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Problems which ask to compute an optimal solution to its instances are called optimization
problems. The maximum satisfiability (MaxSAT) problem is a well-studied combinatorial
optimization problem with many applications in domains such as cancer therapy design,
electronic markets, hardware debugging and routing. Many problems, including the afore-
mentioned ones, can be encoded in MaxSAT. Thus MaxSAT serves as a general optimization
paradigm and therefore advances in MaxSAT algorithms translate to advances in solving other
problems.

In this thesis, we analyze the effects of MaxSAT preprocessing, the process of reformulating
the input instance prior to solving, on the perceived costs of solutions during search. We show
that after preprocessing most MaxSAT solvers may misinterpret the costs of non-optimal
solutions. Many MaxSAT algorithms use the found non-optimal solutions in guiding the
search for solutions and so the misinterpretation of costs may misguide the search.

Towards remedying this issue, we introduce and study the concept of locally minimal
solutions. We show that for some of the central preprocessing techniques for MaxSAT, the
perceived cost of a locally minimal solution to a preprocessed instance equals the cost of the
corresponding reconstructed solution to the original instance.

We develop a stochastic local search algorithm for MaxSAT, called LMS-SLS, that is
prepended with a preprocessor and that searches over locally minimal solutions. We imple-
ment LMS-SLS and analyze the performance of its different components, particularly the
effects of preprocessing and computing locally minimal solutions, and also compare LMS-SLS
with the state-of-the-art SLS solver SATLike for MaxSAT.
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1 Introduction

Optimization refers to the process of searching for a best solution to a given problem
where “best” depends on the underlying problem. We face optimization problems
in our lives on a daily basis whether it be for example finding the shortest route to
work or adjusting our schedules so as to allow us to meet our deadlines. Problems
may involve both hard constraints which need to be adhered to and soft constraints
which may be ignored though not without some sort of penalty. In finding a route
to work, an example of a hard constraint is that the route should eventually lead
one to work instead of a local coffee shop. As an example of soft constraints, each
road poses one, telling us not to traverse it as in doing so we accumulate kilometers
traveled. Of course, some of the roads need to be traversed unless one lives at their
workplace, so some of these soft constraints will and must be violated. A shortest
route from home to work is one where the sum of the penalties (kilometers) related
to the violated constraints (roads to travel) is as low as possible.

In practice, myriads of NP-hard optimization problems arise. Multiple polyno-
mial-time algorithms for finding the shortest route have been developed and formal-
ized during the 20th century [1–3], but for the similar problem of finding the shortest
route for a road trip to visit attractions around the country (known as the traveling
salesperson problem [4–6]) no polynomial-time algorithm is currently known. The
question of whether or not there is a polynomial-time algorithm to solve the latter
problem remains an open question and the person who proves that there is or is not
such an algorithm will be rewarded one million U.S. dollars by the Clay Mathematics
Institute [7] as the proof would answer whether P = NP or not [5, 8].

Some of the most interesting problems in practice are ones with no known al-
gorithms that are polynomial-time even in the worst case. Such problems include
data visualization [9], hardware and software verification [10, 11] and routing air
traffic [12]. Although polynomial-time algorithms to NP-hard optimization prob-
lems arising in practical applications remain elusive, practically efficient algorithms
for them are nevertheless sought after due to their importance. Improvements in
these algorithms may save significant amounts of time and resources. Through
ingenuity and domain knowledge, practically efficient algorithms for finding good
quality (or even optimal) solutions to NP-hard optimization problems have been
devised [5, 13–18] defying theoretical restrictions.

Since there are numerous distinct optimization problems, designing specific al-
gorithms for each problem is rather time consuming. Decades of research has gone
into the study of certain optimization problems such as the traveling salesperson
problem [4–6, 16]. As such, coming up with algorithms efficient in practice specific
for new theoretically difficult problems has the potential to take years if not decades.
Therefore, one might opt for a declarative approach such as integer programming
(IP) [17, 18] and maximum satisfiability (MaxSAT) [8, 19]. Rather than developing
a separate algorithm for a given problem, one can encode the problem in a constraint
language such as propositional logic underlying the maximum satisfiability problem.
For MaxSAT, several algorithms that are efficient in solving many types of practical
instances exist [13–15, 20] and so suitable encodings of problems in propositional
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logic allow exploiting the performance of MaxSAT solvers in other problem domains.
Both IP and MaxSAT are used as declarative paradigms [9, 12, 17, 21], IP being a
classical approach and MaxSAT a relatively young one. In this thesis, we focus on
MaxSAT.

MaxSAT is a generalization of the famous boolean satisfiability (SAT) [8, 19]
problem. In SAT, the constraints are clauses i.e. disjunctions of boolean variables
and their negations called literals. The SAT problem asks if there is a way to as-
sign the boolean variables so that each clause is satisfied. In MaxSAT, a clause
is hard if it must be satisfied and soft otherwise. Soft clauses are allowed to have
weights associated with them, denoting their relative importance. The MaxSAT
problem then asks to assign the boolean variables so (i) that all hard clauses are
satisfied and (ii) the sum of the weights of soft clauses left unsatisfied is minimized
(or equivalently, the sum of the weights of satisfied clauses is maximized). Owing
to the expressivity of propositional logic, many practical problems such as can-
cer therapy design [22], electronic markets [23], hardware debugging [24, 25] and
scheduling [21, 26, 27] have efficient encodings in propositional logic. As efficient
MaxSAT solvers exist [13–15, 20, 28], MaxSAT solvers are used in solving these
problems.

The MaxSAT encoding of a problem can be modified by applying MaxSAT pre-
processing before solving. Preprocessing refers to the process of reformulating the
input instance prior to solving with the aim that the time it takes to preprocess
the input and run a solver on the preprocessed instance is lower than directly run-
ning the solver on the input instance [29]. In this thesis, we examine the effects of
preprocessing on the relative order of solutions under cost.

Proofs of correctness of preprocessing techniques in MaxSAT are based on show-
ing that the apparent cost of an optimal solution τ equals the cost of the (optimal)
solution, reconstructed from τ , to the original instance [30]. However, as we will
show in this thesis, these proofs do not extend to arbitrary solutions. This implies
that the order of solutions in terms of cost may change after solution reconstruction.
Our analysis shows this problem occurs not only in theory but in practice as well.

To mitigate this issue, we introduce the concept of locally minimal solutions—
a concept far less restrictive than optimality—and show that for locally minimal
solutions to preprocessed instances, their apparent cost equals the cost of the cor-
responding reconstructed solutions given that only preprocessing techniques that
preserve locally minimal solutions are used. Any MaxSAT solver limiting its search
to locally minimal solutions is then guaranteed to not misinterpret the costs of
solutions if the used preprocessing techniques all preserve locally minimal solutions.

For evaluating the effectiveness of limiting search to locally minimal solutions, we
introduce a novel stochastic local search (SLS) [8] algorithm for MaxSAT designed to
search over locally minimal solutions. Stochastic local search for SAT and MaxSAT
is a search procedure which begins by generating an initial assignment and iteratively
modifying it by reversing the truth value of a heuristically chosen variable [29].
Stochastic local search are incomplete i.e. they do not prove the optimality of
solutions as complete solvers do [29]. The advantage of incomplete approaches is
that they need not spend time in proving optimality, and that most scale better to
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bigger instances, finding good quality solutions in limited time [8].
We implement the described SLS solver, titled LMS-SLS, and evaluate the effec-

tiveness of its main components. In particular, we show that preprocessing combined
with a heuristic to limit the search to locally minimal solutions yields the best re-
sults. Moreover, we show that including a preprocessing technique that does not
preserve locally minimal solutions degrades the performance of the solver. Finally,
we compare our implementation of LMS-SLS with a state-of-the-art SLS solver for
MaxSAT called SATLike [14] and show that the two exhibit complementary perfor-
mance.

The contents of this work are organized as follows. In Chapter 2, we go through
the needed background on propositional logic, satisfiability and maximum satisfia-
bility and briefly overview different approaches for MaxSAT solving. We then cover
background on stochastic local search in Chapter 3. Preprocessing for MaxSAT is
discussed in Chapter 4. In Chapter 5, we discuss potential issues in the way in which
most MaxSAT solvers apply preprocessing, and introduce and study the concept of
locally minimal solutions. In Chapter 6, we cover the SLS algorithm LMS-SLS for
MaxSAT and evaluate the performance of its components and also compare LMS-
SLS with SATLike, on top of which our implementation of LMS-SLS is built on.
Lastly, we conclude the thesis.

The results of this thesis are based on a paper [31]—to appear in ECAI 2020—
which is a joint work of the author and the supervisors of this thesis, Jeremias Berg
and Matti Järvisalo.
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2 Preliminaries

The main goal of this chapter is to cover the maximum satisfiability problem, an
extension of the boolean satisfiability problem. The first section goes through the
necessary background on propositional logic and the boolean satisfiability problem.
In the second section we discuss maximum satisfiability.

2.1 Propositional Logic and Satisfiability

Propositional logic is a formal language consisting of formulas of simple true-or-
false statements joined with connectives. A propositional formula is constructed
by connecting boolean variables (true or false statements) with connectives such as
¬,∧,∨,→,↔, which have the semantic meaning of “not”, “and”, “or”, “implies”, “is
equivalent to”, respectively. The symbol ∧ is called a conjunct and the symbol ∨ a
disjunct.

We do not define the syntax of propositional logic in full as for our purposes the
following subset of propositional formulas suffices. For a comprehensive treatment
of propositional logic, see e.g. [32]. We use B to denote a fixed, countably infinite,
set of boolean variables.

Definition 2.1 (Syntax of CNF formulas). A literal is a boolean variable x ∈ B
or its negation ¬x (alternatively denoted by x̄). A disjunction of a finite non-empty
collection of literals li is a clause, denoted by (l1∨ . . .∨ ln). A formula in conjunctive
normal form (a CNF formula for short) is any conjunction of a finite collection of
clauses Ci, denoted by C1 ∧ . . . ∧ Cn.

Example 2.2. Let x, y, z ∈ B. Then the following are CNF formulas:

(x ∨ y) ∧ (¬x ∨ ¬y ∨ z), (y ∨ x̄) ∧ (x) ∧ (ȳ).

When speaking of clauses and formulas we often refer to the variables contained
in them. We use Var(C) and Var(F) to denote the set of variables occurring in
the clause C and in the formula F respectively.

Definition 2.3 (Assignments). A function τ : B → {0, 1} is an assignment.

We identify the value 1 with true and the value 0 with false when speaking of
assignments. An assignment τ can also be viewed as a set of literals it sets to true.
That is, we identify an assignment τ with the set

{x | τ(x) = 1} ∪ {¬x | τ(x) = 0}.

Now τ(l) = 1 is equivalent to l ∈ τ . Given a literal l, we define τl as τ \ {¬l} ∪ {l}.
When convenient, we identify assignments that agree on a set of variables. For
example, by τ = {x, ȳ} we mean any assignment τ that sets x to true and y to false.

We are now ready to define the semantics of CNF formulas.
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Definition 2.4 (Semantics of CNF formulas). Let F be a CNF formula. An as-
signment τ satisfies a clause C ∈ F if τ(x) = 1 for some x ∈ C or τ(x) = 0 for
some ¬x ∈ C. A CNF formula F is satisfiable if there is an assignment τ for F
that satisfies each of its clauses. Such an assignment τ is a satisfying assignment
of F . If F has no satisfying assignments, F is unsatisfiable.

The order of literals in a clause and the order of clauses in a formula do not
matter, and we identify clauses (l1 ∨ · · · ∨ ln) with the set {l1, . . . , ln} and CNF
formulas C1 ∧ · · · ∧ Cn with the set {C1, . . . , Cn}.

Given a clause C and a CNF formula F we use the notations τ(C) = 1 and
τ(F) = 1 to mean that τ satisfies the clause C and the formula F respectively. We
define τ(C) = 0 and τ(F) = 0 similarly.

Omitting other propositional formulas and focusing only on CNF formulas is only
a minor restriction as there is a linear-time algorithm called the “Tseitin transfor-
mation” to transform any propositional formula into a CNF formula that is tightly
connected to the original formula [33]. Given a satisfying assignment τF for the
Tseitin transformation F of a propositional formula F ′, the assignment τF is also a
satisfying assignment of F ′.

The problem of finding a satisfying assignment for a propositional formula is
called the satisfiability problem, abbreviated SAT. The problem where the set of
propositional formulas is restricted to CNF formulas is the CNF-SAT problem. Due
to the Tseitin transformation, SAT has a linear-time reduction to CNF-SAT and so
we will use SAT to refer to CNF-SAT. SAT is NP-complete [34].

Definition 2.5 (SAT). Given a CNF formula F , does F have a satisfying assign-
ment?

Example 2.6. The CNF formula (x ∨ y) ∧ (¬x ∨ ¬y ∨ z) is satisfiable, while the
formula (y ∨ x̄) ∧ (x) ∧ (ȳ) is unsatisfiable.

Let us look at a concrete example on how CNF formulas can be used to model
a practical problem by encoding it in CNF. An encoding of a problem is a way of
representing the instances of the problem.

Example 2.7. Suppose that a company has hired Alex, Blair, Carey and Dale to
work at the company’s warehouse. The company is now considering whom of the
four to assign to work the morning shifts and whom to assign the evening shifts.
However, HR has learned that the four share a history: (i) Alex harbors resentment
towards Blair as Blair insulted Alex in high school, (ii) Carey is mad at Alex for not
settling things with Blair, (iii) Blair refuses to work without their best friend Dale.
To avoid any drama and maximize happiness, HR concludes that

1. Alex should not be working the same shifts as Blair,

2. Carey should not work with Alex,

3. Blair should be assigned with Dale.
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To model this issue in CNF we first introduce eight variables, two for each person:

ma,mb,mc,md, ea, eb, ec, ed.

