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PREFACE

The MaxSAT Evaluations (https://maxsat-evaluations.github.io) are a series of
events focusing on the evaluation of current state-of-the-art systems for solving optimization
problems via the Boolean optimization paradigm of maximum satisfiability (MaxSAT). Or-
ganized yearly starting from 2006, the year 2022 brought on the 16th edition of the MaxSAT
Evaluations, organized as a satellite event of the 25th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2022). Some of the central motivations
for the MaxSAT Evaluation series are to provide further incentives for further improving
the empirical performance of the current state of the art in MaxSAT solving, to promote
MaxSAT as a serious alternative approach to solving NP-hard optimization problems from
the real world, and to provide the community at large heterogenous benchmark sets for
solver development and research purposes.

The 2022 evaluation consisted of a total of five tracks: two for complete solvers (one for
solvers focusing on unweighted and one for solvers focusing on weighted MaxSAT instances),
two for incomplete MaxSAT solvers (using two short per-instance time limits, 60 and 300
seconds, differentiating from the per-instance time limit of 1 hour imposed in the main
complete tracks), as well as the incremental track as a new development for 2022. As in
2017-2021, no distinction was made between “industrial” and “crafted” benchmarks, and no
track for purely randomly generated MaxSAT instances was organized.

Adhering to the new rules introduced in 2017, solvers were now required to be open-
source. Furthermore, a 1-2 page solver description was expected to accompany each solver
submission, to provide some details on the search techniques implemented in the solvers.
The solvers descriptions together with descriptions of new benchmarks for 2021 are collected
together in this compilation.

Finally, we would like to thank everyone who contributed to MaxSAT Evaluation 2022 by
submitting their solvers or new benchmarks. We are also grateful for the computational
resources provided by the StarExec initiative and the Finnish Computing Competence
Infrastructure (FCCI) which enabled running the 2022 evaluation smoothly.

Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, Ruben Martins, & Andreas Niskanen
MaxSAT Evaluation 2022 Organizers
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CASHWMaxSAT-CorePlus: Solver Description

Zhendong Lei1,2, Yiyuan Wang3,4, Shiwei Pan3,4, Shaowei Cai1,2,∗, Minghao Yin3,4
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2School of Computer Science and Technology, University of Chinese Academy of Sciences, China
3School of Computer Science and Information Technology, Northeast Normal University, China
4Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China

∗corrsponding author
leizhendong3@huawei.com, yiyuanwangjlu@126.com, caisw@ios.ac.cn,

{pansw779, ymh}@nenu.edu.cn

Abstract—This document describes the MaxSAT solver
CASHWMaxSAT-CorePlus, submitted to the complete tracks
(include unweighted and weighted track) of MaxSAT Evaluation
2022.

I. INTRODUCTION

We developed a new complete MaxSAT solver called
CASHWMaxSAT-CorePlus based on UWrMaxSat [1] and
CASHWMaxSAT [2]. In addition, CASHWMaxSAT-CorePlus
used an unsatisfiable-core-based OLL procedure [3]–[6]. In
this work, we propose two novel ideas to improve UWr-
MaxSat and CASHWMaxSAT, resulting in a new solver
CASHWMaxSAT-CorePlus.

• First, when the SAT solver returns the “l Undef” state,
we mark all the relax variables in the current assumption
as delayed relax variables and then we put them into the
delay assumption.

• Second, when the SAT solver returns the “unsat” state,
there exist more than one unsatisfiable-cores. Sev-
eral unsatisfiable-cores may be obtained and we mini-
mize these cores. Afterwards, we choose the best one
(i.e., one with the minimum size) from these minimal
unsatisfiable-cores. Additional, we don’t minimize all
obtained unsatisfiable-cores by using the hash structure
to decrease the time complexity of the above process.

II. FUTURE WORK

First, we could use a simplified version of MaxSAT local
search solvers such as FPS [7] to improve the satisfied
solution.

Second, we could try to design a novel selection way for
selecting an unsatisfiable-core on weighted cases.
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[4] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva,
“Iterative and core-guided maxsat solving: A survey and assessment,”
Constraints, vol. 18, no. 4, pp. 478–534, 2013.
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solver,” Journal on Satisfiability, Boolean Modeling and Computation,
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[7] J. Zheng, J. Zhou, and K. He, “Farsighted probabilistic sampling
based local search for (weighted) partial maxsat,” arXiv preprint
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Abstract—This document describes the MaxSAT solver
CASHWMaxSAT-Plus, submitted to the complete tracks (include
unweighted and weighted track) of MaxSAT Evaluation 2022.

I. INTRODUCTION

We developed a new complete MaxSAT solver called
CASHWMaxSAT-Plus based on UWrMaxSat [1] and CASH-
WMaxSAT [2]. In addition, CASHWMaxSAT-Plus used an
unsatisfiable-core-based OLL procedure [3]–[6]. In this work,
we propose one novel idea to improve UWrMaxSat and
CASHWMaxSAT, resulting in a new solver CASHWMaxSAT-
Plus.

• When the SAT solver returns the “l Undef” state, we
mark all the relax variables in the current assumption as
delayed relax variables and then we put them into the
delay assumption.

II. FUTURE WORK
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search solvers such as FPS [7] to improve the satisfied
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CGSS in the 2022 MaxSAT Evaluation
Hannes Ihalainen, Jeremias Berg, Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

I. INTRODUCTION

We overview the CGSS solver as it participated in the
2022 Evaluation. In short, CGSS implements the core-guided
OLL algorithm for MaxSAT, extended with weight aware
core extraction, structure sharing and selective addition of
equivalences as described in [7] and [3]. Additionally, the
solver makes use of stratification, hardening and the so-called
core-exhaustion and intrinsic atmost1 techniques described
in [6].

The solver is implemented in python, on top of PySAT [5]
and the RC2 solver [6]. The authors would like to thank the
developers of RC2 for their work. If you use CGSS in your
research, we kindly ask you cite [7].

II. PRELIMINARIES

We assume familiarity with conjunctive normal form
(CNF) formulas and weighted partial maximum satisfiability
(MaxSAT). Treating a CNF formula as a set of clauses, a
MaxSAT instance F consists of two CNF formulas, the hard
clauses Fh and the soft clauses Fs, as well a weight w(C)
associated with each C ∈ Fs. A solution to F is an assignment
τ that satisfies Fh. The cost of a solution τ is the sum
of weights of the soft clauses falsified by τ . An optimal
solution is one with minimum cost over all solutions. An
unsatisfiable core κ of F is a subset of soft clauses s.t. Fh∧κ
is unsatisfiable.

Without loss of generality we assume that each soft clause
is unit, containing the negation of a variable. We say that
a variable b is a blocking variable (of the instance F) if
(¬b) ∈ Fs. As assigning a blocking variable to 1 corresponds
to falsifying a soft clause, we will in the rest of the text
view cores as sets of blocking variables and extend the weight
function to blocking variables via w(b) = w((¬b)).

III. MAIN FEATURES

We overview the main features of CGSS. For a more
detailed description, we refer the reader to [7].

OLL. When solving an instance F the (basic form of the)
OLL algorithm [8], [1] iteratively extracts unsatisfiable cores
of F using a SAT-solver, and then reformulates the instance
in a way that allows exactly one of the blocking variables in
the core to be assigned to 1 (corresponding to falsifying a soft
clause) in subsequent iterations. This continues until the SAT
solver reports the reformulated instance to be satisfiable and
returns an optimal solution of the original instance.

Core reformulation. For reformulating a core κ =
{b1, . . . , bn}, the CGSS solver uses the so called totalizer [2]

b1 b2 b3 b4

d
{b1,b2}
0 , d{b1,b2}1 d

{b3,b4}
0 , d{b3,b4}1

(bκ1
0 ), bκ1

1 , bκ1
2 , bκ1

3

b3 b4 b5 b6

e
{b3,b4}
0 , e{b3,b4}1 e

{b5,b6}
0 , e{b5,b6}1

(bκ2
0 ), bκ2

1 , bκ2
2 , bκ2

3

Fig. 1: The structure of totalizers built when relaxing cores
κ1 = {b1, b2, b3, b4} (above) and κ2 = {b3, b4, b5, b6} (below).

b1 b2 b3 b4 b5 b6

d
{b1,b2}
0 , d{b1,b2}1 d

{b3,b4}
0 , d{b3,b4}1 d

{b5,b6}
0 , d{b5,b6}1

(bκ1
0 ), bκ1

1 , bκ1
2 , bκ1

3 (bκ2
0 ), bκ2

1 , bκ2
2 , bκ2

3

Fig. 2: The structure of totalizers when relaxing the cores κ1
and κ2 with structure sharing.

CNF encoding of cardinality constraints. The totalizer encod-
ing can be viewed as a tree structure similar to the ones
depicted in Figure 1. The leafs of the tree correspond to the
variables in the core. An internal node that is the root of a
subtree with the set S ⊂ κ as leaves corresponds to |S| = m
new variables bS0 , . . . , b

S
m−1 defined with clauses equivalent

to
(∑

b∈S b ≥ k + 1
)
→ bSk . Specifically the root of the full

tree corresponds to a set bκ0 , . . . b
κ
n−1 that count the number

of variables of κ set to true by assignments satisfying the
totalizer.

Weight aware core extraction (WCE) [4]. WCE is a heuristic
designed to delay the core-reformulation steps performed by
a solver implementing OLL for as long as possible. When
extracting a new core κ, a solver using WCE will lower the
weight of each variable b ∈ κ by wκ = min{w(b) | b ∈ κ}
(this correspond to the so called clause cloning step). Af-
terwards, the core is stored and the SAT-solver asked for
another core containing variables with positive weight. The
stored cores are only reformulated when no new cores can

MaxSAT Evaluation 2022: Solver and Benchmark Descriptions, volume B-2022-2 of Department of Computer Science Series of Publications B, University of Helsinki 2022.
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be found. Note that in the unweighted case (i.e. when the
weight of each variable is 1) WCE is equivalent to the so
called disjoint core technique that extracts a disjoint set of
cores before reformulating.

Structure sharing. Structure sharing is a recently proposed
refinement of WCE that attempts to reduce the number of
equivalent variables introduced by the core reformulation
steps by identifying subtrees that can be shared between
several different totalizers. For a concrete example, Figure 1
demonstrates two possible totalizer structures that can be built
when relaxing the cores κ1 = {b1, b2, b3, b4} (above) and
κ2 = {b3, b4, b5, b6} (below). Both of these structures include
a subtree with b3 and b4 as leaves. The root of each of these
subtrees define separate sets of variables ({d{b3,b4}0 , d

{b3,b4}
1 }

in the top tree, {e{b3,b4}0 e
{b3,b4}
1 } in the bottom) that count

the number of variables from the set {b3, b4} set to true by
assignments satisfying the totalizers. These variables will be
assigned the same way by all satisfying assignments to the
instance. Stated in another way, the two totalizer structures
depicted in Figure 1 are equivalent to the smaller single
structure depicted in Figure 2.

When relaxing a set of cores obtained via WCE, CGSS uses
a heuristic set-covering algorithm for identifying maximal sets
of literals shared by as many cores as possible and building
totalizers that share these sets as subtrees.

Selective Addition of Equivalences. Consider a count vari-
able bSk corresponding to an internal note of a tree that is
the root of a subtree with the variables in S as leaves. For
correctness of the OLL algorithm, it suffices to add clauses
equivalent to the implication

(∑
b∈S b ≥ k + 1

)
→ bSk . While

adding the other direction of the implication (i.e. bSk →(∑
b∈S b ≥ k + 1

)
) could allow the SAT solver do perform

more propagation, the large number of clauses required in
order to do so for every internal node might instead result
in overall decrease in performance.

In order to balance the potential benefits and overhead
(due to extra clauses) of adding both sides of the equivalence
defining the variables in a totalizer, CGSS attempts to identify
nodes for which the equivalence constraints are more likely
to lead to further propagation. More specifically, for each leaf
and root of a shared subtree, two values are computed: (a)
the number of additional clauses needed for defining the full
equivalence and (b) how many decisions need to performed
by the SAT solver in before the additional constraints result
in propagation. If both of these values are below some user
provided threshold the equivalence constraints for that partic-
ular node are added.

Use of Bounds. The use of WCE and stratification leads to
CGSS obtaining intermediate solutions to the instance during
search. The cost of any such solution is an upper bound on
the optimal cost of the instance. CGSS stores these solutions,
effectively turning it into an any-time MaxSAT solver. At the
same time, the cores extracted during search can be used to
compute a lower bound on the optimal cost by summing the

minimum weight of variables appearing in each extracted core.
The use of both an upper and a lower bound can allow the
solver to terminate as soon as the bounds match, sometimes
even before reformulating all of the extracted cores.

IV. COMPILATION AND USAGE

CGSS is implemented on top of RC2 in the PySAT frame-
work [5], [6] in a mixture of Python and C++ and can be
found at https://bitbucket.org/coreo-group/cgss/src/master/ or
the Evaluation website. Installing and running CGSS resem-
bles installing and running RC2, please follow the readme of
the repository for more details. The readme also details the
command line parameters, the evaluation version of CGSS is
invoked by running:

py thon r c 2 . py −lamWnP [ i n s t a n c e . wcnf . gz ]

from the examples subfolder of the repository base folder.
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Weighted version of EvalMaxSAT 2022
Florent Avellaneda∗, Carl-Elliott Bilodeau-Savaria†, Lancelot Normand‡

Computer Science Departement, Université du Québec à Montréal
QC, Canada

Email: ∗avellaneda.florent@uqam.ca, †bilodeau-savaria.carl-elliott@courrier.uqam.ca, ‡normand.lancelot@courrier.uqam.ca,

I. INTRODUCTION

EvalMaxSAT1 is a MaxSAT solver written in modern C++
language mainly using the Standard Template Library (STL).
The solver is built on top of the SAT solver CaDiCaL [1], but
any other SAT solver can easily be used instead. EvalMaxSAT
is based on the OLL algorithm [2] originally implemented in
the MSCG MaxSAT solver [3], [4] and then reused in the RC2
solver [5]. This new version of the solver includes support for
weighted formulas.

