1

3

2

Fig. 2. Preprocessed RNA sequences s′1 (above) and s′2 (below)

The encoding of a maximal alignment using super-arcs
differs mainly from the original encoding in the following
way. A super-arc can be mapped to multiple arcs as long as the
sum of the weights of their mappings is smaller or equal to the
weight of the super-arc. Table II shows the maximal alignment
between s′1 and s′2 using the notion of super-arcs. For each arc,

1The last attempt at solving the arc-preserving longest common subse-
quence problem with MaxSAT/PB solvers was done in 2010 and since then
MaxSAT solvers have been significantly improved. It may be that the encoding
for this problem can be now solved by state-of-the-art MaxSAT solvers. In
2010 (when this encoding was created), MINISAT+ [4] was the most efficient
solver for this kind of benchmarks.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

29

TABLE II
MAXIMAL ALIGNMENT BETWEEN s′1 AND s′2

s1 s2
(4,10)-2 ⇔ (4,8)-2
(9,12)-3 ⇔ (7,10)-3
(2,15)-1 ⇔ (2,13)-1
(2,15)-1 ⇔ (1,15)-1

we include: i) the starting node, ii) the ending node, and iii)
the weight that was mapped. As mentioned before, an arc with
weight k can be mapped to more than one arc if the sum of the
mappings is smaller or equal to k. For example, node (2,15) is
mapped to two different nodes with weight 1. This is allowed
since node (2,15) has weight 2 in the super-arc representation.

For this example, the optimal alignment with and without
super-arc preprocessing is equivalent, i.e. both approaches lead
to an alignment that maps 7 arcs from s1 to s2. However, in
general, the maximal alignment when using super-arcs pre-
processing is not always equivalent to the alignment without
preprocessing. Even though this technique does not always
preserves optimal solutions, it can be used to study different
alignment properties between RNA sequences and has been
further explored in [3].

IV. MAXSAT EVALUATION 2017

The benchmark set rna-alignment consists of 103
instances that were translated from pseudo-Boolean to
MaxSAT using the OPEN-WBO framework [6]. The fol-
lowing encodings are used by OPEN-WBO to convert
a pseudo-Boolean formula to MaxSAT: i) Ladder encod-
ing [7], [8] (at-most-one constraints), ii) Modulo Total-
izer encoding [9] (cardinality constraints) and iii) General-
ized Totalizer encoding [10] (pseudo-Boolean constraints).
From these 103 instances, 3 have origin from real RNA

sequences (tmosaic-tob-chim, tmosaic-tob-yel,
tmosaic-yel-chim), whereas the remaining 100 were
randomly generated by the author. The random generator takes
into account the pseudoknots structure that appears in real
RNA sequences [5] and is available upon email request to the
author.

ACKNOWLEDGMENTS

We thank Guillaume Blin and Florian Sikora for fruitful
discussions during the Summer of 2010 at the University of
Marne-la-Valle, Paris, France that led to the preprocessing
technique based on super-arcs. The initial work on super-arcs
was further explored by Blin et al. [3] where they extended it
using the notion of common arc-annotated supersequence.

REFERENCES

[1] T. Smith and M. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology 147 (1981), 195-197

[2] Patricia A. Evans: Finding Common Subsequences with Arcs and Pseu-
doknots. CPM 1999: 270-280

[3] Guillaume Blin, Alain Denise, Serge Dulucq, Claire Herrbach, Hélène
Touzet: Alignments of RNA Structures. IEEE/ACM Trans. Comput.
Biology Bioinform. 7(2): 309-322 (2010)

[4] Niklas En, Niklas Srensson: Translating Pseudo-Boolean Constraints into
SAT. JSAT 2(1-4): 1-26 (2006)

[5] PseudoBase++: Database for pseudoknots. http://pseudobaseplusplus.
utep.edu/

[6] Ruben Martins, Vasco Manquinho, Ines Lynce: Open-WBO: A Modular
MaxSAT Solver. SAT 2014: 438-445

[7] Carlos Ansotegui, Felip Manya: Mapping problems with finite-domain
variables into problems with boolean variables. SAT 2004: 115

[8] Ian Gent, Peter Nightingale: A new encoding of All Different into SAT.
ModRef 2004

[9] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hi-
roshi Fujita: Modulo Based CNF Encoding of Cardinality Constraints and
Its Application to MaxSAT Solvers. ICTAI 2013: 9-17

[10] Saurabh Joshi, Ruben Martins, Vasco Manquinho: Generalized Totalizer
Encoding for Pseudo-Boolean Constraints. CP 2015: 200-209

30

MaxSAT Benchmarks Encoding
Optimal Causal Graphs

Antti Hyttinen and Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract—We shortly describe the problem of causal structure
discovery as a combinatorial optimization problem and how a
set of MaxSAT instances submitted to MaxSAT Evaluation 2017
were generated based on real-world datasets in this problem
domain.