The intuition here is that if ma or ea is true then Alex is assigned the morning shifts
or evening shifts respectively. In addition to the above constraints, we need to make
sure each person is assigned exactly one shift. This is achieved with the pairs of
clauses (mi ∨ ei) ∧ (m̄i ∨ ēi) where i ∈ {a, b, c, d}; if the first clause is true then the
person corresponding to i is assigned at least one shift and if the second is true the
person is assigned at most one shift. The first constraint above can be expressed as
the pair of clauses (ma ∨mb) ∧ (ea ∨ eb); either Alex or Blair works in the morning
shifts and likewise either one of them works the evening shifts. The second one is
similarly (ma ∨mc)∧ (ea ∨ ec). Finally, the third constraint is expressed in CNF by
(m̄b ∨md)∧ (ēb ∨ ed); the first clause states if Blair works the morning shift, then so
should Dale (the intuition for the second clause is similar). The formula in full is

F1 = (ma ∨ ea) ∧ (m̄a ∨ ēa) ∧ (mb ∨ eb) ∧ (m̄b ∨ ēb)∧ (1)
(mc ∨ ec) ∧ (m̄c ∨ ēc) ∧ (md ∨ ed) ∧ (m̄d ∨ ēd)∧ (2)
(ma ∨mb) ∧ (ea ∨ eb) ∧ (ma ∨mc) ∧ (ea ∨ ec) ∧ (3)
(m̄b ∨md) ∧ (ēb ∨ ed). (4)

The process of encoding a problem in SAT requires care though. For example,
the constraint (ma∨mb)∧ (ea∨ eb) on row 3 alone is not sufficient to encompass the
constraint “Alex should not work with Blair” as the two clauses are simultaneously
satisfied by assigning Alex both morning and evening shifts! Fortunately, adding
the constraints that each person works exactly one shift (rows 1 and 2) remedies
this issue.

Astute readers may have noticed that if each person is assigned exactly one
shift, then surely mi must be true if and only if ei is false. This observation is
indeed correct and we may in fact replace each occurrence of ei with m̄i in F1. Not
only does this eliminate four of the variables, but also eight clauses as well. Namely,
now the conjunctions (mi ∨ ei)∧ (m̄i ∨ ēi) equal (mi ∨ m̄i)∧ (m̄i ∨mi) = (mi ∨ m̄i).
The clauses (mi ∨ m̄i) are called tautologies as they are true no matter if we assign
the boolean variables mi to true or false and hence they may be removed. For this
reason we often tacitly assume no tautologies.

Replacing the variables ei with m̄i and removing tautologies leads to the simpli-
fied formula

F2 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc) ∧ (m̄a ∨ m̄c) ∧ (m̄b ∨md) ∧ (mb ∨ m̄d).

The formula F2 has two satisfying assignments1, namely

τ1 = {ma, m̄b, m̄c, m̄d}, τ2 = {m̄a,mb,mc,md}

from which we may conclude that if Alex is assigned the morning shifts the rest
should be assigned to evening shifts and vice versa.

1Here we identify assignments agreeing on a set of variables for the first time.
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Example 2.7 can be viewed as an instance of a type of shift-scheduling prob-
lem [27] which asks is there is a way of assigning shifts to n employees while satis-
fying constraints of the form “employee i wishes not to work with employee j” and
“employee i wishes to work with employee j”.

The representation in CNF seen in Example 2.7 can be generalized for an arbi-
trary instance of the underlying shift-scheduling problem: given n employees along
with their preferences, the encoding for the instance is

{(mi ∨mj), (m̄i ∨ m̄j) | employee i does not want to work with employee j}∪
{(mi ∨ m̄j), (m̄i ∨mj) | employee i wants to work with employee j}.

If τ is a satisfying assignment for the instance, mi ∈ τ is interpreted as “employee i
should be assigned the morning shifts”.

In an ideal world, each instance of this shift-scheduling problem would have a
corresponding satisfying assignment; each employee’s wishes can be satisfied. Sadly,
in reality there is often no way of pleasing everybody.
Example 2.8. Consider again the situation of Example 2.7 and the formula

F2 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc) ∧ (m̄a ∨ m̄c) ∧ (m̄b ∨md) ∧ (mb ∨ m̄d).

Suppose in addition that Carey would like to work without having to see Blaire.
This is encoded via the constraint (mb ∨mc)∧ (m̄b ∨ m̄c). Adding this constraint to
F2 leads to the instance

F3 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc) ∧ (m̄a ∨ m̄c)∧
(m̄b ∨md) ∧ (mb ∨ m̄d) ∧ (mb ∨mc) ∧ (m̄b ∨ m̄c).

The satisfying assignments τ1, τ2 for F2 from Example 2.7 are the only possible
satisfying assignments for F3 as F2 ⊆ F3. However, τ1((mb ∨ mc)) = 0 and
τ2((m̄b ∨ m̄c)) = 0 so F3 has no satisfying assignments.

Example 2.8 demonstrates that not all constraints can always be satisfied simul-
taneously. Nevertheless, we can ask for the next best thing. Namely, what is the
maximum number of satisfied constraints that can be satisfied simultaneously or
equivalently the minimum number of constraints left unsatisfied? The next section
discusses maximum satisfiability, an optimization variant of the SAT problem.

2.2 Maximum Satisfiability

A satisfying assignment for a CNF formula F satisfies all the clauses C ∈ F . As
witnessed in e.g. Example 2.8, such an assignment does not necessarily exist. A
natural extension to the question posed in the SAT problem (Problem 2.5) is to
ask for the maximum number of clauses that can be simultaneously satisfied by
an assignment. This extension is known as the maximum satisfiability problem
(MaxSAT) [19].

A further extension of MaxSAT allows clauses to have weights associated with
them which serve as a gauge describing the importance of C being satisfied. This
extension of MaxSAT is known as theWeighted Maximum Satisfiability problem [19].
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Another extension of MaxSAT is the Partial MaxSAT problem. An instance
of Partial MaxSAT has two sets of clauses; a set of hard and a set of soft clauses.
Any solution to an instance of the Partial MaxSAT problem must satisfy all the
hard clauses, while an optimal solution also maximizes the number of satisfied soft
clauses [19].

Dividing clauses into hard and soft clauses while also allowing the soft clauses
to have weights leads to the Weighted Partial MaxSAT problem [19]. The first
subsection covers the widely used way of defining Weighted Partial MaxSAT which
we call clause-centric MaxSAT. In the second subsection, we cover an alternative
literal-centric definition for MaxSAT [30] as it is better suited for preprocessing
which we will focus on later in the thesis. From now on, we will refer to the Weighted
Partial MaxSAT simply as MaxSAT.

2.2.1 Clause-Centric MaxSAT

SAT may be extended by allowing each clause in an instance of SAT to have a
weight associated to it. Intuitively, the weight describes the importance of C being
satisfied relative to other clauses. If a clause C has no weight associated with it, we
interpret C as a hard clause which is a clause that must be satisfied. Clauses paired
with a weight are called soft clauses. This is the standard way of extending SAT to
an optimization problem [30].

Definition 2.9 (Clause-Centric MaxSAT). A clause-centric MaxSAT instance F is
a tuple (Fh, Fs, w) where Fh and Fs are sets of clauses and w is a function from Fs

to Z>0 = {1, 2, 3, . . .}.

We extend the notation used with CNF formulas in a natural way to clause-
centric MaxSAT instances e.g. Var(F) is the set of variables occurring in the
clauses in F . In addition, we use C ∈ F as a shorthand for C ∈ Fh ∪ Fs where
F = (Fh, Fs, w).

Definition 2.10. An assignment τ is a solution to F = (Fh, Fs, w) if τ(Fh) = 1.
The cost of a solution τ to F is defined as

Cost(F , τ) =
∑
C∈Fs

w(C) · (1− τ(C)).

For non-solutions τ , we set Cost(F , τ) = ∞. A solution τ to F is optimal if for
all solutions τ ′ to F

Cost(F , τ) ≤ Cost(F , τ ′).

The MaxSAT problem asks to find an optimal solution for a given clause-centric
MaxSAT instance. Due to the NP-completeness of SAT, MaxSAT is NP-hard.

Definition 2.11 (MaxSAT). Given a MaxSAT instance F , find an optimal solution
to F .
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Instances of SAT can be viewed as MaxSAT instances. Finding a satisfying
assignment for a CNF formula F is equivalent to finding a solution of cost zero to
the MaxSAT instance (F, ∅, w).
Example 2.12. Consider the unsatisfiable CNF formula

F3 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc) ∧ (m̄a ∨ m̄c)∧
(m̄b ∨md) ∧ (mb ∨ m̄d) ∧ (mb ∨mc) ∧ (m̄b ∨ m̄c)

from Example 2.8. To avoid lawsuits management deems it absolutely necessary
that Alex does not to work with Blaire. On the other hand, management concludes
that Carey can work with Alex or Blaire although it would be preferable Carey did
not have to. Likewise Blaire and Dale can work separate shifts but preferably they
worked same shift. These preferences can be modeled for example with the following
MaxSAT instance, where the superscripts denote the clause weights:

Fw
3 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc)

3 ∧ (m̄a ∨ m̄c)
3∧

(m̄b ∨md)
1 ∧ (mb ∨ m̄d)

1 ∧ (mb ∨mc)
1 ∧ (m̄b ∨ m̄c)

1.

Here management decided that it is much more critical to have Alex and Carey
work separate shifts (weight 3) than having Blaire work the same shifts as Dale
(weight 1) or having Blaire and Carey work separate shifts (weight 1). Notice that
if any of these three constraints is not satisfied it leads to cost increasing by one or
three and not two times one or two times three. This is because e.g. in the pair
of clauses (ma ∨ mc)

3 ∧ (m̄a ∨ m̄c)
3 the first clause contains ma and the latter its

negation m̄a. Hence at least one of them is always satisfied. The mentioned two
clauses can be viewed as a group [35], where cost is increased by a constant if both
clauses in the group are not satisfied.

The MaxSAT instance Fw
3 now has multiple solutions as satisfying all of the

clauses is no longer mandatory. Examples of solutions are

τ1 = {ma, m̄b,mc, m̄d}, τ2 = {ma, m̄b, m̄c, m̄d}, τ3 = {m̄a,mb,mc,md}.

The cost of the solutions are 3, 1 and 1 respectively. The solutions τ2 and τ3 are
optimal since one is a lower bound for the cost of solutions as F3 is unsatisfiable.
Any assignment that assigns both ma and mb to true or to false is not a solution
since then either the hard clause (ma ∨ mb) or (m̄a ∨ m̄b) is left unsatisfied. For
example τ4 = {ma,mb, m̄c,md} is not a solution.

2.2.2 Literal-Centric MaxSAT

Literal-centric MaxSAT is an alternative way of defining MaxSAT, essentially equiv-
alent to clause-centric MaxSAT. Instead of assigning weights to clauses, weights are
assigned to variables. This approach to MaxSAT has benefits in preprocessing as
we will see in Chapter 4.

Definition 2.13 (Literal-Centric MaxSAT). Let F be a set of clauses and let w
be a function from a subset S(F ) ⊆ Var(F ) to Z>0. The pair FL = (F,w) is a
literal-centric MaxSAT instance.

9



The variables in the set S(F ) are soft variables and the clauses containing soft
variables are soft clauses. Clauses with no soft variables are hard clauses. We use the
notation S(FL) to denote the set of soft variables in FL. In addition, we adopt the
convention of distinguishing literal-centric MaxSAT instances from clause-centric
MaxSAT instances by using the superscript L with literal-centric instances i.e. FL

denotes a literal-centric instance and F a clause-centric instance. When clear from
context, we use F = (F,w) and F interchangeably.

Outside this chapter, we will see literal-centric instances solely in the context of
preprocessing. Each solution τ to a preprocessed instance P(F) (which is always
literal-centric) is tied to a solution REC(τ) to a clause-centric instance F . Thus we
reserve the term “cost” for solutions to clause-centric instances. Preprocessing and
its effects are discussed in chapters 4 and 5.

Definition 2.14. An assignment τ is a solution to FL = (F,w) if τ(F ) = 1. The
apparent cost of a solution τ is defined as

Appar-Cost(FL, τ) =
∑

x∈S(FL)

τ(x)w(x).

A solution τ to FL is optimal if for any other solution τ ′ to FL

Appar-Cost(FL, τ) ≤ Appar-Cost(FL, τ ′).

Example 2.15. Consider again the instance

F3 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc) ∧ (m̄a ∨ m̄c)∧
(m̄b ∨md) ∧ (mb ∨ m̄d) ∧ (mb ∨mc) ∧ (m̄b ∨ m̄c)

from Example 2.8. To model the situation of Example 2.12 via literal-centric
MaxSAT we introduce three new soft variables s1, s2 and s3 with weights 3, 1 and 1
respectively to obtain

FL
3 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc ∨ s1) ∧ (m̄a ∨ m̄c ∨ s1)∧

(m̄b ∨md ∨ s2) ∧ (mb ∨ m̄d ∨ s2) ∧ (mb ∨mc ∨ s3) ∧ (m̄b ∨ m̄c ∨ s3).

Since all clauses of a literal-centric instance must be satisfied, any solution to FL
3

sets some soft variables to true as removing the soft variables from the clauses in
FL

3 leads to an unsatisfiable instance.
A solution τ may have a soft variable assigned to one, unnecessarily increasing

the cost. The following solutions have apparent costs three and four respectively:

τ1 = {ma, m̄b,mc, m̄d, s1, s̄2, s̄3}, τ2 = {ma, m̄b,mc, m̄d, s1, s̄2, s3}.

Here τ2 would remain as a solution even if s3 was assigned to zero instead.

In theory, the literal-centric view on MaxSAT differs little from the clause-centric
view as there is a simple way to convert a literal-centric instance FL to a clause-
centric instance F and vice versa. An instance FL = (F,w) is transformed into

10



a corresponding clause-centric instance F by emulating literal weights with soft
clauses:

F = (F, {(s̄) | s ∈ S
(
FL
)
}, w′),

where w′ maps the soft clauses (s̄) to w(s). Each solution τL to FL is also a solution
to F where the apparent cost of τL equals its cost. Likewise any solution τ to F is
a solution to FL where the cost of τ equals its apparent cost.

