
Department of Computer Science
Series of Publications A

Report A-2018-5

Solving Optimization Problems via
Maximum Satisfiability: Encodings and

Re-Encodings

Jeremias Berg

To be presented with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
CK112, Exactum, Gustaf Hällströmin katu 2b, on May 25th,
2018, at 12 o’clock noon.

University of Helsinki
Finland

Supervisors
Associate Professor Matti Järvisalo, University of Helsinki, Finland
Professor Petri Myllymäki, University of Helsinki, Finland

Pre-examiners
Professor Lakhdar Sais, Université d’Artois, France
Professor Peter Stuckey, University of Melbourne, Australia

Opponent
Associate Professor Inês Lynce, Universidade de Lisboa, Portugal

Custos
Associate Professor Matti Järvisalo, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: https://www.helsinki.fi/en/computer-science
Telephone: +358 2941 911

Copyright c© 2018 Jeremias Berg
ISSN 1238-8645
ISBN 978-951-51-4241-2 (paperback)
ISBN 978-951-51-4242-9 (PDF)
Helsinki 2018
Unigrafia

Solving Optimization Problems via Maximum Satisfiability:
Encodings and Re-Encodings

Jeremias Berg

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
jeremiasberg@gmail.com
http://www.jeremiasberg.com

PhD Thesis, Series of Publications A, Report A-2018-5
Helsinki, April 2018, 86 + 102 pages
ISSN 1238-8645
ISBN 978-951-51-4241-2 (paperback)
ISBN 978-951-51-4242-9 (PDF)

Abstract

NP-hard combinatorial optimization problems are commonly encountered
in numerous different domains. As such efficient methods for solving in-
stances of such problems can save time, money, and other resources in
several different applications. This thesis investigates exact declarative ap-
proaches to combinatorial optimization within the maximum satisfiability
(MaxSAT) paradigm, using propositional logic as the constraint language
of choice. Specifically we contribute to both MaxSAT solving and encoding
techniques.

In the first part of the thesis we contribute to MaxSAT solving technology
by developing solver independent MaxSAT preprocessing techniques that
re-encode MaxSAT instances into other instances. In order for preprocess-
ing to be effective, the total time spent re-encoding the original instance
and solving the new instance should be lower than the time required to
directly solve the original instance. We show how the recently proposed
label-based framework for MaxSAT preprocessing can be efficiently inte-
grated with state-of-art MaxSAT solvers in a way that improves the empir-
ical performance of those solvers. We also investigate the theoretical effect
that label-based preprocessing has on the number of iterations needed by
MaxSAT solvers in order to solve instances. We show that preprocessing
does not improve best-case performance (in the number of iterations) of
MaxSAT solvers, but can improve the worst-case performance. Going be-

iii

iv

yond previously proposed preprocessing rules we also propose and evaluate
a MaxSAT-specific preprocessing technique called subsumed label elimina-
tion (SLE). We show that SLE is theoretically different from previously
proposed MaxSAT preprocessing rules and that using SLE in conjunction
with other preprocessing rules improves empirical performance of several
MaxSAT solvers.

In the second part of the thesis we propose and evaluate new MaxSAT
encodings to two important data analysis tasks: correlation clustering and
bounded treewidth Bayesian network learning. For both problems we em-
pirically evaluate the resulting MaxSAT-based solution approach with other
exact algorithms for the problems. We show that, on many benchmarks,
the MaxSAT-based approach is faster and more memory efficient than other
exact approaches. For correlation clustering, we also show that the qual-
ity of solutions obtained using MaxSAT is often significantly higher than
the quality of solutions obtained by approximative (inexact) algorithms.
We end the thesis with a discussion highlighting possible further research
directions.

Computing Reviews (2012) Categories and Subject
Descriptors:

Mathematics of computing→Combinatorial optimization
Theory of computation→Constraint and logic programming
Theory of computation→Problems, reductions and completeness

General Terms:
Algorithms, Satisfiability, Combinatorial Optimization

Additional Key Words and Phrases:
constraint optimization, maximum satisfiability, MaxSAT, preprocessing

Acknowledgements

This work was done as part of the Constraint Reasoning and Optimization
(CoReO) group of the Department of Computer Science at the Univer-
sity of Helsinki. First and foremost I would like to express my sincerest
gratitude to my advisor, Associate Professor Matti Järvisalo for all of the
guidance and advice I have received during my PhD studies. I especially
want to thank you for believing in me enough to let me pursue my own
research interests. I am also very grateful to Professor Petri Myllymäki
for the numerous roles he has played in making this work possible. Many
thanks go to all of my other co-authors as well: Paul Saikko, Brandon Mal-
one, Tuukka Korhonen, Antti Hyttinen, Emilia Oikarinen, Kai Puolamäki,
Kerstin Bunte and Samuel Kaski. Working with all of you has been most
pleasant and educational.

The quality of this manuscript has been significantly improved by the
valuable feedback I have received from various people. I would especially
like to thank my pre-examiners Professor Lakhdar Sais and Professor Peter
Stuckey for their valuable input as well as Associate Professor Inês Lynce
for taking the time to come to Helsinki to be my opponent. I extend
my gratitude to everyone else who has given me feedback and suggestions,
Matti, Antti, Jonas and Brandon as well as all anonymous reviewers of each
publication.

I am immensely grateful for the support I have received from the Doc-
toral School of Computer Science (DoCS). I thank the board and steering
committee for giving me the financial stability needed complete my PhD.
I especially want acknowledge Dr Pirjo Moen for helping me with most
non-research related issues during my time as a PhD student. I also want
to thank the Emil Aaltonen Foundation and the Nokia Foundation for fi-
nancially supporting my PhD research.

I consider myself very lucky to have been a member of the CoReO
research group. I’d like to thank past and present members of CoReO
for the very inspiring research environment you have provided and the
many interesting discussions we have had over the years. In addition to

v

vi

my colleagues I would also like to thank my friends and other colleagues,
both in and outside of Kumpula campus, for the welcome and necessary
distractions from research. A special thanks goes to everyone that played
cards with me in the coffee room or belayed me on the climbing wall. I
am also immensely grateful for the opportunities given to me by my family
and relatives. Without your support I would not be who I am today and
probably would not have pursued a PhD in the first place. Finally I would
like to thank Christina for being there for me through the ups and downs
of day to day life.

Helsinki, April 2018

Jeremias Berg

Contents

1 Introduction 1

1.1 Maximum Satisfiability . 3

1.2 Contributions of the Thesis 4

1.2.1 Original Publications 5

1.2.2 Research Questions 5

1.2.3 Specific Contributions by the Present Author 10

1.3 Organization of the Thesis 11

2 Preliminaries 13

2.1 Propositional Satisfiability 13

2.2 Maximum Satisfiability . 15

2.3 Cardinality Constraints . 17

2.4 SAT-based MaxSAT Solvers 18

3 Preprocessing for Maximum Satisfiability Solving 23

3.1 Label-based MaxSAT Preprocessing 24

3.2 Integrating Label-based Preprocessing into SAT-based Solving 27

3.3 Effect of Preprocessing on SAT-based Solving 32

3.4 Subsumed Label Elimination 35

4 Maximum Satisfiability for Data Analysis 41

4.1 Correlation Clustering . 41

4.1.1 Problem Setting . 42

4.1.2 MaxSAT Encodings of Correlation Clustering 43

4.1.3 Experimental Evaluation 47

4.2 Bounded Treewidth Bayesian Network Structure Learning . 50

4.2.1 Problem Setting . 50

4.2.2 MaxSAT Encoding of BTBNSL 51

4.2.3 Experimental Evaluation 53

5 Conclusion 55

vii

viii Contents

References 59

Reprints of the original publications 87

Chapter 1

Introduction

Mathematical optimization is a rich field of study with numerous applica-
tions. Whenever we are given a problem and tasked with finding a solution
that is “best”, we are faced with an optimization problem. If the space
of possible (feasible) solutions is discrete, we talk about a combinatorial
optimization problem [1]. The exact definition of a solution being best (op-
timal) depends on the specific problem at hand. Commonly used quality
measures include the length or cost of a solution. In this thesis, we focus
on computationally challenging combinatorial optimization problems and,
in particular, on developing maximum satisfiability [2] as a tool for solving
them.

Computationally challenging optimization problems are common. Sev-
eral of the well-known NP-complete decision problems correspond to NP-
hard optimization problems. Consider, for example, the traveling salesper-
son problem (TSP) [3, 4]. An instance of TSP consists of a set of locations
and the pairwise distances between them. A (feasible) solution to the in-
stance is a route which visits all of the locations. The problem of deciding
the existence of a route that has length at most some given bound is NP-
complete. The corresponding NP-hard combinatorial optimization problem
asks to find the shortest possible route.

NP-hard optimization problems are encountered in various settings, in-
cluding, but not restricted to: telecommunications and network design [5],
computational biology [6, 7], clustering [8–10], structure learning of prob-
abilistic graphical models [11–13], argumentation [14], itemset mining [15–
18], data visualization [19–21], planning [22–24], scheduling [25–30], rout-
ing [31], timetabling [32–36], hardware and software verification [37–39],
covering [40], air traffic management [41, 42] and cancer therapy design [43].

The abundance and diversity of optimization problems suggests that
efficient algorithms for can save time (e.g,. scheduling), money (e.g., net-

1

2 1 Introduction

work design) or other resources in various applications. For example, an
effective solution method to TSP could significantly decrease the delivery
times and fuel costs of a delivery company.

The research field of combinatorial optimization is well-established and
studied [1]. The solution approaches to combinatorial optimization prob-
lems can roughly be divided into four categories: approximation algo-
rithms [44–48], local search algorithms [49–52], problem-specific exact al-
gorithms [3, 53–56] and exact declarative methods [2, 57–62]. This thesis
focuses on exact declarative methods for solving NP-hard combinatorial
optimization problems.

Figure 1.1 overviews the declarative approach to solving an instance p
of an NP-hard optimization problem P. The first step of the declarative
approach is the encoding of p into some mathematical constraint language
L. In other words, the declarative approach assumes the existence of a
function (an encoding) P → L that maps each instance p of P to an instance
F(p) of L, i.e., a set of constraints in L. The instance F(p) describes p in the
sense that optimal solutions to F(p) correspond to optimal solutions to p.
We assume that the constraint instance F(p) can be formed in polynomial
time with respect to the size of p. This assumption is typical when working
with declarative methods, although there has been some research into larger
encodings, often for solving even more complex problems [63–65].

After encoding p into F(p), the next step in the declarative approach
is solving F(p), i.e., computing an optimal assignment to the variables in
F(p). We call such an assignment an optimal solution to F(p). Finally, the
optimal solution to F(p) is used to reconstruct an optimal solution to p.
Analogously to the encoding step, we assume that the reconstruction step
is computable in polynomial time. Since P is NP-hard, these assumptions
imply that L should be NP-hard as well. More specifically, we focus in
this thesis on optimization problems and constraint languages with NP-
complete decision counterparts. In the rest of the text, we use the term
NP-hard in an informal manner to refer to specifically to such problems.

A notable characteristic of the pipeline in Figure 1.1 is that the (only)
two computationally challenging steps are defining an encoding P → L
and solving the constraint instance F(p). Assuming P 6= NP, no complete
solver for an NP-hard constraint language will run in polynomial time on
every instance [66]. The efficiency of the declarative approach relies instead
on designing solvers and encodings which ensure that the “interesting” in-
stances of P are encoded into constraint instances F(p) on which the solver
is able to avoid its worst case running time. By interesting instances we
mean instances that are encountered in actual applications of the prob-

1.1 Maximum Satisfiability 3

Instance p of P Instance F(p)

Solution τ to F(p)Solution to p

Encoding

Solver

Reconstruction

Figure 1.1: A declarative approach to solving an optimization problem P.

lem. Consider for example a delivery company applying a solution method
to TSP. A significant fraction of the theoretically possible instances (sets
of locations) of TSP are never going to be encountered by the company
in practice. Instead, an encoding and a solver which together are able to
solve the instances corresponding to actually possible locations are enough
to obtain a solution approach to TSP which is sufficient for the company’s
needs.

A significant benefit of the declarative approach to solving optimization
problems is its generality. The computationally challenging step of solving
F(p) is independent of the particular optimization problem P being solved.
This means that improvements in solver technology of the chosen constraint
language translate directly into more efficient algorithms to several different
optimization problems, given the existence of well-performing encodings.
Over the last decades, a number of different NP-hard constraint languages
with varying features have been proposed and developed. A well known
example is integer programming [57, 67, 68]. Others include constraint
programming [59, 69], answer set programming [60, 61], maximum satisfi-
ability [2] and its extensions to satisfiability modulo theories [70–72]. This
thesis focuses on propositional logic as the underlying constraint language
and maximum satisfiability as the corresponding constraint optimization
problem.

1.1 Maximum Satisfiability

Maximum satisfiability (MaxSAT) is the optimization counterpart of the
archetypical NP-complete propositional satisfiability (SAT) problem [66].
The expressive semantics of propositional logic, the constraint language
underlying MaxSAT, allow encoding many NP-hard optimization problems
as MaxSAT instances. At the same time, the relatively simple syntax also

4 1 Introduction

allows the development of efficient solvers. The potential of propositional
logic as the constraint language has been witnessed by the exceptional suc-
cess of SAT solvers over the last decade [73, 74]. Recent improvements
in MaxSAT solving technology and encodings have led to MaxSAT being
applied in many different problem domains, including clustering [75], prob-
abilistic modeling [76–79], data visualization [20], haplotype inference [80–
82], game theory [83] treewidth computation [84], reasoning over biological
networks [85, 86], electronic markets [87], routing [31], software verifica-
tion and code debugging [37, 88–92], planning [24, 93, 94], cancer ther-
apy design [43], computing covering arrays [95] scheduling [36], probabilis-
tic reasoning [78], upgradeability [96], design debugging [97], analysis of
other constraint satisfaction problems [98] and computer memory recon-
struction [99].

The state of the art in MaxSAT solving techniques is evaluated annually
in the MaxSAT Evaluations [100–102]. The evaluations have shown that
the effectiveness of MaxSAT solvers for solving other optimization problems
builds heavily on the effectiveness of SAT solvers. More specifically, many
of the solvers that are most effective on MaxSAT instances that correspond
to other optimization problems make extensive use of satisfiability solvers as
subroutines. In the rest of the thesis such solvers are collectively called SAT-
based MaxSAT solvers. SAT-based MaxSAT solvers can further be divided
into roughly three subcategories: the model-guided [103–108], the core-
guided [106, 109–120] and the implicit hitting set based [121–123] solvers.
Most of the contributions of this thesis are developed in the context of core-
guided and implicit hitting set based solvers, although many of the ideas
are simple to extend to model-guided solvers as well.

It should be noted that in addition to SAT-based MaxSAT solvers, an-
other commonly used approach to MaxSAT solving is branch and bound
(B&B) [124–134]. B&B solvers tend to be most effective on random MaxSAT
instances as well as challenging instances of smaller size. Such instances
are encountered for example in combinatorics [100–102].

1.2 Contributions of the Thesis

This thesis is based on six peer-reviewed publications. The contributions
of this thesis are divided into two interrelated research questions. In this
section we first overview the publications and then discuss the research
questions. We also briefly overview the specific contributions of the present
author to each individual publication. The remaining chapters of the thesis
will then discuss the contributions of each publication in more detail.

1.2 Contributions of the Thesis 5

1.2.1 Original Publications

The following six peer-reviewed publications form the basis of this thesis.
The papers are referred to as Papers I-VI in the rest of the text.

I Jeremias Berg, Paul Saikko, and Matti Järvisalo. Improving the
Effectiveness of SAT-Based Preprocessing for MaxSAT. In
Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI), pages 239-245. AAAI Press, 2015.

II Jeremias Berg, Paul Saikko, and Matti Järvisalo. Re-using Auxil-
iary Variables for MaxSAT Preprocessing. In Proceedings of the
IEEE 27th International Conference on Tools with Artificial Intelli-
gence (ICTAI), pages 813-820. IEEE Computer Society, 2015.

III Jeremias Berg and Matti Järvisalo. Impact of SAT-Based Pre-
processing on Core-Guided MaxSAT Solving. In Proceedings of
the 22nd International Conference on Principles and Practice of Con-
straint Programming (CP), volume 9892 of Lecture Notes in Computer
Science, pages 66-85. Springer International Publishing, 2016.

IV Jeremias Berg, Paul Saikko, and Matti Järvisalo. Subsumed Label
Elimination for Maximum Satisfiability. In Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI), volume
285 of Frontiers in Artificial Intelligence and Applications, pages 630-
638. IOS Press, 2016.

V Jeremias Berg and Matti Järvisalo. Cost-Optimal Constrained
Correlation Clustering via Weighted Partial Maximum Sat-
isfiability. Artificial Intelligence. 244:110-142, 2017.

VI Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning Op-
timal Bounded Treewidth Bayesian Networks via Maximum
Satisfiability. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 33 of JMLR
Workshop and Conference Proceedings, pages 86-95. JMLR, 2014.

Reprints of the publications are included at the end of the thesis.

1.2.2 Research Questions

This thesis contributes to improving the effectiveness of using MaxSAT for
solving combinatorial optimization problems by studying two distinct but
connected research questions. The first question concerns the development

6 1 Introduction

of MaxSAT solving methods, specifically in the form of solver-independent
MaxSAT preprocessing [135]. The second question concerns the develop-
ment of new MaxSAT encodings for two data analysis problems, correlation
clustering [136] and bounded treewidth Bayesian network structure learn-
ing [137, 138].

Research Question 1: Preprocessing in MaxSAT solving

The first part of the thesis focuses on improving SAT-based MaxSAT solv-
ing. More specifically, Papers I-IV develop preprocessing techniques for
MaxSAT. Preprocessing [139–141] extends the declarative pipeline (Fig-
ure 1.1) by adding a preprocessing step directly after the encoding step.
During preprocessing, the constraint instance F(p) is re-encoded into an-
other constraint instance pre(F(p)) using polynomial-time computable in-
ference rules. In this context, the inference rules are called preprocessing
rules and the process of re-encoding F(p) is called preprocessing F(p).
Analogously to the encoding, the preprocessing rules used should preserve
optimal solutions. Informally, we say that preprocessing is sound if any op-
timal solution to pre(F) can be used to reconstruct an optimal solution to
F in polynomial time. The goal of (sound) preprocessing is to increase the
applicability of MaxSAT for solving optimization problems by decreasing
the overall time spent solving instances. In other words, effective prepro-
cessing makes the total time spent preprocessing F(p) together with the
time spent solving pre(F(p)) lower than the time required to directly solve
F(p). In this thesis, we focus on problem-independent preprocessing, i.e.,
preprocessing that does not depend on the particular optimization problem
P being solved. In other words, we focus on preprocessing techniques that
can be applied on any MaxSAT instance F , regardless of the particular
domain from which F was obtained.

In SAT solving, the importance of preprocessing is well-understood [140].
Many modern SAT solvers apply preprocessing before starting search [141–
150]. The effectiveness of preprocessing in SAT solving suggests that simi-
lar effective preprocessing rules could be developed for MaxSAT solving as
well. This possibility is especially interesting in the context of SAT-based
MaxSAT solvers, since their effectiveness relies heavily on SAT solvers.
Generalizing preprocessing rules proposed for SAT solving to MaxSAT is
not straightforward. Direct application of many such rules to MaxSAT in-
stances is not sound [135]. Informally, the reason is that, in order to be
sound for SAT-solving, a preprocessing rule should preserve satisfiability,
not the number of falsified clauses, and thus not optimal MaxSAT solutions
either [151].

1.2 Contributions of the Thesis 7

One approach to sound MaxSAT preprocessing is the so-called MaxSAT
resolution rule [151]. Preprocessing rules based on MaxSAT resolution are
indeed used by some B&B solvers [131, 152, 153]. However, such rules
are difficult to use efficiently when solving MaxSAT instances that cor-
respond to industrial applications. The reason is that each application
of MaxSAT resolution adds several new clauses to the instance. Hence,
MaxSAT resolution based preprocessing rules often increase the size of the
already large industrial instances beyond what MaxSAT solvers can handle.
In this thesis we focus on an alternative approach to MaxSAT preprocessing
known as label-based preprocessing [135, 154]. Label-based preprocessing
of MaxSAT instances allows generalizing several of the existing and well-
established preprocessing rules proposed for SAT solving to MaxSAT by
adding a single new variable (a label) to each soft clause of the instance
before preprocessing.

In Papers I and II we develop label-based preprocessing further. In
Paper I we show how label-based preprocessing can efficiently be incor-
porated with SAT-based MaxSAT solvers. The central insight of Paper I
is that most SAT-based MaxSAT solvers add extra variables to the soft
clauses of MaxSAT instances regardless of the use of preprocessing. In Pa-
per I we show that the labels added during preprocessing can be reused in
the solver, thus avoiding the need for the solver to add any new variables.
We also show that reusing variables improves the empirical performance
of LMHS, an at the time state-of-the-art SAT-based MaxSAT solver [123].
In Paper II we take the idea further and show that some variables in the
input MaxSAT instance itself can be reused in the preprocessing and solv-
ing phases. This further reduces the number of new variables that need
to be added when preprocessing and solving MaxSAT instances. We also
show that identifying reusable variables from MaxSAT instances improves
empirical performance of LMHS.

In Paper III we present a theoretical analysis on the effect of prepro-
cessing on the number of SAT solver calls that SAT-based MaxSAT solvers
require in order to terminate. An underlying motivation for the analysis is
that SAT solver calls are the most computationally expensive step of such
solvers. Thus insights into which factors influence the number of necessary
calls can potentially significantly improve them. In Paper III we show that
label-based generalizations of preprocessing rules for SAT solving can not
reduce the minimum number of necessary SAT solver calls. We also show
that preprocessing can ensure that the solver avoids worst-case executions,
i.e., that preprocessing can decrease the maximum number of iterations
required by SAT-based MaxSAT solvers.