II. DESCRIPTION

The main strategy of the solver to solve weighted formula
is to rapidly find non-optimal solutions that allow some soft
variables to be transformed to hard variables. Specifically, if
an assignment is obtained such that the sum of the weights of
the unsatisfied soft variables is smaller than the weight of a
soft variable v, then we can deduce that this variable v must
be satisfied, and can therefore be considered a hard variable.

To find non-optimal solutions, there is one existing ap-
proach, known in the literature as the stratification strategy [6],
involves considering only the variables with a weight higher
than a certain threshold as soft, then reducing the threshold
until all the soft variables are considered.

In this new version of EvalMaxSAT, a second strategy is
added in addition to the stratification strategy. The second
strategy does not immediately add new constraints when a
new core is considered, but accumulates constraints until the
formula becomes satisfiable. The accumulated constraints are
considered only when the formula becomes satisfiable and a
search for soft variables to transform to hard will be performed

Algorithm 1 presents a general view of how the solver
functions. Note, that the function ChooseNextMinimumWeight
represents a heuristic used to select a threshold value necessary
to select a subset of soft variables. The heuristic implemented
in the tool consists of reducing the threshold by a minimum
step initially, then increasing this step when the computation
time of the second loop (line 4) increases.

REFERENCES
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Abstract—Weighted MaxSAT solving is a special case of
pseudo-Boolean optimization, also known as binary linear pro-
gramming. This submission aims to investigate whether Exact, a
conflict-driven cutting planes learning pseudo-Boolean solver, is
competitive on MaxSAT problems.

Index Terms—binary linear programming, pseudo-Boolean
solving, cutting planes, core-guided optimization

I. INTRODUCTION

It is well-known1 that a weighted MaxSAT formula can be
written as a binary linear program (BLP):

Minimize
ÿ

cPC
wczc

s.t. zc `
ÿ

xPc`
x`

ÿ

yPc´
p1´ yq ě 1 @c P C

where C is a set of clauses, c` and c´ are the set of positive
and negative literals in a clause c P C respectively, wc is the
cost of not satisfying c, and all variables x, y and z are binary.

Even though this BLP formulation is natural, the state-
of-the-art in previous MaxSAT evaluations employs repeated
calls to Boolean satisfiability (SAT) solvers instead of one
straightforward call to an integer linear programming (ILP)
solver. Most likely, the reason for this is that ILP solvers rely
heavily on exploiting the linear relaxation of a BLP, while
all constraints in the above BLP are clauses, which have a
particularly weak linear relaxation.

A third technology that could natively handle the above
BLP however is pseudo-Boolean (PB) solving. Similar to ILP
technology, PB technology natively takes linear constraints
over binary variables as input. However, in contrast to ILP
solvers, a PB solver does not chiefly depend on reasoning
on the linear relaxation of a BLP. Instead, so-called conflict-
driven cutting-planes learning (CDCPL) PB solvers derive
(learn) from each conflict in the search tree an implied linear
constraint that, if it had been derived previously, would have
prevented the conflict through unit propagation. In this way,
CDCPL PB solvers are a generalization of conflict-driven
clause learning (CDCL) SAT solvers, where a CDCPL solver
can learn stronger constraints than clauses.

1See, e.g., https://en.wikipedia.org/wiki/Maximum satisfiability problem#
(1-1/e)-approximation

II. SUBMISSION

We submit the CDCPL solver Exact2 to the MaxSAT evalu-
ation. Exact is a fork of the CDCPL solver RoundingSat3 [1].
For this submission, we do not employ RoundingSat’s linear
programming integration [2], as we expect the linear relax-
ations of the instances to be too weak. We do make use of its
optimized propagation routines [3] and its hybrid core-guided
optimization technique [4].

Exact improves upon its predecessor through a myriad of
refactorings, extensions and improvements. We highlight three
important ones for this MaxSAT evaluation submission.

A first one is the stratification routine of Exact’s core-guided
optimization. Instead of core-guided stratification based on [5],
Exact uses a simple routine that ignores all soft clauses with
a cost lower than some τ , which initially is set to the highest
clause cost (the highest weight in the objective of the BLP
representation). If Exact does not find a core with this τ (i.e.,
it finds a solution where all hard and non-ignored soft clauses
are satisfied, or timeouts in the core-guided search) τ is halved,
to consider more soft clauses. This process is repeated until the
maximum cost is halved to 1, at which point all soft clauses
are taken into account.

A second improvement is the exploitation of the observation
that a single PB core may yield multiple cardinality cores,
which can be used during the core-guided lower bound deriva-
tion and objective reformulation process [4]. For instance,
given an objective function 4x`3y`2z`w to be minimized,
and a PB core 2x ` 2y ` z ` w ě 4, Exact constructs an
initial implied cardinality core x ` y ` z ě 2, reformulating
the objective to 2x ` y ` w ` 2a ` 4 through the extension
constraint x ` y ` z “ 2 ` a. But as 2x ` 2y ` z ` w ě 4
also implies x ` y ` w ě 2, Exact can further reformulate
the objective to x` 2a` b` 6 with the extension constraint
x` y`w “ 2` b, increasing the objective lower bound from
4 to 6 without any new core-guided solver call.

A third improvement is meant to address the fact that,
given a search conflict implied by only clausal constraints,
CDCPL solvers can only learn a clause, which is identical
to regular CDCL SAT solving (which has a more efficient
implementation). For CDCPL to work well, non-clausal con-
straints need to appear in the conflict implication graph, so that

2https://gitlab.com/JoD/exact
3https://gitlab.com/miao research/roundingsat
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strong non-clausal constraints can be learned [6]. On MaxSAT
instances, Exact introduces non-clausal constraints in three
ways. Firstly, a derived upper or lower bound on the objective
function is typically a non-clausal constraint. Secondly, a
core-guided extension constraint also typically is equivalent
to a conjunction of non-clausal constraints. Thirdly, implied
cardinality constraints can be detected from a conjunction
of clauses. Work on cardinality detection in RoundingSat
exists [7], where an investigation of the implication graph
during conflict analysis yields the right information to con-
struct cardinality constraints. Exact uses a different approach,
where repeated probing (deciding a single variable and running
unit propagation) yields the necessary edges in the implication
graph to derive at-most-one cardinality constraints.

III. CONCLUSION

By combining the effectiveness of CDCLP and core-guided
optimization, PB solving technology may have become com-
petitive to SAT-based approaches on MaxSAT problems. Ex-
act’s submission to 2021’s MaxSAT evaluation will provide
experimental data to support or reject this hypothesis.
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I. INTRODUCTION

MaxCDCL and WMaxCDCL are two new unweighted
and weighted partial MaxSAT solvers respectively. The main
solving algorithm is MaxCDCL [1] for the MaxCDCL solver,
and a weighted extension of MaxCDCL for the WMaxCDCL
solver.

II. MAXCDCL ALGORITHM

The MaxCDCL algorithm is an extension for MaxSAT of
the CDCL algorithm which combines Branch and Bound and
clause learning. Similarly as done in CDCL, the MaxCDCL
algorithm roughly alternates decisions and unit propagation
with conflict analysis and clause learning. Moreover, at some
selected nodes of the search tree, MaxCDCL computes a
lower bound (LB) of the number of soft clauses that will be
falsified in any solution that satisfies the hard clauses. If the
bounding procedure detects that the current assignment cannot
be extended to a satisfying assignment that improves the best
solution found so far, i.e. LB≥UB, a soft conflict is detected.
Similarly to (hard) conflicts in CDCL, which can also occur in
MaxCDCL, and where a hard clause is falsified, MaxCDCL
detects an implicit clause that is falsified when a soft conflict
occurs. Both after hard and soft conflicts, conflict analysis is
used to find the first unique implication point and backtrack. In
addition, when the lower bounding procedure does not detect
a soft conflict but LB=UB−1, all non-falsified soft clauses
can be hardened. This hardening is done by unit propagation
after introducing new clauses explaining the reason of the
hardening.

The computation of the lower bound is based on the
detection of local unsatisfiable cores, i.e. cores that depend
on the current partial assignment. Roughly, the detection of
a local core is done by assuming soft clauses to be true and
applying unit propagation until some conflict is found [2]–[4].
For every detected local core, the lower bound can be increased
by one. A detailed description of the unweighted MaxCDCL
algorithm can be found in [1], [5].

III. WMAXCDCL ALGORITHM

There are some adaptations that we do on the MaxCDCL al-
gorithm to deal with weights. Here we describe the main ones.
These particularities require the use many more data structures
in WMaxCDCL solver. Therefore, although WMaxCDCL can
solve unweighted instances, the source codes of MaxCDCL
and WMaxCDCL are different.

The contribution to the lower bound for each core is not
always one but it is the minimum weight among the soft
clauses of the core. Hence, we make virtual copies of the
soft clauses by splitting their weights so that every clause can
belong to multiple local cores. More precisely, we dynamically
decrease the weights of the soft clauses as they appear in new
cores.

There are also relevant changes regarding hardening, since
the fact that different soft clauses can have different weights
implies that hardening can happen more frequently and at dif-
ferent decision levels. Moreover, after hardening soft clauses,
usually more unit propagations can be done, which can falsify
new soft clauses causing an increase the lower bound of the
cost, which at turn can enable more hardening. Therefore, in
WMaxCDCL, the unit propagation phase of CDCL is replaced
by a fix point propagation loop that alternates unit propagation
and hardening.

IV. IMPLEMENTATION DETAILS

Both MaxCDCL and WMaxCDCL solvers are implemented
on top of MapleCOMSPS LRB [6]. They include a number
of preprocessing, inprocessing, and additional techniques to
enhance their performance that we list in this section.

We compute a first upper bound initUB and lower bound
initLB of the optimal cost, in order to limit the search, with a
combination of methods. First, MaxHS [7] is run for 5 minutes
to find initial bounds. The MaxHS version from [7] has been
slightly adapted to deal with the new instance format and set
time limits. The binary files submitted to the competition are
compiled with IBM ILOG CPLEX version 22.1.
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Then, the solver tries to find an initial feasible cost smaller
than initUB by solving the problem with a sequence of
increasing upper bound values UB starting at initLB, until a
feasible solution is found or initUB is reached. More precisely
we update the sequence by UB=UB × k, where k is 2 in
MaxCDCL and 1.5 WMaxCDCL.

Before starting the search we find incompatible subsets of
soft clauses by unit propagation, i.e. sets of soft clauses of
which at most one of them can be satisfied according to hard
clauses. Then, every set of clauses c1, . . . , cn is replaced by
a new unit soft clause d, defined by hard clauses as d ↔
c1 ∨ · · · ∨ cn, and the cost of any solution is increased by
n − 1. In the weighted case, the weighted clauses (ci, wi)
have been split into (ci, wi −m) and (ci,m), where m is the
minimum among the weights of c1, . . . , cn. Then, the weight
of d is defined to be m and the cost is increased by m(n−1).

When the number of free soft clauses n and the upper bound
UB are small, we add as implied constraints a CNF encoding
of cardinality (resp. pseudo-Boolean) constraints in MaxCDCL
(resp. WMaxCDCL), expressing that the cost of the solution
must be smaller than the best found upper bound. In particular,
in MaxCDCL we add the Sequential Counter encoding [8]
when n× UB ≤ 104, and in WMaxCDCL we add the MDD
encoding [9] when n ≤ 50 and n · K ≤ 105, and otherwise
the GGPW encoding [10] when n ≤ 5000 or n ≤ 500 and
n ·K ≤ 105.

We include a number of inprocessing algorithms to simplify
the formula, namely failed literal detection, equivalent literal
detection, and clause simplification. Moreover, only in WMax-
CDCL, we try to improve some of the suboptimal solutions
that are found by means of a custom implementation of the
local search method described in [11].
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branch-and-bound maxsat solvers with clause learning,” AI Communi-
cations, no. Preprint, pp. 1–21, 2021.

[6] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB,” in Proceedings
of SAT Competition 2016: Solver and Benchmark Descriptions, 2016,
pp. 52–53.

[7] F. Bacchus, “MaxHS in the 2021 MaxSAT Evaluation,” MaxSAT Eval-
uation 2021, p. 14, 2021.

[8] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in Proceedings of CP 2005. Springer LNCS 3709, 2005,
pp. 827–831.

[9] M. Bofill, J. Coll, J. Suy, and M. Villaret, “An mdd-based SAT encoding
for pseudo-boolean constraints with at-most-one relations,” Artificial
Intelligence Review, vol. 53, no. 7, pp. 5157–5188, 2020.

[10] M. Bofill, J. Coll, P. Nightingale, J. Suy, F. Ulrich-Oltean, and M. Vil-
laret, “SAT encodings for pseudo-boolean constraints together with at-
most-one constraints,” Artificial Intelligence, vol. 302, p. 103604, 2022.

[11] J. Zheng, K. He, J. Zhou, Y. Jin, C.-M. Li, and F. Manya, “Bandmaxsat:
A local search MaxSAT solver with multi-armed bandit,” in Proceedings
of 31st International Joint Conference on Artificial Intelligence (To
appear), 2022.

16



MaxHS in the 2022 MaxSat Evaluation

Fahiem Bacchus
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

Email: fbacchus@cs.toronto.edu

1. MaxHS

MaxHS originated in the work of Davies [4] who devel-
oped the first MaxSat solver based on the Implicit Hitting
Set approach (IHS). The core components of MaxHS are
described in [5], [6], [7]. The PhD thesis of Saikko [9] also
provides an excellent overview of the IHS approach along
with a number of additional insights. In addition to various
algorithmic and code improvements over the years, MaxHS
also employs the techniques of reduced cost fixing [1] and
abstract cores [2]. Both of these techniques go beyond the
basic IHS approach.