To convert a clause-centric instance F = (Fh, Fs, w) into a literal-centric one
we first introduce a new variable sC for each C ∈ Fs to obtain a set of clauses
F ′s = {C ∨ sC | C ∈ Fs}. The literal-centric instance FL corresponding to F is then
(Fh ∪ F ′s, w′) where w′ maps each sC to w(C). This transformation preserves the
solutions in the following sense: (i) given a solution τ to F , for

τL = (τ \ {sC ,¬sC | C ∈ F})∪{sC | C ∈ F , τ(C) = 0}∪{¬sC | C ∈ F , τ(C) = 1}

we have Cost(F , τ) = Appar-Cost(FL, τL) where τL is a solution to FL and
(ii) any solution τL to FL is a solution to F though its cost does not necessarily
equal the apparent cost as even if τ(C) = 1 for a soft clause C it may be that
τL(sC) = 1.
Example 2.16. For the clause-centric instance F

(x ∨ y ∨ z̄) ∧ (ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y)4 ∧ (ȳ ∨ z)9

the corresponding literal-centric instance is

(x ∨ y ∨ z̄) ∧ (ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ s1) ∧ (ȳ ∨ z ∨ s2)

where the weights of s1 and s2 are four and nine respectively.
For

FL
3 = (ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc ∨ s1) ∧ (m̄a ∨ m̄c ∨ s1)∧

(m̄b ∨md ∨ s2) ∧ (mb ∨ m̄d ∨ s2) ∧ (mb ∨mc ∨ s3) ∧ (m̄b ∨ m̄c ∨ s3).

from Example 2.15 the corresponding clause-centric instance is

(ma ∨mb) ∧ (m̄a ∨ m̄b) ∧ (ma ∨mc ∨ s1) ∧ (m̄a ∨ m̄c ∨ s1)∧
(m̄b ∨md ∨ s2) ∧ (mb ∨ m̄d ∨ s2) ∧ (mb ∨mc ∨ s3) ∧ (m̄b ∨ m̄c ∨ s3)∧
(s̄1)

3 ∧ (s̄2)
1 ∧ (s̄3)

1.

The literal-centric definition of MaxSAT is closely related to how integer pro-
gramming (IP) [17, 18] is standardly syntactically defined. An instance of integer
programming consists of a linear objective function c1x1 + . . .+ cnxn and a collec-
tion of linear constraints a1x1 + . . . + anxn ≥ a0 where ai, ci ∈ Z are constants.
The integer programming problem asks to find values xi ∈ Z so that the objective
function of an instance is minimized (or maximized).

Any instance FL can be then transformed into an instance of integer program-
ming. The objective function of the corresponding IP-instance is

∑
x∈S(FL) x ·w(x).

For each clause C we add the constraint x1 + . . .+xn + (1− y1) + . . .+ (1− ym) ≥ 1
where xi occur positively (i.e. are not negated) and yi negatively in C. Finally we
add the constraint xi ∈ {0, 1} for each variable xi ∈ Var(FL).
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2.3 MaxSAT Algorithms

Many practical problems have polynomial-size MaxSAT encodings [22, 23, 36, 37]
and so an efficient implementation of a MaxSAT algorithm serves as a general and
efficient optimization tool. As such, MaxSAT has gained popularity and it has
been studied extensively leading to many different MaxSAT algorithms and their
implementations called solvers [13–15, 20, 28, 38–40].

MaxSAT solvers are either complete or incomplete [8, 29]. Complete MaxSAT
solvers compute a provably optimal solution for the input instances while incomplete
algorithms do not prove the optimality of solutions, focusing instead in finding good
quality solutions quickly. The upside to using a complete algorithm is the guaranteed
optimality of the found solutions. The downside is that complete algorithms may
spend a lot of time in proving optimality.

In some domains finding good quality solutions are enough but solutions should
be fast to compute. Incomplete solvers focus on providing good quality solutions in
short periods of time, not spending time arguing about optimality.

Approaches used by complete solvers include the branch and bound [41], core-
guided [42–47], implicit hitting set [15, 20, 48–50] and linear search [42, 51, 52] out
of which all but the first one remain competitive on industrial instances1. Complete
solvers computing intermediate solutions can be modified to store the best inter-
mediate solution encountered during search which can then be returned in case the
search is terminated before managing to prove the optimality. As such, these solvers
can be also used as incomplete solvers.

Branch and bound excluded, the mentioned approaches rely on successive calls
to a SAT solver. Core-guided algorithms use a SAT solver to identify unsatisfiable
collections of the soft clauses called cores and modify the original instance in order
to rule out each core. In the implicit hitting set approach a SAT solver is used
to accumulate a collection of cores K for which a minimum cost hitting set HS
is computed. If the instance restricted to clauses outside of HS is satisfiable by
an assignment τ , the assignment τ is returned as the optimal solution [15]. Linear
search algorithms operate by iteratively calling a SAT solver on the original instance
with an added a CNF-encoded constraint enforcing solutions to have a cost lower
than the currently best known solution.

Most complete solvers operate on literal-centric instances in practice, by con-
verting the given clause-centric instances into literal-centric instances in the manner
described in Section 2.2.2 [15, 53]. Using soft variables, in each call to a SAT solver
MaxSAT solvers can ask the SAT solver to try to find an assignment that satisfies a
soft clause C by including the requirement that sC is set to false in the call which is
less time consuming than modifying the instance given to the SAT solver between
calls [54].

Today, the main incomplete approaches are stochastic local search [14, 28, 38, 39]
and the incomplete variants of the already mentioned complete approaches [13].
Stochastic local search algorithms for MaxSAT work by first generating an initial

1No branch and bound solver was submitted to the 2017-2019 MaxSAT evaluations (which do
not include random instances). See https://maxsat-evaluations.github.io/.
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assignment and iteratively choosing a variable according to some heuristics and re-
versing its assignment [8, 14, 28, 38–40]. Stochastic local search is discussed in-depth
in Chapter 3 as we will describe a new local search algorithm later in this the-
sis. Other incomplete methods often utilize techniques used by complete MaxSAT
solvers, such as the core-guided method and linear search [13]. In addition, gen-
eral approximation strategies such as dividing the weights of the soft clauses by a
constant exist [55].
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3 Stochastic Local Search in SAT and MaxSAT

As explained in [8], stochastic local search (SLS) is a general method for searching
for solutions to instances of a given problem. SLS algorithms begin by generating
an initial configuration (or a candidate solution). The definition of a configuration
is problem-specific: for example, in SAT a configuration refers to an assignment
and in the traveling salesperson problem to a route visiting all required points and
returning back to the starting point. The search then proceeds from configuration
to configuration, where the choice of the next configuration is based on “local” in-
formation, such as the quality of the configurations in the current configuration’s
neighborhood. The neighborhood of a configuration consists of the configurations
that are in some sense “close” to the current configuration, as defined by the algo-
rithm. The crux of the design of SLS algorithms is to develop good and efficient
heuristics for choosing the next configuration from the current one’s neighborhood.
Both initialization and the process of choosing the next configuration may involve
randomness; hence the word “stochastic” in SLS.

SLS has been developed and successfully applied in solving instances from a
number of different combinatorial problems like the graph coloring problem [8, 56],
the traveling salesperson problem [8, 16], a variety of scheduling problems [8, 57, 58],
as well as SAT [8, 29, 59–73] and MaxSAT [8, 14, 28, 38–40, 67]. SLS algorithms
are incomplete and thus do not prove the non-existence of solutions for decision
problems nor the (non-)optimality of found solutions.

SLS algorithms for SAT and MaxSAT show complementary behavior to com-
plete algorithms [8, 14, 60, 74]. Hybrid algorithms combining a complete algorithm
and an SLS algorithm have performed well in the SAT Competitions1 and MaxSAT
evaluations2. Notable examples of hybrid solvers include ReasonLS [75] and Spar-
row2Riss [75] which won the 2018 SAT Competition’s no-limits and random track
respectively. In the MaxSAT world, SATLike-c [76] won both unweighted tracks in
the 2018 MaxSAT Evaluation (MSE)3 and placed second and third in the 2019 MSE4

in the 60s and 300s tracks respectively. The Open-WBO-Inc-BMO-SATLike [77]
solver placed third on both of the weighted tracks in the 2019 MSE.

Many of the ideas employed in SLS algorithms for MaxSAT come from the SLS
algorithms for SAT and thus in the first subsection we overview SLS strategies
for SAT. The main difference in SLS algorithms for MaxSAT compared to SAT is
due to having to take account weights and having to satisfy all the hard clauses
in weighted and partial MaxSAT respectively. Moreover, algorithms for MaxSAT
store intermediate solutions as unlike in SAT, the solutions are not necessarily of
the same quality and so found solutions ought to be improved.

We then move onto MaxSAT and discuss a state-of-the-art SLS algorithm for
MaxSAT called SATLike. In Section 6.1 we introduce a new SLS MaxSAT algorithm
that searches over locally minimal solutions, building on the ideas in SATLike.

1See http://satcompetition.org/.
2See https://maxsat-evaluations.github.io/.
3See https://maxsat-evaluations.github.io/2018/rankings.html.
4See https://maxsat-evaluations.github.io/2019/rankings.html.
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3.1 Stochastic Local Search for Satisfiability

Stochastic local search algorithms for SAT work by generating an initial assignment τ
which is then refined by successively flipping a variable x i.e. setting τ(x) to 1−τ(x),
where x is a heuristically chosen variable returned by a pickV ar function [29]. The
neighborhood in SLS SAT algorithms is thus a subset of the 1-exchange neighbor-
hood [8] which contains the assignments obtainable from the current assignment
with one flip.

Neighboring assignments are often given a score which can be used in guiding
the search. The score often depends on one or two of the values make and break
where for a variable x, make(x) denotes the number of unsatisfied clauses that would
be satisfied after flipping x. Similarly, break(x) is the number of satisfied clauses
that would become unsatisfied after flipping x. The value make(x)− break(x) then
equals the change in the number of satisfied clauses if x is flipped. Usually, score(x)
is defined as the difference of make(x) and break(x). In this section, if not explicitly
mentioned, we tacitly assume that the definition of score, make and break are as
defined here.

Definition 3.1. Let F be a CNF formula, τ an assignment, x ∈ Var(F),

A = {C ∈ F | x ∈ Var(C), τ(C) = 0}

and
B = {C ∈ F | x ∈ Var(C), τ(C) = 1, τ(C \ {x,¬x}) = 0}.

Then make(x) := |A|, break(x) := |B| and score(x) := make(x)− break(x).

Moving from a configuration to a neighboring configuration with the highest
score is called a greedy step. Greedy steps alone seldom suffice as they often get
stuck in local minimums which is a configuration where no improving flip can be
made according to the score function. Since local minimums are not necessarily
solutions, heuristics which may direct the search away from local minimums are
also needed. Steps going against the score function in order to avoid stagnation are
called diversifying steps. An example of such a step is flipping a variable at random.

We discuss three classical categories for SLS SAT algorithms: GSAT -like algo-
rithms [70], WalkSAT -like algorithms [72] and dynamic local search algorithms [8].
Most SLS algorithms for SAT can be divided into these categories [61].

3.1.1 GSAT

One of the first SLS algorithms for SAT is the GSAT algorithm from the early
1990s [8, 70, 71]. The algorithm takes on two user defined parameters mr (max-
imum number of rounds) and mf (maximum number of flips) in addition to the
input instance. In each round, first an initial assignment is chosen uniformly at
random from the set of all possible assignments and is then refined until a satisfying
assignment is found or until mf flips have been performed. In the latter case a new
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round is started. The working assignment is refined by choosing one variable with
the best (highest) score uniformly at random and flipping it.1

Example 3.2. Let F be the CNF formula

(x ∨ y) ∧ (x̄ ∨ z) ∧ (ȳ ∨ z) ∧ (y ∨ z̄) ∧ (x̄ ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z).

Suppose first that the initial assignment chosen by GSAT is τ = {x̄, ȳ, z̄}. The
assignment satisfies all but the first clause. At this point,

score(x) = 0, score(y) = −1, score(z) = −1

whereupon x is flipped to obtain τ = {x, ȳ, z̄}. However, this doesn’t affect the
scores i.e.

score(x) = 0, score(y) = −1, score(z) = −1

still, so x is flipped again leading us back to τ = {x̄, ȳ, z̄}. Therefore GSAT is stuck
alternating between the local minimums {x̄, ȳ, z̄} and {x, ȳ, z̄}.

Suppose then that the generated initial assignment is τ = {x̄, ȳ, z}. Now

score(x) = 0, score(y) = 2, score(z) = −1

so y is flipped, leading to the satisfying assignment τ = {x̄, y, z}.
The most time consuming part in GSAT is identifying variables x with the best

score. A naive implementation of GSAT recomputes the scores of all variables which
requires O(n2) steps each time where n is the number of variables. A more efficient
way is to use caching [8, 29]. After flipping x, only the scores of its neighboring
variables need to be updated. A variable y is a neighbor of x if x, y ∈ Var(C)
for some clause C. Without going into details, we note that this can be further
improved by exploiting the fact that only clauses whose number of satisfying literals
either (i) dropped from two or one or (ii) increased from zero or one affect the scores.

GSAT often gets stuck in local minimal due to the greedy nature of the way it
chooses the next variable to flip [8]. Restarting after every mf flips helps to mitigate
this issue. Other diversification methods have been implemented into the original
GSAT algorithm which have led to algorithms such as GWSAT [8], GSAT/Tabu [8],
HSAT [8, 78] and HWSAT [8, 79].

3.1.2 WalkSAT

Another early SLS algorithm for SAT is WalkSAT [72]. The neighborhood relation
in WalkSAT is defined by the variables in unsatisfied clauses. Instead of choosing
from the set of all variables as in variants of GSAT, WalkSAT first chooses an
unsatisfied clause C uniformly at random as in [80] and then selects a variable from
C. The variable is chosen randomly from the variables in the clause with zero break
which are the variables that do not falsify clauses when flipped. If no variable x

1In the original paper [70], the score of a variable x is defined as the number of unsatisfied
clauses resulting from flipping x, but this difference has no effect in choosing variables.