8 1 Introduction

Finally, in Paper IV we propose and analyze a new label-based MaxSAT
preprocessing rule called subsumed label elimination (SLE). We analyze
the theoretical differences between SLE and the generalizations of prepro-
cessing rules for SAT solving. In particular, we show that including SLE
amongst the preprocessing rules used during label-based preprocessing can
result in more clauses and variables removed from the instance. We also
report on an empirical evaluation on the effect of using SLE during label-
based preprocessing. Our results show that SLE can improve the empirical
performance of some state-of-the-art SAT-based MaxSAT solvers.

Research Question 2: Applications of MaxSAT in Data Analysis

The second part of this thesis focuses on developing MaxSAT encodings of
other NP-hard combinatorial optimization problems. More specifically, Pa-
pers V and VI develop new MaxSAT encodings for two data analysis tasks:
correlation clustering [136] (Paper V) and bounded treewidth Bayesian net-
work structure learning [137, 155] (Paper VI).

Clustering is one of the central problems of unsupervised machine learn-
ing [156–159]. Given a set of data points, the goal of clustering is to par-
tition the set in some meaningful way. The partitioning is typically called
a clustering of the data and each set of a clustering is a cluster. This
definition of clustering is very general, a number of different clustering
problems and algorithms have been proposed over the years [160–164], in-
cluding some constraint-based approaches [8–10, 165–167]. In Paper V, we
focus on the correlation clustering problem [168–174]. Correlation cluster-
ing is a recently proposed clustering paradigm geared towards classifying
data based on qualitative similarity information—as opposed to quantita-
tive information—of pairs of data points. An instance of the correlation
clustering problem consists of a set of data points and pairwise similarity
information over them. The similarity information expresses preferences on
whether or not the pair of points should be assigned to the same cluster.
Informally, pairs of points that are similar should be assigned to the same
cluster. At the same time, pairs of points that are dissimilar should be
assigned to different clusters. An optimal solution to the instance balances
these two conflicting objectives as well as possible. In contrast to other typi-
cal clustering paradigms, correlation clustering does not require the number
of clusters as input. Instead, the optimal number should be learned during
search. This makes correlation clustering especially well-suited for settings
in which the true number of clusters is unknown. Consider for example the
problem of clustering documents by topic without any prior knowledge on
what those topics might be or how many of them there are [136, 175].

1.2 Contributions of the Thesis 9

In Paper V we propose and prove the correctness of three MaxSAT
encodings of correlation clustering. We also empirically compare the re-
sulting MaxSAT-based solution approach with previously proposed exact
and approximation (inexact) algorithms. Our results indicate that, within
the scalability of exact approaches, the MaxSAT-based approach is often
both faster and more memory-efficient than other exact approaches. We
also show that the clusterings obtained using MaxSAT are of significantly
better quality than the ones obtained by inexact algorithms, especially on
sparse instances with missing similarity information.

Bayesian networks are an important class of probabilistic graphical
models widely-used for representing joint probability distributions of sets
of random variables [137, 176]. A Bayesian network structure is a directed
acyclic graph (DAG) in which each node corresponds to a random variable.
The graph represents the conditional dependencies between the variables.
Often, a Bayesian network structure that represents given data well is not
known a priori, and needs to be learned from observations (data) instead.
Learning the optimal structure is a well-known optimization problem called
the Bayesian network structure learning problem (BNSL) [177–180]. There
are two main frameworks for BNSL: the score-based framework, and the
independence test-based framework. In the score-based framework, each
possible DAG structure is assigned a score that measures how well the
structure explains the observations. The goal of BNSL is to compute a
best-scoring network. For several commonly used scoring functions, the
BNSL problem is NP-hard [181]. As is typical for challenging optimiza-
tion problems, early solution methods to the problem tended to focus on
polynomial-time inexact algorithms [182–187] while interest in exact algo-
rithms for BNSL has increased within the last decade [54, 180, 188–191].

After having learnt a Bayesian network structure, the network is typ-
ically used for probabilistic inference tasks, such as inferring the prob-
ability distribution of some variables, possibly given the values of oth-
ers. For general Bayesian network structures, this inference task is NP-
hard [192]. However, it is becomes tractable whenever the underlying net-
work structure has bounded (fixed) treewidth [193, 194]. Treewidth is a
well-known graph-theoretic measure [195]. Informally, treewidth measures
how “close” a given graph is to being a tree. All trees have treewidth 1
and all complete graphs with n nodes have treewidth n− 1. Treewidth has
important connections to (in)tractability. Many NP-hard problems become
tractable when restricted to instances that can be modeled using graphs
with bounded treewidth [196, 197]. The fact that inference is tractable
in Bayesian networks with low treewidth motivates the development of

10 1 Introduction

algorithms that learn optimal Bayesian network structures with bounded
treewidth, a problem known as bounded treewidth Bayesian network struc-
ture learning (BTBNSL). Compared to the recent progress in practical al-
gorithms for optimally solving BNSL, fewer algorithms have been proposed
for BTBNSL [138, 198–201]. In Paper VI we study BTBNSL in the score-
based framework. It should be noted that the extra constraint bounding
the treewidth of the solution network structure is a non-trivial addition to
BNSL. BTBNSL is also an NP-hard optimization problem [199]. In fact,
computing the treewidth of any graph is NP-hard [202].

In Paper VI we propose a MaxSAT encoding of BTBNSL. We com-
pare the resulting MaxSAT-based solution approach to a previously pro-
posed dynamic programming algorithm as the only other practical exact
solution algorithm to BTBNSL available at the time of the publication of
Paper VI [198]. We show that the MaxSAT-based method is more memory-
efficient and scales noticeably better than the dynamic programming algo-
rithm.

1.2.3 Specific Contributions by the Present Author

All publications were jointly co-written by all of their authors. Other con-
tributions by the present author are as follows.

Paper I: The idea of reusing labels in a SAT-based MaxSAT solver was
first proposed by the present author. The modifications required for label
reusing in LMHS were done by the second author of the paper as the author
of the LMHS solver. The present author modified a SAT preprocessor to
be usable as a MaxSAT preprocessor and ran all of the experiments.

Paper II: The idea of identifying literals from the input formula that
can be used as labels in preprocessing and assumptions in MaxSAT solving
was a natural extension of Paper I. The present author implemented the
modifications to the external preprocessor used in the publication and ran
all of the experiments.

Paper III: The theoretical analysis was conducted by the present author
under the guidance of the second author.

Paper IV: The idea of subsumed label elimination was developed by
the present author with assistance from the other authors. The present
author implemented the technique into the preprocessor and ran all of the
experiments.

1.3 Organization of the Thesis 11

Paper V: The MaxSAT encoding of correlation clustering was jointly
developed by the authors of the publication. The present author ran all of
the experiments.

Paper VI: The MaxSAT encoding of bounded treewidth Bayesian net-
work learning was co-developed by the authors of the publication. The
present author ran all experiments presented in the paper.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we give the
background information relevant to this thesis. The contributions to the
first and second research question are then overviewed in more detail in
Chapters 3 and 4, respectively. We conclude the thesis with a summarizing
discussion in Chapter 5.

12 1 Introduction

Chapter 2

Preliminaries

In this chapter we give the relevant definitions and background informa-
tion for understanding the main results of this thesis. First we give precise
definitions of the satisfiability and maximum satisfiability problems in Sec-
tions 2.1 and 2.2, respectively. We then proceed by overviewing cardinality
constraints in Section 2.3 as an important class of higher level constraints
commonly used in both SAT-based MaxSAT solving and MaxSAT encod-
ings of other optimization problems. We end the chapter by overviewing
SAT-based MaxSAT solvers in Section 2.4. In our discussion we assume
familiarity with propositional logic.

2.1 Propositional Satisfiability

We identify the truth value true with 1 and false with 0. A Boolean variable
x has the domain {0, 1}. A literal l is a Boolean variable x or its negation
¬x. For a literal l, it holds that ¬¬l = l. A clause C is a disjunction (∨) of
literals and a formula in conjunctive normal form (CNF) is a conjunction
(∧) of clauses. We will mostly treat clauses as sets of literals and CNF for-
mulas as sets of clauses. We will also simplify set notation when modifying
formulas. Specifically, given a clause C and a CNF formula F , F \ C is
identified with F \{C} and F ∪C with F ∪{C}. We denote the set of vari-
ables and literals of a clause C by Var(C) and Lit(C), respectively. The
set of variables Var(F) and literals Lit(F) of a formula F are defined by
Var(F) =

⋃
C∈F Var(C) and Lit(F) =

⋃
C∈F Lit(C), respectively. For

a set L of literals, we use ¬L to denote the set of negations of the literals
in L, i.e., ¬L = {¬l | l ∈ L}. L is a set of assumptions if either x /∈ L
or ¬x /∈ L for each variable x ∈ Var(F). Given a literal l, we denote
by ClF (l) the set of clauses of F which contain l, dropping the subscript

13

14 2 Preliminaries

whenever clear from context. The clauses Cl(L) containing literals from
the set L ⊆ Lit(F) are defined by Cl(L) = ∪l∈LCl(l).

Given a set V of Boolean variables, a truth assignment τ over V is a
function τ : V → {0, 1}. A truth assignment is extended to literals, clauses
and CNF formulas in the standard way: ¬x is true (τ(¬x) = 1) if x is
false (τ(x) = 0), a clause C is true (τ(C) = 1) if τ(l) = 1 for at least one
literal l ∈ C, and a CNF formula F is true (τ(F) = 1) if τ(C) = 1 for all
clauses C ∈ F . A truth assignment τ satisfies a clause C if τ(C) = 1 and a
formula if τ(F) = 1, else it falsifies them. A CNF formula F is satisfiable if
there exists a truth assignment τ which satisfies it, else F is unsatisfiable.
Two formulas F1 and F2 are equivalent if τ(F1) = τ(F2) for any truth
assignment τ over Var(F1)∪Var(F2). The formulas are equisatisfiable if F1

is satisfiable if and only if F2 is. The well-known propositional satisfiability
(SAT) problem asks if a given CNF formula F is satisfiable. As is common
in most practical applications, we treat the SAT problem as the problem of
computing a satisfying assignment to F or proving that one does not exist.
Essentially all modern SAT solvers can provide a satisfying assignment
whenever invoked on a satisfiable formula F .

A truth assignment τ : S → {0, 1} over a proper subset S ⊂ Var(F)
is a partial assignment of the formula F . The simplification of F under a
partial truth assignment τ is another formula F τ obtained by removing all
clauses satisfied by τ from the formula and all literals falsified by τ from
the remaining clauses. When convenient, we will treat a (partial) truth
assignment τ as a set of literals by l ∈ τ if and only if τ(l) = 1. Similarly,
each set L ⊆ Lit(F) of assumptions can be treated as a (partial) truth
assignment. In this thesis we use partial truth assignments in the context
of satisfiability checking under assumptions [203]. Given a formula F and
a set of assumptions L ⊆ Lit(F), we say that F is satisfiable under L if
FL is satisfiable. For an alternative view, F is satisfiable under L if there
exists a satisfying assignment τ to F that sets τ(l) = 1 for all l ∈ L.

Given a CNF formula F , a SAT solver is an algorithm that computes
a satisfying assignment to F or proves that one does not exist. The de-
velopment of SAT solvers is an active area of research [73, 74, 204–210].
Besides pure satisfiability checking, SAT solvers are commonly used as sub-
routines in more complex algorithms, for example in SAT-based MaxSAT
solvers [116, 203]. Most modern SAT solvers that are used in SAT-based
MaxSAT solving implement the conflict-driven clause learning (CDCL) al-
gorithm [204, 211, 212]. CDCL solvers have in turn evolved from the older
Davis-Putnam-Logemann-Long search procedure [213]. In this thesis we
only use CDCL SAT solvers as black boxes in SAT-based MaxSAT solvers

2.2 Maximum Satisfiability 15

and as such will not discuss the details of how they operate here. The
only requirement we make of a SAT solver is that it supports satisfiability
querying under assumptions, and that it is able to compute subsets of the
assumptions which explain unsatisfiability. More precisely, given a formula
F and a set of assumptions L ⊆ Lit(F) for which FL is unsatisfiable, we
assume that the SAT solver can extract a subset L′ ⊆ L such that FL

′

is unsatisfiable as well. Most modern CDCL SAT solvers support these
features through the so-called assumption interface.

2.2 Maximum Satisfiability

An instance F of weighted partial maximum satisfiability (or MaxSAT for
short) is a triplet F = (Fh, Fs, w) consisting of two CNF formulas, the
hard clauses Fh and the soft clauses Fs, and a weight function w : Fs → N.
The literals Lit(F) and variables Var(F) of MaxSAT instances are the
literals and variables of Fh ∧ Fs, respectively. Given a MaxSAT instance
F = (Fh, Fs, w), any truth assignment τ which satisfies Fh is a solution to
F . The cost COST(F , τ) of a solution τ to F is the sum of the weights of
soft clauses it falsifies, i.e.,

COST(F , τ) =
∑

C∈Fs

w(C) · (1− τ(C)).

A solution τ o to F is optimal if COST(F , τ o) ≤ COST(F , τ) for all so-
lutions τ to F . The (optimal) cost of the instance F is the cost of the
optimal solutions to F . We denote the optimal cost of an instance F by
COST(F). In the rest of the thesis, we assume that all MaxSAT instances
have solutions, or equivalently, that Fh is satisfiable.

The MaxSAT solvers we work with in this thesis make extensive use
unsatisfiable cores. Given a MaxSAT instance F = (Fh, Fs, w), a subset
κ ⊆ Fs is an unsatisfiable core if the formula Fh ∧κ is unsatisfiable. A core
κ is a minimal if Fh ∧ κs is satisfiable for all κs ⊂ κ. Minimal cores are
abbreviated by MUS (minimal unsatisfiable subformula). A set M ⊆ Fs
is a correction set (of F) if the formula Fh ∧ (Fs \M) is satisfiable. The
correction set M is minimal (an MCS) if Fh ∧ (Fs \Ms) is unsatisfiable for
all Ms ⊂ M . We denote the set of MUSes and MCSes of F by MUS(F)
and MCS(F), respectively.

The MCSes and MUSes of MaxSAT instances are related to each other
via hitting sets. Given a collection of sets K, a set H is a hitting set over K
if H ∩K 6= ∅ for all K ∈ K. A hitting set H is irreducible if no Hs ⊂ H is
a hitting set over K. For a MaxSAT instance F , the well known hitting set
duality theorem establishes a connection between MUS(F) and MCS(F).

16 2 Preliminaries

Theorem 1 (Hitting Set Duality [214]). A set κ is an MUS of a MaxSAT
instance F if and only if it is an irreducible hitting set over MCS(F).
Similarly, a set M is an MCS of F if and only if it is an irreducible hitting
set over MUS(F).

Minimal correction sets provide an alternative definition of the MaxSAT
problem. For a solution τ to a MaxSAT instance F = (Fh, Fs, w), let
U(τ) ⊆ Fs be the set of soft clauses falsified by τ . We say that τ is a
minimal solution to F if U(τ) is set-minimal, i.e., if there does not exist a
solution τ2 to F for which U(τ2) ⊂ U(τ). Notice that all optimal solutions
to F are minimal but the converse does not hold. It is simple to show that
there exists a many-to-one correspondence between minimal solutions and
the MCSes of F . More specifically, a solution τ of F is minimal if and only
if U(τ) ∈ MCS(F). We say that a minimal solution τ to F corresponds
to an MCS M τ of F if M τ = U(τ). The correspondence is not one-to-one,
instead each M ∈MCS(F) corresponds to a set of minimal solutions of F .
However, if two minimal solutions τ1 and τ2 to F correspond to the same
M ∈ MCS(F), then τ1 and τ2 satisfy (and hence also falsify) the exact
same clauses of F . This implies that

Cost(F , τ1) =
∑

C∈Fs

τ1(C)=0

w(C) =
∑

C∈M
w(C) =

∑

C∈Fs

τ2(C)=0

w(C) = Cost(F , τ2).

In this thesis we will treat minimal solutions that correspond to the same
MCSes as equivalent. We say that an M ∈ MCS(F) corresponds to a
solution τM if τM is a minimal solution of F that corresponds to M . A set
M ∈MCS(F) is optimal if it corresponds to an optimal solution of F .

The relationship between MCSes and minimal solutions of MaxSAT
instances suggests an alternative definition of the MaxSAT problem. Let
F = (Fh, Fs, w) be a MaxSAT instance with the weight function w extended
to sets S ⊆ Fs of soft clauses by w(S) =

∑
C∈S w(C). Denote the set of

solutions and minimal solutions to F by sol(F) and msol(F), respectively.
The optimal cost COST(F) of F can be expressed in terms of the MCSes
of F by

COST(F) = min
τ∈sol(F)

COST(F , τ) = min
τ∈msol(F)

COST(F , τ)

= min
τ∈msol(F)

w(M τ) = min
M∈MCS(F)

w(M).

In other words, an M ∈ MCS(F) is optimal if w(M) ≤ w(M ′) for all
M ′ ∈ MCS(F). Thus the MaxSAT problem can be reformulated as the

2.3 Cardinality Constraints 17

problem of computing an Mo ∈ arg minM∈MCS(F){w(M)}. By hitting set
duality, such Mo is also a minimum-cost hitting set over MUS(F), i.e.,
a hitting set over MUS(F) which minimizes w(Mo) over all hitting sets
of MUS(F). Notice that a minimum-cost hitting set is guaranteed to be
irreducible. The following theorem shows that a satisfiability query can be
used in order to verify that a hitting set over any collection of cores of F
is an optimal MCS without computing the entire MUS(F).

Theorem 2 (Adapted from [122]). Let F = (Fh, Fs, w) be a MaxSAT
instance and C a collection of cores of F . Let M be a minimum cost hitting
set over C and assume that Fh ∧ (Fs \M) is satisfiable. Then M is an
optimal MCS of F .

The implicit hitting set solvers we work with in this thesis are based on
Theorem 2.

2.3 Cardinality Constraints

Despite the simple syntax, several types of complex constraints can be mod-
eled with CNF formulas. One such class of constraints commonly used in
both SAT-based MaxSAT solving and MaxSAT encodings of other problems
are cardinality constraints, an important special case of the more general
class of pseudo-boolean constraints. Given a set L = {l1, . . . , ln} of n literals,
a set W = {w1, . . . , wn} of weights, a constant k and ◦ ∈ {≤,≤,≥≥,=}, a
pseudo-boolean constraint is a linear constraint over L of form

∑n
i=1wili◦k.

A truth assignment τ satisfies the constraint whenever
∑n

i=1wiτ(li) ◦ k is
true. We denote the set of clauses resulting from encoding a pseudo-boolean
constraint

∑n
i=1wili ◦k to CNF by CNF(

∑n
i=1wili ◦k). A pseudo-boolean

constraint is a cardinality constraint if wi = 1 for all 1 ≤ i ≤ n. The numer-
ous applications of cardinality constraints have motivated the development
several different CNF encodings of them [215–220].

Example 1. Let L = {l1, . . . , lN} be a set of literals and consider the
at-most-one cardinality constraint

N∑

i=1

li ≤ 1

enforcing that at most one of the literals in L must be set to true. The at-
most-one constraint is commonly used in SAT-based MaxSAT solving [111,
115, 116, 120] as well as MaxSAT encodings of other problems, including
correlation clustering and bounded treewidth Bayesian network structure

18 2 Preliminaries

learning. A simple way of encoding this constraint in CNF is with O(n2)
clauses of form (¬li∨¬lj) for every distinct li and lj in L. As an example of
a more compact encoding, the ladder encoding uses n−1 auxiliary variables
y1, . . . , yn−1 and clauses corresponding to li ↔ (¬yi ∧ yi+1) as well as yi →
yi+1. All in all the ladder encoding uses O(n) auxiliary variables and O(n)
clauses.

2.4 SAT-based MaxSAT Solvers

In this section we overview and discuss the two types of MaxSAT solvers
on which the rest of the thesis focuses on. The contributions of this thesis
to MaxSAT preprocessing are not specific to a single MaxSAT solver, but
instead two classes of MaxSAT solvers that we call core-guided solvers [111,
115–117, 119, 120] and implicit hitting set based solvers [121–123]. We
discuss these solvers in terms of two abstract MaxSAT solving algorithms:
CG, representing core-guided solvers and IHS, representing implicit hitting
set based solvers. In the rest of the thesis, we use the term MaxSAT
algorithm to refer to abstractions and MaxSAT solver to refer to concrete
implementations of MaxSAT algorithms.

The CG and IHS algorithms are presented in pseudocode in Figure 2.1
on the left and right side, respectively. These abstractions cover several
modern MaxSAT solvers, including Fu-Malik (WPM1, WMSU1) [116, 221,
222], PMRES [115], OLL [111, 223] and ONE (K) [119] (the CG algorithm),
as well as MaxHS [121, 122] and LMHS [123] (the IHS algorithm). It should
be noted that solvers implementing CG or IHS often also make use of several
different additional heuristics and search strategies [224–227] that are not
included in the pseudocodes of Figure 2.1.