2. 2022

The 2022 version of MaxHS is built on top of the 2021
version. As noted in last years entry, as MaxSat instances
have become larger the relative advantages of using a more
powerful Sat solver have increased. Hence, MaxHS now
uses the Cadical solver for Sat solving [3] (the potentially
more efficient Kissat does not fully support all of the Sat
solver features, e.g., assumptions, needed by MaxHS). It
also uses IBM’s commercial Mixed Integer Programming
Solver (IBM CPLEX version 20.1.0.0) under IBM’s Aca-
demic Initiative licencing program.

In 2022 the input parser and option processing sub-
systems were rewritten, and the preprocessing phase was
redesigned and reimplemented. The MaxSat preprocessor
MaxPre [8] had been tried before without positive results.
This arises from a different processing of soft clause “labels”
(also known as the relaxation or blocking variables) done in
MaxPre which often produces far more blocking variables
than MaxHS. In particular, MaxPre will introduce a new
“label” even for unit soft clauses (when the literal of that
soft clause appears in both polarities in the rest of the
formula). MaxHS on the other hand always reuses the literal
of unit softs as the “label”, irrespective of its purity in the
rest of the formula. Since much of the MaxSat processing
is dependent the number of blocking variables, we have
found that MaxHS can be more effective without MaxPre.
Nevertheless, sometimes MaxPre is able to simplify the
problem more profoundly. In the 2022 code, MaxPre is run,
but the simplified formula it produces is only used if it
contains fewer labels than the original formula. In future

work we plan to identify and integrate only those parts of
MaxPre that prove to be useful (which mainly seem to be
the technique “generalized subsumed label elimination”).

The second change introduced in 2022 was to identify
a wider range of special input cases and then configure the
solver more specifically for solving these special cases. The
special cases identified in the 2022 code are (a) when the
input is a hitting set problem, (b) when the input has a
small number of soft clauses, (c) when every variable of
the formula forms a unit soft clause, and (d) when the input
consists of a small number of variables. Cases (a) and (b) are
newly identified in 2022. For case (a) we have found that
using the MIP solver tended to produce the best results,
and for case (b) using a simple time bounded Linear Sat
Unsat algorithm which can improve results in the weighted
case. Case (c) and (d) were handled in the 2021 code, and
are processed by a mixture of first trying the MIP solver
for a short period of time, then trying the technique of
abstract cores, and then utilizing the information gathered
so far for a final round of MIP solving. In future work, we
plan on monitoring the progress of these “trial” phases more
carefully so that better decisions can be made about when
to abort these phases.
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I. INTRODUCTION

OPEN-WBO [1] is an open source MaxSAT solver that
supports several MaxSAT algorithms [2], [3], [4], [5], [6], [7],
[8] and SAT solvers [9], [10], [11]. OPEN-WBO is particularly
efficient for unweighted MaxSAT and has been one of the best
solvers in the MaxSAT Evaluations from 2014 to 2017. Two
versions of OPEN-WBO were submitted to the unweighted
track at MaxSAT Evaluation 2022: open-wbo-res-mergesat
and open-wbo-res-glucose. The only difference between
OPEN-WBO 2022 and the 2021 version is a modified parser
with support to the new format where hard clauses are marked
with ‘h’ and the ‘p-line‘ is removed. The remainder of this
document describes the differences between these versions.

II. SAT SOLVERS

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [9], [12]. Therefore, solvers based on MINISAT 2.2
can be used as a potential back-end solver. For the MaxSAT
Evaluation 2021, we use GLUCOSE 4.1 [10], [13], [14] as the
back-end SAT solver of the version that ends in glucose and
MERGESAT [11] as the back-end SAT solver of the version
that ends in mergesat.

MERGESAT [11] is a new CDCL solver developed by
Norbert Manthey and it is based on the SAT competition
winner of 2018, MAPLELCMDISTCHRONOBT [15], and adds
several known techniques. For restarts, only partial backtrack-
ing is used, learned clause minimization is implemented more
efficiently, and also applies simplification again in case the
first swipe resulted in a simplification. The time-based decision
heuristic switch is made deterministic by using solving steps.
Assumption literals are set before search, and the CCNR SLS
engine, as well as polarity selection during decision with re-
phasing is used. To support being used inside MaxSAT solvers,
the incremental search feature had to be enabled again.

III. MAXSAT ALGORITHMS

In this section, we briefly describe the algorithms used for
the complete track at the MSE2021.

A. Complete Unweighted Track

Two versions were submitted to the complete unweighted
track: open-wbo-res-mergesat and open-wbo-res-glucose.

Both versions use a variant of the unsatisfiability-based
algorithm MSU3 [3] and the OLL algorithm [7]. This algo-
rithm works by iteratively refining a lower bound λ on the
number of unsatisfied soft clauses until an optimum solution

is found. We use an incremental version of this algorithm by
taking advantage of the incremental version of the Totalizer
encoding [4]. We also extended the incremental MSU3 algo-
rithm [4] with resolution-based partitioning techniques [8]. We
represent a MaxSAT formula using a resolution-based graph
representation and iteratively join partitions by using a prox-
imity measure extracted from the graph representation of the
formula. The algorithm ends when only one partition remains
and the optimal solution is found. Since the partitioning of
some MaxSAT formulas may be unfeasible or not significant,
we heuristically choose to run either MSU3 with partitions
or without partitions. In particular, we do not use partition-
based techniques when one of the following criteria is met:
(i) the formula is too large (> 1,000,000 clauses), (ii) the
ratio between the number of partitions and soft clauses is too
high (> 0.8), (iii) the sparsity of the graph is too small (<
0.04), or (iv) there exist some at-most-one relations between
soft clauses (> 10), i.e. if one soft clause is satisfied it implies
that some other soft clauses will be unsatisfied.

B. Preprocessing

We perform identification of unit cores and at-most-one
relations between soft clauses by using unit propagation. A
similar technique is done in RC2 [16], the winner of the
MaxSAT Evaluation 2018.

C. Other

OPEN-WBO now supports printing the certificate in a
compact mode using 0’s and 1’s.

IV. AVAILABILITY

The latest release of OPEN-WBO is available under a MIT
license in GitHub at https://github.com/sat-group/open-wbo.
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Sörensson for the development of MINISAT 2.2. Additionally,
we would like to thank all the collaborators on previous
versions of OPEN-WBO, namely Saurabh Joshi and Mikoláš
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Abstract—UWrMaxSat is a complete solver for partial
weighted MaxSAT instances and pseudo-Boolean ones. It can
be also characterized as an anytime solver, since it outputs the
best known solution, whenever its run is interrupted. It needs
a SAT solver as an oracle and can be used with a few modern
solvers, from which COMiniSatPS by Chanseok Oh (2016) has
been selected as a default one. Several solving strategies have been
implemented in it (selected by parameters) but the default one is a
core-guided OLL procedure, where its own sorter-based pseudo-
Boolean constraint encoding is applied to translate cardinality
constraints into CNF. This paper describes new elements in
UWrMaxSat version 1.4, which is submitted to the MaxSAT
Evaluation 2022. They include (1) the IPAMIR interface that
standardizes an access to a MaxSAT solver as a library, and (2)
an integration with SCIP solver for mixed integer programming.

Index Terms—MaxSAT-solver, UWrMaxSat, COMiniSatPS,
sorter-based encoding, core-guided, complete solver

I. INTRODUCTION

An example of optimization problems can be represented
as a partial weighted MaxSAT instance or, equivalently, as
a set of linear inequation over Boolean variables, called
pseudo-Boolean (PB), with a linear goal function, which value
should be minimized. A MaxSAT instance consists of two sets
containing hard clauses and weighted soft ones, respectively.
Hard ones must be satisfied by any solution and the goal
of MaxSAT optimization is to find a model that minimizes
also the sum of weights of unsatisfied soft ones. It is clear
that clauses can be easily converted into linear inequations
over Boolean variables. Inverse translations are used in many
PB solvers, but one needs an efficient encoder to convert PB
constraints into clauses.

UWrMaxSat was created as an extension of the MiniSat+
1.1 solver by Eén and Sörensson (2012) [5] in two basic steps:
firstly, this PB solver was extended with a new sorter-based
encoder by Michał Karpiński and Marek Piotrów to, so called,
KP-MiniSat+ [7], [8], and then, a MaxSAT parser and the
corresponding solving techniques were added to it by Piotrów
and the solver was renamed to UWrMaxSat. Therefore, it is
able to solve both PB and MaxSAT instances. Moreover, it
appeared that the implemented translation of an PB instance
into an equivalent MaxSAT one and the selected MaxSAT
algorithm become an efficient way to solve many PB examples
of optimization problems [9].

But, first of all, UWrMaxSat is a competitive complete
MaxSAT solver, as it was shown by results od MaxSAT Eval-
uations (MSE) in the last three years. Furthermore, outcomes

of the complete tracks of MSE 2021 indicated that translating
clauses into linear inequation over 0-1 integer variables and
using the mixed integer programming solver SCIP [4] to solve
them can be a successful way to find the optimal solution of
several small MaxSAT instances. Therefore, this method has
been added as an option to UWrMaxSat.

Furthermore, this year’s version is submitted with two new
features: (1) the IPAMIR interface that has been defined to
standardize the way of using a solver as a library, and (2) an
improved greedy algorithm of the encoder module to better
check if some of previously encoded sorting networks can be
reused in a new encoding.

II. DESCRIPTION

A new version of UWrMaxSat is denoted as 1.4 and it is a
fourth time when the solver takes part in MaxSAT Evaluations.
For the main features of the previous versions see [14], [15],
[17]. A more detailed description of UWrMaxSat ver. 1.1 can
be found in [16]. In this year’s version, we continue to use
incrementally the SAT solver COMiniSatPS by Chanseok Oh
(2016) [13] as an oracle. The default search strategy for the
optimal solution is also the same as in previous years, that
is, a core-guided linear one, where unsatisfiability cores are
processed by the OLL procedure [1], [6], [11] and cardinality
constraints generated by it are encoded with the help of 4-
Way Merge Selection Networks [8] and Direct Networks [3].
The general description of search strategies used by MaxSAT
solvers can be found, for example, in [12].

UWrMaxSat can be compiled with or without two additional
libraries: the extended MaxSAT preprocessor MaxPre created
at the University of Helsinki and implemented by Tuukka
Korhonen [10], and the mixed integer programming solver
SCIP created in cooperation of several organizations [4]. The
submitted UWrMaxSat 1.4 uses only the second library in
version 8.0.0. The default configuration is to run the SCIP
solver on small MaxSAT instances in a separate thread without
given timeout. Using the corresponding options one can force
it to be run in the same thread and for a defined number
of seconds before the start of the MaxSAT solver (these
options are set in the competition). An input instance is
preprocessed before sending it to SCIP by the UWrMaxSat’s
implementation of an algorithm to detect unit clauses and at-
most-one cardinality constraints and, then, by simplifications
done by the SAT solver.

The recently-defined IPAMIR interface has been added to
UWrMaxSat to standardize the API of the corresponding
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library. All elements of IPAMIR have been implemented. The
only restriction is that the library allows an application to use
a single instance of the solver at a time. In version 1.4 of the
library, MaxPre is not used and should be compiled without
it. On the other hand, it can be compiled to be used with
the SCIP library and the corresponding options can be set in
an environment variable UWRFLAGS (as well as some other
useful ones of UWrMaxSat).

In the IPAMIR implementation, a general assumption is to
have a single MaxSat-solver object and a corresponding SAT-
solver one for a whole solving process between the initial call
to ipamir_init and the final call to ipamir_release.
That means that the SAT solver keeps and used all learnt pieces
of information. To have a consistent state of it, the MaxSat
solver replaces all self-generated unit clauses by assumptions
that are discarded after the end of a call to ipamir_solve.
In particular, such replacements are done in the hardening
procedure of soft literals.

Hard clauses added through the IPAMIR interface are sent
directly to the SAT solver and kept only there. Sets of weighted
soft literals and assumptions can be changed between calls
to ipamir_solve, so they are analysed from scratch each
time the MaxSat solver is used. Assumptions from IPAMIR are
merged with ones from the solver and are used as assumptions
to each SAT solving. A stratification technique [2] is applied
to the set of weighted literals. Cores obtained from the SAT
solver are encoded as cardinality constrains with a method
described shortly below.

A sorter-based encoding of PB constraints was implemented
in the original MiniSat+ solver. Next, it was replaced by
a much more complicated one in KP-MiniSat+, but still
each constraint was encoded separately into clauses. Recently,
Michał Karpiński and me have proposed an improvement of
such technique and implemented it in UWrMaxSat. By using
a variation of a greedy set cover algorithm, when adding
constraints to our encoding, the encoder reuses parts of the
already encoded PB-instance in order to decrease the size (the
number of variables and clauses) of the resulting SAT instance
[9].

Finally, the parser of UWrMaxSat was modified to accept
the new proposed input format of partial weighted MaxSAT
instances. Recall that there is no p-line in it and hard clauses
are preceded by the letter ’h’ instead of the ”very big” weight
given in a p-line.
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Université de Picardie Jules Verne, Amiens, France
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I. WMAXCDCL-BANDALL

WMaxCDCL-BandAll is a modification of the WMax-
CDCL solver, which also participates in MaxSAT Evaluation
2022 (see MaxCDCL and WMaxCDCL in MaxSAT Evaluation
2022). The basic algorithm is the same: a an addaptation
to weighted MaxSAT of the MaxCDCL algorithm [1], [2].
WMaxCDCL-BandAll includes the same preprocessing and
inprocessing techniques described for WMaxCDCL. The dif-
ference is in WMaxCDCL-BandAll is in the local search
technique used to improve the found suboptimal solutions.
This procedure has been replaced by the BandAll local search
method implemented in the DT-HyWalk solver, which partici-
pates in the incomplete track of MaxSAT Evaluation 2022 (see
Decision Tree based Hybrid Walking Strategies). This method
is a variant of BandMaxSAT [3].
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Abstract—This document describes our MaxSAT solver DT-
HyWalk submitted to the MSE 2022. DT-HyWalk is submitted
to both the weighted and unweighted incomplete tracks.

