MaxPre: An Extended MaxSAT Preprocessor*

Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Jarvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland
matti.jarvisalo@helsinki.fi

Abstract. We describe MaxPre, an open-source preprocessor for (weighted par-
tial) maximum satisfiability (MaxSAT). MaxPre implements both SAT-based and
MaxSAT-specific preprocessing techniques, and offers solution reconstruction,
cardinality constraint encoding, and an API for tight integration into SAT-based
MaxSAT solvers.

1 Introduction

We describe MaxPre, an open-source preprocessor for (weighted partial) maximum
satisfiability (MaxSAT). MaxPre implements a range of well-known and recent SAT-
based preprocessing techniques as well as MaxSAT-specific techniques that make use
of weights of soft clauses. Furthermore, MaxPre offers solution reconstruction, cardi-
nality constraint encoding, and an API for integration into SAT-based MaxSAT solvers
without introducing unnecessary assumptions variables within the SAT solver. In this
paper we overview the implemented techniques, implementation-level decisions, and
usage of MaxPre, and give a brief overview of its practical potential. The system,
implemented in C++, is available in open source under the MIT license via https:
//www.cs.helsinki.fi/group/coreo/maxpre/.

Due to space limitations, we will assume familiarity with conjunctive normal form
(CNF) formulas and satisfiability. An instance of (weighted partial) maximum satisfia-
bility (MaxSAT) consists of two CNF formulas, the hard clauses F;, and the soft clauses
Fs, and a weight function w associating a non-negative weight with each soft clause. A
truth assignment that satisfies the hard clauses is a solution, and is optimal if it mini-
mizes cost, i.e., the weight of the soft clauses left unsatisfied, over all solutions.

The preprocessing flow of MaxPre is illustrated in Fig. 1. Given a MaxSAT instance
in DIMACS format (extended with cardinality constraints, see Section 2.1), MaxPre
starts by rewriting all cardinality constraints to clauses (step 1). MaxPre then enters
the first preprocessing loop (step 2), using only techniques that are directly sound for
MaxSAT (see Section 2.2). The sound use of SAT-based preprocessing more generally
requires extending each (remaining) soft clause C with a fresh label variable /¢ to form
C V ¢ and then restricting the preprocessor from resolving on the added labels [4, 5].
Labelling of the soft clauses with assumption variables is done in steps 3—5. First (step
3) MaxPre applies group detection [7] to identify literals in the input that can be directly
used as labels. All soft clauses that remain without a label are then given one (step 4);

* Work supported by Academy of Finland (grants 251170 COIN, 276412, and 284591) and
DoCS Doctoral School in Computer Science and Research Funds of the University of Helsinki.

(R e
1. cardinalit 2. pre-
preprocess/ — nality p 3. lal:?el
solve encoding preprocess detection
N\ J -
]
s J’ 7 ' N
5. label output,
4. add labels —| . 6. preprocess reconstruction
matching
N) L J stack
(R e R
reconstruct —¥ o reeon- e 1 7. solving ¢
struction SOlVe
J S J

!

solution

Fig. 1. MaxPre preprocessing flow

during the rest of the preprocessing, all clauses are treated as hard and the weight w¢ of
a soft clause C is associated with the label /- attached to C. After each clause is instru-
mented with a label, a novel technique label matching (step 5, see Section 2.2) is used to
identify labels which can be substituted with other labels in the instance. The main pre-
processing loop (step 6) allows for applying all implemented techniques. Depending on
how MaxPre was invoked (see Section 2.3), MaxPre will then either output the result-
ing preprocessed MaxSAT instance or invoke a given external MaxSAT solver binary
on the instance. In the former case, MaxPre will provide a solution reconstruction stack
in a separate file. In the latter, MaxPre will internally apply solution reconstruction on
the solution output by the solver. We will give more details on the internals, usage, and
API of MaxPre, as well as a brief overview of its performance in practice.