Both CG and IHS rely extensively on the ability to extract unsatisfiable
cores from MaxSAT instances. Let (Fh, Fs) be two sets of clauses such that
Fh ∧ Fs is unsatisfiable. In both CG and IHS, a core κ ⊆ Fs is extracted
using the assumption interface of the underlying SAT solver. Let FAs =
{C∨aC | C ∈ Fs} be the set of all clauses in Fs, each extended with a unique
assumption variable aC . Let also A(Fs) = Var(FAs)\Var(Fs) be the set of
all assumption variables and consider a subsetAs ⊆ A(Fs). Core extraction
using assumptions is based on the fact that the simplification of Fh ∧ FAs
under ¬As is the formula Fh∧{C | C ∨aC ∈ Cl(As)}. In order to see this,
consider a clause C ∨ aC ∈ FAs . If aC ∈ As, the partial assignment ¬As
reduces C∨aC to C. If aC /∈ As, the clause C∨aC can be trivially satisfied
by setting aC to true. Hence we can check the satisfiability of Fh ∧ Fs
by querying a SAT solver for the satisfiability of Fh ∧ FAs under ¬A(Fs).

2.4 SAT-based MaxSAT Solvers 19

1 CG(Fh, Fs, w)
2 (Fw

h , F
w
s)← (Fh, Fs)

3 while true do
4 (result, κ, τ)← IsSAT(Fw

h , F
w
s)

5 if result=”satisfiable” then
6 return τ
7 else
8 Fw

s = (Fw
s \ κ)

9 Fw
s ← Fw

s ∧ CLONE(κ)
10 (Fw

h , F
w
s)← RELAX(Fw

h , F
w
s , κ)

1 IHS(Fh, Fs, w)
2 C ← ∅
3 while true do
4 H ← MinCostHittingSet(C)
5 (result, κ, τ)← IsSAT(Fh, (Fs \H))
6 if result=”satisfiable” then
7 return τ
8 else
9 C ← C ∪ {κ}

Figure 2.1: Abstractions of the two types of MaxSAT algorithms we work
with in this thesis.

If the formula is satisfiable, the returned truth assignment (restricted to
Var(Fh ∧ Fs)) is also a satisfying assignment of Fh ∧ Fs. Otherwise, the
subset ¬Aκ ⊆ ¬A(Fs) of the assumptions returned by the solver can be
mapped to an unsatisfiable core κ = {C | C ∨ aC ∈ Cl(Aκ)} of (Fh, Fs).
In Figure 2.1 we abstract this functionality into the function IsSAT. The
result of a query IsSAT(Fh, Fs) is a triplet (result, κ, τ), where result is
true if and only if Fh ∧ Fs is satisfiable. If Fh ∧ Fs is satisfiable, then
τ is a satisfying assignment to it. Otherwise κ is an unsatisfiable core
of Fh ∧ Fs. In the IHS algorithm the assumption interface is also used
for removing clauses from the SAT-solver queries. More specifically, for
a subset H ⊆ Fs, the satisfiability of Fh ∧ (Fs \ H) is equivalent to the
satisfiability of Fh ∧ FAs under ¬RH = ¬(A(Fs) \ A(H)). This enables
clause removal from the formula without the need to reset the internal
state of the SAT solver. Notice that if Fh∧FAs is unsatisfiable under ¬RH ,
the core returned by the SAT solver is guaranteed to be a subset of Fs \H.

Given an input MaxSAT instance F = (Fh, Fs, w), the CG algorithm
maintains a working formula (Fwh , F

w
s), initialized to (Fh, Fs) on Line 2.

The algorithm iteratively queries the internal SAT solver using the function
IsSAT(Fwh , F

w
s) (Line 4), obtaining a triplet (result, κ, τ). Whenever the

SAT solver returns “satisfiable”, CG terminates and returns the assignment
τ , guaranteed to be an optimal solution to F (Line 6). Otherwise, a core κ
of (Fwh , F

w
s) is obtained. The algorithm proceeds by relaxing the working

instance and compiling information about the core into it (Line 10). Most
of the implementations of RELAX that we are aware of assume that all
of the soft clauses in the core have equal weight. To handle cores κ with
varying clause weights, the solvers use a standard technique known as clause
cloning [109, 221] (Line 9). First the smallest weight among all clauses in
κ is computed, wκmin = min{w(C) | C ∈ κ}. Then each clause C ∈ κ
for which w(C) > wκmin is cloned; a duplicate clause Clone(C) is added

20 2 Preliminaries

to Fws , the weight of the original clause is set to wκmin, and the duplicate
Clone(C) is given the residual weight w(Clone(C)) = w(C)− wκmin. All
duplicates are left in the working instance as soft clauses and the function
RELAX(Fwh , F

w
s , κ) is invoked using the original clauses of κ which now all

have equal weight. The exact manner in which the formula is modified, i.e.,
the implementation of RELAX, depends on the concrete MaxSAT solver.
A classical example is the Fu-Malik solver [116] in which each clause C ∈ κ
is extended with a fresh relaxation variable rC to form the extended clause
C∨rC . The extended clauses are left in the formula as soft and a cardinality
constraint CNF(

∑
r = 1) is added as hard clauses. Several of the early

core-guided solvers relax the soft clauses in the core and add cardinality
constraints as hard clauses. In contrast, more recently proposed core-guided
solvers harden the soft clauses in the core and add cardinality constraints
as soft clauses [111, 115, 119, 120].

In contrast to the CG algorithm, the IHS algorithm does not add
or remove any clauses at all during execution and instead only works
on the input hard and soft clauses. Given an input MaxSAT instance
F = (Fh, Fs, w), the IHS algorithm maintains a set C of cores of F , initial-
ized to ∅ on Line 2. At each iteration, a minimum-cost hitting set over C is
computed (Line 4). Then a SAT solver is invoked on all of the clauses in the
working formula, except for the ones in H (Line 5). If the formula is satisfi-
able, H is an optimal MCS of F (Theorem 2) and IHS terminates, returning
the optimal solution satisfying Fh ∧ (Fs \ H) (Line 7). Otherwise, a new
core is obtained and added to the set C (Line 9), after which the algorithm
reiterates. In two solvers implementing the IHS algorithm, MaxHS [122]
and LMHS [123], a minimum-cost hitting set is obtained by solving the
current hitting set problem using an integer programming solver.

Beyond the scope of this thesis, a third class of SAT-based MaxSAT
solvers are the so-called model-guided solvers [103–108, 110]. When in-
voked on a MaxSAT instance F = (Fh, Fs, w), a model-guided solver
initializes an upper and lower bound UB and LB of the optimal cost of
Cost(F). The exact manner in which the bounds are initialized depends
on the solver, a simple example sets LB = 0 and UB =

∑
C∈Fs

w(C).
During search, the solver queries a SAT solver for the satisfiability of
Fh ∧ FAs ∧ CNF(

∑
C∈Fs

(w(C) · aC) ≤ k) where k is some constant sat-
isfying LB ≤ k ≤ UB. If the formula is satisfiable, then Cost(F) ≤ k
and the value of the upper bound is lowered. Similarly, if the formula is
unsatisfiable, then Cost(F) > k and the value of the lower bound is in-
creased. The solver iterates until an optimal solution is found. Different
model-guided solvers make use of several different search strategies and

2.4 SAT-based MaxSAT Solvers 21

encodings of cardinality constraints. Some also use unsatisfiable cores for
more precise control on which soft clauses are relaxed and how much the
bounds are updated [106, 107].

Finally we mention that in addition to SAT-based MaxSAT solvers a
central approach to exact MaxSAT solving is branch and bound (B&B) [124–
133]. Given an input MaxSAT instance F , B&B solvers search for an opti-
mal solution to F by branching on the two possible values of each variable
in the formula. In order to avoid exhaustive search over all possible assign-
ments of the variables, B&B solvers make use of several different bound
computation and other inference rules [131, 134, 152, 228, 229] designed to
allow effective pruning of the search tree. Some B&B solvers also make use
of restricted forms of unsatisfiable cores in their bound computations [125].

22 2 Preliminaries

Chapter 3

Preprocessing for Maximum
Satisfiability Solving

In this chapter we discuss the contributions of this thesis to MaxSAT pre-
processing techniques, overviewing Papers I-IV. While the importance of
preprocessing in SAT solving is well-established [140–144, 146–150], the role
of preprocessing in MaxSAT solving is not as developed [135, 151]. Here we
focus on the label-based approach to MaxSAT preprocessing [135] and the
CG and IHS MaxSAT algorithms presented in Figure 2.1 of Section 2.4.
The empirical results presented in this chapter focus on the LMHS MaxSAT
solver [123], a from-scratch instantiation of the IHS algorithm by the sec-
ond author of Papers I, II and IV. All experiments were performed on a
cluster of 2.53-GHz Intel Xeon quad core machines with 32 GB memory
and Ubuntu Linux, using a per-instance memory limit of 30 GB. Since the
time limit used in the experiments varied between papers, we will specify
them in the relevant sections. For the formal proofs and complete empirical
results, we direct the reader to the reprints of the papers at the end of the
thesis.

This chapter is organized as follows. In Section 3.1 we give prelimi-
naries on label-based preprocessing of MaxSAT instances. In Section 3.2
we discuss how label-based preprocessing can be integrated into SAT-based
MaxSAT solving in a manner that significantly decreases the number extra
variables and clauses that are added (Papers I and II). We demonstrate
that tighter integration between the preprocessing and solving steps results
in improved empirical performance of LMHS. In Section 3.3 we overview
a theoretical analysis of the effect of preprocessing on the number of it-
erations required by CG and IHS (Paper III). Finally, in Section 3.4 we
present a MaxSAT-specific preprocessing technique that we call subsumed
label elimination (SLE) (Paper IV). We give theoretical results on the differ-

23

24 3 Preprocessing for Maximum Satisfiability Solving

ences between SLE and the MaxSAT generalizations of preprocessing rules
for SAT solving. We also show that using SLE in conjunction with previ-
ously proposed preprocessing rules leads to further simplifications during
preprocessing as well as improved empirical performance of LMHS.

3.1 Label-based MaxSAT Preprocessing

Most of the contributions of this thesis to MaxSAT preprocessing build on
previous work [135] on lifting four central preprocessing rules proposed for
SAT to MaxSAT using the so called labeled CNF (LCNF) framework [154,
230]. More specifically, the rules lifted are bounded variable elimination,
subsumption and self-subsuming resolution [141], as well as blocked clause
elimination [231]. In this chapter we focus on the same four rules and call
them SAT-based preprocessing rules. It should, however, be noted that, in
addition to these four, several other preprocessing rules have been proposed
for SAT solving [140, 142, 143, 145–150].

For some intuition on why SAT-based preprocessing rules can not di-
rectly be applied on MaxSAT instances, consider the subsumption elimi-
nation (SE) rule. Let F be a SAT formula and C,D two clauses of F . We
say that C subsumes D if C ⊆ D. A clause D is subsumed if some other
clause subsumes it. The SE rule allows removing subsumed clauses from
F . Let pre(F) be the formula resulting after an application of SE on F .
Then F and pre(F) are equisatisfiable since any assignment τ that satisfies
the former will satisfy the latter and vice versa. More generally, we say
that a preprocessing rule is sound for SAT-solving if (i) applying the rule
to a formula F gives an equisatisfiable formula pre(F) and (ii) a satisfying
assignment to F can be reconstructed from any satisfying assignment to
pre(F) in polynomial time. Even if SE is sound for SAT solving, the next
example demonstrates that directly removing subsumed clauses from the
hard and soft clauses of MaxSAT instances can alter the costs of solutions
and thus also the optimal solutions.

Example 2. Let F = (Fh, Fs, w) be a MaxSAT instance with

Fh = {(¬x1), (¬x2), (¬x3 ∨ ¬x4)},
Fs = {(x1 ∨ x3), (x2 ∨ x3), (x3), (x4)}

and w(C) = 1 for each C ∈ Fs. An optimal solution τ to F sets τ(x1) =
τ(x2) = τ(x4) = 0 and τ(x3) = 1, falsifying one soft clause. Direct appli-
cation of SE on Fh ∧ Fs removes two soft clauses. The resulting instance

3.1 Label-based MaxSAT Preprocessing 25

F2 = (F 2
h , F

2
s , w

2) has

F 2
h = {(¬x1), (¬x2), (¬x3 ∨ ¬x4)} and F 2

s = {(x3), (x4)}.

One optimal solution τ2 to F2 sets τ2(x1) = τ2(x2) = τ2(x3) = 0 and
τ2(x4) = 1. This solution falsifies one soft clause in F2 but three in F .

Example 2 illustrates the fact that instead of only preserving satisfying
assignments, MaxSAT preprocessing should preserve the optimal solutions
of instances.

Definition 1. Let F be a MaxSAT instance, R a preprocessing rule, and
pre(F) the instance obtained by preprocessing F with R. Assume τp is an
optimal solution to pre(F). The preprocessing rule R is sound for MaxSAT
if an optimal solution τ to F can be reconstructed from τp in polynomial
time.

Procedure 3.1 describes label-based preprocessing of a MaxSAT instance
F = (Fh, Fs, w) using SAT-based preprocessing rules. First, each soft
clause C ∈ Fs is extended with a unique new label (Boolean variable)
lC to form the labeled clause C ∨ lC and the set of labeled soft clauses
FLs = {C ∨ lC | C ∈ Fs}. Notice the similarity between labels and assump-
tion variables used in SAT-based MaxSAT solving (recall Section 2.4). Let
L(F) = Var(FLs)\Var(Fs) be the set of all added labels. The next step of
label-based preprocessing is preprocessing the formula Fh ∧ FLs with SAT-
based preprocessing rules, thereby obtaining the formula pre(Fh ∧ FLs). In
order to guarantee soundness for MaxSAT, bounded variable elimination
and self-subsuming resolution are restricted from removing any variables
in L(F) during preprocessing [135]. Finally, the preprocessed MaxSAT in-
stance pre(F) = (F ph , F

p
s , wp) has F ph = pre(Fh ∧ FLs) as hard clauses. The

soft clauses F ps contain unit clauses with negations of labels that appear
among the hard clauses: F ps = {(¬lC) | lC ∈ Lit(F ph) ∩ L(F)}. The weight
of each soft clause wL((¬lC)) is equal to the weight w(C) of the soft clause
to which lC was added in the first step. We emphasize that soft clauses are
only added for labels lC ∈ Lit(F ph). Even if bounded variable elimination
or self subsuming resolution can not remove any labels, a label can still
be removed from the instance during preprocessing. For example, if a soft
clause is subsumed by a hard clause, SE can remove the labeled soft clause
during preprocessing together with the corresponding label.

The basis for the soundness of label-based preprocessing with SAT-
based preprocessing rules is the following theorem.

26 3 Preprocessing for Maximum Satisfiability Solving

Preprocess F = (Fh, Fs, w)

1. Let FLs = {C ∨ lC | C ∈ Fs, lC new} and L(F) = Var(FLs) \
Var(Fs).

2. Preprocess the CNF formula Fh ∧ FLs using SAT-based prepro-
cessing rules.

• Do not remove any l ∈ L(F) with bounded variable elimi-
nation nor self-subsuming resolution.

3. Return
pre(F) = (F ph , F

p
s , w

p)

with F ph = pre(Fh ∧ FLs), F ps = {(¬lC) | lC ∈ Lit(F ph) ∩ L(F)}
and wp((¬lC)) = w(C).

Procedure 3.1: Label-based preprocessing of a MaxSAT instance F .

Theorem 3. (Adapted from [135]) Assume that an instance F = (Fh, Fs, w)
is preprocessed using label-based preprocessing with SAT-based preprocess-
ing rules to obtain pre(F) = (F ph , F

p
s , wp). For each soft clause C ∈ Fs, let

lC be the label added to C during preprocessing. Then the following hold.

(i) The optimal costs of F and pre(F) are equal.

(ii) M ∈MUS(F) if and only if {(¬lC) | C ∈M} ∈MUS(pre(F)).

We show that label-based preprocessing with SAT-based preprocess-
ing rules is sound for MaxSAT using Theorem 3 and hitting set duality
(Theorem 1).

Theorem 4. Label-based preprocessing with SAT-based preprocessing rules
is sound for MaxSAT.

Proof. (Sketch) Let F = (Fh, Fs, w) be a MaxSAT instance and pre(F) =
(F ph , F

p
s , wp) an instance obtained by label-based preprocessing of F using

SAT-based preprocessing rules. Consider an optimal solution τp to pre(F)
and let M τp be the MCS corresponding to τp. By Theorem 3 and hitting
set duality, the set M = {C | (¬lC) ∈ M τp} is an MCS of F . Since
wp((¬lC)) = w(C) for all (¬lC) ∈ M τp , it follows that wp(M τp) = w(M).
Since M τp is optimal for pre(F) and COST(pre(F)) = COST(F), the

3.2 Integrating Label-based Preprocessing into SAT-based Solving 27

MCS M is optimal for F . Hence the solution τM corresponding to M is
an optimal solution to F . The fact that τM can be reconstructed from
τp in polynomial time follows from the fact that SAT-based preprocessing
rules allow reconstruction of satisfying assignments to CNF formulas [135,
140].

3.2 Integrating Label-based Preprocessing into
SAT-based Solving

As the first contribution to MaxSAT preprocessing of this thesis we inves-
tigate label-based preprocessing in conjunction with SAT-based MaxSAT
solving. In Paper I we show how to improve the empirical performance of
LMHS [123], a MaxSAT solver implementing the IHS algorithm, by reusing
labels as assumptions.

More generally, we show that if a preprocessed MaxSAT instance pre(F)
is solved with a SAT-based MaxSAT solver, the labels introduced during
preprocessing can be reused as the assumption variables used for core ex-
traction within the internal SAT solver. Since a similar number of as-
sumption variables would otherwise be introduced by the solver, reusing
labels as assumptions removes the need to add extra variables when using
label-based preprocessing with SAT-based MaxSAT solving. In more detail,
assume that the IHS algorithm instructed to reuse labels as assumptions is
invoked on a preprocessed MaxSAT instance pre(F) = (F ph , F

p
s , wp). Then

the internal SAT solver of IHS is first initialized with the clauses in F ph (and
specifically not F ps). During search, the cores in C are maintained in terms
of label variables. Each computed hitting set H is the set of label variables
that should not be assumed to be false in the next SAT solver call. Each
unsatisfiable SAT solver call obtains a new subset of the label variables
and the augmented IHS algorithm terminates as soon as a SAT solver call
returns “satisfiable”. While Paper I focuses on the IHS algorithm, a similar
idea is applicable to the CG algorithm as well. Notice that labels l can be
treated as soft clauses by introducing a unit clause (¬l) on demand.

Informally, the correctness of reusing labels as assumptions follows by
considering an execution of IHS not reusing labels as assumptions invoked
on a preprocessed MaxSAT instance pre(F) = (Fh, Fs, w). Initially each
soft clause (¬lC) ∈ Fs is extended with an assumption variable a to form
the clause (¬lC ∨a). Notice that this clause is equivalent to the implication
¬a → ¬lC . Let A(pre(F)) be the set of all assumption variables. During
an iteration of the while-loop (Lines 3-9), IHS will first compute H as
a minimum-cost hitting set over the set of cores C identified so far. In

28 3 Preprocessing for Maximum Satisfiability Solving

practice, H is a subset of A(pre(F)) containing the assumption variables a
of all clauses ¬lC ∨ a which will be removed from the instance in the next
SAT solver call. Afterwards a SAT solver is invoked on Fh ∧ FAs under
¬(A(pre(F)) \H). In this call, each soft clause (¬lC ∨ a) for which a /∈ H
is reduced to (¬lC) due to assuming a to be false. Thus the value of lC is
propagated to false as well. Similarly, if a ∈ H, the value of a is not assumed
to be anything at all. However, as a only appears in a single clause, the SAT
solver can assign it to true in order to satisfy the clause (¬lC ∨ a). As ¬lC
does not appear in any other clause, the SAT solver can also assign lC to
true, satisfying all clauses in ClFh

(lC). Thus the assumptions only affect
the values of the corresponding label variables through the implications
¬a → ¬lC . An alternative description of reusing labels as assumptions
is hence to not introduce the implications ¬a → ¬lC at all, but instead
directly assume the values of the lC variables. In Paper I we give a more
direct proof of soundness using the formal LCNF framework [135].

In addition to the theoretical analysis, Paper I also reports on an ex-
perimental evaluation of the effect that reusing labels as assumptions has
on LMHS. The evaluation was performed using the weighted partial indus-
trial and crafted benchmarks of the 2014 MaxSAT evaluation [101] using a
per-instance time limit of 1 h. Figure 3.2 shows a summary of the results.
The line MaxHS-2.5 corresponds to the newest version of the MaxHS solver
at the time [121, 122]. MaxHS is included to give a baseline comparison to
LMHS.

The line LMHS+pre of Figure 3.2 of shows the performance of LMHS
using preprocessing without reusing labels as assumptions. We note that
preprocessing without reusing labels actually degrades overall performance
of the solver. The best overall performance is achieved by LMHS+R-pre,
corresponding to LMHS using preprocessing and reusing labels as assump-
tions. In the rest of this chapter, we will refer to LMHS+R-pre simply as
LMHS, explicitly mentioning whenever it is used without reusing labels as
assumptions.

Reusing Literals from MaxSAT Instances

In Paper II we show how the number of variables that need to be in-
troduced to a MaxSAT instance F during preprocessing and SAT-based
solving can be decreased further. We prove that literals l ∈ Lit(F) that
satisfy three easily identifiable criteria can be reused as labels in prepro-
cessing and assumptions in SAT-based MaxSAT solving. We also propose
group detection as a simple pattern-matching procedure to identify such
literals. We experimentally demonstrate that reusable literals can be iden-

3.2 Integrating Label-based Preprocessing into SAT-based Solving 29

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 440 450 460 470 480 490 500 510 520 530

T
im

e
o
u
t
(s

)

Instances solved

MaxHS-2.5
LMHS-pre

LMHS
LMHS+R-pre

Figure 3.2: The effect of reusing labels as assumptions on LMHS (from
Paper I).

tified in a significant fraction of the MaxSAT evaluation benchmarks and
that using group detection leads to modest improvements in the empirical
performance of LMHS.