I. INTRODUCTION

DT-HyWalk contains two components, the local search
component and the SAT-based component. The SAT-based
component is the TT-Open-WBO-Inc solver [1]. The combi-
nation of the local search component and TT-Open-WBO-Inc
is the same as that of SATLike-c [2]. That is, first using an
SAT solver to obtain a feasible solution on all the hard clauses,
then using the local search component to improve the solution
until there is no improvement over 107 steps, finally using TT-
Open-WBO-Inc to calculate in the rest time with the upper
bound equals to the best solution found by local search.

In the local search component of DT-HyWalk, we imple-
ment several local search algorithms including BandMaxSAT
[3], FPS [4], SimpleWalk (another proposed local search
method), as well as their variants and some combinations
of them. These local search algorithms all follow the same
searching process as SATLike [5] does when the local optima
for SATLike are not reached (i.e., there is at least one variable
with a positive score). When they reach a local optimum for
SATLike, they perform different walking strategies to escape
from the local optimum.

We first introduce the three basic algorithms, BandMaxSAT,
FPS, and SimpleWalk, then introduce some of their variants
and combinations, finally introduce the decision tree based
hybrid method of DT-HyWalk.

II. BANDMAXSAT

BandMaxSAT [3] associates a multi-armed bandit to the soft
clauses. Each arm corresponds to a soft clause. BandMaxSAT
uses the bandit model to select the search direction to escape
from feasible local optima. Note that a local optimum indicates
that there is no variable with positive score, i.e., flipping any
variable cannot improve the current solution. A feasible local
optimum indicates there is no falsified hard clause.

The procedure of BandMaxSAT is shown in Algorithm 1.
The function cost(A) equals the total weight of soft clauses
falsified by A if A is feasible, otherwise equals +∞. When
BandMaxSAT does not fall into local optima, the algorithm
selects to flip a variable with positive score by the sampling
method called Best from Multiple Selections (BMS), which
chooses k (15 by default) random variables with positive score
(with replacement) and returns one with the highest score

Algorithm 1: BandMaxSAT
Input: A (W)PMS instance F , an initial complete

assignment A of F , cut-off time cutoff, BMS
parameter k, reward delay steps d, reward
discount factor γ, number of sampled arms
ArmNum, exploration bias parameter λ

Output: A feasible assignment A of F , or no feasible
assignment found

1 A∗ := A, cost(A′) := +∞, N := 0;
2 while running time < cutoff do
3 if A is feasible & cost(A) < cost(A∗) then
4 A∗ := A;

5 if D := {x|score(x) > 0} ≠ ∅ then
6 v := a variable in D picked by BMS(k);
7 else
8 update clause weights();
9 if ∃ falsified hard clauses then

10 c := a random falsified hard clause;
11 else
12 update estimated value(A,A′, A∗, d, γ);
13 N := N + 1, A′ := A;
14 c := PickArm(ArmNum,N, λ);
15 t(c) := t(c) + 1

16 v := the variable with the highest score in c;

17 A := A with v flipped;

18 if A∗ is feasible then return A∗;
19 else return no feasible assignment found;

(lines 5-6). When an infeasible local optimum is reached, the
algorithm first randomly samples a falsified hard clause, then
selects to flip the variable with the highest score in the clause
(lines 9-10).

When a feasible local optimum is reached, the algorithm
selects to pull an arm by the PickArm() function (line 14).
Since the number of arms in the bandit model equals to the
number of soft clauses, which is usually very large, selecting
the best arm among all the arms is inefficient. Thus, we
apply the sampling strategy to reduce the selection scope.
Specifically, the PickArm() function first randomly samples
ArmNum (20 by default) arms which are all corresponding
to falsified soft clauses, then selects the sampled arm with the
largest value of Upper Confidence Bound (UCB). After that,
BandMaxSAT selects to flip the variable with the highest score
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in the soft clause corresponding to the selected arm. The UCB
of each arm i is represented by Ui, which can be calculated
as follows.

Ui = Vi + λ ·
√

ln(N)

t(i) + 1
, (1)

where N indicates the number of times fallen into a feasible
local optimum, Vi is the estimated value of arm i, t(i) is the
number of times that arm i has been selected, and λ (1 by
default) is the exploration bias parameter.

The estimated value of each arm is initialized to 1 at
the beginning of the algorithm. The estimated values are
updated by the function update estimated value() function in
line 12. Since the arms (i.e., soft clauses) are connected by
the variables, we assume that the arms in our bandit model
are not independent of each other. We also believe that the
improvement (or deterioration) of A over A′ may not only be
due to the last action, but also due to earlier actions. Hence,
we apply the delayed reward method to update the estimated
value of the last d (20 by default) pulled arms once a reward
is obtained. Specifically, suppose that A′ and A are the last
and current feasible local optimal solutions respectively, A∗

is the best solution found so far, and {a1, ..., ad} is the set of
the latest d pulled arms (ad is the most recent one). Then, the
estimated values of the d arms are updated as follows:

Vai
= Vai

+ γd−i · cost(A′)− cost(A)

cost(A′)− cost(A∗) + 1
, i ∈ {1, ..., d},

(2)
where γ is the reward discount factor. Suppose in Eq. 2
cost(A′)− cost(A) is constant, then the closer cost(A′) and
cost(A∗), the more rewards the action of pulling the last arm
can yield, which is reasonable and intuitive.

III. FPS

The Farsighted Probabilistic Sampling (FPS) method [4]
combines the look-ahead strategy with the probabilistic sam-
pling strategy in an effective way. FPS applies the same
method as SATLike and BandMaxSAT do when the algorithm
does not reach a local optimum for SATLike. When a local
optimum is reached, FPS first randomly samples 10 falsified
clauses, then tries to look-ahead from a random variable of
each sampled clause, to check whether flipping a pair of
variables can improve the current solution. If FPS fails to
improve the current solution by flipping a pair of variables,
it will select to flip the best among the best sampled single
variable and the best sampled pair of variables.

With the help of the look-ahead strategy, FPS can improve
the local optima for the SATLike, so as to find higher-quality
solutions. While the probabilistic sampling strategy can help
the algorithm improve its efficiency.

IV. SIMPLEWALK AND OTHERS

SimpleWalk is a local search algorithm with a simple
walking strategy. When the algorithm falls into local optima,
it first randomly samples 10 falsified clauses, then randomly

samples 5 variables in each sampled clause, finally selects to
flip the sampled variable with the highest score. Such a method
has a wider walking scope than SATLike does, thus can find
better search directions to escape from local optima.

There are also some variants and combinations of Band-
MaxSAT, FPS, and SimpleWalk in DT-HyWalk, including:

• FPS+SimpleWalk (FS): first randomly sample clauses and
variables as SimpleWalk does, then look-ahead from the
sampled variable with the highest score in each sampled
clause.

• BandMaxSAT+FPS (BF): first select the falsified clause
to be satisfied as BandMaxSAT does, then randomly
sample 10 variables in the selected clause to look-ahead.

• BandAll (BA): an extension of BandMaxSAT that asso-
ciates a multi-armed bandit to all the clauses including
both hard and soft ones. When the algorithm falls into a
local optimum (feasible or infeasible), it calls the bandit
model to select to pull an arm (satisfy a falsified clause).
The updating of the estimated values as well as the arm
selection process for hard clauses and soft clauses are
independent.

• ...

V. DECISION TREE BASED HYBRID WALKING

Different walking strategies such as those in BandMaxSAT
and FPS are suitable for different kinds of instances.
Therefore, to help the solver decide to select an appropriate
walking strategy to explore the solution space, we use
a decision tree that trains on all the instances from the
incomplete tracks of the last four years of MSE. The
features include the number of variables NV ARS, the
number of clauses NCLS, the number of hard clauses
NHARDS, the number of soft clauses NSOFTS,
the proportion of soft clauses SOFT PERCENT ,
the minimum, average, maximum length of hard
clauses MIN HARD,AV G HARD,MAX HARD,
the minimum, average, maximum length of soft
clauses MIN SOFT,AV G SOFT,MAX SOFT ,
the average length of all clauses AV G LEN , the
minimum, average, maximum weight of soft clauses
MIN WTS,AV G WTS,MAX WTS, a total of 15.

DT-HyWalk combines 6 walking strategies for weighted
instances (MAX WTS > 1), and 5 walking strategies for
unweighted instances. When solving an instance, the solver
uses the decision tree to select an appropriate walking strategy.
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Fig. 1: The structure of Loandra.

I. PRELIMINARIES

We briefly overview the any-time Loandra MaxSAT-solver
as it participated in the incomplete track of the 2022 MaxSAT
Evaluation, focusing especially on the differences to the 2019
and 2020 versions. All of the new changes to Loandra relate
to the preprocessing phase of the algorithm. In particular, the
solver now employs a recent extension of MaxPRE (named
MaxPRE 2.0) capable of stronger reasoning as well as out-
putting an upper bound ub on the optimal cost. More detailed
descriptions can be found in [4], [11], [10].

We assume familiarity with conjunctive normal form
(CNF) formulas and weighted partial maximum satisfiability
(MaxSAT). Treating a CNF formula as a set of clauses a
MaxSAT instance F consists of two CNF formulas, the hard
clauses Fh and the soft clauses Fs, as well a weight wc
associated with each C ∈ Fs. A solution to F is an assignment
τ that satisfies Fh. The cost COST(F , τ) of a solution τ
is the sum of weights of the soft clauses falsified by τ . An
optimal solution is one with minimum cost over all solutions.
An unsatisfiable core κ of F is a subset of soft clauses s.t.
Fh ∧ κ is unsatisfiable.

Loandra is implemented on top of Open-WBO [12]. We
thank the developers of Open-WBO for their work.

II. STRUCTURE OF LOANDRA

Figure 1 overviews the structure of Loandra. The solver
implements core-boosted linear search [4] augmented with
tightly integrated MaxSAT preprocessing [3], [10], [11], [2].
More specifically, Loandra consists of three main components:
a) Preprocessing, b) Core-guided search and c) Linear search.

a) Preprocessing: On input F , the execution starts by
invoking the MaxPre 2.0 [10] preprocessor on F . MaxPre 2.0
is run with the technique string [u]#[uvsrgVGc], enforc-
ing a 30s time-limit on and a skip technique value of 20. In
more detail, the preprocessor runs the same ”base” techniques
as in previous years (unit propagation, bounded variable elim-
ination, subsumption elimination, self-subsuming resolution,
group subsumed label elimination and binary core removal) as
well as the so called intrinsic at-most-one and TrimMaxSAT
techniques [8], [15]. The TrimMaxSAT technique is extended
to all literals rather than only literals appearing in soft clauses.

In addition to the more expressive preprocessing rules,
another novelty of applying MaxPRE 2.0 is the possibility
of obtaining and upper bound ub on COST(F). The bound
is supplied to the linear search phase. Unless MaxPre can
compute an optimal solution to F , the preprocessed instance
P(F) is then handed to the core guided phase, reusing the
assumption variables introduced during preprocessing [3].

b) Core-guided search: CORE-GUIDED, the core-guided
phase is unchanged from previous versions of Loandra. As the
instantiation of the core-guided algorithm, we use a reimple-
mentation of PMRES [14] extended with weight aware core
extraction (WCE) [5] and clause hardening. If CORE-GUIDED
is able to find an optimal solution τ to P(F), an optimal so-
lution REC(τ) to F is reconstructed and returned. Otherwise
the final working instance P(F)w and the best found solution
τ∗ are handed to the linear search component.

c) Linear search: LIN-SEARCH, the linear search phase
of Loandra is an implementation of the SAT/UNSAT linear
search algorithm [6], extended with solution guided phase
saving and varying resolution in the style of LinSBPS [7].
The component is for the most part the same as in the
2019 version. As the pseudo-Boolean encoding, we use the
so called generalized totalizer [9]. The initial bound B =
min{ub,COST(F , τ∗)} on PB-encoding is set to the min-
imum of the upper bound found by the preprocessor and the
cost of the best solution found by the core-guided phase. Note
that the linear search phase operates on the working instance
of the core-guided search. As such, the range over which it
searches is [lb, B] where lb is the lower bound obtained by
the core-guided phase. The lower bound is implicitly main-
tained in the transformed formula, meaning that in practice,
the PB constraint is built over the range [0, B − lb].

In the beginning of each resolution (i.e. invocation of linear
search on a subset of the soft clauses), the best known solution
τ∗ is minimized in order to alleviate the missinterpretation of
costs that might happen due to preprocessing in the context
of incomplete solving [11]. The minimization procedure re-
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sembles ideas proposed in MaxSAT solving algorithms based
on bit-vector optimization [13]. In short, the procedure loops
over all literals in the objective funciton, attempting to assign
an increasing number of them to false (i.e. to not incur cost).

The linear phase runs until either finding an optimal solu-
tion, or running out of time, at which point a reconstruction
REC(τ∗) of the currently best known solution τ∗ to P(F)w is
returned. Notice that the reconstruction of a solution happens
only once, we use the standard, linear time, reconstruction
algorithm as implemented by MaxPre.