2 Supported Techniques

2.1 Cardinality Constraints

MaxPre offers cardinality network [2] based encodings of cardinality constraints, en-
coded as clauses (Step 1) before preprocessing. This allows the user to specify cardi-
nality constraints over WCNF DIMACS literals as an extension of the standard WCNF
MaxSAT input format. Cardinality constraints can be specified using lines of form
CARD [} I, ... I, 0K, where each [; is a literal of the formula, o € {<,>,<=,>=
,=,!=.}, and K € N. The constraints are encoded as hard clauses enforcing Y} ;oK.
MaxPre can also encode the truth value of Y ;/; 0K to a specific literal L. A line
of form CARD [[, ... [,0 K OUT L is rewritten as L — Y/ ;/; o K. Lines of form
CARD I [... I, o KOUT L IFF extend the implication to an equivalence, and are
rewritten as L <+ Y, [;0 K. Additionally, direct control on the output literals of the car-
dinality networks can be provided. A line of form CARD [, ... [, KOUTo; ... 0
is encoded as a K-cardinality network [2] where oy, ..., 0k are the output literals of the
network and OJ € {<:, >:, ::}. If Ois <:, the network is encoded so that ~o; — Y7 | [; <
i for any i. If OJ is >:, the network is encoded so that o; — Y./, [; > i; and if [J =::, the
network is encoded so that 0; <> YiL [; > i

2.2 Preprocessing

SAT-Based Preprocessing. In addition to removing tautologies, soft clauses with 0
weight and duplicate clauses, MaxPre implements the following SAT-based techniques:
unit propagation, bounded variable elimination (BVE) [11], subsumption elimination
(SE), self-subsuming resolution (SSR) [11, 13, 17], blocked clause elimination (BCE)
[15], Unhiding [14] (including equivalent literal substitution [1, 24, 18, 9]), and bounded
variable addition (BVA) [20]. In terms of implementation details, SE and SSR use three
different approaches depending on the number of clauses they have to process. The
asymptotically worst approach of checking all pairs of clauses can be improved by
computing hashes of clauses, and by the asymptotically best approach using the AMS-
Lex algorithm [3], implemented in MaxPre based on [21]. The average time complex-
ity of AMS-Lex in finding subsumed clauses seems to be nearly linear (dominated by
sorting). We have observed that in practice the BVA implementation can be in cases
significantly faster than the implementation given in the original paper; this is achieved
by using polynomial hashes of clauses. In contrast to using time stamping (directed
spanning trees) as in the original work on Unhiding [14], MaxPre implements Unhid-
ing using undirected spanning trees, which can be provably more effective in terms of
the covered binary implications.

MaxSAT-Specific Techniques. MaxPre also includes the following (to the best of our
knowledge unique) combination of MaxSAT-specific techniques that work directly on
the label variables (recall Fig. 1). The first two are techniques meant to decrease the total
number of fresh label variables that are introduced into the formula. Assume MaxPre is
invoked on an instance F = (Fj,, Fy,w).

Group detection [7] (Step 3) Any literal / for which (—/) € F;, [¢ C for any C €
(F;\{(=0)}) and —I ¢ C for any C € F, U (F;\ {(—])}) can be directly used as a
label [7].

Label matching (Step 5) Label ¢ is matched, i.e., substituted, with Ip if (i) we = wp,
(ii) Ic only appears in a single soft clause C, (iii) /p only appears in a single soft
clause D, and (iv) CV D is a tautology. MaxPre implements label matching by
computing a maximal matching using a standard greedy algorithm.

Group-subsumed label elimination (GSLE) Generalizing SLE [8], label I is sub-
sumed by a group of labels L = {I¢,,...,lc, } if for some I¢, € L, we have I¢, € C
whenever Ip € C, and Y. ¢, we; < wp. GSLE removes group-subsumed labels.
SLE corresponds to GSLE with n= 1. Since GSLE corresponds to the NP-complete
hitting set problem, MaxPre implements an approximate GSLE via a slightly mod-
ified version of a classical {n(n)-approximation algorithm for the hitting set prob-
lem [10, 23].