I. CAUSAL STRUCTURE DISCOVERY

Discovering causal relations between quantities of interest
is an essential part of many fields of science. Information on
causal relations allows us to understand and predict system
behavior not only when a system is in its natural (passively
observed) state (e.g., patient without drugs), but also when the
system is intervened on (e.g., when a doctor gives a certain
drug to the patient) [5]. Although randomized controlled trials
are the most reliable way of obtaining causal information,
recent advances in causal inference have made it possible to
formally gain causal information also from passively observed
data [5], [6]. In the simplest scenario we consider here, we
have passively observed measurement data from the system
under investigation (Figure 1, left), and the aim is to find
the graph1 describing the causal relations working in the data
generating system (Figure 1, right). In this task, the following
MaxSAT-based approach currently allows for most general
graph space (cycles and latent variables) and offers also better
accuracy than previous approaches [2]. As a trade-off for
generality and accuracy, the approach currently has limited
scalability, and is thus open for improvements.

A causal structure (see an example in Figure 1, right)
is here a mixed graph G = (X,E) over a set of nodes
X = {X1, . . . , XN} that represents measured aspects of
a system (e.g., smoking habits, age, height, gender). The

1Even with infinite amount of samples, we can only identify the true
causal graph up to an equivalence class of graphs. Here we aim at finding a
representative graph from that equivalence class.

X1 X2 X3

0.1 −0.34 0.8
0.22 −0.4 −0.1

...
...

...

DATA

⇒

k w(k)
X1 ⊥⊥ X3 3.29

X1 ⊥⊥ X3|X2 3.73
X2 6⊥⊥ X3 23.4

X2 6⊥⊥ X3|X1 21.2
X1 6⊥⊥ X2 15.8

X1 6⊥⊥ X2|X3 10.11

(IN)DEPENDENCIES

⇒
MAXSAT:
encoding

+
solving

⇒

X1

X2

X3

CAUSAL GRAPH
STRUCTURE

Fig. 1: The causal structure discovery problem by example [1]

set of edges E = E→ ∪ E↔ consists of directed edges
E→ = {(Xi, Xj) | Xi ∈ X,Xj ∈ X,Xi 6= Xj} and
(symmetric) bidirected edges E↔ = {{Xi, Xj} | Xi ∈
X,Xj ∈ X,Xi 6= Xj}. Directed edges (→) in the graph
represent causal relations (e.g., smoking causes cancer). Note
that causal graphs are here allowed to include directed cycles
[3] (e.g., supply and demand), and so, between any two nodes
there can be up to three edges (→,←,↔).

Bi-directed edges are used for representing the presence
of exogenous or outside influence on the measured vari-
ables. More formally, a bi-directed edge Xi ↔ Xj denotes
the presence of a ‘latent confounder’ (e.g., particular but
unidentified gene), that has a causal effect on both Xi and
Xj , i.e., a structure of the form Xi ← Xk → Xj , with
Xk being unmeasured. Instead of including potentially many
nodes whose values are not measured, this inclusion of bi-
directed edges in the graph allows for a type of a canonical
representation of causal structures, with a graph over just the
measured nodes (see [5], [6] for details).

Intuitively, we find a causal graph whose reachability prop-
erties match the statistical dependence (e.g. correlation) prop-
erties of the data. So first, for each pair of variables {Xi, Xj}
and each conditioning set C ⊆ X \ {Xi, Xj} we test whether
the variables are statistically dependent (Xi 6⊥⊥ Xj |C)—
intuitively, Xi is statistically dependent on Xj given C iff
the value of Xi helps to predict Xj when we already know
the values of variables in C—or independent (Xi ⊥⊥ Xj |C)
in the observed data (Figure 1, middle). Furthermore, we also
obtain a weight describing the reliability of the decision.

Now, under some common theoretical assumptions (see [6]
for details), there exists a conditional dependence Xi 6⊥⊥ Xj |C
in the observed data if and only if there is a so-called d-
connecting path given C between Xi and Xj in the causal
graph structure of the true data generating system. A d-
connecting path given set of nodes C is a path (repeated edges

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

31

are allowed) such that every ‘collider node’ connected with
two incoming edges on the path is in C and other nodes
on the path are not in C [5], [7]. For example, path X1 ←
X2 ↔ X3 ← X4 is a d-connecting path between X1 and
X4 for C = {X3}, but not for C = ∅ or C = {X2, X3}.
Thus in the data generated by a system with causal structure
X1 ← X2 ↔ X3 ← X4, we would observe dependence X1 6⊥⊥
X4|X3 and independencies X1 ⊥⊥ X4 and X1 ⊥⊥ X4|X2, X3

(theoretically).
Thus according to this theory, the statistical (in)dependence

(Figure 1, middle) relations directly translate to reachability
and separability constraints on the paths of the causal graph
and hence provide the input to a constraint solver. How-
ever, the statistical independence tests run on limited sample
sizes produce errors relatively often, and thus the obtained
constraints are unsatisfiable simultaneously in any realistic
scenario. This gives rise to an optimization problem, which
we address via MaxSAT.