16



with break(x) = 0 exist in the clause, with probability p a random variable in the
clause is chosen and otherwise (with probability 1−p) the variable with the smallest
break value is selected (breaking ties randomly) [8, 29].

The focused search in WalkSAT where an unsatisfied clause is picked first serves
as a basis for multiple different algorithms. Algorithms utilizing focused search
include Novelty [68], gNovelty+ [69], Sparrow [29, 59], and probSAT [29].

The probSAT algorithm performed much the better than Sparrow—created by
replacing the Novelty+ heuristic in gNovelty+ with another one [29]—on the instances
of the random track of the 2012 SAT Challenge [29]. Interestingly, probSAT is
also arguably the most simple out of the four algorithms, being almost identical
to the original WalkSAT algorithm. The only difference between the WalkSAT and
probSAT lies in the way they choose the variable from the selected unsatisfied clause.
In probSAT, the variable is chosen according to a probability distribution where the
probability of the variables to be chosen depends on both make and break whereas
WalkSAT uses the uniform distribution in its probabilistic choices. The fact that
probSAT outperforms WalkSAT significantly illustrates well the importance of a
suitably chosen variable selection method; a good neighborhood relation alone does
not suffice.

3.1.3 Dynamic Local Search

Dynamic local search [8, 29] is a general approach in SLS algorithms where the
definition of the underlying score function is modified after encountering local min-
imums [8]. In context of SAT this can mean for example imposing dynamic weights
on clauses, or forbidding flipping a variable x (by imposing a large enough penalty
to assignments with x flipped). Both techniques help diversify the search by steering
the search away from recently visited assignments.

Clause weighting has been applied in multiple different ways in SLS algorithms
for SAT [8, 29, 60–63, 65, 67, 69, 71, 73, 81, 82]. The general intuition is that after
encountering a local minimum, the weights of unsatisfied clauses are increased to
highlight the clauses that are often left unsatisfied in local minimums. The make
and break now refer to the sum of the weights of new clauses that would become
satisfied or unsatisfied respectively after flipping a variable. As such, the score of
a variable x is now the increase in the weights of the satisfied clauses which would
result from flipping x. After the weights of the clauses left unsatisfied in the local
minimum are increased sufficiently, the scores of some variables become positive
and assignments around the local minimum become available to greedy heuristics.
Early algorithms implementing dynamic clause weighting include GSAT with Clause
Weights [8, 71], GLSSAT [67], DLM [81], ESG [82], SAPS [65], and PAWS [73].

Let us look at how adding dynamic clause weighting to GSAT helps escape the
local minimum in Example 3.2.

Example 3.3. Let F be the CNF formula

(x ∨ y)1 ∧ (x̄ ∨ z)1 ∧ (ȳ ∨ z)1 ∧ (y ∨ z̄)1 ∧ (x̄ ∨ y ∨ z̄)1 ∧ (x ∨ ȳ ∨ z)1.
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from Example 3.2 where the superscripts denote the dynamic weight of the clauses
(initialized to one). Consider again the instance τ = {x̄, ȳ, z̄} which leaves the first
clause unsatisfied. Before moving onto the search phase, GSAT with Clause Weights
increases the weight of each unsatisfied clause by one so the weight of the first clause
(x ∨ y) increases from one to two leading to

(x ∨ y)2 ∧ (x̄ ∨ z)1 ∧ (ȳ ∨ z)1 ∧ (y ∨ z̄)1 ∧ (x̄ ∨ y ∨ z̄)1 ∧ (x ∨ ȳ ∨ z)1.

Now
score(x) = 1, score(y) = 0, score(z) = 0

so x is flipped in the current working assignment: τ = {x, ȳ, z̄}. The scores are then

score(x) = −1, score(y) = −1, score(z) = −1

so the algorithm picks one variable out of the three uniformly at random. Suppose
z was flipped (so τ = {x, ȳ, z}) after which

score(x) = −1, score(y) = 2, score(z) = 1.

Finally, y is flipped which leads to a satisfying assignment τ = {x, y, z} and the
search is terminated.

More recent algorithms utilize configuration checking (CC) first introduced for
solving the minimum vertex cover problem [83] which has been then adapted to SLS
SAT algorithms [60–63]. Configuration checking is a method which disallows flipping
variables whose configuration has not changed [60]; in this context the configuration
of a variable is typically defined as a vector of the truth values of its neighboring
variables [38, 60–63].

Algorithms combining configuration checking and clause weighting such as the
hybrid algorithm CCASat [62] (which couples Swcca [61] and CCAsubscore [62])
and CCAnr [60] have performed well. CCASat won in the random track of SAT
Challenge 2012 [62] outperforming other SLS algorithms such as probSAT. In ad-
dition, CCAnr was among the best SLS algorithms on structured SAT instances
in the SAT Competitions of 2013 and 2014 (although in 2014 CCAnr participated
as a hybrid algorithm combined with glucose) [60]. More recently, a hybrid solver
ReasonLS [75] combining CCAnr and a modified version of Maple_LCM_Dist [84]
placed first on the no-limits track of the 2018 competition.

3.2 Stochastic Local Search for Maximum Satisfiability

The SLS methods for SAT are almost directly applicable to MaxSAT as well. In
MaxSAT the objective is to find low cost solutions i.e. all solutions are not of the
same quality, the algorithms should store intermediate solutions and not immedi-
ately stagnate after finding a solution. Of course, algorithms for MaxSAT should
take into account the distinction between hard and soft clauses as well as the weights
given to soft clauses.
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Early algorithms for MaxSAT include a WalkSAT variant WalkSAT-JKS [8, 85]
for weighted partial MaxSAT and a dynamic local search algorithm DLM-SW [8, 86]
based on the DLM algorithm for SAT. More recent algorithms include Dist [39, 40],
CCEHC [28], SATLike [14] which are all dynamic local search algorithms, modifying
at least the dynamic weights of the hard clauses. The Dist and CCEHC algorithms
both employ two score functions, one considering only hard clauses and the other
considering only soft clauses, while SATLike operates using a single score function.

The main goal of this section is to introduce the SLS algorithm SATLike [14] for
MaxSAT which serves as the basis for a new SLS algorithm LMS-SLS introduced in
Section 6.1. We first discuss a decimation based algorithm used as a subroutine by
both SATLike and LMS-SLS. We then cover the SATLike algorithm which brought
the performance of SLS algorithms on par with complete solvers in the incomplete
track of the 2018 MSE1. At the time of writing the SATLike algorithm—built on ideas
from SLS SAT algorithms—is a state-of-the-art SLS algorithm for MaxSAT. The key
ideas in SATLike are a new score function and a new weighting mechanism similar to
PAWS [73]. In contrast to CCEHC and Dist, the score function in SATLike takes
into account both hard and soft clauses simultaneously. Moreover, the weighting
mechanism works on both hard and soft clauses where as in CCEHC and Dist a
dynamic weighting scheme is applied only on hard clauses.

SATLike participated in the 2018 and 2019 MSEs1. In the 2018 MSE, SATLike
participated as a standalone algorithm and as a hybrid algorithm SATLike-c. The
SATLike algorithm itself did not participate in the 2019 evaluation but SATLike-
c and another hybrid algorithm Open-WBO-Inc-BMO-SATLike did. SATLike-c
won the 60s and 300s unweighted incomplete tracks 2018 whereas SATLike was
placed third and fourth respectively. The performance of SATLike and SATLike-c
diminish on the weighted incomplete track however, both placed in the lower half
in the rankings on the 60s and 300s subtracks. In the 2019 evaluation, SATLike-c
placed 3rd and 2nd on the 60s and 300s tracks of the unweighted incomplete track
respectively. On the weighted incomplete track SATLike-c placed 7th when the
time limit was set to 60s and 5th with a 300s time limit while Open-WBO-Inc-
BMO-SATLike placed 3rd with both time limits.

3.2.1 Decimation Based Initialization

Each SLS algorithm begins with an initial configuration. As many of the SLS algo-
rithms utilize restarts—that is, they generate a new initial configuration and continue
from scratch—it is natural to consider utilizing the information from the previous
iteration of the local search procedure in generating new initial configurations.

We discuss a unit propagation based decimation procedure close to the strategy
introduced in [74] which is used both in SATLike and in LMS-SLS. Unit propagation
is a procedure to simplify the given instance by choosing a unit clause (l) and then
removing all literals ¬l and all clauses C with l ∈ C.

1See https://maxsat-evaluations.github.io/2018 and https://maxsat-evaluations.
github.io/2019.
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The decimation procedure is used in conjunction with an SLS MaxSAT algo-
rithm. After a search round of the underlying SLS MaxSAT algorithm, the dec-
imation procedure is provided with the currently best found assignment τ ∗. The
procedure starts generating an arbitrary assignment τ and defining the status of
each variable in F as “unassigned”. In case there are no unit clauses, the decimation
procedure then uses τ ∗ to add a unit clause (l) where l is picked from the literals
for which τ ∗(l) = 1. Then, the decimation algorithm chooses one unit clause (l) out
of them for unit propagation and sets τ = τl and marks the variable corresponding
to l as “assigned”. After all variables in F have been assigned, τ is given to the SLS
MaxSAT algorithm as an initial assignment.

As the SLS MaxSAT algorithm finds better solutions τ ∗, the decimation proce-
dure will (hopefully) yield better initial assignments which in turn helps the SLS
MaxSAT algorithm in finding new improving solutions. In the beginning when
search has not yet been performed or the SLS MaxSAT algorithm failed to find a
solution, τ ∗ is selected uniformly at random among all assignments.

More specifically, the decimation procedure constructs an assignment by assign-
ing one variable at each round. The variable and its value is chosen according to
the following scheme:

1. if there are no unit clauses, select a variable x heuristically and assign it to
τ ∗(x),

2. if there are contradictory unit clauses (x) and (¬x), assign x to τ ∗(x),

3. if there is a unit clause (x) or (¬x) but no contradictory unit clauses, assign
x to true or false respectively.

After assigning a variable x, x is marked as “assigned”, the clause (l) is added where
l = x if x was assigned to true and l = ¬x otherwise. Next, unit propagation on (l)
is performed.

The heuristic variable selection procedure chooses a variable using the best from
multiple selection (BMS) strategy [87], which chooses k variables (where k is a user-
defined parameter) with replacement from the set of candidate variables and then
returns the variable that was assigned latest during the last decimation round. Using
the BMS strategy and selecting the variable assigned latest helps to diversify the
generation of an initial assignment. In the case the input instance is partial, the
clause selection in 2 and 3 is restricted to unit hard clauses if there are any.1

3.2.2 SATLike

The score of a variable x in SATLike [14] is the increase in the sum of the dynamic
weights of the satisfied clauses that would result from flipping x, as in many of the
SLS algorithms for SAT mentioned earlier.

1We found that the BMS strategy was left out in the implementation of SATLike and is chosen
uniformly at random instead.
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Definition 3.4. Let F = (Fh, Fs, w) be a clause-centric MaxSAT instance and τ an
assignment, x ∈ Var(F) and let wdyn(C) denote the current (dynamic) weight of a
clause C ∈ F . Denote

A := {C ∈ F | x ∈ Var(C), τ(C) = 0}

and
B := {C ∈ F | x ∈ Var(C), τ(C) = 1, τ(C \ {x,¬x}) = 0}.

Let
make(x) :=

∑
C∈A

wdyn(C), break(x) :=
∑
C∈B

wdyn(C)

and
score(x) := make(x)− break(x).

The score function in SATLike does not take into account the distinction between
hard and soft clauses. In SATLike the emphasis on hard clauses comes instead from
a new dynamic weighting scheme which increases the weights of unsatisfied hard
clauses more than the weights of unsatisfied soft clauses. SATLike has a user-
defined parameter h_inc ≥ 1 which is used as the increment for the weights of hard
clauses. The weights of soft clauses are increased by one and so, informally speaking,
choosing h_inc > 1 will help in highlighting the hard clauses.

In SATLike, a limit ζ for the weights of soft clauses is enforced, where ζ is a
user defined parameter. Without the limit, the weights of soft clauses can grow
arbitrarily large and thus dominate the scores of (some) variables. Consider for
example the case where all soft clauses have a weight of one thousand (1000) except
for one clause C which has a weight of one. If the weight of C can grow indefinitely,
it may overshadow the hard clauses and the other soft clauses that are initially
considered more important.

SATLike is a two-phased algorithm, consisting of a greedy component and a
random walk component. If there are variables with a positive score, the greedy
component is used. Otherwise the algorithm increases the weights of the unsatisfied
clauses and performs a random walk step.

Algorithm 1 contains the pseudocode of SATLike. The initialization is done on
lines 1–2 before moving into the search loop on line 3. If the input instance is partial
but not weighted, the initial assignment is generated by the decimation procedure
described earlier. According to the authors of [14] the decimation procedure is
not useful for weighted and partial MaxSAT instances and the initial assignment is
generated randomly.

Each iteration of the search loop begins with an update procedure where the cost
of the current incumbent solution τ is evaluated (lines 4–5). If the cost of τ is less
than the cost of the currently best known solution τ ∗, then τ ∗ is set to τ on line 5.

In the greedy component on lines 6–7 a variable from the set D of variables with
a positive score is selected. The variable is chosen according to the BMS strategy
which works in SATLike by first sampling t variables from D with replacement and
then selecting the variable with the greatest score from the sample where ties are
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Algorithm 1: SATLike
Input : A clause-centric MaxSAT instance F
Output: A solution τ along with its cost if a solution is found, otherwise

“no solution found”.