III. IMPLEMENTATION DETAILS

All algorithms are implemented on top of the publicly
available Open-WBO system [12] using Glucose 4.1 [1] as
the back-end SAT solver. In order to minimize I/O overhead,
we make direct use of the preprocessor interface offered by
MaxPre. The linear search algorithm uses the generalized
totalizer encoding [9] to convert the PB constraints needed
in linear search to CNF. In the evaluation, we set a 30s time
limit for the preprocessing phase and a 30 second time limit
for the core-guided phase. These limits were chosen based
on preliminary experiments. On weighted instances, the core-
guided phase is also terminated when the stratification bound
would be lowered to 1. On unweighted instances the phase
is terminated at the latest after extracting one set of disjoint
cores.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. A statically linked version of Loandra in release
mode can be built by running MAKE RS in the base folder.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments: the flag -pmreslin-cglim sets the
maximum time that the core-guided phase can run for (in
seconds). The rest of the flags resemble the flags accepted by
Open-WBO and MaxPRE; invoke ./loandra static –help-verb
for more information.
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Abstract—This document describes the solver NuWLS-c, sub-
mitted to the four incomplete tracks of MaxSAT Evaluation 2022.

I. INTRODUCTION

NuWLS-c is based on SATLike-c [3]. NuWLS-c has two
main engines, one is the local search solver NuWLS and the
other is the SAT-based solver TT-Open-WBO-inc [2].

II. LOCAL SEARCH ALGORITHM: NUWLS

Our NuWLS algorithm utilizes the framework of the local
search algorithm SATLike [1], which is a dynamic local search
framework for SAT and exploits the distinction of hard and
soft clauses by a clause weighting scheme.

We propose a new clause weighting scheme for updating
clause weights during the local search, which makes a deeper
distinction between hard and soft clauses. The weighting
scheme used in NuWLS is named Dist-Weighting (Distin-
guished Weighting).

First, usually, SLS algorithms update clause weights when
encountering local optima. Nevertheless, previous clause
weighting schemes either update only the hard clause weights,
or update both hard and soft clause weights under the same
conditions. Our Dist-Weighting scheme updates hard and soft
clause weights according to different activation conditions.

Second, the framework of the SATLike algorithm uses a
scoring function (the score of the variable, score(x)) to guide
the search. score(x) is the increment of the total weight of
satisfied clauses (either hard clauses or soft clauses) caused by
flipping x. For the weighted instances, when the weights of
soft clauses are updated, the importance between soft clauses
could be destroyed, thus leading the search to a region where
there is no chance of finding better solutions. The issue is more
pronounced when the average weight of soft clauses is small.
In fact, SATLike does not increase the weights of soft clauses
when solving weighted instances where the average weight
of soft clauses (wsavg(I)) is less than 10000. Additionally,
too large average weight of soft clauses disrupts the balance
between the hard and soft clauses. To address this issue, we
propose a weighting scheme where the weight of each soft
clause c (w(c)) is initially set to 1, and the upper limit of
the soft clause weight is proportional to its original weight
worg(c). Set a parameter savg , for an instance I whose average
weight of soft clauses is wsavg(I), then the upper limit of the
weight of each soft clause c in instance I is savg×worg(c)

wsavg(I)
+ δ,

where δ is a parameter.

For each unweighted instances I , wsavg(I) = 1, the weight
of each soft clause in I is 1 (i.e., w(c) = 1), then the upper
limit of the weight of each soft clause c in I is savg + δ.

Based on the above two ideas, we present our new weighting
scheme. For each clause, the initial weight is set to 1. When
the algorithm encounters a local optimum, the clause weights
are updated as follows:

• For hard clauses: with probability h sp and the condition
that a feasible solution is found in the current round of
local search, for each satisfied hard clause c, w(c) :=
w(c)−h inc if w(c)>h inc; otherwise, for each falsified
hard clause c, w(c) := w(c) + h inc.

• For soft clauses: the weights of soft clauses are only
updated if cost(α) ≥ cost(α∗). Specifically, with prob-
ability s sp, for each satisfied soft clause c, w(c) :=
w(c)-s inc if w(c) > s inc; with probability 1 − s sp,
if α is feasible, then for each falsified soft clause c,
w(c) := w(c)+s inc if w(c) < savg×worg(c)

wsavg(I)
+δ. (We use

α to denote the current assignment, α∗ is used to denote
the best solution found, cost(α) is used to denote the sum
of worg(c) of all the unsatisfied soft clauses under α.)

III. HYBRID SOLVER: NUWLS-C

We combine NuWLS with the state of the art SAT-based
solvers TT-Open-WBO-inc [2], leading to the hybrid solver
NuWLS-c.

The framework of NuWLS-c is similar to SATLike-c [3].
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Abstract—Since 2019, all solvers in the incomplete track of
the MaxSAT Evaluation (MSE) include a dedicated SAT solver.
In resource-constrained computing environments, e.g., embedded
systems, such algorithm designs can be hard to realize. Yet, the
MSE results show an undeniable increase in efficiency when using
a SAT solver. With noSAT-MaxSAT, we propose to replace the
call to a SAT solver by executing the MaxSAT solver only on
the hard clauses of the formula instead. The algorithm is based
on SATLike, which was was the only algorithm that did not rely
on a SAT solver in the MaxSAT Evaluation 2018. Additionally,
our implementation satisfies a set of requirements often found in
embedded system software.

I. INTRODUCTION

In recent years the solvers in the incomplete track of
the MaxSAT Evaluation (MSE) have converged to employ
algorithms that rely on complete SAT solvers. Indeed, since
2019, that is true for all incomplete solvers that entered the
MSE. A call to the SAT solver is often executed to obtain a
valid initial assignment for the hard clauses in partial MaxSAT
problems, or iteratively in linear search-based MaxSAT solvers
[1, 2, 3].

Our goal is to develop an efficient MaxSAT solver that
is suitable for deployment in resource-constrained computing
environments. Here, careful analysis of the resource require-
ments of the software, especially with regards to runtime and
memory, is usually required to verify the system against its
specification. Each additional software module complicates
this process, potentially to the point of infeasibility. Therefore,
one of the key requirements for our solver is that it must not
rely on a SAT solver.

noSAT-MaxSAT is based on the SATLike algorithm by Lei
and Cai [4], which is the most recently proposed algorithm
in the MSE that does not rely on a SAT solver. SATLike
entered the MSE 2018 together with its variant SATLike-c,
which does employ an external SAT solver to obtain a satis-
fying assignment for hard clauses and consistently performed
better than the former [5]. On the one hand, its performance
highlights the undeniable effectiveness of solving MaxSAT
problems through SAT. On the other hand, this leads to the
core idea of noSAT-MaxSAT: Replacing the execution of a
SAT solver in SATLike-c by running SATLike itself instead,
but only on the hard clauses.

In the following, we introduce the requirements and archi-
tecture of noSAT-MaxSAT, and briefly describe the SATLike
algorithm and the modifications made for noSAT-MaxSAT.

II. REQUIREMENTS & ARCHITECTURE

noSAT-MaxSAT is developed under the following require-
ments, derived from common constraints found in program-
ming embedded systems. The software

1) is programmed in C;
2) is self-contained, i.e., it has no external dependencies

(other than the C standard library);
3) does not allocate memory dynamically;
4) does not use floating-point operations;
5) does not contain unbounded loops, i.e., it only contains

for loops where the loop variable i is an integer that
is monotonically increased (decreased) until it reaches
a certain maximum (minimum) n. However, n is not
required to be a compile-time constant (yet it must be
constant upon entering the loop), and the loop condition
may be extended by conjunctively adding any number of
boolean expressions (i.e., the loop may terminate before
reaching n).

A solver which fulfills all of these requirements could not
be expected to perform well in the MSE, because the sizes of
the benchmarks are unknown beforehand, which conflicts with
requirements 3) and 5). To circumvent this, noSAT-MaxSAT
is split into a library that fulfills the requirements, and an
application that uses the library but is not bound by the above-
mentioned restrictions.

The interface of the library essentially
consists of two functions: nsms_solve and
nsms_calcMemoryRequirements. Given the number
of variables and clauses of a formula, the latter function
computes (an upper bound on) the number of bytes of
memory the solver will need. The former function takes the
formula, a pointer to a sufficiently-sized memory block, and
the algorithm configuration. It applies the SATLike algorithm
as described in the following section. The application code
takes care of parsing the input file and allocating memory
to construct the formula that is then passed to the library
functions.

In a constrained computing environment this splitting is not
an option. For a particular application, however, it can be
expected that the problem domain is much more homogenous
in such environments than in the MSE, so upper bounds on
the number of variables and clauses are known a priori and
memory can be pre-allocated statically.
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III. ALGORITHM

Algorithm 1 noSAT-MaxSAT
Require: partial weighted MaxSAT formula F , unsigned in-

tegers maxFlips and maxTries, SATLike parameters
Ensure: a feasible assignment for F and the resulting total

cost, or no assignment
minCost←∞
bestAssignment← random
for t← 0;
t < maxTries and no. of unsat. clauses > 0;
increment t by 1
do

assign bestAssignment to F
preprocess F
if no. of soft clauses > 0 then

execute noSAT-MaxSAT on hard clauses of F
end if
for f ← 0;
f < maxF lips and no. of unsat. clauses > 0;
increment f by 1
do

if current cost < minCost then
minCost← current cost
bestAssignment← current assignment
f ← 0

end if
v ← select variable according to SATLike
flip v

end for
if current cost < minCost then

minCost← current cost
bestAssignment← current assignment

end if
end for

A high-level description of noSAT-MaxSAT is given in
Algorithm 1. It is based on the SATLike algorithm by Lei
and Cai that employs an effective clause-reweighting and
variable selection mechanism [4]. For preprocessing it is
combined with a unit clause propagation-based method that
was introduced by Cai et al. [6] and was also present in
the original implementation. After preprocessing, SATLike is
executed only on the hard clauses of the formula, trying to
obtain a satisfying assignment for them. As mentioned earlier,
such a step can greatly improve efficiency, but is usually
performed by a dedicated SAT solving algorithm. Details on
the SATLike algorithm and its parameters are omitted here for
brevity; we use the same parameters as reported by Lei and
Cai [4]. The parameter maxTries is set to the largest possible
value (UINT64_MAX) so the solver runs until it is stopped by
an external signal, as the MSE rules for incomplete solvers
require. maxFlips is initialized with 10 times the number
of variables of the input formula to allow for restarts and
ensure the feedback mechanism of the preprocessing method

is actually used (conflicting unit clauses are resolved by setting
the affected variable to its value from bestAssignment) [6].
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I. INTRODUCTION

Open-WBO-Inc [1], [2] is developed on top of Open-
WBO [3], [4], [5] and placed first and second on the weighted
incomplete tracks for 60 and 300 seconds respectively in the
MaxSAT Evaluation 2018, and third on both these tracks in the
MaxSAT Evaluation 2019. For many applications that can be
encoded into MaxSAT, it is important to quickly find solutions
even though these may not be optimal. Open-WBO-Inc is
designed to find a good solution1 in a short amount of time.
Since Open-WBO-Inc is based on Open-WBO, it can use any
MiniSAT-like solver [6]. For this evaluation, we use Glucose
4.1 [7] as our back-end SAT solver. Open-WBO-Inc 2022
uses a modified parser that supports to the new format where
hard clauses are marked with ‘h’ and the ‘p-line‘ is removed.

II. ALGORITHMS

For the MaxSAT Evaluation 2022, we restrict Open-WBO-
Inc to the weighted category where it uses the approximation
algorithms that have been proposed in past work [1], [2]. In
particular, we submitted two versions of Open-WBO-Inc: inc-
bmo-complete and inc-bmo-satlike.

All versions are based on bounded multilevel optimiza-
tion [8] using a variant of linear search algorithm SAT-
UNSAT [9]. The algorithms used in these versions consider
n objective functions where n is the number of different
weights in the MaxSAT instance. This is done by performing a
sequence of calls to a SAT solver and refining an upper bound
µ on the number of unsatisfied soft clauses. To restrict µ at
each iteration, we need to encode cardinality constraints into
CNF, for which incremental Totalizer encoding [4] has been
used. Once the upper bound µ for a given objective function
cannot be improved, it is frozen, and the next objective
function in the order is optimized.

An optimal solution, if found when using this algorithm, is
not necessarily an optimal solution for the input formula. inc-
bmo-complete and inc-bmo-satlike versions differ between
them when this occurs. inc-bmo-complete keeps the best-
known solution and resumes the search using the LSU algo-
rithm which can potentially find better solutions and prove
optimality. In contrast, inc-bmo-satlike changes the search
algorithm to SATLike [10], a MaxSAT stochastic algorithm.
The best model found by the first phase is passed to SATLike
as its initial starting model.

1By “good solution” we mean that it can be potentially suboptimal but is
not far from the optimal solution.

For the versions of this year, we added a conflict limit
of 107 on each SAT call when performing the multilevel
optimization phase. This prevents the solver from being stuck
in some optimization level and never entering the final phase.
We have also included the Target-Optimum-Rest-Conservative
(TORC) and Target-Score-Bum (TSB) heuristics [11]. The
TORC heuristic changes the default polarity of the SAT solver
to take into consideration the MaxSAT formula. Relaxation
variables that may appear in the cardinality constraints of the
multilevel optimization algorithm are always set to polarity
false. For the remaining variables, the polarity is set according
to the best model found during search. The TSB heuristic
bumps the score of all relaxation variables to make them more
likely to be picked at the beginning of the search. Additionally,
we also now support printing a compact certificate using 0’s
and 1’s instead of variable ids.