A. Problem Definition

The input to the causal structure discovery optimization
problem is a set K of reachability and separability constraints.
In more detail, K includes a constraint for each pair of nodes
in the graph and for each conditioning set C, stating whether
the variables should be reachable or separable by d-connecting
paths (for an example input, see Figure 1 middle). A weight
function w(k) gives a non-negative cost for not satisfying each
reachability/separability constraint k ∈ K. The task is to find
a causal graph G∗ (Figure 1, right) that minimizes the sum
of costs of reachability/separability constraints that are not
satisfied:

G∗ ∈ argmin
G∈CG(n)

∑

k∈K : G 6|=k

w(k), (1)

where the class of causal graphs with n nodes is denoted by
CG(n), and G 6|= k denotes that a causal graph G does not
satisfy a reachability/separability constraint k ∈ K.

II. MAXSAT ENCODING

The optimization problem is computationally challenging.
For obtaining good accuracy, a large number of (in)dependence
constraints K are needed; we use all testable (in)dependence
constraints (

(
n
2

)
2n−2 for n nodes). The d-separation condition

for a solution satisfying a particular (in)dependence constraint
is also quite intricate. On the other hand, this separation
condition can be relatively naturally encoded declaratively as
Boolean constraints. We give here an intuitive overview of the
encoding of [2] in terms of MaxSAT. Each (in)dependence
constraint k ∈ K is encoded as a unit soft clause over a
distinct Boolean variable representing k with weight w(k).
Additional Boolean variables are used for representing the
solutions searched over, i.e., the edge relation of causal graphs.
The d-connecting walks are encoded as hard clauses, linking
the edge relation with the (in)dependence constraints.

III. DATASETS AND WEIGHTS

The benchmarks are based on real-world datasets often used
for benchmarking exact Bayesian network structure learning
algorithms. The datasets were also used recently in [4].
We considered suitable-sized subsets of the variables in the
datasets, the remaining variables becoming thus latent (causal
graph definition supports latent variables). We employed the
BDEU score with equivalent sample size 10 to obtain inde-
pendence constraint weights for this discrete data. The were
turned to intergers by multiplying by 1000 and rounding. All
files use the encoding over conditioning and marginalization
operations [2]. The number of variables was selected for each
data such that we would get a sensible comparison among
different MaxSAT solvers.

IV. FILE NAME CONVENTION

The instances in this benchmark set are named using fol-
lowing convention:

causal_<dataset>_<n>_<N>.wcnf

where <dataset> is the name of the dataset from which the
instance was generated from, <n> is the number of observed
variables (i.e., the number of nodes) in the causal graph, and
<N> is the number of samples used for generating the instance
from the dataset.

REFERENCES

[1] J. Berg, A. Hyttinen, and M. Järvisalo, “Applications of MaxSAT in data
analysis,” in 6th Pragmatics of SAT Workshop (PoS 2015), 2015.

[2] A. Hyttinen, F. Eberhardt, and M. Järvisalo, “Constraint-based causal dis-
covery: Conflict resolution with answer set programming,” in Proc. UAI.
AUAI Press, 2014, pp. 340–349.

[3] A. Hyttinen, P. O. Hoyer, F. Eberhardt, and M. Järvisalo, “Discovering
cyclic causal models with latent variables: A general SAT-based proce-
dure,” in Proc. UAI. AUAI Press, 2013, pp. 301–310.

[4] A. Hyttinen, P. Saikko, and M. Järvisalo, “A core-guided approach to
learning optimal causal graphs,” in Proc. IJCAI. IJCAI, 2017, pp. 645–
651.

[5] J. Pearl, Causality: Models, Reasoning, and Inference. Cambridge
University Press, 2000.

[6] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and
Search. MIT Press, 2000.

[7] M. Studený, “Bayesian networks from the point of view of chain graphs,”
in Proc. UAI. Morgan Kaufmann, 1998, pp. 496–503.

32

Generalized Ising Model (Cluster Expansion)
Benchmark

Wenxuan Huang1

1Department of Materials Science and Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
Key01027@mit.edu

Abstract— We constructed the benchmark set of generalized
ising model for MAXSAT competition.