1 τ := an initial assignment
2 τ ∗ := τ
3 while no termination criteria is met do
4 if τ is a solution and Cost(F , τ) < Cost(F , τ ∗) then
5 τ ∗ := τ

6 if D := {v ∈ Var(F) | score(v) > 0} 6= ∅ then
7 v := a variable chosen by the BMS strategy
8 else
9 update clause weights

10 if ∃ an unsatisfied hard clause C then
11 C := a random unsatisfied hard clause
12 else
13 C := a random unsatisfied soft clause
14 v := a variable in C with the highest score, breaking ties by age
15 τ := τ with v flipped
16 if τ ∗ is a solution then
17 return REC(τ ∗),Cost(F ,REC(τ ∗))
18 else return “no solution found”

broken by age, the time when the variable was last flipped, preferring the oldest
variable.

The random walk component on lines 8–14 first updates the weights of unsatisfied
clauses, increasing the weights of the unsatisfied hard clauses by h_inc and the
weights of each unsatisfied soft clause C with w(C) < ζ by one, with probability
1 − sp. Otherwise (with probability sp) the weights of the clauses are smoothed :
for each satisfied hard or soft clause C with w(C) > 1, w(C) is decreased by h_inc
or by one respectively1. After updating the weights, SATLike selects an unsatisfied
clause C and flips the variable with the highest score in C. The clause C is chosen
uniformly at random from the set of unsatisfied clauses if there are any, and otherwise
an unsatisfied soft clause at random.

After the search is terminated, the algorithm returns the best found solution or
reports that no solutions were found (lines 15–18).

1The authors of [14] do not explicitly mention whether or not weights can become negative. The
implementation of SATLike available at http://lcs.ios.ac.cn/~caisw/MaxSAT.html suggests
that the weights may indeed become negative.
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4 MaxSAT Preprocessing

Preprocessing in SAT and MaxSAT refers to the process of reformulating a given
instance prior to solving, the aim being that the reformulated instance is easier for
solvers to operate on. In particular, the aim in applying preprocessing is that it
takes less time to preprocess and run the solver on the preprocessed instance than
running the solver directly on the instance.

A numerous amount of different preprocessing techniques for SAT have been
developed [88–109]. Recently, the study of preprocessing techniques in SAT has
matured to the point where a general framework covering numerous preprocessing
techniques for SAT has been developed [110]. The framework allows learning and re-
moving clauses satisfying certain general conditions providing a unified approach to
analyzing the correctness of preprocessing techniques for SAT; proving the correct-
ness of most preprocessing techniques P for SAT most often boils down to showing
P can be expressed as a combination of clause learning and removal steps. The
framework also provides a linear time (in terms of the sum of the sizes of the re-
moved clauses) reconstruction algorithm to produce a satisfying assignment for the
original formula based on a satisfying assignment for the preprocessed formula.

Devising preprocessing techniques for MaxSAT poses additional difficulties com-
pared to SAT, as the weights of the clauses have to be taken into account. Especially,
optimal solutions to the preprocessed instance should correspond to optimal solu-
tions to the original instance.

Due to these additional requirements, most SAT-based preprocessing techniques
cannot be directly applied to clause-centric MaxSAT instances [30]. However, if
clause-centric instances are first converted into literal-centric instances, a wide range
of preprocessing techniques for SAT become available in the following sense: (i) A
solution to the original clause-centric instance can be reconstructed in polynomial
time from a solution to the preprocessed instance and (ii) for each optimal solution
with an apparent cost c to the preprocessed instance, the corresponding solution to
the original instance obtained via solution reconstruction is also optimal and has
cost c [30, 53]. In particular, the SAT-based preprocessing techniques blocked clause
elimination1 (BCE) [89, 94], bounded variable elimination (BVE) [91–93], subsump-
tion elimination (SE) [90] and self-subsuming resolution (SSR) [91] discussed in
detail in Section 4.1 can be lifted to literal-centric MaxSAT instances with minor
restrictions. On top of the SAT-based preprocessing techniques, several MaxSAT-
specific techniques have been introduced [88, 109, 111]. Out of the MaxSAT-specific
techniques we will discuss Group-subsumed label elimination [88].

The work presented in [53] provides a unified approach to analyzing the correct-
ness of MaxSAT preprocessing techniques, including most SAT-based techniques.
Combined with the earlier results in [110], the same linear time reconstruction pro-
cedure for most of the SAT-based techniques (including BCE, BVE, SE and SSR)
can be used as is in MaxSAT preprocessing i.e. the aforementioned conditions (i) and
(ii) are satisfied.

1BCE is also directly applicable to clause-centric MaxSAT [30].
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Preprocessors—programs applying preprocessing techniques—such as Coproces-
sor [112, 113], MaxPre [88] and SatELite [91] implement many of the preprocessing
techniques for SAT and MaxSAT. Any SAT or MaxSAT solver can be prepended
with a preprocessor by feeding the given input instance first to a preprocessor which
then returns a corresponding preprocessed instance for the solver to operate on. If
the solver returns a solution, the preprocessor uses it to reconstruct a solution for
the original instance. Both Coprocessor and MaxPre can also be used to preprocess
MaxSAT instances [15, 88].

Preprocessing is a successful method in increasing the performance of SAT sol-
vers. For example, the winner of the random track of the 2018 SAT competition1,
SparrowToRiss [75], uses the CP3 extension of Coprocessor 2.0 while the solver
Plingeling [75]—which placed first on the parallel SAT track and second on the
parallel UNSAT track—uses several preprocessing such as blocked clause elimination
and bounded variable elimination.

Compared to SAT, the effects of MaxSAT preprocessing have been more mod-
est [30, 111, 114, 115]. In the 2019 MaxSAT Evaluation2 most of the solvers did
not include preprocessing techniques. The Open-WBO-ms-pre variant of the Open-
WBO solver [77, 116], included the MaxPre preprocessor, but its performance on the
unweighted and weighted incomplete tracks was poor on both when compared with
other other solvers. However, the performance of Open-WBO-ms-pre was slightly
better than the performance of Open-WBO-ms [77] which does not integrate a pre-
processor. Later in Chapter 6 we show that preprocessing increases the performance
of two stochastic local search solvers for MaxSAT.

In this chapter we overview some of the main preprocessing techniques for Max-
SAT. We then show how a solution to the original instance can be recovered from a
preprocessed instance.

4.1 Preprocessing Techniques

As mentioned earlier, numerous preprocessing techniques for SAT—and therefore
also for MaxSAT—exist. In this work, we overview five main ones for MaxSAT,
which are all implemented and used by default in the MaxPre preprocessor.

Two of the preprocessing techniques we will cover utilize the notion of a resolvent.
Given clauses C and D with l ∈ C and l̄ ∈ D the resolvent of C and D with respect
to a literal l is the clause (C ∪D) \ {l, l̄}, denoted by C ./l D. Resolution is a rule
of inference in propositional logic, where the resolvent C ./l D is entailed by C ∧D.

Resolution alone can be used to determine the satisfiability of a CNF formula
by replacing two clauses C and D with their resolvent C ./l D when l ∈ C, l̄ ∈ D,
eventually leading to the empty formula or an empty clause. In the former case,
the formula is satisfiable and unsatisfiable in the latter. However, applying this
procedure, the size of the formula may grow exponentially large as is the case with
the CNF encoding of the pigeonhole principle [117].

1See http://satcompetition.org/.
2See https://maxsat-evaluations.github.io/2019/.
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Let FL be a literal-centric instance. The techniques we cover are the follow-
ing, out of which the first four are MaxSAT liftings of preprocessing techniques for
SAT [30].

Blocked clause elimination (BCE) removes a clause C blocked by a literal l if
l ∈ C \ S(FL) such that the resolvent C ./l D is a tautology for all D ∈ FL

with l̄ ∈ D. A clause is called blocked if it is blocked by a literal.

Bounded variable elimination (BVE) is a resolution based technique to elim-
inate a variable x 6∈ S(FL). The instance obtained by applying BVE to
eliminate the variable x is(

FL \ {C ∈ FL | x ∈ C or x̄ ∈ C}
)
∪

{C | ∃A,B ∈ FL s.t. C = A ./x B is not a tautology}.

Subsumption elimination (SE) removes a clause C ∈ FL if D ⊆ C for some
D ∈ FL.

Self-subsuming resolution (SSR) replaces a clause C with the clause C ./l D
if C ./l D ⊆ C for some literal l 6∈ S(FL) with l ∈ C, l̄ ∈ D.

Group-subsumed label elimination (GSLE) removes a soft variable s if there
are soft variables s1, . . . , sn 6= s such that s ∈ C implies si ∈ C for some
i = 1, . . . , n and

∑n
i=1w(si) ≤ w(s).

The bounded part in BVE comes from an added restriction in practical applica-
tions. That is, the size of any given instance is not allowed to grow after applying
BVE i.e. |BVE(FL)| ≤ |FL|. We omit this restriction as it has no effect on the
following theory.

For a literal-centric instance FL, we use P(FL) to denote any instance obtained
from FL with application(s) of a preprocessing technique P . For a clause-centric
instance F , we use P(F) to denote P(FL) where FL is the literal-centric instance
corresponding to F .

Example 4.1. Consider the literal-centric instance FL = {(x ∨ ȳ), (x̄ ∨ y), (x̄ ∨ ȳ)}
with no soft variables. Resolving (x∨ ȳ) with (x̄∨ ȳ) on x gives (ȳ) which subsumes
(x ∨ ȳ) so applying SSR gives SSR(FL) = {(ȳ), (x̄ ∨ y), (x̄ ∨ ȳ)}. We can further
apply preprocessing to SSR(FL). Notice that the clause (ȳ) is contained in the
clause (x̄ ∨ ȳ) so subsumption elimination yields SE(SSR(FL)) = {(ȳ), (x̄ ∨ y)}.

Next, since SE(SSR(FL)) has no occurrences of x we may apply BCE to ob-
tain BCE(SE(SSR(FL))) = {(ȳ)}. Alternatively, using BVE to eliminate y gives
BVE(SE(SSR(FL))) = {(x̄)}. Finally, applying BCE or BVE to either of these
two instances results in the empty formula.

The MaxSAT-specific technique GSLE is redundant if no clause contains more
than one soft variable. Thus GSLE is only of use after applying techniques such as
BVE.
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Example 4.2. Let

FL = (x) ∧ (x ∨ ȳ ∨ s1) ∧ (x̄ ∨ s2) ∧ (x̄ ∨ ȳ ∨ s3) ∧ (y ∨ s4)

where w(si) = i. Observe that GSLE is not applicable at this point. By eliminating
the variable x we get the instance

BVE
(
FL
)

= (s2) ∧ (ȳ ∨ s3) ∧ (ȳ ∨ s1 ∨ s2) ∧ (ȳ ∨ s1 ∨ s3) ∧ (y ∨ s4).

Applying BVE a second time to remove occurrences of y gives

BVE
(
BVE

(
FL
))

= (s2) ∧ (s3 ∨ s4) ∧ (s1 ∨ s2 ∨ s4) ∧ (s1 ∨ s3 ∨ s4).

Since w(s2) + w(s3) > w(s4), s4 is not subsumable by s2 and s3. However, for s1
and s3 we have w(s1) + w(s3) ≤ w(s4) and each clause containing s4 also contains
s1 or s3. Thus s4 is subsumed by s1 and s3 together giving

GSLE
(
BVE

(
BVE

(
FL
)))

= (s2) ∧ (s3) ∧ (s1 ∨ s2) ∧ (s1 ∨ s3).

The soft variables s2 and s3 both appear in a unit clause so neither can be eliminated
with GSLE. In addition, w(s1)<w(s2), w(s3). Thus GSLE cannot be applied again.

4.2 Solution Reconstruction

In applications of MaxSAT, the cost of an optimal solution alone is often not enough
i.e. the solution itself needs to be returned. Therefore, if preprocessing is applied
there should be a fast method of reconstructing a solution to the original instance
from any solution to the preprocessed instance. There is a general reconstruc-
tion method for most of the SAT-based preprocessing techniques [53, 110], and a
polynomial-time reconstruction algorithm for most MaxSAT-specific techniques [53].
We will not cover the general technique and instead show explicitly how solution
reconstruction can be applied to the techniques defined earlier.

Let F be a clause-centric MaxSAT instance, FL the corresponding literal-centric
instance and let τ be a solution to P(F) where P ∈ {BCE,BVE,SE,SSR,GSLE}.
Let τ ′ denote the reconstructed assignment.

BCE: Let C ∨ l ∈ FL be the eliminated clause, blocked on l 6∈ S(FL). If τ(C) = 1,
then τ ′ = τ and otherwise τ ′ = τl.

BVE: Let l be the eliminated literal. If there is a clause A∨ l ∈ FL with τ(A) = 0,
then τ ′ = τl and otherwise τ ′ = τ¬l.

SE: The reconstructed solution is τ ′ = τ .

SSR: The reconstructed solution is τ ′ = τ .

GSLE: Let s ∈ S(F) be the subsumed soft variable. Then τ ′ = τ¬s.

If multiple preprocessing steps are applied, as they usually are, the reconstruction
steps are performed in reverse order of application. We use the notation REC(τ)
to denote the assignment obtained after all reconstruction steps.
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The correctness of the first four techniques follow from [53, 110] where by cor-
rectness we mean that (i) the instances F and P(F) viewed as CNF formulas are
satisfiability-equivalent and (ii) for any optimal solution τ to P(F) with apparent
cost c, the assignment REC(τ) is an optimal solution for F with cost c.

To see that the reconstruction procedure for GSLE works correctly, note that
by its definition if s is subsumed by s1, . . . , sn then any solution τ with τ(s) = 1
can be converted to another solution τ ′ that assigns s1, . . . , sn to true instead of s
where the cost of τ ′ is lower or equal to the cost of τ . That is, the assignment τ ′ to
GSLE (F) with

τ ′(si) = 1, τ ′(s) = 0, ∀x 6= s1, . . . , sn τ ′(x) = τ(x)

is a solution to GSLE (F) and REC(τ ′) = τ ′ is a solution to F with cost at most
equal to the cost of τ .

Theorem 4.3. Each P ∈ {BCE,BVE,SE,SSR,GSLE} works correctly.