Binary core removal (BCR) is the MaxSAT-equivalent of Gimpel’s reduction rule
for the binate covering problem [12]. Assume labels /¢, lp with we = wp and the
clause (Ic VIp). Let F. = {C; | Ic € C;} and assume that (i) F. N Fj, = {(Ic Vip)}.
(i) |F.| > 1, and (iii) |Fj,| > 1. BCR replaces the clauses in Fj. U Fj,, with the non-
tautological clauses in {(C;VD;)\{ic} | Ci € Fi.\ (IcVIp),D; € Fj, \ (Ilc Vip)}.
MaxPre applies BCR whenever the total number of clauses in the formula does not
increase. Notice that given I¢,[p with we = wp and a clause (/¢ V Ip), assumptions
(i)-(iii) for BCR follow by applying SE and SLE.

Structure-based labeling Given a label [and a clause C s.t. C is blocked (in terms of
BCE) when assuming [to true, structure-based labelling replaces C by C VV [. The
correctness of structure-based labelling is based on the invariant that a clause C is
redundant whenever [is true.

2.3 Options and Usage

MaxPre is called from the command line. Full details on command line options are
available via . /maxpre -h. One of the directives preprocess, solve, reconstruct
needs to be specified after the input file. preprocess and solve assume a single input
file containing a WCNF MaxSAT instance (possibly with cardinality constraints). Fur-
ther, solve expects the solver binary and its command line arguments to be given via
the -solver and -solverflags options. reconstruct expects as input a solution to
a WCNF MaxSAT instance and the corresponding reconstruction stack file.

Solution Reconstruction. To map a solution of a preprocessed instance to a solution
of the original instance, the reconstruction stack file produced by MaxPre needs to be
specified via -mapfile. For example, to obtain an original solution from a solution
s010.s01l of the preprocessed instances using the reconstruction stack in input .map,
use . /maxpre so0lO.sol reconstruct -mapfile=input.map. To obtain the map-
file when preprocessing, -mapfile should be used in conjunction with preprocess.

Specifying Preprocessing Techniques. Following [19], MaxPre allows for specifying
the order in which individual preprocessing techniques are applied via a technique string
The default application order is specified by the string [bu]#[buvsrgc], i.e. to run BCE
and UP in the first preprocessing loop and BCE, UP, BVE, SSR, GSLE and BCR in the
second.

Enforcing Time Limits and Bounds. The running time of MaxPre is limited using the
-timelimit option: e.g., —timelimit=60 sets the time limit to 60 seconds. This lim-
its the running time of preprocessing techniques somewhat independently of each other.
Each technique gets allocated a proportion of the time to use, and if a technique leaves
some of its time unused, it is dynamically reallocated to other techniques. By default no
time limits are imposed. Another way to prevent MaxPre from wasting efforts on the
potentially more time-consuming techniques such as BVE via -skiptechnique: e.g.,
with -skiptechnique=100, MaxPre first tries to apply each of such preprocessing
technique to 100 random variables/literals in a touched list. If no simplifications oc-
cur, MaxPre will subsequently skip the particular preprocessing technique. By default
-skiptechnique is not enforced.

24 API

MaxPre is implemented in a modular fashion, and offers an API for tight integration
with MaxSAT solvers. Via the API, the solver becomes aware of labels used for pre-
processing which can be directly used as assumptions in SAT-based MaxSAT solving;

without this, the solvers will add a completely redundant new layer of assumption vari-
ables to the soft clauses before search [6]. Unnecessary file I/O is also avoided.

To use MaxPre via its API, create a PreprocessorInterface object for the Max-
SAT instance, call preprocess to preprocess, and then getInstance to obtain the
preprocessed instance. After solving, an original solution is reconstructed by calling
reconstruct. PreprocessorInterface encapsulates the preprocessing trace (map-
file) and maps/unmaps variables to/from internal preprocessor variable indexing. For
more concreteness, main . cpp implements MaxPre using these API methods, and serves
as an example of their use. The API handles literals as int-types and clauses as C++
standard library vectors of literals. The most central parts of the API are the following.

PreprocessorInterface constructs a PreprocessorInterface object from a vec-
tor of clauses, a vector of their weights and a top weight, which is used to identify
hard clauses.

preprocess takes a technique string and preprocesses the instance using given tech-
niques.

getInstance returns (by reference) the preprocessed instance as vectors of clauses,
weights, and labels.

reconstruct takes a model for the preprocessed instance and returns a model for the
original instance.

setSkipTechnique corresponds to -skiptechnique command line flag.

print* methods print solutions, instances, mapfiles, or logs to an output stream.