Keywords— Cluster Expansion, Ising Model, Computational
Material Science

I. INTRODUCTION
Lattice models have wide applicability in science [1-10],

and have been used in a wide range of applications, such as
magnetism [11], alloy thermodynamics [12], fluid dynamics
[13], phase transitions in oxides [14], and thermal conductivity
[15]. A lattice model, also referred to as generalized Ising
model [16] or cluster expansion [12], is the discrete
representation of materials properties, e.g., formation energies,
in terms of lattice sites and site interactions. In first-principles
thermodynamics, lattice models take on a particularly
important role as they appear naturally through a coarse
graining of the partition function [17] of systems with
substitutional degrees of freedom. As such, they are invaluable
tools for predicting the structure and phase diagrams of
crystalline solids based on a limited set of ab-initio calculations
[18-22]. In particular, the ground states of a lattice model
determine the 0K phase diagram of the system. However, the
procedure to find and prove the exact ground state of a lattice
model, defined on an arbitrary lattice with any interaction
range and number of species remains an unsolved problem,
with only a limited number of special-case solutions known in
the literature [23-29].

In general systems, an approximation of the ground state is
typically obtained from Monte Carlo simulations, which by
their stochastic nature can prove neither convergence nor
optimality. Thus, in light of the wide applicability of the
generalized Ising model, an efficient approach to finding and
proving its true ground states would not only resolve long-
standing uncertainties in the field and give significant insight
into the behavior of lattice models, but would also facilitate
their use in ab-initio thermodynamics.

Until recently, we develop the strong links between ground
state solving of cluster expansion with MAXSAT [30]. In this
benchmark, we generated a Cluster expansion systems with by
fitting Density Functional Theory (DFT) energies of LixFe1-xO1
systems with grid size of 5 by 5 by 5 with roughly about 100
types of interactions and try to test what is the best possible
solution to the cluster expansion problem.

The general formulation of ground state problem of cluster
expansion is

A lattice model is a set of fixed sites on which objects
(spins, atoms of different types, atoms and vacancies, etc.) are
to be distributed. Its Hamiltonian consists of coupling terms
between pairs, triplets, and other groups of sites, which we
refer to as “clusters”. A formal definition of effective cluster
interactions can be found in [12]. Before discussing the
algorithmic details of our method, it is essential to establish a
precise mathematical definition of a general lattice model
Hamiltonian and the task of determining its ground states. The
ground state problem can formally be stated as follows: Given
a set of effective cluster interactions (ECI’s) J ∈RC , where
C is the set of interacting clusters and R is the set of real
numbers, what is the configuration s :D→ 0,1{ } , where D
is the domain of configuration space, such that the global
Hamiltonian H is minimized:

 (1)

In the Hamiltonian of Eq. (1), each α ∈C is an individual
interacting cluster of sites. In turn, each site within α is
defined by a tuple (x, y, z, p,t) , wherein (x, y, z) is the
index of the primitive cell containing the interacting site, p
denotes the index of the sub-site to distinguish between
multiple sub-lattices in that cell, and t is the species
occupying the site. To discretize the interactions, we introduce
the ‘’spin’’ variables sx,y,z,p,t , where sx,y,z,p,t = 1 indicates

that the pth sub-site of the x, y, z() primitive cell is occupied

by species t , and otherwise sx,y,z,p,t = 0 . The energy can be
represented in terms of spin products, where each cluster α is
associated with an ECI Jα denoting the energy associated
with this particular cluster. To obtain the energy of the entire
system, each cluster needs to be translated over all possible
periodic images of the primitive cell, i.e., we have to consider
all possible translations of the interacting cluster α , defined as
a set of x, y, z, p,t() , by i, j,k() lattice primitive cells

min

s
H = min

s
lim
N→∞

1
(2N +1)3 Jα si+x , j+ y ,k+z ,p,t

(x ,y ,z ,p,t)∈α
∏

α∈C
∑

(i, j ,k)∈{−N ,...,N }3
∑

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

33

translations, yielding the spin product si+x, j+y,k+z,p,t
x,y,z,p,t()∈α
∏ .

Finally, the prefactor
1

(2N +1)3
 normalizes the energy to one

lattice primitive cell, and the limit of N approaching infinity
emphasizes our objective of minimizing the average energy
over the entire infinitely large lattice. One remaining detail is
that the Hamiltonian given in Eq. (1) is constrained such that
that each site in the lattice must be occupied. For the sake of
simplicity, lattice vacancies are included as explicit species in
the Hamiltonian, so that all spin variables associated with the
same site sum up to one:

sx,y,z,p,t = 1
t∈c(p)
∑ ∀ x, y, z, p()∈F (2)

In Eq. (2), F is the set of all sites in the form of
x, y, z, p() , and c(p) denotes the set of species that can

occupy sub-site p . The domain of configuration space D can

be formally defined as the set of all x, y, z, p,t() , with

t ∈c p() .