Example 4.4. Consider again the instance FL = {(x ∨ ȳ), (x̄ ∨ y), (x̄ ∨ ȳ)}, the
preprocessed instance BCE

(
SE
(
SSR

(
FL
)))

= {(ȳ)} from Example 4.1 and the
solution τ = {ȳ}. Since the last applied reconstruction technique was BCE we
first apply its reconstruction procedure to obtain a solution τ ′ to the instance
SE
(
SSR

(
FL
))

= {(ȳ), (x̄ ∨ y)}; since we have τ(C) = 0, where C = (y) and
C ∨ x̄ ∈ SE

(
SSR

(
FL
))
, by the reconstruction step for BCE we have τ ′ = τ¬x. The

reconstruction steps for SSR and SE leave τ ′ unaltered so REC(τ) = τ ′ = {x̄, ȳ}.
Example 4.5. Let FL be as in Example 4.2 so that

GSLE
(
BVE

(
BVE

(
FL
)))

= (s2) ∧ (s3) ∧ (s1 ∨ s2) ∧ (s1 ∨ s3).

Consider the solution τ = {s̄1, s2, s3, s4}. Since s4 was subsumed, the reconstruc-
tion procedure for GSLE yields the solution τ ′ = τ¬s4 to BVE

(
BVE

(
FL
))
. The

assignment τ ′ does not satisfy C = (s4), where C ∨ y = (y ∨ s4) ∈ BVE
(
FL
)
so the

reconstruction procedure sets τ ′ = τ ′y. Finally, the assignment τ ′ does not satisfy the
empty clause C = (), where C∨x = (x) ∈ FL, so REC(τ) = τ ′x = {x, y, s̄1, s2, s3, s̄4}.

Let us then examine what would happen if we were to apply the defined prepro-
cessing techniques to a clause-centric instance. The trouble comes from the weights
associated with soft clauses. Neither BVE nor SSR can be applied correctly no mat-
ter how the weights of the resolvents are chosen. The BCE technique is the only one
of the techniques we consider that works correctly for clause-centric instances [30].

Example 4.6. Let F1 = (x)2 ∧ (x̄)1, F2 = (x)1 ∧ (x̄)2. For both instances, an
application of BVE leads to the instances E1 = ()c1 and E2 = ()c2 obtained from F1

and F2 respectively, where ci is the weight of the resolvent () = (x) ./x (x̄). Now,
no matter the weights ci, any assignment τ is an optimal solution to both E1 and E2.
However, REC(τ) ∈ {τx, τ¬x} cannot be optimal for both F1 and F2 simultaneously.

A similar argument can be made for SSR as well. Applying SSR on F1 and F2

to subsume the clause (x) leads to the instances E1 = ()c1 ∧ (x̄)1 and E2 = ()c2 ∧ (x̄)2.
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Now τ = {x̄} is optimal to both E1 and E2 but REC(τ) = τ is not an optimal
solution to F1.

Finally, applying SE to subsume (x∨y) from F = (ȳ)∧(x̄)2∧(x)1∧(x∨y)2 yields
E = (ȳ) ∧ (x̄)2 ∧ (x)1 for which τ = {x̄, ȳ} is optimal with cost 2 but REC(τ) = τ
is not optimal for F .

28



5 Locally Minimal Solutions

Most MaxSAT solvers, both complete and incomplete, make use of non-optimal
solutions found during search. For example, stochastic local search algorithms for
MaxSAT (which are incomplete) use the costs of non-optimal solutions as heuristic
guidance to visit solutions with lower cost [14, 28, 38–40] while in linear search
algorithms for MaxSAT the cost of encountered solutions is used as an additional
constraint to enforce that successive solutions have a lower cost than the solutions
found earlier during search [51, 118, 119].

MaxSAT solvers are usually oblivious to whether or not the input instance is
preprocessed [13, 14, 28, 38–40, 49] as MaxSAT solver are rarely designed to rely on
preprocessing. These solvers view the soft variables as unit soft clauses. Therefore,
most MaxSAT solvers equate the apparent cost of a solution τ to a preprocessed in-
stance with the cost of the solution REC(τ) to the original instance. For this reason
it is essential for solvers utilizing preprocessing that for two solutions τ1, τ2 to a pre-
processed instance P(F) with Appar-Cost(P(F), τ1) ≤ Appar-Cost(P(F), τ2)
we have Cost(F ,REC(τ1)) ≤ Cost(P(F),REC(τ2)). Otherwise the search may
be misguided as solvers could mistakenly consider τ1 to be the better solution due
to its better apparent cost. Preferably, the stronger claim that the apparent cost of
a solution τ to P(F) equals the cost of REC(τ) to F holds.

Thus far, establishing the correctness of different MaxSAT preprocessing tech-
niques has so far been based on proving the preservation of optimal solutions. Given
a preprocessing technique P ∈ {BCE,BVE,SE,SSR,GSLE} and an optimal solu-
tion τ to P(F), the reconstructed solution REC(τ) is optimal for F and the cost of
REC(τ) equals apparent cost of τ [30, 53, 109]. However, these arguments rely on
assuming the optimality of τ . Therefore the proofs do not necessarily generalize to
arbitrary solutions.

We will show in Section 5.1 that these proofs indeed do not generalize to arbitrary
solutions and solvers may misinterpret costs, i.e. solvers mistakenly consider the
apparent cost of a solution to be the cost of the solution REC(τ) even though the two
differ. Moreover, we show that there are solutions τ1, τ2 where τ1 has a lower apparent
cost than τ2 but nevertheless REC(τ1) has a higher cost than REC(τ2). To the
best of our knowledge, this issue had gone unnoticed since the adaptation of many
effective SAT-based preprocessing techniques to MaxSAT in [30]. We hypothesize
the issue of misinterpreting costs explains at least partially the more modest impact
of preprocessing in MaxSAT solving as compared to preprocessing in context of SAT
solving.

Towards rectifying the issue of misinterpreting costs, in Section 5.2 we introduce
locally minimal solutions and prove that for most of the preprocessing techniques
discussed the costs of locally minimal solutions are interpreted correctly. Each so-
lution τ for a preprocessed instance P(F) can be turned into a locally minimal
solution efficiently so most MaxSAT solvers can be modified with little impact on
performance to store only locally minimal solutions for which the apparent cost is
equal to the cost of the reconstructed solution. In Section 6.1 we propose an SLS
solver for MaxSAT that only searches over locally minimal solutions.
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5.1 Issues in Applications of MaxSAT Preprocessing

We begin this section by defining the cost of a solution τ for a preprocessed (literal-
centric) instance P(F).

Definition 5.1. Let F be a clause-centric MaxSAT instance, P(F) a preprocessed
instance and τ a solution to P(F). The cost of the solution τ is Cost(REC(τ),F).

In applications of preprocessing, we would expect the following claim to hold.

Claim 5.2. Let F be a clause-centric instance and let P be a preprocessing tech-
nique. Then Cost(F ,REC(τ)) = Appar-Cost(P(F), τ) for any solution τ to
P(F).

The following example demonstrates that this claim does not hold in general.
Example 5.3. Let F = (x̄ ∨ y)1 ∧ (x ∨ ȳ) ∧ (x̄ ∨ ȳ) be a clause-centric MaxSAT
instance. The corresponding literal-centric instance is FL = (x̄∨y∨s)∧(x∨ȳ)∧(x̄∨ȳ)
where w(s) = 1. The clause (x∨ ȳ) is blocked on ȳ so applying BCE once we obtain
the instance BCE(F) = (x̄∨y∨s)∧ (x̄∨ ȳ) which has a solution τ = {s, x̄, ȳ}. Since
τ((x̄)) = 1, where (x̄ ∨ ȳ) ∈ FL, we have REC(τ) = τ but

Cost(F ,REC(τ)) = 0 6= 1 = Appar-Cost(P(F), τ).

This implies that the apparent cost of a solution cannot in general be equated
with its cost. Moreover, if a solver uses apparent cost in comparing the quality of
solutions, it is not guaranteed that a solution τ1 with a lower apparent cost than
another solution τ2 would be of better quality post reconstruction. However, even
though apparent cost can differ from cost, it could still be the case that the order of
solutions in terms of apparent cost is the same as if ordered in terms of cost instead.

Claim 5.4. Let P be a preprocessing technique. Given two solutions τ1 and τ2 to a
preprocessed instance P(F) with Appar-Cost(P(F),τ1) ≤ Appar-Cost(P(F),τ2)
we have Cost(F ,REC(τ1)) ≤ Cost(F ,REC(τ2)).

In case Claim 5.4 holds, a solver that returns the solution with the best apparent
cost still returns the best solution in terms of cost even though the cost is not
necessarily equal to the apparent cost. The cost can be evaluated manually in linear
time after search which adds little overhead as this has to be done only once. As it
turns out, Claim 5.4 is also false.
Example 5.5. Let F = (x ∨ y)1 ∧ (x̄)2. Now FL = (x ∨ y ∨ s1) ∧ (x̄ ∨ s2)
where w(s1) = 1 and w(s2) = 2. Applying BVE to remove the variable x gives
BVE(F) = (y ∨ s1 ∨ s2). Let τ = {ȳ, s1, s̄2} and τ ′ = {y, s̄1, s2} be solutions to
BVE(F), for which

Appar-Cost(BVE(F), τ) = 1, Appar-Cost(BVE(F), τ ′) = 2.

Since C = (y ∨ s1), where C ∨ x ∈ FL is the only clause in FL containing x, is
satisfied by both τ and τ ′ we have REC(τ) = τ¬x and REC(τ ′) = τ ′¬x. However,

Cost(F ,REC(τ)) = 1, Cost(F ,REC(τ ′)) = 0.
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This has adverse implications for MaxSAT algorithms utilizing preprocessing.
The search process may be seriously misguided if apparent costs are used in steer-
ing the search. Figure 1 illustrates this effect occurring in the MaxSAT solvers
Loandra1 [13] and SATLike2 [14]. Loandra combines core-guided and linear search
techniques while SATLike is a stochastic local search solver.

Both Loandra and SATLike were augmented with the MaxPre [88] preprocessor
so that the input instance F is first given to MaxPre which then returns a pre-
processed instance P(F) to the solver. The solvers were then ran on the instance
ram_k3_n12.ra1.wcnf from the 2019 MaxSAT Evaluation. For each solution τ im-
proving the apparent cost, the value Appar-Cost(P(F), τ) was recorded along
with the cost Cost(F ,REC(τ)). Moreover, the gap between the apparent costs
and costs was computed. The gap of a solution τ is defined as

Appar-Cost(P(F), τ)

Cost(F ,REC(τ))
− 1.

Both solvers made drastic over-approximations during search. From Figure 1 we
see that the gap was over three at worst both in Loandra’s core-guided phase and
in its linear search phase. That is, the apparent cost is at worst over three times
larger than the cost. For SATLike the gap is nearly two at worst.

In the linear search phase, Loandra spent time improving the apparent cost
with no improvement in the cost. For τ10, . . . , τ20, where τn denotes the nth found
solution, the apparent cost decreases but the cost remains constant at 919. Similarly
for solutions τ21, . . . τ33 apparent cost is improved but the cost stays at 689.

Worse still, some solutions recorded by both solvers improved the apparent cost
but increased the cost. For example, the eight solution τ8 found by Loandra in its
core guided phase had

Appar-Cost(P(F), τ8) = 4572, Cost(F ,REC(τ8)) = 1953.

The ninth solution τ9 improved the apparent cost but decreased the cost as

Appar-Cost(P(F), τ9) = 4324, Cost(F ,REC(τ9)) = 2073.

Likewise for SATLike

Appar-Cost(P(F), τ3089) = 1739, Cost(F ,REC(τ3089)) = 698

but

Appar-Cost(P(F), τ3090) = 1738, Cost(F ,REC(τ3090)) = 1738.

For Loandra, the apparent costs do differ from the costs in the core-guided phase
as well as the linear-search phase suggesting that this problem extends to other
solvers (complete or incomplete) applying core-guided and linear-search methods.
Likewise, when prepended with a preprocessor, misinterpretation of costs extends
to implicit hitting approaches and other stochastic local search algorithms which
make use the costs of found solutions [14, 15, 28, 38, 48, 49].

1Available at https://github.com/jezberg/loandra under the MIT license.
2Available at http://lcs.ios.ac.cn/~caisw/MaxSAT.html under the MIT license.
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5.2 Locally Minimal Solutions

There are several ways to remedy the issue of misinterpretation of costs when prepro-
cessing is applied. One way around the issue is to ignore apparent costs and instead
apply solution reconstruction to evaluate the cost of the found solutions. However,
even though the reconstruction procedure takes linear time it severely impacts the
performance of solvers that encounter lots of solutions in short periods of time.
This is particularly the case with SLS solvers as they often encounter thousands of
solutions (or more) within seconds.

A more sophisticated way around the issue would be to only compute minimal
solutions (defined in [30]) as for them apparent cost equals cost [30]. Unfortunately,
to decide whether a solution is minimal is an NP-hard task [120] and so devising
a practically efficient algorithm guaranteed to search over minimal solutions is not
realistic, at least not if P 6= NP.

Our approach around misinterpreting costs is to restrict the set of considered
solution candidates more suitably. To motivate our approach, let us return to Ex-
ample 5.3. In that example, we had BCE(F) = (x̄ ∨ y ∨ s) ∧ (x̄ ∨ ȳ) which has the
solution τ = {s, x̄, ȳ} with apparent cost of one. Setting the soft variable s to true is
not necessary though as τ¬s is also a solution to BCE(F) with apparent cost of zero.
The difference of τ and τ¬s is that τ¬s has no soft variables set to true unnecessarily.
We call such solutions locally minimal.

Definition 5.6. Let FL be a literal-centric MaxSAT instance. A solution τ to FL

is a locally minimal solution if there is no s ∈ S(FL) with τ(s) = 1 such that τ¬s is
also a solution.

Since locally minimal solutions τ to FL have no soft variables set to true unneces-
sarily, i.e. if τ(s) = 1 for s ∈ S(FL) then there is a clause C∨s with τ(C) = 0, for F
and its literal-centric counterpart FL we have Cost(F , τ) = Appar-Cost(FL, τ)
when τ is a locally minimal solution. Therefore, if a preprocessing technique pre-
serves locally minimal solutions in the following sense, apparent costs equal costs.