In more detail, we introduce the concept of a group-detectable literal.

Definition 2. Let F = (Fh, Fs, w) be a MaxSAT instance and l ∈ Lit(F).
The literal l is group-detectable if it satisfies the following three criteria.

1. (¬l) ∈ Fs.

2. ¬l /∈ Lit(Fh ∧ (Fs \ (¬l))).

3. l /∈ Lit(Fs).

In words, a literal l is group-detectable in an instance F = (Fh, Fs, w) if l is
not a member of any soft clauses of F and its negation ¬l does not appear
in any clause in Fh ∧ Fs except for one unit soft clause. We say that a soft
clause (¬l) is group-detectable if the literal l is.

In Paper II we show that given any MaxSAT instance F (preprocessed
or not), all group-detectable literals l ∈ Lit(F) can be reused as labels
for preprocessing and assumptions for core extraction. For some intuition
on the connection between Paper I and II, notice that if an instance F
is preprocessed to obtain a preprocessed instance pre(F), then every soft

30 3 Preprocessing for Maximum Satisfiability Solving

clause in pre(F) is group-detectable. Hence group detection could be seen
as a generalization of reusing labels as assumptions after preprocessing.

In Paper II we propose group detection as a pattern matching procedure
for identifying group-detectable literals and reusing them as labels during
preprocessing and assumptions during solving. Intuitively, the correctness
of group detection should be clear. In the paper we give a formal proof of
correctness using the LCNF framework [135]. The name group detection
stems from a setting in which we are given a group G of clauses and wish
to encode the soft group constraint

∧
C∈GC of weight wg in CNF. One

possible encoding is to: (i) introduce a single new group variable g, (ii)
extend each C ∈ G with the same g variable to form the clause C ∨ g, (iii)
treat all extended clauses C ∨ g as hard, and (iv) introduce the soft clause
(¬g) with weight cw. Notice that using this encoding the literal g is group-
detectable. An observation similar to Paper II was made in [232] where the
authors study group MaxSAT as an alternative approach to handling soft
group constraints.

In Paper II we report on the results of an empirical evaluation of group
detection. Figure 3.3 shows the fraction of soft clauses group-detectable in
the weighted partial industrial and crafted benchmarks of the 2014 MaxSAT
evaluation. As the figure illustrates, all soft clauses are group-detectable in
over 40% of the crafted and over 30% of the industrial instances, suggest-
ing that a significant fraction of the soft clauses in the considered MaxSAT
benchmarks correspond to encodings of group constraints. The effect of
group detection on the total solving time of LMHS is shown in Figure 3.4
on the same benchmark set. All runs were performed using a per-instance
time limit of 1 h. The base algorithm (the line LMHS in the plot), using
neither preprocessing nor group detection, exhibits the worst performance.
Interestingly, the variant using only group detection and no preprocess-
ing (LMHS-G) is competitive with the variant using preprocessing with-
out group detection (LMHS-pre). This observation highlights the impor-
tance of minimizing the number of extra variables and clauses during label-
based preprocessing and SAT-based MaxSAT solving. Best performance is
achieved by using both preprocessing and group detection (LMHS-G-pre),
even if the improvement over LMHS-G and LMHS-pre is modest. In Paper
II we offer one possible explanation for the modesty of the improvement
to be the fairly strong connection between group detection and bounded
variable elimination. Apart from the LMHS solver, the paper also includes
empirical results for the Eva solver [115] as an example of a solver that
implements the CG algorithm.

3.2 Integrating Label-based Preprocessing into SAT-based Solving 31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
o
ft
 C

la
u
s
e

s
 R

e
u
s
e
d

 (
%

)

Instances (%)

Industrial
Crafted

Figure 3.3: The fraction of soft clauses reusable as labels or assumptions
(from Paper II).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 460 470 480 490 500 510 520 530

T
im

e
o
u
t

(s
)

Instances solved

LMHS
LMHS-pre

LMHS-G
LMHS-G-pre

Figure 3.4: The effect of group detection on the LMHS MaxSAT solver
(from Paper II).

32 3 Preprocessing for Maximum Satisfiability Solving

3.3 Effect of Preprocessing on
SAT-based MaxSAT Solving

Paper III focuses on improving the theoretical understanding of the effect
of label-based preprocessing on the number of SAT solver calls made by
SAT-based MaxSAT algorithms. We note that theoretical analysis of many
SAT-based MaxSAT algorithms is in general challenging. For example, the
number of SAT solver calls necessary for the CG algorithm to solve any
MaxSAT instance is not known. The difficulty in determining the number
stems to some extent from the fact that the instance is modified during
search. Thus the core extracted on each iteration is a core of the current
instance but not necessarily a core of the original instance. More generally,
the effect that the formula rewriting step of the CG algorithm has on the
core structure of the input instance remains an interesting open question,
even if some results are known [233]. Analysis of the IHS algorithm is
simpler since it only extracts cores of the original instance. It is known
that the number of SAT solver calls necessary for the IHS algorithm to
solve MaxSAT instances can be exponential in the number of soft clauses,
even when restricted to unweighted instances [234].

In Paper III we provide a full characterization of the effect of label-based
preprocessing with SAT-based preprocessing rules on the number of neces-
sary SAT solver calls of two algorithms: IHS and CGH . CGH is an abstract
MaxSAT algorithm first studied in [233]. In particular CGH is similar to
CG except for the fact that CGH only considers implementations of Relax
in which the soft clauses of the core remain in the instance as soft clauses
and new cardinality constraints are added as hard clauses. In [233] the
authors provide a characterization of the cores in the ith working formula
of CGH in terms of the cores of the input instance and the added (hard)
cardinality constraints. Our results in Paper III for CGH make use of this
characterization. As a by-product of the main result, we also develop a
similar characterization of the MUSes, thus sharpening the main results
of [233].

In order to simplify the discussion, we will from now on focus on what
we call normalized MaxSAT instances, a view on MaxSAT instances similar
to [119]. A MaxSAT instance FN = (FNh , F

N
s , w) is normalized if each soft

clause C ∈ FNs is group-detectable. We say that a literal l ∈ Lit(FN) is a
soft literal if (¬l) ∈ FNs . The results of Papers I and II imply that we can
assume all MaxSAT instances to be normalized. In more detail, given any
MaxSAT instance F = (Fh, Fs, w) we construct a normalized instance FN
by replacing each C ∈ Fs which is not group detectable by a hard clause

3.3 Effect of Preprocessing on SAT-based Solving 33

C ∨ gC and a soft clause (¬gC) of weight w(C). The results of Papers I
and II imply that FN has the same optimal solutions as F and reusing
all the group-detectable literals of FN as assumptions allows solving FN
without introducing any extra variables compared to solving F . Normalized
MaxSAT instances are convenient for the analysis conducted in Paper III. If
a normalized MaxSAT instance F = (Fh, Fs, w) is preprocessed with group
detection to obtain the instance pre(F) = (F ph , F

p
s , w), then F ps ⊆ Fs, and

Theorem 3 can be restated as follows.

Corollary 1. Let F be a normalized MaxSAT instance and pre(F) the in-
stance resulting after preprocessing F using label-based preprocessing with
group detection and SAT-based preprocessing rules. Then MUS(F) =
MUS(pre(F)), which implies MCS(F) = MCS(pre(F)).

While Paper III focuses on SAT-based preprocessing rules, the results hold
for any preprocessing rules that satisfy Corollary 1.

In Paper III we analyze four variants of a fixed A ∈ {CGH , IHS}.
• A: the base algorithm.

• Apre: A applied after label-based preprocessing.

• AMUS: A using an idealized SAT solver that is guaranteed to extract
an MUS when invoked on an unsatisfiable formula.

• AMUS
pre : AMUS applied after label-based preprocessing.

We investigate the relative performance of these variants from two separate
points of view, the best case and worst case in the number of iterations
(SAT solver calls). Let F be a normalized MaxSAT instance and A ∈
{CGH , IHS}. Due to non-deterministic heuristics of SAT solvers, there are
several different possible executions of A invoked on F . We define the
length of an execution of A on F as the number of cores extracted by A
during that execution before termination. A best-case execution of A on F
has length equal to the minimum over all possible executions of A on F .
Similarly, a worst-case execution has length equal to the maximum over
all possible executions. Let Minlen(A,F) and Maxlen(A,F) denote the
length of best-case and worst-case executions of A on F , respectively.

Figures 3.5 and 3.6 overview the results of our analysis. We establish
that for any A ∈ {CGH , IHS}, label-based preprocessing using SAT-based
preprocessing rules can not decrease the length of the best-case executions
of A on any instance (Figure 3.5). On the other hand, preprocessing can
decrease the length of the worst-case executions on some instances. In-
tuitively, the results follow from the inability of SAT-based preprocessing

34 3 Preprocessing for Maximum Satisfiability Solving

A

AMUS

Apre

AMUS
pre

Figure 3.5: Best-case performance in the number of iterations of A ∈
{CGH , IHS}. Here X → Y indicates that Minlen(X,F) ≤Minlen(Y,F)
on all MaxSAT instances F (from Paper III).

A

AMUS

Apre

AMUS
pre

Figure 3.6: Worst-case performance in the number of iterations of
A ∈ {CGH , IHS}. Here X → Y indicates that Maxlen(X,F) ≤
Maxlen(Y,F) on all MaxSAT instances F . X 9 Y indicates that X → Y
does not hold (from Paper III).

3.4 Subsumed Label Elimination 35

rules to affect the MUS structure of MaxSAT instances, as stated in Corol-
lary 1. In essence, we show that the best-case executions of A on any
instance F correspond to executions where the SAT solver only returns
MUSes. Since SAT-based preprocessing can not affect the MUSes of F ,
any executions, where the SAT solver only returns MUSes, are valid for
both A and Apre. However, as preprocessing can still remove some of the
soft literals of MaxSAT instances, applying SAT-based preprocessing before
solving might in some cases allow the algorithm to avoid bad executions
following from extracting cores that are not MUSes.

Finally, we note that, in addition to CGH , IHS and the results of Paper
III, it is known that O(log(COST(F))) calls to a SAT solver are required
to solve any MaxSAT instance [235]. The result is obtained using a model-
guided MaxSAT solver which uses a combination of linear and binary search
for the optimal cost (recall Section 2.4). As preprocessing does not affect
the optimal cost of instances, the same result implies that label-based pre-
processing with SAT-based preprocessing rules can not affect the minimum
number of SAT solver calls required by the model-guided solver studied
in [235] either.

The focus in this section was on the number of iterations of SAT-based
solvers. Even if preprocessing does not decrease the minimum number of
iterations, the empirical evaluations conducted in Papers I and II demon-
strate that preprocessing does improve the empirical performance of SAT-
based MaxSAT solvers on some instances. While a complete theoretical
understanding of how preprocessing affects SAT-based MaxSAT solvers
remains an interesting open research question, we note that the analysis
conducted in Paper III does not cover the effect of preprocessing on the
individual SAT-solver calls executed by IHS and CGH .

3.4 Subsumed Label Elimination

As the final contribution of this thesis to MaxSAT preprocessing, we inves-
tigate a MaxSAT-specific preprocessing rule which does not satisfy Corol-
lary 1, but still guarantees sound MaxSAT preprocessing. More specifically,
in Paper IV we propose and analyze subsumed label elimination (SLE). We
prove correctness of SLE, give theoretical analysis comparing SLE to SAT-
based preprocessing rules, and show empirically that incorporating SLE in
the preprocessing step further improves performance of several MaxSAT
solvers implementing CG and IHS. In the paper we also briefly overview
the connection between SLE and the so-called column dominance rule pro-
posed in the early 90s in conjunction with branch-and-bound approaches

36 3 Preprocessing for Maximum Satisfiability Solving

for the binate covering problem [236]. We will not detail the binate covering
problem here, except to say that while SLE can be seen as the MaxSAT
counterpart of the column dominance rule, Paper III reports on the first
study of such a rule in the context of MaxSAT that we are aware of.

Similarly to the previous section, we assume that all MaxSAT instances
in this section are normalized. This allows identifying MCSes with sets of
soft literals. More specifically, let F = (Fh, Fs, w) be a normalized MaxSAT
instance and consider a subset K ⊆ Fs of soft clauses. We are interested
in determining the satisfiability of the formula FK = Fh ∧ (Fs \ K). Let
C ∈ K and D ∈ (Fs \K) be two soft clauses of F . Then C = (¬l1) and
D = (¬l2) for two soft literals l1 and l2. Now ¬l1 /∈ Lit(FK) since C is
the only clause of Fh ∧ Fs containing ¬l1. Thus all clauses in ClFK

(l1)
can be trivially satisfied by assigning l1 to true. On the other hand, as
D ∈ FK , any potential satisfying assignment τ to FK assigns l2 to false.
In other words, any potential satisfying assignment to FK can set all soft
literals l for which (¬l) ∈ K to true and has to set all literals l for which
(¬l) ∈ Fs \K to false. Hence the satisfiability of FK is equivalent to the

satisfiability of the simplification FK
L

h of Fh under the partial assignment
KL = {l | (¬l) ∈ K}∪{¬l | (¬l) ∈ Fs \K}. Thus K is a correction set of F
if and only if FK

L

h is satisfiable. In this section, we identify sets M ⊆ Fs of
soft clauses of normalized MaxSAT instances with the partial assignment
ML = {l | (¬l) ∈ M} ∪ {¬l | (¬l) ∈ Fs \M}. Specifically, we define the

simplification FMh of Fh under M ⊆ Fs to be equal to FM
L

h .

Next we give an informal description of SLE. Let F = (Fh, Fs, w) be a
normalized MaxSAT instance, and l1 and l2 two soft literals of F . We say
that l2 subsumes l1 if (i) Cl(l1) ⊆ Cl(l2), i.e., l2 appears in all of the same
clauses as l1, and (ii) w((¬l1)) ≥ w((¬l2)). SLE allows removing subsumed
literals from F . More formally, SLE allows enforcing all subsumed literals
to false and simplifying the instance accordingly. The soundness of SLE
follows from the fact that if l1 is subsumed by l2, then there exists an
optimal M ∈ MCS(F) which does not contain (¬l1). Hence there also
exists an optimal solution τM to F that assigns l1 to false. More specifically,
we show that if (¬l1) is a member of some M1 ∈ MCS(F), then M2 =
(M1 \ (¬l1))∪ (¬l2) is a correction set of F . Thereby M2 contains an MCS
Ms of F for which (¬l1) /∈ Ms. Notice that the assumption w((¬l1)) ≥
w((¬l2)) implies that w(M1) ≥ w(M2) ≥ w(Ms), so either M1 is not
optimal, or all three are. To see that M2 is a correction set, notice that
the simplifications of Fh under M1 and M2 satisfy FM

2

h ⊆ FM1

h and recall

that FM
1

h is satisfiable1.

1After publication of Paper IV we have discovered a minor error in the proof of the

3.4 Subsumed Label Elimination 37

In Paper IV we provide a formal proof of correctness of SLE on the
LCNF level. In more detail, for any normalized MaxSAT instance F =
(Fh, Fs, w), we show that the soft literal l1 is subsumed by the soft literal
l2 if (i) (¬l2) appears in the same MUSes of F as (¬l1) and (ii) w((¬l1)) ≥
w((¬l2)). However, as checking which literals belong to which MUSes is
NP-hard, the first condition is probably not checkable in polynomial time.
Instead, we show that Cl(l1) ⊆ Cl(l2) is a sufficient condition for (¬l2)
appearing in the same MUSes as (¬l1).

In addition to its proof of correctness, Paper IV also contains addi-
tional theoretical analysis of SLE. We show that, in contrast to the SAT-
based preprocessing rules, SLE does not satisfy Corollary 1. Instead, we
show that the MUSes of MaxSAT instances pre(F) preprocessed with SLE
are restrictions of the MUSes of F onto the soft clauses of pre(F). The
contrast between SLE and SAT-based preprocessing is further exemplified
in Paper IV by MaxSAT instances on which no SAT-based preprocessing
rules can be applied but SLE can. The possibility of SLE affecting the
MUSes of MaxSAT instances also means that preprocessing with SLE can
in some cases remove optimal MaxSAT solutions. More precisely, assume
that two labels l1 and l2 subsume each other, i.e., that Cl(l1) = Cl(l2) and
w((¬l1)) = w((¬l2)). Then, if there exists an optimal M1 ∈MCS(F) con-
taining l1 and not l2, there also exists an optimal M2 ∈MCS(F) containing
l2 and not l1. Even so, SLE can soundly remove either l1 or l2, thus also
removing the corresponding MCS and optimal MaxSAT solutions. How-
ever, as implied by the soundness of SLE, it will never remove all optimal
solutions nor create new ones.

It should be noted that only using SLE during preprocessing might
not be very effective. The reason is the precondition Cl(l1) ⊆ Cl(l2). In
order for this condition to be met, the formula needs to contain clauses
with more than one soft literal. However, many normalized MaxSAT in-
stances encountered in practical applications need not contain such clauses.
Consider for example an un-normalized MaxSAT instance F = (Fh, Fs, w)
that does not contain any group-detectable soft clauses. Then every clause
in the normalized instance FN = (FNh , F

N
s , w) obtained from F following

Section 3.3 contains at most one soft literal. Even so, SLE can still be
used when preprocessing FN as long as other techniques capable of dis-
tributing soft literals among clauses are used as well. In our work the main
preprocessing rule capable of this is bounded variable elimination.

theorem corresponding to this discussion, Theorem 6. The last sentence of the proof
should read: ”By assumption, R′ = (R \ {l2}) ∪ {l1}, a subset of Lbls(Φpre), is a hitting
set of LMUS(Φ) and hence contains an irreducible hitting set of LMUS(Φ), i.e, an LMCS
of Φ.”

38 3 Preprocessing for Maximum Satisfiability Solving

In Paper IV we present the result of an experimental evaluation on the
effect of SLE together with SAT-based MaxSAT solvers. As benchmarks we
used the industrial and crafted benchmarks of the 2015 MaxSAT evaluation.
Figure 3.7 demonstrates the effect that SLE has on the fraction of soft
literals remaining after preprocessing with and without SLE. We found that
especially on weighted instances, SLE can significantly increase the number
of soft literals that are removed during preprocessing. For example, for one
third of the weighted partial industrial instances (x = 0.3), with SLE close
to 80% of the soft literals are eliminated (y ≈ 0.2, i.e., some 20% of the
soft literals remain afterwards). In comparison, without SLE only ≈ 45%
are eliminated.

Figure 3.8 gives a break-down of the effect that SLE has on the running
time of LMHS on the different families of the weighted partial industrial
benchmarks. The experiments were run using a per-instance timeout of 30
min. We see that, for a majority of the instances, SLE improves the total
solving time of LMHS, both compared to using no preprocessing, and only
using SAT-based preprocessing. In Paper IV, we also provide results for
Eva [115], Open-WBO [113], and Primal-Dual [120].

After the publication of Paper IV we have generalized SLE, resulting in
a technique called group-subsumed label elimination (GSLE) [237]. A soft
literal l of a MaxSAT instance F is group-subsumed by a set L of soft lit-
erals if (i) Cl(l) ⊆ Cl(L) and (ii) w((¬l)) ≥∑

lg∈Lw((¬lg)). GSLE allows
removing group-subsumed literals from F . GSLE is a straightforward gen-
eralization of SLE, the proof of correctness is essentially identical to SLE.
Both SLE and GSLE are implemented in the MaxSAT preprocessor Max-
Pre [237], developed after publication of Paper IV. Interestingly, we have
found that using GSLE during preprocessing does not significantly increase
total preprocessing time compared to using SLE. In addition to SLE and
GSLE, MaxPre also includes all other algorithmic ideas for preprocessing
proposed in this thesis, namely label reuse and group detection.

3.4 Subsumed Label Elimination 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
s
o

ft
 l
it
e

ra
ls

 r
e

m
a

in
in

g
 a

ft
e

r
p

re
p

ro
c
e

s
s
in

g

Fraction of Instances

PMS-NoSLE
PMS-SLE

WPMS-NoSLE
WPMS-SLE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fraction of Instances

WPMS-NoSLE

WPMS-SLE

PMS-NoSLE

PMS-SLE

Figure 3.7: Fraction of soft literals remaining in industrial (left) and crafted
(right) unweighted (PMS) and weighted (WPMS) benchmarks after prepro-
cessing with and without SLE (from Paper IV).

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

S
LE

LMHS

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

S
LE

LMHS w/pre

correlation-clustering
upgradeability-problem
haplotyping-pedigrees
preference_planning
railway-transport
hs-timetabling
wcsp_spot5_log
wcsp_spot5_dir
timetabling
packup-wpms
BTBNSL

Figure 3.8: Effect of SLE on runtimes without (left) and with (right) SAT-
based preprocessing of LMHS on industrial weighted partial instances (from
Paper IV).

40 3 Preprocessing for Maximum Satisfiability Solving

Chapter 4

Maximum Satisfiability for Data
Analysis

In this chapter we discuss the contributions of this thesis to the devel-
opment of new MaxSAT encodings for two NP-hard data analysis prob-
lems, correlation clustering (Paper V) and bounded treewidth Bayesian
network structure learning (BTBNSL) (Paper VI). Correlation clustering
is discussed in Section 4.1 and BTBNSL in Section 4.2. In both sections
we give a precise definition of the data analysis task as a combinatorial
optimization problem, overview the MaxSAT encodings we propose, and
present a summary of the results of an empirical evaluation of the resulting
MaxSAT-based approach.