To further illustrate the notation introduced above, Figure 1
depicts an example of a two-dimensional lattice Hamiltonian
for a square lattice with two sub-sites in each lattice primitive
cell, i.e., p∈ 0,1{ } . Each sub-site may be occupied by 3

types of species, so that t ∈ 0,1,2{ } , where t = 0 shall be
the reference (for example, vacancy) species. Hence, the
energy of the system relative to the reference can be encoded
into t ∈ 1,2{ } . Furthermore, the Hamiltonian shall be defined
by only 2 different pairwise interaction types with the
associated clusters α = 0,0,0,1,2(), 1,2,0,0,1(){ } and

β = 0,1,0,0,2(), 0,0,0,1,2(){ } , and thus the set of all

clusters is C = α ,β{ } . The first three of the five indices
between “()” brackets indicate the initial unit cell position, the
forth index corresponds to the position in the unit cell (sub-site
index), and the last index gives the species. The third
component of the cell index (x,y,z) was retained for generality
but set to 0 for this two-dimensional example. The example
configuration shown in Figure 1 depicts three specific
interactions: The interaction represented on the bottom left in
in the figure is of type α with i, j,k() = 0,0,0() ,

corresponding to the spin product Jα s0,0,0,1,2 ⋅ s1,2,0,0,1 . The
interaction in the center of the figure also belongs to type α
but with i, j,k() = 1,1,0() , corresponding to the spin product

Jα s0+1,0+1,0,1,2 ⋅ s1+1,2+1,0,0,1 = Jα s1,1,0,1,2 ⋅ s2,3,0,0,1 . Lastly, the

interaction on the right represents an interacting β cluster,

with i, j,k() = 3,0,0() , yielding a spin product of

Jβs0+3,1,0,0,2s0+3,0,0,1,2 = Jβs3,1,0,0,2s3,0,0,1,2 .

Figure 1: Illustration of a lattice Hamiltonian and examples

of cluster interactions. The primitive unit of the lattice is
indicated by a thin dashed line, and sites are represented by
circles. Two different site types are distinguished by black and
red borders, respectively. The non-vacancy species that can
occupy the sites are indicated by two different hatchings.

II. MAXSAT ENCODING
To illustrate this approach, we consider the example of a

binary 1D system with a positive point term J0 and a negative
nearest-neighbor interaction JNN , on a 2-site unit cell. For this
system, the transformation is:

E = min⌢s0 ,⌢s1
J0
⌢s0 + J0

⌢s1 + JNN
⌢s0
⌢s1()

= −max J0 1−
⌢s0()− J0 + J0 1− ⌢s1()− J0 − JNN ⌢s0⌢s1()()

= −max J0 (¬
⌢s0)− J0 + J0 ¬⌢s1()− J0 + −JNN() 1−¬⌢s0() ⌢s1()()

= −max J0 (¬
⌢s0)− J0 + J0 ¬⌢s1()− J0 + −JNN() ⌢s1 + −JNN() 1−¬⌢s0⌢s1()− −JNN()()

= 2J0 − JNN()−MAXSAT J0 (¬
⌢s0)∧ J0 (¬

⌢s1)∧ −JNN()(⌢s1)∧ −JNN()(⌢s0 ∨¬⌢s1)() (5)

where the indicator variable
⌢si is now also a Boolean

variable in the MAX-SAT setting, and the ∧ , ∨ and ¬
operators correspond to logical “and”, “or” and “not”
respectively. Note that, although in a MAX-SAT problem the
coefficient of each clause needs to be positive, it is still
possible to transform an arbitrary set of cluster interactions Ji
into a proper MAX-SAT input, as in the example above.

The above encoding is the much much simpler version of
our benchmark system. In our benchmark problems, we have
many more types of interactions, for example, triplet,
Jt1s0s1s2 and quadruplets Jq1s0s1s2s3 etc.

34

III. REFERENCE

1. Li, X., et al., Direct visualization of the Jahn–Teller

effect coupled to Na ordering in Na5/8MnO2. Nature
materials, 2014.

2. Garbulsky, G.D. and G. Ceder, Linear-programming
method for obtaining effective cluster interactions in
alloys from total-energy calculations: Application to
the fcc Pd-V system. Physical Review B, 1995. 51(1):
p. 67.

3. Struck, J., et al., Engineering Ising-XY spin-models in
a triangular lattice using tunable artificial gauge
fields. Nature Physics, 2013. 9(11): p. 738-743.

4. Aidun, C.K. and J.R. Clausen, Lattice-Boltzmann
method for complex flows. Annual review of fluid
mechanics, 2010. 42: p. 439-472.

5. Mueller, T. and G. Ceder, Effective interactions
between the N-H bond orientations in lithium imide
and a proposed ground-state structure. Physical
Review B, 2006. 74(13): p. 134104.

6. Kremer, K. and K. Binder, Monte Carlo simulation of
lattice models for macromolecules. Computer
Physics Reports, 1988. 7(6): p. 259-310.