III. AVAILABILITY

We submit the source of Open-WBO-Inc as part of our
submissions to the MaxSAT Evaluation 2022. The inc-bmo-
complete version and the full Open-WBO-Inc framework is
available under a MIT license in GitHub at https://github.com/
sbjoshi/Open-WBO-Inc.
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Abstract—This document describes the solver
TT-Open-WBO-Inc-22, submitted to the four incomplete
tracks of MaxSAT Evaluation 2022. TT-Open-WBO-Inc-22
is the 2022 version of our solver TT-Open-WBO-Inc [8],
itself based on Open-WBO-Inc [3]. The main innovation in
TT-Open-WBO-Inc-22 is the integration of our new open-
source SAT solver Intel® SAT Solver (IntelSAT) [5].

I. INTRODUCTION

TT-Open-WBO-Inc [8] is our anytime MaxSAT solver,
based on Open-WBO-Inc [3]. Similarly to the previous
year’s version [9], TT-Open-WBO-Inc-22 combines the
following algorithms:

1) SATLike local search [2] for inprocessing.
2) The unweighted component uses Mrs. Beaver [6],

enhanced by the following two heuristics from Sect. 4.1
in [4]: global stopping condition for OBV-BS and size-
based switching to complete part.

3) The weighted component uses BMO-based clustering [3].
4) The Polosat SAT-based local search algorithm [7] re-

places the regular SAT invocations in both the unweighted
and weighted components.

We adjusted some of the low-level parameters of the afore-
mentioned algorithms to the benchmarks from the two latest
MaxSAT Evaluations.

The main innovation this year is the development
and integration of our new open-source SAT solver
Intel® SAT Solver (IntelSAT) [5], available at [10].
IntelSAT is optimized for applications which generate
many mostly satisfiable incremental SAT queries, such as
unweighted anytime MaxSAT, for which IntelSAT’s per-
formance was specifically optimized [5].

We submitted three versions of TT-Open-WBO-Inc-22,
the difference being the underlying SAT solver:

1) TT-Open-WBO-Inc-22(I): with IntelSAT.
2) TT-Open-WBO-Inc-22(IS): with IntelSAT,

tuned for shorter invocations.
3) TT-Open-WBO-Inc-22(G): with Glucose 4.1 [1].
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I. INTRODUCTION

EvalMaxSAT1 is a MaxSAT solver written in modern C++
language mainly using the Standard Template Library (STL).
The solver is built on top of the SAT solver CaDiCaL [1], but
any other SAT solver can easily be used instead. EvalMaxSAT
is based on the OLL algorithm [2] originally implemented in
the MSCG MaxSAT solver [3], [4] and then reused in the RC2
solver [5].

II. DESCRIPTION

Our approach to solve a sequence of n MaxSAT formu-
las ϕ1, ϕ2, . . . ϕn is by using two instances of EvalMaxSAT
solvers (E1, E2). For each iteration i, instance E1 will try to
satisfy formula ϕi = ϕH ∪ϕS (a set of soft and hard clauses).
If E1 found the formula ϕi to be satisfiable, then instance E2

will be constructed as a copy of E1. Instance E2 will try to
find the optimal solution to the original formula with the user
assumptions added (ϕi ∪ ϕU ), reusing everything (cardinality
constraints, weights, assumptions, etc) from instance E1 that
was generated to solve formula ϕi. Note that user assumptions
(ipamir_assume) are added as hard unit clauses in instance
E2 rather than as conventional assumptions that would be
passed to the SAT solver.
Instance E2 will return the result it found, and this iteration
will be complete. Instance E1 will never be destroyed as it will
be used to conserve relevant data structures (i.e., the cardinality
constraints). If at some point instance E1 found formula ϕk

to be unsatisfiable, the program should stop since if ϕk is
UNSAT, ϕk+1 is also UNSAT since ϕk ∈ ϕk+1.

Should the weight of at least one soft literal be changed
via ipamir_add_soft_lit, instance E1 will restart from
zero with the updated weights. Although simpler from a
development standpoint, resetting E1 at the first sign of a
weight change is not efficient. This will be fixed in later ver-
sions. Furthermore, additional incremental approaches, such
as reusing cores and cardinality constraints, will be added
in future iterations to complement the techniques described
above.
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Algorithm 1
Input: A formula φ

1: δS ← [ ] array of soft literals in φ
2: δH ← [ ] array of hard clauses in φ
3: E1 ← newEvalMaxSAT ()
4: for l in δS do
5: E1 ← l
6: end for
7: for l in δH do
8: E1 ← l
9: end for

10: resultE1 ← E1 . solve()
11: if resultE1 is a satisfying assignment then
12: E2 ← new EvalMaxSAT (∗E1)
13: E2 . add assumptions()
14: E2 . solve()
15: else
16: terminate program as no solution can be found
17: end if
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Abstract—We shortly describe iMaxHS–an incremental ver-
sion of the implicit hitting set based MaxSAT solver MaxHS–
participating in the incremental track of MaxSAT Evaluation
2022.

Index Terms—maximum satisfiability, incremental solving

I. INTRODUCTION

iMaxHS is an incremental version of the implicit hitting set
(IHS) based solver MaxHS. The MaxHS algorithm iteratively
uses a SAT solver to extract cores and an IP solver to compute
minimum-cost hitting sets over the collection of cores [1]–[3],
employing various additional techniques (e.g. [4], [5]). The in-
cremental version iMaxHS is built using the MSE 2021 version
of MaxHS, and implements all IPAMIR functionality [6], [7].

II. INCREMENTAL SOLVING

For an extensive description and details on how incremen-
tality is enabled in iMaxHS, we refer the reader to [6], [7].

To summarize, before calling ipamir_solve all hard
clauses added via ipamir_add_hard and soft literals
declared using ipamir_add_soft_lit operate only on
the internal representation of the MaxSAT instance. When
ipamir_solve is called for the first time, a MaxSAT
solver instance containing a SAT solver and an IP solver is
constructed using the current MaxSAT instance. Subsequent
calls of ipamir_add_hard add new hard clauses directly
to the internal SAT solver, while ipamir_add_soft_lit
changes the weights of the objective function in the internal
IP solver [6] according to the new soft literal.

User-provided assumptions via ipamir_assume are han-
dled via so-called conditional cores [7], which take into
account which assumptions were made during core extraction,
and by resetting the IP solver at each iteration. Conditional
cores are stored in an additional SAT solver, which is used
only as a unit propagation engine.

We note that enabling additional techniques beyond IHS-
based solving [4], [5] require more care in the incremental set-
ting [7]. In addition, iMaxHS performs several simplification
procedures to the original MaxSAT instance before initializing
the solver instance, and due to this the implementation of
IPAMIR functions requires additional data structures, and
some of the procedures have to be disabled [6], [7].

Work supported by Academy of Finland under grants 322869 and 342145.

III. IMPLEMENTATION

iMaxHS includes CaDiCaL1 as the SAT solver and IBM
ILOG CPLEX (version 22.1) as the IP solver. For the
evaluation, we use the default configuration from the ex-
periments in [7], enabling conditional cores and a sepa-
rate core initialization phase in which an instance is first
solved without assumptions for 100 seconds to allow for
extracting standard cores. All IPAMIR functions apart from
ipamir_set_terminate are supported by this version of
iMaxHS. The only restriction is that only one instance of
iMaxHS initialized via ipamir_init may exist at the same
time.

IV. AVAILABILITY

iMaxHS is available online at https://bitbucket.org/
coreo-group/incremental-maxhs under an open-source
license.

REFERENCES

[1] J. Davies and F. Bacchus, “Solving MAXSAT by solving a sequence of
simpler SAT instances,” in Proc. CP 2011, ser. Lecture Notes in Computer
Science, vol. 6876. Springer, 2011, pp. 225–239.

[2] ——, “Exploiting the power of MIP solvers in MAXSAT,” in
Proc. SAT 2013, ser. Lecture Notes in Computer Science, vol. 7962.
Springer, 2013, pp. 166–181.

[3] ——, “Postponing optimization to speed up MAXSAT solving,” in
Proc. CP 2013, ser. Lecture Notes in Computer Science, vol. 8124.
Springer, 2013, pp. 247–262.

[4] F. Bacchus, A. Hyttinen, M. Järvisalo, and P. Saikko, “Reduced cost fixing
in MaxSAT,” in Proc. CP 2017, ser. Lecture Notes in Computer Science,
vol. 10416. Springer, 2017, pp. 641–651.

[5] J. Berg, F. Bacchus, and A. Poole, “Abstract cores in implicit hitting set
MaxSat solving,” in Proc. SAT 2020, ser. Lecture Notes in Computer
Science, vol. 12178. Springer, 2020, pp. 277–294.

[6] A. Niskanen, J. Berg, and M. Järvisalo, “Enabling incrementality in the
implicit hitting set approach to MaxSAT under changing weights,” in
Proc. CP 2021, ser. LIPIcs, vol. 210. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 44:1–44:19.

[7] ——, “Incremental maximum satisfiability,” in Proc. SAT 2022, ser.
LIPIcs, vol. 236. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, pp. 14:1–14:19, to appear.

1https://github.com/arminbiere/cadical

MaxSAT Evaluation 2022: Solver and Benchmark Descriptions, volume B-2022-2 of Department of Computer Science Series of Publications B, University of Helsinki 2022.

35



BENCHMARKS



MaxSAT Benchmarks Encoding
Optimal Quantum Circuit Mapping

Lucas Berent∗ Lukas Burgholzer† Robert Wille∗‡
∗Chair for Design Automation, Technical University of Munich, Germany
†Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

‡Software Competence Center Hagenberg GmbH (SCCH), Austria
lucas.berent@tum.de lukas.burgholzer@jku.at robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum

Abstract—Quantum circuit mapping is a crucial task for
realizing quantum algorithms on physical quantum computers.
The goal is to make a given quantum circuit comply to the
restrictions of a particular quantum computer while keeping
the overhead introduced in the process as small as possible.
This set of benchmarks consists of MaxSAT formulas encoding
instances of the optimal mapping problem for quantum circuits
representing well-known algorithms with three to six qubits for
various common quantum architectures.

Index Terms—Quantum Circuit Mapping, MaxSAT

I. INTRODUCTION

With the growing interest of research and industry in
quantum computing comes a need for automated methods
that enable the realization of quantum algorithms on actual
quantum devices. To obtain a physical realization, it is neces-
sary to tackle several circuit design tasks that translate high-
level circuits to physical ones. Most quantum architectures do
not allow arbitrary interactions between their physical qubits.
Hence, a crucial part of constructing a physical realization is
mapping a circuit’s logical qubits to a device’s physical ones
while satisfying the constraints given by the target architecture.
This is commonly achieved by adding additional gates in order
to arrange logical qubits accordingly in the circuit. Additional
gates, however, increase the error probability in circuits. There-
fore, minimizing the cost—which corresponds to the number
of added gates introduced by the mapping—constitutes the
objective function during the mapping procedure. As many
other problems related to quantum circuit design, finding an
optimal solution to the mapping problem is NP-complete [1].
Hence—as for classical circuits and systems—it has been
proposed to leverage SAT-based techniques to tackle these
problems in the quantum domain [2]–[4].

II. MAXSAT FORMULATION

In the following, we briefly review the symbolic encoding
of the mapping problem proposed in [3]. A quantum circuit
G = g1 . . . g|G|1 acting on logical qubits q = {q1, . . . , qn}
shall be mapped to an architecture A = (Q,CM ) with
physical qubits Q = {Q1, . . . , Qm}, where m ≥ n. The
coupling map CM is a relation CM ⊆ Q × Q that indicates
the pairs of physical qubits between which a two-qubit gate
may be applied on the architecture.

1Throughout this report, circuits are assumed to only contain two-qubit
CNOT gates since only these gates are affected by the limited connectivity
of quantum architectures.

First, Boolean variables xk
ij are introduced indicating

whether logical qubit qj is mapped to physical qubit Qi in
front of gate gk. The following constraints ensure that a valid
mapping is obtained:

• Consistency constraints ensure that every logical qubit is
uniquely mapped to one physical qubit:

|G|∧

k=1

(
n∧

j=1

(
m∑

i=1

xk
ij = 1

)
∧

m∧

i=1

(
n∑

j=1

xk
ij ≤ 1

))
(1)

• Coupling constraints ensure that all gates of the circuit
are executable on the architecture:

∧

CNOTk
c,t∈G


 ∨

(pi,pj)∈CM

(xk
ic ∧ xk

jt) ∨ (xk
it ∧ xk

jc)


 (2)

The costs of the mapping are determined by additional
(SWAP) gates that have to be added in order to arrange qubits
according to the constraints of the architecture. To this end,
Boolean variables ykπ indicate which permutation π ∈ Πm
of physical qubits is applied between gate gk−1 and gk. The
following permutation constraints relate the xk

ij and the ykπ
variables:

|G|∧

k=2

( ∧

π∈Πm

(
m∧

i=1

n∧

j=1

(
xk−1
ij = xk

π(i)j

))
⇔ yk

π

)
(3)

Let swaps(π) denote the number of SWAP gates needed to
realize π on the architecture. Then, the overall costs of the
mapping F are determined by:

F =

|G|∑

k=2

∑

π∈Πm

(3 · swaps(π)) yk
π (4)

Note that, since there always exists a mapping as described
above, all instances are satisfiable. In the optimal mapping
problem, we are interested in finding the mapping minimizing
the overall cost, F .

III. BENCHMARK SELECTION

The instances were constructed using MQT QMAP2—a
tool that is part of the Munich Quantum Toolkit (MQT) and
implements the ideas to solve the optimal mapping problem
proposed in [3], [5]. As input of the mapping task we consider
common algorithms in the quantum domain taken from the

2https://github.com/cda-tum/qmap
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TABLE I
SUMMARY OF INSTANCES.