3 Experiments

While an extended empirical evaluation of different components of MaxPre is impossi-
ble within this system description, we shortly discuss the potential of MaxPre in prac-
tice. For the experiments, we used all of the 5425 partial and weighted partial MaxSAT
instances collected and made available by the 2008-2016 MaxSAT Evaluations. Fig-
ure 2 show a comparison of MaxPre and the Coprocessor 2.0 [19] preprocessor in terms
of the number of variables and clauses, and the sums of weights of the soft clauses,

Variables Clauses Weight
T T 1x104 T T T T T
1x107 | iy 1x107 T
ot +
+].X].Du . -
1x108 | b s 1x106 | + ,
N
+ 4 + +4 + 10 | 4
100000 | ﬂwﬁwﬁ* 100000 F # s lew 7 £,
2 R 2 : +o 8 108 | N N]
§ 10000 | A § 10000 T F 4 ol }*#
S S
° 4 ° 44 8. i,
S 1000 F S 1000 . e E g_lxlo r ﬁf b
o * o
L & HET 1 ° L + 4
100 100 10000 f“
e
10 | 10 g 100 | &£ + 4
+
+
N v e N v Pl))
S S
RSN x@o@“@ RS S

P L
© o © © © S oS Y ® ® A AF P P
ST AT O 0T RN N USROS

MaxPre MaxPre MaxPre

Fig. 2. Comparison of MaxPre and Coprocessor in terms of preprocessing effects: number of
clauses and variables, and the sum of the weights of soft clauses, in the preprocessed instances.

1800

H i T T T
Preprocessing time LMHS : 4669
L coprocessor2 : 4708 —— i
1000 ' ' ' 1600 MaxPre : 4732
M 1400 .
4+ +4
ot . }+ * p 1200 .
N & * - o
g 100 oA St 43 & 1000 4
a f%’i%‘* 4+t °
g e g 800 1
1<) +:@¢ " +a <
& prils + .
] i + 600 4
10 b e E
nt Al 400 .
Ny
i 200 .
o
+ ¥
1 —+ P Il Il 1 0 | | | | | |
> A0 AQ® o° 4400 4450 4500 4550 4600 4650 4700
MaxPre Instances solved

Fig. 3. Left: Comparison of preprocessing times: MaxPre vs Coprocessor. Right: Performance
impact on LMHS.

in the output instance. Here we used Coprocessor by first adding a label to each soft
clauses, and used the “white listing” option of Coprocessor on the labels to maintain
soundness of preprocessing for MaxSAT. The SAT-based techniques used with Copro-
cessor and MaxPre are the same; the preprocessing loop used in coprocessor consisted
of BVE, pure literal elimination, UP, SE, SSR and BCE. MaxPre additionally applied
the MaxSAT-specific techniques shortly described earlier in this paper; the first prepro-
cessing loop used BCE and UP and the second BCE (which also removes pure literals),
UP, BVE, SE, SSR, GSLE and BCR. MaxPre provides noticeably more simplifications
in terms of these parameters, while the preprocessing times as comparable (see Fig. 3
left); in fact, MaxPre performs faster on a majority of the instances. The few timeouts
observed for MaxPre are on very large instances (> 10 M clauses) which are in fact
not solved by current state-of-the-art MaxSAT solvers. Coprocessor contains fixed con-
stants which switch off preprocessing on very large instances; while we did not enforce
any limits on MaxPre for this experiment, the ~timelimit and -skiptechniques op-
tions would enable faster preprocessing on such very large intances. In terms of poten-
tial impact on solver performance, our LMHS SAT-IP MaxSAT solver [22] previously
integrated Coprocessor 2.0 as its internal preprocessor. Figure 3 right shows that, al-
though the effects are mild, replacing Coprocessor with MaxPre in LMHS improves its
performance.