Definition 5.7. Let FL be a literal-centric instance. A preprocessing technique P
for MaxSAT preserves locally minimal solutions if for all locally minimal solutions
τ to P(F) the solution REC(τ) is locally minimal to FL.

Example 5.8. Let F = (x∨y)1∧(x̄)2, FL = (x∨y∨s1)∧(x̄∨s2) where w(si) = i, so
that after eliminating x we have BVE(F) = (y ∨ s1 ∨ s2) as in Example 5.5. There
are three locally minimal solutions to BVE(F), namely

τ1 = {y, s̄1, s̄2}, τ2 = {ȳ, s1, s̄2}, τ3 = {ȳ, s̄1, s2},

with apparent costs 0, 1, 2 respectively. After reconstruction, we have

REC(τ1) = {x̄, y, s̄1, s̄2}, REC(τ2) = {x̄, ȳ, s1, s̄2}, REC(τ3) = {x, ȳ, s̄1, s2},

with costs 0, 1 and 2 respectively.
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The question of which preprocessing techniques preserve locally minimal solu-
tions then arises. We will show next that all the discussed preprocessing techniques
except for BCE preserve locally minimal solutions.

Theorem 5.9. BVE, SE, SSR and GSLE preserve locally minimal solutions.

Proof. First, we note that for any locally minimal solution τ to a literal-centric
FL and s ∈ S(FL) with τ(s) = 1 there is a clause C so that s ∈ C ∈ FL and
τ(C \{s}) = 0. Otherwise τ¬s is a solution to FL contradicting the local minimality
of τ .

Let then FL be a literal-centric instance and let P ∈ {BVE,SE,SSR,GSLE}.
Furthermore, let τ be a locally minimal solution to P(FL). If S(P(FL)) = ∅ the
claim follows as the reconstruction procedure does not set soft variables to true.
Thus we may assume that P(FL) contains soft variables.

Let s ∈ S(P(FL)) be a soft variable with τ(s) = 1 for which there is a clause C
such that C ∨ s ∈ P(FL) and τ(C) = 0. We prove the claim by showing REC(τ)¬s
is not a solution to FL. If C ∨ s ∈ FL the claim already follows as REC(τ)(C) = 0.
Hence we may also assume C ∨ s 6∈ FL.

The rest of the proof boils down to a case by case analysis:

BVE: Let x be the non-soft variable removed by BVE. As C ∨ s 6∈ FL there are
clauses D and E for which C ∨ s = D ./x E. Since τ(C) = 0, REC(τ)¬s
satisfies D at most on x and E at most on ¬x. As we assume no tautologies,
REC(τ)¬s cannot satisfy D and E simultaneously.

SE: The assumption C ∨ s 6∈ FL is not applicable.

SSR: Since C ∨ s 6∈ FL, there are clauses D,E ∈ FL and a non-soft variable x
such that C ∨ s = D ./x E and C ∨ s subsumes D. Since τ(C) = 0, s is the
only reason D ./x E is satisfied by τ . Therefore with REC(τ)¬s, the clause D
is satisfied at most on x and E at most on ¬x meaning REC(τ)¬s does not
satisfy both D and E.

GSLE: Let r be the removed soft variable (r 6= s). Since C∨s is satisfied only on s
by τ and as REC(τ)(r) = 0, REC(τ)¬s would leave C∨s∨r ∈ FL unsatisfied.

Notice that in Theorem 5.9 FL is a general literal-centric instance. Hence a
straightforward induction yields the following corollary.

Corollary 5.10. Let n ∈ Z>0, Pi ∈ {BVE,SE,SSR,GSLE} where i = 1, . . . , n
and FL be a literal-centric instance. Then for any locally minimal solution τ to
Pn(Pn−1(. . .P1(FL) . . .)), the reconstructed solution REC(τ) to FL is also locally
minimal.

The following example demonstrates how BCE fails to preserve locally minimal
solutions.
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Example 5.11. Let F be the clause-centric instance F = (¬x∨y)∧(x∨¬y)1∧(¬x)1

with the corresponding literal-centric instance FL = (¬x∨y)∧(x∨¬y∨s1)∧(¬x∨s2),
w(s1) = w(s2) = 1. The hard clause (¬x ∨ y) is blocked on ¬x so an application
of BCE yields BCE(F) = (x ∨ ¬y ∨ s1) ∧ (¬x ∨ s2) which has the locally minimal
solution τ = {x,¬y,¬s1, s2} with apparent cost of 1. However, since τ(C) = 0,
where C = (y) and C∨¬x ∈ FL, we have REC(τ) = τ¬x which is not locally minimal
as REC(τ)¬s2 is also a solution to FL. The cost of τ is Cost(F ,REC(τ)) = 0 6= 1.

Unlike the other covered preprocessing techniques, BCE can also be applied
directly to clause-centric instances. Perhaps the literal-centric view is the reason
behind BCE misinterpreting costs? The following example demonstrates this is not
the case.
Example 5.12. Applying BCE directly to the F in Example 5.11 leads to misin-
terpretation of costs as well. An application of BCE to F gives (x ∨ ¬y)1 ∧ (¬x)1

which has the solution τ = {x,¬y} of cost 1. After reconstruction, the solution
becomes τ = {¬x,¬y} with a cost of 0.

Let us then focus on the relationship of locally minimal solutions to solutions
that are not. First, we address the question whether locally minimal solutions
are the only solutions for which apparent cost equals cost when only preprocessing
techniques preserving locally minimal solutions are used. The following example
illustrates that this is not the case.
Example 5.13. Let F = (x)1 ∧ (x̄ ∨ y) for which FL = (x ∨ s) ∧ (x̄ ∨ y) where
w(s) = 1. Applying BVE to remove x gives BVE(F) = (y ∨ s) which has a non-
locally minimal solution τ = {y, s}. Now REC(τ) = τ¬x which is locally minimal
for FL. Thus Appar-Cost(BVE(F), τ) = Cost(F ,REC(τ)) even though τ was
not locally minimal for BVE(F).

By the above example, the concept of locally minimal solutions does not capture
all solutions for which its apparent cost equals its cost. As such, there could be a
more general property than local minimality which guarantees that costs are not
misinterpreted. Finding such a property constitutes as interesting future work.

Since each non-locally minimal solution τ has some soft variables set to true
unnecessarily, one would reckon that any locally minimal solution obtained from τ
by changing the assignment of some soft variables to false would have a better cost
than τ . The following example demonstrates that this intuition is false.
Example 5.14. Consider again the instance F = (x∨ y)1 ∧ (x̄)2 from Example 5.5
with the corresponding literal-centric instance FL = (x∨ y∨ s1)∧ (x̄∨ s2). Let then
τ = {ȳ, s1, s2} and τ¬s1 be solutions to BVE(F) = (y ∨ s1 ∨ s2). Now τ¬s1 does not
satisfy the clause C = (y∨ s1), where C ∨x ∈ FL, but τ does so REC(τ¬s1) = τ¬s1,x
and REC(τ) = τ¬x. For these solutions

Appar-Cost(BVE(F), τ¬s1) = 2, Appar-Cost(BVE(F), τ) = 3

and
Cost(F ,REC(τ¬s1)) = 2, Cost(F ,REC(τ)) = 1.

So τ¬s1 has as a higher cost than τ even though τ¬s1 is locally minimal but τ is not.
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Converting a solution into a locally minimal one by changing the assignment of
some soft variables to false does not therefore necessarily improve the cost. This
conversion however has the benefit of guaranteeing that the apparent cost of a
solution equals its cost. At the time of writing, not much can be said on how the
cost of a solution of a non-locally minimal solution relates with its apparent cost,
other than that the cost of a solution is always at most equal to its apparent cost.

Out of the preprocessing techniques preserving locally minimal solutions, only
with BVE the cost of the solutions can worsen when assigning unnecessary soft
variables to false. This is due to the fact that the reconstruction procedures for SE,
SSR and GSLE do not alter how non-soft variables are assigned.
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6 Stochastic Local Search over Locally Minimal
Solutions

In this section we first introduce a new SLS algorithm called LMS-SLS which is guar-
anteed to search over locally minimal solutions. We then evaluate the effectiveness of
the different components of LMS-SLS. In addition, we show that the performance of
LMS-SLS is on par and complementary to the state-of-the-art SLS-solver SATLike.

6.1 LMS-SLS

A naive way to circumvent misinterpretation of costs is to apply solution reconstruc-
tion every time a new solution is found. While this indeed avoids misinterpretations,
the reconstruction steps consume a lot of time in case the number of solutions en-
countered is high. Thus this approach is not suited for SLS algorithms as they often
visit tens of thousands of solutions in short periods of time. Our algorithm—titled
LMS-SLS—searches over locally minimal solutions, thus ensuring no misinterpreta-
tion of costs if all preprocessing techniques used preserve locally minimal solutions.

The main idea behind LMS-SLS is to exploit the group structure of a prepro-
cessed (literal-centric) instance. Given a preprocessed instance P(F), the clauses of
P(F) are first partitioned into sets H and S containing the hard clauses and the soft
clauses of P(F) respectively. The clauses of S are further partitioned into groups

Sx
g = {C | C ∈ S, and x is the cheapest soft variable in C}.

In case C ∈ S does not have a unique cheapest soft variable, the group of C is
chosen uniformly at random from the set {Sx

g | x is a cheapest soft variable in C}.
Hard clauses C are identified with the group {C} and we denote the collection of
all hard groups and soft groups by Hg and Sg respectively.

The intuition underlying the groups is as follows: suppose τ is a solution to P(F)
with τ¬x(Sx

g ) = 0. Since τ is a solution, we must have τ(x) = 1 as at least one clause
in Sx

g is unsatisfied. To not incur cost from x we need to satisfy all the clauses in
Sx
g . LMS-SLS utilizes this observation by focusing on satisfying groups of clauses

rather than single clauses resembling Group MaxSAT [35].
In contrast to SATLike, LMS-SLS only searches over the non-soft variables. The

soft variables serve only in evaluating cost so after flipping a variable LMS-SLS
updates the working assignment τ so that the invariant “τ(x) = 0 iff τ(Sx

g ) = 1”
holds for all soft variables x. Assuming each soft clause contains only one soft
variable, enforcing the invariant already implies that the solutions LMS-SLS finds
are locally minimal. For the instances of the weighted incomplete track from the 2019
MaxSAT evaluations this assumption holds for approximately 68% of the instances.
In case some clauses contain more than one soft variable, LMS-SLS generates a
locally minimal solution τ ′ by first setting τ ′ := τ and then iteratively τ ′(x) = 0 if
τ ′¬x is a solution, considering the soft variables x in decreasing order of w(x).

Algorithm 2 contains the pseudocode of LMS-SLS. The algorithm begins by
preprocessing the given clause-centric MaxSAT instance to obtain the literal centric
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Algorithm 2: LMS-SLS
Input : A clause-centric MaxSAT instance F
Output: A solution τ along with its cost if a solution is found, otherwise

“no solution found”.

1 Preprocess F to obtain P(F)
2 Form the groups Hg and Sg

3 τ := a random initial assignment for P(F)
4 for xc ∈ S(F) do
5 if Sxc

g is satisfied then τ(xc) = 0

6 else τ(xc) := 1

7 τ := decimation on τ and P(F) without soft variables
8 τ ∗ := τ
9 while no termination criteria is met do

10 if τ is a solution then
11 τ ′ := greedily computed locally minimal solution from τ
12 if Appar-Cost(P(F), τ ′) < Appar-Cost(P(F), τ ∗) then τ ∗ := τ ′

13 if D := {v 6∈ S(F) | score(v) > 0} 6= ∅ then
14 v := a variable in D chosen by the BMS strategy
15 τ := τ with v flipped
16 else
17 update group weights
18 if ∃G ∈ Hg that is unsatisfied then
19 G := an unsatisfied group from Hg

20 else G := a group from Sg that is satisfied at most by a soft variable
21 τ := Satisfy(τ,G)

22 update τ(xc) for all xc ∈ S(F)

23 if τ ∗ is a solution then
24 return REC(τ ∗),Cost(F ,REC(τ ∗))
25 else return “no solution found”

instance P(F) (line 1). After this, the algorithm groups the clauses on line 2 and
generates a working assignment on lines 3–8. Lines 4–6 guarantee local minimality in
the case each soft clause in P(F) contains one soft variable. The working assignment
is refined on line 7 by the unit propagation based decimation procedure discussed
in Section 3.2.1.

The search itself begins on line 9. In the beginning of each iteration, LMS-
SLS first checks whether the current assignment is a solution and if so, computes a
locally minimal solution τ ′ on line 11 in the greedy manner described above. Then,
if the apparent cost of τ ′ is lower than apparent cost of the currently the best found
solution τ ∗, τ ∗ is set to τ ′. Recall that the apparent cost of a locally minimal solution
equals its cost.

Next on lines 13–15 a greedy step similar to SATLike is performed if the set D
of variables with a positive score is non-empty. If so, one such variable is chosen
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according to the best from multiple selection strategy [14] where the number of
samples is a user defined parameter t. We adopt the dynamic weighting scheme
from SATLike but applied to groups instead of clauses. In detail, we initialize the
weight of each hard group to one and the weight of each Sx

g ∈ Sg to w(x). During
search the weight of each unsatisfied hard group is increased by a constant h_inc.
Following Definition 3.4, the score of a non-soft variable v is defined as the increase
in the total weight of satisfied groups if v is flipped.

In case the set D is empty—i.e. a greedy step is not possible—LMS-SLS first
updates the weights of the hard groups. Then a hard or soft group that is satisfied
at most by a soft variable is chosen to be satisfied next, preferring hard groups.
The assignment τ is then modified by the subroutine Satisfy so that G is satisfied
without soft variables. If G ∈ Hg, Satisfy flips a variable in G with the highest
score in it, breaking ties randomly. Otherwise the subroutine employs a simple
local search algorithm which flips a random variable in G with probability 1 − gp
or instead (with probability gp) a variable with the highest make (breaking ties
randomly). Here the make of a (non-soft) variable v is defined simply as the number
of unsatisfied clauses that would become satisfied after flipping v. The subroutine
then iterates this process until G is satisfied.