In order to simplify the discussion, we will present all MaxSAT encod-
ings in this chapter in terms of general propositional logic. This can be
done without loss of generality as it is well-known that for any formula G
in propositional logic, there exists an equivalent CNF formula F G . Fur-
thermore, the size of F G can be assumed to be polynomial in the size of
G. More specifically, applying the well-known Tseitin encoding [238] on
G results in an equivalent CNF formula F G the number of variables and
clauses of which are linear in the number of constraints and variables of G.

4.1 Correlation Clustering

In Paper V we present and evaluate three MaxSAT encodings for the corre-
lation clustering problem [239]. Under the original formulation, an instance
of correlation clustering consists of an undirected graph with the nodes cor-
responding to a set of data points and each edge labeled as either positive
or negative. Two points with a positive edge between them are similar,

41

42 4 Maximum Satisfiability for Data Analysis

and points with a negative edge between them are dissimilar. The goal
of correlation clustering is to cluster the nodes of the graph in a way that
correlates as well as possible with the edge labeling. More specifically, an
optimal clustering balances two conflicting objectives. On one hand, sim-
ilar points should be assigned to the same cluster. On the other hand,
dissimilar points should be assigned to different clusters. Notice that there
exists “trivial” clusterings that maximize either individual objective. The
number of similar points assigned to the same cluster is maximized by a
clustering that assigns all nodes to the same cluster. Similarly, the number
of dissimilar points assigned to different clusters is maximized by a clus-
tering that assigns all nodes to different clusters. However, no such trivial
clustering is in general optimal with respect to both objectives. Balanc-
ing the conflicting objectives is an important characteristic of correlation
clustering. The lack of a “trivial” clustering that balances both objectives
makes correlation clustering well-suited for situations in which the true
number of clusters is unknown.

The rest of the Section is organized as follows. In Section 4.1.1 we de-
tail the general setting under which we study correlation clustering. The
three MaxSAT encodings we propose for the problem are presented in Sec-
tion 4.1.2 and an overview of the results of the experimental evaluation
reported on in Paper V is given in Section 4.1.3.

An interest in correlation clustering has continued after the publication
of Paper V [240–243]. We especially note a recently published paper that
develops one of the MaxSAT encodings that we propose in Paper V in the
context of the clique partitioning problem [244].

4.1.1 Problem Setting

An instance of correlation clustering consists of a set V = {v1, . . . , vN}
of N data points and a symmetric similarity matrix W ∈ RN×N where
R = R ∪ {∞,−∞}. From now on, we fix V and say that an instance
consists only of the matrix W . We denote the element on row i column j in
W by W (i, j). The values of W represent similarities of pairs of points, the
points vi and vj are similar if W (i, j) > 0 and dissimilar if W (i, j) < 0. An
instance of correlation clustering can equivalently be viewed as an weighted
undirected graph G = (V,E) where {vi, vj} ∈ E if W (i, j) 6= 0, and the
weight of each edge {vi, vj} is equal to W (i, j). Figure 4.1 gives an example
of a similarity matrix W on the left and the corresponding graph on the
right.

A function cl : V → N is a clustering of W if cl(vi) = cl(vj) for all
W (i, j) = ∞ and cl(vi) 6= cl(vj) for all W (i, j) = −∞. These kinds of

4.1 Correlation Clustering 43

W =

∞ 0 −2 5
0 ∞ −∞ −3
−2 −∞ ∞ 1
5 −3 1 ∞

v1

v2

v3

v4

−2

5−∞

−3

1

Figure 4.1: A Similarity matrix and its graph representation.

constraints enforcing two points to the same or to different clusters are
commonly called must-link and cannot-link constraints, respectively [245].

Given an instance W of correlation clustering, the cost Cost(W, cl) of
a clustering cl : V → N is

Cost(W, cl) =
∑

cl(vi)=cl(vj)
i<j

(I[−∞ < W (i, j) < 0] · |W (i, j)|) +

∑

cl(vi)6=cl(vj)
i<j

(I[∞ > W (i, j) > 0] ·W (i, j)) ,

where I[b] is an indicator function which takes the value 1 if the condi-
tion b is true, else I[b] = 0. A clustering cl is optimal if Cost(W, cl) ≤
Cost(W, cl′) for all clusterings cl′ of W .

Example 3. Consider the similarity matrix W in Figure 4.1 (left). An
optimal clustering cl of this instance assigns cl(v1) = cl(v4) = 1, cl(v2) = 2
and cl(v3) = 3. The cost Cost(W, cl) of cl is 1.

An important factor to note here is that the cost of a clustering does
not depend on the specific cluster indexes. Hence the search for an optimal
clustering of W can be restricted to functions cl : V → [N] where [N] =
{0, . . . , N − 1}. More generally, given a similarity matrix W , a clustering
cl : V → N and a permutation σ : N → N, the function clσ = σ ◦ cl is also
a clustering of V with Cost(W, cl) = Cost(W, clσ). In other words, the
space of clusterings is highly symmetric.

4.1.2 MaxSAT Encodings of Correlation Clustering

In this section we overview our three related MaxSAT encodings of correla-
tion clustering, the transitive encoding, the unary encoding and the binary

44 4 Maximum Satisfiability for Data Analysis

encoding. For the remaining of this section, we fix an instance W of corre-
lation clustering to an N ×N similarity matrix with E non-zero elements.
In other words, we assume that there are E pairs of distinct 1 ≤ i < j ≤ N
for which W (i, j) 6= 0.

For each encoding, we describe the MaxSAT instance F(W) result-
ing after applying the encoding on W and a procedure for converting an
optimal solution τ of F(W) to an optimal clustering clτ of W . In the
rest of the section, let Transitive(W), Unary(W) and Binary(W) de-
note the MaxSAT instances produced by the transitive, unary and bi-
nary encodings on W , respectively. Even though the specifics of each
instance differ, the overall structure of them is similar. Let F(W) ∈
{Transitive(W),Unary(W),Binary(W)} and F(W) = (FWh , FWs , wW).
The hard clauses FWh represent a conjunction of two complex constraints:
FWh = IsFunc(W)∧Sol(W). The constraint IsFunc(W) is satisfied if clτ

is a function clτ : V → N, and Sol(W) is satisfied if clτ is a clustering of W .
The constraint Sol(W) is further divided into two parts corresponding to
the must-link (SameCl(i, j)) and cannot-link (DiffCl(i, j)) constraints,
respectively:

Sol(W) =
∧

W (i,j)=∞
SameCl(i, j) ∧

∧

W (i,j)=−∞
DiffCl(i, j).

The constraint SameCl(i, j) is satisfied if and only if clτ (vi) = clτ (vj)
and the constraint DiffCl(i, j) is satisfied if and only if clτ (vi) 6= clτ (vj).
Since all hard clauses are satisfied by any solution to the MaxSAT instance,
the semantics of the constraints ensure that any solution to the MaxSAT
instance corresponds to a clustering of W.

The soft clauses FWs are defined in a way which ensures that

Cost(F , τ) = Cost(W, clτ)

for any MaxSAT solution τ . The soft clauses contain SameCl(i, j) with
weight wW (SameCl(i, j)) = W (i, j) for each 0 < W (i, j) < ∞ and a
constraint DiffCl(i, j) with weight wW (DiffCl(i, j)) = |W (i, j)| for each
−∞ < W (i, j) < 0; all in all,

FWs =
∧

0<W (i,j)<∞
SameCl(i, j) ∧

∧

0>W (i,j)>−∞
DiffCl(i, j).

In Paper V, the correctness of each MaxSAT encoding is established by
showing that Cost(F , τ) = Cost(W, clτ) and that for any clustering cl of
W there exists a solution τcl to F(W) for which cl = clτcl .

4.1 Correlation Clustering 45

The transitive encoding of correlation clustering can be seen as a MaxSAT
reformulation of a previously proposed integer programming model for
correlation clustering, a model originally proposed for the clique parti-
tioning problem [168, 175, 246]. The variables of Transitive(W) are
of form xij for each distinct pair i, j = 1, . . . , N . Given a solution τ to
Transitive(W), the corresponding clustering clτ is constructed by as-
signing all vi and vj for which τ(xij) = 1 to the same cluster. With these
variables, the constraint IsFunc(W) is encoded using θ(N3) constraints
of form (xij ∧ xjk) → xik for distinct i, j, and k. Each such constraint
corresponds to the clause (¬xij ∨ ¬xjk ∨ xik); all in all,

IsFunc(W) =
∧

i,j,k distinct

(¬xij ∨ ¬xjk ∨ xik).

The two other constraints, SameCl(i, j) and DiffCl(i, j), are encoded
with unit clauses: SameCl(i, j) = (xij) and DiffCl(i, j) = (¬xij). In
total Transitive(W) contains θ(N2) variables and θ(N3) clauses.

The unary encoding of correlation clustering resembles to some extent
a previously proposed quadratic integer programming formulation of cor-
relation clustering [247]. In contrast to the transitive encoding, the unary
encoding is parametrized on K, the maximum number of clusters in the
solution clustering. The value of K needs to be set before creating the
instance Unary(W). In Paper V, we used K = N in all experiments.
This ensures that the produced clustering is an optimal solution to the
general correlation clustering problem (recall the discussion at the end of
Section 4.1.1). The main variables of Unary(W) are the θ(N · K) vari-
ables of form yki for 1 ≤ i ≤ N and 1 ≤ k ≤ K. Given a solution τ to
Unary(W), the clustering clτ is constructed using those variables by set-
ting clτ (vi) = k if and only if τ(yki) = 1. The constraint IsFunc(W) is
encoded using cardinality constraints:

IsFunc(W) =

N∧

i=1

CNF(

K∑

k=1

yki = 1).

In Paper V we used the so-called sequential encoding [215] to convert the
cardinality constraints to CNF. The other two constraints, SameCl(i, j)
and DiffCl(i, j), are encoded in a straightforward manner by

SAMECL(i, j) =

K∨

k=1

(yki ∧ ykj) and DIFFCL(i, j) =

K∧

k=1

¬(yki ∧ ykj).

Including all clauses and variables introduced by the Tseitin encoding, the
instance Unary(W) contains θ(E ·K+N ·K) variables and θ(E ·K) clauses.

46 4 Maximum Satisfiability for Data Analysis

The third MaxSAT encoding we consider, the binary encoding, is essen-
tially a bitwise reformulation of the unary encoding. Similarly to the unary
encoding, the binary encoding is also parametrized on K. The main vari-
ables of Binary(W) are θ(N · log2(K)) variables of form bai for 1 ≤ i ≤ N
and 1 ≤ a ≤ dlog2(K)e. Given a solution τ to Binary(W), the clustering

clτ is constructed by interpreting τ(b
dlog2(K)e
i), . . . , τ(b1i) as a binary num-

ber c and setting clτ (vi) = c. We note that this construction results in a
clustering clτ : V → 2d

′
for the smallest d′ for which 2d

′ ≥ K. In Paper V,
we present extra constraints that can be added to Binary(W) to ensure
that clτ (vi) ≤ K < N for all 1 ≤ i ≤ N . Notice that such constraints are
not needed if K = N , instead the cluster indexes of clτ can be permuted
to the interval 0, . . . , N − 1 as a post-processing step.

A convenient consequence of the construction of Binary(W) is that
IsFunc(W) = ∅, i.e., no clauses are required in order to ensure that clτ

is a function. The encoding of SameCl(i, j) and DiffCl(i, j) is straight-
forward: two points vi and vj are assigned to the same cluster by clτ if
and only if all bits in the binary representation of their cluster numbers are
equal, i.e.,

SameCl(i, j) =

log2(K)∧

k=1

(bki ↔ bkj) and DiffCl(i, j) =

log2(K)∨

k=1

¬(bki ↔ bkj).

In total Binary(W) contains θ(E+N · log2K) variables and θ(E · log2K)
clauses.

In Paper V we also consider different types of redundant constraints
designed to reduce the symmetries in the binary encoding. As discussed
in the previous section, the space of clusterings of W is very symmetric.
Several of the symmetries are transferred to the space of MaxSAT solu-
tions of Binary(W). Some of the symmetries can be broken by adding
extra constraints to Binary(W). For a simple example of such an con-
straint, we can enforce the point v1 to be assigned to cluster 0 with the

constraint
∧dlog2(K)e
k=1 (¬bk1). Adding extra symmetry breaking constraints

to the instance is non-trivial in general. While such constraints have the
potential of decreasing the solving time of the instance, adding too many
extra constraints can instead increase the size of the instance enough to
degrade the performance of the MaxSAT solver. Notice for example that
the transitive encoding naturally breaks all symmetries related to cluster
indexing while being significantly larger than the other two instances. In
Paper V we report on an experimental evaluation of some possible symme-
try breaking constraints that could be used in conjunction with the binary
encoding.

4.1 Correlation Clustering 47

4.1.3 Experimental Evaluation

In Paper V we report on an experimental evaluation of the applicability of
MaxSAT for solving correlation clustering. As benchmarks we used four
sets of similarity values between amino-acid sequences of proteins [248],
and seven different benchmark sets from the UCL machine learning repos-
itory [249]. The number of data points in the benchmark sets ranges
from 327 to 990. In this section we overview the most significant results
of the experiments using two of the four protein datasets, which we will
from now on refer to as protein 1 and 2. The protein 1 dataset contains
669 data points and the protein 2 dataset contains 586 data points. The
similarity values between the amino acid sequences in the sets were origi-
nally computed using BLAST [250], and the datasets were obtained from
http://www.paccanarolab.org/scps.

In our experiments we compare our MaxSAT encodings with other pre-
viously proposed exact approaches to correlation clustering: an the inte-
ger linear programming (ILP) model [168, 175] and an quadratic integer
programming (QIP) model [247]. All ILP and QIP models were solved
with IBM CPLEX (version 12.6) and Gurobi Optimizer (version 6.0) us-
ing default settings. In our evaluation, all MaxSAT instances were solved
using the 2013 evaluation version of MaxHS [121, 122]. The choice of
MaxHS was motivated by it performing better than Eva500 [115], MsUn-
Core BCD2 version [110, 112], OpenWBO [113, 117] and ILP2013 [251] in
preliminary experimentation. A per-instance time limit of 8 h was enforced
on all solver runs. In addition to exact approaches we also compare our
MaxSAT encodings with four polynomial-time inexact algorithms: Kwick-
Cluster (KC) [168], SDPC [252] and SCPS and CCA [248]. Out of these, the
KC and SDPC algorithms were proposed for the general correlation clus-
tering problem, while SCPS and CCA were proposed specifically to cluster
the protein datasets. The semidefinite programs of SDPC were solved with
the Matlab package SeDuMi 1.3 [253].

The first experiment we report on investigated the scalability of the
exact approaches with respect to the number of data points in the input
instance. For an increasing n, we formed a pruned similarity matrix Wn

by taking the n first data points of the protein 1 dataset. Figure 4.2 shows
the result of this test with n, the number of datapoints used, on the x-axis
and the time required to solve Wn on the y-axis. The reason for the QIP
model missing from the plot is that neither CPLEX nor Gurobi could solve
any of the instances within 8 h, an observation we verified using the non-
commercial SCIP [254] solver as well. From the figure we can clearly see
that the binary MaxSAT encoding scales the best and is the only one able

48 4 Maximum Satisfiability for Data Analysis

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600

S
o
lv

in
g
 T

im
e
 (

s
)

Number of Points

ILP-Gurobi

ILP-Cplex

MaxSAT-Unary

MaxSAT-Transitive

MaxSAT-Binary

Timeout

Figure 4.2: Point scalability of the exact approaches on the Protein 1
dataset (from Paper V).

to solve the full protein 1 dataset. Furthermore, many of the failed runs of
the other exact approaches were due to memory-outs, suggesting that the
algorithms would not terminate regardless of the time limit used.

The second experiment we report on was designed to investigate the
scalability and quality of solutions obtained by the binary MaxSAT encod-
ing with respect to the number of nonzero values in the similarity matrix.
For p ∈ {0.05, 0.10, . . . , 1}, we pruned the input similarity matrix W gener-
ated from either the protein 1 or protein 2 dataset by independently putting
each nonzero value W (i, j) to 0 with probability p. This approach results
in a similarity matrix W ′ where the expected number of nonzero entries is
(1− p) · 100% of the number of nonzero entries in W . As can be seen from
the top row of Figure 4.3, instances with fewer nonzero values are faster
to solve with MaxHS. While this is hardly surprising, a more interesting
observation of this experiment concerns the cost of the clusterings obtained
by solving sparse instances. The bottom row of Figure 4.3 shows the cost
Cost(W, clp) of the optimal clustering clp of the pruned instance W ′ with
respect to the complete instance W . The costs are plotted both for the ex-
act MaxSAT method and the approximative algorithms KC, SDPC, SCPS
and CCA. For both protein 1 and 2, we found that the clustering obtained
by MaxSAT invoked on an instance with 60% (p = 0.4) of the non-zero
values pruned was of lower cost than the clustering obtained by any of the
inexact algorithms when invoked on the complete instance. These results
suggest that first pruning a significant amount of the non-zero values of

4.1 Correlation Clustering 49

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o
lv

in
g
 T

im
e
 (

s
)

p

MaxSAT-Binary-Prot2

MaxSAT-Binary-Prot1

Timeout

 600

 700

 800

 900
 1000

 1200

 1500

 2100

 2700

 3500

 4500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

s
t

o
f

C
lu

s
te

ri
n

g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

 650

 800

 1000

 1300

 1700

 2300

 3000

 4000

 5000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

s
t

o
f

C
lu

s
te

ri
n

g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

Figure 4.3: Top: Evolution of running times. Bottom: Cost of the cluster-
ings obtained on sparse matrices. Bottom left: Protein 1 (669 datapoints),
bottom right: Protein 2 (586 datapoints).

the matrix and then solving the sparser matrix using the binary MaxSAT
encoding results in a competitive inexact approach to applications of cor-
relation clustering with medium-size instances as long as running times in
the order of a few minutes are acceptable. For applications where faster
running times are required or larger instances need to be solved, the other
inexact algorithms should be considered. All runs of KC, SDPC, SCPS and
CCA reported on in Paper V were completed within a few seconds.

In addition the experiments on unconstrained correlation clustering,
Paper V also includes results of experiments on the constrained correlation
clustering problem. Constrained correlation clustering extends the correla-
tion clustering problem by allowing extra hard constraints in the instance.
We report on experiments evaluating the effect of extra symmetry breaking
constraints as well as user specified must-link and cannot-link constraints
which might come from an domain expert. We found that in many settings,
adding extra constraints to the instance decreases the running time of the
MaxSAT solver while not significantly increasing the cost of the produced
clustering. As far as we are aware, adding similar constraints to the in-

50 4 Maximum Satisfiability for Data Analysis

exact algorithms is non-trivial. This further highlights the benefits of a
declarative approach to solving correlation clustering.

4.2 Bounded Treewidth Bayesian Network
Structure Learning

In Paper VI we propose and evaluate a MaxSAT encoding of the bounded
treewidth Bayesian network structure learning problem (BTBNSL). We
compare the resulting MaxSAT-based approach to the dynamic program-
ming algorithm of [198], which at the time of publication of Paper VI was
the only other known implementation of a solution algorithm to BTBNSL.
Since the publication of Paper VI there has been a continued interest in
BTBNSL [200, 255–257]. For example, an integer programming-based so-
lution algorithm was published concurrently with Paper VI [199].

Given a set of observations (data) D over some set X of random vari-
ables, the goal of Bayesian network structure learning is to compute a
Bayesian network structure which summarizes statistical dependencies and
independencies in the data. BTBNSL further restricts the set of feasible so-
lutions to networks that have treewidth less than some given bound k ∈ N.
In the score-based approach to BTBNSL, which we focus on, a scoring
function Score is precomputed based on the data. The scoring function
assigns a score Score(G) to each possible network structure G = (X,E).
The score measures how well G explains the data, an optimal network min-
imizes Score over all possible networks. Our MaxSAT encoding is appli-
cable under any decomposable scoring function. We give a precise definition
of a scoring function being decomposable in the next section and note here
that several commonly used scoring functions are decomposable, including
MDL [258], BD [259], and fNML [11]. In the rest of the section, we assume
that all scores are given as input and work with a generic decomposable
scoring function Score.

This section is organized as follows. In Section 4.2.1 we detail BTBNSL
and discuss how the treewidth of a Bayesian network can be computed.
The MaxSAT encoding of BTBNSL is presented in Section 4.2.2 and an
overview of the results of the experimental evaluation conducted in Paper
VI is given in Section 4.2.3.

4.2.1 Problem Setting

Let X = {X1, . . . , XN} be a set of N random variables, and for each
i = 1, . . . , N , let Pi = 2X\{Xi} be the set of candidate parent sets of Xi.

4.2 Bounded Treewidth Bayesian Network Structure Learning 51

An instance of BTBNSL consists of X, a bound k ∈ N, and for each i =
1, . . . , N the set Pi as well as a local score function si : Pi → N associating
a positive cost si(P) to each P ∈ Pi. Picking a single Pi ∈ Pi for each Xi

gives rise to the directed graph G = (X,E) in which (Xj , Xi) ∈ E if and
only if Xj ∈ Pi. We say that any Xj for which (Xj , Xi) ∈ E is a parent
of Xi, and Xi is a child of Xj . The graph G is a solution to the BTBNSL
instance if it is acyclic and has treewidth less than k, i.e., if TW(G) ≤ k.
The score Score(G) of a solution G is equal to the sum of the local scores
of each node and its parent set:

Score(G) =
∑

Xi∈X
si(Pi). (4.1)

As a side note, we say that any scoring function Score for which the value
Score(G) can be computed similarly to Equation 4.1, is decomposable. A
solution Go is optimal if Score(Go) ≤ Score(G) for any solution G.