7. Seko, A., et al., Prediction of ground-state structures
and order-disorder phase transitions in II-III spinel
oxides: A combined cluster-expansion method and
first-principles study. Physical Review B, 2006.
73(18): p. 184117.

8. Rothman, D.H. and S. Zaleski, Lattice-gas cellular
automata: simple models of complex hydrodynamics.
Vol. 5. 2004: Cambridge University Press.

9. van de Walle, A., A complete representation of
structure-property relationships in crystals. Nat
Mater, 2008. 7(6): p. 455-458.

10. Van der Ven, A. and G. Ceder, Vacancies in ordered
and disordered binary alloys treated with the cluster
expansion. Physical Review B, 2005. 71(5): p.
054102.

11. Casola, F., et al., Direct Observation of Impurity-
Induced Magnetism in a Spin-1 2 Antiferromagnetic
Heisenberg Two-Leg Spin Ladder. Physical review
letters, 2010. 105(6): p. 067203.

12. Sanchez, J.M., F. Ducastelle, and D. Gratias,
Generalized cluster description of multicomponent
systems. Physica A: Statistical Mechanics and its
Applications, 1984. 128(1): p. 334-350.

13. Frisch, U., B. Hasslacher, and Y. Pomeau, Lattice-
Gas Automata for the Navier-Stokes Equation.
Physical Review Letters, 1986. 56(14): p. 1505-1508.

14. Li, W., J.N. Reimers, and J.R. Dahn, Crystal
structure of Li x Ni 2-x O 2 and a lattice-gas model
for the order-disorder transition. Physical Review B,
1992. 46(6): p. 3236.

15. Chan, M.K.Y., et al., Cluster expansion and
optimization of thermal conductivity in SiGe

nanowires. Physical Review B, 2010. 81(17): p.
174303.

16. Ising, E., Beitrag zur Theorie des Ferromagnetismus.
Zeitschrift für Physik, 1925. 31(1): p. 253-258.

17. Ceder, G., A derivation of the Ising model for the
computation of phase diagrams. Computational
Materials Science, 1993. 1(2): p. 144-150.

18. Hinuma, Y., Y.S. Meng, and G. Ceder, Temperature-
concentration phase diagram of P 2-Na x CoO 2
from first-principles calculations. Physical Review
B, 2008. 77(22): p. 224111.

19. Ozoliņš, V., C. Wolverton, and A. Zunger, Cu-Au,
Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-
principles study of temperature-composition phase
diagrams and structures. Physical Review B, 1998.
57(11): p. 6427.

20. Asta, M. and V. Ozoliņš, Structural, vibrational, and
thermodynamic properties of Al-Sc alloys and
intermetallic compounds. Physical Review B, 2001.
64(9): p. 094104.

21. Burton, B.P. and A. van de Walle, First principles
phase diagram calculations for the octahedral-
interstitial system. Calphad, 2012. 37(0): p. 151-157.

22. Zhou, F., T. Maxisch, and G. Ceder, Configurational
electronic entropy and the phase diagram of mixed-
valence oxides: The case of Li x FePO 4. Physical
review letters, 2006. 97(15): p. 155704.

23. Dublenych, Y.I., Ground states of the Ising model on
the Shastry-Sutherland lattice and the origin of the
fractional magnetization plateaus in rare-earth-metal
tetraborides. Phys Rev Lett, 2012. 109(16): p.
167202.

24. Dublenych, Y.I., Ground states of the lattice-gas
model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with
three-particle interaction: Full-dimensional ground
states. Physical Review E, 2011. 84(1).

25. Dublenych, Y.I., Ground states of the lattice-gas
model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with
three-particle interaction: Ground states at
boundaries of full-dimensional regions. Physical
Review E, 2011. 84(6): p. 061102.

26. Teubner, M., Ground states of classical one-
dimensional lattice models. Physica A: Statistical
Mechanics and its Applications, 1990. 169(3): p.
407-420.

27. Kanamori, J. and M. Kaburagi, Exact Ground States
of the Lattice Gas and the Ising Model on the Square
Lattice. Journal of the Physical Society of Japan,
1983. 52(12): p. 4184-4191.

28. Kaburagi, M. and J. Kanamori, Ground State
Structure of Triangular Lattice Gas Model with up to
3rd Neighbor Interactions. Journal of the Physical
Society of Japan, 1978. 44(3): p. 718-727.

29. Finel, A. and F. Ducastelle, On the phase diagram of
the FCC Ising model with antiferromagnetic first-

35

neighbour interactions. EPL (Europhysics Letters),
1986. 1(3): p. 135.

30. Huang, W., et al., Finding and proving the exact
ground state of a generalized Ising model by convex

optimization and MAX-SAT. Physical Review B,
2016. 94(13): p. 134424.