4 Conclusions

We introduced MaxPre, an open-source MaxSAT preprocessor with extended capa-
bilities, including cardinality constraint encodings and MaxSAT-specific simplification
techniques not implemented in the current (Max)SAT preprocessors. The API of Max-
Pre allows for tight integration with MaxSAT solvers, e.g., avoiding unnecessary intro-
duction of assumption variables after preprocessing, and potentially opening up further
avenues for inprocessing MaxSAT solving [16]. Empirical results suggest that MaxPre
is a viable option for integrating preprocessing into MaxSAT solvers.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Aho, A., Garey, M., Ullman, J.: The transitive reduction of a directed graph. STAM Journal

on Computing 1(2), 131-137 (1972)

. Asin, R., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.: Cardinality networks: a

theoretical and empirical study. Constraints 16(2), 195-221 (2011)

. Bayardo, R.J., Panda, B.: Fast algorithms for finding extremal sets. In: Proc. SDM. pp. 25—

34. SIAM / Omnipress (2011)

. Belov, A., Jarvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extraction. In:

Proc. TACAS. Lecture Notes in Computer Science, vol. 7795, pp. 108—123. Springer (2013)

. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT. In:

Proc. LPAR-19. Lecture Notes in Computer Science, vol. 8312, pp. 96-111. Springer (2013)

. Berg, J., Saikko, P., Jarvisalo, M.: Improving the effectiveness of SAT-based preprocessing

for MaxSAT. In: Proc. IJCAL pp. 239-245. AAAI Press (2015)

. Berg, J., Saikko, P., Jirvisalo, M.: Re-using auxiliary variables for MaxSAT preprocessing.

In: Proc. ICTAL pp. 813-820. IEEE Computer Society (2015)

. Berg, J., Saikko, P., Jirvisalo, M.: Subsumed label elimination for maximum satisfiability.

In: Proc. ECAL Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 630-638.
10S Press (2016)

. Brafman, R.: A simplifier for propositional formulas with many binary clauses. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B 34(1), 52-59 (2004)

. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations

Research 4(3), 233-235 (1979)

Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Proc. SAT. Lecture Notes in Computer Science, vol. 3569, pp. 61-75. Springer (2005)
Gimpel, J.E.: A reduction technique for prime implicant tables. In: Proc. SWCT. pp. 183—
191. IEEE Computer Society (1964)

Groote, J., Warners, J.: The propositional formula checker HeerHugo. Journal of Automated
Reasoning 24(1/2), 101-125 (2000)

Heule, M., Jarvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication
graphs. In: Proc. SAT. Lecture Notes in Computer Science, vol. 6695, pp. 201-215 (2011)
Jarvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Proc. TACAS. Lecture
Notes in Computer Science, vol. 6015, pp. 129-144. Springer (2010)

Jarvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Proc. IJCAR. Lecture Notes in
Computer Science, vol. 7364, pp. 355-370. Springer (2012)

Korovin, K.: iProver — an instantiation-based theorem prover for first-order logic. In: Proc. 1J-
CAL Lecture Notes in Computer Science, vol. 5195, pp. 292-298. Springer (2008)

Li, C.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Proc. AAAL pp.
291-296 (2000)

Manthey, N.: Coprocessor 2.0 - A flexible CNF simplifier. In: Proc. SAT. Lecture Notes in
Computer Science, vol. 7317, pp. 436—441. Springer (2012)

Manthey, N., Heule, M., Biere, A.: Automated reencoding of boolean formulas. In:
Proc. HVC Revised Selected Papers. Lecture Notes in Computer Science, vol. 7857, pp.
102-117. Springer (2012)

Marinov, M., Nash, N., Gregg, D.: Practical algorithms for finding extremal sets. Journal of
Experimental Algorithmics 21, article 1.9 (2016)

Saikko, P., Berg, J., Jarvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In: Proc. SAT.
Lecture Notes in Computer Science, vol. 9710, pp. 539-546. Springer (2016)

Slavik, P.: A tight analysis of the greedy algorithm for set cover. In: Proc. STOC. pp. 435—
441. ACM (1996)

24. Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability solver. Annals of
Mathematics and Artificial Intelligence 43(1), 239-253 (2005)