Figure 4.4 illustrates the definition and computation of the treewidth of
a Bayesian network G = (X,E) [202, 260]. The treewidth of G is equal to
the treewidth of its (undirected) moralized graph Moral(G) = (X,EM),
obtained from G by adding an edge between any two nodes Xi and Xk

that share a common child and dropping the direction of all edges. Given
a linear ordering ≺ of X and two nodes Xi, Xj ∈ X, the node Xi is a
predecessor of Xj (under ≺) if Xi ≺ Xj and {Xi, Xj} ∈ EM . The undi-
rected triangulation ∆(Moral(G),≺) of Moral(G) under ≺ is obtained
by iteratively adding edges to EM between pairs Xj and Xk of nodes that
share a common predecessor. The edges are added until fix point. Finally,
the directed ordered graph ~∆(Moral(G),≺) is obtained from the result-
ing triangulation by ordering all edges according to ≺. The width of ≺ is
the maximum out-degree of any node of ~∆(Moral(G),≺). The treewidth
TW(G) of G is the minimum-width of all linear orderings of X.

4.2.2 MaxSAT Encoding of BTBNSL

In this section we overview our MaxSAT encoding of BTBNSL. Given an
instance of BTBNSL over X = {X1, . . . , XN} and a bound k ∈ N, the
encoding produces the MaxSAT instance Bayes(X, k) = (FXh , F

X
s , w).

For each variable Xi ∈ X and potential parent set S ∈ Pi, the instance
Bayes(X, k) includes a variable PSi . Given a solution τ to Bayes(X, k),
the graph Gτ = (X,Eτ) corresponding to τ has (Xj , Xi) ∈ Eτ if and
only if Xj ∈ S for a S ∈ Pi for which τ(PSi) = 1. The hard clauses of
Bayes(X, k) enforce that Gτ is a solution to X. The soft clauses ensure
that Cost(F , τ) = Score(Gτ).

52 4 Maximum Satisfiability for Data Analysis

X4

X2

X1

X3

X5

X6

(a)

X2

X4 X5

X6

X3

X1

(b)

X1

X2

X4 X5

X3

X6

(c)

X2

X1

X3

X5X4

X6

(d)

Figure 4.4: Computing the treewidth of a Bayesian network structure G =
(X = {X1, . . . , X6}, E). (a) G; (b) the moralized graph Moral(G) =
(X,M(E)) of G; (c) the triangulation ∆(Moral(G),≺) of the moralized
graph under the linear ordering X6 ≺ X2 ≺ X4 ≺ X1 ≺ X3 ≺ X5; (d) the
ordered graph ~∆(Moral(G),≺).

Next we overview the structure of Bayes(X, k). Compared to the
MaxSAT encodings for correlation clustering, the CNF conversions of the
constraints in Bayes(X, k) are somewhat involved. We refer the reader to
Paper VI for the details. The hard clauses FXh of Bayes(X, k) enforce that
the graph Gτ corresponding to a solution τ of Bayes(X, k) is a solution
to the BTBNSL instance X. The clauses in FXh represent a conjunction of
three different complex constraints:

FXh =
N∧

i=1

CNF(
∑

S∈Pi

PSi = 1) ∧ACYC(X) ∧TWCNF(X, k).

The constraint CNF(
∑

S∈Pi
PSi = 1) is satisfied if and only if Gτ has

a single parent set S for each Xi. In Paper VI, we used the improved
sequential counter [261] to encode this cardinality constraint to CNF.

The constraint ACYC(X) is satisfied if and only if the graph Gτ is
acyclic. The CNF encoding of ACYC(X) assigns a level number l(Xi) ∈ N
to each node Xi ∈ X and enforces that the level number of a parent Xj of a
node Xi satisfies l(Xj) ≤ l(Xi). In more detail, we model the level number

l(Xi) of each node Xi in binary using log2(N) variables b1i , . . . , b
log2(N)
i . We

enforce l(Xj) ≤ l(Xi) by modeling the statement “the most significant bit
in which the binary representations of l(Xi) and l(Xj) differ is 1 in l(Xi)”.

The constraint TWCNF(X, k) is satisfied if and only if TW(Gτ) ≤
k. The CNF translation of TWCNF(X, k) follows the SAT encoding for
computing the treewidth of a fixed graph presented in [261]. Essentially,

4.2 Bounded Treewidth Bayesian Network Structure Learning 53

we enforce the existence of a linear ordering of the variables in X that
has width at most k. This is enough to ensure that TW(Gτ) ≤ k as the
treewidth is equal to the minimum width over all possible orderings.

The soft clauses FXs contain a unit negation (¬PSi) with weight si(S)
for all i = 1, . . . , N and S ∈ Pi. These ensure that the cost incurred
by selecting S as a parent for Xi is si(S), as expected. These clauses
ensure that Cost(F , τ) = Score(Gτ) as required to make sure that the
Bayesian network structure Gτ corresponding to an optimal solution τ to
Bayes(X, k) is an optimal solution to BTBNSL.

4.2.3 Experimental Evaluation

In Paper VI we report on an experimental evaluation evaluating of the
applicability of MaxSAT for solving BTBNSL. As benchmark sets we used
eight well-known UCl datasets [249] over 9–29 random variables, as well
as two datasets (Adult and Housing) from [198]. Table 4.1 summarizes
the benchmark sets. For each benchmark, we used the (decomposable)
MDL scoring function [258]. We compare our MaxSAT encoding with the
dynamic programming (DP) algorithm for BTBNSL of [198], the only other
implementation of an exact algorithm for BTBNSL we were aware of at the
time. All MaxSAT instances were solved with the MaxHS [121] solver. A
per instance time limit of 8 h and memory limit of 30 GB were enforced on
all benchmarks and solver runs. We used k = 2, 3 and 4 as bounds for the
treewidth of the solution network.

Table 4.1 overviews the results of our experiment. For each treewidth
bound, the best running time to find an optimal solution is highlighted
in boldface. We observe that the dynamic programming approach is com-
petitive with our MaxSAT approach only for the smallest dataset with 9
variables. Apart from the multiple timeouts (“> 28 800”), we observe that
DP most often runs out of memory (“mo”) on the datasets with more
variables, especially for treewidth bounds greater than 2. In contrast, the
MaxSAT approach (MS) timeouts on only two instances, and, especially,
does not run out of memory. For a clear 2/3 majority of the instances,
MS produces an optimal solution within half-an-hour; and for half of the
instances within around 10 minutes.

54 4 Maximum Satisfiability for Data Analysis

Table 4.1: Running times in seconds of our MaxSAT-based approach (MS)
and the dynamic programming (DP) approach [198] for different UCI
datasets and treewidth bounds k = 2, 3, 4. Explanations: “mo” denotes
a memory out; N denotes the number of variables (nodes); #fails denotes
the number of times the memory or time limit was exceeded.

treewidth ≤ 2 treewidth ≤ 3 treewidth ≤ 4 #fails
Dataset N MS (s) DP (s) MS (s) DP (s) MS (s) DP (s) MS DP

Abalone 9 64 7 166 57 215 536 0 0
Housing 14 2 226 6 927 2 329 > 28 800 2 991 mo 0 2
Wine 14 27 6 924 22 > 28 800 171 mo 0 2
Adult 15 998 > 28 800 1 623 > 28 800 1 782 mo 0 3
Voting 17 22 909 > 28 800 26 419 mo > 28 800 mo 1 3
Zoo 17 410 > 28 800 412 mo 105 mo 0 3
Hepatitis 20 315 mo 100 mo 1 164 mo 0 3
Heart 23 1 198 mo 2 186 mo 41 mo 0 3
Horse 28 192 mo > 28 800 mo 544 mo 1 3
Flag 29 1 418 mo 11 148 mo 1 356 mo 0 3

#fails: 0 7 1 9 1 9 2 25

Chapter 5

Conclusion

This thesis contributed to declarative methods for exactly solving combi-
natorial optimization problems. We focused on MaxSAT encodings and
re-encodings of combinatorial optimization problems with the aim of solv-
ing instances that correspond to real-world applications.

In Papers I-IV we studied MaxSAT solving technology in the form of
solver independent re-encodings, i.e., preprocessing, of MaxSAT instances
F to other instances pre(F) with the aim of making the time required to
re-encode F and solve pre(F) less than the time required to solve F . In
Papers I and II we further developed the previously proposed labeled CNF
framework for MaxSAT preprocessing. In Paper I we showed that the extra
label variables introduced during label-based preprocessing can be reused as
assumption variables in many core-guided and implicit hitting set MaxSAT
solvers, thus avoiding all variables that otherwise would be introduced by
the solvers. We also showed that reusing labels as assumptions is necessary
in order to improve the empirical performance of LMHS, an implicit hitting
set based MaxSAT solver.

In Paper II we generalized the idea proposed in Paper I further by show-
ing that some literals from the input MaxSAT instance itself can be used
as labels during preprocessing and assumptions during solving. We demon-
strated that such literals can be identified using simple pattern matching,
resulting in a procedure we call group detection. Our empirical results in-
dicate that group detection identifies a significant fraction of the literals
in the evaluation benchmarks and that reusing detected literals results in
modest further improvements to the empirical performance of LMHS.

Even though the ideas presented in Papers I and II are theoretically ap-
plicable to both core-guided and implicit hitting set based MaxSAT solvers,
in practice we observed a more significant benefit of label-based preprocess-
ing in conjunction with implicit hitting set based MaxSAT solvers. The

55

56 5 Conclusion

relationship between label-based preprocessing and the formula rewriting
performed by core-guided solvers remains an open and interesting question.
A better understanding of the formula rewriting could result in improved
performance of core-guided solvers and label-based preprocessing. Another
approach to further improving the performance label-based preprocessing
in SAT-based MaxSAT solvers could be via some form of inprocessing, i.e
via preprocessing steps interleaved with the execution of the solving algo-
rithm. It could also be interesting to investigate if similar ideas could be
used in order to develop preprocessing in constraint programming [262, 263]
or other constraint optimization paradigms.

In Paper III we presented the results of a theoretical analysis on the
effect of label-based preprocessing with SAT-based preprocessing rules on
core-guided and implicit hitting set based MaxSAT solvers. We showed
that preprocessing can not decrease the number of iterations (SAT solver
calls) required by either algorithm, but can help them avoid some long ex-
ecutions. As discussed at the end of Section 3.3, the results of Paper III
highlight some potentially beneficial approaches to the further development
of MaxSAT preprocessing techniques. Since preprocessing has limited ef-
fect on the number of iterations of MaxSAT solvers, the overall benefit of
preprocessing on MaxSAT solving could be further improved by developing
preprocessing techniques that allow faster core-extraction from unsatisfiable
instances. Furthermore, even though label-based preprocessing with SAT-
based preprocessing rules does not affect the MCS structure of MaxSAT
instances, it can still affect the solutions corresponding to the MCSes. A
better understanding of the effect that preprocessing has on the minimal
solutions that correspond to optimal MCSes could result in improved pre-
processing techniques.

It should also be mentioned that the base of the results presented in
Paper III (Corollary 1 in Section 3.3) is actually stronger than what is re-
quired for sound MaxSAT preprocessing. An argument similar to the proof
of Theorem 4 can be used to show that label-based preprocessing with
SAT-based preprocessing rules preserves all minimal solutions to MaxSAT
instances, not only the optimal ones. Thus preprocessing rules that are
sound but do not satisfy Corollary 1 could affect the number of iterations
of SAT-based MaxSAT solvers more significantly. Finally, it should be
noted that the abstraction of core-guided solvers considered Paper III does
not cover more recently proposed solvers, specifically the ones that intro-
duce soft cardinality constraints. The effect of soft cardinality constraints
on the MUS structure of MaxSAT instances remains an interesting open
question. Developing a better understanding of how the formula rewrit-

57

ings used by core-guided solvers affect the MCSes of the instance could
potentially improve both MaxSAT preprocessing and MaxSAT solving.

As the final contribution to MaxSAT preprocessing of this thesis, we
proposed subsumed label elimination (SLE) in Paper IV. We showed that
SLE is theoretically orthogonal to the SAT-based preprocessing rules in
the sense that using SLE together with the SAT-based preprocessing rules
can result in additional clauses and variables removed during preprocessing.
We also demonstrated that, even though SLE is sound for MaxSAT, it does
not preserve all MCSes of MaxSAT instances. Hence, an interesting further
research direction would be to investigate the effect that SLE has on the
number of iterations of SAT-based MaxSAT solvers. We hypothesize that
the effect of SLE is similar to that of SAT-based preprocessing rules, but do
not have a proof at this time. In addition to the theoretical results, Paper
IV also demonstrated empirically that using SLE together with SAT-based
preprocessing rules results in more variables and clauses being removed dur-
ing preprocessing and in a decrease of the overall solving time of LMHS.
These observations motivate further development of MaxSAT-specific pre-
processing rules that make direct use of the label variables and weights of
the soft clauses.

Papers V and VI proposed MaxSAT encodings of two data analy-
sis tasks: correlation clustering and bounded treewidth Bayesian network
structure learning. We empirically compared our MaxSAT-based solution
approach with other, previously proposed exact algorithms. For both prob-
lems, we observed that the MaxSAT-based approach was faster and more
memory efficient than the other considered approaches on several bench-
marks. After the publication of Papers V and VI we have compiled a set of
MaxSAT benchmarks of both correlation clustering and BTBNSL to each
MaxSAT evaluation organized since 2015, i.e., the 2015, 2016 and 2017
evaluations. Interestingly, the solver that was most successful on those
benchmarks in each evaluation was implicit hitting set based, an observa-
tion we made already in the original publications. This seems to suggest
that these benchmarks exhibit some form of specific structure which is more
easily exploited implicit hitting set based solvers compared to core-guided
solvers. One possible explanation is the high diversity of weights of the soft
clauses in the instances, which means that core-guided solvers need to per-
form a significant amount of clause cloning when solving them. A deeper
understanding of the similarities and differences between core-guided and
implicit hitting set based solvers remains an interesting open question for
developing more effective encodings and MaxSAT solvers for combinatorial
optimization problems at large.

58 5 Conclusion

References

[1] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Prentice-Hall, Inc., 1982.

[2] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 19, pages 613–631. IOS Press,
2009.

[3] Richard Bellman. Dynamic programming treatment of the travelling
salesman problem. Journal of the ACM, 9(1):61–63, 1962.

[4] Nico L.J. Ulder, Emile H.L. Aarts, Hans-Jürgen Bandelt, Peter J.M.
Van Laarhoven, and Erwin Pesch. Genetic local search algorithms for
the traveling salesman problem. In Proceedings of the 1st Workshop
on the Parallel Problem Solving from Nature, volume 496 of Lecture
Notes in Computer Science, pages 109–116. Springer, 1990.

[5] Mauricio G.C. Resende and Panos M. Pardalos. Handbook of Opti-
mization in Telecommunications. Springer Science & Business Media,
2008.

[6] Zhibin Wang, Chongzhi Zang, Jeffrey A. Rosenfeld, Dustin E.
Schones, Artem Barski, Suresh Cuddapah, Kairong Cui, Tae-Young
Roh, Weiqun Peng, Michael Q. Zhang, and Keji Zhao. Combinato-
rial patterns of histone acetylations and methylations in the human
genome. Nature Genetics, 40:897–903, 2008.

[7] David Allouche, Isabelle André, Sophie Barbe, Jessica Davies, Simon
de Givry, George Katsirelos, Barry O’Sullivan, Steven David Prest-
wich, Thomas Schiex, and Seydou Traoré. Computational protein
design as an optimization problem. Artificial Intelligence, 212:59–79,
2014.

59

60 References

[8] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Con-
strained clustering by constraint programming. Artificial Intelligence,
244:70–94, 2017.

[9] Ian Davidson, S. S. Ravi, and Leonid Shamis. A SAT-based frame-
work for efficient constrained clustering. In Proceedings of the SIAM
International Conference on Data Mining, pages 94–105. SIAM, 2010.

[10] Sean Gilpin and Ian Davidson. A flexible ILP formulation for hierar-
chical clustering. Artificial Intelligence, 244:95–109, 2017.

[11] Tomi Silander, Teemu Roos, Petri Kontkanen, and Petri Myllymäki.
Factorized normalized maximum likelihood criterion for learning
Bayesian network structures. In Proceedings of the 4th European
Workshop on Probabilistic Graphical Models, pages 257–272, 2008.

[12] Dag Sonntag, Matti Järvisalo, José M. Peña, and Antti Hyttinen.
Learning optimal chain graphs with answer set programming. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intel-
ligence, pages 822–831. AUAI Press, 2015.

[13] Antti Hyttinen, Paul Saikko, and Matti Järvisalo. A core-guided
approach to learning optimal causal graphs. In Proceedings of the
26th International Joint Conference on Artificial Intelligence, pages
645–651. AAAI Press, 2017.

[14] Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo. Op-
timal status enforcement in abstract argumentation. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence,
pages 1216–1222. IJCAI/AAAI Press, 2016.

[15] Tias Guns, Anton Dries, Siegfried Nijssen, Guido Tack, and Luc
De Raedt. MiningZinc: A declarative framework for constraint-based
mining. Artificial Intelligence, 244:6–29, 2017.

[16] Tias Guns, Siegfried Nijssen, and Luc De Raedt. K-pattern set min-
ing under constraints. IEEE Transactions on Knowledge and Data
Engineering, 25(2):402–418, 2013.

[17] Benjamin Négrevergne, Anton Dries, Tias Guns, and Siegfried Ni-
jssen. Dominance programming for itemset mining. In Proceedings
of the 13th International Conference on Data Mining, pages 557–566.
IEEE Computer Society, 2013.

References 61

[18] John O. R. Aoga, Tias Guns, and Pierre Schaus. An efficient al-
gorithm for mining frequent sequence with constraint programming.
In Machine Learning and Knowledge Discovery in Databases, pages
315–330, Cham, 2016. Springer International Publishing.

[19] Thomas Hofmann and Joachim M. Buhmann. Pairwise data clus-
tering by deterministic annealing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(1):1–14, 1997.

[20] Kerstin Bunte, Matti Järvisalo, Jeremias Berg, Petri Myllymäki,
Jaakko Peltonen, and Samuel Kaski. Optimal neighborhood preserv-
ing visualization by maximum satisfiability. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, pages 1694–1700. AAAI
Press, 2014.

[21] Sigurdur Olafsson, Xiaonan Li, and Shuning Wu. Operations re-
search and data mining. European Journal of Operational Research,
187(3):1429–1448, 2008.

[22] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning:
Theory & Practice. Morgan Kaufmann Publishers Inc., 2004.

[23] Jussi Rintanen. Planning with SAT, admissible heuristics and A*. In
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pages 2015–2020. AAAI Press, 2011.

[24] Lei Zhang and Fahiem Bacchus. MaxSAT heuristics for cost optimal
planning. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence. AAAI Press, 2012.

[25] Luis C. Rabelo and Albert Jones. Job shop scheduling. In Encyclope-
dia of Operations Research and Management Science, pages 817–830.
Springer, 2013.

[26] Mirko Stojadinovic. Air traffic controller shift scheduling by reduction
to CSP, SAT and SAT-related problems. In Proceedings of the 20th
International Conference on Principles and Practice of Constraint
Programming, volume 8656 of Lecture Notes in Computer Science,
pages 886–902. Springer, 2014.

[27] Miquel Bofill, Marc Garcia, Josep Suy, and Mateu Villaret. MaxSAT-
based scheduling of B2B meetings. In Proceedings of the 12th Inter-
national Conference on the Integration of AI and OR Techniques in
Constraint Programming, volume 9075 of Lecture Notes in Computer
Science, pages 65–73, 2015.

62 References

[28] Jan K. Lenstra, A.H.G. Rinnooy Kan, and Peter Brucker. Complexity
of machine scheduling problems. Annals of Discrete Mathematics,
1:343–362, 1977.

[29] Marius M. Solomon. Algorithms for the vehicle routing and schedul-
ing problems with time window constraints. Operations Research,
35(2):254–265, 1987.

[30] Derya E. Akyol and G. Mirac Bayhan. A review on evolution of
production scheduling with neural networks. Computers & Industrial
Engineering, 53(1):95 – 122, 2007.

[31] Hui Xu, Rob A. Rutenbar, and Karem A. Sakallah. Sub-SAT: a for-
mulation for relaxed Boolean satisfiability with applications in rout-
ing. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 22(6):814–820, 2003.

[32] Samuel S. Brito, George H.G. Fonseca, Tulio A.M. Toffolo,
Haroldo G. Santos, and Marcone J.F. Souza. A SA-VNS approach
for the high school timetabling problem. Electronic Notes in Discrete
Mathematics, 39:169–176, 2012.

[33] Andrea Schaerf. A survey of automated timetabling. Artificial Intel-
ligence Review, 13(2):87–127, 1999.

[34] Edmund K. Burke, Barry McCollum, Amnon Meisels, Sanja Petro-
vic, and Rong Qu. A graph-based hyper-heuristic for educational
timetabling problems. European Journal of Operational Research,
176(1):177–192, 2007.

[35] Alain Hertz. Tabu search for large scale timetabling problems. Eu-
ropean Journal of Operational Research, 54(1):39–47, 1991.

[36] Roberto J.A. Achá and Robert Nieuwenhuis. Curriculum-based
course timetabling with SAT and MaxSAT. Annals of Operations
Research, 218(1):71–91, 2014.

[37] Manu Jose and Rupak Majumdar. Cause clue clauses: Error lo-
calization using maximum satisfiability. ACM SIGPLAN Notices,
46(6):437–446, 2011.