36

MaxSAT Benchmarks from the Minimum Fill-in
Problem

Jeremias Berg∗, Tuukka Korhonen∗, and Matti Järvisalo∗
∗HIIT, Department of Computer Science, University of Helsinki, Finland

I. PROBLEM OVERVIEW

This benchmark set consists of MaxSAT instances encoding
the problem of determining the minimum fill-in for specific
undirected graphs.

A cycle in an undirected graph G = (V,E) is a sequence of
nodes v1, . . . , vn such that G has an edge between any vi and
vi+1 and v1 = vn. A cycle has a chord if there are 2 nodes vi
and vj s.t. j > i+ 1 and G includes an edge between vi and
vj . The graph G is chordal if any cycle of length 4 or greater
has a chord.

Given a (possibly non-chordal) graph G, the NP-hard [5]
minimum fill-in problem asks to determine the minimum
number of edges that need to be added to G in order to
make G chordal. The problem has applications in several
different domains and was one of the tracks at the 2017 PACE
challenge1.

II. MAXSAT ENCODING

The MaxSAT encoding for minimum fill-in is adapted from
the MaxSAT encoding for computing the treewidth of a graph,
first proposed in [4] and further developed in [1]. Given a
graph G as input, the treewidth encoding includes hard clauses
that describe a so-called perfect elimination ordering of G and
soft clauses that enforce minimization of the maximum clique
size. The minimum fill-in encoding is obtained from this by
instead including soft clauses that minimize the total number
of added edges.

III. DATASETS IN THE BENCHMARK SET

The benchmark set consists of 28 MaxSAT instances,
created from standard graph benchmarks, including coloring
instances2 as well as Bayesian network structures from the
UCI machine learning repository [3].

Before generating each MaxSAT instance, the input graph
was preprocessed using standard techniques proposed for
treewidth in [2]. Afterwards each separate connected compo-
nent can be treated separately as the minimum fill-in of the
whole graph is equal to the sum of the minimum fill-ins of the
separate components. Furthermore, each component consisting
only of a cycle of length n can be ignored, as the minimum
fill-in of such a cycle contains n − 3 edges. The filename
convention used for the instances in the benchmark set is

MinFill Rx graphname.wcnf

1https://pacechallenge.wordpress.com/pace-2017/track-b-minimum-fill-in/
2Obtained from http://www.staff.science.uu.nl/∼bodla101/treewidthlib/.

where x is the sum of the minimum fill-ins of each ignored
cycle. Hence for each of the MaxSAT instances, the minimum
fill-in of its underlying graph is equal to the sum of the optimal
cost of the MaxSAT instance and the value x.

REFERENCES

[1] J. Berg and M. Järvisalo, “SAT-based approaches to treewidth computa-
tion: An evaluation,” in Proc. ICTAI. IEEE Computer Society, 2014, pp.
328–335.

[2] H. L. Bodlaender and A. M. C. A. Koster, “Safe separators for treewidth,”
Discrete Mathematics, vol. 306, no. 3, pp. 337–350, 2006.

[3] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[4] M. Samer and H. Veith, “Encoding treewidth into SAT,” in Proc. SAT,
ser. Lecture Notes in Computer Science, vol. 5584. Springer, 2009, pp.
45–50.

[5] M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM
Journal on Algebraic Discrete Methods, vol. 2, no. 1, pp. 77–79, 1981.

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

37

MaxSAT Benchmarks from
the Minimum-Width Confidence Band Problem

Jeremias Berg∗, Emilia Oikarinen†, Matti Järvisalo∗, and Kai Puolamäki†
∗HIIT, Department of Computer Science, University of Helsinki, Finland

†Finnish Institute of Occupational Health, Finland

I. OVERVIEW

Confidence intervals are commonly used to summarize
distributions over reals, to denote ranges of data, to specify
accuracies of estimates of parameters, or in Bayesian settings
to describe the posterior distribution. Represented with an
upper and a lower bound, confidence intervals are also easy
to interpret together with the data. This benchmark set con-
tains MaxSAT instances for the NP-hard optimization task of
minimizing the width of multivariate confidence intervals, i.e.,
the minimum-width confidence band problem. The problem as
well as the MaxSAT encoding for it were originally proposed
in [2].

II. ORIGINAL PROBLEM

The following definition is adapted from [2]. A confidence
band is a pair of vectors (l, u) s.t. l ≤ u holds componentwise.
The size of CB = (l, u) is SIZE(CB) =

∑m
j=1(uj − lj), i.e.,

the sum of the componentwise differences of l and u. Given a
vector x with m components and a confidence band (l, u), the
error of x is the number of components xj of x that lie outside
the confidence band, i.e., for which xj < lj or uj < xj .