Name n |G| Architecture m

qwalk-v-chain 3 30 ibmq-casablanca 7
vqe 4 12 ibmq-casablanca 7
qaoa 4 16 ibmq-casablanca 7
realamprandom 4 18 ibmq-casablanca 7
portfoliovqe 4 18 rigetti-agave 8
twolocalrandom 4 18 ibmq-casablanca 7
portfoliovqe 4 18 ibmq-casablanca 7
su2random 4 18 ibmq-casablanca 7
qftentangled 4 21 ibmq-casablanca 7
qftentangled 4 39 rigetti-agave 8
grover-v-chain 4 52 ibmq-casablanca 7
grover-noancilla 4 52 rigetti-agave 8
grover-noancilla 4 52 ibmq-casablanca 7
realamprandom 4 72 rigetti-agave 8
ae 5 20 ibmq-casablanca 7
vqe 5 20 ibmq-london 5
qpeexact 5 26 ibmq-casablanca 7
qft 5 26 ibmq-casablanca 7
qpeinexact 5 26 ibmq-casablanca 7
twolocalrandom 5 30 ibmq-london 5
su2random 5 30 ibmq-london 5
qftentangled 5 30 ibmq-london 5
realamprandom 5 30 ibmq-london 5
portfoliovqe 5 30 ibmq-london 5
qftentangled 5 48 rigetti-agave 8
qwalk-v-chain 5 102 ibmq-london 5
graphstate 6 6 rigetti-agave 8
qgan 6 15 ibmq-casablanca 7

Name: Short denotation of the input circuit n: Number of logical qubits
|G|: Number of gates Architecture: Name of the architecture

m: Number of physical qubits

open-source benchmark library MQT Bench [6], which is avail-
able at https://www.cda.cit.tum.de/mqtbench/. Given an input
quantum circuit, QMAP generates a MaxSAT instance that
encodes the constraints accordingly for a given architecture.
Table I summarizes the main properties of the circuits used as
input to generate the benchmarks. All instances are publicly
available on GitHub.

IV. FILENAME CONVENTION

Each filename includes the following information (in order)
using underscore ( ) as separator:

• a short designation identifying the quantum algorithm
• the number of logical qubits n
• the number of gates, |G|, of the input circuit
• the name of the target architecture
• the number of physical qubits m

For instance, the benchmark for the quantum circuit comput-
ing the Quantum Fourier Transform on five qubits, containing
100 gates that is mapped to the eight-qubit ibmq casablanca
architecture is named:

name︷︸︸︷
qft 5︸︷︷︸

n

|G|︷︸︸︷
100 ibmq-casablanca︸ ︷︷ ︸

arch

m︷︸︸︷
8 .wcnf
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Abstract—We shortly present a benchmark for the incremental
track of MaxSAT Evaluation 2022. The benchmark application
implements AdaBoost, an algorithm for learning boosted decision
trees.

Index Terms—decision trees, AdaBoost

I. INTRODUCTION

This benchmark implements a recently-proposed method of
learning boosted decision trees via MaxSAT [1] by employing
incremental MaxSAT solving [2]. The implemented algorithm
is AdaBoost, a well-known ensemble method where multiple
weak classifiers are learned and combined into a single clas-
sifier. Briefly put, in the benchmark application a MaxSAT
instance is first constructed using a MaxSAT encoding for
learning the most accurate decision tree with a given maximum
depth [1]. This encoding builds on an earlier SAT encoding [3].
Then, weights of soft clauses are iteratively changed (using
ipamir_add_soft_lit), intuitively giving more priority
to misclassified examples and less prority to correctly classi-
fied examples.

II. ENCODING

We overview the MaxSAT encoding for learning a decision
tree of bounded depth which minimizes the training error [1],
[3]. The input is a dataset (Xi, yi), i = 1, . . . , n of binary
examples Xi ∈ {0, 1}m and classes yi ∈ {0, 1}. Each
coordinate j = 1, . . . ,m of an example Xi = (x1i , . . . , x

m
i ) is

called a feature. A decision tree is a binary classifier mapping
each example in {0, 1}m to a class in {0, 1} with the structure
of a binary tree where leaf nodes correspond to classes and
non-leaf nodes to features. In the MaxSAT encoding, hard
clauses are used to encode the structure of a valid binary tree
of depth at most D, the assignment of features to non-leaf
nodes, and the classification result of every input example. In
particular, variables bi for i = 1, . . . , n are used to encode that
example Xi is classified correctly. The training error is then
minimized via soft clauses (bi) for each i = 1, . . . , n with unit
weights w(bi) = 1.

III. ADABOOST ALGORITHM

The MaxSAT-based AdaBoost algorithm initializes a solver
with the MaxSAT encoding and iteratively changes weights of

Work supported by Academy of Finland under grants 322869 and 342145.

soft clauses [1]. In more detail, after learning a decision tree
via a MaxSAT solver call, we compute the training error ε of
that tree, and set α = 1

2 ln(
1−ε
ε ). Then, the weight w(bi) of

each soft clause bi is updated via

ŵ(bi) =
w(bi)fi∑n

j=1 w(bj)fj

where fi = exp(−α) if the ith example was classified
correctly, and fi = exp(α) otherwise. Finally, weights are
discretized via

w(bi) = round
(

ŵ(bi)

minnj=1 ŵ(bi)

)
.

IV. BENCHMARK INSTANCES

For benchmark instances, we used all 15 datasets from [1],
which were downloaded from CP4IM1 and discretized2. For
each dataset, we generated different training sets by taking
10%, 20%, . . . , 90% of the available examples, and repeated
this 5 times for each percentage. This resulted in 675 input
datasets. We set the maximum depth to D = 2 and use 20
iterations for AdaBoost in the implementation.
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Abstract—We describe the BIOPTSAT and MLIC-SEESAW
incremental MaxSAT benchmarks submitted to MaxSAT Eval-
uation 2022. The benchmarks are based on the BIOPTSAT
and Seesaw algorithms for bi-objective optimization and modify
them to use a MaxSAT solver instance each. In addition to the
algorithms making up the benchmarks we describe the provided
instance files that go with the benchmark applications.

Index Terms—SAT, MaxSAT, Bi-Objective Optimization

I. INTRODUCTION

Bi-objective optimization problems arise naturally in many
applications (e.g., [1]–[3]). Often, instead of treating the two
objectives separately, a linear combination of the objectives is
formed [4]. However, with this approach a value of importance
has to be assigned to the two objectives before solving and
even when solving with a wide range of these values, there
is no guarantee that every “optimal” solution for the two
objectives is found.

To mitigate the restriction of having to specify a preference
over the objectives beforehand, algorithms solving bi-objective
optimization under so-called Pareto optimality [5] have been
developed. Recently, two SAT-based algorithms that can solve
bi-objective optimization problems under Pareto optimality
have been proposed. BIOPTSAT [6] follows the lexicographic
method and originally makes use of a single incremental SAT
solver. Seesaw [3] is an extension of the implicit hitting set
framework, making it applicable to bi-objective optimization
problems. We present two sets of benchmarks for the in-
cremental track of the MaxSAT evaluation 2022 based on
these two algorithms. While both algorithms can be modified
to make use of two instances of a given IPAMIR MaxSAT
solver each, since the initial version of IPAMIR did not
explicitly specify that multiple solver instances can be created
at the same time, we opt to only use one solver instance per
benchmark.

II. PRELIMINARIES

First, we formalize the bi-objective Boolean optimization
problem and define Pareto optimality. Second, we briefly
survey the totalizer encoding for cardinality constraints, since
it is used in one of the benchmarks. Finally, we define notation
for a MaxSAT solver in pseudocode.

Work financially supported by Academy of Finland under grants 322869,
328718 and 342145.

A. Bi-Objective Boolean Optimization

A bi-objective Boolean optimization problem consists of
three components: a CNF formula F describing the set of
feasible solutions and two objectives OI and OD that should be
minimized. We denote the set of all literals in F as LIT(F ). An
objective O is a multiset of literals, which allows for represent-
ing objective functions with non-unit coefficients. The value
O(τ) of a truth assignment τ under O is O(τ) =

∑
l∈O τ(l),

i.e., the number of the literals in O that τ assigns to 1. Integer
weighted objectives can be represented by adding a literal
multiple times. Since both BIOPTSAT and Seesaw enumerate
the Pareto-optimal solutions in an ordered fashion with the
values for one objective increasing while the values for the
other objective are decreasing, we call OI increasing and OD
decreasing.

Given a CNF formula F , two objectives OI,OD ⊂ LIT(F )
and solutions τ1, τ2 to F , we say that τ1 dominates τ2 if
(i) Oi(τ1) ≤ Oi(τ2) for i ∈ {I,D}, and (ii) either OI(τ1) <
OI(τ2) or OD(τ1) < OD(τ2). A solution τ is Pareto-optimal if
no other solution dominates it. When the objectives are clear
from context, we will simply say that a solution τ is a Pareto-
optimal solution of F . The pair (OI(τ),OD(τ)) of a Pareto-
optimal τ is a Pareto point (of F wrt OI and OD). The given
benchmarks solve the problem of finding the set of all Pareto
points, but the algorithms can be extended to report the Pareto-
optimal solutions (see implementation of [6]).

B. The Totalizer Encoding

Given a set L of n input literals, the (incremental) total-
izer [7], [8] encoding produces a CNF formula TOT(L) that
defines a set {〈L ≤ 0〉, . . . , 〈L ≤ |L|〉} ⊂ LIT(TOT(L)) of
output literals that—informally speaking—count the number
of literals in L assigned to true by solutions to TOT(L): If τ is
an assignment that satisfies TOT(L), then τ(〈L ≤ b〉) = 1 if∑

l∈L τ(l) ≤ b. The incremental totalizer supports building
the totalizer only to a certain upper bound and extending
this bound later on. The benchmarks build the totalizers
incrementally.

C. MaxSAT Solver Notation

We denote the use of a MaxSAT solver in the pseudocode
of the benchmarks with the following three subroutines:
MaxSATInit initializes a new MaxSAT solver instance. It
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Algorithm 1 IPAMIR BIOPTSAT

Input: A formula F , two objectives OI and OD.
Output: All Pareto points of F wrt the two objectives.

1: sI ← MaxSATInit(F ∧ TOT(OD),OI)
2: sD ← SATInit(F ∧ TOT(OI) ∧ OD)
3: res, bI ← MaxSATSolve(sI, ∅)
4: while res = OPT do
5: res, bD ← SolImpr(sD,OD, {〈OI ≤ bI〉})
6: yield (bI, bD)
7: MaxSATAddClause(sI, 〈OD ≤ bD − 1〉)
8: res, bI ← MaxSATSolve(sI, ∅)

takes a formula of hard clauses and an objective as a multiset
of soft literals as parameters and returns a handle to the
initialized solver. MaxSATSolve queries the solver specified
by the handle as the first parameter for an optimal solution
and returns the pair (res, o), where res is either OPT if an
optimal solution was found or UNSAT if the hard clauses are
not satisfiable. If res = OPT, o is the optimal objective value
found. As a second parameter, MaxSATSolve takes a set
of assumptions. MaxSATAddClause allows for adding new
hard clauses to an already initialized solver. The parameters
are the solver handle and the clause to add.

III. THE BIOPTSAT BENCHMARK

The BIOPTSAT benchmark is a more naive version of the
BIOPTSAT algorithm [6]. Other than the original algorithm, it
does not use a single incremental SAT solver but one IPAMIR
MaxSAT solver and solution improving search in a separate
IPASIR SAT solver. The benchmark can solve any Boolean
bi-objective optimization problems in the BICNF format that
is similar to DIMACS WCNF.

A. Description of the Algorithm

The modified BIOPTSAT algorithm using two incremental
MaxSAT solvers is described in Algorithm 1. It initializes one
MaxSAT solvers on Line 1 and one SAT solver on Line 2. The
MaxSAT solver is initialized with OI as its objective function
and F plus a totalizer over OD as its hard clauses. In the
MaxSAT solver, the totalizer is used to enforce bounds on the
objective that the solver was not initialized with when making
MaxSAT calls. The SAT solver is passed F plus a totalizer
over OI and OD each as its clauses. This SAT solver is used
in the SolImpr subroutine to perform solution-improving
search over OD while enforcing bounds on OI.

The BIOPTSAT benchmark enumerates all Pareto points by
first minimizing the increasing objective under the constraint
that the decreasing objective value is smaller than for the
previously found Pareto point. After that, the decreasing
objective is minimized as solution improving search without
making the increasing objective worse than the optimal value
found in the last MaxSAT call. Once no new Pareto point
with a smaller objective value for the decreasing objective
exists (i.e., the MaxSAT call on Line 8 returns UNSAT), the
algorithm terminates.

B. Description of the Provided Instances

The instances for this benchmark are in a file format similar
to the standard WCNF format for main track benchmarks.
Lines starting with h denote hard clauses and lines starting
with 1 or 2 denote soft literals for the increasing, respectively
decreasing objective. The soft literal lines consist of the weight
and the literal, terminated by a 0.

There are four types of instances included with this bench-
mark. small.bicnf and medium.bicnf are two manu-
ally created instances for debugging purposes. The other three
types are contained in the directories mlic and set-cover.

Instances in the mlic directory are binary datasets en-
coded for learning interpretable decision rules with the MLIC
encoding [1]. The increasing objective for these instances
consists of the b variables of the encoding, the decreasing
objective of the η variables. This way, the increasing objective
is the rule size and the decreasing objective its classification
error. The datasets included were downloaded from the UCI
Machine Learning Repository [9] and from Kaggle (https:
//www.kaggle.com). In addition to encoding the full datasets, we
randomly and independently sampled subsets of n_samp ∈
{50, 100, 1000, 5000, 10000} data samples, four of each size
(when applicable). The instances encoded from subsets are
named as <dataset>_<n_samp>_<idx>.bicnf, where
idx is the index from 1 to 4. For more details on the datasets,
see [6] and the corresponding repository.