[38] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik.
Post-silicon fault localisation using maximum satisfiability and back-
bones. In Proceedings of the 11th International Conference on Formal
Methods in Computer-Aided Design, pages 63–66. FMCAD Inc, 2011.

References 63

[39] Morten Mossige, Arnaud Gotlieb, and Hein Meling. Deploying con-
straint programming for testing ABB’s painting robots. AI Magazine,
38(2):94–96, 2017.

[40] Javier Barbas and Angel Marin. Maximal covering code multiplexing
access telecommunication networks. European Journal of Operational
Research, 159(1):219 – 238, 2004.

[41] Dimitris Bertsimas, Guglielmo Lulli, and Amedeo R. Odoni. An inte-
ger optimization approach to large-scale air traffic flow management.
Operations Research, 59(1):211–227, 2011.

[42] Arthur Richards and Jonathan P. How. Aircraft trajectory plan-
ning with collision avoidance using mixed integer linear programming.
In Proceedings of the 2002 American Control Conference, volume 3,
pages 1936–1941. IEEE, 2002.

[43] Pey-Chang Lin and Sunil Khatri. Application of MaxSAT-based
ATPG to optimal cancer therapy design. BMC Genomics, 13(6),
2012.

[44] Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. On the
construction of data aggregation tree with minimum energy cost in
wireless sensor networks: NP-completeness and approximation algo-
rithms. IEEE Transactions on Computers, 65(10):3109–3121, 2016.

[45] Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Approximation
algorithms for optimal decision trees and adaptive TSP problems.
Mathematics of Operations Research, 42(3):876–896, 2017.

[46] Anton Milan, Seyed Hamid Rezatofighi, Ravi Garg, Anthony R. Dick,
and Ian D. Reid. Data-driven approximations to NP-hard problems.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
pages 1453–1459. AAAI Press, 2017.

[47] David S. Johnson. Approximation algorithms for combinatorial prob-
lems. In Proceedings of the 5th Annual ACM Symposium on Theory
of Computing, pages 38–49. ACM, 1973.

[48] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New
York, Inc., 2001.

[49] Richard E. Korf. Depth-first iterative-deepening: An optimal admis-
sible tree search. Artificial Intelligence, 27:97–109, 1985.

64 References

[50] Jordan Thayer and Wheeler Ruml. Anytime heuristic search: Frame-
works and algorithms. In Proceedings of the 3rd Annual Symposium
on Combinatorial Search, pages 121–128. AAAI Press, 2010.

[51] Hisao Ishibuchi and Takashi Yamamoto. Fuzzy rule selection by
multi-objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy sets and Systems, 141(1):59–88, 2004.

[52] Eric A. Hansen and Rong Zhou. Anytime heuristic search. Journal
of Artificial Intelligence Research, 28:267–297, 2007.

[53] Gerhard J. Woeginger. Exact Algorithms for NP-Hard Problems: A
Survey, pages 185–207. Springer Berlin Heidelberg, 2003.

[54] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery
in Bayesian networks. Journal of Machine Learning Research, 5:549–
573, 2004.

[55] Fedor V. Fomin and Petteri Kaski. Exact exponential algorithms.
Communications of the ACM, 56(3):80–88, 2013.

[56] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2010.

[57] George L. Nemhauser and Laurence A. Wolsey. Integer and combina-
torial optimization. Wiley Interscience Series in Discrete Mathematics
and Optimization. Wiley, 1988.

[58] T.C. Hu and Andrew B. Kahng. Linear and integer programming
in practice. In Linear and Integer Programming Made Easy, pages
117–130. Springer, 2016.

[59] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of
Constraint Programming. Elsevier, 2006.

[60] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3-4):241–273, 1999.

[61] Piero Bonatti, Francesco Calimeri, Nicola Leone, and Francesco
Ricca. Answer set programming. In A 25-Year Perspective on Logic
Programming, pages 159–182. Springer-Verlag, 2010.

References 65

[62] Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint program-
ming for data mining and machine learning. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence. AAAI Press, 2010.

[63] Ronald de Haan, Martin Kronegger, and Andreas Pfandler. Fixed-
parameter tractable reductions to SAT for planning. In Proceedings
of the 24th International Joint Conference on Artificial Intelligence,
pages 2897–2903. AAAI Press, 2015.

[64] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel.
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003.

[65] Mikoláš Janota, William Klieber, João Marques-Silva, and Edmund
Clarke. Solving QBF with counterexample guided refinement. Arti-
ficial Intelligence, 234:1–25, 2016.

[66] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Com-
puting, pages 151–158. ACM, 1971.

[67] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

[68] James F. Campbell. Integer programming formulations of discrete
hub location problems. European Journal of Operational Research,
72(2):387–405, 1994.

[69] Michela Milano and Francesca Rossi. Constraint programming. In-
telligenza Artificiale, 3(1-2):28–34, 2006.

[70] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodŕıguez-
Carbonell, and Albert Rubio. Proving non-termination using
MaxSMT. In Proceedings of the 26th International Conference on
Computer Aided Verification, volume 8559 of Lecture Notes in Com-
puter Science, pages 779–796, 2014.

[71] Roberto Sebastiani and Patrick Trentin. On optimization modulo
theories, MaxSMT and sorting networks. In Proceedings of the 23rd
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 10206 of Lecture Notes in Com-
puter Science, pages 231–248. Springer, 2017.

66 References

[72] Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A tool for
optimization modulo theories. In Proceedings of the 27th Interna-
tional Conference on Computer Aided Verification, volume 9206 of
Lecture Notes in Computer Science, pages 447–454. Springer, 2015.

[73] Tomas Balyo, Marijn Heule, and Matti Järvisalo. SAT Competition
2016: Recent developments. In Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence, pages 5061–5063. AAAI Press, 2017.

[74] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon.
The international SAT solver competitions. AI Magazine, 33(1):89–
92, 2012.

[75] Jeremias Berg and Matti Järvisalo. Cost-optimal constrained correla-
tion clustering via weighted partial maximum satisfiability. Artificial
Intelligence, 244:110–142, 2017.

[76] Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning opti-
mal bounded treewidth Bayesian networks via maximum satisfiabil-
ity. In Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics, volume 33 of JMLR Workshop and Con-
ference Proceedings, pages 86–95. JMLR, 2014.

[77] Antti Hyttinen, Patrik O. Hoyer, Frederick Eberhardt, and Matti
Järvisalo. Discovering cyclic causal models with latent variables: A
general SAT-based procedure. In Proceedings of the 29th Conference
on Uncertainty in Artificial Intelligence. AUAI Press, 2013.

[78] James D. Park. Using weighted MaxSAT engines to solve MPE. In
Proceedings of the 18th National Conference on Artificial Intelligence,
pages 682–687. AAAI Press / The MIT Press, 2002.

[79] Tian Sang, Paul Beame, and Henry A. Kautz. A dynamic approach
for MPE and weighted MaxSAT. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, pages 173–179,
2007.

[80] Ana Graça, Inês Lynce, João Marques-Silva, and Arlindo L. Oliveira.
Efficient and accurate haplotype inference by combining parsimony
and pedigree information. In Revised Selected Papers of the 4th Inter-
national Conference on Algebraic and Numeric Biology, volume 6479
of Lecture Notes in Computer Science, pages 38–56. Springer, 2012.

References 67

[81] Ana Graça, João Marques-Silva, Inês Lynce, and Arlindo L. Oliveira.
Haplotype inference with pseudo-Boolean optimization. Annals of
Operations Research, 184(1):137–162, 2011.

[82] Inês Lynce and João Marques-Silva. Haplotype inference with
Boolean satisfiability. International Journal on Artificial Intelligence
Tools, 17(2):355–387, 2008.

[83] Xiaojuan Liao, Miyuki Koshimura, Hiroshi Fujita, and Ryuzo
Hasegawa. MaxSAT encoding for MC-net-based coalition struc-
ture generation problem with externalities. IEICE Transactions, 97-
D(7):1781–1789, 2014.

[84] Jeremias Berg and Matti Järvisalo. SAT-based approaches to
treewidth computation: An evaluation. In Proceedings of of the 26th
International Conference on Tools with Artificial Intelligence, pages
328–335. IEEE Computer Society, 2014.

[85] João Guerra and Inês Lynce. Reasoning over biological networks
using maximum satisfiability. In Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming,
volume 7514 of Lecture Notes in Computer Science, pages 941–956.
Springer, 2012.

[86] Dawn M. Strickland, Earl R. Barnes, and Joel S. Sokol. Optimal
protein structure alignment using maximum cliques. Operations Re-
search, 53(3):389–402, 2005.

[87] Tuomas Sandholm. An algorithm for optimal winner determination
in combinatorial auctions. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence, pages 542–547. Morgan
Kaufmann, 1999.

[88] João Marques-Silva, Mikolas Janota, Alexey Ignatiev, and Antonio
Morgado. Efficient model based diagnosis with maximum satisfia-
bility. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence, pages 1966–1972. AAAI Press, 2015.

[89] Alessandro Bezerra Trindade, Renato De Faria Degelo, Edilson
Galvão Dos Santos Junior, Hussama Ibrahim Ismail, Helder Cruz Da
Silva, and Lucas Carvalho Cordeiro. Multi-core model checking and
maximum satisfiability applied to hardware-software partitioning. In-
ternational Journal of Embedded Systems, 9(6):570–582, 2017.

68 References

[90] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat
Anand. Automated synthesis of semantic malware signatures using
maximum satisfiability. In Proceedings of the 24th Annual Network
and Distributed System Security Symposium. The Internet Society,
2017.

[91] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H.
Liffiton, and Karem A. Sakallah. Improved design debugging using
maximum satisfiability. In Proceedings of the 7th International Con-
ference on Formal Methods in Computer-Aided Design, pages 13–19.
IEEE Computer Society, 2007.

[92] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. Maximum
satisfiability in software analysis: Applications and techniques. In
Proceedings of the 29th International Conference on Computer Aided
Verification, volume 10426 of Lecture Notes in Computer Science,
pages 68–94. Springer, 2017.

[93] Christian Muise, J. Christopher Beck, and Sheila A. McIlraith. Opti-
mal partial-order plan relaxation via MaxSAT. Journal of Artificial
Intelligence Research, 57:113–149, 2016.

[94] Marcel Kevin Tiepelt and Tilak Raj Singh. Finding pre-production
vehicle configurations using a MaxSAT framework. In Proceedings of
the 18th International Configuration Workshop, page 117. École des
Mines d’Albi-Carmaux, 2016.

[95] Carlos Ansótegui, Idelfonso Izquierdo, Felip Manyà, and José Torres-
Jiménez. A MaxSAT-based approach to constructing optimal cov-
ering arrays. In Proceedings of the 16th International Conference
of the Catalan Association for Artificial Intelligence, volume 256 of
Frontiers in Artificial Intelligence and Applications, pages 51–59. IOS
Press, 2013.

[96] Josep Argelich, Daniel Le Berre, Inês Lynce, João Marques-Silva,
and Pascal Rapicault. Solving Linux upgradeability problems us-
ing Boolean optimization. In Proceedings of the 1st International
Workshop on Logics for Component Configuration, volume 29 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 11–22.
Open Publishing Association, 2010.

[97] Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas G.
Veneris. Automated design debugging with maximum satisfiability.

References 69

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 29(11):1804–1817, 2010.

[98] Inês Lynce and João Marques-Silva. Restoring CSP satisfiability with
MaxSAT. Fundamenta Informaticae, 107(2-3):249–266, 2011.

[99] Xiaojuan Liao, Hui Zhang, and Miyuki Koshimura. Reconstructing
AES key schedule images with SAT and MaxSAT. IEICE Transac-
tions on Information and Systems, 99(1):141–150, 2016.

[100] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. The first
and second MaxSAT evaluations. Journal on Satisfiability, Boolean
Modeling and Computation, 4(2-4):251–278, 2008.

[101] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. MaxSAT
Evaluations. http://maxsat.ia.udl.cat/.

[102] Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo,
and Ruben Martins. MaxSAT Evaluation 2017, 2017.
http://mse17.cs.helsinki.fi/.

[103] Antonio Morgado, Federico Heras, and João Marques Silva. Model-
guided approaches for MaxSAT solving. In Proceedings of the 25th
IEEE International Conference on Tools with Artificial Intelligence,
pages 931–938. IEEE Computer Society, 2013.

[104] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo
Hasegawa. QMaxSAT: A partial MaxSAT solver. Journal of Sat-
isfiability, Boolean Modeling and Computation, 8(1/2):95–100, 2012.

[105] Daniel Le Berre and Anne Parrain. The SAT4J library, release 2.2,
system description. Journal on Satisfiability, Boolean Modeling and
Computation, 7:59–64, 2010.

[106] Carlos Ansótegui and Joel Gabàs. WPM3: An (in) complete algo-
rithm for weighted partial MaxSAT. Artificial Intelligence, 250:37–57,
2017.

[107] João Marques-Silva and Jordi Planes. Algorithms for maximum satis-
fiability using unsatisfiable cores. In Proceedings of Design, Automa-
tion and Test in Europe, pages 408–413. ACM, 2008.

[108] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Improving
linear search algorithms with model-based approaches for MaxSAT
solving. Journal of Experimental & Theoretical Artificial Intelligence,
27(5):673–701, 2015.

70 References

[109] Vasco M. Manquinho, João Marques-Silva, and Jordi Planes. Algo-
rithms for weighted Boolean optimization. In Proceedings of the 12th
International Conference on Theory and Applications of Satisfiability
Testing, volume 5584 of Lecture Notes in Computer Science, pages
495–508. Springer, 2009.

[110] Federico Heras, Antonio Morgado, and João Marques-Silva. Core-
guided binary search algorithms for maximum satisfiability. In Pro-
ceedings of the 25th AAAI Conference on Artificial Intelligence.
AAAI Press, 2011.

[111] António Morgado, Carmine Dodaro, and João Marques-Silva. Core-
guided MaxSAT with soft cardinality constraints. In Proceedings of
the 20th International Conference on Principles and Practice of Con-
straint Programming, volume 8656 of Lecture Notes in Computer Sci-
ence, pages 564–573. Springer, 2014.

[112] António Morgado, Federico Heras, and João Marques-Silva. Improve-
ments to core-guided binary search for MaxSAT. In Proceedings of the
15th International Conference on Theory and Applications of Satis-
fiability Testing, volume 7317 of Lecture Notes in Computer Science,
pages 284–297. Springer, 2012.

[113] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês
Lynce. Incremental cardinality constraints for MaxSAT. In Proceed-
ings of the 20th International Conference on Principles and Practice
of Constraint Programming, volume 8656 of Lecture Notes in Com-
puter Science, pages 531–548. Springer, 2014.

[114] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes,
and João Marques-Silva. Iterative and core-guided MaxSAT solving:
A survey and assessment. Constraints, 18(4):478–534, 2013.

[115] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using
core-guided MaxSAT resolution. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 2717–2723. AAAI Press,
2014.

[116] Zhaohui Fu and Sharad Malik. On solving the partial MaxSAT prob-
lem. In Proceedings of the 9th International Conference on The-
ory and Applications of Satisfiability Testing, volume 4121 of Lecture
Notes in Computer Science, pages 252–265. Springer, 2006.

References 71

[117] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO:
A modular MaxSAT solver. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing, vol-
ume 8561 of Lecture Notes in Computer Science, pages 438–445.
Springer, 2014.

[118] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artificial Intelligence, 196:77 – 105, 2013.

[119] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A MaxSAT
algorithm using cardinality constraints of bounded size. In Proceed-
ings of the 24th International Conference on Artificial Intelligence,
pages 2677–2683. AAAI Press, 2015.

[120] Nikolaj Bjørner and Nina Narodytska. Maximum satisfiability using
cores and correction sets. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, pages 246–252. AAAI
Press, 2015.

[121] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP
solvers in MaxSAT. In Proceedings of the 16th International Con-
ference on Theory and Applications of Satisfiability Testing, volume
7962 of Lecture Notes in Computer Science, pages 166–181. Springer,
2013.

[122] Jessica Davies and Fahiem Bacchus. Solving MaxSAT by solving a
sequence of simpler SAT instances. In Proceedings of the 17th Inter-
national Conference on Principles and Practice of Constraint Pro-
gramming, volume 6876 of Lecture Notes in Computer Science, pages
225–239. Springer, 2011.

[123] Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: a SAT-IP
hybrid MaxSAT solver. In Proceedings of the 19th International Con-
ference on Theory and Applications of Satisfiability Testing, volume
9710 of Lecture Notes in Computer Science, pages 539–546. Springer,
2016.

[124] Brian Borchers and Judith Furman. A two-phase exact algorithm for
MaxSAT and weighted MaxSAT problems. Journal of Combinatorial
Optimization, 2(4):299–306, 1998.

[125] Chu Min Li, Felip Manya, and Jordi Planes. Exploiting unit propaga-
tion to compute lower bounds in branch and bound MaxSAT solvers.
In Proceedings of the 11th International Conference on Principles and

72 References

Practice of Constraint Programming, volume 3709 of Lecture Notes
in Computer Science, pages 403–414. Springer, 2005.

[126] Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm
based on MaxSAT for the maximum clique problem. In Proceedings
of the 24th AAAI Conference on Artificial Intelligence, volume 10,
pages 128–133. AAAI Press, 2010.

[127] André Abramé and Djamal Habet. AHMAXSAT: Description and
evaluation of a branch and bound MaxSAT solver. Journal on Satis-
fiability, Boolean Modeling and Computation, 9:89–128, 2015.

[128] Yan-Li Liu, Chu-Min Li, Kun He, and Yi Fan. Breaking cycle struc-
ture to improve lower bound for MaxSAT. In Proceedings of the 10th
International Workshop on Frontiers in Algorithmics, volume 9711 of
Lecture Notes in Computer Science, pages 111–124. Springer, 2016.

[129] André Abramé and Djamal Habet. Learning nobetter clauses in
MaxSAT branch and bound solvers. In Proceedings of the 28th Inter-
national Conference on Tools with Artificial Intelligence, IEEE Com-
puter Society, pages 452–459, 2016.

[130] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Ed-
ward C. Sewell. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete Optimiza-
tion, 19:79–102, 2016.

[131] Chu Min Li, Felip Manya, and Jordi Planes. New inference rules for
MaxSAT. Journal of Artificial Intelligence Research, 30(1):321–359,
2007.

[132] Gintaras Palubeckis. A new bounding procedure and an improved
exact algorithm for the Max-2-SAT problem. Applied Mathematics
and Computation, 215(3):1106–1117, 2009.

[133] Zhao Xing and Weixiong Zhang. MaxSolver: An efficient exact al-
gorithm for (weighted) maximum satisfiability. Artificial intelligence,
164(1-2):47–80, 2005.

[134] Han Lin, Kaile Su, and Chu Min Li. Within-problem learning for
efficient lower bound computation in MaxSAT solving. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence, pages 351–
356. AAAI Press, 2008.

References 73

[135] Anton Belov, António Morgado, and João Marques-Silva. SAT-based
preprocessing for MaxSAT. In Proceedings of the 19th International
Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, volume 8312 of Lecture Notes in Computer Science, pages
96–111. Springer, 2013.

[136] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation cluster-
ing. Machine Learning, 56(1-3):89–113, 2004.

[137] Judea Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann Publishers Inc., 1988.

[138] Gal Elidan and Stephen Gould. Learning bounded treewidth Bayesian
networks. Journal of Machine Learning Research, 9:2699–2731, 2008.

[139] Martin W. P. Savelsbergh. Preprocessing and probing techniques
for mixed integer programming problems. INFORMS Journal on
Computing, 6(4):445–454, 1994.

[140] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules.
In Proceedings of the 6th International Joint Conference on Auto-
mated Reasoning, volume 7364 of Lecture Notes in Computer Science,
pages 355–370. Springer, 2012.

[141] Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Proceedings of the 8th Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing, volume 3569 of Lecture Notes in Computer Science, pages 61–75.
Springer, 2005.

[142] Marijn Heule, Matti Järvisalo, and Armin Biere. Covered clause
elimination. In Short papers for the 17th International Conference
on Logic for Programming Artificial Intelligence, and Reasoning, vol-
ume 13 of EPiC Series in Computing, pages 41–46. EasyChair, 2013.

[143] Cédric Piette, Youssef Hamadi, and Lakhdar Säıs. Vivifying proposi-
tional clausal formulae. In Proceedings of the 18th European Confer-
ence on Artificial Intelligence, volume 178 of Frontiers in Artificial
Intelligence and Applications, pages 525–529. IOS Press, 2008.

[144] Matti Järvisalo and Armin Biere. Reconstructing solutions after
blocked clause elimination. In Proceedings of the 13th International
Conference on Theory and Applications of Satisfiability Testing, vol-
ume 6175 of Lecture Notes in Computer Science, pages 340–345.
Springer, 2010.

74 References

[145] Inês Lynce and João Marques-Silva. Probing-based preprocessing
techniques for propositional satisfiability. In Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence,
pages 105–110. IEEE Computer Society, 2003.

[146] Fahiem Bacchus and Jonathan Winter. Effective preprocessing with
hyper-resolution and equality reduction. In Selected Revised Papers
of the 6th International Conference on Theory and Applications of
Satisfiability Testing, volume 2919 of Lecture Notes in Computer Sci-
ence, pages 341–355. Springer, 2004.

[147] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non-
increasing variable elimination resolution for preprocessing SAT in-
stances. In Online Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing, pages 276–291.
Springer, 2004.