Given n vectors x1, . . . , xn and integers k, s, and t, the
minimum-width confidence band problem, MWCB(k, s, t),
asks to find a confidence band of minimum size for which
(i) the number of vectors xi with error larger than s is
at most k, and (ii) at most t vectors lie outside the con-
fidence band at any fixed component. More formally, any
CB∗ ∈ argmin SIZE(CB) over those CB = (l, u) for which
(i)

∑n
i=1 I[ERROR(xi, CB) > s] ≤ k and (ii)

∑n
i=1 I[x

i
j <

lj ∨ xi
j > uj] ≤ t for all 1 ≤ j ≤ m, is a solution to

MWCB(k, s, t).

III. MAXSAT ENCODING

For an exact description of the MaxSAT encoding for
MWCB(k, s, t), we refer the reader to [2]. From the perspec-
tive of the MaxSAT evaluation, an interesting characteristic
of the benchmarks in the set is that all instances consist only
of binary clauses and cardinality constraints encoded using
cardinality networks [1].

IV. DATASETS IN THE BENCHMARK SET

The benchmark set consists of 222 benchmarks used in [2]
and originate from 3 different datasets:

• Milan temperature data (milan), in the form of the max-
temp-milan dataset from [3], contains average monthly

maximum temperatures for a station located in Milan
for the years 1763–2007. The full dataset contains 245
vectors, each with 12 components.

• UCI-Power data (power) consists individual household
electric power consumption data1, and is obtained from
from the UCI machine learning repository [4]. The whole
dataset contains 1417 vectors, each with 24 components.

• Heartbeat data (mitdb), in form of the preprocessed
datasets heartbeat-normal and heartbeat-pvc from [3],
contain annotated 30-minute records of normal and ab-
normal heartbeats [5]. There are in total 1507 vectors in
heartbeat-normal and 520 vectors in heartbeat-pvc both
with 253 components.

As in [2], the MaxSAT benchmarks are based on data sampled
from these datasets. The naming convention of the WCNF
benchmark instance files is

MinWidthCB dataset n m Kk Ss Tt.wcnf

where “dataset” is the name of the underlying dataset, n is
the number of vectors and m the number of components in
the sampled datasets, and k,s, and t are the values of the
input parameters to MWCB(k, s, t). For each of the MaxSAT
benchmark instances, optimal cost corresponds to the size of
the minimum-width confidence bands. See [2] for more details.

REFERENCES

[1] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Cardinality networks: a theoretical and empirical study,” Constraints,
vol. 16, no. 2, pp. 195–221, 2011.

[2] J. Berg, E. Oikarinen, M. Järvisalo, and K. Puolamäki, “Minimum-width
confidence bands via constraint optimization,” in Proc. CP, ser. Lecture
Notes in Computer Science, 2017, to appear.

[3] J. Korpela, K. Puolamäki, and A. Gionis, “Confidence bands for time
series data,” Data Mining and Knowledge Discovery, vol. 28, no. 5–6,
pp. 1530–1553, 2014.

[4] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[5] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20,
no. 3, pp. 45–50, 2001.

1http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+
power+consumption

MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

38

Solver Index

LMHS, 16
Loandra, 13

MaxHS, 8
Maxino, 10
MaxRoster, 12
MSUSorting, 15

Open-WBO, 17

QMaxSAT1702, 18
QMaxSATuc, 18

39

Benchmark Index

Answer set programming, 27
Argumentation dynamics, 23

Causal structure discovery, 31
Cluster expansion, 33
CSS refactoring, 20

Development assurance level, 28

Generalized hypertreewidth, 22

Minimum fill-in, 37
Minimum-width confidence bands,

38

RNA alignment, 29

Seating Arrangement, 25

40

Author Index

Alviano, Mario, 10
Asín Achá, Roberto, 15

Bacchus, Fahiem, 8
Berg, Jeremias, 13, 16, 22, 37, 38

Hague, Matthew, 20
Huang, Wenxuan, 33
Hyttinen, Antti, 31

Järvisalo, Matti, 13, 16, 22, 23,
31, 37, 38

Jahren, Eivind, 15
Janota, Mikolas, 17
Joshi, Saurabh, 17

Korhonen, Tuukka, 13, 16, 37
Koshimura, Miyuki, 18

Lin, Anthony Widjaja, 20
Lodha, Neha, 22
Lynce, Ines, 17

Manquinho, Vasco, 17
Martins, Ruben, 17, 25, 27–29

Niskanen, Andreas, 23

Oikarinen, Emilia, 38

Puolamäki, Kai, 38

Saikko, Paul, 16
Sherry, Justine, 25
Sugawara, Takayuki, 12
Szeider, Stefan, 22

Terra-Neves, Miguel, 17

Uemura, Naoki, 18

Wallner, Johannes P., 23

Zha, Aolong, 18

41