Lastly, on line 22 LMS-SLS modifies τ so that for each soft variable x we have
τ(x) = 1 iff τ(Sx

g ) = 1. After the termination of the search loop, if a solution was
found, then a solution for the original instance F is reconstructed from τ ∗.

Before moving onto the empirical evaluations, we note that the process of turning
a solution into a locally minimal by LMS-SLS on line 11 might inadvertently worsen
the cost of the found solution. This follows from observing that after the procedure
sets soft variables to false, fewer of the clauses in FL may be satisfied.
Example 6.1. Let F = (x ∨ a)1 ∧ (x ∨ b)4 ∧ (x̄ ∨ c)3 ∧ (x̄)3 so that

FL = (x ∨ a ∨ s1) ∧ (x ∨ b ∨ s2) ∧ (x̄ ∨ c ∨ s3) ∧ (x̄ ∨ s4)

where w(s1) = 1, w(s2) = 4, w(s3) = 3, w(s4) = 3. Applying BVE to remove the
variable x gives

BVE(F) = (a ∨ c ∨ s1 ∨ s3) ∧ (a ∨ s1 ∨ s4) ∧ (b ∨ c ∨ s2 ∨ s3) ∧ (b ∨ s2 ∨ s4),

which has the non locally minimal solution τ = {ā, b̄, c̄, s1, s2, s3, s4}. Each τ¬si is
also a solution and so as s2 has the highest weight, LMS-SLS sets τ ′ = τ¬s2 . After
that, τ ′¬si is a solution only for i = 1 so LMS-SLS sets τ ′ = τ ′¬s1 . But REC(τ) = τ¬x
has cost 1 + 4 = 5 while the solution REC(τ ′) = τ ′x has cost 3 + 3 = 6.

Even though turning a solution into a locally minimal one may increase its cost,
the primary objective of LMS-SLS is still achieved. Each new recorded locally
minimal solution does improve the cost if used preprocessing techniques preserve
locally minimal solutions.

6.2 Empirical Evaluation

We introduced the LMS-SLS-algorithm guaranteeing that recorded solutions are lo-
cally minimal. Given that the preprocessing techniques preserve locally minimal
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solutions, searching only over locally minimal solutions hopefully leads to perfor-
mance improvements. This is indeed the case in our implementation of LMS-SLS
as we will show in Section 6.2.1 where we investigate the effects of removing prepro-
cessing and grouping in our implementation of LMS-SLS.

The impact of preprocessing has been more modest in context of MaxSAT than
in SAT [114]. To see if this is the case with SATLike as well, we also investigate the
effects of preprocessing in SATLike. In addition, we compare SATLike with LMS-
SLS and observe complementary behavior i.e. SATLike performs better on some
benchmark families than LMS-SLS and vice versa.

All the experiments were run on 2.4-GHz Intel Xeon E5-2680-v4, 256-GB com-
puters. A time limit of 300 seconds (preprocessing time included) was enforced along
with a memory limit of 32GB. The benchmark instances used are the ones from the
weighted incomplete track of the 2019 MaxSAT evaluations1.

For the experiments, we built our implementation of LMS-SLS in C++ on top
of the MIT-licensed SATLike-framework. Following [14], we set h_inc = 300 if the
average weight of the soft clauses is over 10000 and otherwise h_inc = 3. Based on
preliminary experiments, we set t = 15 and gp = 0.8. We opted for MaxPre [88]
as the underlying preprocessor. Since preprocessing can take quite some time, we
limited the preprocessing time to ten seconds which is enough time for MaxPre to
finish on most of the instances. We noticed that MaxPre finished preprocessing
within ten seconds on 250 out of the 297 instances.

6.2.1 Effectiveness of Preprocessing and Grouping

We investigate the impact of preprocessing and grouping in LMS-SLS. For this end,
we removed grouping from LMS-SLS to see if preprocessing alone would yield better
results. Furthermore, we also removed preprocessing (along with grouping) from the
picture to see if these two main ideas combined were any good in reality. Observe
that removing preprocessing and grouping leads to an almost identical algorithm
to SATLike; the only distinction is in the random walk component where SATLike
chooses a variable from the selected clause with the highest score where where as in
LMS-SLS with preprocessing and grouping removed the variable might be chosen
uniformly at random (with probability 1 − gp). Finally, we included BCE in the
preprocessing procedure. The variants of the LMS-SLS algorithm are thus

default: LMS-SLS in full, including all preprocessing techniques covered that pre-
serve locally-minimal solutions,

+BCE: LMS-SLS in full, but including BCE—which does not preserve locally
minimal solutions—in preprocessing,

-G: LMS-SLS excluding clause grouping i.e. each clause is treated as a group of
size one,

-G-pre: LMS-SLS without preprocessing and clause grouping.

1Available at https://maxsat-evaluations.github.io/2019/benchmarks.html.
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One way to compare implementations of MaxSAT algorithms is the number of
wins (best solution found) over individual instances (see e.g. [14, 28, 39, 40, 74]). In
the 2019 MaxSAT evaluations, a score metric was used (larger value is better). The
score of a MaxSAT solver on an instance I is

The cost of the best solution found by the considered solvers
The cost of the best found solution by I

.

and the score of a solver over a set of instances is its average score over the instances.
The score gives a more accurate view on the relative performance of the solvers

compared. Consider the case where two solvers A and B beat each other in exactly
half of the given instances. Suppose further that on the half of the instances where A
wins, it wins just barely and on the instance where B wins, B wins by a wide margin.
Now if we only compared the number of wins, the solver A and B seem equally good
though this certainly is not the case. The solvers are practically equally good on
the instances where A beats B, but otherwise B performs much better than A.

Now let us consider what would happen if we were to compare solvers A and
B using the score metric. On each of the instances where A beats B, the score is
exactly one for A (as it found the best solution) and for B the score is something
close to one. For the other instances, the score of A is close to zero while for B
the score is one. Thus the average score for A is near 0.5 and for B it is near 1.0,
indicating that B is clearly the better solver which is indeed the case.

In our comparisons, we included both the number of wins and the scores. The
pairwise results are listed in Table 1. We compared -G-pre with -G, -G-pre with
default and default with +BCE. From Table 1 we see that preprocessing decreases
the performance of LMS-SLS if grouping is switched off. The score of -G is almost
4%-units lower than the score of -G-pre although including preprocessing while not
grouping seems to significantly improve the performance in the instances of hs-
timetabling and drmx-cryptogen. In other domains, the performance of -G is either
on-par with -G-pre or worse. In domains such as abstraction-refinement and Inter-
pretableClassifiers -G-pre significantly out performs -G.

Switching grouping on when including preprocessing results in drastic perfor-
mance improvements compared to -G-pre. This is likely due to the fact that after
preprocessing, the algorithm satisfies only one soft clause chosen uniformly at ran-
dom at a time instead of all the clauses sharing the same label. Therefore it is
unlikely that all soft clauses sharing a soft variable s are satisfied and so the cost is
increased by the weight of s. Without preprocessing this kind of behavior does not
occur as there is no group structure. The variant -G-pre is does not beat default in
any of the instances in domains such as InterpretableClassifiers, min-width, metro,
spot5. Observe that in e.g. InterpretableClassifiers and min-width -G-pre outper-
formed -G by a wide margin, but clearly loses to default. This serves as evidence
for the effectiveness of combining grouping and preprocessing.

Finally, we note that including BCE—a preprocessing technique that does not
preserve locally minimal solutions as witnessed in examples 5.11 and 5.12—in prepro-
cessing downgrades the overall performance of LMS-SLS. We hypothesize that the
adverse effect of BCE on the performance of LMS-SLS is at least partly explained
by the solver misinterpreting costs.
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6.2.2 LMS-SLS versus SATLike

We augmented SATLike with MaxPre to evaluate the effects of preprocessing on
the solver. The parameters of SATLike are set according to [14]. To gain insight
on the effects of preprocessing on SATLike we ran experiments on two variants
of SATLike, namely one without and one with preprocessing. We use the name
SATLike to refer to the variant without preprocessing (the original SATLike) and
SATLike+pre to SATLike with preprocessing included. We included the same pre-
processing techniques as the default variant of LMS-SLS. We also compare SATLike
and SATLike+pre with default. Table 6.2.1 displays the pairwise comparisons.

Interestingly we see that according to the number of wins, SATLike performs
better without preprocessing in terms of the number of wins although the difference
is narrow; SATLike outperforms SATLike+pre on six more instances. However,
judging by the scores SATLike+pre is the clear winner. This is explained by notic-
ing that in most cases when SATLike wins, it does so only barely. For example, in
the min-width domain SATLike wins on 16 out of the 17 instances but the score of
SATLike+pre in the domain is very close to one (0.981). This means SATLike+pre
finds good quality solutions for the min-width instances but loses slightly to SAT-
Like. For this reason, we argue that preprocessing has an overall positive impact on
SATLike, even though locally minimal solutions are not at all guaranteed.

Though the overall performance of SATLike increases with preprocessing, the
two variants exhibit complementary performance. In the af-synthesis domain SAT-
Like beats SATLike+pre by a wide margin both in terms of wins and score. On
the other hand, SATLike only has a score of 0.412 in hs-timetabling compared to
SATLike+pre’s score of 1.000 i.e. in at least half of the domain’s instances the best
solutions found by SATLike have a cost over twice of those found by SATLike+pre.

Complementary behavior is also found in both variants of SATLike and the
default variant of LMS-SLS. The default variant of LMS-SLS performs slightly
better than SATLike both in terms of wins and score but both solvers outperform
the other by a wide margin in multiple benchmark domains. SATLike loses by a
lot to default in domains such as causal-discovery and hs-timetabling but wins
handsomely in e.g. lisbon-wedding and set-covering.

Comparing SATLike+pre and default we see that overall, SATLike+pre per-
forms better but the difference is not as large as it is with SATLike and SAT-
Like+pre. While equaling in the number of wins, SATLike+pre has a 4.1%-units
larger score than default. Complementary behavior is observed in domains such as
af-synthesis, correlation-clustering and set-covering.

One of the main disadvantages of LMS-SLS is the overhead related to using
underlying the group structure in guiding the search. In MaxSAT SLS-solvers such
as SATLike, the score of a variable v depends only on the clauses v occurs in. With
LMS-SLS, the score of v depends not only the clauses containing it but on all clauses
that occur in the same group as v. More explicitly, if C and D are two clauses in the
same group with v ∈ C, v 6∈ D, then the score of v in LMS-SLS also depends on D.
Therefore flipping a variable affects the score of many more variables in LMS-SLS
than in SATLike.
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7 Conclusions
In this thesis, we focused on the MaxSAT optimization paradigm. We examined the
effects of MaxSAT preprocessing on the relative quality of solutions and developed
a new SLS solver to mitigate the issues related to preprocessing. We showed that
preprocessing may lead to the misinterpretation of costs of non-optimal solutions
during search both in theory and in practice which to our best knowledge has thus
far remained unnoticed. We introduced a class of solutions called locally minimal so-
lutions for which the apparent cost equals cost if the used preprocessing techniques
preserve locally minimal solutions. Most of the covered preprocessing techniques
have this property. Therefore, MaxSAT solvers prepended with a preprocessor lim-
ited to these preprocessing techniques do not misinterpret costs if they search only
over locally minimal solutions.

We developed such a solver, LMS-SLS, that preprocesses the input instances us-
ing only techniques preserving locally minimal solutions, and groups clauses to steer
the search towards locally minimal solutions. We then analyzed the effectiveness
of preprocessing and grouping, showing that removing preprocessing and grouping
from the algorithm leads to a significant decrease in performance. On top of that,
we showed that including BCE—a preprocessing technique that does not preserve
locally minimal solutions—decreases the performance of LMS-SLS. This may very
well be due to the fact that including BCE can lead to misinterpretation of costs.
Finally we showed that LMS-SLS is competitive with SATLike, the state-of-the-art
SLS solver SATLike for MaxSAT.

Adapting SAT-based MaxSAT solvers to search over locally minimal solutions
is a promising research direction with potential in increasing their performance in
practice. Replacing the score-function in LMS-SLS with another one to allow faster
update of scores could lead to a more efficient solver. Ways other than grouping and
the greedy method in LMS-SLS to guarantee locally minimal solutions should also
be considered. For example, locally minimal solutions can be enforced by adding
constraints after converting a clause-centric instance to a literal-centric instance; for
each soft clause (l1 ∨ . . . ∨ ln ∨ s) with the soft variable s add the hard constraints
(l̄i∨ s̄) for each i = 1, . . . , n to enforce that s is falsified if any li is satisfied. Concepts
other than locally minimal solutions that also guarantee no misinterpretation of costs
could also be explored.
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54 N. Eén and N. Sörensson, “Temporal induction by incremental SAT solving,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 4, pp. 543–560,
2003.

55 S. Joshi, P. Kumar, R. Martins, and S. Rao, “Approximation strategies for
incomplete MaxSAT,” in International Conference on Principles and Practice
of Constraint Programming, pp. 219–228, Springer, 2018.

56 M. Chiarandini, I. Dumitrescu, and T. Stützle, “Stochastic local search algo-
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local search algorithms for biobjective permutation flowshop scheduling,” in
International Workshop on Hybrid Metaheuristics (M. J. Blesa, C. Blum, L. D.
Gaspero, A. Roli, M. Sampels, and A. Schaerf, eds.), vol. 5818 of Lecture Notes
in Computer Science, pp. 100–114, Springer, 2009.

58 H. G. Santos, T. A. M. Toffolo, C. L. T. F. Silva, and G. V. Berghe, “Analysis
of stochastic local search methods for the unrelated parallel machine scheduling
problem,” ITOR, vol. 26, no. 2, pp. 707–724, 2019.
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