[148] Roman Gershman and Ofer Strichman. Cost-effective hyper-
resolution for preprocessing CNF formulas. In Proceedings of the 8th
International Conference on Theory and Applications of Satisfiability
Testing, volume 3569 of Lecture Notes in Computer Science, pages
423–429. Springer, 2005.

[149] Hyojung Han and Fabio Somenzi. Alembic: An efficient algorithm
for CNF preprocessing. In Proceedings of the 44th annual Design
Automation Conference, pages 582–587. ACM, 2007.

[150] Marijn Heule, Matti Järvisalo, and Armin Biere. Efficient CNF sim-
plification based on binary implication graphs. In Proceedings of the
14th International Conference on Theory and Applications of Satis-
fiability Testing, volume 6695 of Lecture Notes in Computer Science,
pages 201–215. Springer, 2011.

[151] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for
MaxSAT. Artificial Intelligence, 171(8-9):606–618, 2007.

[152] Javier Larrosa, Federico Heras, and Simon de Givry. A logical ap-
proach to efficient MaxSAT solving. Artificial Intelligence, 172(2-
3):204–233, 2008.

[153] Josep Argelich, Chu Min Li, and Felip Manyà. A preprocessor for
MaxSAT solvers. In Proceedings of the 11th International Conference
on Theory and Applications of Satisfiability Testing, volume 4996 of
Lecture Notes in Computer Science, pages 15–20. Springer, 2008.

References 75

[154] Anton Belov, Matti Järvisalo, and João Marques-Silva. Formula pre-
processing in MUS extraction. In Proceedings of the 19th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 7795 of Lecture Notes in Computer Sci-
ence, pages 108–123. Springer, 2013.

[155] Byron Ellis and Wing Hung Wong. Learning causal bayesian net-
work structures from experimental data. Journal of the American
Statistical Association, 103(482):778–789, 2008.

[156] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global K-
means clustering algorithm. Pattern recognition, 36(2):451–461, 2003.

[157] Leonard J. Schulman. Clustering for edge-cost minimization. Elec-
tronic Colloquium on Computational Complexity (ECCC), 6(35),
1999.

[158] Anil K. Jain, M. Narasimha Murty, and P. J. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264–323, 1999.

[159] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Inc., 1988.

[160] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in neural information
processing systems, pages 849–856, 2002.

[161] Robert C. Edgar. Search and clustering orders of magnitude faster
than blast. Bioinformatics, 26(19):2460–2461, 2010.

[162] Daniel Aloise, Pierre Hansen, and Leo Liberti. An improved column
generation algorithm for minimum sum-of-squares clustering. Math-
ematical Programming, 131(1):195–220, 2012.

[163] Weifeng Zhi, Buyue Qian, and Ian Davidson. Scalable constrained
spectral clustering via the randomized projected power method. In
Proceedings of the 2017 IEEE International Conference on Data Min-
ing, pages 1201–1206. IEEE Computer Society, 2017.

[164] Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algo-
rithms for metric facility location and k-median problems. In Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer
Science, pages 2–13. IEEE Computer Society, 1999.

76 References

[165] Rajkumar Jain and Narendra S. Chaudhari. Formulation of 3-
clustering as a 3-SAT problem. In Proceedings of the 5th Indian
International Conference on Artificial Intelligence, pages 465–472.
IICAI, 2011.

[166] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux,
Mehdi Khiari, and Samir Loudni. Constrained clustering using SAT.
In Proceedings of the 11th International Conference on Advances in
Intelligent Data Analysis, volume 7619 of Lecture Notes in Computer
Science, pages 207–218. Springer, 2012.

[167] Marianne Mueller and Stefan Kramer. Integer linear programming
models for constrained clustering. In Proceedings of the 13th Inter-
national Conference on Discovery Science, volume 6332 of Lecture
Notes in Computer Science, pages 159–173. Springer, 2010.

[168] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating incon-
sistent information: Ranking and Clustering. Journal of the ACM,
55(5):23:1–23:27, 2008.

[169] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clus-
tering with qualitative information. Journal of Computer and System
Sciences, 71(3):360–383, 2005.

[170] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modi-
fication problems. Discrete Applied Mathematics, 144(1-2):173–182,
2004.

[171] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering
with a fixed number of clusters. Theory of Computing, 2(1):249–266,
2006.

[172] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immor-
lica. Correlation clustering in general weighted graphs. Theoretical
Computer Science, 361(2-3):172–187, 2006.

[173] Nir Ailon and Edo Liberty. Correlation clustering revisited: The
”true” cost of error minimization problems. In Proceedings of the
36th International Colloquium on Automata, Languages and Pro-
gramming, volume 5555 of Lecture Notes in Computer Science, pages
24–36. Springer, 2009.

[174] Erik D. Demaine and Nicole Immorlica. Correlation clustering with
partial information. In Proceedings of the 6th International Work-
shop on Approximation Algorithms for Combinatorial Optimization

References 77

Problems and 7th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science, volume 2764 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2003.

[175] Jurgen Van Gael and Xiaojin Zhu. Correlation clustering for crosslin-
gual link detection. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 1744–1749. AAAI Press,
2007.

[176] Adnan Darwiche. Chapter 11 Bayesian networks. In Handbook of
Knowledge Representation, volume 3 of Foundations of Artificial In-
telligence, pages 467 – 509. Elsevier, 2008.

[177] Sebastian Ordyniak and Stefan Szeider. Parameterized complexity
results for exact Bayesian network structure learning. Journal of
Artificial Intelligence Research, 46:263–302, 2013.

[178] Cassio P. de Campos and Qiang Ji. Efficient learning of Bayesian
networks using constraints. Journal of Machine Learning Research,
12:663–689, 2011.

[179] Luis M. de Campos. A scoring function for learning Bayesian net-
works based on mutual information and conditional independence
tests. Journal of Machine Learning Research, 7:2149–2187, 2006.

[180] Mark Bartlett and James Cussens. Integer linear programming for the
Bayesian network structure learning problem. Artificial Intelligence,
244:258–271, 2017.

[181] David M. Chickering. Learning Bayesian networks is NP-complete.
In Learning from Data: Artificial Intelligence and Statistics V, pages
121–130. Springer-Verlag, 1996.

[182] Nir Friedman and Daphne Koller. Being Bayesian about network
structure. A Bayesian approach to structure discovery in Bayesian
networks. Machine Learning, 50:95–125, 2003.

[183] David M. Chickering. Learning equivalence classes of Bayesian-
network structures. Journal of Machine Learning Research, 2:445–
498, 2002.

[184] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila.
Learning Bayesian network structure using LP relaxations. In Pro-
ceedings of the 13th International Conference on Artificial Intelli-

78 References

gence and Statistics, volume 9 of JMLR Proceedings, pages 358–365.
JMLR, 2010.

[185] James Cussens. Bayesian network learning by compiling to weighted
MaxSAT. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, pages 105–112. AUAI Press, 2008.

[186] Alexandra M. Carvalho, Teemu Roos, Arlindo L. Oliveira, and Petri
Myllymäki. Discriminative learning of Bayesian networks via fac-
torized conditional log-likelihood. Journal of Machine Learning Re-
search, 12:2181–2210, July 2011.

[187] Daniel Eaton and Kevin Murphy. Bayesian structure learning us-
ing dynamic programming and MCMC. In Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence, pages 101–108.
AUAI Press, 2007.

[188] Sascha Ott and Satoru Miyano. Finding optimal gene networks using
biological constraints. Genome Informatics, 14:124–133, 2003.

[189] Tomi Silander and Petri Myllymäki. A simple approach for finding
the globally optimal Bayesian network structure. In Proceedings of
the 22nd Conference on Uncertainty in Artificial Intelligence, pages
445–452. AUAI Press, 2006.

[190] James Cussens. Bayesian network learning with cutting planes. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intel-
ligence, pages 153–160. AUAI Press, 2011.

[191] Changhe Yuan and Brandon Malone. Learning optimal Bayesian net-
works: A shortest path perspective. Journal of Artificial Intelligence
Research, 48:23–65, 2013.

[192] Gregory F. Cooper. The computational complexity of probabilistic
inference using Bayesian belief networks. Artificial Intelligence, 42(2-
3):393 – 405, 1990.

[193] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application to
expert systems. In Glenn Shafer and Judea Pearl, editors, Readings in
Uncertain Reasoning, pages 415–448. Morgan Kaufmann Publishers
Inc., 1990.

References 79

[194] Johan Kwisthout, Hans L. Bodlaender, and Linda C. van der Gaag.
The necessity of bounded treewidth for efficient inference in Bayesian
networks. In Proceedings of the 19th European Conference on Arti-
ficial Intelligence, volume 215 of Frontiers in Artificial Intelligence
and Applications, pages 237–242. IOS Press, 2010.

[195] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic
aspects of tree-width. Journal of Algorithms, 7(3):309–322, 1986.

[196] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209(1):1 – 45, 1998.

[197] Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Pro-
gramming. Academic Press, Inc., Orlando, FL, USA, 1972.

[198] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded
tree-width Bayesian networks. In Proceedings of the 16th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 31
of JMLR Workshop and Conference Proceedings, pages 370—378.
JMLR, 2013.

[199] Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren.
Learning bounded tree-width Bayesian networks using integer linear
programming. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics, volume 33 of JMLR Workshop
and Conference Proceedings, pages 751–759. JMLR, 2014.

[200] Siqi Nie, Denis D. Mauá, Cassio P. De Campos, and Qiang Ji. Ad-
vances in learning Bayesian networks of bounded treewidth. In Ad-
vances in Neural Information Processing Systems, pages 2285–2293,
2014.

[201] Mukund Narasimhan and Jeff Bilmes. PAC-learning bounded tree-
width graphical models. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, pages 410–417. AUAI Press,
2004.

[202] Hans L. Bodlaender. Discovering treewidth. In Proceedings of the 31st
Conference on Current Trends in Theory and Practice of Computer
Science, volume 3381 of Lecture Notes in Computer Science, pages
1–16. Springer, 2005.

[203] Niklas Eén and Niklas Sörensson. Temporal induction by incremen-
tal SAT solving. Electronic Notes in Theoretical Computer Science,
89(4):543–560, 2003.

80 References

[204] João Marques-Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, pages 220–227.
IEEE Computer Society, 1996.

[205] Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Hol-
ger Hoos, and Kevin Leyton-Brown. The configurable SAT solver
challenge (CSSC). Artificial Intelligence, 243:1–25, 2017.

[206] Forrest Sheng Bao, Chris Gutierrez, Jeriah Jn Charles-Blount,
Yaowei Yan, and Yuanlin Zhang. Accelerating Boolean satisfiability
(SAT) solving by common subclause elimination. Artificial Intelli-
gence Review, pages 1–15, 2017.

[207] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Pro-
ceedings of the 6th International Conference on Theory and Applica-
tions of Satisfiability Testing, volume 2919 of Lecture Notes in Com-
puter Science, pages 502–518. Springer, 2003.

[208] Gilles Audemard and Laurent Simon. Predicting learnt clauses qual-
ity in modern SAT solvers. In Proceedings of the 21st International
Joint Conference on Artifical Intelligence, pages 399–404. Morgan
Kaufmann Publishers Inc., 2009.

[209] Armin Biere. Lingeling, Plingeling and Treengeling entering the SAT
competition 2013. In Proceedings of SAT Competition, volume B-
2013-1 of Department of Computer Science Series of Publications B,
pages 51–52. University of Helsinki, 2013.

[210] Gilles Audemard and Laurent Simon. Glucose in the SAT 2014 com-
petition. SAT COMPETITION 2014, page 31, 2014.

[211] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and
Sharad Malik. Efficient conflict-driven learning in a Boolean satis-
fiability solver. In Proceedings of the 2001 IEEE/ACM International
Conference on Computer-Aided Design, pages 279–285. IEEE Com-
puter Society, 2001.

[212] João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven
clause learning SAT solvers. In Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, chapter 4,
pages 131–153. IOS Press, 2009.

References 81

[213] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Communications of the ACM,
5(7):394–397, 1962.

[214] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[215] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinal-
ity constraints. In Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming, volume 3709
of Lecture Notes in Computer Science, pages 827–831. Springer, 2005.

[216] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. Cardinality networks: a theoretical and em-
pirical study. Constraints, 16(2):195–221, 2011.

[217] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of
Boolean cardinality constraints. In Proceedings of the 9th Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, volume 2833 of Lecture Notes in Computer Science, pages 108–
122. Springer Berlin Heidelberg, 2003.

[218] Soukaina Hattad, Säıd Jabbour, Lakhdar Sais, and Yakoub Salhi.
Enhancing pigeon-hole based encoding of Boolean cardinality con-
straints. In Proceedings of the 9th International Conference on Agents
and Artificial Intelligence, volume 2, pages 299–307. SciTePress, 2017.

[219] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura,
and Hiroshi Fujita. Modulo based CNF encoding of cardinality con-
straints and its application to MaxSAT solvers. In Proceedings of the
25th IEEE International Conference on Tools with Artificial Intelli-
gence, pages 9–17. IEEE Computer Society, 2013.

[220] Ignasi Ab́ıo, Valentin Mayer-Eichberger, and Peter J. Stuckey. Encod-
ing linear constraints with implication chains to CNF. In Proceedings
of the 21st International Conference on the Principles and Practice of
Constraint Programming, volume 9255 of Lecture Notes in Computer
Science, pages 3–11. Springer, 2015.

[221] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving
(weighted) partial MaxSAT through satisfiability testing. In Proceed-
ings of the 12th International Conference on Theory and Applications
of Satisfiability Testing, volume 5584 of Lecture Notes in Computer
Science, pages 427–440. Springer, 2009.

82 References

[222] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. A new algo-
rithm for weighted partial MaxSAT. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence. AAAI Press, 2010.

[223] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In Techni-
cal Communications of the 28th International Conference on Logic
Programming, LIPIcs, pages 211–221. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

[224] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy.
Improving SAT-based weighted MaxSAT solvers. In Proceedings of
the 18th International Conference on Principles and Practice of Con-
straint Programming, volume 7514 of Lecture Notes in Computer Sci-
ence, pages 86–101. Springer, 2012.

[225] Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in
SAT-based MaxSAT solving. In Proceedings of the 23rd International
Conference on Principles and Practice of Constraint Programming,
volume 10416 of Lecture Notes in Computer Science, pages 652–670.
Springer, 2017.

[226] Jessica Davies and Fahiem Bacchus. Postponing optimization to
speed up MaxSAT solving. In Proceedings of the 19th International
Conference on Principles and Practice of Constraint Programming,
volume 8124 of Lecture Notes in Computer Science, pages 247–262.
Springer, 2013.

[227] Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko.
Reduced cost fixing in MaxSAT. In Proceedings of the 23rd Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, volume 10416 of Lecture Notes in Computer Science, pages
641–651. Springer, 2017.

[228] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT:
An efficient weighted MaxSAT solver. Journal of Artificial Intelli-
gence Research, 31:1–32, 2008.

[229] Rolf Niedermeier and Peter Rossmanith. New upper bounds for max-
imum satisfiability. Journal of Algorithms, 36(1):63–88, 2000.

[230] Anton Belov and João Marques-Silva. Generalizing redundancy in
propositional logic: Foundations and hitting sets duality. CoRR,
abs/1207.1257, 2012.

References 83

[231] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elim-
ination. In Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume
6015 of Lecture Notes in Computer Science, pages 129–144. Springer,
2010.

[232] Federico Heras, Antonio Morgado, and João Marques Silva. MaxSAT-
based encodings for Group MaxSAT. AI Communications, 28(2):195–
214, 2015.

[233] Fahiem Bacchus and Nina Narodytska. Cores in core based MaxSAT
algorithms: An analysis. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing, vol-
ume 8561 of Lecture Notes in Computer Science, pages 7–15. Springer,
2014.

[234] Jessica Davies. Solving MaxSAT by Decoupling Optimization and
Satisfaction. PhD thesis, University of Toronto, 2013.

[235] Alexey Ignatiev, Antonio Morgado, Vasco Manquinho, Ines Lynce,
and João Marques-Silva. Progression in maximum satisfiability. In
Proceedings of the 21st European Conference on Artificial Intelli-
gence, volume 263 of Frontiers in Artificial Intelligence and Appli-
cations, pages 453–458. IOS Press, 2014.

[236] Olivier Coudert and Jean Christophe Madre. New ideas for solving
covering problems. In Proceedings of the 32st Conference on Design
Automation, pages 641–646. ACM Press, 1995.

[237] Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo.
MaxPre: An extended MaxSAT preprocessor. In Proceedings of the
20th International Conference on Theory and Applications of Satisfi-
ability Testing, volume 10491 of Lecture Notes in Computer Science,
pages 449–456. Springer, 2017.

[238] Grigorii S. Tseitin. On the complexity of derivation in propositional
calculus. In Automation of Reasoning: 2: Classical Papers on Com-
putational Logic 1967–1970, pages 466–483. Springer Berlin Heidel-
berg, 1983.

[239] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation cluster-
ing. In Proceedings of the 43rd Symposium on Foundations of Com-
puter Science, page 238. IEEE Computer Society, 2002.

84 References

[240] Divya Pandove, Rinkle Rani, and Shivani Goel. Local graph based
correlation clustering. Knowledge-Based Systems, 138:155–175, 2017.

[241] Yixin Zhuang, Hang Dou, Nathan Carr, and Tao Ju. Feature-aligned
segmentation using correlation clustering. Computational Visual Me-
dia, 3(2):147–160, 2017.

[242] Nate Veldt, Anthony Ian Wirth, and David F. Gleich. Correlation
clustering with low-rank matrices. In Proceedings of the 26th Inter-
national Conference on World Wide Web, pages 1025–1034. ACM,
2017.

[243] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. A compar-
ative study of local search algorithms for correlation clustering. In
Proceedings of the 39th German Conference on Pattern Recognition,
volume 10496 of Lecture Notes in Computer Science, pages 103–114.
Springer, 2017.

[244] Atsushi Miyauchi and Tomohiro Sonobeand Noriyoshi Sukegawa. Ex-
act clustering via integer programming and maximum satisfiability. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
pages ??? – ??? AAAI Press, 2018. To appear.

[245] Kiri Wagstaff and Claire Cardie. Clustering with instance-level con-
straints. In Proceedings of the 17th International Conference on Ar-
tificial Intelligence, pages 1103–1110. AAAI Press / The MIT Press,
2000.

[246] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algo-
rithm for a clustering problem. Mathematical Programming, 45(1):59–
96, 1989.

[247] Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Tao
Jiang. On the approximation of correlation clustering and consensus
clustering. Journal of Computer and System Sciences, 74(5):671–696,
2008.

[248] Tamás Nepusz, Rajkumar Sasidharan, and Alberto Paccanaro. SCPS:
a fast implementation of a spectral method for detecting protein fam-
ilies on a genome-wide scale. BMC Bioinformatics, 11:120, 2010.

[249] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

References 85

[250] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403–410, 1990.

[251] Carlos Ansótegui and Joel Gabàs. Solving (weighted) partial
MaxSAT with ILP. In Proceedings of the 10th International Con-
ference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, volume 7874 of
Lecture Notes in Computer Science, pages 403–409. Springer, 2013.

[252] Moses Charikar and Anthony Wirth. Maximizing quadratic pro-
grams: Extending grothendieck’s inequality. In Proceedings of the
45th Symposium on Foundations of Computer Science, pages 54–60.
IEEE Computer Society, 2004.

[253] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones. Optimization Methods and
Software, 11–12:625–653, 1999. Version 1.05 available from
http://fewcal.kub.nl/sturm.

[254] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter.
Constraint integer programming: A new approach to integrate CP
and MIP. In Proceedings of the 5th International Conference on In-
tegration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, volume 5015 of Lecture Notes
in Computer Science, pages 6–20. Springer, 2008.

[255] Siqi Nie, Cassio P. De Campos, and Qiang Ji. Learning bounded tree-
width Bayesian networks via sampling. In European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
pages 387–396. Springer, 2015.

[256] Mauro Scanagatta, Giorgio Corani, Cassio P. de Campos, and Marco
Zaffalon. Learning treewidth-bounded Bayesian networks with thou-
sands of variables. In Advances in Neural Information Processing
Systems, pages 1462–1470, 2016.

[257] Siqi Nie, Cassio P. de Campos, and Qiang Ji. Efficient learning of
Bayesian networks with bounded tree-width. International Journal
of Approximate Reasoning, 80:412–427, 2017.

[258] Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks:
An approach based on the MDL principle. Computational Intelli-
gence, 10:269–293, 1994.

86 References

[259] Gregory F. Cooper and Edward Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine Learning,
9:309–347, 1992.

[260] Rina Dechter. Bucket elimination: A unifying framework for reason-
ing. Artificial Intelligence, 113(1-2):41–85, 1999.

[261] Marko Samer and Helmut Veith. Encoding treewidth into SAT. In
Proceedings of the 12th International Conference on Theory and Ap-
plications of Satisfiability Testing, volume 5584 of Lecture Notes in
Computer Science, pages 45–50. Springer, 2009.

[262] Peter J. Stuckey. Lazy clause generation: Combining the power of
SAT and CP (and MIP?) solving. In Proceedings of the 7th Interna-
tional Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, vol-
ume 6140 of Lecture Notes in Computer Science, pages 5–9. Springer,
2010.

[263] Broes de Cat, Marc Denecker, Maurice Bruynooghe, and Peter J.
Stuckey. Lazy model expansion: Interleaving grounding with search.
Journal of Artificial Intelligence Research, 52:235–286, 2015.

	Abstract
	Acknowledgements
	Contents
	1. Introduction
	2. Preliminaries
	3. Preprocessing for Maximum Satis�ability Solving
	4. Maximum Satis�ability for Data Analysis
	5. Conclusion
	References