In the set-cover directory, we provide bi-objective set
covering instances generated with two different random proce-
dures. The instances fixed-element-prob-<n_elem>-
<n_sets>-<p>-<idx>.bicnf are generated with a pro-
cess where each element has a probability of p of appearing
in each set. With this, the cardinality of the sets differs. For
the instances fixed-set-card-<n_elem>-<n_sets>-
<c_set>-<idx>.bicnf, every set has fixed cardinality
c_set and the elements in the sets are chosen uniformly at
random. For all instances, the number of elements is n_elem
and the number of sets n_sets. The two objective weights
for each element are chosen uniformly at random from 1 to
100. There are five instances for every parameter combination
in n_elem ∈ {100, 150, 200}, n_sets ∈ {20, 40, 60, 80},
p ∈ {0.1, 0.2} and c_set ∈ {5, 10}.

IV. THE MLIC-SEESAW BENCHMARK

The MLIC-SEESAW benchmark is an instantiation of the
Seesaw [3] framework, which generalizes the implicit hit-
ting set framework to bi-objective problems. It solves the
bi-objective optimization problem of finding Pareto-optimal
interpretable classification decision rules for binary datasets.
The problems are encoded with the MLIC encoding [1] and
the two objectives are the size of the decision rule and its
classification error.

A. Description of the Algorithm

The Seesaw framework, as presented in [3], requires the
instantiation of four main components: the used universe,
cost function, oracle function and core extraction strategy.
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Algorithm 2 MLIC-SEESAW: Seesaw on the MLIC encoding
Input: A binary dataset D.
Output: All points (f, g) for which a Pareto-optimal decision
rule for D with size f a classification error g exists.

1: F,OI,OD ← encodeMLIC(D)
2: scost ← CplexInitHS(∅,OI)
3: sorac ← MaxSATInit(F,OD)
4: gbest, fbest ← |OI|+ 1, |OI|+ 1
5: res, g,hs← CplexCompHS(scost)
6: while res = OPT do
7: if g > gbest then
8: yield (fbest, glast)
9: gbest ← |OI|+ 1

10: res, f ← MaxSATSolve(sorac, {¬η | η ∈ OI \ hs})
11: if res = OPT ∧ f < fbest then
12: fbest, gbest ← f, g
13: κ← extractCoream(hs, f, sorac)
14: CplexAddCoreHS(scost, κ)
15: res, g,hs← CplexCompHS(scost)

In the benchmark, the universe is the set of ηi variables
from the MLIC encoding, representing whether sample i is
allowed to be incorrectly classified. The cost function is the
cardinality of the hitting sets (i.e., subsets of the universe)
making it the classification error of the decision rule. The
oracle function computes the size of the smallest decision
rule misclassifying no samples that are not in the hitting set.
This oracle function is anti-monotonic, therefore, the improved
core-extraction strategy presented in [3] can be used. In the
benchmark computing the minimum hitting sets is done via
an integer linear program in CPLEX and the oracle function
is computed as a MaxSAT solver call.

Algorithm 2 shows the pseudocode of the benchmark. On
Line 1, the dataset is encoded with the MLIC encoding [1].
The hard clauses are returned as F , the set of η variables
as OI and the set of b variables as OD. Next, a CPLEX
hitting set solver and the oracle function are initialized on
Lines 2 and 3. In the main loop, the oracle function under the
condition of a current hitting set (defined by hs) is computed
on Line 10. Next, if the found solution is better than the last,
it is saved. Before a new hitting set is found on Line 15, a
core is extracted and added to CPLEX on Lines 13f. The core
extraction subroutine extractCoream is as defined in [3]
and makes use of the oracle MaxSAT solver.

B. Description of the Provided Instances

This benchmark directly reads .csv files with “;” as
the separator. It assumes that the first row is a header and
that every column contains one binary feature, except for
the last column, which contains the binary class label. We
again provide the same full datasets and subsets with the same
naming scheme as in Section III-B, but not encoded yet. For
more details on the datasets, see [6] and the corresponding
repository.
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Abstract—We shortly present a benchmark for the incremental
track of MaxSAT Evaluation 2022. The benchmark application
implements a MaxSAT-based counterexample-guided abstraction
refinement (CEGAR) algorithm for extension enforcement under
preferred semantics in abstract argumentation, a problem which
is hard for the second level of the polynomial hierarchy.

Index Terms—abstract argumentation, extension enforcement,
CEGAR

I. INTRODUCTION

In abstract argumentation [1] a scenario is represented using
a directed graph with nodes as arguments and edges as attacks
between arguments, with so-called semantics identifying ex-
tensions, i.e., jointly acceptable subsets of arguments. Enforce-
ment is a central problem concerning the dynamics of abstract
argumentation with several different variants [2]. The goal of
(strict) extension enforcement is to modify an argumentation
framework to one where a given set of arguments is an
extension [3], which is seen as an optimization problem by
additionally minimizing the number of changes to an initial
argumentation framework [4].

Here we consider extension enforcement under preferred
semantics. The corresponding decision problem is known to
be complete for the second level of the polynomial hierar-
chy [5], which means that presumably there is no compact
(polynomial-sized) MaxSAT encoding for the optimization
problem. This benchmark implements a MaxSAT-based CE-
GAR algorithm [5] for this problem using so-called strong
refinements [6]. In the benchmark application a MaxSAT
instance is first constructed using a MaxSAT encoding for
extension enforcement under complete semantics. Iteratively,
candidate solutions are obtained from the MaxSAT solver. An
additional SAT solver is used to yield counterexamples from
the candidate solution. If a counterexample is found, it is used
to construct a hard clause which rules out non-solutions, and
is added to the MaxSAT solver. The algorithm proceeds until
no counterexample is found, i.e., the candidate solution is an
actual solution.

II. ENCODING

The input is an AF F = (A,R) where A is the set of
arguments and R ⊆ A×A is the attack relation, and a set T ⊆
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A The MaxSAT encoding uses variables ra,b for each a, b ∈ A
to represent a solution argumentation framework F = (A,R′)
where T is a complete extension, interpreting τ(ra,b) = 1 iff
attack (a, b) ∈ R′. For details on the encoding, we refer the
reader to [5].

III. CEGAR ALGORITHM

After obtaining a candidate argumentation framework F ′ =
(A,R′) where T is a complete extension, we use a SAT solver
to check whether there is another complete extension T ′ ⊃ T
in F ′. If there is, T is not a preferred extension. That is,
T ′ is a counterexample in F ′, and is used to construct a
strong refinement clause [6] which is added to the MaxSAT
solver, ruling out F ′ and other non-solutions. This procedure
is repeated until we obtain a candidate solution with no
counterexample extension.

IV. BENCHMARK INSTANCES

For generating benchmark instances, we follow [6]. We used
all instances from the ICCMA 20191 argumentation solver
competition with at most 500 arguments. For each of these
221 AFs, we generated five extension enforcement instances
for each |T |/|A| = 0.025, 0.05, 0.075, 0.1, 0.2, 0.3 by picking
|T | uniformly at random, resulting in a total of 6630 instances.
In the implementation, we use MiniSat (version 2.2.0) as the
SAT solver for the counterexample check.
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Abstract—We present a set of incremental MaxSAT bench-
marks for MaxSAT Evaluation 2022. The problem instances stem
from applying Property Directed Reachability (PDR / IC3 [1], [2])
to sequential circuits given in AIGER format [3]. In particular,
the MaxSAT solver is used for generalizing proof obligations (or
CTI) in PDR.

I. INTRODUCTION

In 2011, the verification engine PDR resp. IC3 was intro-
duced [1] and is nowadays widely considered as the most
powerful algorithm for Hardware Model Checking. The idea
of PDR is to avoid the unrolling of the transition relation as
in Bounded Model Checking (BMC) [4] and to rather replace
small numbers of large and hard SAT problems by many small
and easy ones based on a single instance of the transition
relation only. PDR repeatedly strengthens a proof by removing
unreachable predecessors of unsafe states. Thereby, PDR tries
to avoid enumerating single states, but puts a lot of effort into
generalizing these predecessors – so called proof obligations
– to preferably expressive state sets. PDR’s efficiency relies
heavily on an effective generalization of proof obligations [2],
[5].

In [6] we discuss various techniques which we adapt to
the generalization of proof obligations in PDR. One of these,
we call it MS01X, is based on the use of a MaxSAT solver.
Our recent experimental analysis in [6] indicates, that there is
lots of potential in MaxSAT based generalization in PDR. In
combination with another technique, MS01X was the strongest
method in our evaluation, despite the fact that with Pacose [7]
we were using a non-incremental MaxSAT solver for a task
which is obviously predestined for an incremental application
(as PDR is in general [2]).

II. BASICS AND NOTATIONS

In a finite state transition system we have a finite set
of states and a transition relation which encodes transitions
between states under certain inputs. States are obtained by
assigning Boolean values to the (present) state variables
s⃗ = (s1, . . . , sm), inputs by assigning Boolean values to the
input variables i⃗ = (i1, . . . , in). For representing transitions
we introduce a second copy s⃗′ of the state variables, the

so-called next state variables. The transition relation is then
represented by a predicate T (s⃗, i⃗, s⃗′), the set of initial states
by a predicate I(s⃗). The set of bad states (we verify invariant
properties) are represented by a predicate ¬P (s⃗). For brevity,
we often omit the arguments of the predicates and write them
without parenthesis. A literal represents a Boolean variable
or its negation. Cubes are conjunctions of literals, clauses are
disjunctions of literals. The negation of a cube is a clause and
vice versa. A Boolean formula in Conjunctive Normal Form
(CNF) is a conjunction of clauses.

III. GENERALIZATION OF PROOF OBLIGATIONS

We restrict ourselves to one particular part of PDR – the
generalization of proof obligations. We remark, that in the
following we assume that the (usually tseitin-transformed [8])
CNF representing the transition relation is a function1. For a
more detailed description of PDR, we refer to [1], [2].

Proof obligations are created as predecessors of a particular
set of bad states2 represented by a cube (conjunction of literals)
d following a satisfiable SAT solver call to the formula

Fi ∧ T ∧ d′ (1)

whereas Fi is representing some overapproximation of reach-
able states in which we search for the predecessor of d.

We assume that the SAT solver yields us a full satisfying
assignment m over the state variables – m is now considered
a proof obligation. Our objective is, to generalize m such that
we only add states which are exact predecessors of the bad
states d. The most standard technique which is usually applied
here, is greedy 01X-simulation with ternary3 logic: We set one
literal of m to X , simulate the circuit (origin of T ), and check
whether the X propagates to the next state variables of d′.
If it does, we retract X and probe the next literal. If the X
percolates, we may remove the respective literal l from m and
therefore generalize m to m̂ = m \ {l}.

1This is obviously the case if we consider sequential circuits.
2Violating the invariant property, or being predecessors of such states.
3We extend the two valued semantics by (X∧0 = 0), (X∧1 = X), (X∧

X = X), (¬X = X)
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IV. 01X-ENCODING

The aforementioned greedy 01X-simulation solves the un-
derlying optimization problem only heuristically. Therefore,
we introduce a partial MaxSAT [9]–[11] encoding to find a
better approximate4 solution. To 01X-encode the transition
relation resulting from a Boolean circuit (and therefore repre-
senting a function), we introduce two variables v(0) and v(1)

for each Boolean variable v which represents either an input,
an output or an internal signal, while ((v(0) = 0 ∧ v(1) =
0) ↔ v = X) as well as ((v(0) = 1 ∧ v(1) = 0) ↔ v = 0)
and ((v(0) = 0 ∧ v(1) = 1) ↔ v = 1); we explicitly forbid
(v(0) = 1 ∧ v(1) = 1). All gates are replaced by a two-rail
encoding according to [12].

For each state variable si we introduce a new variable ti and
a unit soft clause sci = {ti} accompanied by the hard clauses
representing ti ↔ ((s

(0)
i = 0) ∧ (s

(1)
i = 0)). Starting with a

satisfying solution to Eqn. 1 with d′ = ((d′i1)
τ1∧. . .∧(d′ik)τk )5

that provides full assignments m = sσ1
1 ∧ . . . ∧ sσm

m and i =
iι11 ∧ . . . ∧ iιnn , we introduce hard clauses fixing state bits si
to X or σi, input bits ij to ιj , and next state bits d′ij to τj .

The other hard clauses of the considered MaxSAT problem
correspond to the 01X-encoding of T . Maximizing the number
of satisfied soft clauses means maximizing the number of
present state bits which are assigned to X and are thus not
included in the resulting c of m from which all transitions
under i lead into d′. As already mentioned before we call the
resulting MaxSAT problem MS01X.

V. BENCHMARK DESCRIPTION

We provide the publicly available benchmarks from Hard-
ware Model Checking Competitions (HWMCC) 2015 and
2017 [13], [14]. The benchmarks are designs and specifications
of sequential circuits represented in the AIGER format [3].

The benchmarks are verified using our tool which is de-
rived from IC3ref [15]. Usually, the generalization of proof
obligations and therefore the MaxSAT solver is invoked from
ten to tens of thousands times, whereas the transition relation
T remains the same and only the proof obligation cube m as
well as the bad cube d′ are altered (and provided to the solver
via assumptions). This means the given benchmarks consist of
a core of hard clauses to which we add in every round only
hard clause assumptions. These assumptions will be slightly
modified in each loop. The set of soft clauses remains the
same in all iterations.

Our tool reports 0 if the design is safe with respect to the
property, or 1 if the design is unsafe.

The resulting binary is called IC3 and the HWMCC bench-
marks in AIGER format are ended with *.aig.

4Even though MaxSAT is optimal, the solution is still approximate due to
the shortcomings of 01X-encodings.

5A cube c = sσ1
i1

∧ . . . ∧ s
σk
ik

of literals over state variables with ij ∈
{1, . . . ,m}, σj ∈ {0, 1}, s0ij = ¬sij and s1ij = sij represents the set of
all states where sij is assigned to σj for all j = 1, . . . , k.
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